1(*  Title:      HOL/Probability/Probability_Measure.thy
2    Author:     Johannes H��lzl, TU M��nchen
3    Author:     Armin Heller, TU M��nchen
4*)
5
6section \<open>Probability measure\<close>
7
8theory Probability_Measure
9  imports "HOL-Analysis.Analysis"
10begin
11
12locale prob_space = finite_measure +
13  assumes emeasure_space_1: "emeasure M (space M) = 1"
14
15lemma prob_spaceI[Pure.intro!]:
16  assumes *: "emeasure M (space M) = 1"
17  shows "prob_space M"
18proof -
19  interpret finite_measure M
20  proof
21    show "emeasure M (space M) \<noteq> \<infinity>" using * by simp
22  qed
23  show "prob_space M" by standard fact
24qed
25
26lemma prob_space_imp_sigma_finite: "prob_space M \<Longrightarrow> sigma_finite_measure M"
27  unfolding prob_space_def finite_measure_def by simp
28
29abbreviation (in prob_space) "events \<equiv> sets M"
30abbreviation (in prob_space) "prob \<equiv> measure M"
31abbreviation (in prob_space) "random_variable M' X \<equiv> X \<in> measurable M M'"
32abbreviation (in prob_space) "expectation \<equiv> integral\<^sup>L M"
33abbreviation (in prob_space) "variance X \<equiv> integral\<^sup>L M (\<lambda>x. (X x - expectation X)\<^sup>2)"
34
35lemma (in prob_space) finite_measure [simp]: "finite_measure M"
36  by unfold_locales
37
38lemma (in prob_space) prob_space_distr:
39  assumes f: "f \<in> measurable M M'" shows "prob_space (distr M M' f)"
40proof (rule prob_spaceI)
41  have "f -` space M' \<inter> space M = space M" using f by (auto dest: measurable_space)
42  with f show "emeasure (distr M M' f) (space (distr M M' f)) = 1"
43    by (auto simp: emeasure_distr emeasure_space_1)
44qed
45
46lemma prob_space_distrD:
47  assumes f: "f \<in> measurable M N" and M: "prob_space (distr M N f)" shows "prob_space M"
48proof
49  interpret M: prob_space "distr M N f" by fact
50  have "f -` space N \<inter> space M = space M"
51    using f[THEN measurable_space] by auto
52  then show "emeasure M (space M) = 1"
53    using M.emeasure_space_1 by (simp add: emeasure_distr[OF f])
54qed
55
56lemma (in prob_space) prob_space: "prob (space M) = 1"
57  using emeasure_space_1 unfolding measure_def by (simp add: one_ennreal.rep_eq)
58
59lemma (in prob_space) prob_le_1[simp, intro]: "prob A \<le> 1"
60  using bounded_measure[of A] by (simp add: prob_space)
61
62lemma (in prob_space) not_empty: "space M \<noteq> {}"
63  using prob_space by auto
64
65lemma (in prob_space) emeasure_eq_1_AE:
66  "S \<in> sets M \<Longrightarrow> AE x in M. x \<in> S \<Longrightarrow> emeasure M S = 1"
67  by (subst emeasure_eq_AE[where B="space M"]) (auto simp: emeasure_space_1)
68
69lemma (in prob_space) emeasure_le_1: "emeasure M S \<le> 1"
70  unfolding ennreal_1[symmetric] emeasure_eq_measure by (subst ennreal_le_iff) auto
71
72lemma (in prob_space) emeasure_ge_1_iff: "emeasure M A \<ge> 1 \<longleftrightarrow> emeasure M A = 1"
73  by (rule iffI, intro antisym emeasure_le_1) simp_all
74
75lemma (in prob_space) AE_iff_emeasure_eq_1:
76  assumes [measurable]: "Measurable.pred M P"
77  shows "(AE x in M. P x) \<longleftrightarrow> emeasure M {x\<in>space M. P x} = 1"
78proof -
79  have *: "{x \<in> space M. \<not> P x} = space M - {x\<in>space M. P x}"
80    by auto
81  show ?thesis
82    by (auto simp add: ennreal_minus_eq_0 * emeasure_compl emeasure_space_1 AE_iff_measurable[OF _ refl]
83             intro: antisym emeasure_le_1)
84qed
85
86lemma (in prob_space) measure_le_1: "emeasure M X \<le> 1"
87  using emeasure_space[of M X] by (simp add: emeasure_space_1)
88
89lemma (in prob_space) measure_ge_1_iff: "measure M A \<ge> 1 \<longleftrightarrow> measure M A = 1"
90  by (auto intro!: antisym)
91
92lemma (in prob_space) AE_I_eq_1:
93  assumes "emeasure M {x\<in>space M. P x} = 1" "{x\<in>space M. P x} \<in> sets M"
94  shows "AE x in M. P x"
95proof (rule AE_I)
96  show "emeasure M (space M - {x \<in> space M. P x}) = 0"
97    using assms emeasure_space_1 by (simp add: emeasure_compl)
98qed (insert assms, auto)
99
100lemma prob_space_restrict_space:
101  "S \<in> sets M \<Longrightarrow> emeasure M S = 1 \<Longrightarrow> prob_space (restrict_space M S)"
102  by (intro prob_spaceI)
103     (simp add: emeasure_restrict_space space_restrict_space)
104
105lemma (in prob_space) prob_compl:
106  assumes A: "A \<in> events"
107  shows "prob (space M - A) = 1 - prob A"
108  using finite_measure_compl[OF A] by (simp add: prob_space)
109
110lemma (in prob_space) AE_in_set_eq_1:
111  assumes A[measurable]: "A \<in> events" shows "(AE x in M. x \<in> A) \<longleftrightarrow> prob A = 1"
112proof -
113  have *: "{x\<in>space M. x \<in> A} = A"
114    using A[THEN sets.sets_into_space] by auto
115  show ?thesis
116    by (subst AE_iff_emeasure_eq_1) (auto simp: emeasure_eq_measure *)
117qed
118
119lemma (in prob_space) AE_False: "(AE x in M. False) \<longleftrightarrow> False"
120proof
121  assume "AE x in M. False"
122  then have "AE x in M. x \<in> {}" by simp
123  then show False
124    by (subst (asm) AE_in_set_eq_1) auto
125qed simp
126
127lemma (in prob_space) AE_prob_1:
128  assumes "prob A = 1" shows "AE x in M. x \<in> A"
129proof -
130  from \<open>prob A = 1\<close> have "A \<in> events"
131    by (metis measure_notin_sets zero_neq_one)
132  with AE_in_set_eq_1 assms show ?thesis by simp
133qed
134
135lemma (in prob_space) AE_const[simp]: "(AE x in M. P) \<longleftrightarrow> P"
136  by (cases P) (auto simp: AE_False)
137
138lemma (in prob_space) ae_filter_bot: "ae_filter M \<noteq> bot"
139  by (simp add: trivial_limit_def)
140
141lemma (in prob_space) AE_contr:
142  assumes ae: "AE \<omega> in M. P \<omega>" "AE \<omega> in M. \<not> P \<omega>"
143  shows False
144proof -
145  from ae have "AE \<omega> in M. False" by eventually_elim auto
146  then show False by auto
147qed
148
149lemma (in prob_space) integral_ge_const:
150  fixes c :: real
151  shows "integrable M f \<Longrightarrow> (AE x in M. c \<le> f x) \<Longrightarrow> c \<le> (\<integral>x. f x \<partial>M)"
152  using integral_mono_AE[of M "\<lambda>x. c" f] prob_space by simp
153
154lemma (in prob_space) integral_le_const:
155  fixes c :: real
156  shows "integrable M f \<Longrightarrow> (AE x in M. f x \<le> c) \<Longrightarrow> (\<integral>x. f x \<partial>M) \<le> c"
157  using integral_mono_AE[of M f "\<lambda>x. c"] prob_space by simp
158
159lemma (in prob_space) nn_integral_ge_const:
160  "(AE x in M. c \<le> f x) \<Longrightarrow> c \<le> (\<integral>\<^sup>+x. f x \<partial>M)"
161  using nn_integral_mono_AE[of "\<lambda>x. c" f M] emeasure_space_1
162  by (simp split: if_split_asm)
163
164lemma (in prob_space) expectation_less:
165  fixes X :: "_ \<Rightarrow> real"
166  assumes [simp]: "integrable M X"
167  assumes gt: "AE x in M. X x < b"
168  shows "expectation X < b"
169proof -
170  have "expectation X < expectation (\<lambda>x. b)"
171    using gt emeasure_space_1
172    by (intro integral_less_AE_space) auto
173  then show ?thesis using prob_space by simp
174qed
175
176lemma (in prob_space) expectation_greater:
177  fixes X :: "_ \<Rightarrow> real"
178  assumes [simp]: "integrable M X"
179  assumes gt: "AE x in M. a < X x"
180  shows "a < expectation X"
181proof -
182  have "expectation (\<lambda>x. a) < expectation X"
183    using gt emeasure_space_1
184    by (intro integral_less_AE_space) auto
185  then show ?thesis using prob_space by simp
186qed
187
188lemma (in prob_space) jensens_inequality:
189  fixes q :: "real \<Rightarrow> real"
190  assumes X: "integrable M X" "AE x in M. X x \<in> I"
191  assumes I: "I = {a <..< b} \<or> I = {a <..} \<or> I = {..< b} \<or> I = UNIV"
192  assumes q: "integrable M (\<lambda>x. q (X x))" "convex_on I q"
193  shows "q (expectation X) \<le> expectation (\<lambda>x. q (X x))"
194proof -
195  let ?F = "\<lambda>x. Inf ((\<lambda>t. (q x - q t) / (x - t)) ` ({x<..} \<inter> I))"
196  from X(2) AE_False have "I \<noteq> {}" by auto
197
198  from I have "open I" by auto
199
200  note I
201  moreover
202  { assume "I \<subseteq> {a <..}"
203    with X have "a < expectation X"
204      by (intro expectation_greater) auto }
205  moreover
206  { assume "I \<subseteq> {..< b}"
207    with X have "expectation X < b"
208      by (intro expectation_less) auto }
209  ultimately have "expectation X \<in> I"
210    by (elim disjE)  (auto simp: subset_eq)
211  moreover
212  { fix y assume y: "y \<in> I"
213    with q(2) \<open>open I\<close> have "Sup ((\<lambda>x. q x + ?F x * (y - x)) ` I) = q y"
214      by (auto intro!: cSup_eq_maximum convex_le_Inf_differential image_eqI [OF _ y] simp: interior_open) }
215  ultimately have "q (expectation X) = Sup ((\<lambda>x. q x + ?F x * (expectation X - x)) ` I)"
216    by simp
217  also have "\<dots> \<le> expectation (\<lambda>w. q (X w))"
218  proof (rule cSup_least)
219    show "(\<lambda>x. q x + ?F x * (expectation X - x)) ` I \<noteq> {}"
220      using \<open>I \<noteq> {}\<close> by auto
221  next
222    fix k assume "k \<in> (\<lambda>x. q x + ?F x * (expectation X - x)) ` I"
223    then guess x .. note x = this
224    have "q x + ?F x * (expectation X  - x) = expectation (\<lambda>w. q x + ?F x * (X w - x))"
225      using prob_space by (simp add: X)
226    also have "\<dots> \<le> expectation (\<lambda>w. q (X w))"
227      using \<open>x \<in> I\<close> \<open>open I\<close> X(2)
228      apply (intro integral_mono_AE Bochner_Integration.integrable_add Bochner_Integration.integrable_mult_right Bochner_Integration.integrable_diff
229                integrable_const X q)
230      apply (elim eventually_mono)
231      apply (intro convex_le_Inf_differential)
232      apply (auto simp: interior_open q)
233      done
234    finally show "k \<le> expectation (\<lambda>w. q (X w))" using x by auto
235  qed
236  finally show "q (expectation X) \<le> expectation (\<lambda>x. q (X x))" .
237qed
238
239subsection  \<open>Introduce binder for probability\<close>
240
241syntax
242  "_prob" :: "pttrn \<Rightarrow> logic \<Rightarrow> logic \<Rightarrow> logic" (\<open>('\<P>'((/_ in _./ _)'))\<close>)
243
244translations
245  "\<P>(x in M. P)" => "CONST measure M {x \<in> CONST space M. P}"
246
247print_translation \<open>
248  let
249    fun to_pattern (Const (\<^const_syntax>\<open>Pair\<close>, _) $ l $ r) =
250      Syntax.const \<^const_syntax>\<open>Pair\<close> :: to_pattern l @ to_pattern r
251    | to_pattern (t as (Const (\<^syntax_const>\<open>_bound\<close>, _)) $ _) = [t]
252
253    fun mk_pattern ((t, n) :: xs) = mk_patterns n xs |>> curry list_comb t
254    and mk_patterns 0 xs = ([], xs)
255    | mk_patterns n xs =
256      let
257        val (t, xs') = mk_pattern xs
258        val (ts, xs'') = mk_patterns (n - 1) xs'
259      in
260        (t :: ts, xs'')
261      end
262
263    fun unnest_tuples
264      (Const (\<^syntax_const>\<open>_pattern\<close>, _) $
265        t1 $
266        (t as (Const (\<^syntax_const>\<open>_pattern\<close>, _) $ _ $ _)))
267      = let
268        val (_ $ t2 $ t3) = unnest_tuples t
269      in
270        Syntax.const \<^syntax_const>\<open>_pattern\<close> $
271          unnest_tuples t1 $
272          (Syntax.const \<^syntax_const>\<open>_patterns\<close> $ t2 $ t3)
273      end
274    | unnest_tuples pat = pat
275
276    fun tr' [sig_alg, Const (\<^const_syntax>\<open>Collect\<close>, _) $ t] =
277      let
278        val bound_dummyT = Const (\<^syntax_const>\<open>_bound\<close>, dummyT)
279
280        fun go pattern elem
281          (Const (\<^const_syntax>\<open>conj\<close>, _) $
282            (Const (\<^const_syntax>\<open>Set.member\<close>, _) $ elem' $ (Const (\<^const_syntax>\<open>space\<close>, _) $ sig_alg')) $
283            u)
284          = let
285              val _ = if sig_alg aconv sig_alg' andalso to_pattern elem' = rev elem then () else raise Match;
286              val (pat, rest) = mk_pattern (rev pattern);
287              val _ = case rest of [] => () | _ => raise Match
288            in
289              Syntax.const \<^syntax_const>\<open>_prob\<close> $ unnest_tuples pat $ sig_alg $ u
290            end
291        | go pattern elem (Abs abs) =
292            let
293              val (x as (_ $ tx), t) = Syntax_Trans.atomic_abs_tr' abs
294            in
295              go ((x, 0) :: pattern) (bound_dummyT $ tx :: elem) t
296            end
297        | go pattern elem (Const (\<^const_syntax>\<open>case_prod\<close>, _) $ t) =
298            go
299              ((Syntax.const \<^syntax_const>\<open>_pattern\<close>, 2) :: pattern)
300              (Syntax.const \<^const_syntax>\<open>Pair\<close> :: elem)
301              t
302      in
303        go [] [] t
304      end
305  in
306    [(\<^const_syntax>\<open>Sigma_Algebra.measure\<close>, K tr')]
307  end
308\<close>
309
310definition
311  "cond_prob M P Q = \<P>(\<omega> in M. P \<omega> \<and> Q \<omega>) / \<P>(\<omega> in M. Q \<omega>)"
312
313syntax
314  "_conditional_prob" :: "pttrn \<Rightarrow> logic \<Rightarrow> logic \<Rightarrow> logic \<Rightarrow> logic" (\<open>('\<P>'(_ in _. _ \<bar>/ _'))\<close>)
315
316translations
317  "\<P>(x in M. P \<bar> Q)" => "CONST cond_prob M (\<lambda>x. P) (\<lambda>x. Q)"
318
319lemma (in prob_space) AE_E_prob:
320  assumes ae: "AE x in M. P x"
321  obtains S where "S \<subseteq> {x \<in> space M. P x}" "S \<in> events" "prob S = 1"
322proof -
323  from ae[THEN AE_E] guess N .
324  then show thesis
325    by (intro that[of "space M - N"])
326       (auto simp: prob_compl prob_space emeasure_eq_measure measure_nonneg)
327qed
328
329lemma (in prob_space) prob_neg: "{x\<in>space M. P x} \<in> events \<Longrightarrow> \<P>(x in M. \<not> P x) = 1 - \<P>(x in M. P x)"
330  by (auto intro!: arg_cong[where f=prob] simp add: prob_compl[symmetric])
331
332lemma (in prob_space) prob_eq_AE:
333  "(AE x in M. P x \<longleftrightarrow> Q x) \<Longrightarrow> {x\<in>space M. P x} \<in> events \<Longrightarrow> {x\<in>space M. Q x} \<in> events \<Longrightarrow> \<P>(x in M. P x) = \<P>(x in M. Q x)"
334  by (rule finite_measure_eq_AE) auto
335
336lemma (in prob_space) prob_eq_0_AE:
337  assumes not: "AE x in M. \<not> P x" shows "\<P>(x in M. P x) = 0"
338proof cases
339  assume "{x\<in>space M. P x} \<in> events"
340  with not have "\<P>(x in M. P x) = \<P>(x in M. False)"
341    by (intro prob_eq_AE) auto
342  then show ?thesis by simp
343qed (simp add: measure_notin_sets)
344
345lemma (in prob_space) prob_Collect_eq_0:
346  "{x \<in> space M. P x} \<in> sets M \<Longrightarrow> \<P>(x in M. P x) = 0 \<longleftrightarrow> (AE x in M. \<not> P x)"
347  using AE_iff_measurable[OF _ refl, of M "\<lambda>x. \<not> P x"] by (simp add: emeasure_eq_measure measure_nonneg)
348
349lemma (in prob_space) prob_Collect_eq_1:
350  "{x \<in> space M. P x} \<in> sets M \<Longrightarrow> \<P>(x in M. P x) = 1 \<longleftrightarrow> (AE x in M. P x)"
351  using AE_in_set_eq_1[of "{x\<in>space M. P x}"] by simp
352
353lemma (in prob_space) prob_eq_0:
354  "A \<in> sets M \<Longrightarrow> prob A = 0 \<longleftrightarrow> (AE x in M. x \<notin> A)"
355  using AE_iff_measurable[OF _ refl, of M "\<lambda>x. x \<notin> A"]
356  by (auto simp add: emeasure_eq_measure Int_def[symmetric] measure_nonneg)
357
358lemma (in prob_space) prob_eq_1:
359  "A \<in> sets M \<Longrightarrow> prob A = 1 \<longleftrightarrow> (AE x in M. x \<in> A)"
360  using AE_in_set_eq_1[of A] by simp
361
362lemma (in prob_space) prob_sums:
363  assumes P: "\<And>n. {x\<in>space M. P n x} \<in> events"
364  assumes Q: "{x\<in>space M. Q x} \<in> events"
365  assumes ae: "AE x in M. (\<forall>n. P n x \<longrightarrow> Q x) \<and> (Q x \<longrightarrow> (\<exists>!n. P n x))"
366  shows "(\<lambda>n. \<P>(x in M. P n x)) sums \<P>(x in M. Q x)"
367proof -
368  from ae[THEN AE_E_prob] guess S . note S = this
369  then have disj: "disjoint_family (\<lambda>n. {x\<in>space M. P n x} \<inter> S)"
370    by (auto simp: disjoint_family_on_def)
371  from S have ae_S:
372    "AE x in M. x \<in> {x\<in>space M. Q x} \<longleftrightarrow> x \<in> (\<Union>n. {x\<in>space M. P n x} \<inter> S)"
373    "\<And>n. AE x in M. x \<in> {x\<in>space M. P n x} \<longleftrightarrow> x \<in> {x\<in>space M. P n x} \<inter> S"
374    using ae by (auto dest!: AE_prob_1)
375  from ae_S have *:
376    "\<P>(x in M. Q x) = prob (\<Union>n. {x\<in>space M. P n x} \<inter> S)"
377    using P Q S by (intro finite_measure_eq_AE) auto
378  from ae_S have **:
379    "\<And>n. \<P>(x in M. P n x) = prob ({x\<in>space M. P n x} \<inter> S)"
380    using P Q S by (intro finite_measure_eq_AE) auto
381  show ?thesis
382    unfolding * ** using S P disj
383    by (intro finite_measure_UNION) auto
384qed
385
386lemma (in prob_space) prob_sum:
387  assumes [simp, intro]: "finite I"
388  assumes P: "\<And>n. n \<in> I \<Longrightarrow> {x\<in>space M. P n x} \<in> events"
389  assumes Q: "{x\<in>space M. Q x} \<in> events"
390  assumes ae: "AE x in M. (\<forall>n\<in>I. P n x \<longrightarrow> Q x) \<and> (Q x \<longrightarrow> (\<exists>!n\<in>I. P n x))"
391  shows "\<P>(x in M. Q x) = (\<Sum>n\<in>I. \<P>(x in M. P n x))"
392proof -
393  from ae[THEN AE_E_prob] guess S . note S = this
394  then have disj: "disjoint_family_on (\<lambda>n. {x\<in>space M. P n x} \<inter> S) I"
395    by (auto simp: disjoint_family_on_def)
396  from S have ae_S:
397    "AE x in M. x \<in> {x\<in>space M. Q x} \<longleftrightarrow> x \<in> (\<Union>n\<in>I. {x\<in>space M. P n x} \<inter> S)"
398    "\<And>n. n \<in> I \<Longrightarrow> AE x in M. x \<in> {x\<in>space M. P n x} \<longleftrightarrow> x \<in> {x\<in>space M. P n x} \<inter> S"
399    using ae by (auto dest!: AE_prob_1)
400  from ae_S have *:
401    "\<P>(x in M. Q x) = prob (\<Union>n\<in>I. {x\<in>space M. P n x} \<inter> S)"
402    using P Q S by (intro finite_measure_eq_AE) (auto intro!: sets.Int)
403  from ae_S have **:
404    "\<And>n. n \<in> I \<Longrightarrow> \<P>(x in M. P n x) = prob ({x\<in>space M. P n x} \<inter> S)"
405    using P Q S by (intro finite_measure_eq_AE) auto
406  show ?thesis
407    using S P disj
408    by (auto simp add: * ** simp del: UN_simps intro!: finite_measure_finite_Union)
409qed
410
411lemma (in prob_space) prob_EX_countable:
412  assumes sets: "\<And>i. i \<in> I \<Longrightarrow> {x\<in>space M. P i x} \<in> sets M" and I: "countable I"
413  assumes disj: "AE x in M. \<forall>i\<in>I. \<forall>j\<in>I. P i x \<longrightarrow> P j x \<longrightarrow> i = j"
414  shows "\<P>(x in M. \<exists>i\<in>I. P i x) = (\<integral>\<^sup>+i. \<P>(x in M. P i x) \<partial>count_space I)"
415proof -
416  let ?N= "\<lambda>x. \<exists>!i\<in>I. P i x"
417  have "ennreal (\<P>(x in M. \<exists>i\<in>I. P i x)) = \<P>(x in M. (\<exists>i\<in>I. P i x \<and> ?N x))"
418    unfolding ennreal_inj[OF measure_nonneg measure_nonneg]
419  proof (rule prob_eq_AE)
420    show "AE x in M. (\<exists>i\<in>I. P i x) = (\<exists>i\<in>I. P i x \<and> ?N x)"
421      using disj by eventually_elim blast
422  qed (auto intro!: sets.sets_Collect_countable_Ex' sets.sets_Collect_conj sets.sets_Collect_countable_Ex1' I sets)+
423  also have "\<P>(x in M. (\<exists>i\<in>I. P i x \<and> ?N x)) = emeasure M (\<Union>i\<in>I. {x\<in>space M. P i x \<and> ?N x})"
424    unfolding emeasure_eq_measure by (auto intro!: arg_cong[where f=prob] simp: measure_nonneg)
425  also have "\<dots> = (\<integral>\<^sup>+i. emeasure M {x\<in>space M. P i x \<and> ?N x} \<partial>count_space I)"
426    by (rule emeasure_UN_countable)
427       (auto intro!: sets.sets_Collect_countable_Ex' sets.sets_Collect_conj sets.sets_Collect_countable_Ex1' I sets
428             simp: disjoint_family_on_def)
429  also have "\<dots> = (\<integral>\<^sup>+i. \<P>(x in M. P i x) \<partial>count_space I)"
430    unfolding emeasure_eq_measure using disj
431    by (intro nn_integral_cong ennreal_inj[THEN iffD2] prob_eq_AE)
432       (auto intro!: sets.sets_Collect_countable_Ex' sets.sets_Collect_conj sets.sets_Collect_countable_Ex1' I sets measure_nonneg)+
433  finally show ?thesis .
434qed
435
436lemma (in prob_space) cond_prob_eq_AE:
437  assumes P: "AE x in M. Q x \<longrightarrow> P x \<longleftrightarrow> P' x" "{x\<in>space M. P x} \<in> events" "{x\<in>space M. P' x} \<in> events"
438  assumes Q: "AE x in M. Q x \<longleftrightarrow> Q' x" "{x\<in>space M. Q x} \<in> events" "{x\<in>space M. Q' x} \<in> events"
439  shows "cond_prob M P Q = cond_prob M P' Q'"
440  using P Q
441  by (auto simp: cond_prob_def intro!: arg_cong2[where f="(/)"] prob_eq_AE sets.sets_Collect_conj)
442
443
444lemma (in prob_space) joint_distribution_Times_le_fst:
445  "random_variable MX X \<Longrightarrow> random_variable MY Y \<Longrightarrow> A \<in> sets MX \<Longrightarrow> B \<in> sets MY
446    \<Longrightarrow> emeasure (distr M (MX \<Otimes>\<^sub>M MY) (\<lambda>x. (X x, Y x))) (A \<times> B) \<le> emeasure (distr M MX X) A"
447  by (auto simp: emeasure_distr measurable_pair_iff comp_def intro!: emeasure_mono measurable_sets)
448
449lemma (in prob_space) joint_distribution_Times_le_snd:
450  "random_variable MX X \<Longrightarrow> random_variable MY Y \<Longrightarrow> A \<in> sets MX \<Longrightarrow> B \<in> sets MY
451    \<Longrightarrow> emeasure (distr M (MX \<Otimes>\<^sub>M MY) (\<lambda>x. (X x, Y x))) (A \<times> B) \<le> emeasure (distr M MY Y) B"
452  by (auto simp: emeasure_distr measurable_pair_iff comp_def intro!: emeasure_mono measurable_sets)
453
454lemma (in prob_space) variance_eq:
455  fixes X :: "'a \<Rightarrow> real"
456  assumes [simp]: "integrable M X"
457  assumes [simp]: "integrable M (\<lambda>x. (X x)\<^sup>2)"
458  shows "variance X = expectation (\<lambda>x. (X x)\<^sup>2) - (expectation X)\<^sup>2"
459  by (simp add: field_simps prob_space power2_diff power2_eq_square[symmetric])
460
461lemma (in prob_space) variance_positive: "0 \<le> variance (X::'a \<Rightarrow> real)"
462  by (intro integral_nonneg_AE) (auto intro!: integral_nonneg_AE)
463
464lemma (in prob_space) variance_mean_zero:
465  "expectation X = 0 \<Longrightarrow> variance X = expectation (\<lambda>x. (X x)^2)"
466  by simp
467
468locale pair_prob_space = pair_sigma_finite M1 M2 + M1: prob_space M1 + M2: prob_space M2 for M1 M2
469
470sublocale pair_prob_space \<subseteq> P?: prob_space "M1 \<Otimes>\<^sub>M M2"
471proof
472  show "emeasure (M1 \<Otimes>\<^sub>M M2) (space (M1 \<Otimes>\<^sub>M M2)) = 1"
473    by (simp add: M2.emeasure_pair_measure_Times M1.emeasure_space_1 M2.emeasure_space_1 space_pair_measure)
474qed
475
476locale product_prob_space = product_sigma_finite M for M :: "'i \<Rightarrow> 'a measure" +
477  fixes I :: "'i set"
478  assumes prob_space: "\<And>i. prob_space (M i)"
479
480sublocale product_prob_space \<subseteq> M?: prob_space "M i" for i
481  by (rule prob_space)
482
483locale finite_product_prob_space = finite_product_sigma_finite M I + product_prob_space M I for M I
484
485sublocale finite_product_prob_space \<subseteq> prob_space "\<Pi>\<^sub>M i\<in>I. M i"
486proof
487  show "emeasure (\<Pi>\<^sub>M i\<in>I. M i) (space (\<Pi>\<^sub>M i\<in>I. M i)) = 1"
488    by (simp add: measure_times M.emeasure_space_1 prod.neutral_const space_PiM)
489qed
490
491lemma (in finite_product_prob_space) prob_times:
492  assumes X: "\<And>i. i \<in> I \<Longrightarrow> X i \<in> sets (M i)"
493  shows "prob (\<Pi>\<^sub>E i\<in>I. X i) = (\<Prod>i\<in>I. M.prob i (X i))"
494proof -
495  have "ennreal (measure (\<Pi>\<^sub>M i\<in>I. M i) (\<Pi>\<^sub>E i\<in>I. X i)) = emeasure (\<Pi>\<^sub>M i\<in>I. M i) (\<Pi>\<^sub>E i\<in>I. X i)"
496    using X by (simp add: emeasure_eq_measure)
497  also have "\<dots> = (\<Prod>i\<in>I. emeasure (M i) (X i))"
498    using measure_times X by simp
499  also have "\<dots> = ennreal (\<Prod>i\<in>I. measure (M i) (X i))"
500    using X by (simp add: M.emeasure_eq_measure prod_ennreal measure_nonneg)
501  finally show ?thesis by (simp add: measure_nonneg prod_nonneg)
502qed
503
504subsection \<open>Distributions\<close>
505
506definition distributed :: "'a measure \<Rightarrow> 'b measure \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> ennreal) \<Rightarrow> bool"
507where
508  "distributed M N X f \<longleftrightarrow>
509  distr M N X = density N f \<and> f \<in> borel_measurable N \<and> X \<in> measurable M N"
510
511lemma
512  assumes "distributed M N X f"
513  shows distributed_distr_eq_density: "distr M N X = density N f"
514    and distributed_measurable: "X \<in> measurable M N"
515    and distributed_borel_measurable: "f \<in> borel_measurable N"
516  using assms by (simp_all add: distributed_def)
517
518lemma
519  assumes D: "distributed M N X f"
520  shows distributed_measurable'[measurable_dest]:
521      "g \<in> measurable L M \<Longrightarrow> (\<lambda>x. X (g x)) \<in> measurable L N"
522    and distributed_borel_measurable'[measurable_dest]:
523      "h \<in> measurable L N \<Longrightarrow> (\<lambda>x. f (h x)) \<in> borel_measurable L"
524  using distributed_measurable[OF D] distributed_borel_measurable[OF D]
525  by simp_all
526
527lemma distributed_real_measurable:
528  "(\<And>x. x \<in> space N \<Longrightarrow> 0 \<le> f x) \<Longrightarrow> distributed M N X (\<lambda>x. ennreal (f x)) \<Longrightarrow> f \<in> borel_measurable N"
529  by (simp_all add: distributed_def)
530
531lemma distributed_real_measurable':
532  "(\<And>x. x \<in> space N \<Longrightarrow> 0 \<le> f x) \<Longrightarrow> distributed M N X (\<lambda>x. ennreal (f x)) \<Longrightarrow>
533    h \<in> measurable L N \<Longrightarrow> (\<lambda>x. f (h x)) \<in> borel_measurable L"
534  using distributed_real_measurable[measurable] by simp
535
536lemma joint_distributed_measurable1:
537  "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) f \<Longrightarrow> h1 \<in> measurable N M \<Longrightarrow> (\<lambda>x. X (h1 x)) \<in> measurable N S"
538  by simp
539
540lemma joint_distributed_measurable2:
541  "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) f \<Longrightarrow> h2 \<in> measurable N M \<Longrightarrow> (\<lambda>x. Y (h2 x)) \<in> measurable N T"
542  by simp
543
544lemma distributed_count_space:
545  assumes X: "distributed M (count_space A) X P" and a: "a \<in> A" and A: "finite A"
546  shows "P a = emeasure M (X -` {a} \<inter> space M)"
547proof -
548  have "emeasure M (X -` {a} \<inter> space M) = emeasure (distr M (count_space A) X) {a}"
549    using X a A by (simp add: emeasure_distr)
550  also have "\<dots> = emeasure (density (count_space A) P) {a}"
551    using X by (simp add: distributed_distr_eq_density)
552  also have "\<dots> = (\<integral>\<^sup>+x. P a * indicator {a} x \<partial>count_space A)"
553    using X a by (auto simp add: emeasure_density distributed_def indicator_def intro!: nn_integral_cong)
554  also have "\<dots> = P a"
555    using X a by (subst nn_integral_cmult_indicator) (auto simp: distributed_def one_ennreal_def[symmetric] AE_count_space)
556  finally show ?thesis ..
557qed
558
559lemma distributed_cong_density:
560  "(AE x in N. f x = g x) \<Longrightarrow> g \<in> borel_measurable N \<Longrightarrow> f \<in> borel_measurable N \<Longrightarrow>
561    distributed M N X f \<longleftrightarrow> distributed M N X g"
562  by (auto simp: distributed_def intro!: density_cong)
563
564lemma (in prob_space) distributed_imp_emeasure_nonzero:
565  assumes X: "distributed M MX X Px"
566  shows "emeasure MX {x \<in> space MX. Px x \<noteq> 0} \<noteq> 0"
567proof
568  note Px = distributed_borel_measurable[OF X]
569  interpret X: prob_space "distr M MX X"
570    using distributed_measurable[OF X] by (rule prob_space_distr)
571
572  assume "emeasure MX {x \<in> space MX. Px x \<noteq> 0} = 0"
573  with Px have "AE x in MX. Px x = 0"
574    by (intro AE_I[OF subset_refl]) (auto simp: borel_measurable_ennreal_iff)
575  moreover
576  from X.emeasure_space_1 have "(\<integral>\<^sup>+x. Px x \<partial>MX) = 1"
577    unfolding distributed_distr_eq_density[OF X] using Px
578    by (subst (asm) emeasure_density)
579       (auto simp: borel_measurable_ennreal_iff intro!: integral_cong cong: nn_integral_cong)
580  ultimately show False
581    by (simp add: nn_integral_cong_AE)
582qed
583
584lemma subdensity:
585  assumes T: "T \<in> measurable P Q"
586  assumes f: "distributed M P X f"
587  assumes g: "distributed M Q Y g"
588  assumes Y: "Y = T \<circ> X"
589  shows "AE x in P. g (T x) = 0 \<longrightarrow> f x = 0"
590proof -
591  have "{x\<in>space Q. g x = 0} \<in> null_sets (distr M Q (T \<circ> X))"
592    using g Y by (auto simp: null_sets_density_iff distributed_def)
593  also have "distr M Q (T \<circ> X) = distr (distr M P X) Q T"
594    using T f[THEN distributed_measurable] by (rule distr_distr[symmetric])
595  finally have "T -` {x\<in>space Q. g x = 0} \<inter> space P \<in> null_sets (distr M P X)"
596    using T by (subst (asm) null_sets_distr_iff) auto
597  also have "T -` {x\<in>space Q. g x = 0} \<inter> space P = {x\<in>space P. g (T x) = 0}"
598    using T by (auto dest: measurable_space)
599  finally show ?thesis
600    using f g by (auto simp add: null_sets_density_iff distributed_def)
601qed
602
603lemma subdensity_real:
604  fixes g :: "'a \<Rightarrow> real" and f :: "'b \<Rightarrow> real"
605  assumes T: "T \<in> measurable P Q"
606  assumes f: "distributed M P X f"
607  assumes g: "distributed M Q Y g"
608  assumes Y: "Y = T \<circ> X"
609  shows "(AE x in P. 0 \<le> g (T x)) \<Longrightarrow> (AE x in P. 0 \<le> f x) \<Longrightarrow> AE x in P. g (T x) = 0 \<longrightarrow> f x = 0"
610  using subdensity[OF T, of M X "\<lambda>x. ennreal (f x)" Y "\<lambda>x. ennreal (g x)"] assms
611  by auto
612
613lemma distributed_emeasure:
614  "distributed M N X f \<Longrightarrow> A \<in> sets N \<Longrightarrow> emeasure M (X -` A \<inter> space M) = (\<integral>\<^sup>+x. f x * indicator A x \<partial>N)"
615  by (auto simp: distributed_distr_eq_density[symmetric] emeasure_density[symmetric] emeasure_distr)
616
617lemma distributed_nn_integral:
618  "distributed M N X f \<Longrightarrow> g \<in> borel_measurable N \<Longrightarrow> (\<integral>\<^sup>+x. f x * g x \<partial>N) = (\<integral>\<^sup>+x. g (X x) \<partial>M)"
619  by (auto simp: distributed_distr_eq_density[symmetric] nn_integral_density[symmetric] nn_integral_distr)
620
621lemma distributed_integral:
622  "distributed M N X f \<Longrightarrow> g \<in> borel_measurable N \<Longrightarrow> (\<And>x. x \<in> space N \<Longrightarrow> 0 \<le> f x) \<Longrightarrow>
623    (\<integral>x. f x * g x \<partial>N) = (\<integral>x. g (X x) \<partial>M)"
624  supply distributed_real_measurable[measurable]
625  by (auto simp: distributed_distr_eq_density[symmetric] integral_real_density[symmetric] integral_distr)
626
627lemma distributed_transform_integral:
628  assumes Px: "distributed M N X Px" "\<And>x. x \<in> space N \<Longrightarrow> 0 \<le> Px x"
629  assumes "distributed M P Y Py" "\<And>x. x \<in> space P \<Longrightarrow> 0 \<le> Py x"
630  assumes Y: "Y = T \<circ> X" and T: "T \<in> measurable N P" and f: "f \<in> borel_measurable P"
631  shows "(\<integral>x. Py x * f x \<partial>P) = (\<integral>x. Px x * f (T x) \<partial>N)"
632proof -
633  have "(\<integral>x. Py x * f x \<partial>P) = (\<integral>x. f (Y x) \<partial>M)"
634    by (rule distributed_integral) fact+
635  also have "\<dots> = (\<integral>x. f (T (X x)) \<partial>M)"
636    using Y by simp
637  also have "\<dots> = (\<integral>x. Px x * f (T x) \<partial>N)"
638    using measurable_comp[OF T f] Px by (intro distributed_integral[symmetric]) (auto simp: comp_def)
639  finally show ?thesis .
640qed
641
642lemma (in prob_space) distributed_unique:
643  assumes Px: "distributed M S X Px"
644  assumes Py: "distributed M S X Py"
645  shows "AE x in S. Px x = Py x"
646proof -
647  interpret X: prob_space "distr M S X"
648    using Px by (intro prob_space_distr) simp
649  have "sigma_finite_measure (distr M S X)" ..
650  with sigma_finite_density_unique[of Px S Py ] Px Py
651  show ?thesis
652    by (auto simp: distributed_def)
653qed
654
655lemma (in prob_space) distributed_jointI:
656  assumes "sigma_finite_measure S" "sigma_finite_measure T"
657  assumes X[measurable]: "X \<in> measurable M S" and Y[measurable]: "Y \<in> measurable M T"
658  assumes [measurable]: "f \<in> borel_measurable (S \<Otimes>\<^sub>M T)" and f: "AE x in S \<Otimes>\<^sub>M T. 0 \<le> f x"
659  assumes eq: "\<And>A B. A \<in> sets S \<Longrightarrow> B \<in> sets T \<Longrightarrow>
660    emeasure M {x \<in> space M. X x \<in> A \<and> Y x \<in> B} = (\<integral>\<^sup>+x. (\<integral>\<^sup>+y. f (x, y) * indicator B y \<partial>T) * indicator A x \<partial>S)"
661  shows "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) f"
662  unfolding distributed_def
663proof safe
664  interpret S: sigma_finite_measure S by fact
665  interpret T: sigma_finite_measure T by fact
666  interpret ST: pair_sigma_finite S T ..
667
668  from ST.sigma_finite_up_in_pair_measure_generator guess F :: "nat \<Rightarrow> ('b \<times> 'c) set" .. note F = this
669  let ?E = "{a \<times> b |a b. a \<in> sets S \<and> b \<in> sets T}"
670  let ?P = "S \<Otimes>\<^sub>M T"
671  show "distr M ?P (\<lambda>x. (X x, Y x)) = density ?P f" (is "?L = ?R")
672  proof (rule measure_eqI_generator_eq[OF Int_stable_pair_measure_generator[of S T]])
673    show "?E \<subseteq> Pow (space ?P)"
674      using sets.space_closed[of S] sets.space_closed[of T] by (auto simp: space_pair_measure)
675    show "sets ?L = sigma_sets (space ?P) ?E"
676      by (simp add: sets_pair_measure space_pair_measure)
677    then show "sets ?R = sigma_sets (space ?P) ?E"
678      by simp
679  next
680    interpret L: prob_space ?L
681      by (rule prob_space_distr) (auto intro!: measurable_Pair)
682    show "range F \<subseteq> ?E" "(\<Union>i. F i) = space ?P" "\<And>i. emeasure ?L (F i) \<noteq> \<infinity>"
683      using F by (auto simp: space_pair_measure)
684  next
685    fix E assume "E \<in> ?E"
686    then obtain A B where E[simp]: "E = A \<times> B"
687      and A[measurable]: "A \<in> sets S" and B[measurable]: "B \<in> sets T" by auto
688    have "emeasure ?L E = emeasure M {x \<in> space M. X x \<in> A \<and> Y x \<in> B}"
689      by (auto intro!: arg_cong[where f="emeasure M"] simp add: emeasure_distr measurable_Pair)
690    also have "\<dots> = (\<integral>\<^sup>+x. (\<integral>\<^sup>+y. (f (x, y) * indicator B y) * indicator A x \<partial>T) \<partial>S)"
691      using f by (auto simp add: eq nn_integral_multc intro!: nn_integral_cong)
692    also have "\<dots> = emeasure ?R E"
693      by (auto simp add: emeasure_density T.nn_integral_fst[symmetric]
694               intro!: nn_integral_cong split: split_indicator)
695    finally show "emeasure ?L E = emeasure ?R E" .
696  qed
697qed (auto simp: f)
698
699lemma (in prob_space) distributed_swap:
700  assumes "sigma_finite_measure S" "sigma_finite_measure T"
701  assumes Pxy: "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) Pxy"
702  shows "distributed M (T \<Otimes>\<^sub>M S) (\<lambda>x. (Y x, X x)) (\<lambda>(x, y). Pxy (y, x))"
703proof -
704  interpret S: sigma_finite_measure S by fact
705  interpret T: sigma_finite_measure T by fact
706  interpret ST: pair_sigma_finite S T ..
707  interpret TS: pair_sigma_finite T S ..
708
709  note Pxy[measurable]
710  show ?thesis
711    apply (subst TS.distr_pair_swap)
712    unfolding distributed_def
713  proof safe
714    let ?D = "distr (S \<Otimes>\<^sub>M T) (T \<Otimes>\<^sub>M S) (\<lambda>(x, y). (y, x))"
715    show 1: "(\<lambda>(x, y). Pxy (y, x)) \<in> borel_measurable ?D"
716      by auto
717    show 2: "random_variable (distr (S \<Otimes>\<^sub>M T) (T \<Otimes>\<^sub>M S) (\<lambda>(x, y). (y, x))) (\<lambda>x. (Y x, X x))"
718      using Pxy by auto
719    { fix A assume A: "A \<in> sets (T \<Otimes>\<^sub>M S)"
720      let ?B = "(\<lambda>(x, y). (y, x)) -` A \<inter> space (S \<Otimes>\<^sub>M T)"
721      from sets.sets_into_space[OF A]
722      have "emeasure M ((\<lambda>x. (Y x, X x)) -` A \<inter> space M) =
723        emeasure M ((\<lambda>x. (X x, Y x)) -` ?B \<inter> space M)"
724        by (auto intro!: arg_cong2[where f=emeasure] simp: space_pair_measure)
725      also have "\<dots> = (\<integral>\<^sup>+ x. Pxy x * indicator ?B x \<partial>(S \<Otimes>\<^sub>M T))"
726        using Pxy A by (intro distributed_emeasure) auto
727      finally have "emeasure M ((\<lambda>x. (Y x, X x)) -` A \<inter> space M) =
728        (\<integral>\<^sup>+ x. Pxy x * indicator A (snd x, fst x) \<partial>(S \<Otimes>\<^sub>M T))"
729        by (auto intro!: nn_integral_cong split: split_indicator) }
730    note * = this
731    show "distr M ?D (\<lambda>x. (Y x, X x)) = density ?D (\<lambda>(x, y). Pxy (y, x))"
732      apply (intro measure_eqI)
733      apply (simp_all add: emeasure_distr[OF 2] emeasure_density[OF 1])
734      apply (subst nn_integral_distr)
735      apply (auto intro!: * simp: comp_def split_beta)
736      done
737  qed
738qed
739
740lemma (in prob_space) distr_marginal1:
741  assumes "sigma_finite_measure S" "sigma_finite_measure T"
742  assumes Pxy: "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) Pxy"
743  defines "Px \<equiv> \<lambda>x. (\<integral>\<^sup>+z. Pxy (x, z) \<partial>T)"
744  shows "distributed M S X Px"
745  unfolding distributed_def
746proof safe
747  interpret S: sigma_finite_measure S by fact
748  interpret T: sigma_finite_measure T by fact
749  interpret ST: pair_sigma_finite S T ..
750
751  note Pxy[measurable]
752  show X: "X \<in> measurable M S" by simp
753
754  show borel: "Px \<in> borel_measurable S"
755    by (auto intro!: T.nn_integral_fst simp: Px_def)
756
757  interpret Pxy: prob_space "distr M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x))"
758    by (intro prob_space_distr) simp
759
760  show "distr M S X = density S Px"
761  proof (rule measure_eqI)
762    fix A assume A: "A \<in> sets (distr M S X)"
763    with X measurable_space[of Y M T]
764    have "emeasure (distr M S X) A = emeasure (distr M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x))) (A \<times> space T)"
765      by (auto simp add: emeasure_distr intro!: arg_cong[where f="emeasure M"])
766    also have "\<dots> = emeasure (density (S \<Otimes>\<^sub>M T) Pxy) (A \<times> space T)"
767      using Pxy by (simp add: distributed_def)
768    also have "\<dots> = \<integral>\<^sup>+ x. \<integral>\<^sup>+ y. Pxy (x, y) * indicator (A \<times> space T) (x, y) \<partial>T \<partial>S"
769      using A borel Pxy
770      by (simp add: emeasure_density T.nn_integral_fst[symmetric])
771    also have "\<dots> = \<integral>\<^sup>+ x. Px x * indicator A x \<partial>S"
772    proof (rule nn_integral_cong)
773      fix x assume "x \<in> space S"
774      moreover have eq: "\<And>y. y \<in> space T \<Longrightarrow> indicator (A \<times> space T) (x, y) = indicator A x"
775        by (auto simp: indicator_def)
776      ultimately have "(\<integral>\<^sup>+ y. Pxy (x, y) * indicator (A \<times> space T) (x, y) \<partial>T) = (\<integral>\<^sup>+ y. Pxy (x, y) \<partial>T) * indicator A x"
777        by (simp add: eq nn_integral_multc cong: nn_integral_cong)
778      also have "(\<integral>\<^sup>+ y. Pxy (x, y) \<partial>T) = Px x"
779        by (simp add: Px_def)
780      finally show "(\<integral>\<^sup>+ y. Pxy (x, y) * indicator (A \<times> space T) (x, y) \<partial>T) = Px x * indicator A x" .
781    qed
782    finally show "emeasure (distr M S X) A = emeasure (density S Px) A"
783      using A borel Pxy by (simp add: emeasure_density)
784  qed simp
785qed
786
787lemma (in prob_space) distr_marginal2:
788  assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T"
789  assumes Pxy: "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) Pxy"
790  shows "distributed M T Y (\<lambda>y. (\<integral>\<^sup>+x. Pxy (x, y) \<partial>S))"
791  using distr_marginal1[OF T S distributed_swap[OF S T]] Pxy by simp
792
793lemma (in prob_space) distributed_marginal_eq_joint1:
794  assumes T: "sigma_finite_measure T"
795  assumes S: "sigma_finite_measure S"
796  assumes Px: "distributed M S X Px"
797  assumes Pxy: "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) Pxy"
798  shows "AE x in S. Px x = (\<integral>\<^sup>+y. Pxy (x, y) \<partial>T)"
799  using Px distr_marginal1[OF S T Pxy] by (rule distributed_unique)
800
801lemma (in prob_space) distributed_marginal_eq_joint2:
802  assumes T: "sigma_finite_measure T"
803  assumes S: "sigma_finite_measure S"
804  assumes Py: "distributed M T Y Py"
805  assumes Pxy: "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) Pxy"
806  shows "AE y in T. Py y = (\<integral>\<^sup>+x. Pxy (x, y) \<partial>S)"
807  using Py distr_marginal2[OF S T Pxy] by (rule distributed_unique)
808
809lemma (in prob_space) distributed_joint_indep':
810  assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T"
811  assumes X[measurable]: "distributed M S X Px" and Y[measurable]: "distributed M T Y Py"
812  assumes indep: "distr M S X \<Otimes>\<^sub>M distr M T Y = distr M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x))"
813  shows "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) (\<lambda>(x, y). Px x * Py y)"
814  unfolding distributed_def
815proof safe
816  interpret S: sigma_finite_measure S by fact
817  interpret T: sigma_finite_measure T by fact
818  interpret ST: pair_sigma_finite S T ..
819
820  interpret X: prob_space "density S Px"
821    unfolding distributed_distr_eq_density[OF X, symmetric]
822    by (rule prob_space_distr) simp
823  have sf_X: "sigma_finite_measure (density S Px)" ..
824
825  interpret Y: prob_space "density T Py"
826    unfolding distributed_distr_eq_density[OF Y, symmetric]
827    by (rule prob_space_distr) simp
828  have sf_Y: "sigma_finite_measure (density T Py)" ..
829
830  show "distr M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) = density (S \<Otimes>\<^sub>M T) (\<lambda>(x, y). Px x * Py y)"
831    unfolding indep[symmetric] distributed_distr_eq_density[OF X] distributed_distr_eq_density[OF Y]
832    using distributed_borel_measurable[OF X]
833    using distributed_borel_measurable[OF Y]
834    by (rule pair_measure_density[OF _ _ T sf_Y])
835
836  show "random_variable (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x))" by auto
837
838  show Pxy: "(\<lambda>(x, y). Px x * Py y) \<in> borel_measurable (S \<Otimes>\<^sub>M T)" by auto
839qed
840
841lemma distributed_integrable:
842  "distributed M N X f \<Longrightarrow> g \<in> borel_measurable N \<Longrightarrow> (\<And>x. x \<in> space N \<Longrightarrow> 0 \<le> f x) \<Longrightarrow>
843    integrable N (\<lambda>x. f x * g x) \<longleftrightarrow> integrable M (\<lambda>x. g (X x))"
844  supply distributed_real_measurable[measurable]
845  by (auto simp: distributed_distr_eq_density[symmetric] integrable_real_density[symmetric] integrable_distr_eq)
846
847lemma distributed_transform_integrable:
848  assumes Px: "distributed M N X Px" "\<And>x. x \<in> space N \<Longrightarrow> 0 \<le> Px x"
849  assumes "distributed M P Y Py" "\<And>x. x \<in> space P \<Longrightarrow> 0 \<le> Py x"
850  assumes Y: "Y = (\<lambda>x. T (X x))" and T: "T \<in> measurable N P" and f: "f \<in> borel_measurable P"
851  shows "integrable P (\<lambda>x. Py x * f x) \<longleftrightarrow> integrable N (\<lambda>x. Px x * f (T x))"
852proof -
853  have "integrable P (\<lambda>x. Py x * f x) \<longleftrightarrow> integrable M (\<lambda>x. f (Y x))"
854    by (rule distributed_integrable) fact+
855  also have "\<dots> \<longleftrightarrow> integrable M (\<lambda>x. f (T (X x)))"
856    using Y by simp
857  also have "\<dots> \<longleftrightarrow> integrable N (\<lambda>x. Px x * f (T x))"
858    using measurable_comp[OF T f] Px by (intro distributed_integrable[symmetric]) (auto simp: comp_def)
859  finally show ?thesis .
860qed
861
862lemma distributed_integrable_var:
863  fixes X :: "'a \<Rightarrow> real"
864  shows "distributed M lborel X (\<lambda>x. ennreal (f x)) \<Longrightarrow> (\<And>x. 0 \<le> f x) \<Longrightarrow>
865    integrable lborel (\<lambda>x. f x * x) \<Longrightarrow> integrable M X"
866  using distributed_integrable[of M lborel X f "\<lambda>x. x"] by simp
867
868lemma (in prob_space) distributed_variance:
869  fixes f::"real \<Rightarrow> real"
870  assumes D: "distributed M lborel X f" and [simp]: "\<And>x. 0 \<le> f x"
871  shows "variance X = (\<integral>x. x\<^sup>2 * f (x + expectation X) \<partial>lborel)"
872proof (subst distributed_integral[OF D, symmetric])
873  show "(\<integral> x. f x * (x - expectation X)\<^sup>2 \<partial>lborel) = (\<integral> x. x\<^sup>2 * f (x + expectation X) \<partial>lborel)"
874    by (subst lborel_integral_real_affine[where c=1 and t="expectation X"])  (auto simp: ac_simps)
875qed simp_all
876
877lemma (in prob_space) variance_affine:
878  fixes f::"real \<Rightarrow> real"
879  assumes [arith]: "b \<noteq> 0"
880  assumes D[intro]: "distributed M lborel X f"
881  assumes [simp]: "prob_space (density lborel f)"
882  assumes I[simp]: "integrable M X"
883  assumes I2[simp]: "integrable M (\<lambda>x. (X x)\<^sup>2)"
884  shows "variance (\<lambda>x. a + b * X x) = b\<^sup>2 * variance X"
885  by (subst variance_eq)
886     (auto simp: power2_sum power_mult_distrib prob_space variance_eq right_diff_distrib)
887
888definition
889  "simple_distributed M X f \<longleftrightarrow>
890    (\<forall>x. 0 \<le> f x) \<and>
891    distributed M (count_space (X`space M)) X (\<lambda>x. ennreal (f x)) \<and>
892    finite (X`space M)"
893
894lemma simple_distributed_nonneg[dest]: "simple_distributed M X f \<Longrightarrow> 0 \<le> f x"
895  by (auto simp: simple_distributed_def)
896
897lemma simple_distributed:
898  "simple_distributed M X Px \<Longrightarrow> distributed M (count_space (X`space M)) X Px"
899  unfolding simple_distributed_def by auto
900
901lemma simple_distributed_finite[dest]: "simple_distributed M X P \<Longrightarrow> finite (X`space M)"
902  by (simp add: simple_distributed_def)
903
904lemma (in prob_space) distributed_simple_function_superset:
905  assumes X: "simple_function M X" "\<And>x. x \<in> X ` space M \<Longrightarrow> P x = measure M (X -` {x} \<inter> space M)"
906  assumes A: "X`space M \<subseteq> A" "finite A"
907  defines "S \<equiv> count_space A" and "P' \<equiv> (\<lambda>x. if x \<in> X`space M then P x else 0)"
908  shows "distributed M S X P'"
909  unfolding distributed_def
910proof safe
911  show "(\<lambda>x. ennreal (P' x)) \<in> borel_measurable S" unfolding S_def by simp
912  show "distr M S X = density S P'"
913  proof (rule measure_eqI_finite)
914    show "sets (distr M S X) = Pow A" "sets (density S P') = Pow A"
915      using A unfolding S_def by auto
916    show "finite A" by fact
917    fix a assume a: "a \<in> A"
918    then have "a \<notin> X`space M \<Longrightarrow> X -` {a} \<inter> space M = {}" by auto
919    with A a X have "emeasure (distr M S X) {a} = P' a"
920      by (subst emeasure_distr)
921         (auto simp add: S_def P'_def simple_functionD emeasure_eq_measure measurable_count_space_eq2
922               intro!: arg_cong[where f=prob])
923    also have "\<dots> = (\<integral>\<^sup>+x. ennreal (P' a) * indicator {a} x \<partial>S)"
924      using A X a
925      by (subst nn_integral_cmult_indicator)
926         (auto simp: S_def P'_def simple_distributed_def simple_functionD measure_nonneg)
927    also have "\<dots> = (\<integral>\<^sup>+x. ennreal (P' x) * indicator {a} x \<partial>S)"
928      by (auto simp: indicator_def intro!: nn_integral_cong)
929    also have "\<dots> = emeasure (density S P') {a}"
930      using a A by (intro emeasure_density[symmetric]) (auto simp: S_def)
931    finally show "emeasure (distr M S X) {a} = emeasure (density S P') {a}" .
932  qed
933  show "random_variable S X"
934    using X(1) A by (auto simp: measurable_def simple_functionD S_def)
935qed
936
937lemma (in prob_space) simple_distributedI:
938  assumes X: "simple_function M X"
939    "\<And>x. 0 \<le> P x"
940    "\<And>x. x \<in> X ` space M \<Longrightarrow> P x = measure M (X -` {x} \<inter> space M)"
941  shows "simple_distributed M X P"
942  unfolding simple_distributed_def
943proof (safe intro!: X)
944  have "distributed M (count_space (X ` space M)) X (\<lambda>x. ennreal (if x \<in> X`space M then P x else 0))"
945    (is "?A")
946    using simple_functionD[OF X(1)] by (intro distributed_simple_function_superset[OF X(1,3)]) auto
947  also have "?A \<longleftrightarrow> distributed M (count_space (X ` space M)) X (\<lambda>x. ennreal (P x))"
948    by (rule distributed_cong_density) auto
949  finally show "\<dots>" .
950qed (rule simple_functionD[OF X(1)])
951
952lemma simple_distributed_joint_finite:
953  assumes X: "simple_distributed M (\<lambda>x. (X x, Y x)) Px"
954  shows "finite (X ` space M)" "finite (Y ` space M)"
955proof -
956  have "finite ((\<lambda>x. (X x, Y x)) ` space M)"
957    using X by (auto simp: simple_distributed_def simple_functionD)
958  then have "finite (fst ` (\<lambda>x. (X x, Y x)) ` space M)" "finite (snd ` (\<lambda>x. (X x, Y x)) ` space M)"
959    by auto
960  then show fin: "finite (X ` space M)" "finite (Y ` space M)"
961    by (auto simp: image_image)
962qed
963
964lemma simple_distributed_joint2_finite:
965  assumes X: "simple_distributed M (\<lambda>x. (X x, Y x, Z x)) Px"
966  shows "finite (X ` space M)" "finite (Y ` space M)" "finite (Z ` space M)"
967proof -
968  have "finite ((\<lambda>x. (X x, Y x, Z x)) ` space M)"
969    using X by (auto simp: simple_distributed_def simple_functionD)
970  then have "finite (fst ` (\<lambda>x. (X x, Y x, Z x)) ` space M)"
971    "finite ((fst \<circ> snd) ` (\<lambda>x. (X x, Y x, Z x)) ` space M)"
972    "finite ((snd \<circ> snd) ` (\<lambda>x. (X x, Y x, Z x)) ` space M)"
973    by auto
974  then show fin: "finite (X ` space M)" "finite (Y ` space M)" "finite (Z ` space M)"
975    by (auto simp: image_image)
976qed
977
978lemma simple_distributed_simple_function:
979  "simple_distributed M X Px \<Longrightarrow> simple_function M X"
980  unfolding simple_distributed_def distributed_def
981  by (auto simp: simple_function_def measurable_count_space_eq2)
982
983lemma simple_distributed_measure:
984  "simple_distributed M X P \<Longrightarrow> a \<in> X`space M \<Longrightarrow> P a = measure M (X -` {a} \<inter> space M)"
985  using distributed_count_space[of M "X`space M" X P a, symmetric]
986  by (auto simp: simple_distributed_def measure_def)
987
988lemma (in prob_space) simple_distributed_joint:
989  assumes X: "simple_distributed M (\<lambda>x. (X x, Y x)) Px"
990  defines "S \<equiv> count_space (X`space M) \<Otimes>\<^sub>M count_space (Y`space M)"
991  defines "P \<equiv> (\<lambda>x. if x \<in> (\<lambda>x. (X x, Y x))`space M then Px x else 0)"
992  shows "distributed M S (\<lambda>x. (X x, Y x)) P"
993proof -
994  from simple_distributed_joint_finite[OF X, simp]
995  have S_eq: "S = count_space (X`space M \<times> Y`space M)"
996    by (simp add: S_def pair_measure_count_space)
997  show ?thesis
998    unfolding S_eq P_def
999  proof (rule distributed_simple_function_superset)
1000    show "simple_function M (\<lambda>x. (X x, Y x))"
1001      using X by (rule simple_distributed_simple_function)
1002    fix x assume "x \<in> (\<lambda>x. (X x, Y x)) ` space M"
1003    from simple_distributed_measure[OF X this]
1004    show "Px x = prob ((\<lambda>x. (X x, Y x)) -` {x} \<inter> space M)" .
1005  qed auto
1006qed
1007
1008lemma (in prob_space) simple_distributed_joint2:
1009  assumes X: "simple_distributed M (\<lambda>x. (X x, Y x, Z x)) Px"
1010  defines "S \<equiv> count_space (X`space M) \<Otimes>\<^sub>M count_space (Y`space M) \<Otimes>\<^sub>M count_space (Z`space M)"
1011  defines "P \<equiv> (\<lambda>x. if x \<in> (\<lambda>x. (X x, Y x, Z x))`space M then Px x else 0)"
1012  shows "distributed M S (\<lambda>x. (X x, Y x, Z x)) P"
1013proof -
1014  from simple_distributed_joint2_finite[OF X, simp]
1015  have S_eq: "S = count_space (X`space M \<times> Y`space M \<times> Z`space M)"
1016    by (simp add: S_def pair_measure_count_space)
1017  show ?thesis
1018    unfolding S_eq P_def
1019  proof (rule distributed_simple_function_superset)
1020    show "simple_function M (\<lambda>x. (X x, Y x, Z x))"
1021      using X by (rule simple_distributed_simple_function)
1022    fix x assume "x \<in> (\<lambda>x. (X x, Y x, Z x)) ` space M"
1023    from simple_distributed_measure[OF X this]
1024    show "Px x = prob ((\<lambda>x. (X x, Y x, Z x)) -` {x} \<inter> space M)" .
1025  qed auto
1026qed
1027
1028lemma (in prob_space) simple_distributed_sum_space:
1029  assumes X: "simple_distributed M X f"
1030  shows "sum f (X`space M) = 1"
1031proof -
1032  from X have "sum f (X`space M) = prob (\<Union>i\<in>X`space M. X -` {i} \<inter> space M)"
1033    by (subst finite_measure_finite_Union)
1034       (auto simp add: disjoint_family_on_def simple_distributed_measure simple_distributed_simple_function simple_functionD
1035             intro!: sum.cong arg_cong[where f="prob"])
1036  also have "\<dots> = prob (space M)"
1037    by (auto intro!: arg_cong[where f=prob])
1038  finally show ?thesis
1039    using emeasure_space_1 by (simp add: emeasure_eq_measure)
1040qed
1041
1042lemma (in prob_space) distributed_marginal_eq_joint_simple:
1043  assumes Px: "simple_function M X"
1044  assumes Py: "simple_distributed M Y Py"
1045  assumes Pxy: "simple_distributed M (\<lambda>x. (X x, Y x)) Pxy"
1046  assumes y: "y \<in> Y`space M"
1047  shows "Py y = (\<Sum>x\<in>X`space M. if (x, y) \<in> (\<lambda>x. (X x, Y x)) ` space M then Pxy (x, y) else 0)"
1048proof -
1049  note Px = simple_distributedI[OF Px measure_nonneg refl]
1050  have "AE y in count_space (Y ` space M). ennreal (Py y) =
1051       \<integral>\<^sup>+ x. ennreal (if (x, y) \<in> (\<lambda>x. (X x, Y x)) ` space M then Pxy (x, y) else 0) \<partial>count_space (X ` space M)"
1052    using sigma_finite_measure_count_space_finite sigma_finite_measure_count_space_finite
1053      simple_distributed[OF Py] simple_distributed_joint[OF Pxy]
1054    by (rule distributed_marginal_eq_joint2)
1055       (auto intro: Py Px simple_distributed_finite)
1056  then have "ennreal (Py y) =
1057    (\<Sum>x\<in>X`space M. ennreal (if (x, y) \<in> (\<lambda>x. (X x, Y x)) ` space M then Pxy (x, y) else 0))"
1058    using y Px[THEN simple_distributed_finite]
1059    by (auto simp: AE_count_space nn_integral_count_space_finite)
1060  also have "\<dots> = (\<Sum>x\<in>X`space M. if (x, y) \<in> (\<lambda>x. (X x, Y x)) ` space M then Pxy (x, y) else 0)"
1061    using Pxy by (intro sum_ennreal) auto
1062  finally show ?thesis
1063    using simple_distributed_nonneg[OF Py] simple_distributed_nonneg[OF Pxy]
1064    by (subst (asm) ennreal_inj) (auto intro!: sum_nonneg)
1065qed
1066
1067lemma distributedI_real:
1068  fixes f :: "'a \<Rightarrow> real"
1069  assumes gen: "sets M1 = sigma_sets (space M1) E" and "Int_stable E"
1070    and A: "range A \<subseteq> E" "(\<Union>i::nat. A i) = space M1" "\<And>i. emeasure (distr M M1 X) (A i) \<noteq> \<infinity>"
1071    and X: "X \<in> measurable M M1"
1072    and f: "f \<in> borel_measurable M1" "AE x in M1. 0 \<le> f x"
1073    and eq: "\<And>A. A \<in> E \<Longrightarrow> emeasure M (X -` A \<inter> space M) = (\<integral>\<^sup>+ x. f x * indicator A x \<partial>M1)"
1074  shows "distributed M M1 X f"
1075  unfolding distributed_def
1076proof (intro conjI)
1077  show "distr M M1 X = density M1 f"
1078  proof (rule measure_eqI_generator_eq[where A=A])
1079    { fix A assume A: "A \<in> E"
1080      then have "A \<in> sigma_sets (space M1) E" by auto
1081      then have "A \<in> sets M1"
1082        using gen by simp
1083      with f A eq[of A] X show "emeasure (distr M M1 X) A = emeasure (density M1 f) A"
1084        by (auto simp add: emeasure_distr emeasure_density ennreal_indicator
1085                 intro!: nn_integral_cong split: split_indicator) }
1086    note eq_E = this
1087    show "Int_stable E" by fact
1088    { fix e assume "e \<in> E"
1089      then have "e \<in> sigma_sets (space M1) E" by auto
1090      then have "e \<in> sets M1" unfolding gen .
1091      then have "e \<subseteq> space M1" by (rule sets.sets_into_space) }
1092    then show "E \<subseteq> Pow (space M1)" by auto
1093    show "sets (distr M M1 X) = sigma_sets (space M1) E"
1094      "sets (density M1 (\<lambda>x. ennreal (f x))) = sigma_sets (space M1) E"
1095      unfolding gen[symmetric] by auto
1096  qed fact+
1097qed (insert X f, auto)
1098
1099lemma distributedI_borel_atMost:
1100  fixes f :: "real \<Rightarrow> real"
1101  assumes [measurable]: "X \<in> borel_measurable M"
1102    and [measurable]: "f \<in> borel_measurable borel" and f[simp]: "AE x in lborel. 0 \<le> f x"
1103    and g_eq: "\<And>a. (\<integral>\<^sup>+x. f x * indicator {..a} x \<partial>lborel)  = ennreal (g a)"
1104    and M_eq: "\<And>a. emeasure M {x\<in>space M. X x \<le> a} = ennreal (g a)"
1105  shows "distributed M lborel X f"
1106proof (rule distributedI_real)
1107  show "sets (lborel::real measure) = sigma_sets (space lborel) (range atMost)"
1108    by (simp add: borel_eq_atMost)
1109  show "Int_stable (range atMost :: real set set)"
1110    by (auto simp: Int_stable_def)
1111  have vimage_eq: "\<And>a. (X -` {..a} \<inter> space M) = {x\<in>space M. X x \<le> a}" by auto
1112  define A where "A i = {.. real i}" for i :: nat
1113  then show "range A \<subseteq> range atMost" "(\<Union>i. A i) = space lborel"
1114    "\<And>i. emeasure (distr M lborel X) (A i) \<noteq> \<infinity>"
1115    by (auto simp: real_arch_simple emeasure_distr vimage_eq M_eq)
1116
1117  fix A :: "real set" assume "A \<in> range atMost"
1118  then obtain a where A: "A = {..a}" by auto
1119  show "emeasure M (X -` A \<inter> space M) = (\<integral>\<^sup>+x. f x * indicator A x \<partial>lborel)"
1120    unfolding vimage_eq A M_eq g_eq ..
1121qed auto
1122
1123lemma (in prob_space) uniform_distributed_params:
1124  assumes X: "distributed M MX X (\<lambda>x. indicator A x / measure MX A)"
1125  shows "A \<in> sets MX" "measure MX A \<noteq> 0"
1126proof -
1127  interpret X: prob_space "distr M MX X"
1128    using distributed_measurable[OF X] by (rule prob_space_distr)
1129
1130  show "measure MX A \<noteq> 0"
1131  proof
1132    assume "measure MX A = 0"
1133    with X.emeasure_space_1 X.prob_space distributed_distr_eq_density[OF X]
1134    show False
1135      by (simp add: emeasure_density zero_ennreal_def[symmetric])
1136  qed
1137  with measure_notin_sets[of A MX] show "A \<in> sets MX"
1138    by blast
1139qed
1140
1141lemma prob_space_uniform_measure:
1142  assumes A: "emeasure M A \<noteq> 0" "emeasure M A \<noteq> \<infinity>"
1143  shows "prob_space (uniform_measure M A)"
1144proof
1145  show "emeasure (uniform_measure M A) (space (uniform_measure M A)) = 1"
1146    using emeasure_uniform_measure[OF emeasure_neq_0_sets[OF A(1)], of "space M"]
1147    using sets.sets_into_space[OF emeasure_neq_0_sets[OF A(1)]] A
1148    by (simp add: Int_absorb2 less_top)
1149qed
1150
1151lemma prob_space_uniform_count_measure: "finite A \<Longrightarrow> A \<noteq> {} \<Longrightarrow> prob_space (uniform_count_measure A)"
1152  by standard (auto simp: emeasure_uniform_count_measure space_uniform_count_measure one_ennreal_def)
1153
1154lemma (in prob_space) measure_uniform_measure_eq_cond_prob:
1155  assumes [measurable]: "Measurable.pred M P" "Measurable.pred M Q"
1156  shows "\<P>(x in uniform_measure M {x\<in>space M. Q x}. P x) = \<P>(x in M. P x \<bar> Q x)"
1157proof cases
1158  assume Q: "measure M {x\<in>space M. Q x} = 0"
1159  then have *: "AE x in M. \<not> Q x"
1160    by (simp add: prob_eq_0)
1161  then have "density M (\<lambda>x. indicator {x \<in> space M. Q x} x / emeasure M {x \<in> space M. Q x}) = density M (\<lambda>x. 0)"
1162    by (intro density_cong) auto
1163  with * show ?thesis
1164    unfolding uniform_measure_def
1165    by (simp add: emeasure_density measure_def cond_prob_def emeasure_eq_0_AE)
1166next
1167  assume Q: "measure M {x\<in>space M. Q x} \<noteq> 0"
1168  then show "\<P>(x in uniform_measure M {x \<in> space M. Q x}. P x) = cond_prob M P Q"
1169    by (subst measure_uniform_measure)
1170       (auto simp: emeasure_eq_measure cond_prob_def measure_nonneg intro!: arg_cong[where f=prob])
1171qed
1172
1173lemma prob_space_point_measure:
1174  "finite S \<Longrightarrow> (\<And>s. s \<in> S \<Longrightarrow> 0 \<le> p s) \<Longrightarrow> (\<Sum>s\<in>S. p s) = 1 \<Longrightarrow> prob_space (point_measure S p)"
1175  by (rule prob_spaceI) (simp add: space_point_measure emeasure_point_measure_finite)
1176
1177lemma (in prob_space) distr_pair_fst: "distr (N \<Otimes>\<^sub>M M) N fst = N"
1178proof (intro measure_eqI)
1179  fix A assume A: "A \<in> sets (distr (N \<Otimes>\<^sub>M M) N fst)"
1180  from A have "emeasure (distr (N \<Otimes>\<^sub>M M) N fst) A = emeasure (N \<Otimes>\<^sub>M M) (A \<times> space M)"
1181    by (auto simp add: emeasure_distr space_pair_measure dest: sets.sets_into_space intro!: arg_cong2[where f=emeasure])
1182  with A show "emeasure (distr (N \<Otimes>\<^sub>M M) N fst) A = emeasure N A"
1183    by (simp add: emeasure_pair_measure_Times emeasure_space_1)
1184qed simp
1185
1186lemma (in product_prob_space) distr_reorder:
1187  assumes "inj_on t J" "t \<in> J \<rightarrow> K" "finite K"
1188  shows "distr (PiM K M) (Pi\<^sub>M J (\<lambda>x. M (t x))) (\<lambda>\<omega>. \<lambda>n\<in>J. \<omega> (t n)) = PiM J (\<lambda>x. M (t x))"
1189proof (rule product_sigma_finite.PiM_eqI)
1190  show "product_sigma_finite (\<lambda>x. M (t x))" ..
1191  have "t`J \<subseteq> K" using assms by auto
1192  then show [simp]: "finite J"
1193    by (rule finite_imageD[OF finite_subset]) fact+
1194  fix A assume A: "\<And>i. i \<in> J \<Longrightarrow> A i \<in> sets (M (t i))"
1195  moreover have "((\<lambda>\<omega>. \<lambda>n\<in>J. \<omega> (t n)) -` Pi\<^sub>E J A \<inter> space (Pi\<^sub>M K M)) =
1196    (\<Pi>\<^sub>E i\<in>K. if i \<in> t`J then A (the_inv_into J t i) else space (M i))"
1197    using A A[THEN sets.sets_into_space] \<open>t \<in> J \<rightarrow> K\<close> \<open>inj_on t J\<close>
1198    by (subst prod_emb_Pi[symmetric]) (auto simp: space_PiM PiE_iff the_inv_into_f_f prod_emb_def)
1199  ultimately show "distr (Pi\<^sub>M K M) (Pi\<^sub>M J (\<lambda>x. M (t x))) (\<lambda>\<omega>. \<lambda>n\<in>J. \<omega> (t n)) (Pi\<^sub>E J A) = (\<Prod>i\<in>J. M (t i) (A i))"
1200    using assms
1201    apply (subst emeasure_distr)
1202    apply (auto intro!: sets_PiM_I_finite simp: Pi_iff)
1203    apply (subst emeasure_PiM)
1204    apply (auto simp: the_inv_into_f_f \<open>inj_on t J\<close> prod.reindex[OF \<open>inj_on t J\<close>]
1205      if_distrib[where f="emeasure (M _)"] prod.If_cases emeasure_space_1 Int_absorb1 \<open>t`J \<subseteq> K\<close>)
1206    done
1207qed simp
1208
1209lemma (in product_prob_space) distr_restrict:
1210  "J \<subseteq> K \<Longrightarrow> finite K \<Longrightarrow> (\<Pi>\<^sub>M i\<in>J. M i) = distr (\<Pi>\<^sub>M i\<in>K. M i) (\<Pi>\<^sub>M i\<in>J. M i) (\<lambda>f. restrict f J)"
1211  using distr_reorder[of "\<lambda>x. x" J K] by (simp add: Pi_iff subset_eq)
1212
1213lemma (in product_prob_space) emeasure_prod_emb[simp]:
1214  assumes L: "J \<subseteq> L" "finite L" and X: "X \<in> sets (Pi\<^sub>M J M)"
1215  shows "emeasure (Pi\<^sub>M L M) (prod_emb L M J X) = emeasure (Pi\<^sub>M J M) X"
1216  by (subst distr_restrict[OF L])
1217     (simp add: prod_emb_def space_PiM emeasure_distr measurable_restrict_subset L X)
1218
1219lemma emeasure_distr_restrict:
1220  assumes "I \<subseteq> K" and Q[measurable_cong]: "sets Q = sets (PiM K M)" and A[measurable]: "A \<in> sets (PiM I M)"
1221  shows "emeasure (distr Q (PiM I M) (\<lambda>\<omega>. restrict \<omega> I)) A = emeasure Q (prod_emb K M I A)"
1222  using \<open>I\<subseteq>K\<close> sets_eq_imp_space_eq[OF Q]
1223  by (subst emeasure_distr)
1224     (auto simp: measurable_cong_sets[OF Q] prod_emb_def space_PiM[symmetric] intro!: measurable_restrict)
1225
1226lemma (in prob_space) prob_space_completion: "prob_space (completion M)"
1227  by (rule prob_spaceI) (simp add: emeasure_space_1)
1228
1229end
1230