1169691Skan(*  Title:      ZF/Induct/Tree_Forest.thy
2169691Skan    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
3169691Skan    Copyright   1994  University of Cambridge
4169691Skan*)
5169691Skan
6169691Skansection \<open>Trees and forests, a mutually recursive type definition\<close>
7169691Skan
8169691Skantheory Tree_Forest imports ZF begin
9169691Skan
10169691Skansubsection \<open>Datatype definition\<close>
11169691Skan
12169691Skanconsts
13169691Skan  tree :: "i => i"
14169691Skan  forest :: "i => i"
15169691Skan  tree_forest :: "i => i"
16169691Skan
17169691Skandatatype "tree(A)" = Tcons ("a \<in> A", "f \<in> forest(A)")
18169691Skan  and "forest(A)" = Fnil | Fcons ("t \<in> tree(A)", "f \<in> forest(A)")
19169691Skan
20169691Skan(* FIXME *)
21169691Skanlemmas tree'induct =
22169691Skan    tree_forest.mutual_induct [THEN conjunct1, THEN spec, THEN [2] rev_mp, of concl: _ t, consumes 1]
23169691Skan  and forest'induct =
24169691Skan    tree_forest.mutual_induct [THEN conjunct2, THEN spec, THEN [2] rev_mp, of concl: _ f, consumes 1]
25169691Skan  for t f
26169691Skan
27169691Skandeclare tree_forest.intros [simp, TC]
28169691Skan
29169691Skanlemma tree_def: "tree(A) == Part(tree_forest(A), Inl)"
30169691Skan  by (simp only: tree_forest.defs)
31169691Skan
32169691Skanlemma forest_def: "forest(A) == Part(tree_forest(A), Inr)"
33169691Skan  by (simp only: tree_forest.defs)
34169691Skan
35169691Skan
36169691Skantext \<open>
37169691Skan  \medskip \<^term>\<open>tree_forest(A)\<close> as the union of \<^term>\<open>tree(A)\<close>
38169691Skan  and \<^term>\<open>forest(A)\<close>.
39169691Skan\<close>
40169691Skan
41169691Skanlemma tree_subset_TF: "tree(A) \<subseteq> tree_forest(A)"
42169691Skan  apply (unfold tree_forest.defs)
43169691Skan  apply (rule Part_subset)
44169691Skan  done
45169691Skan
46169691Skanlemma treeI [TC]: "x \<in> tree(A) ==> x \<in> tree_forest(A)"
47169691Skan  by (rule tree_subset_TF [THEN subsetD])
48169691Skan
49169691Skanlemma forest_subset_TF: "forest(A) \<subseteq> tree_forest(A)"
50169691Skan  apply (unfold tree_forest.defs)
51169691Skan  apply (rule Part_subset)
52169691Skan  done
53169691Skan
54169691Skanlemma treeI' [TC]: "x \<in> forest(A) ==> x \<in> tree_forest(A)"
55169691Skan  by (rule forest_subset_TF [THEN subsetD])
56169691Skan
57169691Skanlemma TF_equals_Un: "tree(A) \<union> forest(A) = tree_forest(A)"
58169691Skan  apply (insert tree_subset_TF forest_subset_TF)
59169691Skan  apply (auto intro!: equalityI tree_forest.intros elim: tree_forest.cases)
60169691Skan  done
61169691Skan
62169691Skanlemma tree_forest_unfold:
63169691Skan  "tree_forest(A) = (A \<times> forest(A)) + ({0} + tree(A) \<times> forest(A))"
64169691Skan    \<comment> \<open>NOT useful, but interesting \dots\<close>
65169691Skan  supply rews = tree_forest.con_defs tree_def forest_def
66  apply (unfold tree_def forest_def)
67  apply (fast intro!: tree_forest.intros [unfolded rews, THEN PartD1]
68    elim: tree_forest.cases [unfolded rews])
69  done
70
71lemma tree_forest_unfold':
72  "tree_forest(A) =
73    A \<times> Part(tree_forest(A), \<lambda>w. Inr(w)) +
74    {0} + Part(tree_forest(A), \<lambda>w. Inl(w)) * Part(tree_forest(A), \<lambda>w. Inr(w))"
75  by (rule tree_forest_unfold [unfolded tree_def forest_def])
76
77lemma tree_unfold: "tree(A) = {Inl(x). x \<in> A \<times> forest(A)}"
78  apply (unfold tree_def forest_def)
79  apply (rule Part_Inl [THEN subst])
80  apply (rule tree_forest_unfold' [THEN subst_context])
81  done
82
83lemma forest_unfold: "forest(A) = {Inr(x). x \<in> {0} + tree(A)*forest(A)}"
84  apply (unfold tree_def forest_def)
85  apply (rule Part_Inr [THEN subst])
86  apply (rule tree_forest_unfold' [THEN subst_context])
87  done
88
89text \<open>
90  \medskip Type checking for recursor: Not needed; possibly interesting?
91\<close>
92
93lemma TF_rec_type:
94  "[| z \<in> tree_forest(A);
95      !!x f r. [| x \<in> A;  f \<in> forest(A);  r \<in> C(f)
96                |] ==> b(x,f,r) \<in> C(Tcons(x,f));
97      c \<in> C(Fnil);
98      !!t f r1 r2. [| t \<in> tree(A);  f \<in> forest(A);  r1 \<in> C(t); r2 \<in> C(f)
99                    |] ==> d(t,f,r1,r2) \<in> C(Fcons(t,f))
100   |] ==> tree_forest_rec(b,c,d,z) \<in> C(z)"
101  by (induct_tac z) simp_all
102
103lemma tree_forest_rec_type:
104  "[| !!x f r. [| x \<in> A;  f \<in> forest(A);  r \<in> D(f)
105                |] ==> b(x,f,r) \<in> C(Tcons(x,f));
106      c \<in> D(Fnil);
107      !!t f r1 r2. [| t \<in> tree(A);  f \<in> forest(A);  r1 \<in> C(t); r2 \<in> D(f)
108                    |] ==> d(t,f,r1,r2) \<in> D(Fcons(t,f))
109   |] ==> (\<forall>t \<in> tree(A).    tree_forest_rec(b,c,d,t) \<in> C(t)) \<and>
110          (\<forall>f \<in> forest(A). tree_forest_rec(b,c,d,f) \<in> D(f))"
111    \<comment> \<open>Mutually recursive version.\<close>
112  apply (unfold Ball_def)
113  apply (rule tree_forest.mutual_induct)
114  apply simp_all
115  done
116
117
118subsection \<open>Operations\<close>
119
120consts
121  map :: "[i => i, i] => i"
122  size :: "i => i"
123  preorder :: "i => i"
124  list_of_TF :: "i => i"
125  of_list :: "i => i"
126  reflect :: "i => i"
127
128primrec
129  "list_of_TF (Tcons(x,f)) = [Tcons(x,f)]"
130  "list_of_TF (Fnil) = []"
131  "list_of_TF (Fcons(t,tf)) = Cons (t, list_of_TF(tf))"
132
133primrec
134  "of_list([]) = Fnil"
135  "of_list(Cons(t,l)) = Fcons(t, of_list(l))"
136
137primrec
138  "map (h, Tcons(x,f)) = Tcons(h(x), map(h,f))"
139  "map (h, Fnil) = Fnil"
140  "map (h, Fcons(t,tf)) = Fcons (map(h, t), map(h, tf))"
141
142primrec
143  "size (Tcons(x,f)) = succ(size(f))"
144  "size (Fnil) = 0"
145  "size (Fcons(t,tf)) = size(t) #+ size(tf)"
146
147primrec
148  "preorder (Tcons(x,f)) = Cons(x, preorder(f))"
149  "preorder (Fnil) = Nil"
150  "preorder (Fcons(t,tf)) = preorder(t) @ preorder(tf)"
151
152primrec
153  "reflect (Tcons(x,f)) = Tcons(x, reflect(f))"
154  "reflect (Fnil) = Fnil"
155  "reflect (Fcons(t,tf)) =
156    of_list (list_of_TF (reflect(tf)) @ Cons(reflect(t), Nil))"
157
158
159text \<open>
160  \medskip \<open>list_of_TF\<close> and \<open>of_list\<close>.
161\<close>
162
163lemma list_of_TF_type [TC]:
164    "z \<in> tree_forest(A) ==> list_of_TF(z) \<in> list(tree(A))"
165  by (induct set: tree_forest) simp_all
166
167lemma of_list_type [TC]: "l \<in> list(tree(A)) ==> of_list(l) \<in> forest(A)"
168  by (induct set: list) simp_all
169
170text \<open>
171  \medskip \<open>map\<close>.
172\<close>
173
174lemma
175  assumes "!!x. x \<in> A ==> h(x): B"
176  shows map_tree_type: "t \<in> tree(A) ==> map(h,t) \<in> tree(B)"
177    and map_forest_type: "f \<in> forest(A) ==> map(h,f) \<in> forest(B)"
178  using assms
179  by (induct rule: tree'induct forest'induct) simp_all
180
181text \<open>
182  \medskip \<open>size\<close>.
183\<close>
184
185lemma size_type [TC]: "z \<in> tree_forest(A) ==> size(z) \<in> nat"
186  by (induct set: tree_forest) simp_all
187
188
189text \<open>
190  \medskip \<open>preorder\<close>.
191\<close>
192
193lemma preorder_type [TC]: "z \<in> tree_forest(A) ==> preorder(z) \<in> list(A)"
194  by (induct set: tree_forest) simp_all
195
196
197text \<open>
198  \medskip Theorems about \<open>list_of_TF\<close> and \<open>of_list\<close>.
199\<close>
200
201lemma forest_induct [consumes 1, case_names Fnil Fcons]:
202  "[| f \<in> forest(A);
203      R(Fnil);
204      !!t f. [| t \<in> tree(A);  f \<in> forest(A);  R(f) |] ==> R(Fcons(t,f))
205   |] ==> R(f)"
206  \<comment> \<open>Essentially the same as list induction.\<close>
207  apply (erule tree_forest.mutual_induct
208      [THEN conjunct2, THEN spec, THEN [2] rev_mp])
209    apply (rule TrueI)
210   apply simp
211  apply simp
212  done
213
214lemma forest_iso: "f \<in> forest(A) ==> of_list(list_of_TF(f)) = f"
215  by (induct rule: forest_induct) simp_all
216
217lemma tree_list_iso: "ts: list(tree(A)) ==> list_of_TF(of_list(ts)) = ts"
218  by (induct set: list) simp_all
219
220
221text \<open>
222  \medskip Theorems about \<open>map\<close>.
223\<close>
224
225lemma map_ident: "z \<in> tree_forest(A) ==> map(\<lambda>u. u, z) = z"
226  by (induct set: tree_forest) simp_all
227
228lemma map_compose:
229    "z \<in> tree_forest(A) ==> map(h, map(j,z)) = map(\<lambda>u. h(j(u)), z)"
230  by (induct set: tree_forest) simp_all
231
232
233text \<open>
234  \medskip Theorems about \<open>size\<close>.
235\<close>
236
237lemma size_map: "z \<in> tree_forest(A) ==> size(map(h,z)) = size(z)"
238  by (induct set: tree_forest) simp_all
239
240lemma size_length: "z \<in> tree_forest(A) ==> size(z) = length(preorder(z))"
241  by (induct set: tree_forest) (simp_all add: length_app)
242
243text \<open>
244  \medskip Theorems about \<open>preorder\<close>.
245\<close>
246
247lemma preorder_map:
248    "z \<in> tree_forest(A) ==> preorder(map(h,z)) = List.map(h, preorder(z))"
249  by (induct set: tree_forest) (simp_all add: map_app_distrib)
250
251end
252