1(*  Title:      HOL/Probability/Giry_Monad.thy
2    Author:     Johannes H��lzl, TU M��nchen
3    Author:     Manuel Eberl, TU M��nchen
4
5Defines the subprobability spaces, the subprobability functor and the Giry monad on subprobability
6spaces.
7*)
8
9theory Giry_Monad
10  imports Probability_Measure "HOL-Library.Monad_Syntax"
11begin
12
13section \<open>Sub-probability spaces\<close>
14
15locale subprob_space = finite_measure +
16  assumes emeasure_space_le_1: "emeasure M (space M) \<le> 1"
17  assumes subprob_not_empty: "space M \<noteq> {}"
18
19lemma subprob_spaceI[Pure.intro!]:
20  assumes *: "emeasure M (space M) \<le> 1"
21  assumes "space M \<noteq> {}"
22  shows "subprob_space M"
23proof -
24  interpret finite_measure M
25  proof
26    show "emeasure M (space M) \<noteq> \<infinity>" using * by (auto simp: top_unique)
27  qed
28  show "subprob_space M" by standard fact+
29qed
30
31lemma (in subprob_space) emeasure_subprob_space_less_top: "emeasure M A \<noteq> top"
32  using emeasure_finite[of A] .
33
34lemma prob_space_imp_subprob_space:
35  "prob_space M \<Longrightarrow> subprob_space M"
36  by (rule subprob_spaceI) (simp_all add: prob_space.emeasure_space_1 prob_space.not_empty)
37
38lemma subprob_space_imp_sigma_finite: "subprob_space M \<Longrightarrow> sigma_finite_measure M"
39  unfolding subprob_space_def finite_measure_def by simp
40
41sublocale prob_space \<subseteq> subprob_space
42  by (rule subprob_spaceI) (simp_all add: emeasure_space_1 not_empty)
43
44lemma subprob_space_sigma [simp]: "\<Omega> \<noteq> {} \<Longrightarrow> subprob_space (sigma \<Omega> X)"
45by(rule subprob_spaceI)(simp_all add: emeasure_sigma space_measure_of_conv)
46
47lemma subprob_space_null_measure: "space M \<noteq> {} \<Longrightarrow> subprob_space (null_measure M)"
48by(simp add: null_measure_def)
49
50lemma (in subprob_space) subprob_space_distr:
51  assumes f: "f \<in> measurable M M'" and "space M' \<noteq> {}" shows "subprob_space (distr M M' f)"
52proof (rule subprob_spaceI)
53  have "f -` space M' \<inter> space M = space M" using f by (auto dest: measurable_space)
54  with f show "emeasure (distr M M' f) (space (distr M M' f)) \<le> 1"
55    by (auto simp: emeasure_distr emeasure_space_le_1)
56  show "space (distr M M' f) \<noteq> {}" by (simp add: assms)
57qed
58
59lemma (in subprob_space) subprob_emeasure_le_1: "emeasure M X \<le> 1"
60  by (rule order.trans[OF emeasure_space emeasure_space_le_1])
61
62lemma (in subprob_space) subprob_measure_le_1: "measure M X \<le> 1"
63  using subprob_emeasure_le_1[of X] by (simp add: emeasure_eq_measure)
64
65lemma (in subprob_space) nn_integral_le_const:
66  assumes "0 \<le> c" "AE x in M. f x \<le> c"
67  shows "(\<integral>\<^sup>+x. f x \<partial>M) \<le> c"
68proof -
69  have "(\<integral>\<^sup>+ x. f x \<partial>M) \<le> (\<integral>\<^sup>+ x. c \<partial>M)"
70    by(rule nn_integral_mono_AE) fact
71  also have "\<dots> \<le> c * emeasure M (space M)"
72    using \<open>0 \<le> c\<close> by simp
73  also have "\<dots> \<le> c * 1" using emeasure_space_le_1 \<open>0 \<le> c\<close> by(rule mult_left_mono)
74  finally show ?thesis by simp
75qed
76
77lemma emeasure_density_distr_interval:
78  fixes h :: "real \<Rightarrow> real" and g :: "real \<Rightarrow> real" and g' :: "real \<Rightarrow> real"
79  assumes [simp]: "a \<le> b"
80  assumes Mf[measurable]: "f \<in> borel_measurable borel"
81  assumes Mg[measurable]: "g \<in> borel_measurable borel"
82  assumes Mg'[measurable]: "g' \<in> borel_measurable borel"
83  assumes Mh[measurable]: "h \<in> borel_measurable borel"
84  assumes prob: "subprob_space (density lborel f)"
85  assumes nonnegf: "\<And>x. f x \<ge> 0"
86  assumes derivg: "\<And>x. x \<in> {a..b} \<Longrightarrow> (g has_real_derivative g' x) (at x)"
87  assumes contg': "continuous_on {a..b} g'"
88  assumes mono: "strict_mono_on g {a..b}" and inv: "\<And>x. h x \<in> {a..b} \<Longrightarrow> g (h x) = x"
89  assumes range: "{a..b} \<subseteq> range h"
90  shows "emeasure (distr (density lborel f) lborel h) {a..b} =
91             emeasure (density lborel (\<lambda>x. f (g x) * g' x)) {a..b}"
92proof (cases "a < b")
93  assume "a < b"
94  from mono have inj: "inj_on g {a..b}" by (rule strict_mono_on_imp_inj_on)
95  from mono have mono': "mono_on g {a..b}" by (rule strict_mono_on_imp_mono_on)
96  from mono' derivg have "\<And>x. x \<in> {a<..<b} \<Longrightarrow> g' x \<ge> 0"
97    by (rule mono_on_imp_deriv_nonneg) auto
98  from contg' this have derivg_nonneg: "\<And>x. x \<in> {a..b} \<Longrightarrow> g' x \<ge> 0"
99    by (rule continuous_ge_on_Ioo) (simp_all add: \<open>a < b\<close>)
100
101  from derivg have contg: "continuous_on {a..b} g" by (rule has_real_derivative_imp_continuous_on)
102  have A: "h -` {a..b} = {g a..g b}"
103  proof (intro equalityI subsetI)
104    fix x assume x: "x \<in> h -` {a..b}"
105    hence "g (h x) \<in> {g a..g b}" by (auto intro: mono_onD[OF mono'])
106    with inv and x show "x \<in> {g a..g b}" by simp
107  next
108    fix y assume y: "y \<in> {g a..g b}"
109    with IVT'[OF _ _ _ contg, of y] obtain x where "x \<in> {a..b}" "y = g x" by auto
110    with range and inv show "y \<in> h -` {a..b}" by auto
111  qed
112
113  have prob': "subprob_space (distr (density lborel f) lborel h)"
114    by (rule subprob_space.subprob_space_distr[OF prob]) (simp_all add: Mh)
115  have B: "emeasure (distr (density lborel f) lborel h) {a..b} =
116            \<integral>\<^sup>+x. f x * indicator (h -` {a..b}) x \<partial>lborel"
117    by (subst emeasure_distr) (simp_all add: emeasure_density Mf Mh measurable_sets_borel[OF Mh])
118  also note A
119  also have "emeasure (distr (density lborel f) lborel h) {a..b} \<le> 1"
120    by (rule subprob_space.subprob_emeasure_le_1) (rule prob')
121  hence "emeasure (distr (density lborel f) lborel h) {a..b} \<noteq> \<infinity>" by (auto simp: top_unique)
122  with assms have "(\<integral>\<^sup>+x. f x * indicator {g a..g b} x \<partial>lborel) =
123                      (\<integral>\<^sup>+x. f (g x) * g' x * indicator {a..b} x \<partial>lborel)"
124    by (intro nn_integral_substitution_aux)
125       (auto simp: derivg_nonneg A B emeasure_density mult.commute \<open>a < b\<close>)
126  also have "... = emeasure (density lborel (\<lambda>x. f (g x) * g' x)) {a..b}"
127    by (simp add: emeasure_density)
128  finally show ?thesis .
129next
130  assume "\<not>a < b"
131  with \<open>a \<le> b\<close> have [simp]: "b = a" by (simp add: not_less del: \<open>a \<le> b\<close>)
132  from inv and range have "h -` {a} = {g a}" by auto
133  thus ?thesis by (simp_all add: emeasure_distr emeasure_density measurable_sets_borel[OF Mh])
134qed
135
136locale pair_subprob_space =
137  pair_sigma_finite M1 M2 + M1: subprob_space M1 + M2: subprob_space M2 for M1 M2
138
139sublocale pair_subprob_space \<subseteq> P?: subprob_space "M1 \<Otimes>\<^sub>M M2"
140proof
141  from mult_le_one[OF M1.emeasure_space_le_1 _ M2.emeasure_space_le_1]
142  show "emeasure (M1 \<Otimes>\<^sub>M M2) (space (M1 \<Otimes>\<^sub>M M2)) \<le> 1"
143    by (simp add: M2.emeasure_pair_measure_Times space_pair_measure)
144  from M1.subprob_not_empty and M2.subprob_not_empty show "space (M1 \<Otimes>\<^sub>M M2) \<noteq> {}"
145    by (simp add: space_pair_measure)
146qed
147
148lemma subprob_space_null_measure_iff:
149    "subprob_space (null_measure M) \<longleftrightarrow> space M \<noteq> {}"
150  by (auto intro!: subprob_spaceI dest: subprob_space.subprob_not_empty)
151
152lemma subprob_space_restrict_space:
153  assumes M: "subprob_space M"
154  and A: "A \<inter> space M \<in> sets M" "A \<inter> space M \<noteq> {}"
155  shows "subprob_space (restrict_space M A)"
156proof(rule subprob_spaceI)
157  have "emeasure (restrict_space M A) (space (restrict_space M A)) = emeasure M (A \<inter> space M)"
158    using A by(simp add: emeasure_restrict_space space_restrict_space)
159  also have "\<dots> \<le> 1" by(rule subprob_space.subprob_emeasure_le_1)(rule M)
160  finally show "emeasure (restrict_space M A) (space (restrict_space M A)) \<le> 1" .
161next
162  show "space (restrict_space M A) \<noteq> {}"
163    using A by(simp add: space_restrict_space)
164qed
165
166definition subprob_algebra :: "'a measure \<Rightarrow> 'a measure measure" where
167  "subprob_algebra K =
168    (SUP A \<in> sets K. vimage_algebra {M. subprob_space M \<and> sets M = sets K} (\<lambda>M. emeasure M A) borel)"
169
170lemma space_subprob_algebra: "space (subprob_algebra A) = {M. subprob_space M \<and> sets M = sets A}"
171  by (auto simp add: subprob_algebra_def space_Sup_eq_UN)
172
173lemma subprob_algebra_cong: "sets M = sets N \<Longrightarrow> subprob_algebra M = subprob_algebra N"
174  by (simp add: subprob_algebra_def)
175
176lemma measurable_emeasure_subprob_algebra[measurable]:
177  "a \<in> sets A \<Longrightarrow> (\<lambda>M. emeasure M a) \<in> borel_measurable (subprob_algebra A)"
178  by (auto intro!: measurable_Sup1 measurable_vimage_algebra1 simp: subprob_algebra_def)
179
180lemma measurable_measure_subprob_algebra[measurable]:
181  "a \<in> sets A \<Longrightarrow> (\<lambda>M. measure M a) \<in> borel_measurable (subprob_algebra A)"
182  unfolding measure_def by measurable
183
184lemma subprob_measurableD:
185  assumes N: "N \<in> measurable M (subprob_algebra S)" and x: "x \<in> space M"
186  shows "space (N x) = space S"
187    and "sets (N x) = sets S"
188    and "measurable (N x) K = measurable S K"
189    and "measurable K (N x) = measurable K S"
190  using measurable_space[OF N x]
191  by (auto simp: space_subprob_algebra intro!: measurable_cong_sets dest: sets_eq_imp_space_eq)
192
193ML \<open>
194
195fun subprob_cong thm ctxt = (
196  let
197    val thm' = Thm.transfer' ctxt thm
198    val free = thm' |> Thm.concl_of |> HOLogic.dest_Trueprop |> dest_comb |> fst |>
199      dest_comb |> snd |> strip_abs_body |> head_of |> is_Free
200  in
201    if free then ([], Measurable.add_local_cong (thm' RS @{thm subprob_measurableD(2)}) ctxt)
202            else ([], ctxt)
203  end
204  handle THM _ => ([], ctxt) | TERM _ => ([], ctxt))
205
206\<close>
207
208setup \<open>
209  Context.theory_map (Measurable.add_preprocessor "subprob_cong" subprob_cong)
210\<close>
211
212context
213  fixes K M N assumes K: "K \<in> measurable M (subprob_algebra N)"
214begin
215
216lemma subprob_space_kernel: "a \<in> space M \<Longrightarrow> subprob_space (K a)"
217  using measurable_space[OF K] by (simp add: space_subprob_algebra)
218
219lemma sets_kernel: "a \<in> space M \<Longrightarrow> sets (K a) = sets N"
220  using measurable_space[OF K] by (simp add: space_subprob_algebra)
221
222lemma measurable_emeasure_kernel[measurable]:
223    "A \<in> sets N \<Longrightarrow> (\<lambda>a. emeasure (K a) A) \<in> borel_measurable M"
224  using measurable_compose[OF K measurable_emeasure_subprob_algebra] .
225
226end
227
228lemma measurable_subprob_algebra:
229  "(\<And>a. a \<in> space M \<Longrightarrow> subprob_space (K a)) \<Longrightarrow>
230  (\<And>a. a \<in> space M \<Longrightarrow> sets (K a) = sets N) \<Longrightarrow>
231  (\<And>A. A \<in> sets N \<Longrightarrow> (\<lambda>a. emeasure (K a) A) \<in> borel_measurable M) \<Longrightarrow>
232  K \<in> measurable M (subprob_algebra N)"
233  by (auto intro!: measurable_Sup2 measurable_vimage_algebra2 simp: subprob_algebra_def)
234
235lemma measurable_submarkov:
236  "K \<in> measurable M (subprob_algebra M) \<longleftrightarrow>
237    (\<forall>x\<in>space M. subprob_space (K x) \<and> sets (K x) = sets M) \<and>
238    (\<forall>A\<in>sets M. (\<lambda>x. emeasure (K x) A) \<in> measurable M borel)"
239proof
240  assume "(\<forall>x\<in>space M. subprob_space (K x) \<and> sets (K x) = sets M) \<and>
241    (\<forall>A\<in>sets M. (\<lambda>x. emeasure (K x) A) \<in> borel_measurable M)"
242  then show "K \<in> measurable M (subprob_algebra M)"
243    by (intro measurable_subprob_algebra) auto
244next
245  assume "K \<in> measurable M (subprob_algebra M)"
246  then show "(\<forall>x\<in>space M. subprob_space (K x) \<and> sets (K x) = sets M) \<and>
247    (\<forall>A\<in>sets M. (\<lambda>x. emeasure (K x) A) \<in> borel_measurable M)"
248    by (auto dest: subprob_space_kernel sets_kernel)
249qed
250
251lemma measurable_subprob_algebra_generated:
252  assumes eq: "sets N = sigma_sets \<Omega> G" and "Int_stable G" "G \<subseteq> Pow \<Omega>"
253  assumes subsp: "\<And>a. a \<in> space M \<Longrightarrow> subprob_space (K a)"
254  assumes sets: "\<And>a. a \<in> space M \<Longrightarrow> sets (K a) = sets N"
255  assumes "\<And>A. A \<in> G \<Longrightarrow> (\<lambda>a. emeasure (K a) A) \<in> borel_measurable M"
256  assumes \<Omega>: "(\<lambda>a. emeasure (K a) \<Omega>) \<in> borel_measurable M"
257  shows "K \<in> measurable M (subprob_algebra N)"
258proof (rule measurable_subprob_algebra)
259  fix a assume "a \<in> space M" then show "subprob_space (K a)" "sets (K a) = sets N" by fact+
260next
261  interpret G: sigma_algebra \<Omega> "sigma_sets \<Omega> G"
262    using \<open>G \<subseteq> Pow \<Omega>\<close> by (rule sigma_algebra_sigma_sets)
263  fix A assume "A \<in> sets N" with assms(2,3) show "(\<lambda>a. emeasure (K a) A) \<in> borel_measurable M"
264    unfolding \<open>sets N = sigma_sets \<Omega> G\<close>
265  proof (induction rule: sigma_sets_induct_disjoint)
266    case (basic A) then show ?case by fact
267  next
268    case empty then show ?case by simp
269  next
270    case (compl A)
271    have "(\<lambda>a. emeasure (K a) (\<Omega> - A)) \<in> borel_measurable M \<longleftrightarrow>
272      (\<lambda>a. emeasure (K a) \<Omega> - emeasure (K a) A) \<in> borel_measurable M"
273      using G.top G.sets_into_space sets eq compl subprob_space.emeasure_subprob_space_less_top[OF subsp]
274      by (intro measurable_cong emeasure_Diff) auto
275    with compl \<Omega> show ?case
276      by simp
277  next
278    case (union F)
279    moreover have "(\<lambda>a. emeasure (K a) (\<Union>i. F i)) \<in> borel_measurable M \<longleftrightarrow>
280        (\<lambda>a. \<Sum>i. emeasure (K a) (F i)) \<in> borel_measurable M"
281      using sets union eq
282      by (intro measurable_cong suminf_emeasure[symmetric]) auto
283    ultimately show ?case
284      by auto
285  qed
286qed
287
288lemma space_subprob_algebra_empty_iff:
289  "space (subprob_algebra N) = {} \<longleftrightarrow> space N = {}"
290proof
291  have "\<And>x. x \<in> space N \<Longrightarrow> density N (\<lambda>_. 0) \<in> space (subprob_algebra N)"
292    by (auto simp: space_subprob_algebra emeasure_density intro!: subprob_spaceI)
293  then show "space (subprob_algebra N) = {} \<Longrightarrow> space N = {}"
294    by auto
295next
296  assume "space N = {}"
297  hence "sets N = {{}}" by (simp add: space_empty_iff)
298  moreover have "\<And>M. subprob_space M \<Longrightarrow> sets M \<noteq> {{}}"
299    by (simp add: subprob_space.subprob_not_empty space_empty_iff[symmetric])
300  ultimately show "space (subprob_algebra N) = {}" by (auto simp: space_subprob_algebra)
301qed
302
303lemma nn_integral_measurable_subprob_algebra[measurable]:
304  assumes f: "f \<in> borel_measurable N"
305  shows "(\<lambda>M. integral\<^sup>N M f) \<in> borel_measurable (subprob_algebra N)" (is "_ \<in> ?B")
306  using f
307proof induct
308  case (cong f g)
309  moreover have "(\<lambda>M'. \<integral>\<^sup>+M''. f M'' \<partial>M') \<in> ?B \<longleftrightarrow> (\<lambda>M'. \<integral>\<^sup>+M''. g M'' \<partial>M') \<in> ?B"
310    by (intro measurable_cong nn_integral_cong cong)
311       (auto simp: space_subprob_algebra dest!: sets_eq_imp_space_eq)
312  ultimately show ?case by simp
313next
314  case (set B)
315  then have "(\<lambda>M'. \<integral>\<^sup>+M''. indicator B M'' \<partial>M') \<in> ?B \<longleftrightarrow> (\<lambda>M'. emeasure M' B) \<in> ?B"
316    by (intro measurable_cong nn_integral_indicator) (simp add: space_subprob_algebra)
317  with set show ?case
318    by (simp add: measurable_emeasure_subprob_algebra)
319next
320  case (mult f c)
321  then have "(\<lambda>M'. \<integral>\<^sup>+M''. c * f M'' \<partial>M') \<in> ?B \<longleftrightarrow> (\<lambda>M'. c * \<integral>\<^sup>+M''. f M'' \<partial>M') \<in> ?B"
322    by (intro measurable_cong nn_integral_cmult) (auto simp add: space_subprob_algebra)
323  with mult show ?case
324    by simp
325next
326  case (add f g)
327  then have "(\<lambda>M'. \<integral>\<^sup>+M''. f M'' + g M'' \<partial>M') \<in> ?B \<longleftrightarrow> (\<lambda>M'. (\<integral>\<^sup>+M''. f M'' \<partial>M') + (\<integral>\<^sup>+M''. g M'' \<partial>M')) \<in> ?B"
328    by (intro measurable_cong nn_integral_add) (auto simp add: space_subprob_algebra)
329  with add show ?case
330    by (simp add: ac_simps)
331next
332  case (seq F)
333  then have "(\<lambda>M'. \<integral>\<^sup>+M''. (SUP i. F i) M'' \<partial>M') \<in> ?B \<longleftrightarrow> (\<lambda>M'. SUP i. (\<integral>\<^sup>+M''. F i M'' \<partial>M')) \<in> ?B"
334    unfolding SUP_apply
335    by (intro measurable_cong nn_integral_monotone_convergence_SUP) (auto simp add: space_subprob_algebra)
336  with seq show ?case
337    by (simp add: ac_simps)
338qed
339
340lemma measurable_distr:
341  assumes [measurable]: "f \<in> measurable M N"
342  shows "(\<lambda>M'. distr M' N f) \<in> measurable (subprob_algebra M) (subprob_algebra N)"
343proof (cases "space N = {}")
344  assume not_empty: "space N \<noteq> {}"
345  show ?thesis
346  proof (rule measurable_subprob_algebra)
347    fix A assume A: "A \<in> sets N"
348    then have "(\<lambda>M'. emeasure (distr M' N f) A) \<in> borel_measurable (subprob_algebra M) \<longleftrightarrow>
349      (\<lambda>M'. emeasure M' (f -` A \<inter> space M)) \<in> borel_measurable (subprob_algebra M)"
350      by (intro measurable_cong)
351         (auto simp: emeasure_distr space_subprob_algebra
352               intro!: arg_cong2[where f=emeasure] sets_eq_imp_space_eq arg_cong2[where f="(\<inter>)"])
353    also have "\<dots>"
354      using A by (intro measurable_emeasure_subprob_algebra) simp
355    finally show "(\<lambda>M'. emeasure (distr M' N f) A) \<in> borel_measurable (subprob_algebra M)" .
356  qed (auto intro!: subprob_space.subprob_space_distr simp: space_subprob_algebra not_empty cong: measurable_cong_sets)
357qed (insert assms, auto simp: measurable_empty_iff space_subprob_algebra_empty_iff)
358
359lemma emeasure_space_subprob_algebra[measurable]:
360  "(\<lambda>a. emeasure a (space a)) \<in> borel_measurable (subprob_algebra N)"
361proof-
362  have "(\<lambda>a. emeasure a (space N)) \<in> borel_measurable (subprob_algebra N)" (is "?f \<in> ?M")
363    by (rule measurable_emeasure_subprob_algebra) simp
364  also have "?f \<in> ?M \<longleftrightarrow> (\<lambda>a. emeasure a (space a)) \<in> ?M"
365    by (rule measurable_cong) (auto simp: space_subprob_algebra dest: sets_eq_imp_space_eq)
366  finally show ?thesis .
367qed
368
369lemma integrable_measurable_subprob_algebra[measurable]:
370  fixes f :: "'a \<Rightarrow> 'b::{banach, second_countable_topology}"
371  assumes [measurable]: "f \<in> borel_measurable N"
372  shows "Measurable.pred (subprob_algebra N) (\<lambda>M. integrable M f)"
373proof (rule measurable_cong[THEN iffD2])
374  show "M \<in> space (subprob_algebra N) \<Longrightarrow> integrable M f \<longleftrightarrow> (\<integral>\<^sup>+x. norm (f x) \<partial>M) < \<infinity>" for M
375    by (auto simp: space_subprob_algebra integrable_iff_bounded)
376qed measurable
377
378lemma integral_measurable_subprob_algebra[measurable]:
379  fixes f :: "'a \<Rightarrow> 'b::{banach, second_countable_topology}"
380  assumes f [measurable]: "f \<in> borel_measurable N"
381  shows "(\<lambda>M. integral\<^sup>L M f) \<in> subprob_algebra N \<rightarrow>\<^sub>M borel"
382proof -
383  from borel_measurable_implies_sequence_metric[OF f, of 0]
384  obtain F where F: "\<And>i. simple_function N (F i)"
385    "\<And>x. x \<in> space N \<Longrightarrow> (\<lambda>i. F i x) \<longlonglongrightarrow> f x"
386    "\<And>i x. x \<in> space N \<Longrightarrow> norm (F i x) \<le> 2 * norm (f x)"
387    unfolding norm_conv_dist by blast
388
389  have [measurable]: "F i \<in> N \<rightarrow>\<^sub>M count_space UNIV" for i
390    using F(1) by (rule measurable_simple_function)
391
392  define F' where [abs_def]:
393    "F' M i = (if integrable M f then integral\<^sup>L M (F i) else 0)" for M i
394
395  have "(\<lambda>M. F' M i) \<in> subprob_algebra N \<rightarrow>\<^sub>M borel" for i
396  proof (rule measurable_cong[THEN iffD2])
397    fix M assume "M \<in> space (subprob_algebra N)"
398    then have [simp]: "sets M = sets N" "space M = space N" "subprob_space M"
399      by (auto simp: space_subprob_algebra intro!: sets_eq_imp_space_eq)
400    interpret subprob_space M by fact
401    have "F' M i = (if integrable M f then Bochner_Integration.simple_bochner_integral M (F i) else 0)"
402      using F(1)
403      by (subst simple_bochner_integrable_eq_integral)
404         (auto simp: simple_bochner_integrable.simps simple_function_def F'_def)
405    then show "F' M i = (if integrable M f then \<Sum>y\<in>F i ` space N. measure M {x\<in>space N. F i x = y} *\<^sub>R y else 0)"
406      unfolding simple_bochner_integral_def by simp
407  qed measurable
408  moreover
409  have "F' M \<longlonglongrightarrow> integral\<^sup>L M f" if M: "M \<in> space (subprob_algebra N)" for M
410  proof cases
411    from M have [simp]: "sets M = sets N" "space M = space N"
412      by (auto simp: space_subprob_algebra intro!: sets_eq_imp_space_eq)
413    assume "integrable M f" then show ?thesis
414      unfolding F'_def using F(1)[THEN borel_measurable_simple_function] F
415      by (auto intro!: integral_dominated_convergence[where w="\<lambda>x. 2 * norm (f x)"]
416               cong: measurable_cong_sets)
417  qed (auto simp: F'_def not_integrable_integral_eq)
418  ultimately show ?thesis
419    by (rule borel_measurable_LIMSEQ_metric)
420qed
421
422(* TODO: Rename. This name is too general -- Manuel *)
423lemma measurable_pair_measure:
424  assumes f: "f \<in> measurable M (subprob_algebra N)"
425  assumes g: "g \<in> measurable M (subprob_algebra L)"
426  shows "(\<lambda>x. f x \<Otimes>\<^sub>M g x) \<in> measurable M (subprob_algebra (N \<Otimes>\<^sub>M L))"
427proof (rule measurable_subprob_algebra)
428  { fix x assume "x \<in> space M"
429    with measurable_space[OF f] measurable_space[OF g]
430    have fx: "f x \<in> space (subprob_algebra N)" and gx: "g x \<in> space (subprob_algebra L)"
431      by auto
432    interpret F: subprob_space "f x"
433      using fx by (simp add: space_subprob_algebra)
434    interpret G: subprob_space "g x"
435      using gx by (simp add: space_subprob_algebra)
436
437    interpret pair_subprob_space "f x" "g x" ..
438    show "subprob_space (f x \<Otimes>\<^sub>M g x)" by unfold_locales
439    show sets_eq: "sets (f x \<Otimes>\<^sub>M g x) = sets (N \<Otimes>\<^sub>M L)"
440      using fx gx by (simp add: space_subprob_algebra)
441
442    have 1: "\<And>A B. A \<in> sets N \<Longrightarrow> B \<in> sets L \<Longrightarrow> emeasure (f x \<Otimes>\<^sub>M g x) (A \<times> B) = emeasure (f x) A * emeasure (g x) B"
443      using fx gx by (intro G.emeasure_pair_measure_Times) (auto simp: space_subprob_algebra)
444    have "emeasure (f x \<Otimes>\<^sub>M g x) (space (f x \<Otimes>\<^sub>M g x)) =
445              emeasure (f x) (space (f x)) * emeasure (g x) (space (g x))"
446      by (subst G.emeasure_pair_measure_Times[symmetric]) (simp_all add: space_pair_measure)
447    hence 2: "\<And>A. A \<in> sets (N \<Otimes>\<^sub>M L) \<Longrightarrow> emeasure (f x \<Otimes>\<^sub>M g x) (space N \<times> space L - A) =
448                                             ... - emeasure (f x \<Otimes>\<^sub>M g x) A"
449      using emeasure_compl[simplified, OF _ P.emeasure_finite]
450      unfolding sets_eq
451      unfolding sets_eq_imp_space_eq[OF sets_eq]
452      by (simp add: space_pair_measure G.emeasure_pair_measure_Times)
453    note 1 2 sets_eq }
454  note Times = this(1) and Compl = this(2) and sets_eq = this(3)
455
456  fix A assume A: "A \<in> sets (N \<Otimes>\<^sub>M L)"
457  show "(\<lambda>a. emeasure (f a \<Otimes>\<^sub>M g a) A) \<in> borel_measurable M"
458    using Int_stable_pair_measure_generator pair_measure_closed A
459    unfolding sets_pair_measure
460  proof (induct A rule: sigma_sets_induct_disjoint)
461    case (basic A) then show ?case
462      by (auto intro!: borel_measurable_times_ennreal simp: Times cong: measurable_cong)
463         (auto intro!: measurable_emeasure_kernel f g)
464  next
465    case (compl A)
466    then have A: "A \<in> sets (N \<Otimes>\<^sub>M L)"
467      by (auto simp: sets_pair_measure)
468    have "(\<lambda>x. emeasure (f x) (space (f x)) * emeasure (g x) (space (g x)) -
469                   emeasure (f x \<Otimes>\<^sub>M g x) A) \<in> borel_measurable M" (is "?f \<in> ?M")
470      using compl(2) f g by measurable
471    thus ?case by (simp add: Compl A cong: measurable_cong)
472  next
473    case (union A)
474    then have "range A \<subseteq> sets (N \<Otimes>\<^sub>M L)" "disjoint_family A"
475      by (auto simp: sets_pair_measure)
476    then have "(\<lambda>a. emeasure (f a \<Otimes>\<^sub>M g a) (\<Union>i. A i)) \<in> borel_measurable M \<longleftrightarrow>
477      (\<lambda>a. \<Sum>i. emeasure (f a \<Otimes>\<^sub>M g a) (A i)) \<in> borel_measurable M"
478      by (intro measurable_cong suminf_emeasure[symmetric])
479         (auto simp: sets_eq)
480    also have "\<dots>"
481      using union by auto
482    finally show ?case .
483  qed simp
484qed
485
486lemma restrict_space_measurable:
487  assumes X: "X \<noteq> {}" "X \<in> sets K"
488  assumes N: "N \<in> measurable M (subprob_algebra K)"
489  shows "(\<lambda>x. restrict_space (N x) X) \<in> measurable M (subprob_algebra (restrict_space K X))"
490proof (rule measurable_subprob_algebra)
491  fix a assume a: "a \<in> space M"
492  from N[THEN measurable_space, OF this]
493  have "subprob_space (N a)" and [simp]: "sets (N a) = sets K" "space (N a) = space K"
494    by (auto simp add: space_subprob_algebra dest: sets_eq_imp_space_eq)
495  then interpret subprob_space "N a"
496    by simp
497  show "subprob_space (restrict_space (N a) X)"
498  proof
499    show "space (restrict_space (N a) X) \<noteq> {}"
500      using X by (auto simp add: space_restrict_space)
501    show "emeasure (restrict_space (N a) X) (space (restrict_space (N a) X)) \<le> 1"
502      using X by (simp add: emeasure_restrict_space space_restrict_space subprob_emeasure_le_1)
503  qed
504  show "sets (restrict_space (N a) X) = sets (restrict_space K X)"
505    by (intro sets_restrict_space_cong) fact
506next
507  fix A assume A: "A \<in> sets (restrict_space K X)"
508  show "(\<lambda>a. emeasure (restrict_space (N a) X) A) \<in> borel_measurable M"
509  proof (subst measurable_cong)
510    fix a assume "a \<in> space M"
511    from N[THEN measurable_space, OF this]
512    have [simp]: "sets (N a) = sets K" "space (N a) = space K"
513      by (auto simp add: space_subprob_algebra dest: sets_eq_imp_space_eq)
514    show "emeasure (restrict_space (N a) X) A = emeasure (N a) (A \<inter> X)"
515      using X A by (subst emeasure_restrict_space) (auto simp add: sets_restrict_space ac_simps)
516  next
517    show "(\<lambda>w. emeasure (N w) (A \<inter> X)) \<in> borel_measurable M"
518      using A X
519      by (intro measurable_compose[OF N measurable_emeasure_subprob_algebra])
520         (auto simp: sets_restrict_space)
521  qed
522qed
523
524section \<open>Properties of return\<close>
525
526definition return :: "'a measure \<Rightarrow> 'a \<Rightarrow> 'a measure" where
527  "return R x = measure_of (space R) (sets R) (\<lambda>A. indicator A x)"
528
529lemma space_return[simp]: "space (return M x) = space M"
530  by (simp add: return_def)
531
532lemma sets_return[simp]: "sets (return M x) = sets M"
533  by (simp add: return_def)
534
535lemma measurable_return1[simp]: "measurable (return N x) L = measurable N L"
536  by (simp cong: measurable_cong_sets)
537
538lemma measurable_return2[simp]: "measurable L (return N x) = measurable L N"
539  by (simp cong: measurable_cong_sets)
540
541lemma return_sets_cong: "sets M = sets N \<Longrightarrow> return M = return N"
542  by (auto dest: sets_eq_imp_space_eq simp: fun_eq_iff return_def)
543
544lemma return_cong: "sets A = sets B \<Longrightarrow> return A x = return B x"
545  by (auto simp add: return_def dest: sets_eq_imp_space_eq)
546
547lemma emeasure_return[simp]:
548  assumes "A \<in> sets M"
549  shows "emeasure (return M x) A = indicator A x"
550proof (rule emeasure_measure_of[OF return_def])
551  show "sets M \<subseteq> Pow (space M)" by (rule sets.space_closed)
552  show "positive (sets (return M x)) (\<lambda>A. indicator A x)" by (simp add: positive_def)
553  from assms show "A \<in> sets (return M x)" unfolding return_def by simp
554  show "countably_additive (sets (return M x)) (\<lambda>A. indicator A x)"
555    by (auto intro!: countably_additiveI suminf_indicator)
556qed
557
558lemma prob_space_return: "x \<in> space M \<Longrightarrow> prob_space (return M x)"
559  by rule simp
560
561lemma subprob_space_return: "x \<in> space M \<Longrightarrow> subprob_space (return M x)"
562  by (intro prob_space_return prob_space_imp_subprob_space)
563
564lemma subprob_space_return_ne:
565  assumes "space M \<noteq> {}" shows "subprob_space (return M x)"
566proof
567  show "emeasure (return M x) (space (return M x)) \<le> 1"
568    by (subst emeasure_return) (auto split: split_indicator)
569qed (simp, fact)
570
571lemma measure_return: assumes X: "X \<in> sets M" shows "measure (return M x) X = indicator X x"
572  unfolding measure_def emeasure_return[OF X, of x] by (simp split: split_indicator)
573
574lemma AE_return:
575  assumes [simp]: "x \<in> space M" and [measurable]: "Measurable.pred M P"
576  shows "(AE y in return M x. P y) \<longleftrightarrow> P x"
577proof -
578  have "(AE y in return M x. y \<notin> {x\<in>space M. \<not> P x}) \<longleftrightarrow> P x"
579    by (subst AE_iff_null_sets[symmetric]) (simp_all add: null_sets_def split: split_indicator)
580  also have "(AE y in return M x. y \<notin> {x\<in>space M. \<not> P x}) \<longleftrightarrow> (AE y in return M x. P y)"
581    by (rule AE_cong) auto
582  finally show ?thesis .
583qed
584
585lemma nn_integral_return:
586  assumes "x \<in> space M" "g \<in> borel_measurable M"
587  shows "(\<integral>\<^sup>+ a. g a \<partial>return M x) = g x"
588proof-
589  interpret prob_space "return M x" by (rule prob_space_return[OF \<open>x \<in> space M\<close>])
590  have "(\<integral>\<^sup>+ a. g a \<partial>return M x) = (\<integral>\<^sup>+ a. g x \<partial>return M x)" using assms
591    by (intro nn_integral_cong_AE) (auto simp: AE_return)
592  also have "... = g x"
593    using nn_integral_const[of "return M x"] emeasure_space_1 by simp
594  finally show ?thesis .
595qed
596
597lemma integral_return:
598  fixes g :: "_ \<Rightarrow> 'a :: {banach, second_countable_topology}"
599  assumes "x \<in> space M" "g \<in> borel_measurable M"
600  shows "(\<integral>a. g a \<partial>return M x) = g x"
601proof-
602  interpret prob_space "return M x" by (rule prob_space_return[OF \<open>x \<in> space M\<close>])
603  have "(\<integral>a. g a \<partial>return M x) = (\<integral>a. g x \<partial>return M x)" using assms
604    by (intro integral_cong_AE) (auto simp: AE_return)
605  then show ?thesis
606    using prob_space by simp
607qed
608
609lemma return_measurable[measurable]: "return N \<in> measurable N (subprob_algebra N)"
610  by (rule measurable_subprob_algebra) (auto simp: subprob_space_return)
611
612lemma distr_return:
613  assumes "f \<in> measurable M N" and "x \<in> space M"
614  shows "distr (return M x) N f = return N (f x)"
615  using assms by (intro measure_eqI) (simp_all add: indicator_def emeasure_distr)
616
617lemma return_restrict_space:
618  "\<Omega> \<in> sets M \<Longrightarrow> return (restrict_space M \<Omega>) x = restrict_space (return M x) \<Omega>"
619  by (auto intro!: measure_eqI simp: sets_restrict_space emeasure_restrict_space)
620
621lemma measurable_distr2:
622  assumes f[measurable]: "case_prod f \<in> measurable (L \<Otimes>\<^sub>M M) N"
623  assumes g[measurable]: "g \<in> measurable L (subprob_algebra M)"
624  shows "(\<lambda>x. distr (g x) N (f x)) \<in> measurable L (subprob_algebra N)"
625proof -
626  have "(\<lambda>x. distr (g x) N (f x)) \<in> measurable L (subprob_algebra N)
627    \<longleftrightarrow> (\<lambda>x. distr (return L x \<Otimes>\<^sub>M g x) N (case_prod f)) \<in> measurable L (subprob_algebra N)"
628  proof (rule measurable_cong)
629    fix x assume x: "x \<in> space L"
630    have gx: "g x \<in> space (subprob_algebra M)"
631      using measurable_space[OF g x] .
632    then have [simp]: "sets (g x) = sets M"
633      by (simp add: space_subprob_algebra)
634    then have [simp]: "space (g x) = space M"
635      by (rule sets_eq_imp_space_eq)
636    let ?R = "return L x"
637    from measurable_compose_Pair1[OF x f] have f_M': "f x \<in> measurable M N"
638      by simp
639    interpret subprob_space "g x"
640      using gx by (simp add: space_subprob_algebra)
641    have space_pair_M'[simp]: "\<And>X. space (X \<Otimes>\<^sub>M g x) = space (X \<Otimes>\<^sub>M M)"
642      by (simp add: space_pair_measure)
643    show "distr (g x) N (f x) = distr (?R \<Otimes>\<^sub>M g x) N (case_prod f)" (is "?l = ?r")
644    proof (rule measure_eqI)
645      show "sets ?l = sets ?r"
646        by simp
647    next
648      fix A assume "A \<in> sets ?l"
649      then have A[measurable]: "A \<in> sets N"
650        by simp
651      then have "emeasure ?r A = emeasure (?R \<Otimes>\<^sub>M g x) ((\<lambda>(x, y). f x y) -` A \<inter> space (?R \<Otimes>\<^sub>M g x))"
652        by (auto simp add: emeasure_distr f_M' cong: measurable_cong_sets)
653      also have "\<dots> = (\<integral>\<^sup>+M''. emeasure (g x) (f M'' -` A \<inter> space M) \<partial>?R)"
654        apply (subst emeasure_pair_measure_alt)
655        apply (rule measurable_sets[OF _ A])
656        apply (auto simp add: f_M' cong: measurable_cong_sets)
657        apply (intro nn_integral_cong arg_cong[where f="emeasure (g x)"])
658        apply (auto simp: space_subprob_algebra space_pair_measure)
659        done
660      also have "\<dots> = emeasure (g x) (f x -` A \<inter> space M)"
661        by (subst nn_integral_return)
662           (auto simp: x intro!: measurable_emeasure)
663      also have "\<dots> = emeasure ?l A"
664        by (simp add: emeasure_distr f_M' cong: measurable_cong_sets)
665      finally show "emeasure ?l A = emeasure ?r A" ..
666    qed
667  qed
668  also have "\<dots>"
669    apply (intro measurable_compose[OF measurable_pair_measure measurable_distr])
670    apply (rule return_measurable)
671    apply measurable
672    done
673  finally show ?thesis .
674qed
675
676lemma nn_integral_measurable_subprob_algebra2:
677  assumes f[measurable]: "(\<lambda>(x, y). f x y) \<in> borel_measurable (M \<Otimes>\<^sub>M N)"
678  assumes N[measurable]: "L \<in> measurable M (subprob_algebra N)"
679  shows "(\<lambda>x. integral\<^sup>N (L x) (f x)) \<in> borel_measurable M"
680proof -
681  note nn_integral_measurable_subprob_algebra[measurable]
682  note measurable_distr2[measurable]
683  have "(\<lambda>x. integral\<^sup>N (distr (L x) (M \<Otimes>\<^sub>M N) (\<lambda>y. (x, y))) (\<lambda>(x, y). f x y)) \<in> borel_measurable M"
684    by measurable
685  then show "(\<lambda>x. integral\<^sup>N (L x) (f x)) \<in> borel_measurable M"
686    by (rule measurable_cong[THEN iffD1, rotated])
687       (simp add: nn_integral_distr)
688qed
689
690lemma emeasure_measurable_subprob_algebra2:
691  assumes A[measurable]: "(SIGMA x:space M. A x) \<in> sets (M \<Otimes>\<^sub>M N)"
692  assumes L[measurable]: "L \<in> measurable M (subprob_algebra N)"
693  shows "(\<lambda>x. emeasure (L x) (A x)) \<in> borel_measurable M"
694proof -
695  { fix x assume "x \<in> space M"
696    then have "Pair x -` Sigma (space M) A = A x"
697      by auto
698    with sets_Pair1[OF A, of x] have "A x \<in> sets N"
699      by auto }
700  note ** = this
701
702  have *: "\<And>x. fst x \<in> space M \<Longrightarrow> snd x \<in> A (fst x) \<longleftrightarrow> x \<in> (SIGMA x:space M. A x)"
703    by (auto simp: fun_eq_iff)
704  have "(\<lambda>(x, y). indicator (A x) y::ennreal) \<in> borel_measurable (M \<Otimes>\<^sub>M N)"
705    apply measurable
706    apply (subst measurable_cong)
707    apply (rule *)
708    apply (auto simp: space_pair_measure)
709    done
710  then have "(\<lambda>x. integral\<^sup>N (L x) (indicator (A x))) \<in> borel_measurable M"
711    by (intro nn_integral_measurable_subprob_algebra2[where N=N] L)
712  then show "(\<lambda>x. emeasure (L x) (A x)) \<in> borel_measurable M"
713    apply (rule measurable_cong[THEN iffD1, rotated])
714    apply (rule nn_integral_indicator)
715    apply (simp add: subprob_measurableD[OF L] **)
716    done
717qed
718
719lemma measure_measurable_subprob_algebra2:
720  assumes A[measurable]: "(SIGMA x:space M. A x) \<in> sets (M \<Otimes>\<^sub>M N)"
721  assumes L[measurable]: "L \<in> measurable M (subprob_algebra N)"
722  shows "(\<lambda>x. measure (L x) (A x)) \<in> borel_measurable M"
723  unfolding measure_def
724  by (intro borel_measurable_enn2real emeasure_measurable_subprob_algebra2[OF assms])
725
726definition "select_sets M = (SOME N. sets M = sets (subprob_algebra N))"
727
728lemma select_sets1:
729  "sets M = sets (subprob_algebra N) \<Longrightarrow> sets M = sets (subprob_algebra (select_sets M))"
730  unfolding select_sets_def by (rule someI)
731
732lemma sets_select_sets[simp]:
733  assumes sets: "sets M = sets (subprob_algebra N)"
734  shows "sets (select_sets M) = sets N"
735  unfolding select_sets_def
736proof (rule someI2)
737  show "sets M = sets (subprob_algebra N)"
738    by fact
739next
740  fix L assume "sets M = sets (subprob_algebra L)"
741  with sets have eq: "space (subprob_algebra N) = space (subprob_algebra L)"
742    by (intro sets_eq_imp_space_eq) simp
743  show "sets L = sets N"
744  proof cases
745    assume "space (subprob_algebra N) = {}"
746    with space_subprob_algebra_empty_iff[of N] space_subprob_algebra_empty_iff[of L]
747    show ?thesis
748      by (simp add: eq space_empty_iff)
749  next
750    assume "space (subprob_algebra N) \<noteq> {}"
751    with eq show ?thesis
752      by (fastforce simp add: space_subprob_algebra)
753  qed
754qed
755
756lemma space_select_sets[simp]:
757  "sets M = sets (subprob_algebra N) \<Longrightarrow> space (select_sets M) = space N"
758  by (intro sets_eq_imp_space_eq sets_select_sets)
759
760section \<open>Join\<close>
761
762definition join :: "'a measure measure \<Rightarrow> 'a measure" where
763  "join M = measure_of (space (select_sets M)) (sets (select_sets M)) (\<lambda>B. \<integral>\<^sup>+ M'. emeasure M' B \<partial>M)"
764
765lemma
766  shows space_join[simp]: "space (join M) = space (select_sets M)"
767    and sets_join[simp]: "sets (join M) = sets (select_sets M)"
768  by (simp_all add: join_def)
769
770lemma emeasure_join:
771  assumes M[simp, measurable_cong]: "sets M = sets (subprob_algebra N)" and A: "A \<in> sets N"
772  shows "emeasure (join M) A = (\<integral>\<^sup>+ M'. emeasure M' A \<partial>M)"
773proof (rule emeasure_measure_of[OF join_def])
774  show "countably_additive (sets (join M)) (\<lambda>B. \<integral>\<^sup>+ M'. emeasure M' B \<partial>M)"
775  proof (rule countably_additiveI)
776    fix A :: "nat \<Rightarrow> 'a set" assume A: "range A \<subseteq> sets (join M)" "disjoint_family A"
777    have "(\<Sum>i. \<integral>\<^sup>+ M'. emeasure M' (A i) \<partial>M) = (\<integral>\<^sup>+M'. (\<Sum>i. emeasure M' (A i)) \<partial>M)"
778      using A by (subst nn_integral_suminf) (auto simp: measurable_emeasure_subprob_algebra)
779    also have "\<dots> = (\<integral>\<^sup>+M'. emeasure M' (\<Union>i. A i) \<partial>M)"
780    proof (rule nn_integral_cong)
781      fix M' assume "M' \<in> space M"
782      then show "(\<Sum>i. emeasure M' (A i)) = emeasure M' (\<Union>i. A i)"
783        using A sets_eq_imp_space_eq[OF M] by (simp add: suminf_emeasure space_subprob_algebra)
784    qed
785    finally show "(\<Sum>i. \<integral>\<^sup>+M'. emeasure M' (A i) \<partial>M) = (\<integral>\<^sup>+M'. emeasure M' (\<Union>i. A i) \<partial>M)" .
786  qed
787qed (auto simp: A sets.space_closed positive_def)
788
789lemma measurable_join:
790  "join \<in> measurable (subprob_algebra (subprob_algebra N)) (subprob_algebra N)"
791proof (cases "space N \<noteq> {}", rule measurable_subprob_algebra)
792  fix A assume "A \<in> sets N"
793  let ?B = "borel_measurable (subprob_algebra (subprob_algebra N))"
794  have "(\<lambda>M'. emeasure (join M') A) \<in> ?B \<longleftrightarrow> (\<lambda>M'. (\<integral>\<^sup>+ M''. emeasure M'' A \<partial>M')) \<in> ?B"
795  proof (rule measurable_cong)
796    fix M' assume "M' \<in> space (subprob_algebra (subprob_algebra N))"
797    then show "emeasure (join M') A = (\<integral>\<^sup>+ M''. emeasure M'' A \<partial>M')"
798      by (intro emeasure_join) (auto simp: space_subprob_algebra \<open>A\<in>sets N\<close>)
799  qed
800  also have "(\<lambda>M'. \<integral>\<^sup>+M''. emeasure M'' A \<partial>M') \<in> ?B"
801    using measurable_emeasure_subprob_algebra[OF \<open>A\<in>sets N\<close>]
802    by (rule nn_integral_measurable_subprob_algebra)
803  finally show "(\<lambda>M'. emeasure (join M') A) \<in> borel_measurable (subprob_algebra (subprob_algebra N))" .
804next
805  assume [simp]: "space N \<noteq> {}"
806  fix M assume M: "M \<in> space (subprob_algebra (subprob_algebra N))"
807  then have "(\<integral>\<^sup>+M'. emeasure M' (space N) \<partial>M) \<le> (\<integral>\<^sup>+M'. 1 \<partial>M)"
808    apply (intro nn_integral_mono)
809    apply (auto simp: space_subprob_algebra
810                 dest!: sets_eq_imp_space_eq subprob_space.emeasure_space_le_1)
811    done
812  with M show "subprob_space (join M)"
813    by (intro subprob_spaceI)
814       (auto simp: emeasure_join space_subprob_algebra M dest: subprob_space.emeasure_space_le_1)
815next
816  assume "\<not>(space N \<noteq> {})"
817  thus ?thesis by (simp add: measurable_empty_iff space_subprob_algebra_empty_iff)
818qed (auto simp: space_subprob_algebra)
819
820lemma nn_integral_join:
821  assumes f: "f \<in> borel_measurable N"
822    and M[measurable_cong]: "sets M = sets (subprob_algebra N)"
823  shows "(\<integral>\<^sup>+x. f x \<partial>join M) = (\<integral>\<^sup>+M'. \<integral>\<^sup>+x. f x \<partial>M' \<partial>M)"
824  using f
825proof induct
826  case (cong f g)
827  moreover have "integral\<^sup>N (join M) f = integral\<^sup>N (join M) g"
828    by (intro nn_integral_cong cong) (simp add: M)
829  moreover from M have "(\<integral>\<^sup>+ M'. integral\<^sup>N M' f \<partial>M) = (\<integral>\<^sup>+ M'. integral\<^sup>N M' g \<partial>M)"
830    by (intro nn_integral_cong cong)
831       (auto simp add: space_subprob_algebra dest!: sets_eq_imp_space_eq)
832  ultimately show ?case
833    by simp
834next
835  case (set A)
836  with M have "(\<integral>\<^sup>+ M'. integral\<^sup>N M' (indicator A) \<partial>M) = (\<integral>\<^sup>+ M'. emeasure M' A \<partial>M)"
837    by (intro nn_integral_cong nn_integral_indicator)
838       (auto simp: space_subprob_algebra dest!: sets_eq_imp_space_eq)
839  with set show ?case
840    using M by (simp add: emeasure_join)
841next
842  case (mult f c)
843  have "(\<integral>\<^sup>+ M'. \<integral>\<^sup>+ x. c * f x \<partial>M' \<partial>M) = (\<integral>\<^sup>+ M'. c * \<integral>\<^sup>+ x. f x \<partial>M' \<partial>M)"
844    using mult M M[THEN sets_eq_imp_space_eq]
845    by (intro nn_integral_cong nn_integral_cmult) (auto simp add: space_subprob_algebra)
846  also have "\<dots> = c * (\<integral>\<^sup>+ M'. \<integral>\<^sup>+ x. f x \<partial>M' \<partial>M)"
847    using nn_integral_measurable_subprob_algebra[OF mult(2)]
848    by (intro nn_integral_cmult mult) (simp add: M)
849  also have "\<dots> = c * (integral\<^sup>N (join M) f)"
850    by (simp add: mult)
851  also have "\<dots> = (\<integral>\<^sup>+ x. c * f x \<partial>join M)"
852    using mult(2,3) by (intro nn_integral_cmult[symmetric] mult) (simp add: M cong: measurable_cong_sets)
853  finally show ?case by simp
854next
855  case (add f g)
856  have "(\<integral>\<^sup>+ M'. \<integral>\<^sup>+ x. f x + g x \<partial>M' \<partial>M) = (\<integral>\<^sup>+ M'. (\<integral>\<^sup>+ x. f x \<partial>M') + (\<integral>\<^sup>+ x. g x \<partial>M') \<partial>M)"
857    using add M M[THEN sets_eq_imp_space_eq]
858    by (intro nn_integral_cong nn_integral_add) (auto simp add: space_subprob_algebra)
859  also have "\<dots> = (\<integral>\<^sup>+ M'. \<integral>\<^sup>+ x. f x \<partial>M' \<partial>M) + (\<integral>\<^sup>+ M'. \<integral>\<^sup>+ x. g x \<partial>M' \<partial>M)"
860    using nn_integral_measurable_subprob_algebra[OF add(1)]
861    using nn_integral_measurable_subprob_algebra[OF add(4)]
862    by (intro nn_integral_add add) (simp_all add: M)
863  also have "\<dots> = (integral\<^sup>N (join M) f) + (integral\<^sup>N (join M) g)"
864    by (simp add: add)
865  also have "\<dots> = (\<integral>\<^sup>+ x. f x + g x \<partial>join M)"
866    using add by (intro nn_integral_add[symmetric] add) (simp_all add: M cong: measurable_cong_sets)
867  finally show ?case by (simp add: ac_simps)
868next
869  case (seq F)
870  have "(\<integral>\<^sup>+ M'. \<integral>\<^sup>+ x. (SUP i. F i) x \<partial>M' \<partial>M) = (\<integral>\<^sup>+ M'. (SUP i. \<integral>\<^sup>+ x. F i x \<partial>M') \<partial>M)"
871    using seq M M[THEN sets_eq_imp_space_eq] unfolding SUP_apply
872    by (intro nn_integral_cong nn_integral_monotone_convergence_SUP)
873       (auto simp add: space_subprob_algebra)
874  also have "\<dots> = (SUP i. \<integral>\<^sup>+ M'. \<integral>\<^sup>+ x. F i x \<partial>M' \<partial>M)"
875    using nn_integral_measurable_subprob_algebra[OF seq(1)] seq
876    by (intro nn_integral_monotone_convergence_SUP)
877       (simp_all add: M incseq_nn_integral incseq_def le_fun_def nn_integral_mono )
878  also have "\<dots> = (SUP i. integral\<^sup>N (join M) (F i))"
879    by (simp add: seq)
880  also have "\<dots> = (\<integral>\<^sup>+ x. (SUP i. F i x) \<partial>join M)"
881    using seq by (intro nn_integral_monotone_convergence_SUP[symmetric] seq)
882                 (simp_all add: M cong: measurable_cong_sets)
883  finally show ?case by (simp add: ac_simps image_comp)
884qed
885
886lemma measurable_join1:
887  "\<lbrakk> f \<in> measurable N K; sets M = sets (subprob_algebra N) \<rbrakk>
888  \<Longrightarrow> f \<in> measurable (join M) K"
889by(simp add: measurable_def)
890
891lemma
892  fixes f :: "_ \<Rightarrow> real"
893  assumes f_measurable [measurable]: "f \<in> borel_measurable N"
894  and f_bounded: "\<And>x. x \<in> space N \<Longrightarrow> \<bar>f x\<bar> \<le> B"
895  and M [measurable_cong]: "sets M = sets (subprob_algebra N)"
896  and fin: "finite_measure M"
897  and M_bounded: "AE M' in M. emeasure M' (space M') \<le> ennreal B'"
898  shows integrable_join: "integrable (join M) f" (is ?integrable)
899  and integral_join: "integral\<^sup>L (join M) f = \<integral> M'. integral\<^sup>L M' f \<partial>M" (is ?integral)
900proof(case_tac [!] "space N = {}")
901  assume *: "space N = {}"
902  show ?integrable
903    using M * by(simp add: real_integrable_def measurable_def nn_integral_empty)
904  have "(\<integral> M'. integral\<^sup>L M' f \<partial>M) = (\<integral> M'. 0 \<partial>M)"
905  proof(rule Bochner_Integration.integral_cong)
906    fix M'
907    assume "M' \<in> space M"
908    with sets_eq_imp_space_eq[OF M] have "space M' = space N"
909      by(auto simp add: space_subprob_algebra dest: sets_eq_imp_space_eq)
910    with * show "(\<integral> x. f x \<partial>M') = 0" by(simp add: Bochner_Integration.integral_empty)
911  qed simp
912  then show ?integral
913    using M * by(simp add: Bochner_Integration.integral_empty)
914next
915  assume *: "space N \<noteq> {}"
916
917  from * have B [simp]: "0 \<le> B" by(auto dest: f_bounded)
918
919  have [measurable]: "f \<in> borel_measurable (join M)" using f_measurable M
920    by(rule measurable_join1)
921
922  { fix f M'
923    assume [measurable]: "f \<in> borel_measurable N"
924      and f_bounded: "\<And>x. x \<in> space N \<Longrightarrow> f x \<le> B"
925      and "M' \<in> space M" "emeasure M' (space M') \<le> ennreal B'"
926    have "AE x in M'. ennreal (f x) \<le> ennreal B"
927    proof(rule AE_I2)
928      fix x
929      assume "x \<in> space M'"
930      with \<open>M' \<in> space M\<close> sets_eq_imp_space_eq[OF M]
931      have "x \<in> space N" by(auto simp add: space_subprob_algebra dest: sets_eq_imp_space_eq)
932      from f_bounded[OF this] show "ennreal (f x) \<le> ennreal B" by simp
933    qed
934    then have "(\<integral>\<^sup>+ x. ennreal (f x) \<partial>M') \<le> (\<integral>\<^sup>+ x. ennreal B \<partial>M')"
935      by(rule nn_integral_mono_AE)
936    also have "\<dots> = ennreal B * emeasure M' (space M')" by(simp)
937    also have "\<dots> \<le> ennreal B * ennreal B'" by(rule mult_left_mono)(fact, simp)
938    also have "\<dots> \<le> ennreal B * ennreal \<bar>B'\<bar>" by(rule mult_left_mono)(simp_all)
939    finally have "(\<integral>\<^sup>+ x. ennreal (f x) \<partial>M') \<le> ennreal (B * \<bar>B'\<bar>)" by (simp add: ennreal_mult) }
940  note bounded1 = this
941
942  have bounded:
943    "\<And>f. \<lbrakk> f \<in> borel_measurable N; \<And>x. x \<in> space N \<Longrightarrow> f x \<le> B \<rbrakk>
944    \<Longrightarrow> (\<integral>\<^sup>+ x. ennreal (f x) \<partial>join M) \<noteq> top"
945  proof -
946    fix f
947    assume [measurable]: "f \<in> borel_measurable N"
948      and f_bounded: "\<And>x. x \<in> space N \<Longrightarrow> f x \<le> B"
949    have "(\<integral>\<^sup>+ x. ennreal (f x) \<partial>join M) = (\<integral>\<^sup>+ M'. \<integral>\<^sup>+ x. ennreal (f x) \<partial>M' \<partial>M)"
950      by(rule nn_integral_join[OF _ M]) simp
951    also have "\<dots> \<le> \<integral>\<^sup>+ M'. B * \<bar>B'\<bar> \<partial>M"
952      using bounded1[OF \<open>f \<in> borel_measurable N\<close> f_bounded]
953      by(rule nn_integral_mono_AE[OF AE_mp[OF M_bounded AE_I2], rule_format])
954    also have "\<dots> = B * \<bar>B'\<bar> * emeasure M (space M)" by simp
955    also have "\<dots> < \<infinity>"
956      using finite_measure.finite_emeasure_space[OF fin]
957      by(simp add: ennreal_mult_less_top less_top)
958    finally show "?thesis f" by simp
959  qed
960  have f_pos: "(\<integral>\<^sup>+ x. ennreal (f x) \<partial>join M) \<noteq> \<infinity>"
961    and f_neg: "(\<integral>\<^sup>+ x. ennreal (- f x) \<partial>join M) \<noteq> \<infinity>"
962    using f_bounded by(auto del: notI intro!: bounded simp add: abs_le_iff)
963
964  show ?integrable using f_pos f_neg by(simp add: real_integrable_def)
965
966  note [measurable] = nn_integral_measurable_subprob_algebra
967
968  have int_f: "(\<integral>\<^sup>+ x. f x \<partial>join M) = \<integral>\<^sup>+ M'. \<integral>\<^sup>+ x. f x \<partial>M' \<partial>M"
969    by(simp add: nn_integral_join[OF _ M])
970  have int_mf: "(\<integral>\<^sup>+ x. - f x \<partial>join M) = (\<integral>\<^sup>+ M'. \<integral>\<^sup>+ x. - f x \<partial>M' \<partial>M)"
971    by(simp add: nn_integral_join[OF _ M])
972
973  have pos_finite: "AE M' in M. (\<integral>\<^sup>+ x. f x \<partial>M') \<noteq> \<infinity>"
974    using AE_space M_bounded
975  proof eventually_elim
976    fix M' assume "M' \<in> space M" "emeasure M' (space M') \<le> ennreal B'"
977    then have "(\<integral>\<^sup>+ x. ennreal (f x) \<partial>M') \<le> ennreal (B * \<bar>B'\<bar>)"
978      using f_measurable by(auto intro!: bounded1 dest: f_bounded)
979    then show "(\<integral>\<^sup>+ x. ennreal (f x) \<partial>M') \<noteq> \<infinity>"
980      by (auto simp: top_unique)
981  qed
982  hence [simp]: "(\<integral>\<^sup>+ M'. ennreal (enn2real (\<integral>\<^sup>+ x. f x \<partial>M')) \<partial>M) = (\<integral>\<^sup>+ M'. \<integral>\<^sup>+ x. f x \<partial>M' \<partial>M)"
983    by (rule nn_integral_cong_AE[OF AE_mp]) (simp add: less_top)
984  from f_pos have [simp]: "integrable M (\<lambda>M'. enn2real (\<integral>\<^sup>+ x. f x \<partial>M'))"
985    by(simp add: int_f real_integrable_def nn_integral_0_iff_AE[THEN iffD2] ennreal_neg enn2real_nonneg)
986
987  have neg_finite: "AE M' in M. (\<integral>\<^sup>+ x. - f x \<partial>M') \<noteq> \<infinity>"
988    using AE_space M_bounded
989  proof eventually_elim
990    fix M' assume "M' \<in> space M" "emeasure M' (space M') \<le> ennreal B'"
991    then have "(\<integral>\<^sup>+ x. ennreal (- f x) \<partial>M') \<le> ennreal (B * \<bar>B'\<bar>)"
992      using f_measurable by(auto intro!: bounded1 dest: f_bounded)
993    then show "(\<integral>\<^sup>+ x. ennreal (- f x) \<partial>M') \<noteq> \<infinity>"
994      by (auto simp: top_unique)
995  qed
996  hence [simp]: "(\<integral>\<^sup>+ M'. ennreal (enn2real (\<integral>\<^sup>+ x. - f x \<partial>M')) \<partial>M) = (\<integral>\<^sup>+ M'. \<integral>\<^sup>+ x. - f x \<partial>M' \<partial>M)"
997    by (rule nn_integral_cong_AE[OF AE_mp]) (simp add: less_top)
998  from f_neg have [simp]: "integrable M (\<lambda>M'. enn2real (\<integral>\<^sup>+ x. - f x \<partial>M'))"
999    by(simp add: int_mf real_integrable_def nn_integral_0_iff_AE[THEN iffD2] ennreal_neg enn2real_nonneg)
1000
1001  have "(\<integral> x. f x \<partial>join M) = enn2real (\<integral>\<^sup>+ N. \<integral>\<^sup>+x. f x \<partial>N \<partial>M) - enn2real (\<integral>\<^sup>+ N. \<integral>\<^sup>+x. - f x \<partial>N \<partial>M)"
1002    unfolding real_lebesgue_integral_def[OF \<open>?integrable\<close>] by (simp add: nn_integral_join[OF _ M])
1003  also have "\<dots> = (\<integral>N. enn2real (\<integral>\<^sup>+x. f x \<partial>N) \<partial>M) - (\<integral>N. enn2real (\<integral>\<^sup>+x. - f x \<partial>N) \<partial>M)"
1004    using pos_finite neg_finite by (subst (1 2) integral_eq_nn_integral) (auto simp: enn2real_nonneg)
1005  also have "\<dots> = (\<integral>N. enn2real (\<integral>\<^sup>+x. f x \<partial>N) - enn2real (\<integral>\<^sup>+x. - f x \<partial>N) \<partial>M)"
1006    by simp
1007  also have "\<dots> = \<integral>M'. \<integral> x. f x \<partial>M' \<partial>M"
1008  proof (rule integral_cong_AE)
1009    show "AE x in M.
1010        enn2real (\<integral>\<^sup>+ x. ennreal (f x) \<partial>x) - enn2real (\<integral>\<^sup>+ x. ennreal (- f x) \<partial>x) = integral\<^sup>L x f"
1011      using AE_space M_bounded
1012    proof eventually_elim
1013      fix M' assume "M' \<in> space M" "emeasure M' (space M') \<le> B'"
1014      then interpret subprob_space M'
1015        by (auto simp: M[THEN sets_eq_imp_space_eq] space_subprob_algebra)
1016
1017      from \<open>M' \<in> space M\<close> sets_eq_imp_space_eq[OF M]
1018      have [measurable_cong]: "sets M' = sets N" by(simp add: space_subprob_algebra)
1019      hence [simp]: "space M' = space N" by(rule sets_eq_imp_space_eq)
1020      have "integrable M' f"
1021        by(rule integrable_const_bound[where B=B])(auto simp add: f_bounded)
1022      then show "enn2real (\<integral>\<^sup>+ x. f x \<partial>M') - enn2real (\<integral>\<^sup>+ x. - f x \<partial>M') = \<integral> x. f x \<partial>M'"
1023        by(simp add: real_lebesgue_integral_def)
1024    qed
1025  qed simp_all
1026  finally show ?integral by simp
1027qed
1028
1029lemma join_assoc:
1030  assumes M[measurable_cong]: "sets M = sets (subprob_algebra (subprob_algebra N))"
1031  shows "join (distr M (subprob_algebra N) join) = join (join M)"
1032proof (rule measure_eqI)
1033  fix A assume "A \<in> sets (join (distr M (subprob_algebra N) join))"
1034  then have A: "A \<in> sets N" by simp
1035  show "emeasure (join (distr M (subprob_algebra N) join)) A = emeasure (join (join M)) A"
1036    using measurable_join[of N]
1037    by (auto simp: M A nn_integral_distr emeasure_join measurable_emeasure_subprob_algebra
1038                   sets_eq_imp_space_eq[OF M] space_subprob_algebra nn_integral_join[OF _ M]
1039             intro!: nn_integral_cong emeasure_join)
1040qed (simp add: M)
1041
1042lemma join_return:
1043  assumes "sets M = sets N" and "subprob_space M"
1044  shows "join (return (subprob_algebra N) M) = M"
1045  by (rule measure_eqI)
1046     (simp_all add: emeasure_join space_subprob_algebra
1047                    measurable_emeasure_subprob_algebra nn_integral_return assms)
1048
1049lemma join_return':
1050  assumes "sets N = sets M"
1051  shows "join (distr M (subprob_algebra N) (return N)) = M"
1052apply (rule measure_eqI)
1053apply (simp add: assms)
1054apply (subgoal_tac "return N \<in> measurable M (subprob_algebra N)")
1055apply (simp add: emeasure_join nn_integral_distr measurable_emeasure_subprob_algebra assms)
1056apply (subst measurable_cong_sets, rule assms[symmetric], rule refl, rule return_measurable)
1057done
1058
1059lemma join_distr_distr:
1060  fixes f :: "'a \<Rightarrow> 'b" and M :: "'a measure measure" and N :: "'b measure"
1061  assumes "sets M = sets (subprob_algebra R)" and "f \<in> measurable R N"
1062  shows "join (distr M (subprob_algebra N) (\<lambda>M. distr M N f)) = distr (join M) N f" (is "?r = ?l")
1063proof (rule measure_eqI)
1064  fix A assume "A \<in> sets ?r"
1065  hence A_in_N: "A \<in> sets N" by simp
1066
1067  from assms have "f \<in> measurable (join M) N"
1068      by (simp cong: measurable_cong_sets)
1069  moreover from assms and A_in_N have "f-`A \<inter> space R \<in> sets R"
1070      by (intro measurable_sets) simp_all
1071  ultimately have "emeasure (distr (join M) N f) A = \<integral>\<^sup>+M'. emeasure M' (f-`A \<inter> space R) \<partial>M"
1072      by (simp_all add: A_in_N emeasure_distr emeasure_join assms)
1073
1074  also have "... = \<integral>\<^sup>+ x. emeasure (distr x N f) A \<partial>M" using A_in_N
1075  proof (intro nn_integral_cong, subst emeasure_distr)
1076    fix M' assume "M' \<in> space M"
1077    from assms have "space M = space (subprob_algebra R)"
1078        using sets_eq_imp_space_eq by blast
1079    with \<open>M' \<in> space M\<close> have [simp]: "sets M' = sets R" using space_subprob_algebra by blast
1080    show "f \<in> measurable M' N" by (simp cong: measurable_cong_sets add: assms)
1081    have "space M' = space R" by (rule sets_eq_imp_space_eq) simp
1082    thus "emeasure M' (f -` A \<inter> space R) = emeasure M' (f -` A \<inter> space M')" by simp
1083  qed
1084
1085  also have "(\<lambda>M. distr M N f) \<in> measurable M (subprob_algebra N)"
1086      by (simp cong: measurable_cong_sets add: assms measurable_distr)
1087  hence "(\<integral>\<^sup>+ x. emeasure (distr x N f) A \<partial>M) =
1088             emeasure (join (distr M (subprob_algebra N) (\<lambda>M. distr M N f))) A"
1089      by (simp_all add: emeasure_join assms A_in_N nn_integral_distr measurable_emeasure_subprob_algebra)
1090  finally show "emeasure ?r A = emeasure ?l A" ..
1091qed simp
1092
1093definition bind :: "'a measure \<Rightarrow> ('a \<Rightarrow> 'b measure) \<Rightarrow> 'b measure" where
1094  "bind M f = (if space M = {} then count_space {} else
1095    join (distr M (subprob_algebra (f (SOME x. x \<in> space M))) f))"
1096
1097adhoc_overloading Monad_Syntax.bind bind
1098
1099lemma bind_empty:
1100  "space M = {} \<Longrightarrow> bind M f = count_space {}"
1101  by (simp add: bind_def)
1102
1103lemma bind_nonempty:
1104  "space M \<noteq> {} \<Longrightarrow> bind M f = join (distr M (subprob_algebra (f (SOME x. x \<in> space M))) f)"
1105  by (simp add: bind_def)
1106
1107lemma sets_bind_empty: "sets M = {} \<Longrightarrow> sets (bind M f) = {{}}"
1108  by (auto simp: bind_def)
1109
1110lemma space_bind_empty: "space M = {} \<Longrightarrow> space (bind M f) = {}"
1111  by (simp add: bind_def)
1112
1113lemma sets_bind[simp, measurable_cong]:
1114  assumes f: "\<And>x. x \<in> space M \<Longrightarrow> sets (f x) = sets N" and M: "space M \<noteq> {}"
1115  shows "sets (bind M f) = sets N"
1116  using f [of "SOME x. x \<in> space M"] by (simp add: bind_nonempty M some_in_eq)
1117
1118lemma space_bind[simp]:
1119  assumes "\<And>x. x \<in> space M \<Longrightarrow> sets (f x) = sets N" and "space M \<noteq> {}"
1120  shows "space (bind M f) = space N"
1121  using assms by (intro sets_eq_imp_space_eq sets_bind)
1122
1123lemma bind_cong_All:
1124  assumes "\<forall>x \<in> space M. f x = g x"
1125  shows "bind M f = bind M g"
1126proof (cases "space M = {}")
1127  assume "space M \<noteq> {}"
1128  hence "(SOME x. x \<in> space M) \<in> space M" by (rule_tac someI_ex) blast
1129  with assms have "f (SOME x. x \<in> space M) = g (SOME x. x \<in> space M)" by blast
1130  with \<open>space M \<noteq> {}\<close> and assms show ?thesis by (simp add: bind_nonempty cong: distr_cong)
1131qed (simp add: bind_empty)
1132
1133lemma bind_cong:
1134  "M = N \<Longrightarrow> (\<And>x. x \<in> space M \<Longrightarrow> f x = g x) \<Longrightarrow> bind M f = bind N g"
1135  using bind_cong_All[of M f g] by auto
1136
1137lemma bind_nonempty':
1138  assumes "f \<in> measurable M (subprob_algebra N)" "x \<in> space M"
1139  shows "bind M f = join (distr M (subprob_algebra N) f)"
1140  using assms
1141  apply (subst bind_nonempty, blast)
1142  apply (subst subprob_algebra_cong[OF sets_kernel[OF assms(1) someI_ex]], blast)
1143  apply (simp add: subprob_algebra_cong[OF sets_kernel[OF assms]])
1144  done
1145
1146lemma bind_nonempty'':
1147  assumes "f \<in> measurable M (subprob_algebra N)" "space M \<noteq> {}"
1148  shows "bind M f = join (distr M (subprob_algebra N) f)"
1149  using assms by (auto intro: bind_nonempty')
1150
1151lemma emeasure_bind:
1152    "\<lbrakk>space M \<noteq> {}; f \<in> measurable M (subprob_algebra N);X \<in> sets N\<rbrakk>
1153      \<Longrightarrow> emeasure (M \<bind> f) X = \<integral>\<^sup>+x. emeasure (f x) X \<partial>M"
1154  by (simp add: bind_nonempty'' emeasure_join nn_integral_distr measurable_emeasure_subprob_algebra)
1155
1156lemma nn_integral_bind:
1157  assumes f: "f \<in> borel_measurable B"
1158  assumes N: "N \<in> measurable M (subprob_algebra B)"
1159  shows "(\<integral>\<^sup>+x. f x \<partial>(M \<bind> N)) = (\<integral>\<^sup>+x. \<integral>\<^sup>+y. f y \<partial>N x \<partial>M)"
1160proof cases
1161  assume M: "space M \<noteq> {}" show ?thesis
1162    unfolding bind_nonempty''[OF N M] nn_integral_join[OF f sets_distr]
1163    by (rule nn_integral_distr[OF N])
1164       (simp add: f nn_integral_measurable_subprob_algebra)
1165qed (simp add: bind_empty space_empty[of M] nn_integral_count_space)
1166
1167lemma AE_bind:
1168  assumes N[measurable]: "N \<in> measurable M (subprob_algebra B)"
1169  assumes P[measurable]: "Measurable.pred B P"
1170  shows "(AE x in M \<bind> N. P x) \<longleftrightarrow> (AE x in M. AE y in N x. P y)"
1171proof cases
1172  assume M: "space M = {}" show ?thesis
1173    unfolding bind_empty[OF M] unfolding space_empty[OF M] by (simp add: AE_count_space)
1174next
1175  assume M: "space M \<noteq> {}"
1176  note sets_kernel[OF N, simp]
1177  have *: "(\<integral>\<^sup>+x. indicator {x. \<not> P x} x \<partial>(M \<bind> N)) = (\<integral>\<^sup>+x. indicator {x\<in>space B. \<not> P x} x \<partial>(M \<bind> N))"
1178    by (intro nn_integral_cong) (simp add: space_bind[OF _ M] split: split_indicator)
1179
1180  have "(AE x in M \<bind> N. P x) \<longleftrightarrow> (\<integral>\<^sup>+ x. integral\<^sup>N (N x) (indicator {x \<in> space B. \<not> P x}) \<partial>M) = 0"
1181    by (simp add: AE_iff_nn_integral sets_bind[OF _ M] space_bind[OF _ M] * nn_integral_bind[where B=B]
1182             del: nn_integral_indicator)
1183  also have "\<dots> = (AE x in M. AE y in N x. P y)"
1184    apply (subst nn_integral_0_iff_AE)
1185    apply (rule measurable_compose[OF N nn_integral_measurable_subprob_algebra])
1186    apply measurable
1187    apply (intro eventually_subst AE_I2)
1188    apply (auto simp add: subprob_measurableD(1)[OF N]
1189                intro!: AE_iff_measurable[symmetric])
1190    done
1191  finally show ?thesis .
1192qed
1193
1194lemma measurable_bind':
1195  assumes M1: "f \<in> measurable M (subprob_algebra N)" and
1196          M2: "case_prod g \<in> measurable (M \<Otimes>\<^sub>M N) (subprob_algebra R)"
1197  shows "(\<lambda>x. bind (f x) (g x)) \<in> measurable M (subprob_algebra R)"
1198proof (subst measurable_cong)
1199  fix x assume x_in_M: "x \<in> space M"
1200  with assms have "space (f x) \<noteq> {}"
1201      by (blast dest: subprob_space_kernel subprob_space.subprob_not_empty)
1202  moreover from M2 x_in_M have "g x \<in> measurable (f x) (subprob_algebra R)"
1203      by (subst measurable_cong_sets[OF sets_kernel[OF M1 x_in_M] refl])
1204         (auto dest: measurable_Pair2)
1205  ultimately show "bind (f x) (g x) = join (distr (f x) (subprob_algebra R) (g x))"
1206      by (simp_all add: bind_nonempty'')
1207next
1208  show "(\<lambda>w. join (distr (f w) (subprob_algebra R) (g w))) \<in> measurable M (subprob_algebra R)"
1209    apply (rule measurable_compose[OF _ measurable_join])
1210    apply (rule measurable_distr2[OF M2 M1])
1211    done
1212qed
1213
1214lemma measurable_bind[measurable (raw)]:
1215  assumes M1: "f \<in> measurable M (subprob_algebra N)" and
1216          M2: "(\<lambda>x. g (fst x) (snd x)) \<in> measurable (M \<Otimes>\<^sub>M N) (subprob_algebra R)"
1217  shows "(\<lambda>x. bind (f x) (g x)) \<in> measurable M (subprob_algebra R)"
1218  using assms by (auto intro: measurable_bind' simp: measurable_split_conv)
1219
1220lemma measurable_bind2:
1221  assumes "f \<in> measurable M (subprob_algebra N)" and "g \<in> measurable N (subprob_algebra R)"
1222  shows "(\<lambda>x. bind (f x) g) \<in> measurable M (subprob_algebra R)"
1223    using assms by (intro measurable_bind' measurable_const) auto
1224
1225lemma subprob_space_bind:
1226  assumes "subprob_space M" "f \<in> measurable M (subprob_algebra N)"
1227  shows "subprob_space (M \<bind> f)"
1228proof (rule subprob_space_kernel[of "\<lambda>x. x \<bind> f"])
1229  show "(\<lambda>x. x \<bind> f) \<in> measurable (subprob_algebra M) (subprob_algebra N)"
1230    by (rule measurable_bind, rule measurable_ident_sets, rule refl,
1231        rule measurable_compose[OF measurable_snd assms(2)])
1232  from assms(1) show "M \<in> space (subprob_algebra M)"
1233    by (simp add: space_subprob_algebra)
1234qed
1235
1236lemma
1237  fixes f :: "_ \<Rightarrow> real"
1238  assumes f_measurable [measurable]: "f \<in> borel_measurable K"
1239  and f_bounded: "\<And>x. x \<in> space K \<Longrightarrow> \<bar>f x\<bar> \<le> B"
1240  and N [measurable]: "N \<in> measurable M (subprob_algebra K)"
1241  and fin: "finite_measure M"
1242  and M_bounded: "AE x in M. emeasure (N x) (space (N x)) \<le> ennreal B'"
1243  shows integrable_bind: "integrable (bind M N) f" (is ?integrable)
1244  and integral_bind: "integral\<^sup>L (bind M N) f = \<integral> x. integral\<^sup>L (N x) f \<partial>M" (is ?integral)
1245proof(case_tac [!] "space M = {}")
1246  assume [simp]: "space M \<noteq> {}"
1247  interpret finite_measure M by(rule fin)
1248
1249  have "integrable (join (distr M (subprob_algebra K) N)) f"
1250    using f_measurable f_bounded
1251    by(rule integrable_join[where B'=B'])(simp_all add: finite_measure_distr AE_distr_iff M_bounded)
1252  then show ?integrable by(simp add: bind_nonempty''[where N=K])
1253
1254  have "integral\<^sup>L (join (distr M (subprob_algebra K) N)) f = \<integral> M'. integral\<^sup>L M' f \<partial>distr M (subprob_algebra K) N"
1255    using f_measurable f_bounded
1256    by(rule integral_join[where B'=B'])(simp_all add: finite_measure_distr AE_distr_iff M_bounded)
1257  also have "\<dots> = \<integral> x. integral\<^sup>L (N x) f \<partial>M"
1258    by(rule integral_distr)(simp_all add: integral_measurable_subprob_algebra[OF _])
1259  finally show ?integral by(simp add: bind_nonempty''[where N=K])
1260qed(simp_all add: bind_def integrable_count_space lebesgue_integral_count_space_finite Bochner_Integration.integral_empty)
1261
1262lemma (in prob_space) prob_space_bind:
1263  assumes ae: "AE x in M. prob_space (N x)"
1264    and N[measurable]: "N \<in> measurable M (subprob_algebra S)"
1265  shows "prob_space (M \<bind> N)"
1266proof
1267  have "emeasure (M \<bind> N) (space (M \<bind> N)) = (\<integral>\<^sup>+x. emeasure (N x) (space (N x)) \<partial>M)"
1268    by (subst emeasure_bind[where N=S])
1269       (auto simp: not_empty space_bind[OF sets_kernel] subprob_measurableD[OF N] intro!: nn_integral_cong)
1270  also have "\<dots> = (\<integral>\<^sup>+x. 1 \<partial>M)"
1271    using ae by (intro nn_integral_cong_AE, eventually_elim) (rule prob_space.emeasure_space_1)
1272  finally show "emeasure (M \<bind> N) (space (M \<bind> N)) = 1"
1273    by (simp add: emeasure_space_1)
1274qed
1275
1276lemma (in subprob_space) bind_in_space:
1277  "A \<in> measurable M (subprob_algebra N) \<Longrightarrow> (M \<bind> A) \<in> space (subprob_algebra N)"
1278  by (auto simp add: space_subprob_algebra subprob_not_empty sets_kernel intro!: subprob_space_bind)
1279     unfold_locales
1280
1281lemma (in subprob_space) measure_bind:
1282  assumes f: "f \<in> measurable M (subprob_algebra N)" and X: "X \<in> sets N"
1283  shows "measure (M \<bind> f) X = \<integral>x. measure (f x) X \<partial>M"
1284proof -
1285  interpret Mf: subprob_space "M \<bind> f"
1286    by (rule subprob_space_bind[OF _ f]) unfold_locales
1287
1288  { fix x assume "x \<in> space M"
1289    from f[THEN measurable_space, OF this] interpret subprob_space "f x"
1290      by (simp add: space_subprob_algebra)
1291    have "emeasure (f x) X = ennreal (measure (f x) X)" "measure (f x) X \<le> 1"
1292      by (auto simp: emeasure_eq_measure subprob_measure_le_1) }
1293  note this[simp]
1294
1295  have "emeasure (M \<bind> f) X = \<integral>\<^sup>+x. emeasure (f x) X \<partial>M"
1296    using subprob_not_empty f X by (rule emeasure_bind)
1297  also have "\<dots> = \<integral>\<^sup>+x. ennreal (measure (f x) X) \<partial>M"
1298    by (intro nn_integral_cong) simp
1299  also have "\<dots> = \<integral>x. measure (f x) X \<partial>M"
1300    by (intro nn_integral_eq_integral integrable_const_bound[where B=1]
1301              measure_measurable_subprob_algebra2[OF _ f] pair_measureI X)
1302       (auto simp: measure_nonneg)
1303  finally show ?thesis
1304    by (simp add: Mf.emeasure_eq_measure measure_nonneg integral_nonneg)
1305qed
1306
1307lemma emeasure_bind_const:
1308    "space M \<noteq> {} \<Longrightarrow> X \<in> sets N \<Longrightarrow> subprob_space N \<Longrightarrow>
1309         emeasure (M \<bind> (\<lambda>x. N)) X = emeasure N X * emeasure M (space M)"
1310  by (simp add: bind_nonempty emeasure_join nn_integral_distr
1311                space_subprob_algebra measurable_emeasure_subprob_algebra)
1312
1313lemma emeasure_bind_const':
1314  assumes "subprob_space M" "subprob_space N"
1315  shows "emeasure (M \<bind> (\<lambda>x. N)) X = emeasure N X * emeasure M (space M)"
1316using assms
1317proof (case_tac "X \<in> sets N")
1318  fix X assume "X \<in> sets N"
1319  thus "emeasure (M \<bind> (\<lambda>x. N)) X = emeasure N X * emeasure M (space M)" using assms
1320      by (subst emeasure_bind_const)
1321         (simp_all add: subprob_space.subprob_not_empty subprob_space.emeasure_space_le_1)
1322next
1323  fix X assume "X \<notin> sets N"
1324  with assms show "emeasure (M \<bind> (\<lambda>x. N)) X = emeasure N X * emeasure M (space M)"
1325      by (simp add: sets_bind[of _ _ N] subprob_space.subprob_not_empty
1326                    space_subprob_algebra emeasure_notin_sets)
1327qed
1328
1329lemma emeasure_bind_const_prob_space:
1330  assumes "prob_space M" "subprob_space N"
1331  shows "emeasure (M \<bind> (\<lambda>x. N)) X = emeasure N X"
1332  using assms by (simp add: emeasure_bind_const' prob_space_imp_subprob_space
1333                            prob_space.emeasure_space_1)
1334
1335lemma bind_return:
1336  assumes "f \<in> measurable M (subprob_algebra N)" and "x \<in> space M"
1337  shows "bind (return M x) f = f x"
1338  using sets_kernel[OF assms] assms
1339  by (simp_all add: distr_return join_return subprob_space_kernel bind_nonempty'
1340               cong: subprob_algebra_cong)
1341
1342lemma bind_return':
1343  shows "bind M (return M) = M"
1344  by (cases "space M = {}")
1345     (simp_all add: bind_empty space_empty[symmetric] bind_nonempty join_return'
1346               cong: subprob_algebra_cong)
1347
1348lemma distr_bind:
1349  assumes N: "N \<in> measurable M (subprob_algebra K)" "space M \<noteq> {}"
1350  assumes f: "f \<in> measurable K R"
1351  shows "distr (M \<bind> N) R f = (M \<bind> (\<lambda>x. distr (N x) R f))"
1352  unfolding bind_nonempty''[OF N]
1353  apply (subst bind_nonempty''[OF measurable_compose[OF N(1) measurable_distr] N(2)])
1354  apply (rule f)
1355  apply (simp add: join_distr_distr[OF _ f, symmetric])
1356  apply (subst distr_distr[OF measurable_distr, OF f N(1)])
1357  apply (simp add: comp_def)
1358  done
1359
1360lemma bind_distr:
1361  assumes f[measurable]: "f \<in> measurable M X"
1362  assumes N[measurable]: "N \<in> measurable X (subprob_algebra K)" and "space M \<noteq> {}"
1363  shows "(distr M X f \<bind> N) = (M \<bind> (\<lambda>x. N (f x)))"
1364proof -
1365  have "space X \<noteq> {}" "space M \<noteq> {}"
1366    using \<open>space M \<noteq> {}\<close> f[THEN measurable_space] by auto
1367  then show ?thesis
1368    by (simp add: bind_nonempty''[where N=K] distr_distr comp_def)
1369qed
1370
1371lemma bind_count_space_singleton:
1372  assumes "subprob_space (f x)"
1373  shows "count_space {x} \<bind> f = f x"
1374proof-
1375  have A: "\<And>A. A \<subseteq> {x} \<Longrightarrow> A = {} \<or> A = {x}" by auto
1376  have "count_space {x} = return (count_space {x}) x"
1377    by (intro measure_eqI) (auto dest: A)
1378  also have "... \<bind> f = f x"
1379    by (subst bind_return[of _ _ "f x"]) (auto simp: space_subprob_algebra assms)
1380  finally show ?thesis .
1381qed
1382
1383lemma restrict_space_bind:
1384  assumes N: "N \<in> measurable M (subprob_algebra K)"
1385  assumes "space M \<noteq> {}"
1386  assumes X[simp]: "X \<in> sets K" "X \<noteq> {}"
1387  shows "restrict_space (bind M N) X = bind M (\<lambda>x. restrict_space (N x) X)"
1388proof (rule measure_eqI)
1389  note N_sets = sets_bind[OF sets_kernel[OF N] assms(2), simp]
1390  note N_space = sets_eq_imp_space_eq[OF N_sets, simp]
1391  show "sets (restrict_space (bind M N) X) = sets (bind M (\<lambda>x. restrict_space (N x) X))"
1392    by (simp add: sets_restrict_space assms(2) sets_bind[OF sets_kernel[OF restrict_space_measurable[OF assms(4,3,1)]]])
1393  fix A assume "A \<in> sets (restrict_space (M \<bind> N) X)"
1394  with X have "A \<in> sets K" "A \<subseteq> X"
1395    by (auto simp: sets_restrict_space)
1396  then show "emeasure (restrict_space (M \<bind> N) X) A = emeasure (M \<bind> (\<lambda>x. restrict_space (N x) X)) A"
1397    using assms
1398    apply (subst emeasure_restrict_space)
1399    apply (simp_all add: emeasure_bind[OF assms(2,1)])
1400    apply (subst emeasure_bind[OF _ restrict_space_measurable[OF _ _ N]])
1401    apply (auto simp: sets_restrict_space emeasure_restrict_space space_subprob_algebra
1402                intro!: nn_integral_cong dest!: measurable_space)
1403    done
1404qed
1405
1406lemma bind_restrict_space:
1407  assumes A: "A \<inter> space M \<noteq> {}" "A \<inter> space M \<in> sets M"
1408  and f: "f \<in> measurable (restrict_space M A) (subprob_algebra N)"
1409  shows "restrict_space M A \<bind> f = M \<bind> (\<lambda>x. if x \<in> A then f x else null_measure (f (SOME x. x \<in> A \<and> x \<in> space M)))"
1410  (is "?lhs = ?rhs" is "_ = M \<bind> ?f")
1411proof -
1412  let ?P = "\<lambda>x. x \<in> A \<and> x \<in> space M"
1413  let ?x = "Eps ?P"
1414  let ?c = "null_measure (f ?x)"
1415  from A have "?P ?x" by-(rule someI_ex, blast)
1416  hence "?x \<in> space (restrict_space M A)" by(simp add: space_restrict_space)
1417  with f have "f ?x \<in> space (subprob_algebra N)" by(rule measurable_space)
1418  hence sps: "subprob_space (f ?x)"
1419    and sets: "sets (f ?x) = sets N"
1420    by(simp_all add: space_subprob_algebra)
1421  have "space (f ?x) \<noteq> {}" using sps by(rule subprob_space.subprob_not_empty)
1422  moreover have "sets ?c = sets N" by(simp add: null_measure_def)(simp add: sets)
1423  ultimately have c: "?c \<in> space (subprob_algebra N)"
1424    by(simp add: space_subprob_algebra subprob_space_null_measure)
1425  from f A c have f': "?f \<in> measurable M (subprob_algebra N)"
1426    by(simp add: measurable_restrict_space_iff)
1427
1428  from A have [simp]: "space M \<noteq> {}" by blast
1429
1430  have "?lhs = join (distr (restrict_space M A) (subprob_algebra N) f)"
1431    using assms by(simp add: space_restrict_space bind_nonempty'')
1432  also have "\<dots> = join (distr M (subprob_algebra N) ?f)"
1433    by(rule measure_eqI)(auto simp add: emeasure_join nn_integral_distr nn_integral_restrict_space f f' A intro: nn_integral_cong)
1434  also have "\<dots> = ?rhs" using f' by(simp add: bind_nonempty'')
1435  finally show ?thesis .
1436qed
1437
1438lemma bind_const': "\<lbrakk>prob_space M; subprob_space N\<rbrakk> \<Longrightarrow> M \<bind> (\<lambda>x. N) = N"
1439  by (intro measure_eqI)
1440     (simp_all add: space_subprob_algebra prob_space.not_empty emeasure_bind_const_prob_space)
1441
1442lemma bind_return_distr:
1443    "space M \<noteq> {} \<Longrightarrow> f \<in> measurable M N \<Longrightarrow> bind M (return N \<circ> f) = distr M N f"
1444  apply (simp add: bind_nonempty)
1445  apply (subst subprob_algebra_cong)
1446  apply (rule sets_return)
1447  apply (subst distr_distr[symmetric])
1448  apply (auto intro!: return_measurable simp: distr_distr[symmetric] join_return')
1449  done
1450
1451lemma bind_return_distr':
1452  "space M \<noteq> {} \<Longrightarrow> f \<in> measurable M N \<Longrightarrow> bind M (\<lambda>x. return N (f x)) = distr M N f"
1453  using bind_return_distr[of M f N] by (simp add: comp_def)
1454
1455lemma bind_assoc:
1456  fixes f :: "'a \<Rightarrow> 'b measure" and g :: "'b \<Rightarrow> 'c measure"
1457  assumes M1: "f \<in> measurable M (subprob_algebra N)" and M2: "g \<in> measurable N (subprob_algebra R)"
1458  shows "bind (bind M f) g = bind M (\<lambda>x. bind (f x) g)"
1459proof (cases "space M = {}")
1460  assume [simp]: "space M \<noteq> {}"
1461  from assms have [simp]: "space N \<noteq> {}" "space R \<noteq> {}"
1462      by (auto simp: measurable_empty_iff space_subprob_algebra_empty_iff)
1463  from assms have sets_fx[simp]: "\<And>x. x \<in> space M \<Longrightarrow> sets (f x) = sets N"
1464      by (simp add: sets_kernel)
1465  have ex_in: "\<And>A. A \<noteq> {} \<Longrightarrow> \<exists>x. x \<in> A" by blast
1466  note sets_some[simp] = sets_kernel[OF M1 someI_ex[OF ex_in[OF \<open>space M \<noteq> {}\<close>]]]
1467                         sets_kernel[OF M2 someI_ex[OF ex_in[OF \<open>space N \<noteq> {}\<close>]]]
1468  note space_some[simp] = sets_eq_imp_space_eq[OF this(1)] sets_eq_imp_space_eq[OF this(2)]
1469
1470  have "bind M (\<lambda>x. bind (f x) g) =
1471        join (distr M (subprob_algebra R) (join \<circ> (\<lambda>x. (distr x (subprob_algebra R) g)) \<circ> f))"
1472    by (simp add: sets_eq_imp_space_eq[OF sets_fx] bind_nonempty o_def
1473             cong: subprob_algebra_cong distr_cong)
1474  also have "distr M (subprob_algebra R) (join \<circ> (\<lambda>x. (distr x (subprob_algebra R) g)) \<circ> f) =
1475             distr (distr (distr M (subprob_algebra N) f)
1476                          (subprob_algebra (subprob_algebra R))
1477                          (\<lambda>x. distr x (subprob_algebra R) g))
1478                   (subprob_algebra R) join"
1479      apply (subst distr_distr,
1480             (blast intro: measurable_comp measurable_distr measurable_join M1 M2)+)+
1481      apply (simp add: o_assoc)
1482      done
1483  also have "join ... = bind (bind M f) g"
1484      by (simp add: join_assoc join_distr_distr M2 bind_nonempty cong: subprob_algebra_cong)
1485  finally show ?thesis ..
1486qed (simp add: bind_empty)
1487
1488lemma double_bind_assoc:
1489  assumes Mg: "g \<in> measurable N (subprob_algebra N')"
1490  assumes Mf: "f \<in> measurable M (subprob_algebra M')"
1491  assumes Mh: "case_prod h \<in> measurable (M \<Otimes>\<^sub>M M') N"
1492  shows "do {x \<leftarrow> M; y \<leftarrow> f x; g (h x y)} = do {x \<leftarrow> M; y \<leftarrow> f x; return N (h x y)} \<bind> g"
1493proof-
1494  have "do {x \<leftarrow> M; y \<leftarrow> f x; return N (h x y)} \<bind> g =
1495            do {x \<leftarrow> M; do {y \<leftarrow> f x; return N (h x y)} \<bind> g}"
1496    using Mh by (auto intro!: bind_assoc measurable_bind'[OF Mf] Mf Mg
1497                      measurable_compose[OF _ return_measurable] simp: measurable_split_conv)
1498  also from Mh have "\<And>x. x \<in> space M \<Longrightarrow> h x \<in> measurable M' N" by measurable
1499  hence "do {x \<leftarrow> M; do {y \<leftarrow> f x; return N (h x y)} \<bind> g} =
1500            do {x \<leftarrow> M; y \<leftarrow> f x; return N (h x y) \<bind> g}"
1501    apply (intro ballI bind_cong refl bind_assoc)
1502    apply (subst measurable_cong_sets[OF sets_kernel[OF Mf] refl], simp)
1503    apply (rule measurable_compose[OF _ return_measurable], auto intro: Mg)
1504    done
1505  also have "\<And>x. x \<in> space M \<Longrightarrow> space (f x) = space M'"
1506    by (intro sets_eq_imp_space_eq sets_kernel[OF Mf])
1507  with measurable_space[OF Mh]
1508    have "do {x \<leftarrow> M; y \<leftarrow> f x; return N (h x y) \<bind> g} = do {x \<leftarrow> M; y \<leftarrow> f x; g (h x y)}"
1509    by (intro ballI bind_cong bind_return[OF Mg]) (auto simp: space_pair_measure)
1510  finally show ?thesis ..
1511qed
1512
1513lemma (in prob_space) M_in_subprob[measurable (raw)]: "M \<in> space (subprob_algebra M)"
1514  by (simp add: space_subprob_algebra) unfold_locales
1515
1516lemma (in pair_prob_space) pair_measure_eq_bind:
1517  "(M1 \<Otimes>\<^sub>M M2) = (M1 \<bind> (\<lambda>x. M2 \<bind> (\<lambda>y. return (M1 \<Otimes>\<^sub>M M2) (x, y))))"
1518proof (rule measure_eqI)
1519  have ps_M2: "prob_space M2" by unfold_locales
1520  note return_measurable[measurable]
1521  show "sets (M1 \<Otimes>\<^sub>M M2) = sets (M1 \<bind> (\<lambda>x. M2 \<bind> (\<lambda>y. return (M1 \<Otimes>\<^sub>M M2) (x, y))))"
1522    by (simp_all add: M1.not_empty M2.not_empty)
1523  fix A assume [measurable]: "A \<in> sets (M1 \<Otimes>\<^sub>M M2)"
1524  show "emeasure (M1 \<Otimes>\<^sub>M M2) A = emeasure (M1 \<bind> (\<lambda>x. M2 \<bind> (\<lambda>y. return (M1 \<Otimes>\<^sub>M M2) (x, y)))) A"
1525    by (auto simp: M2.emeasure_pair_measure M1.not_empty M2.not_empty emeasure_bind[where N="M1 \<Otimes>\<^sub>M M2"]
1526             intro!: nn_integral_cong)
1527qed
1528
1529lemma (in pair_prob_space) bind_rotate:
1530  assumes C[measurable]: "(\<lambda>(x, y). C x y) \<in> measurable (M1 \<Otimes>\<^sub>M M2) (subprob_algebra N)"
1531  shows "(M1 \<bind> (\<lambda>x. M2 \<bind> (\<lambda>y. C x y))) = (M2 \<bind> (\<lambda>y. M1 \<bind> (\<lambda>x. C x y)))"
1532proof -
1533  interpret swap: pair_prob_space M2 M1 by unfold_locales
1534  note measurable_bind[where N="M2", measurable]
1535  note measurable_bind[where N="M1", measurable]
1536  have [simp]: "M1 \<in> space (subprob_algebra M1)" "M2 \<in> space (subprob_algebra M2)"
1537    by (auto simp: space_subprob_algebra) unfold_locales
1538  have "(M1 \<bind> (\<lambda>x. M2 \<bind> (\<lambda>y. C x y))) =
1539    (M1 \<bind> (\<lambda>x. M2 \<bind> (\<lambda>y. return (M1 \<Otimes>\<^sub>M M2) (x, y)))) \<bind> (\<lambda>(x, y). C x y)"
1540    by (auto intro!: bind_cong simp: bind_return[where N=N] space_pair_measure bind_assoc[where N="M1 \<Otimes>\<^sub>M M2" and R=N])
1541  also have "\<dots> = (distr (M2 \<Otimes>\<^sub>M M1) (M1 \<Otimes>\<^sub>M M2) (\<lambda>(x, y). (y, x))) \<bind> (\<lambda>(x, y). C x y)"
1542    unfolding pair_measure_eq_bind[symmetric] distr_pair_swap[symmetric] ..
1543  also have "\<dots> = (M2 \<bind> (\<lambda>x. M1 \<bind> (\<lambda>y. return (M2 \<Otimes>\<^sub>M M1) (x, y)))) \<bind> (\<lambda>(y, x). C x y)"
1544    unfolding swap.pair_measure_eq_bind[symmetric]
1545    by (auto simp add: space_pair_measure M1.not_empty M2.not_empty bind_distr[OF _ C] intro!: bind_cong)
1546  also have "\<dots> = (M2 \<bind> (\<lambda>y. M1 \<bind> (\<lambda>x. C x y)))"
1547    by (auto intro!: bind_cong simp: bind_return[where N=N] space_pair_measure bind_assoc[where N="M2 \<Otimes>\<^sub>M M1" and R=N])
1548  finally show ?thesis .
1549qed
1550
1551lemma bind_return'': "sets M = sets N \<Longrightarrow> M \<bind> return N = M"
1552   by (cases "space M = {}")
1553      (simp_all add: bind_empty space_empty[symmetric] bind_nonempty join_return'
1554                cong: subprob_algebra_cong)
1555
1556lemma (in prob_space) distr_const[simp]:
1557  "c \<in> space N \<Longrightarrow> distr M N (\<lambda>x. c) = return N c"
1558  by (rule measure_eqI) (auto simp: emeasure_distr emeasure_space_1)
1559
1560lemma return_count_space_eq_density:
1561    "return (count_space M) x = density (count_space M) (indicator {x})"
1562  by (rule measure_eqI)
1563     (auto simp: indicator_inter_arith[symmetric] emeasure_density split: split_indicator)
1564
1565lemma null_measure_in_space_subprob_algebra [simp]:
1566  "null_measure M \<in> space (subprob_algebra M) \<longleftrightarrow> space M \<noteq> {}"
1567by(simp add: space_subprob_algebra subprob_space_null_measure_iff)
1568
1569subsection \<open>Giry monad on probability spaces\<close>
1570
1571definition prob_algebra :: "'a measure \<Rightarrow> 'a measure measure" where
1572  "prob_algebra K = restrict_space (subprob_algebra K) {M. prob_space M}"
1573
1574lemma space_prob_algebra: "space (prob_algebra M) = {N. sets N = sets M \<and> prob_space N}"
1575  unfolding prob_algebra_def by (auto simp: space_subprob_algebra space_restrict_space prob_space_imp_subprob_space)
1576
1577lemma measurable_measure_prob_algebra[measurable]:
1578  "a \<in> sets A \<Longrightarrow> (\<lambda>M. Sigma_Algebra.measure M a) \<in> prob_algebra A \<rightarrow>\<^sub>M borel"
1579  unfolding prob_algebra_def by (intro measurable_restrict_space1 measurable_measure_subprob_algebra)
1580
1581lemma measurable_prob_algebraD:
1582  "f \<in> N \<rightarrow>\<^sub>M prob_algebra M \<Longrightarrow> f \<in> N \<rightarrow>\<^sub>M subprob_algebra M"
1583  unfolding prob_algebra_def measurable_restrict_space2_iff by auto
1584
1585lemma measure_measurable_prob_algebra2:
1586  "Sigma (space M) A \<in> sets (M \<Otimes>\<^sub>M N) \<Longrightarrow> L \<in> M \<rightarrow>\<^sub>M prob_algebra N \<Longrightarrow>
1587    (\<lambda>x. Sigma_Algebra.measure (L x) (A x)) \<in> borel_measurable M"
1588  using measure_measurable_subprob_algebra2[of M A N L] by (auto intro: measurable_prob_algebraD)
1589
1590lemma measurable_prob_algebraI:
1591  "(\<And>x. x \<in> space N \<Longrightarrow> prob_space (f x)) \<Longrightarrow> f \<in> N \<rightarrow>\<^sub>M subprob_algebra M \<Longrightarrow> f \<in> N \<rightarrow>\<^sub>M prob_algebra M"
1592  unfolding prob_algebra_def by (intro measurable_restrict_space2) auto
1593
1594lemma measurable_distr_prob_space:
1595  assumes f: "f \<in> M \<rightarrow>\<^sub>M N"
1596  shows "(\<lambda>M'. distr M' N f) \<in> prob_algebra M \<rightarrow>\<^sub>M prob_algebra N"
1597  unfolding prob_algebra_def measurable_restrict_space2_iff
1598proof (intro conjI measurable_restrict_space1 measurable_distr f)
1599  show "(\<lambda>M'. distr M' N f) \<in> space (restrict_space (subprob_algebra M) (Collect prob_space)) \<rightarrow> Collect prob_space"
1600    using f by (auto simp: space_restrict_space space_subprob_algebra intro!: prob_space.prob_space_distr)
1601qed
1602
1603lemma measurable_return_prob_space[measurable]: "return N \<in> N \<rightarrow>\<^sub>M prob_algebra N"
1604  by (rule measurable_prob_algebraI) (auto simp: prob_space_return)
1605
1606lemma measurable_distr_prob_space2[measurable (raw)]:
1607  assumes f: "g \<in> L \<rightarrow>\<^sub>M prob_algebra M" "(\<lambda>(x, y). f x y) \<in> L \<Otimes>\<^sub>M M \<rightarrow>\<^sub>M N"
1608  shows "(\<lambda>x. distr (g x) N (f x)) \<in> L \<rightarrow>\<^sub>M prob_algebra N"
1609  unfolding prob_algebra_def measurable_restrict_space2_iff
1610proof (intro conjI measurable_restrict_space1 measurable_distr2[where M=M] f measurable_prob_algebraD)
1611  show "(\<lambda>x. distr (g x) N (f x)) \<in> space L \<rightarrow> Collect prob_space"
1612    using f subprob_measurableD[OF measurable_prob_algebraD[OF f(1)]]
1613    by (auto simp: measurable_restrict_space2_iff prob_algebra_def
1614             intro!: prob_space.prob_space_distr)
1615qed
1616
1617lemma measurable_bind_prob_space:
1618  assumes f: "f \<in> M \<rightarrow>\<^sub>M prob_algebra N" and g: "g \<in> N \<rightarrow>\<^sub>M prob_algebra R"
1619  shows "(\<lambda>x. bind (f x) g) \<in> M \<rightarrow>\<^sub>M prob_algebra R"
1620  unfolding prob_algebra_def measurable_restrict_space2_iff
1621proof (intro conjI measurable_restrict_space1 measurable_bind2[where N=N] f g measurable_prob_algebraD)
1622  show "(\<lambda>x. f x \<bind> g) \<in> space M \<rightarrow> Collect prob_space"
1623    using g f subprob_measurableD[OF measurable_prob_algebraD[OF f]]
1624    by (auto simp: measurable_restrict_space2_iff prob_algebra_def
1625                intro!: prob_space.prob_space_bind[where S=R] AE_I2)
1626qed
1627
1628lemma measurable_bind_prob_space2[measurable (raw)]:
1629  assumes f: "f \<in> M \<rightarrow>\<^sub>M prob_algebra N" and g: "(\<lambda>(x, y). g x y) \<in> (M \<Otimes>\<^sub>M N) \<rightarrow>\<^sub>M prob_algebra R"
1630  shows "(\<lambda>x. bind (f x) (g x)) \<in> M \<rightarrow>\<^sub>M prob_algebra R"
1631  unfolding prob_algebra_def measurable_restrict_space2_iff
1632proof (intro conjI measurable_restrict_space1 measurable_bind[where N=N] f g measurable_prob_algebraD)
1633  show "(\<lambda>x. f x \<bind> g x) \<in> space M \<rightarrow> Collect prob_space"
1634    using g f subprob_measurableD[OF measurable_prob_algebraD[OF f]]
1635      using measurable_space[OF g]
1636    by (auto simp: measurable_restrict_space2_iff prob_algebra_def space_pair_measure Pi_iff
1637                intro!: prob_space.prob_space_bind[where S=R] AE_I2)
1638qed (insert g, simp)
1639
1640
1641lemma measurable_prob_algebra_generated:
1642  assumes eq: "sets N = sigma_sets \<Omega> G" and "Int_stable G" "G \<subseteq> Pow \<Omega>"
1643  assumes subsp: "\<And>a. a \<in> space M \<Longrightarrow> prob_space (K a)"
1644  assumes sets: "\<And>a. a \<in> space M \<Longrightarrow> sets (K a) = sets N"
1645  assumes "\<And>A. A \<in> G \<Longrightarrow> (\<lambda>a. emeasure (K a) A) \<in> borel_measurable M"
1646  shows "K \<in> measurable M (prob_algebra N)"
1647  unfolding measurable_restrict_space2_iff prob_algebra_def
1648proof
1649  show "K \<in> M \<rightarrow>\<^sub>M subprob_algebra N"
1650  proof (rule measurable_subprob_algebra_generated[OF assms(1,2,3) _ assms(5,6)])
1651    fix a assume "a \<in> space M" then show "subprob_space (K a)"
1652      using subsp[of a] by (intro prob_space_imp_subprob_space)
1653  next
1654    have "(\<lambda>a. emeasure (K a) \<Omega>) \<in> borel_measurable M \<longleftrightarrow> (\<lambda>a. 1::ennreal) \<in> borel_measurable M"
1655      using sets_eq_imp_space_eq[of "sigma \<Omega> G" N] \<open>G \<subseteq> Pow \<Omega>\<close> eq sets_eq_imp_space_eq[OF sets]
1656        prob_space.emeasure_space_1[OF subsp]
1657      by (intro measurable_cong) auto
1658    then show "(\<lambda>a. emeasure (K a) \<Omega>) \<in> borel_measurable M" by simp
1659  qed
1660qed (insert subsp, auto)
1661
1662lemma in_space_prob_algebra:
1663  "x \<in> space (prob_algebra M) \<Longrightarrow> emeasure x (space M) = 1"
1664  unfolding prob_algebra_def space_restrict_space space_subprob_algebra
1665  by (auto dest!: prob_space.emeasure_space_1 sets_eq_imp_space_eq)
1666
1667lemma prob_space_pair:
1668  assumes "prob_space M" "prob_space N" shows "prob_space (M \<Otimes>\<^sub>M N)"
1669proof -
1670  interpret M: prob_space M by fact
1671  interpret N: prob_space N by fact
1672  interpret P: pair_prob_space M N proof qed
1673  show ?thesis
1674    by unfold_locales
1675qed
1676
1677lemma measurable_pair_prob[measurable]:
1678  "f \<in> M \<rightarrow>\<^sub>M prob_algebra N \<Longrightarrow> g \<in> M \<rightarrow>\<^sub>M prob_algebra L \<Longrightarrow> (\<lambda>x. f x \<Otimes>\<^sub>M g x) \<in> M \<rightarrow>\<^sub>M prob_algebra (N \<Otimes>\<^sub>M L)"
1679  unfolding prob_algebra_def measurable_restrict_space2_iff
1680  by (auto intro!: measurable_pair_measure prob_space_pair)
1681
1682lemma emeasure_bind_prob_algebra:
1683  assumes A: "A \<in> space (prob_algebra N)"
1684  assumes B: "B \<in> N \<rightarrow>\<^sub>M prob_algebra L"
1685  assumes X: "X \<in> sets L"
1686  shows "emeasure (bind A B) X = (\<integral>\<^sup>+x. emeasure (B x) X \<partial>A)"
1687  using A B
1688  by (intro emeasure_bind[OF _ _ X])
1689     (auto simp: space_prob_algebra measurable_prob_algebraD cong: measurable_cong_sets intro!: prob_space.not_empty)
1690
1691lemma prob_space_bind':
1692  assumes A: "A \<in> space (prob_algebra M)" and B: "B \<in> M \<rightarrow>\<^sub>M prob_algebra N" shows "prob_space (A \<bind> B)"
1693  using measurable_bind_prob_space[OF measurable_const, OF A B, THEN measurable_space, of undefined "count_space UNIV"]
1694  by (simp add: space_prob_algebra)
1695
1696lemma sets_bind':
1697  assumes A: "A \<in> space (prob_algebra M)" and B: "B \<in> M \<rightarrow>\<^sub>M prob_algebra N" shows "sets (A \<bind> B) = sets N"
1698  using measurable_bind_prob_space[OF measurable_const, OF A B, THEN measurable_space, of undefined "count_space UNIV"]
1699  by (simp add: space_prob_algebra)
1700
1701lemma bind_cong_AE':
1702  assumes M: "M \<in> space (prob_algebra L)"
1703    and f: "f \<in> L \<rightarrow>\<^sub>M prob_algebra N" and g: "g \<in> L \<rightarrow>\<^sub>M prob_algebra N"
1704    and ae: "AE x in M. f x = g x"
1705  shows "bind M f = bind M g"
1706proof (rule measure_eqI)
1707  show "sets (M \<bind> f) = sets (M \<bind> g)"
1708    unfolding sets_bind'[OF M f] sets_bind'[OF M g] ..
1709  show "A \<in> sets (M \<bind> f) \<Longrightarrow> emeasure (M \<bind> f) A = emeasure (M \<bind> g) A" for A
1710    unfolding sets_bind'[OF M f]
1711    using emeasure_bind_prob_algebra[OF M f, of A] emeasure_bind_prob_algebra[OF M g, of A] ae
1712    by (auto intro: nn_integral_cong_AE)
1713qed
1714
1715lemma density_discrete:
1716  "countable A \<Longrightarrow> sets N = Set.Pow A \<Longrightarrow> (\<And>x. f x \<ge> 0) \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x = emeasure N {x}) \<Longrightarrow>
1717    density (count_space A) f = N"
1718  by (rule measure_eqI_countable[of _ A]) (auto simp: emeasure_density)
1719
1720lemma distr_density_discrete:
1721  fixes f'
1722  assumes "countable A"
1723  assumes "f' \<in> borel_measurable M"
1724  assumes "g \<in> measurable M (count_space A)"
1725  defines "f \<equiv> \<lambda>x. \<integral>\<^sup>+t. (if g t = x then 1 else 0) * f' t \<partial>M"
1726  assumes "\<And>x.  x \<in> space M \<Longrightarrow> g x \<in> A"
1727  shows "density (count_space A) (\<lambda>x. f x) = distr (density M f') (count_space A) g"
1728proof (rule density_discrete)
1729  fix x assume x: "x \<in> A"
1730  have "f x = \<integral>\<^sup>+t. indicator (g -` {x} \<inter> space M) t * f' t \<partial>M" (is "_ = ?I") unfolding f_def
1731    by (intro nn_integral_cong) (simp split: split_indicator)
1732  also from x have in_sets: "g -` {x} \<inter> space M \<in> sets M"
1733    by (intro measurable_sets[OF assms(3)]) simp
1734  have "?I = emeasure (density M f') (g -` {x} \<inter> space M)" unfolding f_def
1735    by (subst emeasure_density[OF assms(2) in_sets], subst mult.commute) (rule refl)
1736  also from assms(3) x have "... = emeasure (distr (density M f') (count_space A) g) {x}"
1737    by (subst emeasure_distr) simp_all
1738  finally show "f x = emeasure (distr (density M f') (count_space A) g) {x}" .
1739qed (insert assms, auto)
1740
1741lemma bind_cong_AE:
1742  assumes "M = N"
1743  assumes f: "f \<in> measurable N (subprob_algebra B)"
1744  assumes g: "g \<in> measurable N (subprob_algebra B)"
1745  assumes ae: "AE x in N. f x = g x"
1746  shows "bind M f = bind N g"
1747proof cases
1748  assume "space N = {}" then show ?thesis
1749    using \<open>M = N\<close> by (simp add: bind_empty)
1750next
1751  assume "space N \<noteq> {}"
1752  show ?thesis unfolding \<open>M = N\<close>
1753  proof (rule measure_eqI)
1754    have *: "sets (N \<bind> f) = sets B"
1755      using sets_bind[OF sets_kernel[OF f] \<open>space N \<noteq> {}\<close>] by simp
1756    then show "sets (N \<bind> f) = sets (N \<bind> g)"
1757      using sets_bind[OF sets_kernel[OF g] \<open>space N \<noteq> {}\<close>] by auto
1758    fix A assume "A \<in> sets (N \<bind> f)"
1759    then have "A \<in> sets B"
1760      unfolding * .
1761    with ae f g \<open>space N \<noteq> {}\<close> show "emeasure (N \<bind> f) A = emeasure (N \<bind> g) A"
1762      by (subst (1 2) emeasure_bind[where N=B]) (auto intro!: nn_integral_cong_AE)
1763  qed
1764qed
1765
1766lemma bind_cong_simp: "M = N \<Longrightarrow> (\<And>x. x\<in>space M =simp=> f x = g x) \<Longrightarrow> bind M f = bind N g"
1767  by (auto simp: simp_implies_def intro!: bind_cong)
1768
1769lemma sets_bind_measurable:
1770  assumes f: "f \<in> measurable M (subprob_algebra B)"
1771  assumes M: "space M \<noteq> {}"
1772  shows "sets (M \<bind> f) = sets B"
1773  using M by (intro sets_bind[OF sets_kernel[OF f]]) auto
1774
1775lemma space_bind_measurable:
1776  assumes f: "f \<in> measurable M (subprob_algebra B)"
1777  assumes M: "space M \<noteq> {}"
1778  shows "space (M \<bind> f) = space B"
1779  using M by (intro space_bind[OF sets_kernel[OF f]]) auto
1780
1781lemma bind_distr_return:
1782  "f \<in> M \<rightarrow>\<^sub>M N \<Longrightarrow> g \<in> N \<rightarrow>\<^sub>M L \<Longrightarrow> space M \<noteq> {} \<Longrightarrow>
1783    distr M N f \<bind> (\<lambda>x. return L (g x)) = distr M L (\<lambda>x. g (f x))"
1784  by (subst bind_distr[OF _ measurable_compose[OF _ return_measurable]])
1785     (auto intro!: bind_return_distr')
1786
1787end
1788