1(*  Title:      HOL/Order_Relation.thy
2    Author:     Tobias Nipkow
3    Author:     Andrei Popescu, TU Muenchen
4*)
5
6section \<open>Orders as Relations\<close>
7
8theory Order_Relation
9imports Wfrec
10begin
11
12subsection \<open>Orders on a set\<close>
13
14definition "preorder_on A r \<equiv> refl_on A r \<and> trans r"
15
16definition "partial_order_on A r \<equiv> preorder_on A r \<and> antisym r"
17
18definition "linear_order_on A r \<equiv> partial_order_on A r \<and> total_on A r"
19
20definition "strict_linear_order_on A r \<equiv> trans r \<and> irrefl r \<and> total_on A r"
21
22definition "well_order_on A r \<equiv> linear_order_on A r \<and> wf(r - Id)"
23
24lemmas order_on_defs =
25  preorder_on_def partial_order_on_def linear_order_on_def
26  strict_linear_order_on_def well_order_on_def
27
28lemma partial_order_onD:
29  assumes "partial_order_on A r" shows "refl_on A r" and "trans r" and "antisym r"
30  using assms unfolding partial_order_on_def preorder_on_def by auto
31
32lemma preorder_on_empty[simp]: "preorder_on {} {}"
33  by (simp add: preorder_on_def trans_def)
34
35lemma partial_order_on_empty[simp]: "partial_order_on {} {}"
36  by (simp add: partial_order_on_def)
37
38lemma lnear_order_on_empty[simp]: "linear_order_on {} {}"
39  by (simp add: linear_order_on_def)
40
41lemma well_order_on_empty[simp]: "well_order_on {} {}"
42  by (simp add: well_order_on_def)
43
44
45lemma preorder_on_converse[simp]: "preorder_on A (r\<inverse>) = preorder_on A r"
46  by (simp add: preorder_on_def)
47
48lemma partial_order_on_converse[simp]: "partial_order_on A (r\<inverse>) = partial_order_on A r"
49  by (simp add: partial_order_on_def)
50
51lemma linear_order_on_converse[simp]: "linear_order_on A (r\<inverse>) = linear_order_on A r"
52  by (simp add: linear_order_on_def)
53
54
55lemma partial_order_on_acyclic:
56  "partial_order_on A r \<Longrightarrow> acyclic (r - Id)"
57  by (simp add: acyclic_irrefl partial_order_on_def preorder_on_def trans_diff_Id)
58
59lemma partial_order_on_well_order_on:               
60  "finite r \<Longrightarrow> partial_order_on A r \<Longrightarrow> wf (r - Id)" 
61  by (simp add: finite_acyclic_wf partial_order_on_acyclic) 
62
63lemma strict_linear_order_on_diff_Id: "linear_order_on A r \<Longrightarrow> strict_linear_order_on A (r - Id)"
64  by (simp add: order_on_defs trans_diff_Id)
65
66lemma linear_order_on_singleton [simp]: "linear_order_on {x} {(x, x)}"
67  by (simp add: order_on_defs)
68
69lemma linear_order_on_acyclic:
70  assumes "linear_order_on A r"
71  shows "acyclic (r - Id)"
72  using strict_linear_order_on_diff_Id[OF assms]
73  by (auto simp add: acyclic_irrefl strict_linear_order_on_def)
74
75lemma linear_order_on_well_order_on:
76  assumes "finite r"
77  shows "linear_order_on A r \<longleftrightarrow> well_order_on A r"
78  unfolding well_order_on_def
79  using assms finite_acyclic_wf[OF _ linear_order_on_acyclic, of r] by blast
80
81
82subsection \<open>Orders on the field\<close>
83
84abbreviation "Refl r \<equiv> refl_on (Field r) r"
85
86abbreviation "Preorder r \<equiv> preorder_on (Field r) r"
87
88abbreviation "Partial_order r \<equiv> partial_order_on (Field r) r"
89
90abbreviation "Total r \<equiv> total_on (Field r) r"
91
92abbreviation "Linear_order r \<equiv> linear_order_on (Field r) r"
93
94abbreviation "Well_order r \<equiv> well_order_on (Field r) r"
95
96
97lemma subset_Image_Image_iff:
98  "Preorder r \<Longrightarrow> A \<subseteq> Field r \<Longrightarrow> B \<subseteq> Field r \<Longrightarrow>
99    r `` A \<subseteq> r `` B \<longleftrightarrow> (\<forall>a\<in>A.\<exists>b\<in>B. (b, a) \<in> r)"
100  apply (simp add: preorder_on_def refl_on_def Image_def subset_eq)
101  apply (simp only: trans_def)
102  apply fast
103  done
104
105lemma subset_Image1_Image1_iff:
106  "Preorder r \<Longrightarrow> a \<in> Field r \<Longrightarrow> b \<in> Field r \<Longrightarrow> r `` {a} \<subseteq> r `` {b} \<longleftrightarrow> (b, a) \<in> r"
107  by (simp add: subset_Image_Image_iff)
108
109lemma Refl_antisym_eq_Image1_Image1_iff:
110  assumes "Refl r"
111    and as: "antisym r"
112    and abf: "a \<in> Field r" "b \<in> Field r"
113  shows "r `` {a} = r `` {b} \<longleftrightarrow> a = b"
114    (is "?lhs \<longleftrightarrow> ?rhs")
115proof
116  assume ?lhs
117  then have *: "\<And>x. (a, x) \<in> r \<longleftrightarrow> (b, x) \<in> r"
118    by (simp add: set_eq_iff)
119  have "(a, a) \<in> r" "(b, b) \<in> r" using \<open>Refl r\<close> abf by (simp_all add: refl_on_def)
120  then have "(a, b) \<in> r" "(b, a) \<in> r" using *[of a] *[of b] by simp_all
121  then show ?rhs
122    using \<open>antisym r\<close>[unfolded antisym_def] by blast
123next
124  assume ?rhs
125  then show ?lhs by fast
126qed
127
128lemma Partial_order_eq_Image1_Image1_iff:
129  "Partial_order r \<Longrightarrow> a \<in> Field r \<Longrightarrow> b \<in> Field r \<Longrightarrow> r `` {a} = r `` {b} \<longleftrightarrow> a = b"
130  by (auto simp: order_on_defs Refl_antisym_eq_Image1_Image1_iff)
131
132lemma Total_Id_Field:
133  assumes "Total r"
134    and not_Id: "\<not> r \<subseteq> Id"
135  shows "Field r = Field (r - Id)"
136  using mono_Field[of "r - Id" r] Diff_subset[of r Id]
137proof auto
138  fix a assume *: "a \<in> Field r"
139  from not_Id have "r \<noteq> {}" by fast
140  with not_Id obtain b and c where "b \<noteq> c \<and> (b,c) \<in> r" by auto
141  then have "b \<noteq> c \<and> {b, c} \<subseteq> Field r" by (auto simp: Field_def)
142  with * obtain d where "d \<in> Field r" "d \<noteq> a" by auto
143  with * \<open>Total r\<close> have "(a, d) \<in> r \<or> (d, a) \<in> r" by (simp add: total_on_def)
144  with \<open>d \<noteq> a\<close> show "a \<in> Field (r - Id)" unfolding Field_def by blast
145qed
146
147subsection\<open>Relations given by a predicate and the field\<close>
148
149definition relation_of :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> ('a \<times> 'a) set"
150  where "relation_of P A \<equiv> { (a, b) \<in> A \<times> A. P a b }"
151
152lemma Field_relation_of:
153  assumes "refl_on A (relation_of P A)" shows "Field (relation_of P A) = A"
154  using assms unfolding refl_on_def Field_def by auto
155
156lemma partial_order_on_relation_ofI:
157  assumes refl: "\<And>a. a \<in> A \<Longrightarrow> P a a"
158    and trans: "\<And>a b c. \<lbrakk> a \<in> A; b \<in> A; c \<in> A \<rbrakk> \<Longrightarrow> P a b \<Longrightarrow> P b c \<Longrightarrow> P a c"
159    and antisym: "\<And>a b. \<lbrakk> a \<in> A; b \<in> A \<rbrakk> \<Longrightarrow> P a b \<Longrightarrow> P b a \<Longrightarrow> a = b"
160  shows "partial_order_on A (relation_of P A)"
161proof -
162  from refl have "refl_on A (relation_of P A)"
163    unfolding refl_on_def relation_of_def by auto
164  moreover have "trans (relation_of P A)" and "antisym (relation_of P A)"
165    unfolding relation_of_def
166    by (auto intro: transI dest: trans, auto intro: antisymI dest: antisym)
167  ultimately show ?thesis
168    unfolding partial_order_on_def preorder_on_def by simp
169qed
170
171lemma Partial_order_relation_ofI:
172  assumes "partial_order_on A (relation_of P A)" shows "Partial_order (relation_of P A)"
173  using Field_relation_of assms partial_order_on_def preorder_on_def by fastforce
174
175
176subsection \<open>Orders on a type\<close>
177
178abbreviation "strict_linear_order \<equiv> strict_linear_order_on UNIV"
179
180abbreviation "linear_order \<equiv> linear_order_on UNIV"
181
182abbreviation "well_order \<equiv> well_order_on UNIV"
183
184
185subsection \<open>Order-like relations\<close>
186
187text \<open>
188  In this subsection, we develop basic concepts and results pertaining
189  to order-like relations, i.e., to reflexive and/or transitive and/or symmetric and/or
190  total relations. We also further define upper and lower bounds operators.
191\<close>
192
193
194subsubsection \<open>Auxiliaries\<close>
195
196lemma refl_on_domain: "refl_on A r \<Longrightarrow> (a, b) \<in> r \<Longrightarrow> a \<in> A \<and> b \<in> A"
197  by (auto simp add: refl_on_def)
198
199corollary well_order_on_domain: "well_order_on A r \<Longrightarrow> (a, b) \<in> r \<Longrightarrow> a \<in> A \<and> b \<in> A"
200  by (auto simp add: refl_on_domain order_on_defs)
201
202lemma well_order_on_Field: "well_order_on A r \<Longrightarrow> A = Field r"
203  by (auto simp add: refl_on_def Field_def order_on_defs)
204
205lemma well_order_on_Well_order: "well_order_on A r \<Longrightarrow> A = Field r \<and> Well_order r"
206  using well_order_on_Field [of A] by auto
207
208lemma Total_subset_Id:
209  assumes "Total r"
210    and "r \<subseteq> Id"
211  shows "r = {} \<or> (\<exists>a. r = {(a, a)})"
212proof -
213  have "\<exists>a. r = {(a, a)}" if "r \<noteq> {}"
214  proof -
215    from that obtain a b where ab: "(a, b) \<in> r" by fast
216    with \<open>r \<subseteq> Id\<close> have "a = b" by blast
217    with ab have aa: "(a, a) \<in> r" by simp
218    have "a = c \<and> a = d" if "(c, d) \<in> r" for c d
219    proof -
220      from that have "{a, c, d} \<subseteq> Field r"
221        using ab unfolding Field_def by blast
222      then have "((a, c) \<in> r \<or> (c, a) \<in> r \<or> a = c) \<and> ((a, d) \<in> r \<or> (d, a) \<in> r \<or> a = d)"
223        using \<open>Total r\<close> unfolding total_on_def by blast
224      with \<open>r \<subseteq> Id\<close> show ?thesis by blast
225    qed
226    then have "r \<subseteq> {(a, a)}" by auto
227    with aa show ?thesis by blast
228  qed
229  then show ?thesis by blast
230qed
231
232lemma Linear_order_in_diff_Id:
233  assumes "Linear_order r"
234    and "a \<in> Field r"
235    and "b \<in> Field r"
236  shows "(a, b) \<in> r \<longleftrightarrow> (b, a) \<notin> r - Id"
237  using assms unfolding order_on_defs total_on_def antisym_def Id_def refl_on_def by force
238
239
240subsubsection \<open>The upper and lower bounds operators\<close>
241
242text \<open>
243  Here we define upper (``above") and lower (``below") bounds operators. We
244  think of \<open>r\<close> as a \<^emph>\<open>non-strict\<close> relation. The suffix \<open>S\<close> at the names of
245  some operators indicates that the bounds are strict -- e.g., \<open>underS a\<close> is
246  the set of all strict lower bounds of \<open>a\<close> (w.r.t. \<open>r\<close>). Capitalization of
247  the first letter in the name reminds that the operator acts on sets, rather
248  than on individual elements.
249\<close>
250
251definition under :: "'a rel \<Rightarrow> 'a \<Rightarrow> 'a set"
252  where "under r a \<equiv> {b. (b, a) \<in> r}"
253
254definition underS :: "'a rel \<Rightarrow> 'a \<Rightarrow> 'a set"
255  where "underS r a \<equiv> {b. b \<noteq> a \<and> (b, a) \<in> r}"
256
257definition Under :: "'a rel \<Rightarrow> 'a set \<Rightarrow> 'a set"
258  where "Under r A \<equiv> {b \<in> Field r. \<forall>a \<in> A. (b, a) \<in> r}"
259
260definition UnderS :: "'a rel \<Rightarrow> 'a set \<Rightarrow> 'a set"
261  where "UnderS r A \<equiv> {b \<in> Field r. \<forall>a \<in> A. b \<noteq> a \<and> (b, a) \<in> r}"
262
263definition above :: "'a rel \<Rightarrow> 'a \<Rightarrow> 'a set"
264  where "above r a \<equiv> {b. (a, b) \<in> r}"
265
266definition aboveS :: "'a rel \<Rightarrow> 'a \<Rightarrow> 'a set"
267  where "aboveS r a \<equiv> {b. b \<noteq> a \<and> (a, b) \<in> r}"
268
269definition Above :: "'a rel \<Rightarrow> 'a set \<Rightarrow> 'a set"
270  where "Above r A \<equiv> {b \<in> Field r. \<forall>a \<in> A. (a, b) \<in> r}"
271
272definition AboveS :: "'a rel \<Rightarrow> 'a set \<Rightarrow> 'a set"
273  where "AboveS r A \<equiv> {b \<in> Field r. \<forall>a \<in> A. b \<noteq> a \<and> (a, b) \<in> r}"
274
275definition ofilter :: "'a rel \<Rightarrow> 'a set \<Rightarrow> bool"
276  where "ofilter r A \<equiv> A \<subseteq> Field r \<and> (\<forall>a \<in> A. under r a \<subseteq> A)"
277
278text \<open>
279  Note: In the definitions of \<open>Above[S]\<close> and \<open>Under[S]\<close>, we bounded
280  comprehension by \<open>Field r\<close> in order to properly cover the case of \<open>A\<close> being
281  empty.
282\<close>
283
284lemma underS_subset_under: "underS r a \<subseteq> under r a"
285  by (auto simp add: underS_def under_def)
286
287lemma underS_notIn: "a \<notin> underS r a"
288  by (simp add: underS_def)
289
290lemma Refl_under_in: "Refl r \<Longrightarrow> a \<in> Field r \<Longrightarrow> a \<in> under r a"
291  by (simp add: refl_on_def under_def)
292
293lemma AboveS_disjoint: "A \<inter> (AboveS r A) = {}"
294  by (auto simp add: AboveS_def)
295
296lemma in_AboveS_underS: "a \<in> Field r \<Longrightarrow> a \<in> AboveS r (underS r a)"
297  by (auto simp add: AboveS_def underS_def)
298
299lemma Refl_under_underS: "Refl r \<Longrightarrow> a \<in> Field r \<Longrightarrow> under r a = underS r a \<union> {a}"
300  unfolding under_def underS_def
301  using refl_on_def[of _ r] by fastforce
302
303lemma underS_empty: "a \<notin> Field r \<Longrightarrow> underS r a = {}"
304  by (auto simp: Field_def underS_def)
305
306lemma under_Field: "under r a \<subseteq> Field r"
307  by (auto simp: under_def Field_def)
308
309lemma underS_Field: "underS r a \<subseteq> Field r"
310  by (auto simp: underS_def Field_def)
311
312lemma underS_Field2: "a \<in> Field r \<Longrightarrow> underS r a \<subset> Field r"
313  using underS_notIn underS_Field by fast
314
315lemma underS_Field3: "Field r \<noteq> {} \<Longrightarrow> underS r a \<subset> Field r"
316  by (cases "a \<in> Field r") (auto simp: underS_Field2 underS_empty)
317
318lemma AboveS_Field: "AboveS r A \<subseteq> Field r"
319  by (auto simp: AboveS_def Field_def)
320
321lemma under_incr:
322  assumes "trans r"
323    and "(a, b) \<in> r"
324  shows "under r a \<subseteq> under r b"
325  unfolding under_def
326proof auto
327  fix x assume "(x, a) \<in> r"
328  with assms trans_def[of r] show "(x, b) \<in> r" by blast
329qed
330
331lemma underS_incr:
332  assumes "trans r"
333    and "antisym r"
334    and ab: "(a, b) \<in> r"
335  shows "underS r a \<subseteq> underS r b"
336  unfolding underS_def
337proof auto
338  assume *: "b \<noteq> a" and **: "(b, a) \<in> r"
339  with \<open>antisym r\<close> antisym_def[of r] ab show False
340    by blast
341next
342  fix x assume "x \<noteq> a" "(x, a) \<in> r"
343  with ab \<open>trans r\<close> trans_def[of r] show "(x, b) \<in> r"
344    by blast
345qed
346
347lemma underS_incl_iff:
348  assumes LO: "Linear_order r"
349    and INa: "a \<in> Field r"
350    and INb: "b \<in> Field r"
351  shows "underS r a \<subseteq> underS r b \<longleftrightarrow> (a, b) \<in> r"
352    (is "?lhs \<longleftrightarrow> ?rhs")
353proof
354  assume ?rhs
355  with \<open>Linear_order r\<close> show ?lhs
356    by (simp add: order_on_defs underS_incr)
357next
358  assume *: ?lhs
359  have "(a, b) \<in> r" if "a = b"
360    using assms that by (simp add: order_on_defs refl_on_def)
361  moreover have False if "a \<noteq> b" "(b, a) \<in> r"
362  proof -
363    from that have "b \<in> underS r a" unfolding underS_def by blast
364    with * have "b \<in> underS r b" by blast
365    then show ?thesis by (simp add: underS_notIn)
366  qed
367  ultimately show "(a,b) \<in> r"
368    using assms order_on_defs[of "Field r" r] total_on_def[of "Field r" r] by blast
369qed
370
371lemma finite_Partial_order_induct[consumes 3, case_names step]:
372  assumes "Partial_order r"
373    and "x \<in> Field r"
374    and "finite r"
375    and step: "\<And>x. x \<in> Field r \<Longrightarrow> (\<And>y. y \<in> aboveS r x \<Longrightarrow> P y) \<Longrightarrow> P x"
376  shows "P x"
377  using assms(2)
378proof (induct rule: wf_induct[of "r\<inverse> - Id"])
379  case 1
380  from assms(1,3) show "wf (r\<inverse> - Id)"
381    using partial_order_on_well_order_on partial_order_on_converse by blast
382next
383  case prems: (2 x)
384  show ?case
385    by (rule step) (use prems in \<open>auto simp: aboveS_def intro: FieldI2\<close>)
386qed
387
388lemma finite_Linear_order_induct[consumes 3, case_names step]:
389  assumes "Linear_order r"
390    and "x \<in> Field r"
391    and "finite r"
392    and step: "\<And>x. x \<in> Field r \<Longrightarrow> (\<And>y. y \<in> aboveS r x \<Longrightarrow> P y) \<Longrightarrow> P x"
393  shows "P x"
394  using assms(2)
395proof (induct rule: wf_induct[of "r\<inverse> - Id"])
396  case 1
397  from assms(1,3) show "wf (r\<inverse> - Id)"
398    using linear_order_on_well_order_on linear_order_on_converse
399    unfolding well_order_on_def by blast
400next
401  case prems: (2 x)
402  show ?case
403    by (rule step) (use prems in \<open>auto simp: aboveS_def intro: FieldI2\<close>)
404qed
405
406
407subsection \<open>Variations on Well-Founded Relations\<close>
408
409text \<open>
410  This subsection contains some variations of the results from \<^theory>\<open>HOL.Wellfounded\<close>:
411    \<^item> means for slightly more direct definitions by well-founded recursion;
412    \<^item> variations of well-founded induction;
413    \<^item> means for proving a linear order to be a well-order.
414\<close>
415
416
417subsubsection \<open>Characterizations of well-foundedness\<close>
418
419text \<open>
420  A transitive relation is well-founded iff it is ``locally'' well-founded,
421  i.e., iff its restriction to the lower bounds of of any element is
422  well-founded.
423\<close>
424
425lemma trans_wf_iff:
426  assumes "trans r"
427  shows "wf r \<longleftrightarrow> (\<forall>a. wf (r \<inter> (r\<inverse>``{a} \<times> r\<inverse>``{a})))"
428proof -
429  define R where "R a = r \<inter> (r\<inverse>``{a} \<times> r\<inverse>``{a})" for a
430  have "wf (R a)" if "wf r" for a
431    using that R_def wf_subset[of r "R a"] by auto
432  moreover
433  have "wf r" if *: "\<forall>a. wf(R a)"
434    unfolding wf_def
435  proof clarify
436    fix phi a
437    assume **: "\<forall>a. (\<forall>b. (b, a) \<in> r \<longrightarrow> phi b) \<longrightarrow> phi a"
438    define chi where "chi b \<longleftrightarrow> (b, a) \<in> r \<longrightarrow> phi b" for b
439    with * have "wf (R a)" by auto
440    then have "(\<forall>b. (\<forall>c. (c, b) \<in> R a \<longrightarrow> chi c) \<longrightarrow> chi b) \<longrightarrow> (\<forall>b. chi b)"
441      unfolding wf_def by blast
442    also have "\<forall>b. (\<forall>c. (c, b) \<in> R a \<longrightarrow> chi c) \<longrightarrow> chi b"
443    proof (auto simp add: chi_def R_def)
444      fix b
445      assume "(b, a) \<in> r" and "\<forall>c. (c, b) \<in> r \<and> (c, a) \<in> r \<longrightarrow> phi c"
446      then have "\<forall>c. (c, b) \<in> r \<longrightarrow> phi c"
447        using assms trans_def[of r] by blast
448      with ** show "phi b" by blast
449    qed
450    finally have  "\<forall>b. chi b" .
451    with ** chi_def show "phi a" by blast
452  qed
453  ultimately show ?thesis unfolding R_def by blast
454qed
455
456text\<open>A transitive relation is well-founded if all initial segments are finite.\<close>
457corollary wf_finite_segments:
458  assumes "irrefl r" and "trans r" and "\<And>x. finite {y. (y, x) \<in> r}"
459  shows "wf (r)"
460proof (clarsimp simp: trans_wf_iff wf_iff_acyclic_if_finite converse_def assms)
461  fix a
462  have "trans (r \<inter> ({x. (x, a) \<in> r} \<times> {x. (x, a) \<in> r}))"
463    using assms unfolding trans_def Field_def by blast
464  then show "acyclic (r \<inter> {x. (x, a) \<in> r} \<times> {x. (x, a) \<in> r})"
465    using assms acyclic_def assms irrefl_def by fastforce
466qed
467
468text \<open>The next lemma is a variation of \<open>wf_eq_minimal\<close> from Wellfounded,
469  allowing one to assume the set included in the field.\<close>
470
471lemma wf_eq_minimal2: "wf r \<longleftrightarrow> (\<forall>A. A \<subseteq> Field r \<and> A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a', a) \<notin> r))"
472proof-
473  let ?phi = "\<lambda>A. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a',a) \<notin> r)"
474  have "wf r \<longleftrightarrow> (\<forall>A. ?phi A)"
475    apply (auto simp: ex_in_conv [THEN sym])
476     apply (erule wfE_min)
477      apply assumption
478     apply blast
479    apply (rule wfI_min)
480    apply fast
481    done
482  also have "(\<forall>A. ?phi A) \<longleftrightarrow> (\<forall>B \<subseteq> Field r. ?phi B)"
483  proof
484    assume "\<forall>A. ?phi A"
485    then show "\<forall>B \<subseteq> Field r. ?phi B" by simp
486  next
487    assume *: "\<forall>B \<subseteq> Field r. ?phi B"
488    show "\<forall>A. ?phi A"
489    proof clarify
490      fix A :: "'a set"
491      assume **: "A \<noteq> {}"
492      define B where "B = A \<inter> Field r"
493      show "\<exists>a \<in> A. \<forall>a' \<in> A. (a', a) \<notin> r"
494      proof (cases "B = {}")
495        case True
496        with ** obtain a where a: "a \<in> A" "a \<notin> Field r"
497          unfolding B_def by blast
498        with a have "\<forall>a' \<in> A. (a',a) \<notin> r"
499          unfolding Field_def by blast
500        with a show ?thesis by blast
501      next
502        case False
503        have "B \<subseteq> Field r" unfolding B_def by blast
504        with False * obtain a where a: "a \<in> B" "\<forall>a' \<in> B. (a', a) \<notin> r"
505          by blast
506        have "(a', a) \<notin> r" if "a' \<in> A" for a'
507        proof
508          assume a'a: "(a', a) \<in> r"
509          with that have "a' \<in> B" unfolding B_def Field_def by blast
510          with a a'a show False by blast
511        qed
512        with a show ?thesis unfolding B_def by blast
513      qed
514    qed
515  qed
516  finally show ?thesis by blast
517qed
518
519
520subsubsection \<open>Characterizations of well-foundedness\<close>
521
522text \<open>
523  The next lemma and its corollary enable one to prove that a linear order is
524  a well-order in a way which is more standard than via well-foundedness of
525  the strict version of the relation.
526\<close>
527
528lemma Linear_order_wf_diff_Id:
529  assumes "Linear_order r"
530  shows "wf (r - Id) \<longleftrightarrow> (\<forall>A \<subseteq> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r))"
531proof (cases "r \<subseteq> Id")
532  case True
533  then have *: "r - Id = {}" by blast
534  have "wf (r - Id)" by (simp add: *)
535  moreover have "\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r"
536    if *: "A \<subseteq> Field r" and **: "A \<noteq> {}" for A
537  proof -
538    from \<open>Linear_order r\<close> True
539    obtain a where a: "r = {} \<or> r = {(a, a)}"
540      unfolding order_on_defs using Total_subset_Id [of r] by blast
541    with * ** have "A = {a} \<and> r = {(a, a)}"
542      unfolding Field_def by blast
543    with a show ?thesis by blast
544  qed
545  ultimately show ?thesis by blast
546next
547  case False
548  with \<open>Linear_order r\<close> have Field: "Field r = Field (r - Id)"
549    unfolding order_on_defs using Total_Id_Field [of r] by blast
550  show ?thesis
551  proof
552    assume *: "wf (r - Id)"
553    show "\<forall>A \<subseteq> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r)"
554    proof clarify
555      fix A
556      assume **: "A \<subseteq> Field r" and ***: "A \<noteq> {}"
557      then have "\<exists>a \<in> A. \<forall>a' \<in> A. (a',a) \<notin> r - Id"
558        using Field * unfolding wf_eq_minimal2 by simp
559      moreover have "\<forall>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r \<longleftrightarrow> (a', a) \<notin> r - Id"
560        using Linear_order_in_diff_Id [OF \<open>Linear_order r\<close>] ** by blast
561      ultimately show "\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r" by blast
562    qed
563  next
564    assume *: "\<forall>A \<subseteq> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r)"
565    show "wf (r - Id)"
566      unfolding wf_eq_minimal2
567    proof clarify
568      fix A
569      assume **: "A \<subseteq> Field(r - Id)" and ***: "A \<noteq> {}"
570      then have "\<exists>a \<in> A. \<forall>a' \<in> A. (a,a') \<in> r"
571        using Field * by simp
572      moreover have "\<forall>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r \<longleftrightarrow> (a', a) \<notin> r - Id"
573        using Linear_order_in_diff_Id [OF \<open>Linear_order r\<close>] ** mono_Field[of "r - Id" r] by blast
574      ultimately show "\<exists>a \<in> A. \<forall>a' \<in> A. (a',a) \<notin> r - Id"
575        by blast
576    qed
577  qed
578qed
579
580corollary Linear_order_Well_order_iff:
581  "Linear_order r \<Longrightarrow>
582    Well_order r \<longleftrightarrow> (\<forall>A \<subseteq> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r))"
583  unfolding well_order_on_def using Linear_order_wf_diff_Id[of r] by blast
584
585end
586