1(*  Title:      HOL/Probability/Infinite_Product_Measure.thy
2    Author:     Johannes H��lzl, TU M��nchen
3*)
4
5section \<open>Infinite Product Measure\<close>
6
7theory Infinite_Product_Measure
8  imports Probability_Measure Projective_Family
9begin
10
11lemma (in product_prob_space) distr_PiM_restrict_finite:
12  assumes "finite J" "J \<subseteq> I"
13  shows "distr (PiM I M) (PiM J M) (\<lambda>x. restrict x J) = PiM J M"
14proof (rule PiM_eqI)
15  fix X assume X: "\<And>i. i \<in> J \<Longrightarrow> X i \<in> sets (M i)"
16  { fix J X assume J: "J \<noteq> {} \<or> I = {}" "finite J" "J \<subseteq> I" and X: "\<And>i. i \<in> J \<Longrightarrow> X i \<in> sets (M i)"
17    have "emeasure (PiM I M) (emb I J (Pi\<^sub>E J X)) = (\<Prod>i\<in>J. M i (X i))"
18    proof (subst emeasure_extend_measure_Pair[OF PiM_def, where \<mu>'=lim], goal_cases)
19      case 1 then show ?case
20        by (simp add: M.emeasure_space_1 emeasure_PiM Pi_iff sets_PiM_I_finite emeasure_lim_emb)
21    next
22      case (2 J X)
23      then have "emb I J (Pi\<^sub>E J X) \<in> sets (PiM I M)"
24        by (intro measurable_prod_emb sets_PiM_I_finite) auto
25      from this[THEN sets.sets_into_space] show ?case
26        by (simp add: space_PiM)
27    qed (insert assms J X, simp_all del: sets_lim
28      add: M.emeasure_space_1 sets_lim[symmetric] emeasure_countably_additive emeasure_positive) }
29  note * = this
30
31  have "emeasure (PiM I M) (emb I J (Pi\<^sub>E J X)) = (\<Prod>i\<in>J. M i (X i))"
32  proof (cases "J \<noteq> {} \<or> I = {}")
33    case False
34    then obtain i where i: "J = {}" "i \<in> I" by auto
35    then have "emb I {} {\<lambda>x. undefined} = emb I {i} (\<Pi>\<^sub>E i\<in>{i}. space (M i))"
36      by (auto simp: space_PiM prod_emb_def)
37    with i show ?thesis
38      by (simp add: * M.emeasure_space_1)
39  next
40    case True
41    then show ?thesis
42      by (simp add: *[OF _ assms X])
43  qed
44  with assms show "emeasure (distr (Pi\<^sub>M I M) (Pi\<^sub>M J M) (\<lambda>x. restrict x J)) (Pi\<^sub>E J X) = (\<Prod>i\<in>J. emeasure (M i) (X i))"
45    by (subst emeasure_distr_restrict[OF _ refl]) (auto intro!: sets_PiM_I_finite X)
46qed (insert assms, auto)
47
48lemma (in product_prob_space) emeasure_PiM_emb':
49  "J \<subseteq> I \<Longrightarrow> finite J \<Longrightarrow> X \<in> sets (PiM J M) \<Longrightarrow> emeasure (Pi\<^sub>M I M) (emb I J X) = PiM J M X"
50  by (subst distr_PiM_restrict_finite[symmetric, of J])
51     (auto intro!: emeasure_distr_restrict[symmetric])
52
53lemma (in product_prob_space) emeasure_PiM_emb:
54  "J \<subseteq> I \<Longrightarrow> finite J \<Longrightarrow> (\<And>i. i \<in> J \<Longrightarrow> X i \<in> sets (M i)) \<Longrightarrow>
55    emeasure (Pi\<^sub>M I M) (emb I J (Pi\<^sub>E J X)) = (\<Prod> i\<in>J. emeasure (M i) (X i))"
56  by (subst emeasure_PiM_emb') (auto intro!: emeasure_PiM)
57
58sublocale product_prob_space \<subseteq> P?: prob_space "Pi\<^sub>M I M"
59proof
60  have *: "emb I {} {\<lambda>x. undefined} = space (PiM I M)"
61    by (auto simp: prod_emb_def space_PiM)
62  show "emeasure (Pi\<^sub>M I M) (space (Pi\<^sub>M I M)) = 1"
63    using emeasure_PiM_emb[of "{}" "\<lambda>_. {}"] by (simp add: *)
64qed
65
66lemma prob_space_PiM:
67  assumes M: "\<And>i. i \<in> I \<Longrightarrow> prob_space (M i)" shows "prob_space (PiM I M)"
68proof -
69  let ?M = "\<lambda>i. if i \<in> I then M i else count_space {undefined}"
70  interpret M': prob_space "?M i" for i
71    using M by (cases "i \<in> I") (auto intro!: prob_spaceI)
72  interpret product_prob_space ?M I
73    by unfold_locales
74  have "prob_space (\<Pi>\<^sub>M i\<in>I. ?M i)"
75    by unfold_locales
76  also have "(\<Pi>\<^sub>M i\<in>I. ?M i) = (\<Pi>\<^sub>M i\<in>I. M i)"
77    by (intro PiM_cong) auto
78  finally show ?thesis .
79qed
80
81lemma (in product_prob_space) emeasure_PiM_Collect:
82  assumes X: "J \<subseteq> I" "finite J" "\<And>i. i \<in> J \<Longrightarrow> X i \<in> sets (M i)"
83  shows "emeasure (Pi\<^sub>M I M) {x\<in>space (Pi\<^sub>M I M). \<forall>i\<in>J. x i \<in> X i} = (\<Prod> i\<in>J. emeasure (M i) (X i))"
84proof -
85  have "{x\<in>space (Pi\<^sub>M I M). \<forall>i\<in>J. x i \<in> X i} = emb I J (Pi\<^sub>E J X)"
86    unfolding prod_emb_def using assms by (auto simp: space_PiM Pi_iff)
87  with emeasure_PiM_emb[OF assms] show ?thesis by simp
88qed
89
90lemma (in product_prob_space) emeasure_PiM_Collect_single:
91  assumes X: "i \<in> I" "A \<in> sets (M i)"
92  shows "emeasure (Pi\<^sub>M I M) {x\<in>space (Pi\<^sub>M I M). x i \<in> A} = emeasure (M i) A"
93  using emeasure_PiM_Collect[of "{i}" "\<lambda>i. A"] assms
94  by simp
95
96lemma (in product_prob_space) measure_PiM_emb:
97  assumes "J \<subseteq> I" "finite J" "\<And>i. i \<in> J \<Longrightarrow> X i \<in> sets (M i)"
98  shows "measure (PiM I M) (emb I J (Pi\<^sub>E J X)) = (\<Prod> i\<in>J. measure (M i) (X i))"
99  using emeasure_PiM_emb[OF assms]
100  unfolding emeasure_eq_measure M.emeasure_eq_measure
101  by (simp add: prod_ennreal measure_nonneg prod_nonneg)
102
103lemma sets_Collect_single':
104  "i \<in> I \<Longrightarrow> {x\<in>space (M i). P x} \<in> sets (M i) \<Longrightarrow> {x\<in>space (PiM I M). P (x i)} \<in> sets (PiM I M)"
105  using sets_Collect_single[of i I "{x\<in>space (M i). P x}" M]
106  by (simp add: space_PiM PiE_iff cong: conj_cong)
107
108lemma (in finite_product_prob_space) finite_measure_PiM_emb:
109  "(\<And>i. i \<in> I \<Longrightarrow> A i \<in> sets (M i)) \<Longrightarrow> measure (PiM I M) (Pi\<^sub>E I A) = (\<Prod>i\<in>I. measure (M i) (A i))"
110  using measure_PiM_emb[of I A] finite_index prod_emb_PiE_same_index[OF sets.sets_into_space, of I A M]
111  by auto
112
113lemma (in product_prob_space) PiM_component:
114  assumes "i \<in> I"
115  shows "distr (PiM I M) (M i) (\<lambda>\<omega>. \<omega> i) = M i"
116proof (rule measure_eqI[symmetric])
117  fix A assume "A \<in> sets (M i)"
118  moreover have "((\<lambda>\<omega>. \<omega> i) -` A \<inter> space (PiM I M)) = {x\<in>space (PiM I M). x i \<in> A}"
119    by auto
120  ultimately show "emeasure (M i) A = emeasure (distr (PiM I M) (M i) (\<lambda>\<omega>. \<omega> i)) A"
121    by (auto simp: \<open>i\<in>I\<close> emeasure_distr measurable_component_singleton emeasure_PiM_Collect_single)
122qed simp
123
124lemma (in product_prob_space) PiM_eq:
125  assumes M': "sets M' = sets (PiM I M)"
126  assumes eq: "\<And>J F. finite J \<Longrightarrow> J \<subseteq> I \<Longrightarrow> (\<And>j. j \<in> J \<Longrightarrow> F j \<in> sets (M j)) \<Longrightarrow>
127    emeasure M' (prod_emb I M J (\<Pi>\<^sub>E j\<in>J. F j)) = (\<Prod>j\<in>J. emeasure (M j) (F j))"
128  shows "M' = (PiM I M)"
129proof (rule measure_eqI_PiM_infinite[symmetric, OF refl M'])
130  show "finite_measure (Pi\<^sub>M I M)"
131    by standard (simp add: P.emeasure_space_1)
132qed (simp add: eq emeasure_PiM_emb)
133
134lemma (in product_prob_space) AE_component: "i \<in> I \<Longrightarrow> AE x in M i. P x \<Longrightarrow> AE x in PiM I M. P (x i)"
135  apply (rule AE_distrD[of "\<lambda>\<omega>. \<omega> i" "PiM I M" "M i" P])
136  apply simp
137  apply (subst PiM_component)
138  apply simp_all
139  done
140
141lemma emeasure_PiM_emb:
142  assumes M: "\<And>i. i \<in> I \<Longrightarrow> prob_space (M i)"
143  assumes J: "J \<subseteq> I" "finite J" and A: "\<And>i. i \<in> J \<Longrightarrow> A i \<in> sets (M i)"
144  shows "emeasure (Pi\<^sub>M I M) (prod_emb I M J (Pi\<^sub>E J A)) = (\<Prod>i\<in>J. emeasure (M i) (A i))"
145proof -
146  let ?M = "\<lambda>i. if i \<in> I then M i else count_space {undefined}"
147  interpret M': prob_space "?M i" for i
148    using M by (cases "i \<in> I") (auto intro!: prob_spaceI)
149  interpret P: product_prob_space ?M I
150    by unfold_locales
151  have "emeasure (Pi\<^sub>M I M) (prod_emb I M J (Pi\<^sub>E J A)) = emeasure (Pi\<^sub>M I ?M) (P.emb I J (Pi\<^sub>E J A))"
152    by (auto simp: prod_emb_def PiE_iff intro!: arg_cong2[where f=emeasure] PiM_cong)
153  also have "\<dots> = (\<Prod>i\<in>J. emeasure (M i) (A i))"
154    using J A by (subst P.emeasure_PiM_emb[OF J]) (auto intro!: prod.cong)
155  finally show ?thesis .
156qed
157
158lemma distr_pair_PiM_eq_PiM:
159  fixes i' :: "'i" and I :: "'i set" and M :: "'i \<Rightarrow> 'a measure"
160  assumes M: "\<And>i. i \<in> I \<Longrightarrow> prob_space (M i)" "prob_space (M i')"
161  shows "distr (M i' \<Otimes>\<^sub>M (\<Pi>\<^sub>M i\<in>I. M i)) (\<Pi>\<^sub>M i\<in>insert i' I. M i) (\<lambda>(x, X). X(i' := x)) =
162    (\<Pi>\<^sub>M i\<in>insert i' I. M i)" (is "?L = _")
163proof (rule measure_eqI_PiM_infinite[symmetric, OF refl])
164  interpret M': prob_space "M i'" by fact
165  interpret I: prob_space "(\<Pi>\<^sub>M i\<in>I. M i)"
166    using M by (intro prob_space_PiM) auto
167  interpret I': prob_space "(\<Pi>\<^sub>M i\<in>insert i' I. M i)"
168    using M by (intro prob_space_PiM) auto
169  show "finite_measure (\<Pi>\<^sub>M i\<in>insert i' I. M i)"
170    by unfold_locales
171  fix J A assume J: "finite J" "J \<subseteq> insert i' I" and A: "\<And>i. i \<in> J \<Longrightarrow> A i \<in> sets (M i)"
172  let ?X = "prod_emb (insert i' I) M J (Pi\<^sub>E J A)"
173  have "Pi\<^sub>M (insert i' I) M ?X = (\<Prod>i\<in>J. M i (A i))"
174    using M J A by (intro emeasure_PiM_emb) auto
175  also have "\<dots> = M i' (if i' \<in> J then (A i') else space (M i')) * (\<Prod>i\<in>J-{i'}. M i (A i))"
176    using prod.insert_remove[of J "\<lambda>i. M i (A i)" i'] J M'.emeasure_space_1
177    by (cases "i' \<in> J") (auto simp: insert_absorb)
178  also have "(\<Prod>i\<in>J-{i'}. M i (A i)) = Pi\<^sub>M I M (prod_emb I M (J - {i'}) (Pi\<^sub>E (J - {i'}) A))"
179    using M J A by (intro emeasure_PiM_emb[symmetric]) auto
180  also have "M i' (if i' \<in> J then (A i') else space (M i')) * \<dots> =
181    (M i' \<Otimes>\<^sub>M Pi\<^sub>M I M) ((if i' \<in> J then (A i') else space (M i')) \<times> prod_emb I M (J - {i'}) (Pi\<^sub>E (J - {i'}) A))"
182    using J A by (intro I.emeasure_pair_measure_Times[symmetric] sets_PiM_I) auto
183  also have "((if i' \<in> J then (A i') else space (M i')) \<times> prod_emb I M (J - {i'}) (Pi\<^sub>E (J - {i'}) A)) =
184    (\<lambda>(x, X). X(i' := x)) -` ?X \<inter> space (M i' \<Otimes>\<^sub>M Pi\<^sub>M I M)"
185    using A[of i', THEN sets.sets_into_space] unfolding set_eq_iff
186    by (simp add: prod_emb_def space_pair_measure space_PiM PiE_fun_upd ac_simps cong: conj_cong)
187       (auto simp add: Pi_iff Ball_def all_conj_distrib)
188  finally show "Pi\<^sub>M (insert i' I) M ?X = ?L ?X"
189    using J A by (simp add: emeasure_distr)
190qed simp
191
192lemma distr_PiM_reindex:
193  assumes M: "\<And>i. i \<in> K \<Longrightarrow> prob_space (M i)"
194  assumes f: "inj_on f I" "f \<in> I \<rightarrow> K"
195  shows "distr (Pi\<^sub>M K M) (\<Pi>\<^sub>M i\<in>I. M (f i)) (\<lambda>\<omega>. \<lambda>n\<in>I. \<omega> (f n)) = (\<Pi>\<^sub>M i\<in>I. M (f i))"
196    (is "distr ?K ?I ?t = ?I")
197proof (rule measure_eqI_PiM_infinite[symmetric, OF refl])
198  interpret prob_space ?I
199    using f M by (intro prob_space_PiM) auto
200  show "finite_measure ?I"
201    by unfold_locales
202  fix A J assume J: "finite J" "J \<subseteq> I" and A: "\<And>i. i \<in> J \<Longrightarrow> A i \<in> sets (M (f i))"
203  have [simp]: "i \<in> J \<Longrightarrow> the_inv_into I f (f i) = i" for i
204    using J f by (intro the_inv_into_f_f) auto
205  have "?I (prod_emb I (\<lambda>i. M (f i)) J (Pi\<^sub>E J A)) = (\<Prod>j\<in>J. M (f j) (A j))"
206    using f J A by (intro emeasure_PiM_emb M) auto
207  also have "\<dots> = (\<Prod>j\<in>f`J. M j (A (the_inv_into I f j)))"
208    using f J by (subst prod.reindex) (auto intro!: prod.cong intro: inj_on_subset simp: the_inv_into_f_f)
209  also have "\<dots> = ?K (prod_emb K M (f`J) (\<Pi>\<^sub>E j\<in>f`J. A (the_inv_into I f j)))"
210    using f J A by (intro emeasure_PiM_emb[symmetric] M) (auto simp: the_inv_into_f_f)
211  also have "prod_emb K M (f`J) (\<Pi>\<^sub>E j\<in>f`J. A (the_inv_into I f j)) = ?t -` prod_emb I (\<lambda>i. M (f i)) J (Pi\<^sub>E J A) \<inter> space ?K"
212    using f J A by (auto simp: prod_emb_def space_PiM Pi_iff PiE_iff Int_absorb1)
213  also have "?K \<dots> = distr ?K ?I ?t (prod_emb I (\<lambda>i. M (f i)) J (Pi\<^sub>E J A))"
214    using f J A by (intro emeasure_distr[symmetric] sets_PiM_I) (auto simp: Pi_iff)
215  finally show "?I (prod_emb I (\<lambda>i. M (f i)) J (Pi\<^sub>E J A)) = distr ?K ?I ?t (prod_emb I (\<lambda>i. M (f i)) J (Pi\<^sub>E J A))" .
216qed simp
217
218lemma distr_PiM_component:
219  assumes M: "\<And>i. i \<in> I \<Longrightarrow> prob_space (M i)"
220  assumes "i \<in> I"
221  shows "distr (Pi\<^sub>M I M) (M i) (\<lambda>\<omega>. \<omega> i) = M i"
222proof -
223  have *: "(\<lambda>\<omega>. \<omega> i) -` A \<inter> space (Pi\<^sub>M I M) = prod_emb I M {i} (\<Pi>\<^sub>E i'\<in>{i}. A)" for A
224    by (auto simp: prod_emb_def space_PiM)
225  show ?thesis
226    apply (intro measure_eqI)
227    apply (auto simp add: emeasure_distr \<open>i\<in>I\<close> * emeasure_PiM_emb M)
228    apply (subst emeasure_PiM_emb)
229    apply (simp_all add: M \<open>i\<in>I\<close>)
230    done
231qed
232
233lemma AE_PiM_component:
234  "(\<And>i. i \<in> I \<Longrightarrow> prob_space (M i)) \<Longrightarrow> i \<in> I \<Longrightarrow> AE x in M i. P x \<Longrightarrow> AE x in PiM I M. P (x i)"
235  using AE_distrD[of "\<lambda>x. x i" "PiM I M" "M i"]
236  by (subst (asm) distr_PiM_component[of I _ i]) (auto intro: AE_distrD[of "\<lambda>x. x i" _ _ P])
237
238lemma decseq_emb_PiE:
239  "incseq J \<Longrightarrow> decseq (\<lambda>i. prod_emb I M (J i) (\<Pi>\<^sub>E j\<in>J i. X j))"
240  by (fastforce simp: decseq_def prod_emb_def incseq_def Pi_iff)
241
242subsection \<open>Sequence space\<close>
243
244definition comb_seq :: "nat \<Rightarrow> (nat \<Rightarrow> 'a) \<Rightarrow> (nat \<Rightarrow> 'a) \<Rightarrow> (nat \<Rightarrow> 'a)" where
245  "comb_seq i \<omega> \<omega>' j = (if j < i then \<omega> j else \<omega>' (j - i))"
246
247lemma split_comb_seq: "P (comb_seq i \<omega> \<omega>' j) \<longleftrightarrow> (j < i \<longrightarrow> P (\<omega> j)) \<and> (\<forall>k. j = i + k \<longrightarrow> P (\<omega>' k))"
248  by (auto simp: comb_seq_def not_less)
249
250lemma split_comb_seq_asm: "P (comb_seq i \<omega> \<omega>' j) \<longleftrightarrow> \<not> ((j < i \<and> \<not> P (\<omega> j)) \<or> (\<exists>k. j = i + k \<and> \<not> P (\<omega>' k)))"
251  by (auto simp: comb_seq_def)
252
253lemma measurable_comb_seq:
254  "(\<lambda>(\<omega>, \<omega>'). comb_seq i \<omega> \<omega>') \<in> measurable ((\<Pi>\<^sub>M i\<in>UNIV. M) \<Otimes>\<^sub>M (\<Pi>\<^sub>M i\<in>UNIV. M)) (\<Pi>\<^sub>M i\<in>UNIV. M)"
255proof (rule measurable_PiM_single)
256  show "(\<lambda>(\<omega>, \<omega>'). comb_seq i \<omega> \<omega>') \<in> space ((\<Pi>\<^sub>M i\<in>UNIV. M) \<Otimes>\<^sub>M (\<Pi>\<^sub>M i\<in>UNIV. M)) \<rightarrow> (UNIV \<rightarrow>\<^sub>E space M)"
257    by (auto simp: space_pair_measure space_PiM PiE_iff split: split_comb_seq)
258  fix j :: nat and A assume A: "A \<in> sets M"
259  then have *: "{\<omega> \<in> space ((\<Pi>\<^sub>M i\<in>UNIV. M) \<Otimes>\<^sub>M (\<Pi>\<^sub>M i\<in>UNIV. M)). case_prod (comb_seq i) \<omega> j \<in> A} =
260    (if j < i then {\<omega> \<in> space (\<Pi>\<^sub>M i\<in>UNIV. M). \<omega> j \<in> A} \<times> space (\<Pi>\<^sub>M i\<in>UNIV. M)
261              else space (\<Pi>\<^sub>M i\<in>UNIV. M) \<times> {\<omega> \<in> space (\<Pi>\<^sub>M i\<in>UNIV. M). \<omega> (j - i) \<in> A})"
262    by (auto simp: space_PiM space_pair_measure comb_seq_def dest: sets.sets_into_space)
263  show "{\<omega> \<in> space ((\<Pi>\<^sub>M i\<in>UNIV. M) \<Otimes>\<^sub>M (\<Pi>\<^sub>M i\<in>UNIV. M)). case_prod (comb_seq i) \<omega> j \<in> A} \<in> sets ((\<Pi>\<^sub>M i\<in>UNIV. M) \<Otimes>\<^sub>M (\<Pi>\<^sub>M i\<in>UNIV. M))"
264    unfolding * by (auto simp: A intro!: sets_Collect_single)
265qed
266
267lemma measurable_comb_seq'[measurable (raw)]:
268  assumes f: "f \<in> measurable N (\<Pi>\<^sub>M i\<in>UNIV. M)" and g: "g \<in> measurable N (\<Pi>\<^sub>M i\<in>UNIV. M)"
269  shows "(\<lambda>x. comb_seq i (f x) (g x)) \<in> measurable N (\<Pi>\<^sub>M i\<in>UNIV. M)"
270  using measurable_compose[OF measurable_Pair[OF f g] measurable_comb_seq] by simp
271
272lemma comb_seq_0: "comb_seq 0 \<omega> \<omega>' = \<omega>'"
273  by (auto simp add: comb_seq_def)
274
275lemma comb_seq_Suc: "comb_seq (Suc n) \<omega> \<omega>' = comb_seq n \<omega> (case_nat (\<omega> n) \<omega>')"
276  by (auto simp add: comb_seq_def not_less less_Suc_eq le_imp_diff_is_add intro!: ext split: nat.split)
277
278lemma comb_seq_Suc_0[simp]: "comb_seq (Suc 0) \<omega> = case_nat (\<omega> 0)"
279  by (intro ext) (simp add: comb_seq_Suc comb_seq_0)
280
281lemma comb_seq_less: "i < n \<Longrightarrow> comb_seq n \<omega> \<omega>' i = \<omega> i"
282  by (auto split: split_comb_seq)
283
284lemma comb_seq_add: "comb_seq n \<omega> \<omega>' (i + n) = \<omega>' i"
285  by (auto split: nat.split split_comb_seq)
286
287lemma case_nat_comb_seq: "case_nat s' (comb_seq n \<omega> \<omega>') (i + n) = case_nat (case_nat s' \<omega> n) \<omega>' i"
288  by (auto split: nat.split split_comb_seq)
289
290lemma case_nat_comb_seq':
291  "case_nat s (comb_seq i \<omega> \<omega>') = comb_seq (Suc i) (case_nat s \<omega>) \<omega>'"
292  by (auto split: split_comb_seq nat.split)
293
294locale sequence_space = product_prob_space "\<lambda>i. M" "UNIV :: nat set" for M
295begin
296
297abbreviation "S \<equiv> \<Pi>\<^sub>M i\<in>UNIV::nat set. M"
298
299lemma infprod_in_sets[intro]:
300  fixes E :: "nat \<Rightarrow> 'a set" assumes E: "\<And>i. E i \<in> sets M"
301  shows "Pi UNIV E \<in> sets S"
302proof -
303  have "Pi UNIV E = (\<Inter>i. emb UNIV {..i} (\<Pi>\<^sub>E j\<in>{..i}. E j))"
304    using E E[THEN sets.sets_into_space]
305    by (auto simp: prod_emb_def Pi_iff extensional_def)
306  with E show ?thesis by auto
307qed
308
309lemma measure_PiM_countable:
310  fixes E :: "nat \<Rightarrow> 'a set" assumes E: "\<And>i. E i \<in> sets M"
311  shows "(\<lambda>n. \<Prod>i\<le>n. measure M (E i)) \<longlonglongrightarrow> measure S (Pi UNIV E)"
312proof -
313  let ?E = "\<lambda>n. emb UNIV {..n} (Pi\<^sub>E {.. n} E)"
314  have "\<And>n. (\<Prod>i\<le>n. measure M (E i)) = measure S (?E n)"
315    using E by (simp add: measure_PiM_emb)
316  moreover have "Pi UNIV E = (\<Inter>n. ?E n)"
317    using E E[THEN sets.sets_into_space]
318    by (auto simp: prod_emb_def extensional_def Pi_iff)
319  moreover have "range ?E \<subseteq> sets S"
320    using E by auto
321  moreover have "decseq ?E"
322    by (auto simp: prod_emb_def Pi_iff decseq_def)
323  ultimately show ?thesis
324    by (simp add: finite_Lim_measure_decseq)
325qed
326
327lemma nat_eq_diff_eq:
328  fixes a b c :: nat
329  shows "c \<le> b \<Longrightarrow> a = b - c \<longleftrightarrow> a + c = b"
330  by auto
331
332lemma PiM_comb_seq:
333  "distr (S \<Otimes>\<^sub>M S) S (\<lambda>(\<omega>, \<omega>'). comb_seq i \<omega> \<omega>') = S" (is "?D = _")
334proof (rule PiM_eq)
335  let ?I = "UNIV::nat set" and ?M = "\<lambda>n. M"
336  let "distr _ _ ?f" = "?D"
337
338  fix J E assume J: "finite J" "J \<subseteq> ?I" "\<And>j. j \<in> J \<Longrightarrow> E j \<in> sets M"
339  let ?X = "prod_emb ?I ?M J (\<Pi>\<^sub>E j\<in>J. E j)"
340  have "\<And>j x. j \<in> J \<Longrightarrow> x \<in> E j \<Longrightarrow> x \<in> space M"
341    using J(3)[THEN sets.sets_into_space] by (auto simp: space_PiM Pi_iff subset_eq)
342  with J have "?f -` ?X \<inter> space (S \<Otimes>\<^sub>M S) =
343    (prod_emb ?I ?M (J \<inter> {..<i}) (\<Pi>\<^sub>E j\<in>J \<inter> {..<i}. E j)) \<times>
344    (prod_emb ?I ?M (((+) i) -` J) (\<Pi>\<^sub>E j\<in>((+) i) -` J. E (i + j)))" (is "_ = ?E \<times> ?F")
345   by (auto simp: space_pair_measure space_PiM prod_emb_def all_conj_distrib PiE_iff
346               split: split_comb_seq split_comb_seq_asm)
347  then have "emeasure ?D ?X = emeasure (S \<Otimes>\<^sub>M S) (?E \<times> ?F)"
348    by (subst emeasure_distr[OF measurable_comb_seq])
349       (auto intro!: sets_PiM_I simp: split_beta' J)
350  also have "\<dots> = emeasure S ?E * emeasure S ?F"
351    using J by (intro P.emeasure_pair_measure_Times)  (auto intro!: sets_PiM_I finite_vimageI simp: inj_on_def)
352  also have "emeasure S ?F = (\<Prod>j\<in>((+) i) -` J. emeasure M (E (i + j)))"
353    using J by (intro emeasure_PiM_emb) (simp_all add: finite_vimageI inj_on_def)
354  also have "\<dots> = (\<Prod>j\<in>J - (J \<inter> {..<i}). emeasure M (E j))"
355    by (rule prod.reindex_cong [of "\<lambda>x. x - i"])
356       (auto simp: image_iff Bex_def not_less nat_eq_diff_eq ac_simps cong: conj_cong intro!: inj_onI)
357  also have "emeasure S ?E = (\<Prod>j\<in>J \<inter> {..<i}. emeasure M (E j))"
358    using J by (intro emeasure_PiM_emb) simp_all
359  also have "(\<Prod>j\<in>J \<inter> {..<i}. emeasure M (E j)) * (\<Prod>j\<in>J - (J \<inter> {..<i}). emeasure M (E j)) = (\<Prod>j\<in>J. emeasure M (E j))"
360    by (subst mult.commute) (auto simp: J prod.subset_diff[symmetric])
361  finally show "emeasure ?D ?X = (\<Prod>j\<in>J. emeasure M (E j))" .
362qed simp_all
363
364lemma PiM_iter:
365  "distr (M \<Otimes>\<^sub>M S) S (\<lambda>(s, \<omega>). case_nat s \<omega>) = S" (is "?D = _")
366proof (rule PiM_eq)
367  let ?I = "UNIV::nat set" and ?M = "\<lambda>n. M"
368  let "distr _ _ ?f" = "?D"
369
370  fix J E assume J: "finite J" "J \<subseteq> ?I" "\<And>j. j \<in> J \<Longrightarrow> E j \<in> sets M"
371  let ?X = "prod_emb ?I ?M J (\<Pi>\<^sub>E j\<in>J. E j)"
372  have "\<And>j x. j \<in> J \<Longrightarrow> x \<in> E j \<Longrightarrow> x \<in> space M"
373    using J(3)[THEN sets.sets_into_space] by (auto simp: space_PiM Pi_iff subset_eq)
374  with J have "?f -` ?X \<inter> space (M \<Otimes>\<^sub>M S) = (if 0 \<in> J then E 0 else space M) \<times>
375    (prod_emb ?I ?M (Suc -` J) (\<Pi>\<^sub>E j\<in>Suc -` J. E (Suc j)))" (is "_ = ?E \<times> ?F")
376   by (auto simp: space_pair_measure space_PiM PiE_iff prod_emb_def all_conj_distrib
377      split: nat.split nat.split_asm)
378  then have "emeasure ?D ?X = emeasure (M \<Otimes>\<^sub>M S) (?E \<times> ?F)"
379    by (subst emeasure_distr)
380       (auto intro!: sets_PiM_I simp: split_beta' J)
381  also have "\<dots> = emeasure M ?E * emeasure S ?F"
382    using J by (intro P.emeasure_pair_measure_Times) (auto intro!: sets_PiM_I finite_vimageI)
383  also have "emeasure S ?F = (\<Prod>j\<in>Suc -` J. emeasure M (E (Suc j)))"
384    using J by (intro emeasure_PiM_emb) (simp_all add: finite_vimageI)
385  also have "\<dots> = (\<Prod>j\<in>J - {0}. emeasure M (E j))"
386    by (rule prod.reindex_cong [of "\<lambda>x. x - 1"])
387       (auto simp: image_iff Bex_def not_less nat_eq_diff_eq ac_simps cong: conj_cong intro!: inj_onI)
388  also have "emeasure M ?E * (\<Prod>j\<in>J - {0}. emeasure M (E j)) = (\<Prod>j\<in>J. emeasure M (E j))"
389    by (auto simp: M.emeasure_space_1 prod.remove J)
390  finally show "emeasure ?D ?X = (\<Prod>j\<in>J. emeasure M (E j))" .
391qed simp_all
392
393end
394
395end
396