1(*  Title:      HOL/Nonstandard_Analysis/NSCA.thy
2    Author:     Jacques D. Fleuriot
3    Copyright:  2001, 2002 University of Edinburgh
4*)
5
6section\<open>Non-Standard Complex Analysis\<close>
7
8theory NSCA
9imports NSComplex HTranscendental
10begin
11
12abbreviation
13   (* standard complex numbers reagarded as an embedded subset of NS complex *)
14   SComplex  :: "hcomplex set" where
15   "SComplex \<equiv> Standard"
16
17definition \<comment> \<open>standard part map\<close>
18  stc :: "hcomplex => hcomplex" where 
19  "stc x = (SOME r. x \<in> HFinite \<and> r\<in>SComplex \<and> r \<approx> x)"
20
21
22subsection\<open>Closure Laws for SComplex, the Standard Complex Numbers\<close>
23
24lemma SComplex_minus_iff [simp]: "(-x \<in> SComplex) = (x \<in> SComplex)"
25  using Standard_minus by fastforce
26
27lemma SComplex_add_cancel:
28  "\<lbrakk>x + y \<in> SComplex; y \<in> SComplex\<rbrakk> \<Longrightarrow> x \<in> SComplex"
29  using Standard_diff by fastforce
30
31lemma SReal_hcmod_hcomplex_of_complex [simp]:
32  "hcmod (hcomplex_of_complex r) \<in> \<real>"
33  by (simp add: Reals_eq_Standard)
34
35lemma SReal_hcmod_numeral: "hcmod (numeral w ::hcomplex) \<in> \<real>"
36  by simp
37
38lemma SReal_hcmod_SComplex: "x \<in> SComplex \<Longrightarrow> hcmod x \<in> \<real>"
39  by (simp add: Reals_eq_Standard)
40
41lemma SComplex_divide_numeral:
42  "r \<in> SComplex \<Longrightarrow> r/(numeral w::hcomplex) \<in> SComplex"
43  by simp
44
45lemma SComplex_UNIV_complex:
46  "{x. hcomplex_of_complex x \<in> SComplex} = (UNIV::complex set)"
47  by simp
48
49lemma SComplex_iff: "(x \<in> SComplex) = (\<exists>y. x = hcomplex_of_complex y)"
50  by (simp add: Standard_def image_def)
51
52lemma hcomplex_of_complex_image:
53  "range hcomplex_of_complex = SComplex"
54  by (simp add: Standard_def)
55
56lemma inv_hcomplex_of_complex_image: "inv hcomplex_of_complex `SComplex = UNIV"
57by (auto simp add: Standard_def image_def) (metis inj_star_of inv_f_f)
58
59lemma SComplex_hcomplex_of_complex_image: 
60      "\<lbrakk>\<exists>x. x \<in> P; P \<le> SComplex\<rbrakk> \<Longrightarrow> \<exists>Q. P = hcomplex_of_complex ` Q"
61  by (metis Standard_def subset_imageE)
62
63lemma SComplex_SReal_dense:
64     "\<lbrakk>x \<in> SComplex; y \<in> SComplex; hcmod x < hcmod y  
65      \<rbrakk> \<Longrightarrow> \<exists>r \<in> Reals. hcmod x< r \<and> r < hcmod y"
66  by (simp add: SReal_dense SReal_hcmod_SComplex)
67
68
69subsection\<open>The Finite Elements form a Subring\<close>
70
71lemma HFinite_hcmod_hcomplex_of_complex [simp]:
72  "hcmod (hcomplex_of_complex r) \<in> HFinite"
73  by (auto intro!: SReal_subset_HFinite [THEN subsetD])
74
75lemma HFinite_hcmod_iff [simp]: "hcmod x \<in> HFinite \<longleftrightarrow> x \<in> HFinite"
76  by (simp add: HFinite_def)
77
78lemma HFinite_bounded_hcmod:
79  "\<lbrakk>x \<in> HFinite; y \<le> hcmod x; 0 \<le> y\<rbrakk> \<Longrightarrow> y \<in> HFinite"
80  using HFinite_bounded HFinite_hcmod_iff by blast
81
82
83subsection\<open>The Complex Infinitesimals form a Subring\<close>
84
85lemma Infinitesimal_hcmod_iff: 
86  "(z \<in> Infinitesimal) = (hcmod z \<in> Infinitesimal)"
87  by (simp add: Infinitesimal_def)
88
89lemma HInfinite_hcmod_iff: "(z \<in> HInfinite) = (hcmod z \<in> HInfinite)"
90  by (simp add: HInfinite_def)
91
92lemma HFinite_diff_Infinitesimal_hcmod:
93  "x \<in> HFinite - Infinitesimal \<Longrightarrow> hcmod x \<in> HFinite - Infinitesimal"
94  by (simp add: Infinitesimal_hcmod_iff)
95
96lemma hcmod_less_Infinitesimal:
97  "\<lbrakk>e \<in> Infinitesimal; hcmod x < hcmod e\<rbrakk> \<Longrightarrow> x \<in> Infinitesimal"
98  by (auto elim: hrabs_less_Infinitesimal simp add: Infinitesimal_hcmod_iff)
99
100lemma hcmod_le_Infinitesimal:
101  "\<lbrakk>e \<in> Infinitesimal; hcmod x \<le> hcmod e\<rbrakk> \<Longrightarrow> x \<in> Infinitesimal"
102  by (auto elim: hrabs_le_Infinitesimal simp add: Infinitesimal_hcmod_iff)
103
104
105subsection\<open>The ``Infinitely Close'' Relation\<close>
106
107lemma approx_SComplex_mult_cancel_zero:
108  "\<lbrakk>a \<in> SComplex; a \<noteq> 0; a*x \<approx> 0\<rbrakk> \<Longrightarrow> x \<approx> 0"
109  by (metis Infinitesimal_mult_disj SComplex_iff mem_infmal_iff star_of_Infinitesimal_iff_0 star_zero_def)
110
111lemma approx_mult_SComplex1: "\<lbrakk>a \<in> SComplex; x \<approx> 0\<rbrakk> \<Longrightarrow> x*a \<approx> 0"
112  using SComplex_iff approx_mult_subst_star_of by fastforce
113
114lemma approx_mult_SComplex2: "\<lbrakk>a \<in> SComplex; x \<approx> 0\<rbrakk> \<Longrightarrow> a*x \<approx> 0"
115  by (metis approx_mult_SComplex1 mult.commute)
116
117lemma approx_mult_SComplex_zero_cancel_iff [simp]:
118  "\<lbrakk>a \<in> SComplex; a \<noteq> 0\<rbrakk> \<Longrightarrow> (a*x \<approx> 0) = (x \<approx> 0)"
119  using approx_SComplex_mult_cancel_zero approx_mult_SComplex2 by blast
120
121lemma approx_SComplex_mult_cancel:
122     "\<lbrakk>a \<in> SComplex; a \<noteq> 0; a*w \<approx> a*z\<rbrakk> \<Longrightarrow> w \<approx> z"
123  by (metis approx_SComplex_mult_cancel_zero approx_minus_iff right_diff_distrib)
124
125lemma approx_SComplex_mult_cancel_iff1 [simp]:
126     "\<lbrakk>a \<in> SComplex; a \<noteq> 0\<rbrakk> \<Longrightarrow> (a*w \<approx> a*z) = (w \<approx> z)"
127  by (metis HFinite_star_of SComplex_iff approx_SComplex_mult_cancel approx_mult2)
128
129(* TODO: generalize following theorems: hcmod -> hnorm *)
130
131lemma approx_hcmod_approx_zero: "(x \<approx> y) = (hcmod (y - x) \<approx> 0)"
132  by (simp add: Infinitesimal_hcmod_iff approx_def hnorm_minus_commute)
133
134lemma approx_approx_zero_iff: "(x \<approx> 0) = (hcmod x \<approx> 0)"
135by (simp add: approx_hcmod_approx_zero)
136
137lemma approx_minus_zero_cancel_iff [simp]: "(-x \<approx> 0) = (x \<approx> 0)"
138by (simp add: approx_def)
139
140lemma Infinitesimal_hcmod_add_diff:
141     "u \<approx> 0 \<Longrightarrow> hcmod(x + u) - hcmod x \<in> Infinitesimal"
142  by (metis add.commute add.left_neutral approx_add_right_iff approx_def approx_hnorm)
143
144lemma approx_hcmod_add_hcmod: "u \<approx> 0 \<Longrightarrow> hcmod(x + u) \<approx> hcmod x"
145  using Infinitesimal_hcmod_add_diff approx_def by blast
146
147
148subsection\<open>Zero is the Only Infinitesimal Complex Number\<close>
149
150lemma Infinitesimal_less_SComplex:
151  "\<lbrakk>x \<in> SComplex; y \<in> Infinitesimal; 0 < hcmod x\<rbrakk> \<Longrightarrow> hcmod y < hcmod x"
152  by (auto intro: Infinitesimal_less_SReal SReal_hcmod_SComplex simp add: Infinitesimal_hcmod_iff)
153
154lemma SComplex_Int_Infinitesimal_zero: "SComplex Int Infinitesimal = {0}"
155  by (auto simp add: Standard_def Infinitesimal_hcmod_iff)
156
157lemma SComplex_Infinitesimal_zero:
158  "\<lbrakk>x \<in> SComplex; x \<in> Infinitesimal\<rbrakk> \<Longrightarrow> x = 0"
159  using SComplex_iff by auto
160
161lemma SComplex_HFinite_diff_Infinitesimal:
162  "\<lbrakk>x \<in> SComplex; x \<noteq> 0\<rbrakk> \<Longrightarrow> x \<in> HFinite - Infinitesimal"
163  using SComplex_iff by auto
164
165lemma numeral_not_Infinitesimal [simp]:
166  "numeral w \<noteq> (0::hcomplex) \<Longrightarrow> (numeral w::hcomplex) \<notin> Infinitesimal"
167  by (fast dest: Standard_numeral [THEN SComplex_Infinitesimal_zero])
168
169lemma approx_SComplex_not_zero:
170  "\<lbrakk>y \<in> SComplex; x \<approx> y; y\<noteq> 0\<rbrakk> \<Longrightarrow> x \<noteq> 0"
171  by (auto dest: SComplex_Infinitesimal_zero approx_sym [THEN mem_infmal_iff [THEN iffD2]])
172
173lemma SComplex_approx_iff:
174  "\<lbrakk>x \<in> SComplex; y \<in> SComplex\<rbrakk> \<Longrightarrow> (x \<approx> y) = (x = y)"
175  by (auto simp add: Standard_def)
176
177lemma approx_unique_complex:
178  "\<lbrakk>r \<in> SComplex; s \<in> SComplex; r \<approx> x; s \<approx> x\<rbrakk> \<Longrightarrow> r = s"
179  by (blast intro: SComplex_approx_iff [THEN iffD1] approx_trans2)
180
181subsection \<open>Properties of \<^term>\<open>hRe\<close>, \<^term>\<open>hIm\<close> and \<^term>\<open>HComplex\<close>\<close>
182
183lemma abs_hRe_le_hcmod: "\<And>x. \<bar>hRe x\<bar> \<le> hcmod x"
184  by transfer (rule abs_Re_le_cmod)
185
186lemma abs_hIm_le_hcmod: "\<And>x. \<bar>hIm x\<bar> \<le> hcmod x"
187  by transfer (rule abs_Im_le_cmod)
188
189lemma Infinitesimal_hRe: "x \<in> Infinitesimal \<Longrightarrow> hRe x \<in> Infinitesimal"
190  using Infinitesimal_hcmod_iff abs_hRe_le_hcmod hrabs_le_Infinitesimal by blast
191
192lemma Infinitesimal_hIm: "x \<in> Infinitesimal \<Longrightarrow> hIm x \<in> Infinitesimal"
193  using Infinitesimal_hcmod_iff abs_hIm_le_hcmod hrabs_le_Infinitesimal by blast
194
195lemma Infinitesimal_HComplex:
196  assumes x: "x \<in> Infinitesimal" and y: "y \<in> Infinitesimal"
197  shows "HComplex x y \<in> Infinitesimal"
198proof -
199  have "hcmod (HComplex 0 y) \<in> Infinitesimal"
200    by (simp add: hcmod_i y)
201  moreover have "hcmod (hcomplex_of_hypreal x) \<in> Infinitesimal" 
202    using Infinitesimal_hcmod_iff Infinitesimal_of_hypreal_iff x by blast
203  ultimately have "hcmod (HComplex x y) \<in> Infinitesimal"
204    by (metis Infinitesimal_add Infinitesimal_hcmod_iff add.right_neutral hcomplex_of_hypreal_add_HComplex)
205  then show ?thesis
206    by (simp add: Infinitesimal_hnorm_iff)
207qed
208
209lemma hcomplex_Infinitesimal_iff:
210  "(x \<in> Infinitesimal) \<longleftrightarrow> (hRe x \<in> Infinitesimal \<and> hIm x \<in> Infinitesimal)"
211  using Infinitesimal_HComplex Infinitesimal_hIm Infinitesimal_hRe by fastforce
212
213lemma hRe_diff [simp]: "\<And>x y. hRe (x - y) = hRe x - hRe y"
214  by transfer simp
215
216lemma hIm_diff [simp]: "\<And>x y. hIm (x - y) = hIm x - hIm y"
217  by transfer simp
218
219lemma approx_hRe: "x \<approx> y \<Longrightarrow> hRe x \<approx> hRe y"
220  unfolding approx_def by (drule Infinitesimal_hRe) simp
221
222lemma approx_hIm: "x \<approx> y \<Longrightarrow> hIm x \<approx> hIm y"
223  unfolding approx_def by (drule Infinitesimal_hIm) simp
224
225lemma approx_HComplex:
226  "\<lbrakk>a \<approx> b; c \<approx> d\<rbrakk> \<Longrightarrow> HComplex a c \<approx> HComplex b d"
227  unfolding approx_def by (simp add: Infinitesimal_HComplex)
228
229lemma hcomplex_approx_iff:
230  "(x \<approx> y) = (hRe x \<approx> hRe y \<and> hIm x \<approx> hIm y)"
231  unfolding approx_def by (simp add: hcomplex_Infinitesimal_iff)
232
233lemma HFinite_hRe: "x \<in> HFinite \<Longrightarrow> hRe x \<in> HFinite"
234  using HFinite_bounded_hcmod abs_ge_zero abs_hRe_le_hcmod by blast
235
236lemma HFinite_hIm: "x \<in> HFinite \<Longrightarrow> hIm x \<in> HFinite"
237  using HFinite_bounded_hcmod abs_ge_zero abs_hIm_le_hcmod by blast
238
239lemma HFinite_HComplex:
240  assumes "x \<in> HFinite" "y \<in> HFinite"
241  shows "HComplex x y \<in> HFinite"
242proof -
243  have "HComplex x 0 \<in> HFinite" "HComplex 0 y \<in> HFinite"
244    using HFinite_hcmod_iff assms hcmod_i by fastforce+
245  then have "HComplex x 0 + HComplex 0 y \<in> HFinite"
246    using HFinite_add by blast
247  then show ?thesis
248    by simp
249qed
250
251lemma hcomplex_HFinite_iff:
252  "(x \<in> HFinite) = (hRe x \<in> HFinite \<and> hIm x \<in> HFinite)"
253  using HFinite_HComplex HFinite_hIm HFinite_hRe by fastforce
254
255lemma hcomplex_HInfinite_iff:
256  "(x \<in> HInfinite) = (hRe x \<in> HInfinite \<or> hIm x \<in> HInfinite)"
257  by (simp add: HInfinite_HFinite_iff hcomplex_HFinite_iff)
258
259lemma hcomplex_of_hypreal_approx_iff [simp]:
260  "(hcomplex_of_hypreal x \<approx> hcomplex_of_hypreal z) = (x \<approx> z)"
261  by (simp add: hcomplex_approx_iff)
262
263(* Here we go - easy proof now!! *)
264lemma stc_part_Ex:
265  assumes "x \<in> HFinite" 
266  shows "\<exists>t \<in> SComplex. x \<approx> t"
267proof -
268  let ?t = "HComplex (st (hRe x)) (st (hIm x))"
269  have "?t \<in> SComplex"
270    using HFinite_hIm HFinite_hRe Reals_eq_Standard assms st_SReal by auto
271  moreover have "x \<approx> ?t"
272    by (simp add: HFinite_hIm HFinite_hRe assms hcomplex_approx_iff st_HFinite st_eq_approx)
273  ultimately show ?thesis ..
274qed
275
276lemma stc_part_Ex1: "x \<in> HFinite \<Longrightarrow> \<exists>!t. t \<in> SComplex \<and> x \<approx> t"
277  using approx_sym approx_unique_complex stc_part_Ex by blast
278
279
280subsection\<open>Theorems About Monads\<close>
281
282lemma monad_zero_hcmod_iff: "(x \<in> monad 0) = (hcmod x \<in> monad 0)"
283  by (simp add: Infinitesimal_monad_zero_iff [symmetric] Infinitesimal_hcmod_iff)
284
285
286subsection\<open>Theorems About Standard Part\<close>
287
288lemma stc_approx_self: "x \<in> HFinite \<Longrightarrow> stc x \<approx> x"
289  unfolding stc_def
290  by (metis (no_types, lifting) approx_reorient someI_ex stc_part_Ex1)
291
292lemma stc_SComplex: "x \<in> HFinite \<Longrightarrow> stc x \<in> SComplex"
293  unfolding stc_def
294  by (metis (no_types, lifting) SComplex_iff approx_sym someI_ex stc_part_Ex)
295
296lemma stc_HFinite: "x \<in> HFinite \<Longrightarrow> stc x \<in> HFinite"
297  by (erule stc_SComplex [THEN Standard_subset_HFinite [THEN subsetD]])
298
299lemma stc_unique: "\<lbrakk>y \<in> SComplex; y \<approx> x\<rbrakk> \<Longrightarrow> stc x = y"
300  by (metis SComplex_approx_iff SComplex_iff approx_monad_iff approx_star_of_HFinite stc_SComplex stc_approx_self)
301
302lemma stc_SComplex_eq [simp]: "x \<in> SComplex \<Longrightarrow> stc x = x"
303  by (simp add: stc_unique)
304
305lemma stc_eq_approx:
306  "\<lbrakk>x \<in> HFinite; y \<in> HFinite; stc x = stc y\<rbrakk> \<Longrightarrow> x \<approx> y"
307  by (auto dest!: stc_approx_self elim!: approx_trans3)
308
309lemma approx_stc_eq:
310     "\<lbrakk>x \<in> HFinite; y \<in> HFinite; x \<approx> y\<rbrakk> \<Longrightarrow> stc x = stc y"
311  by (metis approx_sym approx_trans3 stc_part_Ex1 stc_unique)
312
313lemma stc_eq_approx_iff:
314  "\<lbrakk>x \<in> HFinite; y \<in> HFinite\<rbrakk> \<Longrightarrow> (x \<approx> y) = (stc x = stc y)"
315  by (blast intro: approx_stc_eq stc_eq_approx)
316
317lemma stc_Infinitesimal_add_SComplex:
318  "\<lbrakk>x \<in> SComplex; e \<in> Infinitesimal\<rbrakk> \<Longrightarrow> stc(x + e) = x"
319  using Infinitesimal_add_approx_self stc_unique by blast
320
321lemma stc_Infinitesimal_add_SComplex2:
322  "\<lbrakk>x \<in> SComplex; e \<in> Infinitesimal\<rbrakk> \<Longrightarrow> stc(e + x) = x"
323  using Infinitesimal_add_approx_self2 stc_unique by blast
324
325lemma HFinite_stc_Infinitesimal_add:
326  "x \<in> HFinite \<Longrightarrow> \<exists>e \<in> Infinitesimal. x = stc(x) + e"
327  by (blast dest!: stc_approx_self [THEN approx_sym] bex_Infinitesimal_iff2 [THEN iffD2])
328
329lemma stc_add:
330  "\<lbrakk>x \<in> HFinite; y \<in> HFinite\<rbrakk> \<Longrightarrow> stc (x + y) = stc(x) + stc(y)"
331  by (simp add: stc_unique stc_SComplex stc_approx_self approx_add)
332
333lemma stc_zero: "stc 0 = 0"
334  by simp
335
336lemma stc_one: "stc 1 = 1"
337  by simp
338
339lemma stc_minus: "y \<in> HFinite \<Longrightarrow> stc(-y) = -stc(y)"
340  by (simp add: stc_unique stc_SComplex stc_approx_self approx_minus)
341
342lemma stc_diff: 
343  "\<lbrakk>x \<in> HFinite; y \<in> HFinite\<rbrakk> \<Longrightarrow> stc (x-y) = stc(x) - stc(y)"
344  by (simp add: stc_unique stc_SComplex stc_approx_self approx_diff)
345
346lemma stc_mult:
347  "\<lbrakk>x \<in> HFinite; y \<in> HFinite\<rbrakk>  
348               \<Longrightarrow> stc (x * y) = stc(x) * stc(y)"
349  by (simp add: stc_unique stc_SComplex stc_approx_self approx_mult_HFinite)
350
351lemma stc_Infinitesimal: "x \<in> Infinitesimal \<Longrightarrow> stc x = 0"
352  by (simp add: stc_unique mem_infmal_iff)
353
354lemma stc_not_Infinitesimal: "stc(x) \<noteq> 0 \<Longrightarrow> x \<notin> Infinitesimal"
355  by (fast intro: stc_Infinitesimal)
356
357lemma stc_inverse:
358  "\<lbrakk>x \<in> HFinite; stc x \<noteq> 0\<rbrakk>  \<Longrightarrow> stc(inverse x) = inverse (stc x)"
359  by (simp add: stc_unique stc_SComplex stc_approx_self approx_inverse stc_not_Infinitesimal)
360
361lemma stc_divide [simp]:
362  "\<lbrakk>x \<in> HFinite; y \<in> HFinite; stc y \<noteq> 0\<rbrakk>  
363      \<Longrightarrow> stc(x/y) = (stc x) / (stc y)"
364  by (simp add: divide_inverse stc_mult stc_not_Infinitesimal HFinite_inverse stc_inverse)
365
366lemma stc_idempotent [simp]: "x \<in> HFinite \<Longrightarrow> stc(stc(x)) = stc(x)"
367  by (blast intro: stc_HFinite stc_approx_self approx_stc_eq)
368
369lemma HFinite_HFinite_hcomplex_of_hypreal:
370  "z \<in> HFinite \<Longrightarrow> hcomplex_of_hypreal z \<in> HFinite"
371  by (simp add: hcomplex_HFinite_iff)
372
373lemma SComplex_SReal_hcomplex_of_hypreal:
374     "x \<in> \<real> \<Longrightarrow>  hcomplex_of_hypreal x \<in> SComplex"
375  by (simp add: Reals_eq_Standard)
376
377lemma stc_hcomplex_of_hypreal: 
378 "z \<in> HFinite \<Longrightarrow> stc(hcomplex_of_hypreal z) = hcomplex_of_hypreal (st z)"
379  by (simp add: SComplex_SReal_hcomplex_of_hypreal st_SReal st_approx_self stc_unique)
380
381lemma hmod_stc_eq:
382  assumes "x \<in> HFinite" 
383  shows "hcmod(stc x) = st(hcmod x)"
384    by (metis SReal_hcmod_SComplex approx_HFinite approx_hnorm assms st_unique stc_SComplex_eq stc_eq_approx_iff stc_part_Ex)
385
386lemma Infinitesimal_hcnj_iff [simp]:
387  "(hcnj z \<in> Infinitesimal) \<longleftrightarrow> (z \<in> Infinitesimal)"
388  by (simp add: Infinitesimal_hcmod_iff)
389
390end
391