1(* Author: Johannes H��lzl <hoelzl@in.tum.de> *)
2
3section \<open>Stopping times\<close>
4
5theory Stopping_Time
6  imports "HOL-Analysis.Analysis"
7begin
8
9subsection \<open>Stopping Time\<close>
10
11text \<open>This is also called strong stopping time. Then stopping time is T with alternative is
12  \<open>T x < t\<close> measurable.\<close>
13
14definition stopping_time :: "('t::linorder \<Rightarrow> 'a measure) \<Rightarrow> ('a \<Rightarrow> 't) \<Rightarrow> bool"
15where
16  "stopping_time F T = (\<forall>t. Measurable.pred (F t) (\<lambda>x. T x \<le> t))"
17
18lemma stopping_time_cong: "(\<And>t x. x \<in> space (F t) \<Longrightarrow> T x = S x) \<Longrightarrow> stopping_time F T = stopping_time F S"
19  unfolding stopping_time_def by (intro arg_cong[where f=All] ext measurable_cong) simp
20
21lemma stopping_timeD: "stopping_time F T \<Longrightarrow> Measurable.pred (F t) (\<lambda>x. T x \<le> t)"
22  by (auto simp: stopping_time_def)
23
24lemma stopping_timeD2: "stopping_time F T \<Longrightarrow> Measurable.pred (F t) (\<lambda>x. t < T x)"
25  unfolding not_le[symmetric] by (auto intro: stopping_timeD Measurable.pred_intros_logic)
26
27lemma stopping_timeI[intro?]: "(\<And>t. Measurable.pred (F t) (\<lambda>x. T x \<le> t)) \<Longrightarrow> stopping_time F T"
28  by (auto simp: stopping_time_def)
29
30lemma measurable_stopping_time:
31  fixes T :: "'a \<Rightarrow> 't::{linorder_topology, second_countable_topology}"
32  assumes T: "stopping_time F T"
33    and M: "\<And>t. sets (F t) \<subseteq> sets M" "\<And>t. space (F t) = space M"
34  shows "T \<in> M \<rightarrow>\<^sub>M borel"
35proof (rule borel_measurableI_le)
36  show "{x \<in> space M. T x \<le> t} \<in> sets M" for t
37    using stopping_timeD[OF T] M by (auto simp: Measurable.pred_def)
38qed
39
40lemma stopping_time_const: "stopping_time F (\<lambda>x. c)"
41  by (auto simp: stopping_time_def)
42
43lemma stopping_time_min:
44  "stopping_time F T \<Longrightarrow> stopping_time F S \<Longrightarrow> stopping_time F (\<lambda>x. min (T x) (S x))"
45  by (auto simp: stopping_time_def min_le_iff_disj intro!: pred_intros_logic)
46
47lemma stopping_time_max:
48  "stopping_time F T \<Longrightarrow> stopping_time F S \<Longrightarrow> stopping_time F (\<lambda>x. max (T x) (S x))"
49  by (auto simp: stopping_time_def intro!: pred_intros_logic)
50
51section \<open>Filtration\<close>
52
53locale filtration =
54  fixes \<Omega> :: "'a set" and F :: "'t::{linorder_topology, second_countable_topology} \<Rightarrow> 'a measure"
55  assumes space_F: "\<And>i. space (F i) = \<Omega>"
56  assumes sets_F_mono: "\<And>i j. i \<le> j \<Longrightarrow> sets (F i) \<le> sets (F j)"
57begin
58
59subsection \<open>$\sigma$-algebra of a Stopping Time\<close>
60
61definition pre_sigma :: "('a \<Rightarrow> 't) \<Rightarrow> 'a measure"
62where
63  "pre_sigma T = sigma \<Omega> {A. \<forall>t. {\<omega>\<in>A. T \<omega> \<le> t} \<in> sets (F t)}"
64
65lemma space_pre_sigma: "space (pre_sigma T) = \<Omega>"
66  unfolding pre_sigma_def using sets.space_closed[of "F _"]
67  by (intro space_measure_of) (auto simp: space_F)
68
69lemma measure_pre_sigma[simp]: "emeasure (pre_sigma T) = (\<lambda>_. 0)"
70  by (simp add: pre_sigma_def emeasure_sigma)
71
72lemma sigma_algebra_pre_sigma:
73  assumes T: "stopping_time F T"
74  shows "sigma_algebra \<Omega> {A. \<forall>t. {\<omega>\<in>A. T \<omega> \<le> t} \<in> sets (F t)}"
75  unfolding sigma_algebra_iff2
76proof (intro sigma_algebra_iff2[THEN iffD2] conjI ballI allI impI CollectI)
77  show "{A. \<forall>t. {\<omega> \<in> A. T \<omega> \<le> t} \<in> sets (F t)} \<subseteq> Pow \<Omega>"
78    using sets.space_closed[of "F _"] by (auto simp: space_F)
79next
80  fix A t assume "A \<in> {A. \<forall>t. {\<omega> \<in> A. T \<omega> \<le> t} \<in> sets (F t)}"
81  then have "{\<omega> \<in> space (F t). T \<omega> \<le> t} - {\<omega> \<in> A. T \<omega> \<le> t} \<in> sets (F t)"
82    using T stopping_timeD[measurable] by auto
83  also have "{\<omega> \<in> space (F t). T \<omega> \<le> t} - {\<omega> \<in> A. T \<omega> \<le> t} = {\<omega> \<in> \<Omega> - A. T \<omega> \<le> t}"
84    by (auto simp: space_F)
85  finally show "{\<omega> \<in> \<Omega> - A. T \<omega> \<le> t} \<in> sets (F t)" .
86next
87  fix AA :: "nat \<Rightarrow> 'a set" and t assume "range AA \<subseteq> {A. \<forall>t. {\<omega> \<in> A. T \<omega> \<le> t} \<in> sets (F t)}"
88  then have "(\<Union>i. {\<omega> \<in> AA i. T \<omega> \<le> t}) \<in> sets (F t)" for t
89    by auto
90  also have "(\<Union>i. {\<omega> \<in> AA i. T \<omega> \<le> t}) = {\<omega> \<in> \<Union>(AA ` UNIV). T \<omega> \<le> t}"
91    by auto
92  finally show "{\<omega> \<in> \<Union>(AA ` UNIV). T \<omega> \<le> t} \<in> sets (F t)" .
93qed auto
94
95lemma sets_pre_sigma: "stopping_time F T \<Longrightarrow> sets (pre_sigma T) = {A. \<forall>t. {\<omega>\<in>A. T \<omega> \<le> t} \<in> sets (F t)}"
96  unfolding pre_sigma_def by (rule sigma_algebra.sets_measure_of_eq[OF sigma_algebra_pre_sigma])
97
98lemma sets_pre_sigmaI: "stopping_time F T \<Longrightarrow> (\<And>t. {\<omega>\<in>A. T \<omega> \<le> t} \<in> sets (F t)) \<Longrightarrow> A \<in> sets (pre_sigma T)"
99  unfolding sets_pre_sigma by auto
100
101lemma pred_pre_sigmaI:
102  assumes T: "stopping_time F T"
103  shows "(\<And>t. Measurable.pred (F t) (\<lambda>\<omega>. P \<omega> \<and> T \<omega> \<le> t)) \<Longrightarrow> Measurable.pred (pre_sigma T) P"
104  unfolding pred_def space_F space_pre_sigma by (intro sets_pre_sigmaI[OF T]) simp
105
106lemma sets_pre_sigmaD: "stopping_time F T \<Longrightarrow> A \<in> sets (pre_sigma T) \<Longrightarrow> {\<omega>\<in>A. T \<omega> \<le> t} \<in> sets (F t)"
107  unfolding sets_pre_sigma by auto
108
109lemma stopping_time_le_const: "stopping_time F T \<Longrightarrow> s \<le> t \<Longrightarrow> Measurable.pred (F t) (\<lambda>\<omega>. T \<omega> \<le> s)"
110  using stopping_timeD[of F T] sets_F_mono[of _ t] by (auto simp: pred_def space_F)
111
112lemma measurable_stopping_time_pre_sigma:
113  assumes T: "stopping_time F T" shows "T \<in> pre_sigma T \<rightarrow>\<^sub>M borel"
114proof (intro borel_measurableI_le sets_pre_sigmaI[OF T])
115  fix t t'
116  have "{\<omega>\<in>space (F (min t' t)). T \<omega> \<le> min t' t} \<in> sets (F (min t' t))"
117    using T unfolding pred_def[symmetric] by (rule stopping_timeD)
118  also have "\<dots> \<subseteq> sets (F t)"
119    by (rule sets_F_mono) simp
120  finally show "{\<omega> \<in> {x \<in> space (pre_sigma T). T x \<le> t'}. T \<omega> \<le> t} \<in> sets (F t)"
121    by (simp add: space_pre_sigma space_F)
122qed
123
124lemma mono_pre_sigma:
125  assumes T: "stopping_time F T" and S: "stopping_time F S"
126    and le: "\<And>\<omega>. \<omega> \<in> \<Omega> \<Longrightarrow> T \<omega> \<le> S \<omega>"
127  shows "sets (pre_sigma T) \<subseteq> sets (pre_sigma S)"
128  unfolding sets_pre_sigma[OF S] sets_pre_sigma[OF T]
129proof safe
130  interpret sigma_algebra \<Omega> "{A. \<forall>t. {\<omega>\<in>A. T \<omega> \<le> t} \<in> sets (F t)}"
131    using T by (rule sigma_algebra_pre_sigma)
132  fix A t assume A: "\<forall>t. {\<omega>\<in>A. T \<omega> \<le> t} \<in> sets (F t)"
133  then have "A \<subseteq> \<Omega>"
134    using sets_into_space by auto
135  from A have "{\<omega>\<in>A. T \<omega> \<le> t} \<inter> {\<omega>\<in>space (F t). S \<omega> \<le> t} \<in> sets (F t)"
136    using stopping_timeD[OF S] by (auto simp: pred_def)
137  also have "{\<omega>\<in>A. T \<omega> \<le> t} \<inter> {\<omega>\<in>space (F t). S \<omega> \<le> t} = {\<omega>\<in>A. S \<omega> \<le> t}"
138    using \<open>A \<subseteq> \<Omega>\<close> sets_into_space[of A] le by (auto simp: space_F intro: order_trans)
139  finally show "{\<omega>\<in>A. S \<omega> \<le> t} \<in> sets (F t)"
140    by auto
141qed
142
143lemma stopping_time_less_const:
144  assumes T: "stopping_time F T" shows "Measurable.pred (F t) (\<lambda>\<omega>. T \<omega> < t)"
145proof -
146  guess D :: "'t set" by (rule countable_dense_setE)
147  note D = this
148  show ?thesis
149  proof cases
150    assume *: "\<forall>t'<t. \<exists>t''. t' < t'' \<and> t'' < t"
151    { fix t' assume "t' < t"
152      with * have "{t' <..< t} \<noteq> {}"
153        by fastforce
154      with D(2)[OF _ this]
155      have "\<exists>d\<in>D. t'< d \<and> d < t"
156        by auto }
157    note ** = this
158
159    show ?thesis
160    proof (rule measurable_cong[THEN iffD2])
161      show "T \<omega> < t \<longleftrightarrow> (\<exists>r\<in>{r\<in>D. r < t}. T \<omega> \<le> r)" for \<omega>
162        by (auto dest: ** intro: less_imp_le)
163      show "Measurable.pred (F t) (\<lambda>w. \<exists>r\<in>{r \<in> D. r < t}. T w \<le> r)"
164        by (intro measurable_pred_countable stopping_time_le_const[OF T] countable_Collect D) auto
165    qed
166  next
167    assume "\<not> (\<forall>t'<t. \<exists>t''. t' < t'' \<and> t'' < t)"
168    then obtain t' where t': "t' < t" "\<And>t''. t'' < t \<Longrightarrow> t'' \<le> t'"
169      by (auto simp: not_less[symmetric])
170    show ?thesis
171    proof (rule measurable_cong[THEN iffD2])
172      show "T \<omega> < t \<longleftrightarrow> T \<omega> \<le> t'" for \<omega>
173        using t' by auto
174      show "Measurable.pred (F t) (\<lambda>w. T w \<le> t')"
175        using \<open>t'<t\<close> by (intro stopping_time_le_const[OF T]) auto
176    qed
177  qed
178qed
179
180lemma stopping_time_eq_const: "stopping_time F T \<Longrightarrow> Measurable.pred (F t) (\<lambda>\<omega>. T \<omega> = t)"
181  unfolding eq_iff using stopping_time_less_const[of T t]
182  by (intro pred_intros_logic stopping_time_le_const) (auto simp: not_less[symmetric] )
183
184lemma stopping_time_less:
185  assumes T: "stopping_time F T" and S: "stopping_time F S"
186  shows "Measurable.pred (pre_sigma T) (\<lambda>\<omega>. T \<omega> < S \<omega>)"
187proof (rule pred_pre_sigmaI[OF T])
188  fix t
189  obtain D :: "'t set"
190    where [simp]: "countable D" and semidense_D: "\<And>x y. x < y \<Longrightarrow> (\<exists>b\<in>D. x \<le> b \<and> b < y)"
191    using countable_separating_set_linorder2 by auto
192  show "Measurable.pred (F t) (\<lambda>\<omega>. T \<omega> < S \<omega> \<and> T \<omega> \<le> t)"
193  proof (rule measurable_cong[THEN iffD2])
194    let ?f = "\<lambda>\<omega>. if T \<omega> = t then \<not> S \<omega> \<le> t else \<exists>s\<in>{s\<in>D. s \<le> t}. T \<omega> \<le> s \<and> \<not> (S \<omega> \<le> s)"
195    { fix \<omega> assume "T \<omega> \<le> t" "T \<omega> \<noteq> t" "T \<omega> < S \<omega>"
196      then have "T \<omega> < min t (S \<omega>)"
197        by auto
198      then obtain r where "r \<in> D" "T \<omega> \<le> r" "r < min t (S \<omega>)"
199        by (metis semidense_D)
200      then have "\<exists>s\<in>{s\<in>D. s \<le> t}. T \<omega> \<le> s \<and> s < S \<omega>"
201        by auto }
202    then show "(T \<omega> < S \<omega> \<and> T \<omega> \<le> t) = ?f \<omega>" for \<omega>
203      by (auto simp: not_le)
204    show "Measurable.pred (F t) ?f"
205      by (intro pred_intros_logic measurable_If measurable_pred_countable countable_Collect
206                stopping_time_le_const predE stopping_time_eq_const T S)
207         auto
208  qed
209qed
210
211end
212
213lemma stopping_time_SUP_enat:
214  fixes T :: "nat \<Rightarrow> ('a \<Rightarrow> enat)"
215  shows "(\<And>i. stopping_time F (T i)) \<Longrightarrow> stopping_time F (SUP i. T i)"
216  unfolding stopping_time_def SUP_apply SUP_le_iff by (auto intro!: pred_intros_countable)
217
218lemma less_eSuc_iff: "a < eSuc b \<longleftrightarrow> (a \<le> b \<and> a \<noteq> \<infinity>)"
219  by (cases a) auto
220
221lemma stopping_time_Inf_enat:
222  fixes F :: "enat \<Rightarrow> 'a measure"
223  assumes F: "filtration \<Omega> F"
224  assumes P: "\<And>i. Measurable.pred (F i) (P i)"
225  shows "stopping_time F (\<lambda>\<omega>. Inf {i. P i \<omega>})"
226proof (rule stopping_timeI, cases)
227  fix t :: enat assume "t = \<infinity>" then show "Measurable.pred (F t) (\<lambda>\<omega>. Inf {i. P i \<omega>} \<le> t)"
228    by auto
229next
230  fix t :: enat assume "t \<noteq> \<infinity>"
231  moreover
232  { fix i \<omega> assume "Inf {i. P i \<omega>} \<le> t"
233    with \<open>t \<noteq> \<infinity>\<close> have "(\<exists>i\<le>t. P i \<omega>)"
234      unfolding Inf_le_iff by (cases t) (auto elim!: allE[of _ "eSuc t"] simp: less_eSuc_iff) }
235  ultimately have *: "\<And>\<omega>. Inf {i. P i \<omega>} \<le> t \<longleftrightarrow> (\<exists>i\<in>{..t}. P i \<omega>)"
236    by (auto intro!: Inf_lower2)
237  show "Measurable.pred (F t) (\<lambda>\<omega>. Inf {i. P i \<omega>} \<le> t)"
238    unfolding * using filtration.sets_F_mono[OF F, of _ t] P
239    by (intro pred_intros_countable_bounded) (auto simp: pred_def filtration.space_F[OF F])
240qed
241
242lemma stopping_time_Inf_nat:
243  fixes F :: "nat \<Rightarrow> 'a measure"
244  assumes F: "filtration \<Omega> F"
245  assumes P: "\<And>i. Measurable.pred (F i) (P i)" and wf: "\<And>i \<omega>. \<omega> \<in> \<Omega> \<Longrightarrow> \<exists>n. P n \<omega>"
246  shows "stopping_time F (\<lambda>\<omega>. Inf {i. P i \<omega>})"
247  unfolding stopping_time_def
248proof (intro allI, subst measurable_cong)
249  fix t \<omega> assume "\<omega> \<in> space (F t)"
250  then have "\<omega> \<in> \<Omega>"
251    using filtration.space_F[OF F] by auto
252  from wf[OF this] have "((LEAST n. P n \<omega>) \<le> t) = (\<exists>i\<le>t. P i \<omega>)"
253    by (rule LeastI2_wellorder_ex) auto
254  then show "(Inf {i. P i \<omega>} \<le> t) = (\<exists>i\<in>{..t}. P i \<omega>)"
255    by (simp add: Inf_nat_def Bex_def)
256next
257  fix t from P show "Measurable.pred (F t) (\<lambda>w. \<exists>i\<in>{..t}. P i w)"
258    using filtration.sets_F_mono[OF F, of _ t]
259    by (intro pred_intros_countable_bounded) (auto simp: pred_def filtration.space_F[OF F])
260qed
261
262end
263