1(*  Title:      HOL/UNITY/SubstAx.thy
2    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
3    Copyright   1998  University of Cambridge
4
5Weak LeadsTo relation (restricted to the set of reachable states)
6*)
7
8section\<open>Weak Progress\<close>
9
10theory SubstAx imports WFair Constrains begin
11
12definition Ensures :: "['a set, 'a set] => 'a program set" (infixl "Ensures" 60) where
13    "A Ensures B == {F. F \<in> (reachable F \<inter> A) ensures B}"
14
15definition LeadsTo :: "['a set, 'a set] => 'a program set" (infixl "LeadsTo" 60) where
16    "A LeadsTo B == {F. F \<in> (reachable F \<inter> A) leadsTo B}"
17
18notation LeadsTo  (infixl "\<longmapsto>w" 60)
19
20
21text\<open>Resembles the previous definition of LeadsTo\<close>
22lemma LeadsTo_eq_leadsTo: 
23     "A LeadsTo B = {F. F \<in> (reachable F \<inter> A) leadsTo (reachable F \<inter> B)}"
24apply (unfold LeadsTo_def)
25apply (blast dest: psp_stable2 intro: leadsTo_weaken)
26done
27
28
29subsection\<open>Specialized laws for handling invariants\<close>
30
31(** Conjoining an Always property **)
32
33lemma Always_LeadsTo_pre:
34     "F \<in> Always INV ==> (F \<in> (INV \<inter> A) LeadsTo A') = (F \<in> A LeadsTo A')"
35by (simp add: LeadsTo_def Always_eq_includes_reachable Int_absorb2 
36              Int_assoc [symmetric])
37
38lemma Always_LeadsTo_post:
39     "F \<in> Always INV ==> (F \<in> A LeadsTo (INV \<inter> A')) = (F \<in> A LeadsTo A')"
40by (simp add: LeadsTo_eq_leadsTo Always_eq_includes_reachable Int_absorb2 
41              Int_assoc [symmetric])
42
43(* [| F \<in> Always C;  F \<in> (C \<inter> A) LeadsTo A' |] ==> F \<in> A LeadsTo A' *)
44lemmas Always_LeadsToI = Always_LeadsTo_pre [THEN iffD1]
45
46(* [| F \<in> Always INV;  F \<in> A LeadsTo A' |] ==> F \<in> A LeadsTo (INV \<inter> A') *)
47lemmas Always_LeadsToD = Always_LeadsTo_post [THEN iffD2]
48
49
50subsection\<open>Introduction rules: Basis, Trans, Union\<close>
51
52lemma leadsTo_imp_LeadsTo: "F \<in> A leadsTo B ==> F \<in> A LeadsTo B"
53apply (simp add: LeadsTo_def)
54apply (blast intro: leadsTo_weaken_L)
55done
56
57lemma LeadsTo_Trans:
58     "[| F \<in> A LeadsTo B;  F \<in> B LeadsTo C |] ==> F \<in> A LeadsTo C"
59apply (simp add: LeadsTo_eq_leadsTo)
60apply (blast intro: leadsTo_Trans)
61done
62
63lemma LeadsTo_Union: 
64     "(!!A. A \<in> S ==> F \<in> A LeadsTo B) ==> F \<in> (\<Union>S) LeadsTo B"
65apply (simp add: LeadsTo_def)
66apply (subst Int_Union)
67apply (blast intro: leadsTo_UN)
68done
69
70
71subsection\<open>Derived rules\<close>
72
73lemma LeadsTo_UNIV [simp]: "F \<in> A LeadsTo UNIV"
74by (simp add: LeadsTo_def)
75
76text\<open>Useful with cancellation, disjunction\<close>
77lemma LeadsTo_Un_duplicate:
78     "F \<in> A LeadsTo (A' \<union> A') ==> F \<in> A LeadsTo A'"
79by (simp add: Un_ac)
80
81lemma LeadsTo_Un_duplicate2:
82     "F \<in> A LeadsTo (A' \<union> C \<union> C) ==> F \<in> A LeadsTo (A' \<union> C)"
83by (simp add: Un_ac)
84
85lemma LeadsTo_UN: 
86     "(!!i. i \<in> I ==> F \<in> (A i) LeadsTo B) ==> F \<in> (\<Union>i \<in> I. A i) LeadsTo B"
87apply (blast intro: LeadsTo_Union)
88done
89
90text\<open>Binary union introduction rule\<close>
91lemma LeadsTo_Un:
92     "[| F \<in> A LeadsTo C; F \<in> B LeadsTo C |] ==> F \<in> (A \<union> B) LeadsTo C"
93  using LeadsTo_UN [of "{A, B}" F id C] by auto
94
95text\<open>Lets us look at the starting state\<close>
96lemma single_LeadsTo_I:
97     "(!!s. s \<in> A ==> F \<in> {s} LeadsTo B) ==> F \<in> A LeadsTo B"
98by (subst UN_singleton [symmetric], rule LeadsTo_UN, blast)
99
100lemma subset_imp_LeadsTo: "A \<subseteq> B ==> F \<in> A LeadsTo B"
101apply (simp add: LeadsTo_def)
102apply (blast intro: subset_imp_leadsTo)
103done
104
105lemmas empty_LeadsTo = empty_subsetI [THEN subset_imp_LeadsTo, simp]
106
107lemma LeadsTo_weaken_R:
108     "[| F \<in> A LeadsTo A';  A' \<subseteq> B' |] ==> F \<in> A LeadsTo B'"
109apply (simp add: LeadsTo_def)
110apply (blast intro: leadsTo_weaken_R)
111done
112
113lemma LeadsTo_weaken_L:
114     "[| F \<in> A LeadsTo A';  B \<subseteq> A |]   
115      ==> F \<in> B LeadsTo A'"
116apply (simp add: LeadsTo_def)
117apply (blast intro: leadsTo_weaken_L)
118done
119
120lemma LeadsTo_weaken:
121     "[| F \<in> A LeadsTo A';    
122         B  \<subseteq> A;   A' \<subseteq> B' |]  
123      ==> F \<in> B LeadsTo B'"
124by (blast intro: LeadsTo_weaken_R LeadsTo_weaken_L LeadsTo_Trans)
125
126lemma Always_LeadsTo_weaken:
127     "[| F \<in> Always C;  F \<in> A LeadsTo A';    
128         C \<inter> B \<subseteq> A;   C \<inter> A' \<subseteq> B' |]  
129      ==> F \<in> B LeadsTo B'"
130by (blast dest: Always_LeadsToI intro: LeadsTo_weaken intro: Always_LeadsToD)
131
132(** Two theorems for "proof lattices" **)
133
134lemma LeadsTo_Un_post: "F \<in> A LeadsTo B ==> F \<in> (A \<union> B) LeadsTo B"
135by (blast intro: LeadsTo_Un subset_imp_LeadsTo)
136
137lemma LeadsTo_Trans_Un:
138     "[| F \<in> A LeadsTo B;  F \<in> B LeadsTo C |]  
139      ==> F \<in> (A \<union> B) LeadsTo C"
140by (blast intro: LeadsTo_Un subset_imp_LeadsTo LeadsTo_weaken_L LeadsTo_Trans)
141
142
143(** Distributive laws **)
144
145lemma LeadsTo_Un_distrib:
146     "(F \<in> (A \<union> B) LeadsTo C)  = (F \<in> A LeadsTo C & F \<in> B LeadsTo C)"
147by (blast intro: LeadsTo_Un LeadsTo_weaken_L)
148
149lemma LeadsTo_UN_distrib:
150     "(F \<in> (\<Union>i \<in> I. A i) LeadsTo B)  =  (\<forall>i \<in> I. F \<in> (A i) LeadsTo B)"
151by (blast intro: LeadsTo_UN LeadsTo_weaken_L)
152
153lemma LeadsTo_Union_distrib:
154     "(F \<in> (\<Union>S) LeadsTo B)  =  (\<forall>A \<in> S. F \<in> A LeadsTo B)"
155by (blast intro: LeadsTo_Union LeadsTo_weaken_L)
156
157
158(** More rules using the premise "Always INV" **)
159
160lemma LeadsTo_Basis: "F \<in> A Ensures B ==> F \<in> A LeadsTo B"
161by (simp add: Ensures_def LeadsTo_def leadsTo_Basis)
162
163lemma EnsuresI:
164     "[| F \<in> (A-B) Co (A \<union> B);  F \<in> transient (A-B) |]    
165      ==> F \<in> A Ensures B"
166apply (simp add: Ensures_def Constrains_eq_constrains)
167apply (blast intro: ensuresI constrains_weaken transient_strengthen)
168done
169
170lemma Always_LeadsTo_Basis:
171     "[| F \<in> Always INV;       
172         F \<in> (INV \<inter> (A-A')) Co (A \<union> A');  
173         F \<in> transient (INV \<inter> (A-A')) |]    
174  ==> F \<in> A LeadsTo A'"
175apply (rule Always_LeadsToI, assumption)
176apply (blast intro: EnsuresI LeadsTo_Basis Always_ConstrainsD [THEN Constrains_weaken] transient_strengthen)
177done
178
179text\<open>Set difference: maybe combine with \<open>leadsTo_weaken_L\<close>??
180  This is the most useful form of the "disjunction" rule\<close>
181lemma LeadsTo_Diff:
182     "[| F \<in> (A-B) LeadsTo C;  F \<in> (A \<inter> B) LeadsTo C |]  
183      ==> F \<in> A LeadsTo C"
184by (blast intro: LeadsTo_Un LeadsTo_weaken)
185
186
187lemma LeadsTo_UN_UN: 
188     "(!! i. i \<in> I ==> F \<in> (A i) LeadsTo (A' i))  
189      ==> F \<in> (\<Union>i \<in> I. A i) LeadsTo (\<Union>i \<in> I. A' i)"
190apply (blast intro: LeadsTo_Union LeadsTo_weaken_R)
191done
192
193
194text\<open>Version with no index set\<close>
195lemma LeadsTo_UN_UN_noindex: 
196     "(!!i. F \<in> (A i) LeadsTo (A' i)) ==> F \<in> (\<Union>i. A i) LeadsTo (\<Union>i. A' i)"
197by (blast intro: LeadsTo_UN_UN)
198
199text\<open>Version with no index set\<close>
200lemma all_LeadsTo_UN_UN:
201     "\<forall>i. F \<in> (A i) LeadsTo (A' i)  
202      ==> F \<in> (\<Union>i. A i) LeadsTo (\<Union>i. A' i)"
203by (blast intro: LeadsTo_UN_UN)
204
205text\<open>Binary union version\<close>
206lemma LeadsTo_Un_Un:
207     "[| F \<in> A LeadsTo A'; F \<in> B LeadsTo B' |]  
208            ==> F \<in> (A \<union> B) LeadsTo (A' \<union> B')"
209by (blast intro: LeadsTo_Un LeadsTo_weaken_R)
210
211
212(** The cancellation law **)
213
214lemma LeadsTo_cancel2:
215     "[| F \<in> A LeadsTo (A' \<union> B); F \<in> B LeadsTo B' |]     
216      ==> F \<in> A LeadsTo (A' \<union> B')"
217by (blast intro: LeadsTo_Un_Un subset_imp_LeadsTo LeadsTo_Trans)
218
219lemma LeadsTo_cancel_Diff2:
220     "[| F \<in> A LeadsTo (A' \<union> B); F \<in> (B-A') LeadsTo B' |]  
221      ==> F \<in> A LeadsTo (A' \<union> B')"
222apply (rule LeadsTo_cancel2)
223prefer 2 apply assumption
224apply (simp_all (no_asm_simp))
225done
226
227lemma LeadsTo_cancel1:
228     "[| F \<in> A LeadsTo (B \<union> A'); F \<in> B LeadsTo B' |]  
229      ==> F \<in> A LeadsTo (B' \<union> A')"
230apply (simp add: Un_commute)
231apply (blast intro!: LeadsTo_cancel2)
232done
233
234lemma LeadsTo_cancel_Diff1:
235     "[| F \<in> A LeadsTo (B \<union> A'); F \<in> (B-A') LeadsTo B' |]  
236      ==> F \<in> A LeadsTo (B' \<union> A')"
237apply (rule LeadsTo_cancel1)
238prefer 2 apply assumption
239apply (simp_all (no_asm_simp))
240done
241
242
243text\<open>The impossibility law\<close>
244
245text\<open>The set "A" may be non-empty, but it contains no reachable states\<close>
246lemma LeadsTo_empty: "[|F \<in> A LeadsTo {}; all_total F|] ==> F \<in> Always (-A)"
247apply (simp add: LeadsTo_def Always_eq_includes_reachable)
248apply (drule leadsTo_empty, auto)
249done
250
251
252subsection\<open>PSP: Progress-Safety-Progress\<close>
253
254text\<open>Special case of PSP: Misra's "stable conjunction"\<close>
255lemma PSP_Stable:
256     "[| F \<in> A LeadsTo A';  F \<in> Stable B |]  
257      ==> F \<in> (A \<inter> B) LeadsTo (A' \<inter> B)"
258apply (simp add: LeadsTo_eq_leadsTo Stable_eq_stable)
259apply (drule psp_stable, assumption)
260apply (simp add: Int_ac)
261done
262
263lemma PSP_Stable2:
264     "[| F \<in> A LeadsTo A'; F \<in> Stable B |]  
265      ==> F \<in> (B \<inter> A) LeadsTo (B \<inter> A')"
266by (simp add: PSP_Stable Int_ac)
267
268lemma PSP:
269     "[| F \<in> A LeadsTo A'; F \<in> B Co B' |]  
270      ==> F \<in> (A \<inter> B') LeadsTo ((A' \<inter> B) \<union> (B' - B))"
271apply (simp add: LeadsTo_def Constrains_eq_constrains)
272apply (blast dest: psp intro: leadsTo_weaken)
273done
274
275lemma PSP2:
276     "[| F \<in> A LeadsTo A'; F \<in> B Co B' |]  
277      ==> F \<in> (B' \<inter> A) LeadsTo ((B \<inter> A') \<union> (B' - B))"
278by (simp add: PSP Int_ac)
279
280lemma PSP_Unless: 
281     "[| F \<in> A LeadsTo A'; F \<in> B Unless B' |]  
282      ==> F \<in> (A \<inter> B) LeadsTo ((A' \<inter> B) \<union> B')"
283apply (unfold Unless_def)
284apply (drule PSP, assumption)
285apply (blast intro: LeadsTo_Diff LeadsTo_weaken subset_imp_LeadsTo)
286done
287
288
289lemma Stable_transient_Always_LeadsTo:
290     "[| F \<in> Stable A;  F \<in> transient C;   
291         F \<in> Always (-A \<union> B \<union> C) |] ==> F \<in> A LeadsTo B"
292apply (erule Always_LeadsTo_weaken)
293apply (rule LeadsTo_Diff)
294   prefer 2
295   apply (erule
296          transient_imp_leadsTo [THEN leadsTo_imp_LeadsTo, THEN PSP_Stable2])
297   apply (blast intro: subset_imp_LeadsTo)+
298done
299
300
301subsection\<open>Induction rules\<close>
302
303(** Meta or object quantifier ????? **)
304lemma LeadsTo_wf_induct:
305     "[| wf r;      
306         \<forall>m. F \<in> (A \<inter> f-`{m}) LeadsTo                      
307                    ((A \<inter> f-`(r\<inverse> `` {m})) \<union> B) |]  
308      ==> F \<in> A LeadsTo B"
309apply (simp add: LeadsTo_eq_leadsTo)
310apply (erule leadsTo_wf_induct)
311apply (blast intro: leadsTo_weaken)
312done
313
314
315lemma Bounded_induct:
316     "[| wf r;      
317         \<forall>m \<in> I. F \<in> (A \<inter> f-`{m}) LeadsTo                    
318                      ((A \<inter> f-`(r\<inverse> `` {m})) \<union> B) |]  
319      ==> F \<in> A LeadsTo ((A - (f-`I)) \<union> B)"
320apply (erule LeadsTo_wf_induct, safe)
321apply (case_tac "m \<in> I")
322apply (blast intro: LeadsTo_weaken)
323apply (blast intro: subset_imp_LeadsTo)
324done
325
326
327lemma LessThan_induct:
328     "(!!m::nat. F \<in> (A \<inter> f-`{m}) LeadsTo ((A \<inter> f-`(lessThan m)) \<union> B))
329      ==> F \<in> A LeadsTo B"
330by (rule wf_less_than [THEN LeadsTo_wf_induct], auto)
331
332text\<open>Integer version.  Could generalize from 0 to any lower bound\<close>
333lemma integ_0_le_induct:
334     "[| F \<in> Always {s. (0::int) \<le> f s};   
335         !! z. F \<in> (A \<inter> {s. f s = z}) LeadsTo                      
336                   ((A \<inter> {s. f s < z}) \<union> B) |]  
337      ==> F \<in> A LeadsTo B"
338apply (rule_tac f = "nat o f" in LessThan_induct)
339apply (simp add: vimage_def)
340apply (rule Always_LeadsTo_weaken, assumption+)
341apply (auto simp add: nat_eq_iff nat_less_iff)
342done
343
344lemma LessThan_bounded_induct:
345     "!!l::nat. \<forall>m \<in> greaterThan l. 
346                   F \<in> (A \<inter> f-`{m}) LeadsTo ((A \<inter> f-`(lessThan m)) \<union> B)
347            ==> F \<in> A LeadsTo ((A \<inter> (f-`(atMost l))) \<union> B)"
348apply (simp only: Diff_eq [symmetric] vimage_Compl 
349                  Compl_greaterThan [symmetric])
350apply (rule wf_less_than [THEN Bounded_induct], simp)
351done
352
353lemma GreaterThan_bounded_induct:
354     "!!l::nat. \<forall>m \<in> lessThan l. 
355                 F \<in> (A \<inter> f-`{m}) LeadsTo ((A \<inter> f-`(greaterThan m)) \<union> B)
356      ==> F \<in> A LeadsTo ((A \<inter> (f-`(atLeast l))) \<union> B)"
357apply (rule_tac f = f and f1 = "%k. l - k" 
358       in wf_less_than [THEN wf_inv_image, THEN LeadsTo_wf_induct])
359apply (simp add: Image_singleton, clarify)
360apply (case_tac "m<l")
361 apply (blast intro: LeadsTo_weaken_R diff_less_mono2)
362apply (blast intro: not_le_imp_less subset_imp_LeadsTo)
363done
364
365
366subsection\<open>Completion: Binary and General Finite versions\<close>
367
368lemma Completion:
369     "[| F \<in> A LeadsTo (A' \<union> C);  F \<in> A' Co (A' \<union> C);  
370         F \<in> B LeadsTo (B' \<union> C);  F \<in> B' Co (B' \<union> C) |]  
371      ==> F \<in> (A \<inter> B) LeadsTo ((A' \<inter> B') \<union> C)"
372apply (simp add: LeadsTo_eq_leadsTo Constrains_eq_constrains Int_Un_distrib)
373apply (blast intro: completion leadsTo_weaken)
374done
375
376lemma Finite_completion_lemma:
377     "finite I  
378      ==> (\<forall>i \<in> I. F \<in> (A i) LeadsTo (A' i \<union> C)) -->   
379          (\<forall>i \<in> I. F \<in> (A' i) Co (A' i \<union> C)) -->  
380          F \<in> (\<Inter>i \<in> I. A i) LeadsTo ((\<Inter>i \<in> I. A' i) \<union> C)"
381apply (erule finite_induct, auto)
382apply (rule Completion)
383   prefer 4
384   apply (simp only: INT_simps [symmetric])
385   apply (rule Constrains_INT, auto)
386done
387
388lemma Finite_completion: 
389     "[| finite I;   
390         !!i. i \<in> I ==> F \<in> (A i) LeadsTo (A' i \<union> C);  
391         !!i. i \<in> I ==> F \<in> (A' i) Co (A' i \<union> C) |]    
392      ==> F \<in> (\<Inter>i \<in> I. A i) LeadsTo ((\<Inter>i \<in> I. A' i) \<union> C)"
393by (blast intro: Finite_completion_lemma [THEN mp, THEN mp])
394
395lemma Stable_completion: 
396     "[| F \<in> A LeadsTo A';  F \<in> Stable A';    
397         F \<in> B LeadsTo B';  F \<in> Stable B' |]  
398      ==> F \<in> (A \<inter> B) LeadsTo (A' \<inter> B')"
399apply (unfold Stable_def)
400apply (rule_tac C1 = "{}" in Completion [THEN LeadsTo_weaken_R])
401apply (force+)
402done
403
404lemma Finite_stable_completion: 
405     "[| finite I;   
406         !!i. i \<in> I ==> F \<in> (A i) LeadsTo (A' i);  
407         !!i. i \<in> I ==> F \<in> Stable (A' i) |]    
408      ==> F \<in> (\<Inter>i \<in> I. A i) LeadsTo (\<Inter>i \<in> I. A' i)"
409apply (unfold Stable_def)
410apply (rule_tac C1 = "{}" in Finite_completion [THEN LeadsTo_weaken_R])
411apply (simp_all, blast+)
412done
413
414end
415