1(*  Title:      HOL/HOLCF/UpperPD.thy
2    Author:     Brian Huffman
3*)
4
5section \<open>Upper powerdomain\<close>
6
7theory UpperPD
8imports Compact_Basis
9begin
10
11subsection \<open>Basis preorder\<close>
12
13definition
14  upper_le :: "'a pd_basis \<Rightarrow> 'a pd_basis \<Rightarrow> bool" (infix "\<le>\<sharp>" 50) where
15  "upper_le = (\<lambda>u v. \<forall>y\<in>Rep_pd_basis v. \<exists>x\<in>Rep_pd_basis u. x \<sqsubseteq> y)"
16
17lemma upper_le_refl [simp]: "t \<le>\<sharp> t"
18unfolding upper_le_def by fast
19
20lemma upper_le_trans: "\<lbrakk>t \<le>\<sharp> u; u \<le>\<sharp> v\<rbrakk> \<Longrightarrow> t \<le>\<sharp> v"
21unfolding upper_le_def
22apply (rule ballI)
23apply (drule (1) bspec, erule bexE)
24apply (drule (1) bspec, erule bexE)
25apply (erule rev_bexI)
26apply (erule (1) below_trans)
27done
28
29interpretation upper_le: preorder upper_le
30by (rule preorder.intro, rule upper_le_refl, rule upper_le_trans)
31
32lemma upper_le_minimal [simp]: "PDUnit compact_bot \<le>\<sharp> t"
33unfolding upper_le_def Rep_PDUnit by simp
34
35lemma PDUnit_upper_mono: "x \<sqsubseteq> y \<Longrightarrow> PDUnit x \<le>\<sharp> PDUnit y"
36unfolding upper_le_def Rep_PDUnit by simp
37
38lemma PDPlus_upper_mono: "\<lbrakk>s \<le>\<sharp> t; u \<le>\<sharp> v\<rbrakk> \<Longrightarrow> PDPlus s u \<le>\<sharp> PDPlus t v"
39unfolding upper_le_def Rep_PDPlus by fast
40
41lemma PDPlus_upper_le: "PDPlus t u \<le>\<sharp> t"
42unfolding upper_le_def Rep_PDPlus by fast
43
44lemma upper_le_PDUnit_PDUnit_iff [simp]:
45  "(PDUnit a \<le>\<sharp> PDUnit b) = (a \<sqsubseteq> b)"
46unfolding upper_le_def Rep_PDUnit by fast
47
48lemma upper_le_PDPlus_PDUnit_iff:
49  "(PDPlus t u \<le>\<sharp> PDUnit a) = (t \<le>\<sharp> PDUnit a \<or> u \<le>\<sharp> PDUnit a)"
50unfolding upper_le_def Rep_PDPlus Rep_PDUnit by fast
51
52lemma upper_le_PDPlus_iff: "(t \<le>\<sharp> PDPlus u v) = (t \<le>\<sharp> u \<and> t \<le>\<sharp> v)"
53unfolding upper_le_def Rep_PDPlus by fast
54
55lemma upper_le_induct [induct set: upper_le]:
56  assumes le: "t \<le>\<sharp> u"
57  assumes 1: "\<And>a b. a \<sqsubseteq> b \<Longrightarrow> P (PDUnit a) (PDUnit b)"
58  assumes 2: "\<And>t u a. P t (PDUnit a) \<Longrightarrow> P (PDPlus t u) (PDUnit a)"
59  assumes 3: "\<And>t u v. \<lbrakk>P t u; P t v\<rbrakk> \<Longrightarrow> P t (PDPlus u v)"
60  shows "P t u"
61using le apply (induct u arbitrary: t rule: pd_basis_induct)
62apply (erule rev_mp)
63apply (induct_tac t rule: pd_basis_induct)
64apply (simp add: 1)
65apply (simp add: upper_le_PDPlus_PDUnit_iff)
66apply (simp add: 2)
67apply (subst PDPlus_commute)
68apply (simp add: 2)
69apply (simp add: upper_le_PDPlus_iff 3)
70done
71
72
73subsection \<open>Type definition\<close>
74
75typedef 'a upper_pd  ("('(_')\<sharp>)") =
76  "{S::'a pd_basis set. upper_le.ideal S}"
77by (rule upper_le.ex_ideal)
78
79instantiation upper_pd :: (bifinite) below
80begin
81
82definition
83  "x \<sqsubseteq> y \<longleftrightarrow> Rep_upper_pd x \<subseteq> Rep_upper_pd y"
84
85instance ..
86end
87
88instance upper_pd :: (bifinite) po
89using type_definition_upper_pd below_upper_pd_def
90by (rule upper_le.typedef_ideal_po)
91
92instance upper_pd :: (bifinite) cpo
93using type_definition_upper_pd below_upper_pd_def
94by (rule upper_le.typedef_ideal_cpo)
95
96definition
97  upper_principal :: "'a pd_basis \<Rightarrow> 'a upper_pd" where
98  "upper_principal t = Abs_upper_pd {u. u \<le>\<sharp> t}"
99
100interpretation upper_pd:
101  ideal_completion upper_le upper_principal Rep_upper_pd
102using type_definition_upper_pd below_upper_pd_def
103using upper_principal_def pd_basis_countable
104by (rule upper_le.typedef_ideal_completion)
105
106text \<open>Upper powerdomain is pointed\<close>
107
108lemma upper_pd_minimal: "upper_principal (PDUnit compact_bot) \<sqsubseteq> ys"
109by (induct ys rule: upper_pd.principal_induct, simp, simp)
110
111instance upper_pd :: (bifinite) pcpo
112by intro_classes (fast intro: upper_pd_minimal)
113
114lemma inst_upper_pd_pcpo: "\<bottom> = upper_principal (PDUnit compact_bot)"
115by (rule upper_pd_minimal [THEN bottomI, symmetric])
116
117
118subsection \<open>Monadic unit and plus\<close>
119
120definition
121  upper_unit :: "'a \<rightarrow> 'a upper_pd" where
122  "upper_unit = compact_basis.extension (\<lambda>a. upper_principal (PDUnit a))"
123
124definition
125  upper_plus :: "'a upper_pd \<rightarrow> 'a upper_pd \<rightarrow> 'a upper_pd" where
126  "upper_plus = upper_pd.extension (\<lambda>t. upper_pd.extension (\<lambda>u.
127      upper_principal (PDPlus t u)))"
128
129abbreviation
130  upper_add :: "'a upper_pd \<Rightarrow> 'a upper_pd \<Rightarrow> 'a upper_pd"
131    (infixl "\<union>\<sharp>" 65) where
132  "xs \<union>\<sharp> ys == upper_plus\<cdot>xs\<cdot>ys"
133
134syntax
135  "_upper_pd" :: "args \<Rightarrow> logic" ("{_}\<sharp>")
136
137translations
138  "{x,xs}\<sharp>" == "{x}\<sharp> \<union>\<sharp> {xs}\<sharp>"
139  "{x}\<sharp>" == "CONST upper_unit\<cdot>x"
140
141lemma upper_unit_Rep_compact_basis [simp]:
142  "{Rep_compact_basis a}\<sharp> = upper_principal (PDUnit a)"
143unfolding upper_unit_def
144by (simp add: compact_basis.extension_principal PDUnit_upper_mono)
145
146lemma upper_plus_principal [simp]:
147  "upper_principal t \<union>\<sharp> upper_principal u = upper_principal (PDPlus t u)"
148unfolding upper_plus_def
149by (simp add: upper_pd.extension_principal
150    upper_pd.extension_mono PDPlus_upper_mono)
151
152interpretation upper_add: semilattice upper_add proof
153  fix xs ys zs :: "'a upper_pd"
154  show "(xs \<union>\<sharp> ys) \<union>\<sharp> zs = xs \<union>\<sharp> (ys \<union>\<sharp> zs)"
155    apply (induct xs rule: upper_pd.principal_induct, simp)
156    apply (induct ys rule: upper_pd.principal_induct, simp)
157    apply (induct zs rule: upper_pd.principal_induct, simp)
158    apply (simp add: PDPlus_assoc)
159    done
160  show "xs \<union>\<sharp> ys = ys \<union>\<sharp> xs"
161    apply (induct xs rule: upper_pd.principal_induct, simp)
162    apply (induct ys rule: upper_pd.principal_induct, simp)
163    apply (simp add: PDPlus_commute)
164    done
165  show "xs \<union>\<sharp> xs = xs"
166    apply (induct xs rule: upper_pd.principal_induct, simp)
167    apply (simp add: PDPlus_absorb)
168    done
169qed
170
171lemmas upper_plus_assoc = upper_add.assoc
172lemmas upper_plus_commute = upper_add.commute
173lemmas upper_plus_absorb = upper_add.idem
174lemmas upper_plus_left_commute = upper_add.left_commute
175lemmas upper_plus_left_absorb = upper_add.left_idem
176
177text \<open>Useful for \<open>simp add: upper_plus_ac\<close>\<close>
178lemmas upper_plus_ac =
179  upper_plus_assoc upper_plus_commute upper_plus_left_commute
180
181text \<open>Useful for \<open>simp only: upper_plus_aci\<close>\<close>
182lemmas upper_plus_aci =
183  upper_plus_ac upper_plus_absorb upper_plus_left_absorb
184
185lemma upper_plus_below1: "xs \<union>\<sharp> ys \<sqsubseteq> xs"
186apply (induct xs rule: upper_pd.principal_induct, simp)
187apply (induct ys rule: upper_pd.principal_induct, simp)
188apply (simp add: PDPlus_upper_le)
189done
190
191lemma upper_plus_below2: "xs \<union>\<sharp> ys \<sqsubseteq> ys"
192by (subst upper_plus_commute, rule upper_plus_below1)
193
194lemma upper_plus_greatest: "\<lbrakk>xs \<sqsubseteq> ys; xs \<sqsubseteq> zs\<rbrakk> \<Longrightarrow> xs \<sqsubseteq> ys \<union>\<sharp> zs"
195apply (subst upper_plus_absorb [of xs, symmetric])
196apply (erule (1) monofun_cfun [OF monofun_cfun_arg])
197done
198
199lemma upper_below_plus_iff [simp]:
200  "xs \<sqsubseteq> ys \<union>\<sharp> zs \<longleftrightarrow> xs \<sqsubseteq> ys \<and> xs \<sqsubseteq> zs"
201apply safe
202apply (erule below_trans [OF _ upper_plus_below1])
203apply (erule below_trans [OF _ upper_plus_below2])
204apply (erule (1) upper_plus_greatest)
205done
206
207lemma upper_plus_below_unit_iff [simp]:
208  "xs \<union>\<sharp> ys \<sqsubseteq> {z}\<sharp> \<longleftrightarrow> xs \<sqsubseteq> {z}\<sharp> \<or> ys \<sqsubseteq> {z}\<sharp>"
209apply (induct xs rule: upper_pd.principal_induct, simp)
210apply (induct ys rule: upper_pd.principal_induct, simp)
211apply (induct z rule: compact_basis.principal_induct, simp)
212apply (simp add: upper_le_PDPlus_PDUnit_iff)
213done
214
215lemma upper_unit_below_iff [simp]: "{x}\<sharp> \<sqsubseteq> {y}\<sharp> \<longleftrightarrow> x \<sqsubseteq> y"
216apply (induct x rule: compact_basis.principal_induct, simp)
217apply (induct y rule: compact_basis.principal_induct, simp)
218apply simp
219done
220
221lemmas upper_pd_below_simps =
222  upper_unit_below_iff
223  upper_below_plus_iff
224  upper_plus_below_unit_iff
225
226lemma upper_unit_eq_iff [simp]: "{x}\<sharp> = {y}\<sharp> \<longleftrightarrow> x = y"
227unfolding po_eq_conv by simp
228
229lemma upper_unit_strict [simp]: "{\<bottom>}\<sharp> = \<bottom>"
230using upper_unit_Rep_compact_basis [of compact_bot]
231by (simp add: inst_upper_pd_pcpo)
232
233lemma upper_plus_strict1 [simp]: "\<bottom> \<union>\<sharp> ys = \<bottom>"
234by (rule bottomI, rule upper_plus_below1)
235
236lemma upper_plus_strict2 [simp]: "xs \<union>\<sharp> \<bottom> = \<bottom>"
237by (rule bottomI, rule upper_plus_below2)
238
239lemma upper_unit_bottom_iff [simp]: "{x}\<sharp> = \<bottom> \<longleftrightarrow> x = \<bottom>"
240unfolding upper_unit_strict [symmetric] by (rule upper_unit_eq_iff)
241
242lemma upper_plus_bottom_iff [simp]:
243  "xs \<union>\<sharp> ys = \<bottom> \<longleftrightarrow> xs = \<bottom> \<or> ys = \<bottom>"
244apply (induct xs rule: upper_pd.principal_induct, simp)
245apply (induct ys rule: upper_pd.principal_induct, simp)
246apply (simp add: inst_upper_pd_pcpo upper_pd.principal_eq_iff
247                 upper_le_PDPlus_PDUnit_iff)
248done
249
250lemma compact_upper_unit: "compact x \<Longrightarrow> compact {x}\<sharp>"
251by (auto dest!: compact_basis.compact_imp_principal)
252
253lemma compact_upper_unit_iff [simp]: "compact {x}\<sharp> \<longleftrightarrow> compact x"
254apply (safe elim!: compact_upper_unit)
255apply (simp only: compact_def upper_unit_below_iff [symmetric])
256apply (erule adm_subst [OF cont_Rep_cfun2])
257done
258
259lemma compact_upper_plus [simp]:
260  "\<lbrakk>compact xs; compact ys\<rbrakk> \<Longrightarrow> compact (xs \<union>\<sharp> ys)"
261by (auto dest!: upper_pd.compact_imp_principal)
262
263
264subsection \<open>Induction rules\<close>
265
266lemma upper_pd_induct1:
267  assumes P: "adm P"
268  assumes unit: "\<And>x. P {x}\<sharp>"
269  assumes insert: "\<And>x ys. \<lbrakk>P {x}\<sharp>; P ys\<rbrakk> \<Longrightarrow> P ({x}\<sharp> \<union>\<sharp> ys)"
270  shows "P (xs::'a upper_pd)"
271apply (induct xs rule: upper_pd.principal_induct, rule P)
272apply (induct_tac a rule: pd_basis_induct1)
273apply (simp only: upper_unit_Rep_compact_basis [symmetric])
274apply (rule unit)
275apply (simp only: upper_unit_Rep_compact_basis [symmetric]
276                  upper_plus_principal [symmetric])
277apply (erule insert [OF unit])
278done
279
280lemma upper_pd_induct
281  [case_names adm upper_unit upper_plus, induct type: upper_pd]:
282  assumes P: "adm P"
283  assumes unit: "\<And>x. P {x}\<sharp>"
284  assumes plus: "\<And>xs ys. \<lbrakk>P xs; P ys\<rbrakk> \<Longrightarrow> P (xs \<union>\<sharp> ys)"
285  shows "P (xs::'a upper_pd)"
286apply (induct xs rule: upper_pd.principal_induct, rule P)
287apply (induct_tac a rule: pd_basis_induct)
288apply (simp only: upper_unit_Rep_compact_basis [symmetric] unit)
289apply (simp only: upper_plus_principal [symmetric] plus)
290done
291
292
293subsection \<open>Monadic bind\<close>
294
295definition
296  upper_bind_basis ::
297  "'a pd_basis \<Rightarrow> ('a \<rightarrow> 'b upper_pd) \<rightarrow> 'b upper_pd" where
298  "upper_bind_basis = fold_pd
299    (\<lambda>a. \<Lambda> f. f\<cdot>(Rep_compact_basis a))
300    (\<lambda>x y. \<Lambda> f. x\<cdot>f \<union>\<sharp> y\<cdot>f)"
301
302lemma ACI_upper_bind:
303  "semilattice (\<lambda>x y. \<Lambda> f. x\<cdot>f \<union>\<sharp> y\<cdot>f)"
304apply unfold_locales
305apply (simp add: upper_plus_assoc)
306apply (simp add: upper_plus_commute)
307apply (simp add: eta_cfun)
308done
309
310lemma upper_bind_basis_simps [simp]:
311  "upper_bind_basis (PDUnit a) =
312    (\<Lambda> f. f\<cdot>(Rep_compact_basis a))"
313  "upper_bind_basis (PDPlus t u) =
314    (\<Lambda> f. upper_bind_basis t\<cdot>f \<union>\<sharp> upper_bind_basis u\<cdot>f)"
315unfolding upper_bind_basis_def
316apply -
317apply (rule fold_pd_PDUnit [OF ACI_upper_bind])
318apply (rule fold_pd_PDPlus [OF ACI_upper_bind])
319done
320
321lemma upper_bind_basis_mono:
322  "t \<le>\<sharp> u \<Longrightarrow> upper_bind_basis t \<sqsubseteq> upper_bind_basis u"
323unfolding cfun_below_iff
324apply (erule upper_le_induct, safe)
325apply (simp add: monofun_cfun)
326apply (simp add: below_trans [OF upper_plus_below1])
327apply simp
328done
329
330definition
331  upper_bind :: "'a upper_pd \<rightarrow> ('a \<rightarrow> 'b upper_pd) \<rightarrow> 'b upper_pd" where
332  "upper_bind = upper_pd.extension upper_bind_basis"
333
334syntax
335  "_upper_bind" :: "[logic, logic, logic] \<Rightarrow> logic"
336    ("(3\<Union>\<sharp>_\<in>_./ _)" [0, 0, 10] 10)
337
338translations
339  "\<Union>\<sharp>x\<in>xs. e" == "CONST upper_bind\<cdot>xs\<cdot>(\<Lambda> x. e)"
340
341lemma upper_bind_principal [simp]:
342  "upper_bind\<cdot>(upper_principal t) = upper_bind_basis t"
343unfolding upper_bind_def
344apply (rule upper_pd.extension_principal)
345apply (erule upper_bind_basis_mono)
346done
347
348lemma upper_bind_unit [simp]:
349  "upper_bind\<cdot>{x}\<sharp>\<cdot>f = f\<cdot>x"
350by (induct x rule: compact_basis.principal_induct, simp, simp)
351
352lemma upper_bind_plus [simp]:
353  "upper_bind\<cdot>(xs \<union>\<sharp> ys)\<cdot>f = upper_bind\<cdot>xs\<cdot>f \<union>\<sharp> upper_bind\<cdot>ys\<cdot>f"
354by (induct xs rule: upper_pd.principal_induct, simp,
355    induct ys rule: upper_pd.principal_induct, simp, simp)
356
357lemma upper_bind_strict [simp]: "upper_bind\<cdot>\<bottom>\<cdot>f = f\<cdot>\<bottom>"
358unfolding upper_unit_strict [symmetric] by (rule upper_bind_unit)
359
360lemma upper_bind_bind:
361  "upper_bind\<cdot>(upper_bind\<cdot>xs\<cdot>f)\<cdot>g = upper_bind\<cdot>xs\<cdot>(\<Lambda> x. upper_bind\<cdot>(f\<cdot>x)\<cdot>g)"
362by (induct xs, simp_all)
363
364
365subsection \<open>Map\<close>
366
367definition
368  upper_map :: "('a \<rightarrow> 'b) \<rightarrow> 'a upper_pd \<rightarrow> 'b upper_pd" where
369  "upper_map = (\<Lambda> f xs. upper_bind\<cdot>xs\<cdot>(\<Lambda> x. {f\<cdot>x}\<sharp>))"
370
371lemma upper_map_unit [simp]:
372  "upper_map\<cdot>f\<cdot>{x}\<sharp> = {f\<cdot>x}\<sharp>"
373unfolding upper_map_def by simp
374
375lemma upper_map_plus [simp]:
376  "upper_map\<cdot>f\<cdot>(xs \<union>\<sharp> ys) = upper_map\<cdot>f\<cdot>xs \<union>\<sharp> upper_map\<cdot>f\<cdot>ys"
377unfolding upper_map_def by simp
378
379lemma upper_map_bottom [simp]: "upper_map\<cdot>f\<cdot>\<bottom> = {f\<cdot>\<bottom>}\<sharp>"
380unfolding upper_map_def by simp
381
382lemma upper_map_ident: "upper_map\<cdot>(\<Lambda> x. x)\<cdot>xs = xs"
383by (induct xs rule: upper_pd_induct, simp_all)
384
385lemma upper_map_ID: "upper_map\<cdot>ID = ID"
386by (simp add: cfun_eq_iff ID_def upper_map_ident)
387
388lemma upper_map_map:
389  "upper_map\<cdot>f\<cdot>(upper_map\<cdot>g\<cdot>xs) = upper_map\<cdot>(\<Lambda> x. f\<cdot>(g\<cdot>x))\<cdot>xs"
390by (induct xs rule: upper_pd_induct, simp_all)
391
392lemma upper_bind_map:
393  "upper_bind\<cdot>(upper_map\<cdot>f\<cdot>xs)\<cdot>g = upper_bind\<cdot>xs\<cdot>(\<Lambda> x. g\<cdot>(f\<cdot>x))"
394by (simp add: upper_map_def upper_bind_bind)
395
396lemma upper_map_bind:
397  "upper_map\<cdot>f\<cdot>(upper_bind\<cdot>xs\<cdot>g) = upper_bind\<cdot>xs\<cdot>(\<Lambda> x. upper_map\<cdot>f\<cdot>(g\<cdot>x))"
398by (simp add: upper_map_def upper_bind_bind)
399
400lemma ep_pair_upper_map: "ep_pair e p \<Longrightarrow> ep_pair (upper_map\<cdot>e) (upper_map\<cdot>p)"
401apply standard
402apply (induct_tac x rule: upper_pd_induct, simp_all add: ep_pair.e_inverse)
403apply (induct_tac y rule: upper_pd_induct)
404apply (simp_all add: ep_pair.e_p_below monofun_cfun del: upper_below_plus_iff)
405done
406
407lemma deflation_upper_map: "deflation d \<Longrightarrow> deflation (upper_map\<cdot>d)"
408apply standard
409apply (induct_tac x rule: upper_pd_induct, simp_all add: deflation.idem)
410apply (induct_tac x rule: upper_pd_induct)
411apply (simp_all add: deflation.below monofun_cfun del: upper_below_plus_iff)
412done
413
414(* FIXME: long proof! *)
415lemma finite_deflation_upper_map:
416  assumes "finite_deflation d" shows "finite_deflation (upper_map\<cdot>d)"
417proof (rule finite_deflation_intro)
418  interpret d: finite_deflation d by fact
419  from d.deflation_axioms show "deflation (upper_map\<cdot>d)"
420    by (rule deflation_upper_map)
421  have "finite (range (\<lambda>x. d\<cdot>x))" by (rule d.finite_range)
422  hence "finite (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))"
423    by (rule finite_vimageI, simp add: inj_on_def Rep_compact_basis_inject)
424  hence "finite (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x)))" by simp
425  hence "finite (Rep_pd_basis -` (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))))"
426    by (rule finite_vimageI, simp add: inj_on_def Rep_pd_basis_inject)
427  hence *: "finite (upper_principal ` Rep_pd_basis -` (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))))" by simp
428  hence "finite (range (\<lambda>xs. upper_map\<cdot>d\<cdot>xs))"
429    apply (rule rev_finite_subset)
430    apply clarsimp
431    apply (induct_tac xs rule: upper_pd.principal_induct)
432    apply (simp add: adm_mem_finite *)
433    apply (rename_tac t, induct_tac t rule: pd_basis_induct)
434    apply (simp only: upper_unit_Rep_compact_basis [symmetric] upper_map_unit)
435    apply simp
436    apply (subgoal_tac "\<exists>b. d\<cdot>(Rep_compact_basis a) = Rep_compact_basis b")
437    apply clarsimp
438    apply (rule imageI)
439    apply (rule vimageI2)
440    apply (simp add: Rep_PDUnit)
441    apply (rule range_eqI)
442    apply (erule sym)
443    apply (rule exI)
444    apply (rule Abs_compact_basis_inverse [symmetric])
445    apply (simp add: d.compact)
446    apply (simp only: upper_plus_principal [symmetric] upper_map_plus)
447    apply clarsimp
448    apply (rule imageI)
449    apply (rule vimageI2)
450    apply (simp add: Rep_PDPlus)
451    done
452  thus "finite {xs. upper_map\<cdot>d\<cdot>xs = xs}"
453    by (rule finite_range_imp_finite_fixes)
454qed
455
456subsection \<open>Upper powerdomain is bifinite\<close>
457
458lemma approx_chain_upper_map:
459  assumes "approx_chain a"
460  shows "approx_chain (\<lambda>i. upper_map\<cdot>(a i))"
461  using assms unfolding approx_chain_def
462  by (simp add: lub_APP upper_map_ID finite_deflation_upper_map)
463
464instance upper_pd :: (bifinite) bifinite
465proof
466  show "\<exists>(a::nat \<Rightarrow> 'a upper_pd \<rightarrow> 'a upper_pd). approx_chain a"
467    using bifinite [where 'a='a]
468    by (fast intro!: approx_chain_upper_map)
469qed
470
471subsection \<open>Join\<close>
472
473definition
474  upper_join :: "'a upper_pd upper_pd \<rightarrow> 'a upper_pd" where
475  "upper_join = (\<Lambda> xss. upper_bind\<cdot>xss\<cdot>(\<Lambda> xs. xs))"
476
477lemma upper_join_unit [simp]:
478  "upper_join\<cdot>{xs}\<sharp> = xs"
479unfolding upper_join_def by simp
480
481lemma upper_join_plus [simp]:
482  "upper_join\<cdot>(xss \<union>\<sharp> yss) = upper_join\<cdot>xss \<union>\<sharp> upper_join\<cdot>yss"
483unfolding upper_join_def by simp
484
485lemma upper_join_bottom [simp]: "upper_join\<cdot>\<bottom> = \<bottom>"
486unfolding upper_join_def by simp
487
488lemma upper_join_map_unit:
489  "upper_join\<cdot>(upper_map\<cdot>upper_unit\<cdot>xs) = xs"
490by (induct xs rule: upper_pd_induct, simp_all)
491
492lemma upper_join_map_join:
493  "upper_join\<cdot>(upper_map\<cdot>upper_join\<cdot>xsss) = upper_join\<cdot>(upper_join\<cdot>xsss)"
494by (induct xsss rule: upper_pd_induct, simp_all)
495
496lemma upper_join_map_map:
497  "upper_join\<cdot>(upper_map\<cdot>(upper_map\<cdot>f)\<cdot>xss) =
498   upper_map\<cdot>f\<cdot>(upper_join\<cdot>xss)"
499by (induct xss rule: upper_pd_induct, simp_all)
500
501end
502