1(*  Title:      Tools/Code/code_thingol.ML
2    Author:     Florian Haftmann, TU Muenchen
3
4Intermediate language ("Thin-gol") representing executable code.
5Representation and translation.
6*)
7
8infix 8 `%%;
9infix 4 `$;
10infix 4 `$$;
11infixr 3 `->;
12infixr 3 `|=>;
13infixr 3 `|==>;
14
15signature BASIC_CODE_THINGOL =
16sig
17  type vname = string;
18  datatype dict =
19      Dict of (class * class) list * plain_dict
20  and plain_dict = 
21      Dict_Const of (string * class) * dict list list
22    | Dict_Var of { var: vname, index: int, length: int, class: class, unique: bool };
23  datatype itype =
24      `%% of string * itype list
25    | ITyVar of vname;
26  type const = { sym: Code_Symbol.T, typargs: itype list, dicts: dict list list,
27    dom: itype list, annotation: itype option };
28  datatype iterm =
29      IConst of const
30    | IVar of vname option
31    | `$ of iterm * iterm
32    | `|=> of (vname option * itype) * iterm
33    | ICase of { term: iterm, typ: itype, clauses: (iterm * iterm) list, primitive: iterm };
34  val `-> : itype * itype -> itype;
35  val `$$ : iterm * iterm list -> iterm;
36  val `|==> : (vname option * itype) list * iterm -> iterm;
37  type typscheme = (vname * sort) list * itype;
38end;
39
40signature CODE_THINGOL =
41sig
42  include BASIC_CODE_THINGOL
43  val unfoldl: ('a -> ('a * 'b) option) -> 'a -> 'a * 'b list
44  val unfoldr: ('a -> ('b * 'a) option) -> 'a -> 'b list * 'a
45  val unfold_fun: itype -> itype list * itype
46  val unfold_fun_n: int -> itype -> itype list * itype
47  val unfold_app: iterm -> iterm * iterm list
48  val unfold_abs: iterm -> (vname option * itype) list * iterm
49  val split_let: iterm -> (((iterm * itype) * iterm) * iterm) option
50  val split_let_no_pat: iterm -> (((string option * itype) * iterm) * iterm) option
51  val unfold_let: iterm -> ((iterm * itype) * iterm) list * iterm
52  val unfold_let_no_pat: iterm -> ((string option * itype) * iterm) list * iterm
53  val split_pat_abs: iterm -> ((iterm * itype) * iterm) option
54  val unfold_pat_abs: iterm -> (iterm * itype) list * iterm
55  val unfold_const_app: iterm -> (const * iterm list) option
56  val is_IVar: iterm -> bool
57  val is_IAbs: iterm -> bool
58  val eta_expand: int -> const * iterm list -> iterm
59  val contains_dict_var: iterm -> bool
60  val unambiguous_dictss: dict list list -> bool
61  val add_constsyms: iterm -> Code_Symbol.T list -> Code_Symbol.T list
62  val add_tyconames: iterm -> string list -> string list
63  val fold_varnames: (string -> 'a -> 'a) -> iterm -> 'a -> 'a
64
65  datatype stmt =
66      NoStmt
67    | Fun of (typscheme * ((iterm list * iterm) * (thm option * bool)) list) * thm option
68    | Datatype of vname list *
69        ((string * vname list (*type argument wrt. canonical order*)) * itype list) list
70    | Datatypecons of string
71    | Class of vname * ((class * class) list * (string * itype) list)
72    | Classrel of class * class
73    | Classparam of class
74    | Classinst of { class: string, tyco: string, vs: (vname * sort) list,
75        superinsts: (class * dict list list) list,
76        inst_params: ((string * (const * int)) * (thm * bool)) list,
77        superinst_params: ((string * (const * int)) * (thm * bool)) list };
78  type program = stmt Code_Symbol.Graph.T
79  val unimplemented: program -> string list
80  val implemented_deps: program -> string list
81  val map_terms_bottom_up: (iterm -> iterm) -> iterm -> iterm
82  val map_terms_stmt: (iterm -> iterm) -> stmt -> stmt
83  val is_constr: program -> Code_Symbol.T -> bool
84  val is_case: stmt -> bool
85  val group_stmts: Proof.context -> program
86    -> ((Code_Symbol.T * stmt) list * (Code_Symbol.T * stmt) list
87      * ((Code_Symbol.T * stmt) list * (Code_Symbol.T * stmt) list)) list
88
89  val read_const_exprs: Proof.context -> string list -> string list
90  val consts_program: Proof.context -> string list -> program
91  val dynamic_conv: Proof.context -> (program
92    -> typscheme * iterm -> Code_Symbol.T list -> conv)
93    -> conv
94  val dynamic_value: Proof.context -> ((term -> term) -> 'a -> 'a) -> (program
95    -> term -> typscheme * iterm -> Code_Symbol.T list -> 'a)
96    -> term -> 'a
97  val static_conv_thingol: { ctxt: Proof.context, consts: string list }
98    -> ({ program: program, deps: string list }
99      -> Proof.context -> typscheme * iterm -> Code_Symbol.T list -> conv)
100    -> Proof.context -> conv
101  val static_conv_isa: { ctxt: Proof.context, consts: string list }
102    -> (program -> Proof.context -> term -> conv)
103    -> Proof.context -> conv
104  val static_value: { ctxt: Proof.context, lift_postproc: ((term -> term) -> 'a -> 'a), consts: string list }
105    -> ({ program: program, deps: string list }
106      -> Proof.context -> term -> typscheme * iterm -> Code_Symbol.T list -> 'a)
107    -> Proof.context -> term -> 'a
108end;
109
110structure Code_Thingol : CODE_THINGOL =
111struct
112
113open Basic_Code_Symbol;
114
115(** auxiliary **)
116
117fun unfoldl dest x =
118  case dest x
119   of NONE => (x, [])
120    | SOME (x1, x2) =>
121        let val (x', xs') = unfoldl dest x1 in (x', xs' @ [x2]) end;
122
123fun unfoldr dest x =
124  case dest x
125   of NONE => ([], x)
126    | SOME (x1, x2) =>
127        let val (xs', x') = unfoldr dest x2 in (x1 :: xs', x') end;
128
129
130(** language core - types, terms **)
131
132type vname = string;
133
134datatype dict =
135    Dict of (class * class) list * plain_dict
136and plain_dict = 
137    Dict_Const of (string * class) * dict list list
138  | Dict_Var of { var: vname, index: int, length: int, class: class, unique: bool };
139
140datatype itype =
141    `%% of string * itype list
142  | ITyVar of vname;
143
144fun ty1 `-> ty2 = "fun" `%% [ty1, ty2];
145
146val unfold_fun = unfoldr
147  (fn "fun" `%% [ty1, ty2] => SOME (ty1, ty2)
148    | _ => NONE);
149
150fun unfold_fun_n n ty =
151  let
152    val (tys1, ty1) = unfold_fun ty;
153    val (tys3, tys2) = chop n tys1;
154    val ty3 = Library.foldr (op `->) (tys2, ty1);
155  in (tys3, ty3) end;
156
157type const = { sym: Code_Symbol.T, typargs: itype list, dicts: dict list list,
158  dom: itype list, annotation: itype option };
159
160datatype iterm =
161    IConst of const
162  | IVar of vname option
163  | `$ of iterm * iterm
164  | `|=> of (vname option * itype) * iterm
165  | ICase of { term: iterm, typ: itype, clauses: (iterm * iterm) list, primitive: iterm };
166    (*see also signature*)
167
168fun is_IVar (IVar _) = true
169  | is_IVar _ = false;
170
171fun is_IAbs (_ `|=> _) = true
172  | is_IAbs _ = false;
173
174val op `$$ = Library.foldl (op `$);
175val op `|==> = Library.foldr (op `|=>);
176
177val unfold_app = unfoldl
178  (fn op `$ t => SOME t
179    | _ => NONE);
180
181val unfold_abs = unfoldr
182  (fn op `|=> t => SOME t
183    | _ => NONE);
184
185val split_let = 
186  (fn ICase { term = t, typ = ty, clauses = [(p, body)], ... } => SOME (((p, ty), t), body)
187    | _ => NONE);
188
189val split_let_no_pat = 
190  (fn ICase { term = t, typ = ty, clauses = [(IVar v, body)], ... } => SOME (((v, ty), t), body)
191    | _ => NONE);
192
193val unfold_let = unfoldr split_let;
194
195val unfold_let_no_pat = unfoldr split_let_no_pat;
196
197fun unfold_const_app t =
198 case unfold_app t
199  of (IConst c, ts) => SOME (c, ts)
200   | _ => NONE;
201
202fun fold_constexprs f =
203  let
204    fun fold' (IConst c) = f c
205      | fold' (IVar _) = I
206      | fold' (t1 `$ t2) = fold' t1 #> fold' t2
207      | fold' (_ `|=> t) = fold' t
208      | fold' (ICase { term = t, clauses = clauses, ... }) = fold' t
209          #> fold (fn (p, body) => fold' p #> fold' body) clauses
210  in fold' end;
211
212val add_constsyms = fold_constexprs (fn { sym, ... } => insert (op =) sym);
213
214fun add_tycos (tyco `%% tys) = insert (op =) tyco #> fold add_tycos tys
215  | add_tycos (ITyVar _) = I;
216
217val add_tyconames = fold_constexprs (fn { typargs = tys, ... } => fold add_tycos tys);
218
219fun fold_varnames f =
220  let
221    fun fold_aux add_vars f =
222      let
223        fun fold_term _ (IConst _) = I
224          | fold_term vs (IVar (SOME v)) = if member (op =) vs v then I else f v
225          | fold_term _ (IVar NONE) = I
226          | fold_term vs (t1 `$ t2) = fold_term vs t1 #> fold_term vs t2
227          | fold_term vs ((SOME v, _) `|=> t) = fold_term (insert (op =) v vs) t
228          | fold_term vs ((NONE, _) `|=> t) = fold_term vs t
229          | fold_term vs (ICase { term = t, clauses = clauses, ... }) =
230              fold_term vs t #> fold (fold_clause vs) clauses
231        and fold_clause vs (p, t) = fold_term (add_vars p vs) t;
232      in fold_term [] end
233    fun add_vars t = fold_aux add_vars (insert (op =)) t;
234  in fold_aux add_vars f end;
235
236fun exists_var t v = fold_varnames (fn w => fn b => v = w orelse b) t false;
237
238fun split_pat_abs ((NONE, ty) `|=> t) = SOME ((IVar NONE, ty), t)
239  | split_pat_abs ((SOME v, ty) `|=> t) = SOME (case t
240     of ICase { term = IVar (SOME w), clauses = [(p, body)], ... } =>
241          if v = w andalso (exists_var p v orelse not (exists_var body v))
242          then ((p, ty), body)
243          else ((IVar (SOME v), ty), t)
244      | _ => ((IVar (SOME v), ty), t))
245  | split_pat_abs _ = NONE;
246
247val unfold_pat_abs = unfoldr split_pat_abs;
248
249fun unfold_abs_eta [] t = ([], t)
250  | unfold_abs_eta (_ :: tys) (v_ty `|=> t) =
251      let
252        val (vs_tys, t') = unfold_abs_eta tys t;
253      in (v_ty :: vs_tys, t') end
254  | unfold_abs_eta tys t =
255      let
256        val ctxt = fold_varnames Name.declare t Name.context;
257        val vs_tys = (map o apfst) SOME (Name.invent_names ctxt "a" tys);
258      in (vs_tys, t `$$ map (IVar o fst) vs_tys) end;
259
260fun eta_expand k (const as { dom = tys, ... }, ts) =
261  let
262    val j = length ts;
263    val l = k - j;
264    val _ = if l > length tys
265      then error "Impossible eta-expansion" else ();
266    val vars = (fold o fold_varnames) Name.declare ts Name.context;
267    val vs_tys = (map o apfst) SOME
268      (Name.invent_names vars "a" ((take l o drop j) tys));
269  in vs_tys `|==> IConst const `$$ ts @ map (IVar o fst) vs_tys end;
270
271fun exists_dict_var f (Dict (_, d)) = exists_plain_dict_var_pred f d
272and exists_plain_dict_var_pred f (Dict_Const (_, dss)) = exists_dictss_var f dss
273  | exists_plain_dict_var_pred f (Dict_Var x) = f x
274and exists_dictss_var f dss = (exists o exists) (exists_dict_var f) dss;
275
276fun contains_dict_var (IConst { dicts = dss, ... }) = exists_dictss_var (K true) dss
277  | contains_dict_var (IVar _) = false
278  | contains_dict_var (t1 `$ t2) = contains_dict_var t1 orelse contains_dict_var t2
279  | contains_dict_var (_ `|=> t) = contains_dict_var t
280  | contains_dict_var (ICase { primitive = t, ... }) = contains_dict_var t;
281
282val unambiguous_dictss = not o exists_dictss_var (fn { unique, ... } => not unique);
283
284
285(** statements, abstract programs **)
286
287type typscheme = (vname * sort) list * itype;
288datatype stmt =
289    NoStmt
290  | Fun of (typscheme * ((iterm list * iterm) * (thm option * bool)) list) * thm option
291  | Datatype of vname list * ((string * vname list) * itype list) list
292  | Datatypecons of string
293  | Class of vname * ((class * class) list * (string * itype) list)
294  | Classrel of class * class
295  | Classparam of class
296  | Classinst of { class: string, tyco: string, vs: (vname * sort) list,
297      superinsts: (class * dict list list) list,
298      inst_params: ((string * (const * int)) * (thm * bool)) list,
299      superinst_params: ((string * (const * int)) * (thm * bool)) list };
300
301type program = stmt Code_Symbol.Graph.T;
302
303fun unimplemented program =
304  Code_Symbol.Graph.fold (fn (Constant c, (NoStmt, _)) => cons c | _ => I) program [];
305
306fun implemented_deps program =
307  Code_Symbol.Graph.keys program
308  |> subtract (op =) (Code_Symbol.Graph.all_preds program (map Constant (unimplemented program)))
309  |> map_filter (fn Constant c => SOME c | _ => NONE);
310
311fun map_terms_bottom_up f (t as IConst _) = f t
312  | map_terms_bottom_up f (t as IVar _) = f t
313  | map_terms_bottom_up f (t1 `$ t2) = f
314      (map_terms_bottom_up f t1 `$ map_terms_bottom_up f t2)
315  | map_terms_bottom_up f ((v, ty) `|=> t) = f
316      ((v, ty) `|=> map_terms_bottom_up f t)
317  | map_terms_bottom_up f (ICase { term = t, typ = ty, clauses = clauses, primitive = t0 }) = f
318      (ICase { term = map_terms_bottom_up f t, typ = ty,
319        clauses = (map o apply2) (map_terms_bottom_up f) clauses,
320        primitive = map_terms_bottom_up f t0 });
321
322fun map_classparam_instances_as_term f =
323  (map o apfst o apsnd o apfst) (fn const => case f (IConst const) of IConst const' => const')
324
325fun map_terms_stmt f NoStmt = NoStmt
326  | map_terms_stmt f (Fun ((tysm, eqs), case_cong)) = Fun ((tysm, (map o apfst)
327      (fn (ts, t) => (map f ts, f t)) eqs), case_cong)
328  | map_terms_stmt f (stmt as Datatype _) = stmt
329  | map_terms_stmt f (stmt as Datatypecons _) = stmt
330  | map_terms_stmt f (stmt as Class _) = stmt
331  | map_terms_stmt f (stmt as Classrel _) = stmt
332  | map_terms_stmt f (stmt as Classparam _) = stmt
333  | map_terms_stmt f (Classinst { class, tyco, vs, superinsts,
334      inst_params, superinst_params }) =
335        Classinst { class = class, tyco = tyco, vs = vs, superinsts = superinsts,
336          inst_params = map_classparam_instances_as_term f inst_params,
337          superinst_params = map_classparam_instances_as_term f superinst_params };
338
339fun is_constr program sym = case Code_Symbol.Graph.get_node program sym
340 of Datatypecons _ => true
341  | _ => false;
342
343fun is_case (Fun (_, SOME _)) = true
344  | is_case _ = false;
345
346fun linear_stmts program =
347  rev (Code_Symbol.Graph.strong_conn program)
348  |> map (AList.make (Code_Symbol.Graph.get_node program));
349
350fun group_stmts ctxt program =
351  let
352    fun is_fun (_, Fun _) = true | is_fun _ = false;
353    fun is_datatypecons (_, Datatypecons _) = true | is_datatypecons _ = false;
354    fun is_datatype (_, Datatype _) = true | is_datatype _ = false;
355    fun is_class (_, Class _) = true | is_class _ = false;
356    fun is_classrel (_, Classrel _) = true | is_classrel _ = false;
357    fun is_classparam (_, Classparam _) = true | is_classparam _ = false;
358    fun is_classinst (_, Classinst _) = true | is_classinst _ = false;
359    fun group stmts =
360      if forall (is_datatypecons orf is_datatype) stmts
361      then (filter is_datatype stmts, [], ([], []))
362      else if forall (is_class orf is_classrel orf is_classparam) stmts
363      then ([], filter is_class stmts, ([], []))
364      else if forall (is_fun orf is_classinst) stmts
365      then ([], [], List.partition is_fun stmts)
366      else error ("Illegal mutual dependencies: " ^ (commas
367        o map (Code_Symbol.quote ctxt o fst)) stmts);
368  in
369    linear_stmts program
370    |> map group
371  end;
372
373
374(** translation kernel **)
375
376(* generic mechanisms *)
377
378fun ensure_stmt symbolize generate x (deps, program) =
379  let
380    val sym = symbolize x;
381    val add_dep = case deps of [] => I
382      | dep :: _ => Code_Symbol.Graph.add_edge (dep, sym);
383  in
384    if can (Code_Symbol.Graph.get_node program) sym
385    then
386      program
387      |> add_dep
388      |> pair deps
389      |> pair x
390    else
391      program
392      |> Code_Symbol.Graph.default_node (sym, NoStmt)
393      |> add_dep
394      |> curry generate (sym :: deps)
395      ||> snd
396      |-> (fn stmt => (Code_Symbol.Graph.map_node sym) (K stmt))
397      |> pair deps
398      |> pair x
399  end;
400
401exception PERMISSIVE of unit;
402
403fun translation_error ctxt permissive some_thm deps msg sub_msg =
404  if permissive
405  then raise PERMISSIVE ()
406  else
407    let
408      val thm_msg =
409        Option.map (fn thm => "in code equation " ^ Thm.string_of_thm ctxt thm) some_thm;
410      val dep_msg = if null (tl deps) then NONE
411        else SOME ("with dependency "
412          ^ space_implode " -> " (map (Code_Symbol.quote ctxt) (rev deps)));
413      val thm_dep_msg = case (thm_msg, dep_msg)
414       of (SOME thm_msg, SOME dep_msg) => "\n(" ^ thm_msg ^ ",\n" ^ dep_msg ^ ")"
415        | (SOME thm_msg, NONE) => "\n(" ^ thm_msg ^ ")"
416        | (NONE, SOME dep_msg) => "\n(" ^ dep_msg ^ ")"
417        | (NONE, NONE) => ""
418    in error (msg ^ thm_dep_msg ^ ":\n" ^ sub_msg) end;
419
420fun maybe_permissive f prgrm =
421  f prgrm |>> SOME handle PERMISSIVE () => (NONE, prgrm);
422
423fun not_wellsorted ctxt permissive some_thm deps ty sort e =
424  let
425    val err_class = Sorts.class_error (Context.Proof ctxt) e;
426    val err_typ =
427      "Type " ^ Syntax.string_of_typ ctxt ty ^ " not of sort " ^
428        Syntax.string_of_sort ctxt sort;
429  in
430    translation_error ctxt permissive some_thm deps
431      "Wellsortedness error" (err_typ ^ "\n" ^ err_class)
432  end;
433
434
435(* inference of type annotations for disambiguation with type classes *)
436
437fun mk_tagged_type (true, T) = Type ("", [T])
438  | mk_tagged_type (false, T) = T;
439
440fun dest_tagged_type (Type ("", [T])) = (true, T)
441  | dest_tagged_type T = (false, T);
442
443val untag_term = map_types (snd o dest_tagged_type);
444
445fun tag_term (proj_sort, _) eqngr =
446  let
447    val has_sort_constraints = exists (not o null) o map proj_sort o Code_Preproc.sortargs eqngr;
448    fun tag (Const (_, T')) (Const (c, T)) =
449        Const (c,
450          mk_tagged_type (not (null (Term.add_tvarsT T' [])) andalso has_sort_constraints c, T))
451      | tag (t1 $ u1) (t $ u) = tag t1 t $ tag u1 u
452      | tag (Abs (_, _, t1)) (Abs (x, T, t)) = Abs (x, T, tag t1 t)
453      | tag (Free _) (t as Free _) = t
454      | tag (Var _) (t as Var _) = t
455      | tag (Bound _) (t as Bound _) = t;
456  in tag end
457
458fun annotate ctxt algbr eqngr (c, ty) args rhs =
459  let
460    val erase = map_types (fn _ => Type_Infer.anyT []);
461    val reinfer = singleton (Type_Infer_Context.infer_types ctxt);
462    val lhs = list_comb (Const (c, ty), map (map_types Type.strip_sorts o fst) args);
463    val reinferred_rhs = snd (Logic.dest_equals (reinfer (Logic.mk_equals (lhs, erase rhs))));
464  in tag_term algbr eqngr reinferred_rhs rhs end
465
466fun annotate_eqns ctxt algbr eqngr (c, ty) eqns =
467  let
468    val ctxt' = ctxt |> Proof_Context.theory_of |> Proof_Context.init_global
469      |> Config.put Type_Infer_Context.const_sorts false;
470      (*avoid spurious fixed variables: there is no eigen context for equations*)
471  in
472    map (apfst (fn (args, (rhs, some_abs)) => (args,
473      (annotate ctxt' algbr eqngr (c, ty) args rhs, some_abs)))) eqns
474  end;
475
476(* abstract dictionary construction *)
477
478datatype typarg_witness =
479    Weakening of (class * class) list * plain_typarg_witness
480and plain_typarg_witness =
481    Global of (string * class) * typarg_witness list list
482  | Local of { var: string, index: int, sort: sort, unique: bool };
483
484fun brand_unique unique (w as Global _) = w
485  | brand_unique unique (Local { var, index, sort, unique = _ }) =
486      Local { var = var, index = index, sort = sort, unique = unique };
487
488fun construct_dictionaries ctxt (proj_sort, algebra) permissive some_thm (ty, sort) (deps, program) =
489  let
490    fun class_relation unique (Weakening (classrels, x), sub_class) super_class =
491      Weakening ((sub_class, super_class) :: classrels, brand_unique unique x);
492    fun type_constructor (tyco, _) dss class =
493      Weakening ([], Global ((tyco, class), (map o map) fst dss));
494    fun type_variable (TFree (v, sort)) =
495      let
496        val sort' = proj_sort sort;
497      in map_index (fn (n, class) => (Weakening ([], Local
498        { var = v, index = n, sort = sort', unique = true }), class)) sort'
499      end;
500    val typarg_witnesses = Sorts.of_sort_derivation algebra
501      {class_relation = fn _ => fn unique =>
502         Sorts.classrel_derivation algebra (class_relation unique),
503       type_constructor = type_constructor,
504       type_variable = type_variable} (ty, proj_sort sort)
505      handle Sorts.CLASS_ERROR e => not_wellsorted ctxt permissive some_thm deps ty sort e;
506  in (typarg_witnesses, (deps, program)) end;
507
508
509(* translation *)
510
511fun ensure_tyco ctxt algbr eqngr permissive tyco =
512  let
513    val thy = Proof_Context.theory_of ctxt;
514    val ((vs, cos), _) = Code.get_type thy tyco;
515    val stmt_datatype =
516      fold_map (translate_tyvar_sort ctxt algbr eqngr permissive) vs
517      #>> map fst
518      ##>> fold_map (fn (c, (vs, tys)) =>
519        ensure_const ctxt algbr eqngr permissive c
520        ##>> pair (map (unprefix "'" o fst) vs)
521        ##>> fold_map (translate_typ ctxt algbr eqngr permissive) tys) cos
522      #>> Datatype;
523  in ensure_stmt Type_Constructor stmt_datatype tyco end
524and ensure_const ctxt algbr eqngr permissive c =
525  let
526    val thy = Proof_Context.theory_of ctxt;
527    fun stmt_datatypecons tyco =
528      ensure_tyco ctxt algbr eqngr permissive tyco
529      #>> Datatypecons;
530    fun stmt_classparam class =
531      ensure_class ctxt algbr eqngr permissive class
532      #>> Classparam;
533    fun stmt_fun cert = case Code.equations_of_cert thy cert
534     of (_, NONE) => pair NoStmt
535      | ((vs, ty), SOME eqns) =>
536          let
537            val eqns' = annotate_eqns ctxt algbr eqngr (c, ty) eqns
538            val some_case_cong = Code.get_case_cong thy c;
539          in
540            fold_map (translate_tyvar_sort ctxt algbr eqngr permissive) vs
541            ##>> translate_typ ctxt algbr eqngr permissive ty
542            ##>> translate_eqns ctxt algbr eqngr permissive eqns'
543            #>>
544             (fn (_, NONE) => NoStmt
545               | (tyscm, SOME eqns) => Fun ((tyscm, eqns), some_case_cong))
546          end;
547    val stmt_const = case Code.get_type_of_constr_or_abstr thy c
548     of SOME (tyco, _) => stmt_datatypecons tyco
549      | NONE => (case Axclass.class_of_param thy c
550         of SOME class => stmt_classparam class
551          | NONE => stmt_fun (Code_Preproc.cert eqngr c))
552  in ensure_stmt Constant stmt_const c end
553and ensure_class ctxt (algbr as (_, algebra)) eqngr permissive class =
554  let
555    val thy = Proof_Context.theory_of ctxt;
556    val super_classes = (Sorts.minimize_sort algebra o Sorts.super_classes algebra) class;
557    val cs = #params (Axclass.get_info thy class);
558    val stmt_class =
559      fold_map (fn super_class =>
560        ensure_classrel ctxt algbr eqngr permissive (class, super_class)) super_classes
561      ##>> fold_map (fn (c, ty) => ensure_const ctxt algbr eqngr permissive c
562        ##>> translate_typ ctxt algbr eqngr permissive ty) cs
563      #>> (fn info => Class (unprefix "'" Name.aT, info))
564  in ensure_stmt Type_Class stmt_class class end
565and ensure_classrel ctxt algbr eqngr permissive (sub_class, super_class) =
566  let
567    val stmt_classrel =
568      ensure_class ctxt algbr eqngr permissive sub_class
569      ##>> ensure_class ctxt algbr eqngr permissive super_class
570      #>> Classrel;
571  in ensure_stmt Class_Relation stmt_classrel (sub_class, super_class) end
572and ensure_inst ctxt (algbr as (_, algebra)) eqngr permissive (tyco, class) =
573  let
574    val thy = Proof_Context.theory_of ctxt;
575    val super_classes = (Sorts.minimize_sort algebra o Sorts.super_classes algebra) class;
576    val these_class_params = these o try (#params o Axclass.get_info thy);
577    val class_params = these_class_params class;
578    val superclass_params = maps these_class_params
579      ((Sorts.complete_sort algebra o Sorts.super_classes algebra) class);
580    val vs = Name.invent_names Name.context "'a" (Sorts.mg_domain algebra tyco [class]);
581    val sorts' = Sorts.mg_domain (Sign.classes_of thy) tyco [class];
582    val vs' = map2 (fn (v, sort1) => fn sort2 => (v,
583      Sorts.inter_sort (Sign.classes_of thy) (sort1, sort2))) vs sorts';
584    val arity_typ = Type (tyco, map TFree vs);
585    val arity_typ' = Type (tyco, map (fn (v, sort) => TVar ((v, 0), sort)) vs');
586    fun translate_super_instance super_class =
587      ensure_class ctxt algbr eqngr permissive super_class
588      ##>> translate_dicts ctxt algbr eqngr permissive NONE (arity_typ, [super_class])
589      #>> (fn (super_class, [Dict ([], Dict_Const (_, dss))]) => (super_class, dss));
590    fun translate_classparam_instance (c, ty) =
591      let
592        val raw_const = Const (c, map_type_tfree (K arity_typ') ty);
593        val dom_length = length (fst (strip_type ty))
594        val thm = Axclass.unoverload_conv ctxt (Thm.cterm_of ctxt raw_const);
595        val const = (apsnd Logic.unvarifyT_global o dest_Const o snd
596          o Logic.dest_equals o Thm.prop_of) thm;
597      in
598        ensure_const ctxt algbr eqngr permissive c
599        ##>> translate_const ctxt algbr eqngr permissive (SOME thm) (const, NONE)
600        #>> (fn (c, IConst const') => ((c, (const', dom_length)), (thm, true)))
601      end;
602    val stmt_inst =
603      ensure_class ctxt algbr eqngr permissive class
604      ##>> ensure_tyco ctxt algbr eqngr permissive tyco
605      ##>> fold_map (translate_tyvar_sort ctxt algbr eqngr permissive) vs
606      ##>> fold_map translate_super_instance super_classes
607      ##>> fold_map translate_classparam_instance class_params
608      ##>> fold_map translate_classparam_instance superclass_params
609      #>> (fn (((((class, tyco), vs), superinsts), inst_params), superinst_params) =>
610          Classinst { class = class, tyco = tyco, vs = vs,
611            superinsts = superinsts, inst_params = inst_params, superinst_params = superinst_params });
612  in ensure_stmt Class_Instance stmt_inst (tyco, class) end
613and translate_typ ctxt algbr eqngr permissive (TFree (v, _)) =
614      pair (ITyVar (unprefix "'" v))
615  | translate_typ ctxt algbr eqngr permissive (Type (tyco, tys)) =
616      ensure_tyco ctxt algbr eqngr permissive tyco
617      ##>> fold_map (translate_typ ctxt algbr eqngr permissive) tys
618      #>> (fn (tyco, tys) => tyco `%% tys)
619and translate_term ctxt algbr eqngr permissive some_thm (Const (c, ty), some_abs) =
620      translate_app ctxt algbr eqngr permissive some_thm (((c, ty), []), some_abs)
621  | translate_term ctxt algbr eqngr permissive some_thm (Free (v, _), some_abs) =
622      pair (IVar (SOME v))
623  | translate_term ctxt algbr eqngr permissive some_thm (Abs (v, ty, t), some_abs) =
624      let
625        val (v', t') = Syntax_Trans.variant_abs (Name.desymbolize (SOME false) v, ty, t);
626        val v'' = if member (op =) (Term.add_free_names t' []) v'
627          then SOME v' else NONE
628      in
629        translate_typ ctxt algbr eqngr permissive ty
630        ##>> translate_term ctxt algbr eqngr permissive some_thm (t', some_abs)
631        #>> (fn (ty, t) => (v'', ty) `|=> t)
632      end
633  | translate_term ctxt algbr eqngr permissive some_thm (t as _ $ _, some_abs) =
634      case strip_comb t
635       of (Const (c, ty), ts) =>
636            translate_app ctxt algbr eqngr permissive some_thm (((c, ty), ts), some_abs)
637        | (t', ts) =>
638            translate_term ctxt algbr eqngr permissive some_thm (t', some_abs)
639            ##>> fold_map (translate_term ctxt algbr eqngr permissive some_thm o rpair NONE) ts
640            #>> (fn (t, ts) => t `$$ ts)
641and translate_eqn ctxt algbr eqngr permissive ((args, (rhs, some_abs)), (some_thm, proper)) =
642  fold_map (translate_term ctxt algbr eqngr permissive some_thm) args
643  ##>> translate_term ctxt algbr eqngr permissive some_thm (rhs, some_abs)
644  #>> rpair (some_thm, proper)
645and translate_eqns ctxt algbr eqngr permissive eqns =
646  maybe_permissive (fold_map (translate_eqn ctxt algbr eqngr permissive) eqns)
647and translate_const ctxt algbr eqngr permissive some_thm ((c, ty), some_abs) (deps, program) =
648  let
649    val thy = Proof_Context.theory_of ctxt;
650    val _ = if (case some_abs of NONE => true | SOME abs => not (c = abs))
651        andalso Code.is_abstr thy c
652        then translation_error ctxt permissive some_thm deps
653          "Abstraction violation" ("constant " ^ Code.string_of_const thy c)
654      else ()
655  in translate_const_proper ctxt algbr eqngr permissive some_thm (c, ty) (deps, program) end
656and translate_const_proper ctxt algbr eqngr permissive some_thm (c, ty) =
657  let
658    val thy = Proof_Context.theory_of ctxt;
659    val (annotate, ty') = dest_tagged_type ty;
660    val typargs = Sign.const_typargs thy (c, ty');
661    val sorts = Code_Preproc.sortargs eqngr c;
662    val (dom, range) = Term.strip_type ty';
663  in
664    ensure_const ctxt algbr eqngr permissive c
665    ##>> fold_map (translate_typ ctxt algbr eqngr permissive) typargs
666    ##>> fold_map (translate_dicts ctxt algbr eqngr permissive some_thm) (typargs ~~ sorts)
667    ##>> fold_map (translate_typ ctxt algbr eqngr permissive) (ty' :: dom)
668    #>> (fn (((c, typargs), dss), annotation :: dom) =>
669      IConst { sym = Constant c, typargs = typargs, dicts = dss,
670        dom = dom, annotation =
671          if annotate then SOME annotation else NONE })
672  end
673and translate_app_const ctxt algbr eqngr permissive some_thm ((c_ty, ts), some_abs) =
674  translate_const ctxt algbr eqngr permissive some_thm (c_ty, some_abs)
675  ##>> fold_map (translate_term ctxt algbr eqngr permissive some_thm o rpair NONE) ts
676  #>> (fn (t, ts) => t `$$ ts)
677and translate_case ctxt algbr eqngr permissive some_thm (num_args, (t_pos, case_pats)) (c_ty, ts) =
678  let
679    val thy = Proof_Context.theory_of ctxt;
680    fun arg_types num_args ty = fst (chop num_args (binder_types ty));
681    val tys = arg_types num_args (snd c_ty);
682    val ty = nth tys t_pos;
683    fun mk_constr NONE t = NONE
684      | mk_constr (SOME c) t =
685          let
686            val n = Code.args_number thy c;
687          in SOME ((c, arg_types n (fastype_of (untag_term t)) ---> ty), n) end;
688    val constrs =
689      if null case_pats then []
690      else map_filter I (map2 mk_constr case_pats (nth_drop t_pos ts));
691    fun disjunctive_varnames ts =
692      let
693        val vs = (fold o fold_varnames) (insert (op =)) ts [];
694      in fn pat => null (inter (op =) vs (fold_varnames (insert (op =)) pat [])) end;
695    fun purge_unused_vars_in t =
696      let
697        val vs = fold_varnames (insert (op =)) t [];
698      in
699        map_terms_bottom_up (fn IVar (SOME v) =>
700          IVar (if member (op =) vs v then SOME v else NONE) | t => t)
701      end;
702    fun collapse_clause vs_map ts body =
703      case body
704       of IConst { sym = Constant c, ... } => if Code.is_undefined thy c
705            then []
706            else [(ts, body)]
707        | ICase { term = IVar (SOME v), clauses = clauses, ... } =>
708            if forall (fn (pat', body') => exists_var pat' v
709              orelse not (exists_var body' v)) clauses
710              andalso forall (disjunctive_varnames ts o fst) clauses
711            then case AList.lookup (op =) vs_map v
712             of SOME i => maps (fn (pat', body') =>
713                  collapse_clause (AList.delete (op =) v vs_map)
714                    (nth_map i (K pat') ts |> map (purge_unused_vars_in body')) body') clauses
715              | NONE => [(ts, body)]
716            else [(ts, body)]
717        | _ => [(ts, body)];
718    fun mk_clause mk tys t =
719      let
720        val (vs, body) = unfold_abs_eta tys t;
721        val vs_map = fold_index (fn (i, (SOME v, _)) => cons (v, i) | _ => I) vs [];
722        val ts = map (IVar o fst) vs;
723      in map mk (collapse_clause vs_map ts body) end;
724    fun casify constrs ty t_app ts =
725      let
726        val t = nth ts t_pos;
727        val ts_clause = nth_drop t_pos ts;
728        val clauses = if null case_pats
729          then mk_clause (fn ([t], body) => (t, body)) [ty] (the_single ts_clause)
730          else maps (fn ((constr as IConst { dom = tys, ... }, n), t) =>
731            mk_clause (fn (ts, body) => (constr `$$ ts, body)) (take n tys) t)
732              (constrs ~~ (map_filter (fn (NONE, _) => NONE | (SOME _, t) => SOME t)
733                (case_pats ~~ ts_clause)));
734      in ICase { term = t, typ = ty, clauses = clauses, primitive = t_app `$$ ts } end;
735  in
736    translate_const ctxt algbr eqngr permissive some_thm (c_ty, NONE)
737    ##>> fold_map (fn (constr, n) => translate_const ctxt algbr eqngr permissive some_thm (constr, NONE)
738      #>> rpair n) constrs
739    ##>> translate_typ ctxt algbr eqngr permissive ty
740    ##>> fold_map (translate_term ctxt algbr eqngr permissive some_thm o rpair NONE) ts
741    #>> (fn (((t, constrs), ty), ts) =>
742      casify constrs ty t ts)
743  end
744and translate_app_case ctxt algbr eqngr permissive some_thm (case_schema as (num_args, _)) ((c, ty), ts) =
745  if length ts < num_args then
746    let
747      val k = length ts;
748      val tys = (take (num_args - k) o drop k o fst o strip_type) ty;
749      val names = (fold o fold_aterms) Term.declare_term_frees ts Name.context;
750      val vs = Name.invent_names names "a" tys;
751    in
752      fold_map (translate_typ ctxt algbr eqngr permissive) tys
753      ##>> translate_case ctxt algbr eqngr permissive some_thm case_schema ((c, ty), ts @ map Free vs)
754      #>> (fn (tys, t) => map2 (fn (v, _) => pair (SOME v)) vs tys `|==> t)
755    end
756  else if length ts > num_args then
757    translate_case ctxt algbr eqngr permissive some_thm case_schema ((c, ty), take num_args ts)
758    ##>> fold_map (translate_term ctxt algbr eqngr permissive some_thm o rpair NONE) (drop num_args ts)
759    #>> (fn (t, ts) => t `$$ ts)
760  else
761    translate_case ctxt algbr eqngr permissive some_thm case_schema ((c, ty), ts)
762and translate_app ctxt algbr eqngr permissive some_thm (c_ty_ts as ((c, _), _), some_abs) =
763  case Code.get_case_schema (Proof_Context.theory_of ctxt) c
764   of SOME case_schema => translate_app_case ctxt algbr eqngr permissive some_thm case_schema c_ty_ts
765    | NONE => translate_app_const ctxt algbr eqngr permissive some_thm (c_ty_ts, some_abs)
766and translate_tyvar_sort ctxt (algbr as (proj_sort, _)) eqngr permissive (v, sort) =
767  fold_map (ensure_class ctxt algbr eqngr permissive) (proj_sort sort)
768  #>> (fn sort => (unprefix "'" v, sort))
769and translate_dicts ctxt algbr eqngr permissive some_thm (ty, sort) =
770  let
771    fun mk_dict (Weakening (classrels, d)) =
772          fold_map (ensure_classrel ctxt algbr eqngr permissive) classrels
773          ##>> mk_plain_dict d
774          #>> Dict 
775    and mk_plain_dict (Global (inst, dss)) =
776          ensure_inst ctxt algbr eqngr permissive inst
777          ##>> (fold_map o fold_map) mk_dict dss
778          #>> Dict_Const
779      | mk_plain_dict (Local { var, index, sort, unique }) =
780          ensure_class ctxt algbr eqngr permissive (nth sort index)
781          #>> (fn class => Dict_Var { var = unprefix "'" var, index = index,
782            length = length sort, class = class, unique = unique })
783  in
784    construct_dictionaries ctxt algbr permissive some_thm (ty, sort)
785    #-> (fn typarg_witnesses => fold_map mk_dict typarg_witnesses)
786  end;
787
788
789(* store *)
790
791structure Program = Code_Data
792(
793  type T = program;
794  val empty = Code_Symbol.Graph.empty;
795);
796
797fun invoke_generation ignore_cache ctxt generate thing =
798  Program.change_yield
799    (if ignore_cache then NONE else SOME (Proof_Context.theory_of ctxt))
800    (fn program => ([], program)
801      |> generate thing
802      |-> (fn thing => fn (_, program) => (thing, program)));
803
804
805(* program generation *)
806
807fun check_abstract_constructors thy consts =
808  case filter (Code.is_abstr thy) consts of
809    [] => ()
810  | abstrs => error ("Cannot export abstract constructor(s): "
811      ^ commas (map (Code.string_of_const thy) abstrs));
812
813fun invoke_generation_for_consts ctxt { ignore_cache, permissive } { algebra, eqngr } consts =
814  let
815    val thy = Proof_Context.theory_of ctxt;
816    val _ = if permissive then ()
817      else check_abstract_constructors thy consts;
818  in
819    Code_Preproc.timed "translating program" #ctxt
820    (fn { ctxt, algebra, eqngr, consts } => invoke_generation ignore_cache ctxt
821      (fold_map (ensure_const ctxt algebra eqngr permissive)) consts)
822      { ctxt = ctxt, algebra = algebra, eqngr = eqngr, consts = consts }
823  end;
824
825fun invoke_generation_for_consts' ctxt ignore_cache_and_permissive consts =
826  invoke_generation_for_consts ctxt
827    { ignore_cache = ignore_cache_and_permissive, permissive = ignore_cache_and_permissive }
828    (Code_Preproc.obtain ignore_cache_and_permissive
829      { ctxt = ctxt, consts = consts, terms = []}) consts
830  |> snd;
831
832fun invoke_generation_for_consts'' ctxt algebra_eqngr =
833  invoke_generation_for_consts ctxt
834    { ignore_cache = true, permissive = false }
835    algebra_eqngr
836  #> (fn (deps, program) => { deps = deps, program = program });
837
838fun consts_program_permissive ctxt =
839  invoke_generation_for_consts' ctxt true;
840
841fun consts_program ctxt consts =
842  let
843    fun project program = Code_Symbol.Graph.restrict
844      (member (op =) (Code_Symbol.Graph.all_succs program
845        (map Constant consts))) program;
846  in
847    invoke_generation_for_consts' ctxt false consts
848    |> project
849  end;
850
851
852(* value evaluation *)
853
854fun ensure_value ctxt algbr eqngr t =
855  let
856    val ty = fastype_of t;
857    val vs = fold_term_types (K (fold_atyps (insert (eq_fst op =)
858      o dest_TFree))) t [];
859    val t' = annotate ctxt algbr eqngr (\<^const_name>\<open>Pure.dummy_pattern\<close>, ty) [] t;
860    val dummy_constant = Constant \<^const_name>\<open>Pure.dummy_pattern\<close>;
861    val stmt_value =
862      fold_map (translate_tyvar_sort ctxt algbr eqngr false) vs
863      ##>> translate_typ ctxt algbr eqngr false ty
864      ##>> translate_term ctxt algbr eqngr false NONE (t', NONE)
865      #>> (fn ((vs, ty), t) => Fun
866        (((vs, ty), [(([], t), (NONE, true))]), NONE));
867    fun term_value (_, program1) =
868      let
869        val Fun ((vs_ty, [(([], t), _)]), _) =
870          Code_Symbol.Graph.get_node program1 dummy_constant;
871        val deps' = Code_Symbol.Graph.immediate_succs program1 dummy_constant;
872        val program2 = Code_Symbol.Graph.del_node dummy_constant program1;
873        val deps_all = Code_Symbol.Graph.all_succs program2 deps';
874        val program3 = Code_Symbol.Graph.restrict (member (op =) deps_all) program2;
875       in ((program3, ((vs_ty, t), deps')), (deps', program2)) end;
876  in
877    ensure_stmt Constant stmt_value \<^const_name>\<open>Pure.dummy_pattern\<close>
878    #> snd
879    #> term_value
880  end;
881
882fun dynamic_evaluation comp ctxt algebra eqngr t =
883  let
884    val ((program, (vs_ty_t', deps)), _) =
885      Code_Preproc.timed "translating term" #ctxt
886      (fn { ctxt, algebra, eqngr, t } =>
887        invoke_generation false ctxt (ensure_value ctxt algebra eqngr) t)
888        { ctxt = ctxt, algebra = algebra, eqngr = eqngr, t = t };
889  in comp program t vs_ty_t' deps end;
890
891fun dynamic_conv ctxt conv =
892  Code_Preproc.dynamic_conv ctxt
893    (dynamic_evaluation (fn program => fn _ => conv program) ctxt);
894
895fun dynamic_value ctxt postproc comp =
896  Code_Preproc.dynamic_value ctxt postproc
897    (dynamic_evaluation comp ctxt);
898
899fun static_evaluation ctxt consts algebra_eqngr static_eval =
900  static_eval (invoke_generation_for_consts'' ctxt algebra_eqngr consts);
901
902fun static_evaluation_thingol ctxt consts (algebra_eqngr as { algebra, eqngr }) static_eval =
903  let
904    fun evaluation program dynamic_eval ctxt t =
905      let
906        val ((_, ((vs_ty', t'), deps)), _) =
907          Code_Preproc.timed "translating term" #ctxt
908          (fn { ctxt, t } =>
909            ensure_value ctxt algebra eqngr t ([], program))
910            { ctxt = ctxt, t = t };
911      in dynamic_eval ctxt t (vs_ty', t') deps end;
912  in
913    static_evaluation ctxt consts algebra_eqngr (fn program_deps =>
914      evaluation (#program program_deps) (static_eval program_deps))
915  end;
916
917fun static_evaluation_isa ctxt consts algebra_eqngr static_eval =
918  static_evaluation ctxt consts algebra_eqngr (fn program_deps =>
919    (static_eval (#program program_deps)));
920
921fun static_conv_thingol (ctxt_consts as { ctxt, consts }) conv =
922  Code_Preproc.static_conv ctxt_consts (fn algebra_eqngr =>
923    static_evaluation_thingol ctxt consts algebra_eqngr
924      (fn program_deps =>
925        let
926          val static_conv = conv program_deps;
927        in 
928          fn ctxt => fn _ => fn vs_ty => fn deps => static_conv ctxt vs_ty deps
929        end));
930
931fun static_conv_isa (ctxt_consts as { ctxt, consts }) conv =
932  Code_Preproc.static_conv ctxt_consts (fn algebra_eqngr =>
933    static_evaluation_isa ctxt consts algebra_eqngr conv);
934
935fun static_value (ctxt_postproc_consts as { ctxt, consts, ... }) comp =
936  Code_Preproc.static_value ctxt_postproc_consts (fn algebra_eqngr =>
937    static_evaluation_thingol ctxt consts algebra_eqngr comp);
938
939
940(** constant expressions **)
941
942fun read_const_exprs_internal ctxt =
943  let
944    val thy = Proof_Context.theory_of ctxt;
945    fun this_theory name =
946      if Context.theory_name thy = name then thy
947      else Context.get_theory {long = false} thy name;
948
949    fun consts_of thy' =
950      fold (fn (c, (_, NONE)) => cons c | _ => I)
951        (#constants (Consts.dest (Sign.consts_of thy'))) []
952      |> filter_out (Code.is_abstr thy);
953    fun belongs_here thy' c = forall
954      (fn thy'' => not (Sign.declared_const thy'' c)) (Theory.parents_of thy');
955    fun consts_of_select thy' = filter (belongs_here thy') (consts_of thy');
956    fun read_const_expr str =
957      (case Syntax.parse_input ctxt (K NONE) (K Markup.empty) (SOME o Symbol_Pos.implode o #1) str of
958        SOME "_" => ([], consts_of thy)
959      | SOME s =>
960          (case try (unsuffix "._") s of
961            SOME name => ([], consts_of_select (this_theory name))
962          | NONE => ([Code.read_const thy str], []))
963      | NONE => ([Code.read_const thy str], []));
964  in apply2 flat o split_list o map read_const_expr end;
965
966fun read_const_exprs_all ctxt = op @ o read_const_exprs_internal ctxt;
967
968fun read_const_exprs ctxt const_exprs =
969  let
970    val (consts, consts_permissive) =
971      read_const_exprs_internal ctxt const_exprs;
972    val consts' = 
973      consts_program_permissive ctxt consts_permissive
974      |> implemented_deps
975      |> filter_out (Code.is_abstr (Proof_Context.theory_of ctxt));
976  in union (op =) consts' consts end;
977
978
979(** diagnostic commands **)
980
981fun code_depgr ctxt consts =
982  let
983    val { eqngr, ... } = Code_Preproc.obtain true
984      { ctxt = ctxt, consts = consts, terms = [] };
985    val all_consts = Graph.all_succs eqngr consts;
986  in Graph.restrict (member (op =) all_consts) eqngr end;
987
988fun code_thms ctxt = Pretty.writeln o Code_Preproc.pretty ctxt o code_depgr ctxt;
989
990fun coalesce_strong_conn gr =
991  let
992    val xss = Graph.strong_conn gr;
993    val xss_ys = map (fn xs => (xs, commas xs)) xss;
994    val y_for = the o AList.lookup (op =) (maps (fn (xs, y) => map (fn x => (x, y)) xs) xss_ys);
995    fun coalesced_succs_for xs = maps (Graph.immediate_succs gr) xs
996      |> subtract (op =) xs
997      |> map y_for
998      |> distinct (op =);
999    val succs = map (fn (xs, _) => (xs, coalesced_succs_for xs)) xss_ys;
1000  in
1001    map (fn (xs, y) => ((y, xs), (maps (Graph.get_node gr) xs, (the o AList.lookup (op =) succs) xs))) xss_ys
1002  end;
1003
1004fun code_deps ctxt consts =
1005  let
1006    val thy = Proof_Context.theory_of ctxt;
1007    fun mk_entry ((name, consts), (ps, deps)) =
1008      let
1009        val label = commas (map (Code.string_of_const thy) consts);
1010      in ((name, Graph_Display.content_node label (Pretty.str label :: ps)), deps) end;
1011  in
1012    code_depgr ctxt consts
1013    |> Graph.map (K (Code.pretty_cert thy o snd))
1014    |> coalesce_strong_conn
1015    |> map mk_entry
1016    |> Graph_Display.display_graph
1017  end;
1018
1019local
1020
1021fun code_thms_cmd ctxt = code_thms ctxt o read_const_exprs_all ctxt;
1022fun code_deps_cmd ctxt = code_deps ctxt o read_const_exprs_all ctxt;
1023
1024in
1025
1026val _ =
1027  Outer_Syntax.command \<^command_keyword>\<open>code_thms\<close>
1028    "print system of code equations for code"
1029    (Scan.repeat1 Parse.term >> (fn cs =>
1030      Toplevel.keep (fn st => code_thms_cmd (Toplevel.context_of st) cs)));
1031
1032val _ =
1033  Outer_Syntax.command \<^command_keyword>\<open>code_deps\<close>
1034    "visualize dependencies of code equations for code"
1035    (Scan.repeat1 Parse.term >> (fn cs =>
1036      Toplevel.keep (fn st => code_deps_cmd (Toplevel.context_of st) cs)));
1037
1038end;
1039
1040end; (*struct*)
1041
1042
1043structure Basic_Code_Thingol: BASIC_CODE_THINGOL = Code_Thingol;
1044