1(*  Title:      HOL/Tools/inductive.ML
2    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
3    Author:     Stefan Berghofer and Markus Wenzel, TU Muenchen
4
5(Co)Inductive Definition module for HOL.
6
7Features:
8  * least or greatest fixedpoints
9  * mutually recursive definitions
10  * definitions involving arbitrary monotone operators
11  * automatically proves introduction and elimination rules
12
13  Introduction rules have the form
14  [| M Pj ti, ..., Q x, ... |] ==> Pk t
15  where M is some monotone operator (usually the identity)
16  Q x is any side condition on the free variables
17  ti, t are any terms
18  Pj, Pk are two of the predicates being defined in mutual recursion
19*)
20
21signature INDUCTIVE =
22sig
23  type result =
24    {preds: term list, elims: thm list, raw_induct: thm,
25     induct: thm, inducts: thm list, intrs: thm list, eqs: thm list}
26  val transform_result: morphism -> result -> result
27  type info = {names: string list, coind: bool} * result
28  val the_inductive: Proof.context -> term -> info
29  val the_inductive_global: Proof.context -> string -> info
30  val print_inductives: bool -> Proof.context -> unit
31  val get_monos: Proof.context -> thm list
32  val mono_add: attribute
33  val mono_del: attribute
34  val mk_cases_tac: Proof.context -> tactic
35  val mk_cases: Proof.context -> term -> thm
36  val inductive_forall_def: thm
37  val rulify: Proof.context -> thm -> thm
38  val inductive_cases: (Attrib.binding * term list) list -> local_theory ->
39    (string * thm list) list * local_theory
40  val inductive_cases_cmd: (Attrib.binding * string list) list -> local_theory ->
41    (string * thm list) list * local_theory
42  val ind_cases_rules: Proof.context ->
43    string list -> (binding * string option * mixfix) list -> thm list
44  val inductive_simps: (Attrib.binding * term list) list -> local_theory ->
45    (string * thm list) list * local_theory
46  val inductive_simps_cmd: (Attrib.binding * string list) list -> local_theory ->
47    (string * thm list) list * local_theory
48  type flags =
49    {quiet_mode: bool, verbose: bool, alt_name: binding, coind: bool,
50      no_elim: bool, no_ind: bool, skip_mono: bool}
51  val add_inductive:
52    flags -> ((binding * typ) * mixfix) list ->
53    (string * typ) list -> (Attrib.binding * term) list -> thm list -> local_theory ->
54    result * local_theory
55  val add_inductive_cmd: bool -> bool ->
56    (binding * string option * mixfix) list ->
57    (binding * string option * mixfix) list ->
58    Specification.multi_specs_cmd ->
59    (Facts.ref * Token.src list) list ->
60    local_theory -> result * local_theory
61  val arities_of: thm -> (string * int) list
62  val params_of: thm -> term list
63  val partition_rules: thm -> thm list -> (string * thm list) list
64  val partition_rules': thm -> (thm * 'a) list -> (string * (thm * 'a) list) list
65  val unpartition_rules: thm list -> (string * 'a list) list -> 'a list
66  val infer_intro_vars: theory -> thm -> int -> thm list -> term list list
67  val inductive_internals: bool Config.T
68  val select_disj_tac: Proof.context -> int -> int -> int -> tactic
69  type add_ind_def =
70    flags ->
71    term list -> (Attrib.binding * term) list -> thm list ->
72    term list -> (binding * mixfix) list ->
73    local_theory -> result * local_theory
74  val declare_rules: binding -> bool -> bool -> binding -> string list -> term list ->
75    thm list -> binding list -> Token.src list list -> (thm * string list * int) list ->
76    thm list -> thm -> local_theory -> thm list * thm list * thm list * thm * thm list * local_theory
77  val add_ind_def: add_ind_def
78  val gen_add_inductive: add_ind_def -> flags ->
79    ((binding * typ) * mixfix) list -> (string * typ) list -> (Attrib.binding * term) list ->
80    thm list -> local_theory -> result * local_theory
81  val gen_add_inductive_cmd: add_ind_def -> bool -> bool ->
82    (binding * string option * mixfix) list ->
83    (binding * string option * mixfix) list ->
84    Specification.multi_specs_cmd -> (Facts.ref * Token.src list) list ->
85    local_theory -> result * local_theory
86  val gen_ind_decl: add_ind_def -> bool -> (local_theory -> local_theory) parser
87end;
88
89structure Inductive: INDUCTIVE =
90struct
91
92(** theory context references **)
93
94val inductive_forall_def = @{thm HOL.induct_forall_def};
95val inductive_conj_def = @{thm HOL.induct_conj_def};
96val inductive_conj = @{thms induct_conj};
97val inductive_atomize = @{thms induct_atomize};
98val inductive_rulify = @{thms induct_rulify};
99val inductive_rulify_fallback = @{thms induct_rulify_fallback};
100
101val simp_thms1 =
102  map mk_meta_eq
103    @{lemma "(\<not> True) = False" "(\<not> False) = True"
104        "(True \<longrightarrow> P) = P" "(False \<longrightarrow> P) = True"
105        "(P \<and> True) = P" "(True \<and> P) = P"
106      by (fact simp_thms)+};
107
108val simp_thms2 =
109  map mk_meta_eq [@{thm inf_fun_def}, @{thm inf_bool_def}] @ simp_thms1;
110
111val simp_thms3 =
112  @{thms le_rel_bool_arg_iff if_False if_True conj_ac
113    le_fun_def le_bool_def sup_fun_def sup_bool_def simp_thms
114    if_bool_eq_disj all_simps ex_simps imp_conjL};
115
116
117
118(** misc utilities **)
119
120val inductive_internals = Attrib.setup_config_bool \<^binding>\<open>inductive_internals\<close> (K false);
121
122fun message quiet_mode s = if quiet_mode then () else writeln s;
123
124fun clean_message ctxt quiet_mode s =
125  if Config.get ctxt quick_and_dirty then () else message quiet_mode s;
126
127fun coind_prefix true = "co"
128  | coind_prefix false = "";
129
130fun log (b: int) m n = if m >= n then 0 else 1 + log b (b * m) n;
131
132fun make_bool_args f g [] i = []
133  | make_bool_args f g (x :: xs) i =
134      (if i mod 2 = 0 then f x else g x) :: make_bool_args f g xs (i div 2);
135
136fun make_bool_args' xs =
137  make_bool_args (K \<^term>\<open>False\<close>) (K \<^term>\<open>True\<close>) xs;
138
139fun arg_types_of k c = drop k (binder_types (fastype_of c));
140
141fun find_arg T x [] = raise Fail "find_arg"
142  | find_arg T x ((p as (_, (SOME _, _))) :: ps) =
143      apsnd (cons p) (find_arg T x ps)
144  | find_arg T x ((p as (U, (NONE, y))) :: ps) =
145      if (T: typ) = U then (y, (U, (SOME x, y)) :: ps)
146      else apsnd (cons p) (find_arg T x ps);
147
148fun make_args Ts xs =
149  map (fn (T, (NONE, ())) => Const (\<^const_name>\<open>undefined\<close>, T) | (_, (SOME t, ())) => t)
150    (fold (fn (t, T) => snd o find_arg T t) xs (map (rpair (NONE, ())) Ts));
151
152fun make_args' Ts xs Us =
153  fst (fold_map (fn T => find_arg T ()) Us (Ts ~~ map (pair NONE) xs));
154
155fun dest_predicate cs params t =
156  let
157    val k = length params;
158    val (c, ts) = strip_comb t;
159    val (xs, ys) = chop k ts;
160    val i = find_index (fn c' => c' = c) cs;
161  in
162    if xs = params andalso i >= 0 then
163      SOME (c, i, ys, chop (length ys) (arg_types_of k c))
164    else NONE
165  end;
166
167fun mk_names a 0 = []
168  | mk_names a 1 = [a]
169  | mk_names a n = map (fn i => a ^ string_of_int i) (1 upto n);
170
171fun select_disj_tac ctxt =
172  let
173    fun tacs 1 1 = []
174      | tacs _ 1 = [resolve_tac ctxt @{thms disjI1}]
175      | tacs n i = resolve_tac ctxt @{thms disjI2} :: tacs (n - 1) (i - 1);
176  in fn n => fn i => EVERY' (tacs n i) end;
177
178
179
180(** context data **)
181
182type result =
183  {preds: term list, elims: thm list, raw_induct: thm,
184   induct: thm, inducts: thm list, intrs: thm list, eqs: thm list};
185
186fun transform_result phi {preds, elims, raw_induct: thm, induct, inducts, intrs, eqs} =
187  let
188    val term = Morphism.term phi;
189    val thm = Morphism.thm phi;
190    val fact = Morphism.fact phi;
191  in
192   {preds = map term preds, elims = fact elims, raw_induct = thm raw_induct,
193    induct = thm induct, inducts = fact inducts, intrs = fact intrs, eqs = fact eqs}
194  end;
195
196type info = {names: string list, coind: bool} * result;
197
198val empty_infos =
199  Item_Net.init (op = o apply2 (#names o fst)) (#preds o snd)
200
201val empty_equations =
202  Item_Net.init Thm.eq_thm_prop
203    (single o fst o HOLogic.dest_eq o HOLogic.dest_Trueprop o Thm.prop_of);
204
205datatype data = Data of
206 {infos: info Item_Net.T,
207  monos: thm list,
208  equations: thm Item_Net.T};
209
210fun make_data (infos, monos, equations) =
211  Data {infos = infos, monos = monos, equations = equations};
212
213structure Data = Generic_Data
214(
215  type T = data;
216  val empty = make_data (empty_infos, [], empty_equations);
217  val extend = I;
218  fun merge (Data {infos = infos1, monos = monos1, equations = equations1},
219      Data {infos = infos2, monos = monos2, equations = equations2}) =
220    make_data (Item_Net.merge (infos1, infos2),
221      Thm.merge_thms (monos1, monos2),
222      Item_Net.merge (equations1, equations2));
223);
224
225fun map_data f =
226  Data.map (fn Data {infos, monos, equations} => make_data (f (infos, monos, equations)));
227
228fun rep_data ctxt = Data.get (Context.Proof ctxt) |> (fn Data rep => rep);
229
230fun print_inductives verbose ctxt =
231  let
232    val {infos, monos, ...} = rep_data ctxt;
233    val space = Consts.space_of (Proof_Context.consts_of ctxt);
234    val consts =
235      Item_Net.content infos
236      |> maps (fn ({names, ...}, result) => map (rpair result) names)
237  in
238    [Pretty.block
239      (Pretty.breaks
240        (Pretty.str "(co)inductives:" ::
241          map (Pretty.mark_str o #1)
242            (Name_Space.markup_entries verbose ctxt space consts))),
243     Pretty.big_list "monotonicity rules:" (map (Thm.pretty_thm_item ctxt) monos)]
244  end |> Pretty.writeln_chunks;
245
246
247(* inductive info *)
248
249fun the_inductive ctxt term =
250  Item_Net.retrieve (#infos (rep_data ctxt)) term
251  |> the_single
252  |> apsnd (transform_result (Morphism.transfer_morphism' ctxt))
253
254fun the_inductive_global ctxt name =
255  #infos (rep_data ctxt)
256  |> Item_Net.content
257  |> filter (fn ({names, ...}, _) => member op = names name)
258  |> the_single
259  |> apsnd (transform_result (Morphism.transfer_morphism' ctxt))
260
261fun put_inductives info =
262  map_data (fn (infos, monos, equations) =>
263    (Item_Net.update (apsnd (transform_result Morphism.trim_context_morphism) info) infos,
264      monos, equations));
265
266
267(* monotonicity rules *)
268
269fun get_monos ctxt =
270  #monos (rep_data ctxt)
271  |> map (Thm.transfer' ctxt);
272
273fun mk_mono ctxt thm =
274  let
275    fun eq_to_mono thm' = thm' RS (thm' RS @{thm eq_to_mono});
276    fun dest_less_concl thm = dest_less_concl (thm RS @{thm le_funD})
277      handle THM _ => thm RS @{thm le_boolD}
278  in
279    (case Thm.concl_of thm of
280      Const (\<^const_name>\<open>Pure.eq\<close>, _) $ _ $ _ => eq_to_mono (HOLogic.mk_obj_eq thm)
281    | _ $ (Const (\<^const_name>\<open>HOL.eq\<close>, _) $ _ $ _) => eq_to_mono thm
282    | _ $ (Const (\<^const_name>\<open>Orderings.less_eq\<close>, _) $ _ $ _) =>
283      dest_less_concl (Seq.hd (REPEAT (FIRSTGOAL
284        (resolve_tac ctxt [@{thm le_funI}, @{thm le_boolI'}])) thm))
285    | _ => thm)
286  end handle THM _ => error ("Bad monotonicity theorem:\n" ^ Thm.string_of_thm ctxt thm);
287
288val mono_add =
289  Thm.declaration_attribute (fn thm => fn context =>
290    map_data (fn (infos, monos, equations) =>
291      (infos, Thm.add_thm (Thm.trim_context (mk_mono (Context.proof_of context) thm)) monos,
292        equations)) context);
293
294val mono_del =
295  Thm.declaration_attribute (fn thm => fn context =>
296    map_data (fn (infos, monos, equations) =>
297      (infos, Thm.del_thm (mk_mono (Context.proof_of context) thm) monos, equations)) context);
298
299val _ =
300  Theory.setup
301    (Attrib.setup \<^binding>\<open>mono\<close> (Attrib.add_del mono_add mono_del)
302      "declaration of monotonicity rule");
303
304
305(* equations *)
306
307fun retrieve_equations ctxt =
308  Item_Net.retrieve (#equations (rep_data ctxt))
309  #> map (Thm.transfer' ctxt);
310
311val equation_add_permissive =
312  Thm.declaration_attribute (fn thm =>
313    map_data (fn (infos, monos, equations) =>
314      (infos, monos, perhaps (try (Item_Net.update (Thm.trim_context thm))) equations)));
315
316
317
318(** process rules **)
319
320local
321
322fun err_in_rule ctxt name t msg =
323  error (cat_lines ["Ill-formed introduction rule " ^ Binding.print name,
324    Syntax.string_of_term ctxt t, msg]);
325
326fun err_in_prem ctxt name t p msg =
327  error (cat_lines ["Ill-formed premise", Syntax.string_of_term ctxt p,
328    "in introduction rule " ^ Binding.print name, Syntax.string_of_term ctxt t, msg]);
329
330val bad_concl = "Conclusion of introduction rule must be an inductive predicate";
331
332val bad_ind_occ = "Inductive predicate occurs in argument of inductive predicate";
333
334val bad_app = "Inductive predicate must be applied to parameter(s) ";
335
336fun atomize_term thy = Raw_Simplifier.rewrite_term thy inductive_atomize [];
337
338in
339
340fun check_rule ctxt cs params ((binding, att), rule) =
341  let
342    val params' = Term.variant_frees rule (Logic.strip_params rule);
343    val frees = rev (map Free params');
344    val concl = subst_bounds (frees, Logic.strip_assums_concl rule);
345    val prems = map (curry subst_bounds frees) (Logic.strip_assums_hyp rule);
346    val rule' = Logic.list_implies (prems, concl);
347    val aprems = map (atomize_term (Proof_Context.theory_of ctxt)) prems;
348    val arule = fold_rev (Logic.all o Free) params' (Logic.list_implies (aprems, concl));
349
350    fun check_ind err t =
351      (case dest_predicate cs params t of
352        NONE => err (bad_app ^
353          commas (map (Syntax.string_of_term ctxt) params))
354      | SOME (_, _, ys, _) =>
355          if exists (fn c => exists (fn t => Logic.occs (c, t)) ys) cs
356          then err bad_ind_occ else ());
357
358    fun check_prem' prem t =
359      if member (op =) cs (head_of t) then
360        check_ind (err_in_prem ctxt binding rule prem) t
361      else
362        (case t of
363          Abs (_, _, t) => check_prem' prem t
364        | t $ u => (check_prem' prem t; check_prem' prem u)
365        | _ => ());
366
367    fun check_prem (prem, aprem) =
368      if can HOLogic.dest_Trueprop aprem then check_prem' prem prem
369      else err_in_prem ctxt binding rule prem "Non-atomic premise";
370
371    val _ =
372      (case concl of
373        Const (\<^const_name>\<open>Trueprop\<close>, _) $ t =>
374          if member (op =) cs (head_of t) then
375           (check_ind (err_in_rule ctxt binding rule') t;
376            List.app check_prem (prems ~~ aprems))
377          else err_in_rule ctxt binding rule' bad_concl
378       | _ => err_in_rule ctxt binding rule' bad_concl);
379  in
380    ((binding, att), arule)
381  end;
382
383fun rulify ctxt =
384  hol_simplify ctxt inductive_conj
385  #> hol_simplify ctxt inductive_rulify
386  #> hol_simplify ctxt inductive_rulify_fallback
387  #> Simplifier.norm_hhf ctxt;
388
389end;
390
391
392
393(** proofs for (co)inductive predicates **)
394
395(* prove monotonicity *)
396
397fun prove_mono quiet_mode skip_mono predT fp_fun monos ctxt =
398 (message (quiet_mode orelse skip_mono andalso Config.get ctxt quick_and_dirty)
399    "  Proving monotonicity ...";
400  (if skip_mono then Goal.prove_sorry else Goal.prove_future) ctxt
401    [] []
402    (HOLogic.mk_Trueprop
403      (Const (\<^const_name>\<open>Orderings.mono\<close>, (predT --> predT) --> HOLogic.boolT) $ fp_fun))
404    (fn _ => EVERY [resolve_tac ctxt @{thms monoI} 1,
405      REPEAT (resolve_tac ctxt [@{thm le_funI}, @{thm le_boolI'}] 1),
406      REPEAT (FIRST
407        [assume_tac ctxt 1,
408         resolve_tac ctxt (map (mk_mono ctxt) monos @ get_monos ctxt) 1,
409         eresolve_tac ctxt @{thms le_funE} 1,
410         dresolve_tac ctxt @{thms le_boolD} 1])]));
411
412
413(* prove introduction rules *)
414
415fun prove_intrs quiet_mode coind mono fp_def k intr_ts rec_preds_defs ctxt ctxt' =
416  let
417    val _ = clean_message ctxt quiet_mode "  Proving the introduction rules ...";
418
419    val unfold = funpow k (fn th => th RS fun_cong)
420      (mono RS (fp_def RS
421        (if coind then @{thm def_gfp_unfold} else @{thm def_lfp_unfold})));
422
423    val rules = [refl, TrueI, @{lemma "\<not> False" by (rule notI)}, exI, conjI];
424
425    val intrs = map_index (fn (i, intr) =>
426      Goal.prove_sorry ctxt [] [] intr (fn _ => EVERY
427       [rewrite_goals_tac ctxt rec_preds_defs,
428        resolve_tac ctxt [unfold RS iffD2] 1,
429        select_disj_tac ctxt (length intr_ts) (i + 1) 1,
430        (*Not ares_tac, since refl must be tried before any equality assumptions;
431          backtracking may occur if the premises have extra variables!*)
432        DEPTH_SOLVE_1 (resolve_tac ctxt rules 1 APPEND assume_tac ctxt 1)])
433       |> singleton (Proof_Context.export ctxt ctxt')) intr_ts
434
435  in (intrs, unfold) end;
436
437
438(* prove elimination rules *)
439
440fun prove_elims quiet_mode cs params intr_ts intr_names unfold rec_preds_defs ctxt ctxt''' =
441  let
442    val _ = clean_message ctxt quiet_mode "  Proving the elimination rules ...";
443
444    val ([pname], ctxt') = Variable.variant_fixes ["P"] ctxt;
445    val P = HOLogic.mk_Trueprop (Free (pname, HOLogic.boolT));
446
447    fun dest_intr r =
448      (the (dest_predicate cs params (HOLogic.dest_Trueprop (Logic.strip_assums_concl r))),
449       Logic.strip_assums_hyp r, Logic.strip_params r);
450
451    val intrs = map dest_intr intr_ts ~~ intr_names;
452
453    val rules1 = [disjE, exE, FalseE];
454    val rules2 = [conjE, FalseE, @{lemma "\<not> True \<Longrightarrow> R" by (rule notE [OF _ TrueI])}];
455
456    fun prove_elim c =
457      let
458        val Ts = arg_types_of (length params) c;
459        val (anames, ctxt'') = Variable.variant_fixes (mk_names "a" (length Ts)) ctxt';
460        val frees = map Free (anames ~~ Ts);
461
462        fun mk_elim_prem ((_, _, us, _), ts, params') =
463          Logic.list_all (params',
464            Logic.list_implies (map (HOLogic.mk_Trueprop o HOLogic.mk_eq)
465              (frees ~~ us) @ ts, P));
466        val c_intrs = filter (equal c o #1 o #1 o #1) intrs;
467        val prems = HOLogic.mk_Trueprop (list_comb (c, params @ frees)) ::
468           map mk_elim_prem (map #1 c_intrs)
469      in
470        (Goal.prove_sorry ctxt'' [] prems P
471          (fn {context = ctxt4, prems} => EVERY
472            [cut_tac (hd prems) 1,
473             rewrite_goals_tac ctxt4 rec_preds_defs,
474             dresolve_tac ctxt4 [unfold RS iffD1] 1,
475             REPEAT (FIRSTGOAL (eresolve_tac ctxt4 rules1)),
476             REPEAT (FIRSTGOAL (eresolve_tac ctxt4 rules2)),
477             EVERY (map (fn prem =>
478               DEPTH_SOLVE_1 (assume_tac ctxt4 1 ORELSE
479                resolve_tac ctxt [rewrite_rule ctxt4 rec_preds_defs prem, conjI] 1))
480                (tl prems))])
481          |> singleton (Proof_Context.export ctxt'' ctxt'''),
482         map #2 c_intrs, length Ts)
483      end
484
485   in map prove_elim cs end;
486
487
488(* prove simplification equations *)
489
490fun prove_eqs quiet_mode cs params intr_ts intrs
491    (elims: (thm * bstring list * int) list) ctxt ctxt'' =  (* FIXME ctxt'' ?? *)
492  let
493    val _ = clean_message ctxt quiet_mode "  Proving the simplification rules ...";
494
495    fun dest_intr r =
496      (the (dest_predicate cs params (HOLogic.dest_Trueprop (Logic.strip_assums_concl r))),
497       Logic.strip_assums_hyp r, Logic.strip_params r);
498    val intr_ts' = map dest_intr intr_ts;
499
500    fun prove_eq c (elim: thm * 'a * 'b) =
501      let
502        val Ts = arg_types_of (length params) c;
503        val (anames, ctxt') = Variable.variant_fixes (mk_names "a" (length Ts)) ctxt;
504        val frees = map Free (anames ~~ Ts);
505        val c_intrs = filter (equal c o #1 o #1 o #1) (intr_ts' ~~ intrs);
506        fun mk_intr_conj (((_, _, us, _), ts, params'), _) =
507          let
508            fun list_ex ([], t) = t
509              | list_ex ((a, T) :: vars, t) =
510                  HOLogic.exists_const T $ Abs (a, T, list_ex (vars, t));
511            val conjs = map2 (curry HOLogic.mk_eq) frees us @ map HOLogic.dest_Trueprop ts;
512          in
513            list_ex (params', if null conjs then \<^term>\<open>True\<close> else foldr1 HOLogic.mk_conj conjs)
514          end;
515        val lhs = list_comb (c, params @ frees);
516        val rhs =
517          if null c_intrs then \<^term>\<open>False\<close>
518          else foldr1 HOLogic.mk_disj (map mk_intr_conj c_intrs);
519        val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs));
520        fun prove_intr1 (i, _) = Subgoal.FOCUS_PREMS (fn {context = ctxt'', params, prems, ...} =>
521            select_disj_tac ctxt'' (length c_intrs) (i + 1) 1 THEN
522            EVERY (replicate (length params) (resolve_tac ctxt'' @{thms exI} 1)) THEN
523            (if null prems then resolve_tac ctxt'' @{thms TrueI} 1
524             else
525              let
526                val (prems', last_prem) = split_last prems;
527              in
528                EVERY (map (fn prem =>
529                  (resolve_tac ctxt'' @{thms conjI} 1 THEN resolve_tac ctxt'' [prem] 1)) prems')
530                THEN resolve_tac ctxt'' [last_prem] 1
531              end)) ctxt' 1;
532        fun prove_intr2 (((_, _, us, _), ts, params'), intr) =
533          EVERY (replicate (length params') (eresolve_tac ctxt' @{thms exE} 1)) THEN
534          (if null ts andalso null us then resolve_tac ctxt' [intr] 1
535           else
536            EVERY (replicate (length ts + length us - 1) (eresolve_tac ctxt' @{thms conjE} 1)) THEN
537            Subgoal.FOCUS_PREMS (fn {context = ctxt'', prems, ...} =>
538              let
539                val (eqs, prems') = chop (length us) prems;
540                val rew_thms = map (fn th => th RS @{thm eq_reflection}) eqs;
541              in
542                rewrite_goal_tac ctxt'' rew_thms 1 THEN
543                resolve_tac ctxt'' [intr] 1 THEN
544                EVERY (map (fn p => resolve_tac ctxt'' [p] 1) prems')
545              end) ctxt' 1);
546      in
547        Goal.prove_sorry ctxt' [] [] eq (fn _ =>
548          resolve_tac ctxt' @{thms iffI} 1 THEN
549          eresolve_tac ctxt' [#1 elim] 1 THEN
550          EVERY (map_index prove_intr1 c_intrs) THEN
551          (if null c_intrs then eresolve_tac ctxt' @{thms FalseE} 1
552           else
553            let val (c_intrs', last_c_intr) = split_last c_intrs in
554              EVERY (map (fn ci => eresolve_tac ctxt' @{thms disjE} 1 THEN prove_intr2 ci) c_intrs')
555              THEN prove_intr2 last_c_intr
556            end))
557        |> rulify ctxt'
558        |> singleton (Proof_Context.export ctxt' ctxt'')
559      end;
560  in
561    map2 prove_eq cs elims
562  end;
563
564
565(* derivation of simplified elimination rules *)
566
567local
568
569(*delete needless equality assumptions*)
570val refl_thin = Goal.prove_global \<^theory>\<open>HOL\<close> [] [] \<^prop>\<open>\<And>P. a = a \<Longrightarrow> P \<Longrightarrow> P\<close>
571  (fn {context = ctxt, ...} => assume_tac ctxt 1);
572val elim_rls = [asm_rl, FalseE, refl_thin, conjE, exE];
573fun elim_tac ctxt = REPEAT o eresolve_tac ctxt elim_rls;
574
575fun simp_case_tac ctxt i =
576  EVERY' [elim_tac ctxt,
577    asm_full_simp_tac ctxt,
578    elim_tac ctxt,
579    REPEAT o bound_hyp_subst_tac ctxt] i;
580
581in
582
583fun mk_cases_tac ctxt = ALLGOALS (simp_case_tac ctxt) THEN prune_params_tac ctxt;
584
585fun mk_cases ctxt prop =
586  let
587    fun err msg =
588      error (Pretty.string_of (Pretty.block
589        [Pretty.str msg, Pretty.fbrk, Syntax.pretty_term ctxt prop]));
590
591    val elims = Induct.find_casesP ctxt prop;
592
593    val cprop = Thm.cterm_of ctxt prop;
594    fun mk_elim rl =
595      Thm.implies_intr cprop
596        (Tactic.rule_by_tactic ctxt (mk_cases_tac ctxt) (Thm.assume cprop RS rl))
597      |> singleton (Proof_Context.export (Proof_Context.augment prop ctxt) ctxt);
598  in
599    (case get_first (try mk_elim) elims of
600      SOME r => r
601    | NONE => err "Proposition not an inductive predicate:")
602  end;
603
604end;
605
606
607(* inductive_cases *)
608
609fun gen_inductive_cases prep_att prep_prop args lthy =
610  let
611    val thmss =
612      map snd args
613      |> burrow (grouped 10 Par_List.map_independent (mk_cases lthy o prep_prop lthy));
614    val facts =
615      map2 (fn ((a, atts), _) => fn thms => ((a, map (prep_att lthy) atts), [(thms, [])]))
616        args thmss;
617  in lthy |> Local_Theory.notes facts end;
618
619val inductive_cases = gen_inductive_cases (K I) Syntax.check_prop;
620val inductive_cases_cmd = gen_inductive_cases Attrib.check_src Syntax.read_prop;
621
622
623(* ind_cases *)
624
625fun ind_cases_rules ctxt raw_props raw_fixes =
626  let
627    val (props, ctxt') = Specification.read_props raw_props raw_fixes ctxt;
628    val rules = Proof_Context.export ctxt' ctxt (map (mk_cases ctxt') props);
629  in rules end;
630
631val _ =
632  Theory.setup
633    (Method.setup \<^binding>\<open>ind_cases\<close>
634      (Scan.lift (Scan.repeat1 Parse.prop -- Parse.for_fixes) >>
635        (fn (props, fixes) => fn ctxt =>
636          Method.erule ctxt 0 (ind_cases_rules ctxt props fixes)))
637      "case analysis for inductive definitions, based on simplified elimination rule");
638
639
640(* derivation of simplified equation *)
641
642fun mk_simp_eq ctxt prop =
643  let
644    val thy = Proof_Context.theory_of ctxt;
645    val ctxt' = Proof_Context.augment prop ctxt;
646    val lhs_of = fst o HOLogic.dest_eq o HOLogic.dest_Trueprop o Thm.prop_of;
647    val substs =
648      retrieve_equations ctxt (HOLogic.dest_Trueprop prop)
649      |> map_filter
650        (fn eq => SOME (Pattern.match thy (lhs_of eq, HOLogic.dest_Trueprop prop)
651            (Vartab.empty, Vartab.empty), eq)
652          handle Pattern.MATCH => NONE);
653    val (subst, eq) =
654      (case substs of
655        [s] => s
656      | _ => error
657        ("equations matching pattern " ^ Syntax.string_of_term ctxt prop ^ " is not unique"));
658    val inst =
659      map (fn v => (fst v, Thm.cterm_of ctxt' (Envir.subst_term subst (Var v))))
660        (Term.add_vars (lhs_of eq) []);
661  in
662    infer_instantiate ctxt' inst eq
663    |> Conv.fconv_rule (Conv.arg_conv (Conv.arg_conv (Simplifier.full_rewrite ctxt')))
664    |> singleton (Proof_Context.export ctxt' ctxt)
665  end
666
667
668(* inductive simps *)
669
670fun gen_inductive_simps prep_att prep_prop args lthy =
671  let
672    val facts = args |> map (fn ((a, atts), props) =>
673      ((a, map (prep_att lthy) atts),
674        map (Thm.no_attributes o single o mk_simp_eq lthy o prep_prop lthy) props));
675  in lthy |> Local_Theory.notes facts end;
676
677val inductive_simps = gen_inductive_simps (K I) Syntax.check_prop;
678val inductive_simps_cmd = gen_inductive_simps Attrib.check_src Syntax.read_prop;
679
680
681(* prove induction rule *)
682
683fun prove_indrule quiet_mode cs argTs bs xs rec_const params intr_ts mono
684    fp_def rec_preds_defs ctxt ctxt''' =  (* FIXME ctxt''' ?? *)
685  let
686    val _ = clean_message ctxt quiet_mode "  Proving the induction rule ...";
687
688    (* predicates for induction rule *)
689
690    val (pnames, ctxt') = Variable.variant_fixes (mk_names "P" (length cs)) ctxt;
691    val preds =
692      map2 (curry Free) pnames
693        (map (fn c => arg_types_of (length params) c ---> HOLogic.boolT) cs);
694
695    (* transform an introduction rule into a premise for induction rule *)
696
697    fun mk_ind_prem r =
698      let
699        fun subst s =
700          (case dest_predicate cs params s of
701            SOME (_, i, ys, (_, Ts)) =>
702              let
703                val k = length Ts;
704                val bs = map Bound (k - 1 downto 0);
705                val P = list_comb (nth preds i, map (incr_boundvars k) ys @ bs);
706                val Q =
707                  fold_rev Term.abs (mk_names "x" k ~~ Ts)
708                    (HOLogic.mk_binop \<^const_name>\<open>HOL.induct_conj\<close>
709                      (list_comb (incr_boundvars k s, bs), P));
710              in (Q, case Ts of [] => SOME (s, P) | _ => NONE) end
711          | NONE =>
712              (case s of
713                t $ u => (fst (subst t) $ fst (subst u), NONE)
714              | Abs (a, T, t) => (Abs (a, T, fst (subst t)), NONE)
715              | _ => (s, NONE)));
716
717        fun mk_prem s prems =
718          (case subst s of
719            (_, SOME (t, u)) => t :: u :: prems
720          | (t, _) => t :: prems);
721
722        val SOME (_, i, ys, _) =
723          dest_predicate cs params (HOLogic.dest_Trueprop (Logic.strip_assums_concl r));
724      in
725        fold_rev (Logic.all o Free) (Logic.strip_params r)
726          (Logic.list_implies (map HOLogic.mk_Trueprop (fold_rev mk_prem
727            (map HOLogic.dest_Trueprop (Logic.strip_assums_hyp r)) []),
728              HOLogic.mk_Trueprop (list_comb (nth preds i, ys))))
729      end;
730
731    val ind_prems = map mk_ind_prem intr_ts;
732
733
734    (* make conclusions for induction rules *)
735
736    val Tss = map (binder_types o fastype_of) preds;
737    val (xnames, ctxt'') = Variable.variant_fixes (mk_names "x" (length (flat Tss))) ctxt';
738    val mutual_ind_concl =
739      HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
740        (map (fn (((xnames, Ts), c), P) =>
741          let val frees = map Free (xnames ~~ Ts)
742          in HOLogic.mk_imp (list_comb (c, params @ frees), list_comb (P, frees)) end)
743        (unflat Tss xnames ~~ Tss ~~ cs ~~ preds)));
744
745
746    (* make predicate for instantiation of abstract induction rule *)
747
748    val ind_pred =
749      fold_rev lambda (bs @ xs) (foldr1 HOLogic.mk_conj
750        (map_index (fn (i, P) => fold_rev (curry HOLogic.mk_imp)
751           (make_bool_args HOLogic.mk_not I bs i)
752           (list_comb (P, make_args' argTs xs (binder_types (fastype_of P))))) preds));
753
754    val ind_concl =
755      HOLogic.mk_Trueprop
756        (HOLogic.mk_binrel \<^const_name>\<open>Orderings.less_eq\<close> (rec_const, ind_pred));
757
758    val raw_fp_induct = mono RS (fp_def RS @{thm def_lfp_induct});
759
760    val induct = Goal.prove_sorry ctxt'' [] ind_prems ind_concl
761      (fn {context = ctxt3, prems} => EVERY
762        [rewrite_goals_tac ctxt3 [inductive_conj_def],
763         DETERM (resolve_tac ctxt3 [raw_fp_induct] 1),
764         REPEAT (resolve_tac ctxt3 [@{thm le_funI}, @{thm le_boolI}] 1),
765         rewrite_goals_tac ctxt3 simp_thms2,
766         (*This disjE separates out the introduction rules*)
767         REPEAT (FIRSTGOAL (eresolve_tac ctxt3 [disjE, exE, FalseE])),
768         (*Now break down the individual cases.  No disjE here in case
769           some premise involves disjunction.*)
770         REPEAT (FIRSTGOAL (eresolve_tac ctxt3 [conjE] ORELSE' bound_hyp_subst_tac ctxt3)),
771         REPEAT (FIRSTGOAL
772           (resolve_tac ctxt3 [conjI, impI] ORELSE'
773           (eresolve_tac ctxt3 [notE] THEN' assume_tac ctxt3))),
774         EVERY (map (fn prem =>
775            DEPTH_SOLVE_1 (assume_tac ctxt3 1 ORELSE
776              resolve_tac ctxt3
777                [rewrite_rule ctxt3 (inductive_conj_def :: rec_preds_defs @ simp_thms2) prem,
778                  conjI, refl] 1)) prems)]);
779
780    val lemma = Goal.prove_sorry ctxt'' [] []
781      (Logic.mk_implies (ind_concl, mutual_ind_concl)) (fn {context = ctxt3, ...} => EVERY
782        [rewrite_goals_tac ctxt3 rec_preds_defs,
783         REPEAT (EVERY
784           [REPEAT (resolve_tac ctxt3 [conjI, impI] 1),
785            REPEAT (eresolve_tac ctxt3 [@{thm le_funE}, @{thm le_boolE}] 1),
786            assume_tac ctxt3 1,
787            rewrite_goals_tac ctxt3 simp_thms1,
788            assume_tac ctxt3 1])]);
789
790  in singleton (Proof_Context.export ctxt'' ctxt''') (induct RS lemma) end;
791
792(* prove coinduction rule *)
793
794fun If_const T = Const (\<^const_name>\<open>If\<close>, HOLogic.boolT --> T --> T --> T);
795fun mk_If p t f = let val T = fastype_of t in If_const T $ p $ t $ f end;
796
797fun prove_coindrule quiet_mode preds cs argTs bs xs params intr_ts mono
798    fp_def rec_preds_defs ctxt ctxt''' =  (* FIXME ctxt''' ?? *)
799  let
800    val _ = clean_message ctxt quiet_mode "  Proving the coinduction rule ...";
801    val n = length cs;
802    val (ns, xss) = map_split (fn pred =>
803      make_args' argTs xs (arg_types_of (length params) pred) |> `length) preds;
804    val xTss = map (map fastype_of) xss;
805    val (Rs_names, names_ctxt) = Variable.variant_fixes (mk_names "X" n) ctxt;
806    val Rs = map2 (fn name => fn Ts => Free (name, Ts ---> \<^typ>\<open>bool\<close>)) Rs_names xTss;
807    val Rs_applied = map2 (curry list_comb) Rs xss;
808    val preds_applied = map2 (curry list_comb) (map (fn p => list_comb (p, params)) preds) xss;
809    val abstract_list = fold_rev (absfree o dest_Free);
810    val bss = map (make_bool_args
811      (fn b => HOLogic.mk_eq (b, \<^term>\<open>False\<close>))
812      (fn b => HOLogic.mk_eq (b, \<^term>\<open>True\<close>)) bs) (0 upto n - 1);
813    val eq_undefinedss = map (fn ys => map (fn x =>
814        HOLogic.mk_eq (x, Const (\<^const_name>\<open>undefined\<close>, fastype_of x)))
815      (subtract (op =) ys xs)) xss;
816    val R =
817      @{fold 3} (fn bs => fn eqs => fn R => fn t => if null bs andalso null eqs then R else
818        mk_If (Library.foldr1 HOLogic.mk_conj (bs @ eqs)) R t)
819      bss eq_undefinedss Rs_applied \<^term>\<open>False\<close>
820      |> abstract_list (bs @ xs);
821
822    fun subst t =
823      (case dest_predicate cs params t of
824        SOME (_, i, ts, (_, Us)) =>
825          let
826            val l = length Us;
827            val bs = map Bound (l - 1 downto 0);
828            val args = map (incr_boundvars l) ts @ bs
829          in
830            HOLogic.mk_disj (list_comb (nth Rs i, args),
831              list_comb (nth preds i, params @ args))
832            |> fold_rev absdummy Us
833          end
834      | NONE =>
835          (case t of
836            t1 $ t2 => subst t1 $ subst t2
837          | Abs (x, T, u) => Abs (x, T, subst u)
838          | _ => t));
839
840    fun mk_coind_prem r =
841      let
842        val SOME (_, i, ts, (Ts, _)) =
843          dest_predicate cs params (HOLogic.dest_Trueprop (Logic.strip_assums_concl r));
844        val ps =
845          map HOLogic.mk_eq (make_args' argTs xs Ts ~~ ts) @
846          map (subst o HOLogic.dest_Trueprop) (Logic.strip_assums_hyp r);
847      in
848        (i, fold_rev (fn (x, T) => fn P => HOLogic.exists_const T $ Abs (x, T, P))
849          (Logic.strip_params r)
850          (if null ps then \<^term>\<open>True\<close> else foldr1 HOLogic.mk_conj ps))
851      end;
852
853    fun mk_prem i Ps = Logic.mk_implies
854        ((nth Rs_applied i, Library.foldr1 HOLogic.mk_disj Ps) |> @{apply 2} HOLogic.mk_Trueprop)
855      |> fold_rev Logic.all (nth xss i);
856
857    val prems = map mk_coind_prem intr_ts |> AList.group (op =) |> sort (int_ord o apply2 fst)
858      |> map (uncurry mk_prem);
859
860    val concl = @{map 3} (fn xs =>
861        Ctr_Sugar_Util.list_all_free xs oo curry HOLogic.mk_imp) xss Rs_applied preds_applied
862      |> Library.foldr1 HOLogic.mk_conj |> HOLogic.mk_Trueprop;
863
864
865    val pred_defs_sym = if null rec_preds_defs then [] else map2 (fn n => fn thm =>
866        funpow n (fn thm => thm RS @{thm meta_fun_cong}) thm RS @{thm Pure.symmetric})
867      ns rec_preds_defs;
868    val simps = simp_thms3 @ pred_defs_sym;
869    val simprocs = [Simplifier.the_simproc ctxt "HOL.defined_All"];
870    val simplify = asm_full_simplify (Ctr_Sugar_Util.ss_only simps ctxt addsimprocs simprocs);
871    val coind = (mono RS (fp_def RS @{thm def_coinduct}))
872      |> infer_instantiate' ctxt [SOME (Thm.cterm_of ctxt R)]
873      |> simplify;
874    fun idx_of t = find_index (fn R =>
875      R = the_single (subtract (op =) (preds @ params) (map Free (Term.add_frees t [])))) Rs;
876    val coind_concls = HOLogic.dest_Trueprop (Thm.concl_of coind) |> HOLogic.dest_conj
877      |> map (fn t => (idx_of t, t)) |> sort (int_ord o @{apply 2} fst) |> map snd;
878    val reorder_bound_goals = map_filter (fn (t, u) => if t aconv u then NONE else
879      SOME (HOLogic.mk_Trueprop (HOLogic.mk_eq (t, u))))
880      ((HOLogic.dest_Trueprop concl |> HOLogic.dest_conj) ~~ coind_concls);
881    val reorder_bound_thms = map (fn goal => Goal.prove_sorry ctxt [] [] goal
882      (fn {context = ctxt, prems = _} =>
883        HEADGOAL (EVERY' [resolve_tac ctxt [iffI],
884          REPEAT_DETERM o resolve_tac ctxt [allI, impI],
885          REPEAT_DETERM o dresolve_tac ctxt [spec], eresolve_tac ctxt [mp], assume_tac ctxt,
886          REPEAT_DETERM o resolve_tac ctxt [allI, impI],
887          REPEAT_DETERM o dresolve_tac ctxt [spec], eresolve_tac ctxt [mp], assume_tac ctxt])))
888      reorder_bound_goals;
889    val coinduction = Goal.prove_sorry ctxt [] prems concl (fn {context = ctxt, prems = CIH} =>
890      HEADGOAL (full_simp_tac
891        (Ctr_Sugar_Util.ss_only (simps @ reorder_bound_thms) ctxt addsimprocs simprocs) THEN'
892        resolve_tac ctxt [coind]) THEN
893      ALLGOALS (REPEAT_ALL_NEW (REPEAT_DETERM o resolve_tac ctxt [allI, impI, conjI] THEN'
894        REPEAT_DETERM o eresolve_tac ctxt [exE, conjE] THEN'
895        dresolve_tac ctxt (map simplify CIH) THEN'
896        REPEAT_DETERM o (assume_tac ctxt ORELSE'
897          eresolve_tac ctxt [conjE] ORELSE' dresolve_tac ctxt [spec, mp]))))
898  in
899    coinduction
900    |> length cs = 1 ? (Object_Logic.rulify ctxt #> rotate_prems ~1)
901    |> singleton (Proof_Context.export names_ctxt ctxt''')
902  end
903
904
905
906
907(** specification of (co)inductive predicates **)
908
909fun mk_ind_def quiet_mode skip_mono alt_name coind cs intr_ts monos params cnames_syn lthy =
910  let
911    val fp_name = if coind then \<^const_name>\<open>Inductive.gfp\<close> else \<^const_name>\<open>Inductive.lfp\<close>;
912
913    val argTs = fold (combine (op =) o arg_types_of (length params)) cs [];
914    val k = log 2 1 (length cs);
915    val predT = replicate k HOLogic.boolT ---> argTs ---> HOLogic.boolT;
916    val p :: xs =
917      map Free (Variable.variant_frees lthy intr_ts
918        (("p", predT) :: (mk_names "x" (length argTs) ~~ argTs)));
919    val bs =
920      map Free (Variable.variant_frees lthy (p :: xs @ intr_ts)
921        (map (rpair HOLogic.boolT) (mk_names "b" k)));
922
923    fun subst t =
924      (case dest_predicate cs params t of
925        SOME (_, i, ts, (Ts, Us)) =>
926          let
927            val l = length Us;
928            val zs = map Bound (l - 1 downto 0);
929          in
930            fold_rev (Term.abs o pair "z") Us
931              (list_comb (p,
932                make_bool_args' bs i @ make_args argTs
933                  ((map (incr_boundvars l) ts ~~ Ts) @ (zs ~~ Us))))
934          end
935      | NONE =>
936          (case t of
937            t1 $ t2 => subst t1 $ subst t2
938          | Abs (x, T, u) => Abs (x, T, subst u)
939          | _ => t));
940
941    (* transform an introduction rule into a conjunction  *)
942    (*   [| p_i t; ... |] ==> p_j u                       *)
943    (* is transformed into                                *)
944    (*   b_j & x_j = u & p b_j t & ...                    *)
945
946    fun transform_rule r =
947      let
948        val SOME (_, i, ts, (Ts, _)) =
949          dest_predicate cs params (HOLogic.dest_Trueprop (Logic.strip_assums_concl r));
950        val ps =
951          make_bool_args HOLogic.mk_not I bs i @
952          map HOLogic.mk_eq (make_args' argTs xs Ts ~~ ts) @
953          map (subst o HOLogic.dest_Trueprop) (Logic.strip_assums_hyp r);
954      in
955        fold_rev (fn (x, T) => fn P => HOLogic.exists_const T $ Abs (x, T, P))
956          (Logic.strip_params r)
957          (if null ps then \<^term>\<open>True\<close> else foldr1 HOLogic.mk_conj ps)
958      end;
959
960    (* make a disjunction of all introduction rules *)
961
962    val fp_fun =
963      fold_rev lambda (p :: bs @ xs)
964        (if null intr_ts then \<^term>\<open>False\<close>
965         else foldr1 HOLogic.mk_disj (map transform_rule intr_ts));
966
967    (* add definition of recursive predicates to theory *)
968
969    val is_auxiliary = length cs > 1;
970
971    val rec_binding =
972      if Binding.is_empty alt_name then Binding.conglomerate (map #1 cnames_syn) else alt_name;
973    val rec_name = Binding.name_of rec_binding;
974
975    val internals = Config.get lthy inductive_internals;
976
977    val ((rec_const, (_, fp_def)), lthy') = lthy
978      |> is_auxiliary ? Proof_Context.concealed
979      |> Local_Theory.define
980        ((rec_binding, case cnames_syn of [(_, mx)] => mx | _ => NoSyn),
981         ((Thm.make_def_binding internals rec_binding, @{attributes [nitpick_unfold]}),
982           fold_rev lambda params
983             (Const (fp_name, (predT --> predT) --> predT) $ fp_fun)))
984      ||> Proof_Context.restore_naming lthy;
985    val fp_def' =
986      Simplifier.rewrite (put_simpset HOL_basic_ss lthy' addsimps [fp_def])
987        (Thm.cterm_of lthy' (list_comb (rec_const, params)));
988    val specs =
989      if is_auxiliary then
990        map_index (fn (i, ((b, mx), c)) =>
991          let
992            val Ts = arg_types_of (length params) c;
993            val xs =
994              map Free (Variable.variant_frees lthy' intr_ts (mk_names "x" (length Ts) ~~ Ts));
995          in
996            ((b, mx),
997              ((Thm.make_def_binding internals b, []), fold_rev lambda (params @ xs)
998                (list_comb (rec_const, params @ make_bool_args' bs i @
999                  make_args argTs (xs ~~ Ts)))))
1000          end) (cnames_syn ~~ cs)
1001      else [];
1002    val (consts_defs, lthy'') = lthy'
1003      |> fold_map Local_Theory.define specs;
1004    val preds = (case cs of [_] => [rec_const] | _ => map #1 consts_defs);
1005
1006    val (_, ctxt'') = Variable.add_fixes (map (fst o dest_Free) params) lthy'';
1007    val mono = prove_mono quiet_mode skip_mono predT fp_fun monos ctxt'';
1008    val (_, lthy''') = lthy''
1009      |> Local_Theory.note
1010        ((if internals
1011          then Binding.qualify true rec_name (Binding.name "mono")
1012          else Binding.empty, []),
1013          Proof_Context.export ctxt'' lthy'' [mono]);
1014  in
1015    (lthy''', Proof_Context.transfer (Proof_Context.theory_of lthy''') ctxt'',
1016      rec_binding, mono, fp_def', map (#2 o #2) consts_defs,
1017      list_comb (rec_const, params), preds, argTs, bs, xs)
1018  end;
1019
1020fun declare_rules rec_binding coind no_ind spec_name cnames
1021    preds intrs intr_bindings intr_atts elims eqs raw_induct lthy =
1022  let
1023    val rec_name = Binding.name_of rec_binding;
1024    fun rec_qualified qualified = Binding.qualify qualified rec_name;
1025    val intr_names = map Binding.name_of intr_bindings;
1026    val ind_case_names =
1027      if forall (equal "") intr_names then []
1028      else [Attrib.case_names intr_names];
1029    val induct =
1030      if coind then
1031        (raw_induct,
1032          [Attrib.case_names [rec_name],
1033           Attrib.case_conclusion (rec_name, intr_names),
1034           Attrib.consumes (1 - Thm.nprems_of raw_induct),
1035           Attrib.internal (K (Induct.coinduct_pred (hd cnames)))])
1036      else if no_ind orelse length cnames > 1 then
1037        (raw_induct, ind_case_names @ [Attrib.consumes (~ (Thm.nprems_of raw_induct))])
1038      else
1039        (raw_induct RSN (2, rev_mp),
1040          ind_case_names @ [Attrib.consumes (~ (Thm.nprems_of raw_induct))]);
1041
1042    val (intrs', lthy1) =
1043      lthy |>
1044      Spec_Rules.add spec_name
1045        (if coind then Spec_Rules.Co_Inductive else Spec_Rules.Inductive) preds intrs |>
1046      Local_Theory.notes
1047        (map (rec_qualified false) intr_bindings ~~ intr_atts ~~
1048          map (fn th => [([th], @{attributes [Pure.intro?]})]) intrs) |>>
1049      map (hd o snd);
1050    val (((_, elims'), (_, [induct'])), lthy2) =
1051      lthy1 |>
1052      Local_Theory.note ((rec_qualified true (Binding.name "intros"), []), intrs') ||>>
1053      fold_map (fn (name, (elim, cases, k)) =>
1054        Local_Theory.note
1055          ((Binding.qualify true (Long_Name.base_name name) (Binding.name "cases"),
1056            ((if forall (equal "") cases then [] else [Attrib.case_names cases]) @
1057              [Attrib.consumes (1 - Thm.nprems_of elim), Attrib.constraints k,
1058               Attrib.internal (K (Induct.cases_pred name))] @ @{attributes [Pure.elim?]})),
1059            [elim]) #>
1060        apfst (hd o snd)) (if null elims then [] else cnames ~~ elims) ||>>
1061      Local_Theory.note
1062        ((rec_qualified true (Binding.name (coind_prefix coind ^ "induct")), #2 induct),
1063          [rulify lthy1 (#1 induct)]);
1064
1065    val (eqs', lthy3) = lthy2 |>
1066      fold_map (fn (name, eq) => Local_Theory.note
1067          ((Binding.qualify true (Long_Name.base_name name) (Binding.name "simps"),
1068            [Attrib.internal (K equation_add_permissive)]), [eq])
1069          #> apfst (hd o snd))
1070        (if null eqs then [] else (cnames ~~ eqs))
1071    val (inducts, lthy4) =
1072      if no_ind orelse coind then ([], lthy3)
1073      else
1074        let val inducts = cnames ~~ Project_Rule.projects lthy3 (1 upto length cnames) induct' in
1075          lthy3 |>
1076          Local_Theory.notes [((rec_qualified true (Binding.name "inducts"), []),
1077            inducts |> map (fn (name, th) => ([th],
1078              ind_case_names @
1079                [Attrib.consumes (1 - Thm.nprems_of th),
1080                 Attrib.internal (K (Induct.induct_pred name))])))] |>> snd o hd
1081        end;
1082  in (intrs', elims', eqs', induct', inducts, lthy4) end;
1083
1084type flags =
1085  {quiet_mode: bool, verbose: bool, alt_name: binding, coind: bool,
1086    no_elim: bool, no_ind: bool, skip_mono: bool};
1087
1088type add_ind_def =
1089  flags ->
1090  term list -> (Attrib.binding * term) list -> thm list ->
1091  term list -> (binding * mixfix) list ->
1092  local_theory -> result * local_theory;
1093
1094fun add_ind_def {quiet_mode, verbose, alt_name, coind, no_elim, no_ind, skip_mono}
1095    cs intros monos params cnames_syn lthy =
1096  let
1097    val _ = null cnames_syn andalso error "No inductive predicates given";
1098    val names = map (Binding.name_of o fst) cnames_syn;
1099    val _ = message (quiet_mode andalso not verbose)
1100      ("Proofs for " ^ coind_prefix coind ^ "inductive predicate(s) " ^ commas_quote names);
1101
1102    val spec_name = Binding.conglomerate (map #1 cnames_syn);
1103    val cnames = map (Local_Theory.full_name lthy o #1) cnames_syn;  (* FIXME *)
1104    val ((intr_names, intr_atts), intr_ts) =
1105      apfst split_list (split_list (map (check_rule lthy cs params) intros));
1106
1107    val (lthy1, lthy2, rec_binding, mono, fp_def, rec_preds_defs, rec_const, preds,
1108      argTs, bs, xs) = mk_ind_def quiet_mode skip_mono alt_name coind cs intr_ts
1109        monos params cnames_syn lthy;
1110
1111    val (intrs, unfold) = prove_intrs quiet_mode coind mono fp_def (length bs + length xs)
1112      intr_ts rec_preds_defs lthy2 lthy1;
1113    val elims =
1114      if no_elim then []
1115      else
1116        prove_elims quiet_mode cs params intr_ts (map Binding.name_of intr_names)
1117          unfold rec_preds_defs lthy2 lthy1;
1118    val raw_induct = zero_var_indexes
1119      (if no_ind then Drule.asm_rl
1120       else if coind then
1121         prove_coindrule quiet_mode preds cs argTs bs xs params intr_ts mono fp_def
1122           rec_preds_defs lthy2 lthy1
1123       else
1124         prove_indrule quiet_mode cs argTs bs xs rec_const params intr_ts mono fp_def
1125           rec_preds_defs lthy2 lthy1);
1126
1127    val eqs =
1128      if no_elim then [] else prove_eqs quiet_mode cs params intr_ts intrs elims lthy2 lthy1;
1129
1130    val elims' = map (fn (th, ns, i) => (rulify lthy1 th, ns, i)) elims;
1131    val intrs' = map (rulify lthy1) intrs;
1132
1133    val (intrs'', elims'', eqs', induct, inducts, lthy3) =
1134      declare_rules rec_binding coind no_ind
1135        spec_name cnames preds intrs' intr_names intr_atts elims' eqs raw_induct lthy1;
1136
1137    val result =
1138      {preds = preds,
1139       intrs = intrs'',
1140       elims = elims'',
1141       raw_induct = rulify lthy3 raw_induct,
1142       induct = induct,
1143       inducts = inducts,
1144       eqs = eqs'};
1145
1146    val lthy4 = lthy3
1147      |> Local_Theory.declaration {syntax = false, pervasive = false} (fn phi =>
1148        let val result' = transform_result phi result;
1149        in put_inductives ({names = cnames, coind = coind}, result') end);
1150  in (result, lthy4) end;
1151
1152
1153(* external interfaces *)
1154
1155fun gen_add_inductive mk_def
1156    flags cnames_syn pnames spec monos lthy =
1157  let
1158
1159    (* abbrevs *)
1160
1161    val (_, ctxt1) = Variable.add_fixes (map (Binding.name_of o fst o fst) cnames_syn) lthy;
1162
1163    fun get_abbrev ((name, atts), t) =
1164      if can (Logic.strip_assums_concl #> Logic.dest_equals) t then
1165        let
1166          val _ = Binding.is_empty name andalso null atts orelse
1167            error "Abbreviations may not have names or attributes";
1168          val ((x, T), rhs) = Local_Defs.abs_def (snd (Local_Defs.cert_def ctxt1 (K []) t));
1169          val var =
1170            (case find_first (fn ((c, _), _) => Binding.name_of c = x) cnames_syn of
1171              NONE => error ("Undeclared head of abbreviation " ^ quote x)
1172            | SOME ((b, T'), mx) =>
1173                if T <> T' then error ("Bad type specification for abbreviation " ^ quote x)
1174                else (b, mx));
1175        in SOME (var, rhs) end
1176      else NONE;
1177
1178    val abbrevs = map_filter get_abbrev spec;
1179    val bs = map (Binding.name_of o fst o fst) abbrevs;
1180
1181
1182    (* predicates *)
1183
1184    val pre_intros = filter_out (is_some o get_abbrev) spec;
1185    val cnames_syn' = filter_out (member (op =) bs o Binding.name_of o fst o fst) cnames_syn;
1186    val cs = map (Free o apfst Binding.name_of o fst) cnames_syn';
1187    val ps = map Free pnames;
1188
1189    val (_, ctxt2) = lthy |> Variable.add_fixes (map (Binding.name_of o fst o fst) cnames_syn');
1190    val ctxt3 = ctxt2 |> fold (snd oo Local_Defs.fixed_abbrev) abbrevs;
1191    val expand = Assumption.export_term ctxt3 lthy #> Proof_Context.cert_term lthy;
1192
1193    fun close_rule r =
1194      fold (Logic.all o Free) (fold_aterms
1195        (fn t as Free (v as (s, _)) =>
1196            if Variable.is_fixed ctxt1 s orelse
1197              member (op =) ps t then I else insert (op =) v
1198          | _ => I) r []) r;
1199
1200    val intros = map (apsnd (Syntax.check_term lthy #> close_rule #> expand)) pre_intros;
1201    val preds = map (fn ((c, _), mx) => (c, mx)) cnames_syn';
1202  in
1203    lthy
1204    |> mk_def flags cs intros monos ps preds
1205    ||> fold (snd oo Local_Theory.abbrev Syntax.mode_default) abbrevs
1206  end;
1207
1208fun gen_add_inductive_cmd mk_def verbose coind cnames_syn pnames_syn intro_srcs raw_monos lthy =
1209  let
1210    val ((vars, intrs), _) = lthy
1211      |> Proof_Context.set_mode Proof_Context.mode_abbrev
1212      |> Specification.read_multi_specs (cnames_syn @ pnames_syn) intro_srcs;
1213    val (cs, ps) = chop (length cnames_syn) vars;
1214    val monos = Attrib.eval_thms lthy raw_monos;
1215    val flags =
1216     {quiet_mode = false, verbose = verbose, alt_name = Binding.empty,
1217      coind = coind, no_elim = false, no_ind = false, skip_mono = false};
1218  in
1219    lthy
1220    |> gen_add_inductive mk_def flags cs (map (apfst Binding.name_of o fst) ps) intrs monos
1221  end;
1222
1223val add_inductive = gen_add_inductive add_ind_def;
1224val add_inductive_cmd = gen_add_inductive_cmd add_ind_def;
1225
1226
1227(* read off arities of inductive predicates from raw induction rule *)
1228fun arities_of induct =
1229  map (fn (_ $ t $ u) =>
1230      (fst (dest_Const (head_of t)), length (snd (strip_comb u))))
1231    (HOLogic.dest_conj (HOLogic.dest_Trueprop (Thm.concl_of induct)));
1232
1233(* read off parameters of inductive predicate from raw induction rule *)
1234fun params_of induct =
1235  let
1236    val (_ $ t $ u :: _) = HOLogic.dest_conj (HOLogic.dest_Trueprop (Thm.concl_of induct));
1237    val (_, ts) = strip_comb t;
1238    val (_, us) = strip_comb u;
1239  in
1240    List.take (ts, length ts - length us)
1241  end;
1242
1243val pname_of_intr =
1244  Thm.concl_of #> HOLogic.dest_Trueprop #> head_of #> dest_Const #> fst;
1245
1246(* partition introduction rules according to predicate name *)
1247fun gen_partition_rules f induct intros =
1248  fold_rev (fn r => AList.map_entry op = (pname_of_intr (f r)) (cons r)) intros
1249    (map (rpair [] o fst) (arities_of induct));
1250
1251val partition_rules = gen_partition_rules I;
1252fun partition_rules' induct = gen_partition_rules fst induct;
1253
1254fun unpartition_rules intros xs =
1255  fold_map (fn r => AList.map_entry_yield op = (pname_of_intr r)
1256    (fn x :: xs => (x, xs)) #>> the) intros xs |> fst;
1257
1258(* infer order of variables in intro rules from order of quantifiers in elim rule *)
1259fun infer_intro_vars thy elim arity intros =
1260  let
1261    val _ :: cases = Thm.prems_of elim;
1262    val used = map (fst o fst) (Term.add_vars (Thm.prop_of elim) []);
1263    fun mtch (t, u) =
1264      let
1265        val params = Logic.strip_params t;
1266        val vars =
1267          map (Var o apfst (rpair 0))
1268            (Name.variant_list used (map fst params) ~~ map snd params);
1269        val ts =
1270          map (curry subst_bounds (rev vars))
1271            (List.drop (Logic.strip_assums_hyp t, arity));
1272        val us = Logic.strip_imp_prems u;
1273        val tab =
1274          fold (Pattern.first_order_match thy) (ts ~~ us) (Vartab.empty, Vartab.empty);
1275      in
1276        map (Envir.subst_term tab) vars
1277      end
1278  in
1279    map (mtch o apsnd Thm.prop_of) (cases ~~ intros)
1280  end;
1281
1282
1283
1284(** outer syntax **)
1285
1286fun gen_ind_decl mk_def coind =
1287  Parse.vars -- Parse.for_fixes --
1288  Scan.optional Parse_Spec.where_multi_specs [] --
1289  Scan.optional (\<^keyword>\<open>monos\<close> |-- Parse.!!! Parse.thms1) []
1290  >> (fn (((preds, params), specs), monos) =>
1291      (snd o gen_add_inductive_cmd mk_def true coind preds params specs monos));
1292
1293val ind_decl = gen_ind_decl add_ind_def;
1294
1295val _ =
1296  Outer_Syntax.local_theory \<^command_keyword>\<open>inductive\<close> "define inductive predicates"
1297    (ind_decl false);
1298
1299val _ =
1300  Outer_Syntax.local_theory \<^command_keyword>\<open>coinductive\<close> "define coinductive predicates"
1301    (ind_decl true);
1302
1303val _ =
1304  Outer_Syntax.local_theory \<^command_keyword>\<open>inductive_cases\<close>
1305    "create simplified instances of elimination rules"
1306    (Parse.and_list1 Parse_Spec.simple_specs >> (snd oo inductive_cases_cmd));
1307
1308val _ =
1309  Outer_Syntax.local_theory \<^command_keyword>\<open>inductive_simps\<close>
1310    "create simplification rules for inductive predicates"
1311    (Parse.and_list1 Parse_Spec.simple_specs >> (snd oo inductive_simps_cmd));
1312
1313val _ =
1314  Outer_Syntax.command \<^command_keyword>\<open>print_inductives\<close>
1315    "print (co)inductive definitions and monotonicity rules"
1316    (Parse.opt_bang >> (fn b => Toplevel.keep (print_inductives b o Toplevel.context_of)));
1317
1318end;
1319