1(*  Title:      ZF/Induct/Multiset.thy
2    Author:     Sidi O Ehmety, Cambridge University Computer Laboratory
3
4A definitional theory of multisets,
5including a wellfoundedness proof for the multiset order.
6
7The theory features ordinal multisets and the usual ordering.
8*)
9
10theory Multiset
11imports FoldSet Acc
12begin
13
14abbreviation (input)
15  \<comment> \<open>Short cut for multiset space\<close>
16  Mult :: "i=>i" where
17  "Mult(A) == A -||> nat-{0}"
18
19definition
20  (* This is the original "restrict" from ZF.thy.
21     Restricts the function f to the domain A
22     FIXME: adapt Multiset to the new "restrict". *)
23  funrestrict :: "[i,i] => i"  where
24  "funrestrict(f,A) == \<lambda>x \<in> A. f`x"
25
26definition
27  (* M is a multiset *)
28  multiset :: "i => o"  where
29  "multiset(M) == \<exists>A. M \<in> A -> nat-{0} & Finite(A)"
30
31definition
32  mset_of :: "i=>i"  where
33  "mset_of(M) == domain(M)"
34
35definition
36  munion    :: "[i, i] => i" (infixl \<open>+#\<close> 65)  where
37  "M +# N == \<lambda>x \<in> mset_of(M) \<union> mset_of(N).
38     if x \<in> mset_of(M) \<inter> mset_of(N) then  (M`x) #+ (N`x)
39     else (if x \<in> mset_of(M) then M`x else N`x)"
40
41definition
42  (*convert a function to a multiset by eliminating 0*)
43  normalize :: "i => i"  where
44  "normalize(f) ==
45       if (\<exists>A. f \<in> A -> nat & Finite(A)) then
46            funrestrict(f, {x \<in> mset_of(f). 0 < f`x})
47       else 0"
48
49definition
50  mdiff  :: "[i, i] => i" (infixl \<open>-#\<close> 65)  where
51  "M -# N ==  normalize(\<lambda>x \<in> mset_of(M).
52                        if x \<in> mset_of(N) then M`x #- N`x else M`x)"
53
54definition
55  (* set of elements of a multiset *)
56  msingle :: "i => i"    (\<open>{#_#}\<close>)  where
57  "{#a#} == {<a, 1>}"
58
59definition
60  MCollect :: "[i, i=>o] => i"  (*comprehension*)  where
61  "MCollect(M, P) == funrestrict(M, {x \<in> mset_of(M). P(x)})"
62
63definition
64  (* Counts the number of occurrences of an element in a multiset *)
65  mcount :: "[i, i] => i"  where
66  "mcount(M, a) == if a \<in> mset_of(M) then  M`a else 0"
67
68definition
69  msize :: "i => i"  where
70  "msize(M) == setsum(%a. $# mcount(M,a), mset_of(M))"
71
72abbreviation
73  melem :: "[i,i] => o"    (\<open>(_/ :# _)\<close> [50, 51] 50)  where
74  "a :# M == a \<in> mset_of(M)"
75
76syntax
77  "_MColl" :: "[pttrn, i, o] => i" (\<open>(1{# _ \<in> _./ _#})\<close>)
78translations
79  "{#x \<in> M. P#}" == "CONST MCollect(M, \<lambda>x. P)"
80
81  (* multiset orderings *)
82
83definition
84   (* multirel1 has to be a set (not a predicate) so that we can form
85      its transitive closure and reason about wf(.) and acc(.) *)
86  multirel1 :: "[i,i]=>i"  where
87  "multirel1(A, r) ==
88     {<M, N> \<in> Mult(A)*Mult(A).
89      \<exists>a \<in> A. \<exists>M0 \<in> Mult(A). \<exists>K \<in> Mult(A).
90      N=M0 +# {#a#} & M=M0 +# K & (\<forall>b \<in> mset_of(K). <b,a> \<in> r)}"
91
92definition
93  multirel :: "[i, i] => i"  where
94  "multirel(A, r) == multirel1(A, r)^+"
95
96  (* ordinal multiset orderings *)
97
98definition
99  omultiset :: "i => o"  where
100  "omultiset(M) == \<exists>i. Ord(i) & M \<in> Mult(field(Memrel(i)))"
101
102definition
103  mless :: "[i, i] => o" (infixl \<open><#\<close> 50)  where
104  "M <# N ==  \<exists>i. Ord(i) & <M, N> \<in> multirel(field(Memrel(i)), Memrel(i))"
105
106definition
107  mle  :: "[i, i] => o"  (infixl \<open><#=\<close> 50)  where
108  "M <#= N == (omultiset(M) & M = N) | M <# N"
109
110
111subsection\<open>Properties of the original "restrict" from ZF.thy\<close>
112
113lemma funrestrict_subset: "[| f \<in> Pi(C,B);  A\<subseteq>C |] ==> funrestrict(f,A) \<subseteq> f"
114by (auto simp add: funrestrict_def lam_def intro: apply_Pair)
115
116lemma funrestrict_type:
117    "[| !!x. x \<in> A ==> f`x \<in> B(x) |] ==> funrestrict(f,A) \<in> Pi(A,B)"
118by (simp add: funrestrict_def lam_type)
119
120lemma funrestrict_type2: "[| f \<in> Pi(C,B);  A\<subseteq>C |] ==> funrestrict(f,A) \<in> Pi(A,B)"
121by (blast intro: apply_type funrestrict_type)
122
123lemma funrestrict [simp]: "a \<in> A ==> funrestrict(f,A) ` a = f`a"
124by (simp add: funrestrict_def)
125
126lemma funrestrict_empty [simp]: "funrestrict(f,0) = 0"
127by (simp add: funrestrict_def)
128
129lemma domain_funrestrict [simp]: "domain(funrestrict(f,C)) = C"
130by (auto simp add: funrestrict_def lam_def)
131
132lemma fun_cons_funrestrict_eq:
133     "f \<in> cons(a, b) -> B ==> f = cons(<a, f ` a>, funrestrict(f, b))"
134apply (rule equalityI)
135prefer 2 apply (blast intro: apply_Pair funrestrict_subset [THEN subsetD])
136apply (auto dest!: Pi_memberD simp add: funrestrict_def lam_def)
137done
138
139declare domain_of_fun [simp]
140declare domainE [rule del]
141
142
143text\<open>A useful simplification rule\<close>
144lemma multiset_fun_iff:
145     "(f \<in> A -> nat-{0}) \<longleftrightarrow> f \<in> A->nat&(\<forall>a \<in> A. f`a \<in> nat & 0 < f`a)"
146apply safe
147apply (rule_tac [4] B1 = "range (f) " in Pi_mono [THEN subsetD])
148apply (auto intro!: Ord_0_lt
149            dest: apply_type Diff_subset [THEN Pi_mono, THEN subsetD]
150            simp add: range_of_fun apply_iff)
151done
152
153(** The multiset space  **)
154lemma multiset_into_Mult: "[| multiset(M); mset_of(M)\<subseteq>A |] ==> M \<in> Mult(A)"
155apply (simp add: multiset_def)
156apply (auto simp add: multiset_fun_iff mset_of_def)
157apply (rule_tac B1 = "nat-{0}" in FiniteFun_mono [THEN subsetD], simp_all)
158apply (rule Finite_into_Fin [THEN [2] Fin_mono [THEN subsetD], THEN fun_FiniteFunI])
159apply (simp_all (no_asm_simp) add: multiset_fun_iff)
160done
161
162lemma Mult_into_multiset: "M \<in> Mult(A) ==> multiset(M) & mset_of(M)\<subseteq>A"
163apply (simp add: multiset_def mset_of_def)
164apply (frule FiniteFun_is_fun)
165apply (drule FiniteFun_domain_Fin)
166apply (frule FinD, clarify)
167apply (rule_tac x = "domain (M) " in exI)
168apply (blast intro: Fin_into_Finite)
169done
170
171lemma Mult_iff_multiset: "M \<in> Mult(A) \<longleftrightarrow> multiset(M) & mset_of(M)\<subseteq>A"
172by (blast dest: Mult_into_multiset intro: multiset_into_Mult)
173
174lemma multiset_iff_Mult_mset_of: "multiset(M) \<longleftrightarrow> M \<in> Mult(mset_of(M))"
175by (auto simp add: Mult_iff_multiset)
176
177
178text\<open>The \<^term>\<open>multiset\<close> operator\<close>
179
180(* the empty multiset is 0 *)
181
182lemma multiset_0 [simp]: "multiset(0)"
183by (auto intro: FiniteFun.intros simp add: multiset_iff_Mult_mset_of)
184
185
186text\<open>The \<^term>\<open>mset_of\<close> operator\<close>
187
188lemma multiset_set_of_Finite [simp]: "multiset(M) ==> Finite(mset_of(M))"
189by (simp add: multiset_def mset_of_def, auto)
190
191lemma mset_of_0 [iff]: "mset_of(0) = 0"
192by (simp add: mset_of_def)
193
194lemma mset_is_0_iff: "multiset(M) ==> mset_of(M)=0 \<longleftrightarrow> M=0"
195by (auto simp add: multiset_def mset_of_def)
196
197lemma mset_of_single [iff]: "mset_of({#a#}) = {a}"
198by (simp add: msingle_def mset_of_def)
199
200lemma mset_of_union [iff]: "mset_of(M +# N) = mset_of(M) \<union> mset_of(N)"
201by (simp add: mset_of_def munion_def)
202
203lemma mset_of_diff [simp]: "mset_of(M)\<subseteq>A ==> mset_of(M -# N) \<subseteq> A"
204by (auto simp add: mdiff_def multiset_def normalize_def mset_of_def)
205
206(* msingle *)
207
208lemma msingle_not_0 [iff]: "{#a#} \<noteq> 0 & 0 \<noteq> {#a#}"
209by (simp add: msingle_def)
210
211lemma msingle_eq_iff [iff]: "({#a#} = {#b#}) \<longleftrightarrow>  (a = b)"
212by (simp add: msingle_def)
213
214lemma msingle_multiset [iff,TC]: "multiset({#a#})"
215apply (simp add: multiset_def msingle_def)
216apply (rule_tac x = "{a}" in exI)
217apply (auto intro: Finite_cons Finite_0 fun_extend3)
218done
219
220(** normalize **)
221
222lemmas Collect_Finite = Collect_subset [THEN subset_Finite]
223
224lemma normalize_idem [simp]: "normalize(normalize(f)) = normalize(f)"
225apply (simp add: normalize_def funrestrict_def mset_of_def)
226apply (case_tac "\<exists>A. f \<in> A -> nat & Finite (A) ")
227apply clarify
228apply (drule_tac x = "{x \<in> domain (f) . 0 < f ` x}" in spec)
229apply auto
230apply (auto  intro!: lam_type simp add: Collect_Finite)
231done
232
233lemma normalize_multiset [simp]: "multiset(M) ==> normalize(M) = M"
234by (auto simp add: multiset_def normalize_def mset_of_def funrestrict_def multiset_fun_iff)
235
236lemma multiset_normalize [simp]: "multiset(normalize(f))"
237apply (simp add: normalize_def)
238apply (simp add: normalize_def mset_of_def multiset_def, auto)
239apply (rule_tac x = "{x \<in> A . 0<f`x}" in exI)
240apply (auto intro: Collect_subset [THEN subset_Finite] funrestrict_type)
241done
242
243(** Typechecking rules for union and difference of multisets **)
244
245(* union *)
246
247lemma munion_multiset [simp]: "[| multiset(M); multiset(N) |] ==> multiset(M +# N)"
248apply (unfold multiset_def munion_def mset_of_def, auto)
249apply (rule_tac x = "A \<union> Aa" in exI)
250apply (auto intro!: lam_type intro: Finite_Un simp add: multiset_fun_iff zero_less_add)
251done
252
253(* difference *)
254
255lemma mdiff_multiset [simp]: "multiset(M -# N)"
256by (simp add: mdiff_def)
257
258(** Algebraic properties of multisets **)
259
260(* Union *)
261
262lemma munion_0 [simp]: "multiset(M) ==> M +# 0 = M & 0 +# M = M"
263apply (simp add: multiset_def)
264apply (auto simp add: munion_def mset_of_def)
265done
266
267lemma munion_commute: "M +# N = N +# M"
268by (auto intro!: lam_cong simp add: munion_def)
269
270lemma munion_assoc: "(M +# N) +# K = M +# (N +# K)"
271apply (unfold munion_def mset_of_def)
272apply (rule lam_cong, auto)
273done
274
275lemma munion_lcommute: "M +# (N +# K) = N +# (M +# K)"
276apply (unfold munion_def mset_of_def)
277apply (rule lam_cong, auto)
278done
279
280lemmas munion_ac = munion_commute munion_assoc munion_lcommute
281
282(* Difference *)
283
284lemma mdiff_self_eq_0 [simp]: "M -# M = 0"
285by (simp add: mdiff_def normalize_def mset_of_def)
286
287lemma mdiff_0 [simp]: "0 -# M = 0"
288by (simp add: mdiff_def normalize_def)
289
290lemma mdiff_0_right [simp]: "multiset(M) ==> M -# 0 = M"
291by (auto simp add: multiset_def mdiff_def normalize_def multiset_fun_iff mset_of_def funrestrict_def)
292
293lemma mdiff_union_inverse2 [simp]: "multiset(M) ==> M +# {#a#} -# {#a#} = M"
294apply (unfold multiset_def munion_def mdiff_def msingle_def normalize_def mset_of_def)
295apply (auto cong add: if_cong simp add: ltD multiset_fun_iff funrestrict_def subset_Un_iff2 [THEN iffD1])
296prefer 2 apply (force intro!: lam_type)
297apply (subgoal_tac [2] "{x \<in> A \<union> {a} . x \<noteq> a \<and> x \<in> A} = A")
298apply (rule fun_extension, auto)
299apply (drule_tac x = "A \<union> {a}" in spec)
300apply (simp add: Finite_Un)
301apply (force intro!: lam_type)
302done
303
304(** Count of elements **)
305
306lemma mcount_type [simp,TC]: "multiset(M) ==> mcount(M, a) \<in> nat"
307by (auto simp add: multiset_def mcount_def mset_of_def multiset_fun_iff)
308
309lemma mcount_0 [simp]: "mcount(0, a) = 0"
310by (simp add: mcount_def)
311
312lemma mcount_single [simp]: "mcount({#b#}, a) = (if a=b then 1 else 0)"
313by (simp add: mcount_def mset_of_def msingle_def)
314
315lemma mcount_union [simp]: "[| multiset(M); multiset(N) |]
316                     ==>  mcount(M +# N, a) = mcount(M, a) #+ mcount (N, a)"
317apply (auto simp add: multiset_def multiset_fun_iff mcount_def munion_def mset_of_def)
318done
319
320lemma mcount_diff [simp]:
321     "multiset(M) ==> mcount(M -# N, a) = mcount(M, a) #- mcount(N, a)"
322apply (simp add: multiset_def)
323apply (auto dest!: not_lt_imp_le
324     simp add: mdiff_def multiset_fun_iff mcount_def normalize_def mset_of_def)
325apply (force intro!: lam_type)
326apply (force intro!: lam_type)
327done
328
329lemma mcount_elem: "[| multiset(M); a \<in> mset_of(M) |] ==> 0 < mcount(M, a)"
330apply (simp add: multiset_def, clarify)
331apply (simp add: mcount_def mset_of_def)
332apply (simp add: multiset_fun_iff)
333done
334
335(** msize **)
336
337lemma msize_0 [simp]: "msize(0) = #0"
338by (simp add: msize_def)
339
340lemma msize_single [simp]: "msize({#a#}) = #1"
341by (simp add: msize_def)
342
343lemma msize_type [simp,TC]: "msize(M) \<in> int"
344by (simp add: msize_def)
345
346lemma msize_zpositive: "multiset(M)==> #0 $\<le> msize(M)"
347by (auto simp add: msize_def intro: g_zpos_imp_setsum_zpos)
348
349lemma msize_int_of_nat: "multiset(M) ==> \<exists>n \<in> nat. msize(M)= $# n"
350apply (rule not_zneg_int_of)
351apply (simp_all (no_asm_simp) add: msize_type [THEN znegative_iff_zless_0] not_zless_iff_zle msize_zpositive)
352done
353
354lemma not_empty_multiset_imp_exist:
355     "[| M\<noteq>0; multiset(M) |] ==> \<exists>a \<in> mset_of(M). 0 < mcount(M, a)"
356apply (simp add: multiset_def)
357apply (erule not_emptyE)
358apply (auto simp add: mset_of_def mcount_def multiset_fun_iff)
359apply (blast dest!: fun_is_rel)
360done
361
362lemma msize_eq_0_iff: "multiset(M) ==> msize(M)=#0 \<longleftrightarrow> M=0"
363apply (simp add: msize_def, auto)
364apply (rule_tac P = "setsum (u,v) \<noteq> #0" for u v in swap)
365apply blast
366apply (drule not_empty_multiset_imp_exist, assumption, clarify)
367apply (subgoal_tac "Finite (mset_of (M) - {a}) ")
368 prefer 2 apply (simp add: Finite_Diff)
369apply (subgoal_tac "setsum (%x. $# mcount (M, x), cons (a, mset_of (M) -{a}))=#0")
370 prefer 2 apply (simp add: cons_Diff, simp)
371apply (subgoal_tac "#0 $\<le> setsum (%x. $# mcount (M, x), mset_of (M) - {a}) ")
372apply (rule_tac [2] g_zpos_imp_setsum_zpos)
373apply (auto simp add: Finite_Diff not_zless_iff_zle [THEN iff_sym] znegative_iff_zless_0 [THEN iff_sym])
374apply (rule not_zneg_int_of [THEN bexE])
375apply (auto simp del: int_of_0 simp add: int_of_add [symmetric] int_of_0 [symmetric])
376done
377
378lemma setsum_mcount_Int:
379     "Finite(A) ==> setsum(%a. $# mcount(N, a), A \<inter> mset_of(N))
380                  = setsum(%a. $# mcount(N, a), A)"
381apply (induct rule: Finite_induct)
382 apply auto
383apply (subgoal_tac "Finite (B \<inter> mset_of (N))")
384prefer 2 apply (blast intro: subset_Finite)
385apply (auto simp add: mcount_def Int_cons_left)
386done
387
388lemma msize_union [simp]:
389     "[| multiset(M); multiset(N) |] ==> msize(M +# N) = msize(M) $+ msize(N)"
390apply (simp add: msize_def setsum_Un setsum_addf int_of_add setsum_mcount_Int)
391apply (subst Int_commute)
392apply (simp add: setsum_mcount_Int)
393done
394
395lemma msize_eq_succ_imp_elem: "[|msize(M)= $# succ(n); n \<in> nat|] ==> \<exists>a. a \<in> mset_of(M)"
396apply (unfold msize_def)
397apply (blast dest: setsum_succD)
398done
399
400(** Equality of multisets **)
401
402lemma equality_lemma:
403     "[| multiset(M); multiset(N); \<forall>a. mcount(M, a)=mcount(N, a) |]
404      ==> mset_of(M)=mset_of(N)"
405apply (simp add: multiset_def)
406apply (rule sym, rule equalityI)
407apply (auto simp add: multiset_fun_iff mcount_def mset_of_def)
408apply (drule_tac [!] x=x in spec)
409apply (case_tac [2] "x \<in> Aa", case_tac "x \<in> A", auto)
410done
411
412lemma multiset_equality:
413  "[| multiset(M); multiset(N) |]==> M=N\<longleftrightarrow>(\<forall>a. mcount(M, a)=mcount(N, a))"
414apply auto
415apply (subgoal_tac "mset_of (M) = mset_of (N) ")
416prefer 2 apply (blast intro: equality_lemma)
417apply (simp add: multiset_def mset_of_def)
418apply (auto simp add: multiset_fun_iff)
419apply (rule fun_extension)
420apply (blast, blast)
421apply (drule_tac x = x in spec)
422apply (auto simp add: mcount_def mset_of_def)
423done
424
425(** More algebraic properties of multisets **)
426
427lemma munion_eq_0_iff [simp]: "[|multiset(M); multiset(N)|]==>(M +# N =0) \<longleftrightarrow> (M=0 & N=0)"
428by (auto simp add: multiset_equality)
429
430lemma empty_eq_munion_iff [simp]: "[|multiset(M); multiset(N)|]==>(0=M +# N) \<longleftrightarrow> (M=0 & N=0)"
431apply (rule iffI, drule sym)
432apply (simp_all add: multiset_equality)
433done
434
435lemma munion_right_cancel [simp]:
436     "[| multiset(M); multiset(N); multiset(K) |]==>(M +# K = N +# K)\<longleftrightarrow>(M=N)"
437by (auto simp add: multiset_equality)
438
439lemma munion_left_cancel [simp]:
440  "[|multiset(K); multiset(M); multiset(N)|] ==>(K +# M = K +# N) \<longleftrightarrow> (M = N)"
441by (auto simp add: multiset_equality)
442
443lemma nat_add_eq_1_cases: "[| m \<in> nat; n \<in> nat |] ==> (m #+ n = 1) \<longleftrightarrow> (m=1 & n=0) | (m=0 & n=1)"
444by (induct_tac n) auto
445
446lemma munion_is_single:
447     "[|multiset(M); multiset(N)|]
448      ==> (M +# N = {#a#}) \<longleftrightarrow>  (M={#a#} & N=0) | (M = 0 & N = {#a#})"
449apply (simp (no_asm_simp) add: multiset_equality)
450apply safe
451apply simp_all
452apply (case_tac "aa=a")
453apply (drule_tac [2] x = aa in spec)
454apply (drule_tac x = a in spec)
455apply (simp add: nat_add_eq_1_cases, simp)
456apply (case_tac "aaa=aa", simp)
457apply (drule_tac x = aa in spec)
458apply (simp add: nat_add_eq_1_cases)
459apply (case_tac "aaa=a")
460apply (drule_tac [4] x = aa in spec)
461apply (drule_tac [3] x = a in spec)
462apply (drule_tac [2] x = aaa in spec)
463apply (drule_tac x = aa in spec)
464apply (simp_all add: nat_add_eq_1_cases)
465done
466
467lemma msingle_is_union: "[| multiset(M); multiset(N) |]
468  ==> ({#a#} = M +# N) \<longleftrightarrow> ({#a#} = M  & N=0 | M = 0 & {#a#} = N)"
469apply (subgoal_tac " ({#a#} = M +# N) \<longleftrightarrow> (M +# N = {#a#}) ")
470apply (simp (no_asm_simp) add: munion_is_single)
471apply blast
472apply (blast dest: sym)
473done
474
475(** Towards induction over multisets **)
476
477lemma setsum_decr:
478"Finite(A)
479  ==>  (\<forall>M. multiset(M) \<longrightarrow>
480  (\<forall>a \<in> mset_of(M). setsum(%z. $# mcount(M(a:=M`a #- 1), z), A) =
481  (if a \<in> A then setsum(%z. $# mcount(M, z), A) $- #1
482           else setsum(%z. $# mcount(M, z), A))))"
483apply (unfold multiset_def)
484apply (erule Finite_induct)
485apply (auto simp add: multiset_fun_iff)
486apply (unfold mset_of_def mcount_def)
487apply (case_tac "x \<in> A", auto)
488apply (subgoal_tac "$# M ` x $+ #-1 = $# M ` x $- $# 1")
489apply (erule ssubst)
490apply (rule int_of_diff, auto)
491done
492
493lemma setsum_decr2:
494     "Finite(A)
495      ==> \<forall>M. multiset(M) \<longrightarrow> (\<forall>a \<in> mset_of(M).
496           setsum(%x. $# mcount(funrestrict(M, mset_of(M)-{a}), x), A) =
497           (if a \<in> A then setsum(%x. $# mcount(M, x), A) $- $# M`a
498            else setsum(%x. $# mcount(M, x), A)))"
499apply (simp add: multiset_def)
500apply (erule Finite_induct)
501apply (auto simp add: multiset_fun_iff mcount_def mset_of_def)
502done
503
504lemma setsum_decr3: "[| Finite(A); multiset(M); a \<in> mset_of(M) |]
505      ==> setsum(%x. $# mcount(funrestrict(M, mset_of(M)-{a}), x), A - {a}) =
506          (if a \<in> A then setsum(%x. $# mcount(M, x), A) $- $# M`a
507           else setsum(%x. $# mcount(M, x), A))"
508apply (subgoal_tac "setsum (%x. $# mcount (funrestrict (M, mset_of (M) -{a}),x),A-{a}) = setsum (%x. $# mcount (funrestrict (M, mset_of (M) -{a}),x),A) ")
509apply (rule_tac [2] setsum_Diff [symmetric])
510apply (rule sym, rule ssubst, blast)
511apply (rule sym, drule setsum_decr2, auto)
512apply (simp add: mcount_def mset_of_def)
513done
514
515lemma nat_le_1_cases: "n \<in> nat ==> n \<le> 1 \<longleftrightarrow> (n=0 | n=1)"
516by (auto elim: natE)
517
518lemma succ_pred_eq_self: "[| 0<n; n \<in> nat |] ==> succ(n #- 1) = n"
519apply (subgoal_tac "1 \<le> n")
520apply (drule add_diff_inverse2, auto)
521done
522
523text\<open>Specialized for use in the proof below.\<close>
524lemma multiset_funrestict:
525     "\<lbrakk>\<forall>a\<in>A. M ` a \<in> nat \<and> 0 < M ` a; Finite(A)\<rbrakk>
526      \<Longrightarrow> multiset(funrestrict(M, A - {a}))"
527apply (simp add: multiset_def multiset_fun_iff)
528apply (rule_tac x="A-{a}" in exI)
529apply (auto intro: Finite_Diff funrestrict_type)
530done
531
532lemma multiset_induct_aux:
533  assumes prem1: "!!M a. [| multiset(M); a\<notin>mset_of(M); P(M) |] ==> P(cons(<a, 1>, M))"
534      and prem2: "!!M b. [| multiset(M); b \<in> mset_of(M); P(M) |] ==> P(M(b:= M`b #+ 1))"
535  shows
536  "[| n \<in> nat; P(0) |]
537     ==> (\<forall>M. multiset(M)\<longrightarrow>
538  (setsum(%x. $# mcount(M, x), {x \<in> mset_of(M). 0 < M`x}) = $# n) \<longrightarrow> P(M))"
539apply (erule nat_induct, clarify)
540apply (frule msize_eq_0_iff)
541apply (auto simp add: mset_of_def multiset_def multiset_fun_iff msize_def)
542apply (subgoal_tac "setsum (%x. $# mcount (M, x), A) =$# succ (x) ")
543apply (drule setsum_succD, auto)
544apply (case_tac "1 <M`a")
545apply (drule_tac [2] not_lt_imp_le)
546apply (simp_all add: nat_le_1_cases)
547apply (subgoal_tac "M= (M (a:=M`a #- 1)) (a:= (M (a:=M`a #- 1))`a #+ 1) ")
548apply (rule_tac [2] A = A and B = "%x. nat" and D = "%x. nat" in fun_extension)
549apply (rule_tac [3] update_type)+
550apply (simp_all (no_asm_simp))
551 apply (rule_tac [2] impI)
552 apply (rule_tac [2] succ_pred_eq_self [symmetric])
553apply (simp_all (no_asm_simp))
554apply (rule subst, rule sym, blast, rule prem2)
555apply (simp (no_asm) add: multiset_def multiset_fun_iff)
556apply (rule_tac x = A in exI)
557apply (force intro: update_type)
558apply (simp (no_asm_simp) add: mset_of_def mcount_def)
559apply (drule_tac x = "M (a := M ` a #- 1) " in spec)
560apply (drule mp, drule_tac [2] mp, simp_all)
561apply (rule_tac x = A in exI)
562apply (auto intro: update_type)
563apply (subgoal_tac "Finite ({x \<in> cons (a, A) . x\<noteq>a\<longrightarrow>0<M`x}) ")
564prefer 2 apply (blast intro: Collect_subset [THEN subset_Finite] Finite_cons)
565apply (drule_tac A = "{x \<in> cons (a, A) . x\<noteq>a\<longrightarrow>0<M`x}" in setsum_decr)
566apply (drule_tac x = M in spec)
567apply (subgoal_tac "multiset (M) ")
568 prefer 2
569 apply (simp add: multiset_def multiset_fun_iff)
570 apply (rule_tac x = A in exI, force)
571apply (simp_all add: mset_of_def)
572apply (drule_tac psi = "\<forall>x \<in> A. u(x)" for u in asm_rl)
573apply (drule_tac x = a in bspec)
574apply (simp (no_asm_simp))
575apply (subgoal_tac "cons (a, A) = A")
576prefer 2 apply blast
577apply simp
578apply (subgoal_tac "M=cons (<a, M`a>, funrestrict (M, A-{a}))")
579 prefer 2
580 apply (rule fun_cons_funrestrict_eq)
581 apply (subgoal_tac "cons (a, A-{a}) = A")
582  apply force
583  apply force
584apply (rule_tac a = "cons (<a, 1>, funrestrict (M, A - {a}))" in ssubst)
585apply simp
586apply (frule multiset_funrestict, assumption)
587apply (rule prem1, assumption)
588apply (simp add: mset_of_def)
589apply (drule_tac x = "funrestrict (M, A-{a}) " in spec)
590apply (drule mp)
591apply (rule_tac x = "A-{a}" in exI)
592apply (auto intro: Finite_Diff funrestrict_type simp add: funrestrict)
593apply (frule_tac A = A and M = M and a = a in setsum_decr3)
594apply (simp (no_asm_simp) add: multiset_def multiset_fun_iff)
595apply blast
596apply (simp (no_asm_simp) add: mset_of_def)
597apply (drule_tac b = "if u then v else w" for u v w in sym, simp_all)
598apply (subgoal_tac "{x \<in> A - {a} . 0 < funrestrict (M, A - {x}) ` x} = A - {a}")
599apply (auto intro!: setsum_cong simp add: zdiff_eq_iff zadd_commute multiset_def multiset_fun_iff mset_of_def)
600done
601
602lemma multiset_induct2:
603  "[| multiset(M); P(0);
604    (!!M a. [| multiset(M); a\<notin>mset_of(M); P(M) |] ==> P(cons(<a, 1>, M)));
605    (!!M b. [| multiset(M); b \<in> mset_of(M);  P(M) |] ==> P(M(b:= M`b #+ 1))) |]
606     ==> P(M)"
607apply (subgoal_tac "\<exists>n \<in> nat. setsum (\<lambda>x. $# mcount (M, x), {x \<in> mset_of (M) . 0 < M ` x}) = $# n")
608apply (rule_tac [2] not_zneg_int_of)
609apply (simp_all (no_asm_simp) add: znegative_iff_zless_0 not_zless_iff_zle)
610apply (rule_tac [2] g_zpos_imp_setsum_zpos)
611prefer 2 apply (blast intro:  multiset_set_of_Finite Collect_subset [THEN subset_Finite])
612 prefer 2 apply (simp add: multiset_def multiset_fun_iff, clarify)
613apply (rule multiset_induct_aux [rule_format], auto)
614done
615
616lemma munion_single_case1:
617     "[| multiset(M); a \<notin>mset_of(M) |] ==> M +# {#a#} = cons(<a, 1>, M)"
618apply (simp add: multiset_def msingle_def)
619apply (auto simp add: munion_def)
620apply (unfold mset_of_def, simp)
621apply (rule fun_extension, rule lam_type, simp_all)
622apply (auto simp add: multiset_fun_iff fun_extend_apply)
623apply (drule_tac c = a and b = 1 in fun_extend3)
624apply (auto simp add: cons_eq Un_commute [of _ "{a}"])
625done
626
627lemma munion_single_case2:
628     "[| multiset(M); a \<in> mset_of(M) |] ==> M +# {#a#} = M(a:=M`a #+ 1)"
629apply (simp add: multiset_def)
630apply (auto simp add: munion_def multiset_fun_iff msingle_def)
631apply (unfold mset_of_def, simp)
632apply (subgoal_tac "A \<union> {a} = A")
633apply (rule fun_extension)
634apply (auto dest: domain_type intro: lam_type update_type)
635done
636
637(* Induction principle for multisets *)
638
639lemma multiset_induct:
640  assumes M: "multiset(M)"
641      and P0: "P(0)"
642      and step: "!!M a. [| multiset(M); P(M) |] ==> P(M +# {#a#})"
643  shows "P(M)"
644apply (rule multiset_induct2 [OF M])
645apply (simp_all add: P0)
646apply (frule_tac [2] a = b in munion_single_case2 [symmetric])
647apply (frule_tac a = a in munion_single_case1 [symmetric])
648apply (auto intro: step)
649done
650
651(** MCollect **)
652
653lemma MCollect_multiset [simp]:
654     "multiset(M) ==> multiset({# x \<in> M. P(x)#})"
655apply (simp add: MCollect_def multiset_def mset_of_def, clarify)
656apply (rule_tac x = "{x \<in> A. P (x) }" in exI)
657apply (auto dest: CollectD1 [THEN [2] apply_type]
658            intro: Collect_subset [THEN subset_Finite] funrestrict_type)
659done
660
661lemma mset_of_MCollect [simp]:
662     "multiset(M) ==> mset_of({# x \<in> M. P(x) #}) \<subseteq> mset_of(M)"
663by (auto simp add: mset_of_def MCollect_def multiset_def funrestrict_def)
664
665lemma MCollect_mem_iff [iff]:
666     "x \<in> mset_of({#x \<in> M. P(x)#}) \<longleftrightarrow>  x \<in> mset_of(M) & P(x)"
667by (simp add: MCollect_def mset_of_def)
668
669lemma mcount_MCollect [simp]:
670     "mcount({# x \<in> M. P(x) #}, a) = (if P(a) then mcount(M,a) else 0)"
671by (simp add: mcount_def MCollect_def mset_of_def)
672
673lemma multiset_partition: "multiset(M) ==> M = {# x \<in> M. P(x) #} +# {# x \<in> M. ~ P(x) #}"
674by (simp add: multiset_equality)
675
676lemma natify_elem_is_self [simp]:
677     "[| multiset(M); a \<in> mset_of(M) |] ==> natify(M`a) = M`a"
678by (auto simp add: multiset_def mset_of_def multiset_fun_iff)
679
680(* and more algebraic laws on multisets *)
681
682lemma munion_eq_conv_diff: "[| multiset(M); multiset(N) |]
683  ==>  (M +# {#a#} = N +# {#b#}) \<longleftrightarrow>  (M = N & a = b |
684       M = N -# {#a#} +# {#b#} & N = M -# {#b#} +# {#a#})"
685apply (simp del: mcount_single add: multiset_equality)
686apply (rule iffI, erule_tac [2] disjE, erule_tac [3] conjE)
687apply (case_tac "a=b", auto)
688apply (drule_tac x = a in spec)
689apply (drule_tac [2] x = b in spec)
690apply (drule_tac [3] x = aa in spec)
691apply (drule_tac [4] x = a in spec, auto)
692apply (subgoal_tac [!] "mcount (N,a) :nat")
693apply (erule_tac [3] natE, erule natE, auto)
694done
695
696lemma melem_diff_single:
697"multiset(M) ==>
698  k \<in> mset_of(M -# {#a#}) \<longleftrightarrow> (k=a & 1 < mcount(M,a)) | (k\<noteq> a & k \<in> mset_of(M))"
699apply (simp add: multiset_def)
700apply (simp add: normalize_def mset_of_def msingle_def mdiff_def mcount_def)
701apply (auto dest: domain_type intro: zero_less_diff [THEN iffD1]
702            simp add: multiset_fun_iff apply_iff)
703apply (force intro!: lam_type)
704apply (force intro!: lam_type)
705apply (force intro!: lam_type)
706done
707
708lemma munion_eq_conv_exist:
709"[| M \<in> Mult(A); N \<in> Mult(A) |]
710  ==> (M +# {#a#} = N +# {#b#}) \<longleftrightarrow>
711      (M=N & a=b | (\<exists>K \<in> Mult(A). M= K +# {#b#} & N=K +# {#a#}))"
712by (auto simp add: Mult_iff_multiset melem_diff_single munion_eq_conv_diff)
713
714
715subsection\<open>Multiset Orderings\<close>
716
717(* multiset on a domain A are finite functions from A to nat-{0} *)
718
719
720(* multirel1 type *)
721
722lemma multirel1_type: "multirel1(A, r) \<subseteq> Mult(A)*Mult(A)"
723by (auto simp add: multirel1_def)
724
725lemma multirel1_0 [simp]: "multirel1(0, r) =0"
726by (auto simp add: multirel1_def)
727
728lemma multirel1_iff:
729" <N, M> \<in> multirel1(A, r) \<longleftrightarrow>
730  (\<exists>a. a \<in> A &
731  (\<exists>M0. M0 \<in> Mult(A) & (\<exists>K. K \<in> Mult(A) &
732   M=M0 +# {#a#} & N=M0 +# K & (\<forall>b \<in> mset_of(K). <b,a> \<in> r))))"
733by (auto simp add: multirel1_def Mult_iff_multiset Bex_def)
734
735
736text\<open>Monotonicity of \<^term>\<open>multirel1\<close>\<close>
737
738lemma multirel1_mono1: "A\<subseteq>B ==> multirel1(A, r)\<subseteq>multirel1(B, r)"
739apply (auto simp add: multirel1_def)
740apply (auto simp add: Un_subset_iff Mult_iff_multiset)
741apply (rule_tac x = a in bexI)
742apply (rule_tac x = M0 in bexI, simp)
743apply (rule_tac x = K in bexI)
744apply (auto simp add: Mult_iff_multiset)
745done
746
747lemma multirel1_mono2: "r\<subseteq>s ==> multirel1(A,r)\<subseteq>multirel1(A, s)"
748apply (simp add: multirel1_def, auto)
749apply (rule_tac x = a in bexI)
750apply (rule_tac x = M0 in bexI)
751apply (simp_all add: Mult_iff_multiset)
752apply (rule_tac x = K in bexI)
753apply (simp_all add: Mult_iff_multiset, auto)
754done
755
756lemma multirel1_mono:
757     "[| A\<subseteq>B; r\<subseteq>s |] ==> multirel1(A, r) \<subseteq> multirel1(B, s)"
758apply (rule subset_trans)
759apply (rule multirel1_mono1)
760apply (rule_tac [2] multirel1_mono2, auto)
761done
762
763subsection\<open>Toward the proof of well-foundedness of multirel1\<close>
764
765lemma not_less_0 [iff]: "<M,0> \<notin> multirel1(A, r)"
766by (auto simp add: multirel1_def Mult_iff_multiset)
767
768lemma less_munion: "[| <N, M0 +# {#a#}> \<in> multirel1(A, r); M0 \<in> Mult(A) |] ==>
769  (\<exists>M. <M, M0> \<in> multirel1(A, r) & N = M +# {#a#}) |
770  (\<exists>K. K \<in> Mult(A) & (\<forall>b \<in> mset_of(K). <b, a> \<in> r) & N = M0 +# K)"
771apply (frule multirel1_type [THEN subsetD])
772apply (simp add: multirel1_iff)
773apply (auto simp add: munion_eq_conv_exist)
774apply (rule_tac x="Ka +# K" in exI, auto, simp add: Mult_iff_multiset)
775apply (simp (no_asm_simp) add: munion_left_cancel munion_assoc)
776apply (auto simp add: munion_commute)
777done
778
779lemma multirel1_base: "[| M \<in> Mult(A); a \<in> A |] ==> <M, M +# {#a#}> \<in> multirel1(A, r)"
780apply (auto simp add: multirel1_iff)
781apply (simp add: Mult_iff_multiset)
782apply (rule_tac x = a in exI, clarify)
783apply (rule_tac x = M in exI, simp)
784apply (rule_tac x = 0 in exI, auto)
785done
786
787lemma acc_0: "acc(0)=0"
788by (auto intro!: equalityI dest: acc.dom_subset [THEN subsetD])
789
790lemma lemma1: "[| \<forall>b \<in> A. <b,a> \<in> r \<longrightarrow>
791    (\<forall>M \<in> acc(multirel1(A, r)). M +# {#b#}:acc(multirel1(A, r)));
792    M0 \<in> acc(multirel1(A, r)); a \<in> A;
793    \<forall>M. <M,M0> \<in> multirel1(A, r) \<longrightarrow> M +# {#a#} \<in> acc(multirel1(A, r)) |]
794  ==> M0 +# {#a#} \<in> acc(multirel1(A, r))"
795apply (subgoal_tac "M0 \<in> Mult(A) ")
796 prefer 2
797 apply (erule acc.cases)
798 apply (erule fieldE)
799 apply (auto dest: multirel1_type [THEN subsetD])
800apply (rule accI)
801apply (rename_tac "N")
802apply (drule less_munion, blast)
803apply (auto simp add: Mult_iff_multiset)
804apply (erule_tac P = "\<forall>x \<in> mset_of (K) . <x, a> \<in> r" in rev_mp)
805apply (erule_tac P = "mset_of (K) \<subseteq>A" in rev_mp)
806apply (erule_tac M = K in multiset_induct)
807(* three subgoals *)
808(* subgoal 1 \<in> the induction base case *)
809apply (simp (no_asm_simp))
810(* subgoal 2 \<in> the induction general case *)
811apply (simp add: Ball_def Un_subset_iff, clarify)
812apply (drule_tac x = aa in spec, simp)
813apply (subgoal_tac "aa \<in> A")
814prefer 2 apply blast
815apply (drule_tac x = "M0 +# M" and P =
816       "%x. x \<in> acc(multirel1(A, r)) \<longrightarrow> Q(x)" for Q in spec)
817apply (simp add: munion_assoc [symmetric])
818(* subgoal 3 \<in> additional conditions *)
819apply (auto intro!: multirel1_base [THEN fieldI2] simp add: Mult_iff_multiset)
820done
821
822lemma lemma2: "[| \<forall>b \<in> A. <b,a> \<in> r
823   \<longrightarrow> (\<forall>M \<in> acc(multirel1(A, r)). M +# {#b#} :acc(multirel1(A, r)));
824        M \<in> acc(multirel1(A, r)); a \<in> A|] ==> M +# {#a#} \<in> acc(multirel1(A, r))"
825apply (erule acc_induct)
826apply (blast intro: lemma1)
827done
828
829lemma lemma3: "[| wf[A](r); a \<in> A |]
830      ==> \<forall>M \<in> acc(multirel1(A, r)). M +# {#a#} \<in> acc(multirel1(A, r))"
831apply (erule_tac a = a in wf_on_induct, blast)
832apply (blast intro: lemma2)
833done
834
835lemma lemma4: "multiset(M) ==> mset_of(M)\<subseteq>A \<longrightarrow>
836   wf[A](r) \<longrightarrow> M \<in> field(multirel1(A, r)) \<longrightarrow> M \<in> acc(multirel1(A, r))"
837apply (erule multiset_induct)
838(* proving the base case *)
839apply clarify
840apply (rule accI, force)
841apply (simp add: multirel1_def)
842(* Proving the general case *)
843apply clarify
844apply simp
845apply (subgoal_tac "mset_of (M) \<subseteq>A")
846prefer 2 apply blast
847apply clarify
848apply (drule_tac a = a in lemma3, blast)
849apply (subgoal_tac "M \<in> field (multirel1 (A,r))")
850apply blast
851apply (rule multirel1_base [THEN fieldI1])
852apply (auto simp add: Mult_iff_multiset)
853done
854
855lemma all_accessible: "[| wf[A](r); M \<in> Mult(A); A \<noteq> 0|] ==> M \<in> acc(multirel1(A, r))"
856apply (erule not_emptyE)
857apply  (rule lemma4 [THEN mp, THEN mp, THEN mp])
858apply (rule_tac [4] multirel1_base [THEN fieldI1])
859apply  (auto simp add: Mult_iff_multiset)
860done
861
862lemma wf_on_multirel1: "wf[A](r) ==> wf[A-||>nat-{0}](multirel1(A, r))"
863apply (case_tac "A=0")
864apply (simp (no_asm_simp))
865apply (rule wf_imp_wf_on)
866apply (rule wf_on_field_imp_wf)
867apply (simp (no_asm_simp) add: wf_on_0)
868apply (rule_tac A = "acc (multirel1 (A,r))" in wf_on_subset_A)
869apply (rule wf_on_acc)
870apply (blast intro: all_accessible)
871done
872
873lemma wf_multirel1: "wf(r) ==>wf(multirel1(field(r), r))"
874apply (simp (no_asm_use) add: wf_iff_wf_on_field)
875apply (drule wf_on_multirel1)
876apply (rule_tac A = "field (r) -||> nat - {0}" in wf_on_subset_A)
877apply (simp (no_asm_simp))
878apply (rule field_rel_subset)
879apply (rule multirel1_type)
880done
881
882(** multirel **)
883
884lemma multirel_type: "multirel(A, r) \<subseteq> Mult(A)*Mult(A)"
885apply (simp add: multirel_def)
886apply (rule trancl_type [THEN subset_trans])
887apply (auto dest: multirel1_type [THEN subsetD])
888done
889
890(* Monotonicity of multirel *)
891lemma multirel_mono:
892     "[| A\<subseteq>B; r\<subseteq>s |] ==> multirel(A, r)\<subseteq>multirel(B,s)"
893apply (simp add: multirel_def)
894apply (rule trancl_mono)
895apply (rule multirel1_mono, auto)
896done
897
898(* Equivalence of multirel with the usual (closure-free) definition *)
899
900lemma add_diff_eq: "k \<in> nat ==> 0 < k \<longrightarrow> n #+ k #- 1 = n #+ (k #- 1)"
901by (erule nat_induct, auto)
902
903lemma mdiff_union_single_conv: "[|a \<in> mset_of(J); multiset(I); multiset(J) |]
904   ==> I +# J -# {#a#} = I +# (J-# {#a#})"
905apply (simp (no_asm_simp) add: multiset_equality)
906apply (case_tac "a \<notin> mset_of (I) ")
907apply (auto simp add: mcount_def mset_of_def multiset_def multiset_fun_iff)
908apply (auto dest: domain_type simp add: add_diff_eq)
909done
910
911lemma diff_add_commute: "[| n \<le> m;  m \<in> nat; n \<in> nat; k \<in> nat |] ==> m #- n #+ k = m #+ k #- n"
912by (auto simp add: le_iff less_iff_succ_add)
913
914(* One direction *)
915
916lemma multirel_implies_one_step:
917"<M,N> \<in> multirel(A, r) ==>
918     trans[A](r) \<longrightarrow>
919     (\<exists>I J K.
920         I \<in> Mult(A) & J \<in> Mult(A) &  K \<in> Mult(A) &
921         N = I +# J & M = I +# K & J \<noteq> 0 &
922        (\<forall>k \<in> mset_of(K). \<exists>j \<in> mset_of(J). <k,j> \<in> r))"
923apply (simp add: multirel_def Ball_def Bex_def)
924apply (erule converse_trancl_induct)
925apply (simp_all add: multirel1_iff Mult_iff_multiset)
926(* Two subgoals remain *)
927(* Subgoal 1 *)
928apply clarify
929apply (rule_tac x = M0 in exI, force)
930(* Subgoal 2 *)
931apply clarify
932apply hypsubst_thin
933apply (case_tac "a \<in> mset_of (Ka) ")
934apply (rule_tac x = I in exI, simp (no_asm_simp))
935apply (rule_tac x = J in exI, simp (no_asm_simp))
936apply (rule_tac x = " (Ka -# {#a#}) +# K" in exI, simp (no_asm_simp))
937apply (simp_all add: Un_subset_iff)
938apply (simp (no_asm_simp) add: munion_assoc [symmetric])
939apply (drule_tac t = "%M. M-#{#a#}" in subst_context)
940apply (simp add: mdiff_union_single_conv melem_diff_single, clarify)
941apply (erule disjE, simp)
942apply (erule disjE, simp)
943apply (drule_tac x = a and P = "%x. x :# Ka \<longrightarrow> Q(x)" for Q in spec)
944apply clarify
945apply (rule_tac x = xa in exI)
946apply (simp (no_asm_simp))
947apply (blast dest: trans_onD)
948(* new we know that  a\<notin>mset_of(Ka) *)
949apply (subgoal_tac "a :# I")
950apply (rule_tac x = "I-#{#a#}" in exI, simp (no_asm_simp))
951apply (rule_tac x = "J+#{#a#}" in exI)
952apply (simp (no_asm_simp) add: Un_subset_iff)
953apply (rule_tac x = "Ka +# K" in exI)
954apply (simp (no_asm_simp) add: Un_subset_iff)
955apply (rule conjI)
956apply (simp (no_asm_simp) add: multiset_equality mcount_elem [THEN succ_pred_eq_self])
957apply (rule conjI)
958apply (drule_tac t = "%M. M-#{#a#}" in subst_context)
959apply (simp add: mdiff_union_inverse2)
960apply (simp_all (no_asm_simp) add: multiset_equality)
961apply (rule diff_add_commute [symmetric])
962apply (auto intro: mcount_elem)
963apply (subgoal_tac "a \<in> mset_of (I +# Ka) ")
964apply (drule_tac [2] sym, auto)
965done
966
967lemma melem_imp_eq_diff_union [simp]: "[| a \<in> mset_of(M); multiset(M) |] ==> M -# {#a#} +# {#a#} = M"
968by (simp add: multiset_equality mcount_elem [THEN succ_pred_eq_self])
969
970lemma msize_eq_succ_imp_eq_union:
971     "[| msize(M)=$# succ(n); M \<in> Mult(A); n \<in> nat |]
972      ==> \<exists>a N. M = N +# {#a#} & N \<in> Mult(A) & a \<in> A"
973apply (drule msize_eq_succ_imp_elem, auto)
974apply (rule_tac x = a in exI)
975apply (rule_tac x = "M -# {#a#}" in exI)
976apply (frule Mult_into_multiset)
977apply (simp (no_asm_simp))
978apply (auto simp add: Mult_iff_multiset)
979done
980
981(* The second direction *)
982
983lemma one_step_implies_multirel_lemma [rule_format (no_asm)]:
984"n \<in> nat ==>
985   (\<forall>I J K.
986    I \<in> Mult(A) & J \<in> Mult(A) & K \<in> Mult(A) &
987   (msize(J) = $# n & J \<noteq>0 &  (\<forall>k \<in> mset_of(K).  \<exists>j \<in> mset_of(J). <k, j> \<in> r))
988    \<longrightarrow> <I +# K, I +# J> \<in> multirel(A, r))"
989apply (simp add: Mult_iff_multiset)
990apply (erule nat_induct, clarify)
991apply (drule_tac M = J in msize_eq_0_iff, auto)
992(* one subgoal remains *)
993apply (subgoal_tac "msize (J) =$# succ (x) ")
994 prefer 2 apply simp
995apply (frule_tac A = A in msize_eq_succ_imp_eq_union)
996apply (simp_all add: Mult_iff_multiset, clarify)
997apply (rename_tac "J'", simp)
998apply (case_tac "J' = 0")
999apply (simp add: multirel_def)
1000apply (rule r_into_trancl, clarify)
1001apply (simp add: multirel1_iff Mult_iff_multiset, force)
1002(*Now we know J' \<noteq>  0*)
1003apply (drule sym, rotate_tac -1, simp)
1004apply (erule_tac V = "$# x = msize (J') " in thin_rl)
1005apply (frule_tac M = K and P = "%x. <x,a> \<in> r" in multiset_partition)
1006apply (erule_tac P = "\<forall>k \<in> mset_of (K) . P(k)" for P in rev_mp)
1007apply (erule ssubst)
1008apply (simp add: Ball_def, auto)
1009apply (subgoal_tac "< (I +# {# x \<in> K. <x, a> \<in> r#}) +# {# x \<in> K. <x, a> \<notin> r#}, (I +# {# x \<in> K. <x, a> \<in> r#}) +# J'> \<in> multirel(A, r) ")
1010 prefer 2
1011 apply (drule_tac x = "I +# {# x \<in> K. <x, a> \<in> r#}" in spec)
1012 apply (rotate_tac -1)
1013 apply (drule_tac x = "J'" in spec)
1014 apply (rotate_tac -1)
1015 apply (drule_tac x = "{# x \<in> K. <x, a> \<notin> r#}" in spec, simp) apply blast
1016apply (simp add: munion_assoc [symmetric] multirel_def)
1017apply (rule_tac b = "I +# {# x \<in> K. <x, a> \<in> r#} +# J'" in trancl_trans, blast)
1018apply (rule r_into_trancl)
1019apply (simp add: multirel1_iff Mult_iff_multiset)
1020apply (rule_tac x = a in exI)
1021apply (simp (no_asm_simp))
1022apply (rule_tac x = "I +# J'" in exI)
1023apply (auto simp add: munion_ac Un_subset_iff)
1024done
1025
1026lemma one_step_implies_multirel:
1027     "[| J \<noteq> 0;  \<forall>k \<in> mset_of(K). \<exists>j \<in> mset_of(J). <k,j> \<in> r;
1028         I \<in> Mult(A); J \<in> Mult(A); K \<in> Mult(A) |]
1029      ==> <I+#K, I+#J> \<in> multirel(A, r)"
1030apply (subgoal_tac "multiset (J) ")
1031 prefer 2 apply (simp add: Mult_iff_multiset)
1032apply (frule_tac M = J in msize_int_of_nat)
1033apply (auto intro: one_step_implies_multirel_lemma)
1034done
1035
1036(** Proving that multisets are partially ordered **)
1037
1038(*irreflexivity*)
1039
1040lemma multirel_irrefl_lemma:
1041     "Finite(A) ==> part_ord(A, r) \<longrightarrow> (\<forall>x \<in> A. \<exists>y \<in> A. <x,y> \<in> r) \<longrightarrow>A=0"
1042apply (erule Finite_induct)
1043apply (auto dest: subset_consI [THEN [2] part_ord_subset])
1044apply (auto simp add: part_ord_def irrefl_def)
1045apply (drule_tac x = xa in bspec)
1046apply (drule_tac [2] a = xa and b = x in trans_onD, auto)
1047done
1048
1049lemma irrefl_on_multirel:
1050     "part_ord(A, r) ==> irrefl(Mult(A), multirel(A, r))"
1051apply (simp add: irrefl_def)
1052apply (subgoal_tac "trans[A](r) ")
1053 prefer 2 apply (simp add: part_ord_def, clarify)
1054apply (drule multirel_implies_one_step, clarify)
1055apply (simp add: Mult_iff_multiset, clarify)
1056apply (subgoal_tac "Finite (mset_of (K))")
1057apply (frule_tac r = r in multirel_irrefl_lemma)
1058apply (frule_tac B = "mset_of (K) " in part_ord_subset)
1059apply simp_all
1060apply (auto simp add: multiset_def mset_of_def)
1061done
1062
1063lemma trans_on_multirel: "trans[Mult(A)](multirel(A, r))"
1064apply (simp add: multirel_def trans_on_def)
1065apply (blast intro: trancl_trans)
1066done
1067
1068lemma multirel_trans:
1069 "[| <M, N> \<in> multirel(A, r); <N, K> \<in> multirel(A, r) |] ==>  <M, K> \<in> multirel(A,r)"
1070apply (simp add: multirel_def)
1071apply (blast intro: trancl_trans)
1072done
1073
1074lemma trans_multirel: "trans(multirel(A,r))"
1075apply (simp add: multirel_def)
1076apply (rule trans_trancl)
1077done
1078
1079lemma part_ord_multirel: "part_ord(A,r) ==> part_ord(Mult(A), multirel(A, r))"
1080apply (simp (no_asm) add: part_ord_def)
1081apply (blast intro: irrefl_on_multirel trans_on_multirel)
1082done
1083
1084(** Monotonicity of multiset union **)
1085
1086lemma munion_multirel1_mono:
1087"[|<M,N> \<in> multirel1(A, r); K \<in> Mult(A) |] ==> <K +# M, K +# N> \<in> multirel1(A, r)"
1088apply (frule multirel1_type [THEN subsetD])
1089apply (auto simp add: multirel1_iff Mult_iff_multiset)
1090apply (rule_tac x = a in exI)
1091apply (simp (no_asm_simp))
1092apply (rule_tac x = "K+#M0" in exI)
1093apply (simp (no_asm_simp) add: Un_subset_iff)
1094apply (rule_tac x = Ka in exI)
1095apply (simp (no_asm_simp) add: munion_assoc)
1096done
1097
1098lemma munion_multirel_mono2:
1099 "[| <M, N> \<in> multirel(A, r); K \<in> Mult(A) |]==><K +# M, K +# N> \<in> multirel(A, r)"
1100apply (frule multirel_type [THEN subsetD])
1101apply (simp (no_asm_use) add: multirel_def)
1102apply clarify
1103apply (drule_tac psi = "<M,N> \<in> multirel1 (A, r) ^+" in asm_rl)
1104apply (erule rev_mp)
1105apply (erule rev_mp)
1106apply (erule rev_mp)
1107apply (erule trancl_induct, clarify)
1108apply (blast intro: munion_multirel1_mono r_into_trancl, clarify)
1109apply (subgoal_tac "y \<in> Mult(A) ")
1110 prefer 2
1111 apply (blast dest: multirel_type [unfolded multirel_def, THEN subsetD])
1112apply (subgoal_tac "<K +# y, K +# z> \<in> multirel1 (A, r) ")
1113prefer 2 apply (blast intro: munion_multirel1_mono)
1114apply (blast intro: r_into_trancl trancl_trans)
1115done
1116
1117lemma munion_multirel_mono1:
1118     "[|<M, N> \<in> multirel(A, r); K \<in> Mult(A)|] ==> <M +# K, N +# K> \<in> multirel(A, r)"
1119apply (frule multirel_type [THEN subsetD])
1120apply (rule_tac P = "%x. <x,u> \<in> multirel(A, r)" for u in munion_commute [THEN subst])
1121apply (subst munion_commute [of N])
1122apply (rule munion_multirel_mono2)
1123apply (auto simp add: Mult_iff_multiset)
1124done
1125
1126lemma munion_multirel_mono:
1127     "[|<M,K> \<in> multirel(A, r); <N,L> \<in> multirel(A, r)|]
1128      ==> <M +# N, K +# L> \<in> multirel(A, r)"
1129apply (subgoal_tac "M \<in> Mult(A) & N \<in> Mult(A) & K \<in> Mult(A) & L \<in> Mult(A) ")
1130prefer 2 apply (blast dest: multirel_type [THEN subsetD])
1131apply (blast intro: munion_multirel_mono1 multirel_trans munion_multirel_mono2)
1132done
1133
1134
1135subsection\<open>Ordinal Multisets\<close>
1136
1137(* A \<subseteq> B ==>  field(Memrel(A)) \<subseteq> field(Memrel(B)) *)
1138lemmas field_Memrel_mono = Memrel_mono [THEN field_mono]
1139
1140(*
1141[| Aa \<subseteq> Ba; A \<subseteq> B |] ==>
1142multirel(field(Memrel(Aa)), Memrel(A))\<subseteq> multirel(field(Memrel(Ba)), Memrel(B))
1143*)
1144
1145lemmas multirel_Memrel_mono = multirel_mono [OF field_Memrel_mono Memrel_mono]
1146
1147lemma omultiset_is_multiset [simp]: "omultiset(M) ==> multiset(M)"
1148apply (simp add: omultiset_def)
1149apply (auto simp add: Mult_iff_multiset)
1150done
1151
1152lemma munion_omultiset [simp]: "[| omultiset(M); omultiset(N) |] ==> omultiset(M +# N)"
1153apply (simp add: omultiset_def, clarify)
1154apply (rule_tac x = "i \<union> ia" in exI)
1155apply (simp add: Mult_iff_multiset Ord_Un Un_subset_iff)
1156apply (blast intro: field_Memrel_mono)
1157done
1158
1159lemma mdiff_omultiset [simp]: "omultiset(M) ==> omultiset(M -# N)"
1160apply (simp add: omultiset_def, clarify)
1161apply (simp add: Mult_iff_multiset)
1162apply (rule_tac x = i in exI)
1163apply (simp (no_asm_simp))
1164done
1165
1166(** Proving that Memrel is a partial order **)
1167
1168lemma irrefl_Memrel: "Ord(i) ==> irrefl(field(Memrel(i)), Memrel(i))"
1169apply (rule irreflI, clarify)
1170apply (subgoal_tac "Ord (x) ")
1171prefer 2 apply (blast intro: Ord_in_Ord)
1172apply (drule_tac i = x in ltI [THEN lt_irrefl], auto)
1173done
1174
1175lemma trans_iff_trans_on: "trans(r) \<longleftrightarrow> trans[field(r)](r)"
1176by (simp add: trans_on_def trans_def, auto)
1177
1178lemma part_ord_Memrel: "Ord(i) ==>part_ord(field(Memrel(i)), Memrel(i))"
1179apply (simp add: part_ord_def)
1180apply (simp (no_asm) add: trans_iff_trans_on [THEN iff_sym])
1181apply (blast intro: trans_Memrel irrefl_Memrel)
1182done
1183
1184(*
1185  Ord(i) ==>
1186  part_ord(field(Memrel(i))-||>nat-{0}, multirel(field(Memrel(i)), Memrel(i)))
1187*)
1188
1189lemmas part_ord_mless = part_ord_Memrel [THEN part_ord_multirel]
1190
1191(*irreflexivity*)
1192
1193lemma mless_not_refl: "~(M <# M)"
1194apply (simp add: mless_def, clarify)
1195apply (frule multirel_type [THEN subsetD])
1196apply (drule part_ord_mless)
1197apply (simp add: part_ord_def irrefl_def)
1198done
1199
1200(* N<N ==> R *)
1201lemmas mless_irrefl = mless_not_refl [THEN notE, elim!]
1202
1203(*transitivity*)
1204lemma mless_trans: "[| K <# M; M <# N |] ==> K <# N"
1205apply (simp add: mless_def, clarify)
1206apply (rule_tac x = "i \<union> ia" in exI)
1207apply (blast dest: multirel_Memrel_mono [OF Un_upper1 Un_upper1, THEN subsetD]
1208                   multirel_Memrel_mono [OF Un_upper2 Un_upper2, THEN subsetD]
1209        intro: multirel_trans Ord_Un)
1210done
1211
1212(*asymmetry*)
1213lemma mless_not_sym: "M <# N ==> ~ N <# M"
1214apply clarify
1215apply (rule mless_not_refl [THEN notE])
1216apply (erule mless_trans, assumption)
1217done
1218
1219lemma mless_asym: "[| M <# N; ~P ==> N <# M |] ==> P"
1220by (blast dest: mless_not_sym)
1221
1222lemma mle_refl [simp]: "omultiset(M) ==> M <#= M"
1223by (simp add: mle_def)
1224
1225(*anti-symmetry*)
1226lemma mle_antisym:
1227     "[| M <#= N;  N <#= M |] ==> M = N"
1228apply (simp add: mle_def)
1229apply (blast dest: mless_not_sym)
1230done
1231
1232(*transitivity*)
1233lemma mle_trans: "[| K <#= M; M <#= N |] ==> K <#= N"
1234apply (simp add: mle_def)
1235apply (blast intro: mless_trans)
1236done
1237
1238lemma mless_le_iff: "M <# N \<longleftrightarrow> (M <#= N & M \<noteq> N)"
1239by (simp add: mle_def, auto)
1240
1241(** Monotonicity of mless **)
1242
1243lemma munion_less_mono2: "[| M <# N; omultiset(K) |] ==> K +# M <# K +# N"
1244apply (simp add: mless_def omultiset_def, clarify)
1245apply (rule_tac x = "i \<union> ia" in exI)
1246apply (simp add: Mult_iff_multiset Ord_Un Un_subset_iff)
1247apply (rule munion_multirel_mono2)
1248 apply (blast intro: multirel_Memrel_mono [THEN subsetD])
1249apply (simp add: Mult_iff_multiset)
1250apply (blast intro: field_Memrel_mono [THEN subsetD])
1251done
1252
1253lemma munion_less_mono1: "[| M <# N; omultiset(K) |] ==> M +# K <# N +# K"
1254by (force dest: munion_less_mono2 simp add: munion_commute)
1255
1256lemma mless_imp_omultiset: "M <# N ==> omultiset(M) & omultiset(N)"
1257by (auto simp add: mless_def omultiset_def dest: multirel_type [THEN subsetD])
1258
1259lemma munion_less_mono: "[| M <# K; N <# L |] ==> M +# N <# K +# L"
1260apply (frule_tac M = M in mless_imp_omultiset)
1261apply (frule_tac M = N in mless_imp_omultiset)
1262apply (blast intro: munion_less_mono1 munion_less_mono2 mless_trans)
1263done
1264
1265(* <#= *)
1266
1267lemma mle_imp_omultiset: "M <#= N ==> omultiset(M) & omultiset(N)"
1268by (auto simp add: mle_def mless_imp_omultiset)
1269
1270lemma mle_mono: "[| M <#= K;  N <#= L |] ==> M +# N <#= K +# L"
1271apply (frule_tac M = M in mle_imp_omultiset)
1272apply (frule_tac M = N in mle_imp_omultiset)
1273apply (auto simp add: mle_def intro: munion_less_mono1 munion_less_mono2 munion_less_mono)
1274done
1275
1276lemma omultiset_0 [iff]: "omultiset(0)"
1277by (auto simp add: omultiset_def Mult_iff_multiset)
1278
1279lemma empty_leI [simp]: "omultiset(M) ==> 0 <#= M"
1280apply (simp add: mle_def mless_def)
1281apply (subgoal_tac "\<exists>i. Ord (i) & M \<in> Mult(field(Memrel(i))) ")
1282 prefer 2 apply (simp add: omultiset_def)
1283apply (case_tac "M=0", simp_all, clarify)
1284apply (subgoal_tac "<0 +# 0, 0 +# M> \<in> multirel(field (Memrel(i)), Memrel(i))")
1285apply (rule_tac [2] one_step_implies_multirel)
1286apply (auto simp add: Mult_iff_multiset)
1287done
1288
1289lemma munion_upper1: "[| omultiset(M); omultiset(N) |] ==> M <#= M +# N"
1290apply (subgoal_tac "M +# 0 <#= M +# N")
1291apply (rule_tac [2] mle_mono, auto)
1292done
1293
1294end
1295