1(*  Title:      HOL/Num.thy
2    Author:     Florian Haftmann
3    Author:     Brian Huffman
4*)
5
6section \<open>Binary Numerals\<close>
7
8theory Num
9  imports BNF_Least_Fixpoint Transfer
10begin
11
12subsection \<open>The \<open>num\<close> type\<close>
13
14datatype num = One | Bit0 num | Bit1 num
15
16text \<open>Increment function for type \<^typ>\<open>num\<close>\<close>
17
18primrec inc :: "num \<Rightarrow> num"
19  where
20    "inc One = Bit0 One"
21  | "inc (Bit0 x) = Bit1 x"
22  | "inc (Bit1 x) = Bit0 (inc x)"
23
24text \<open>Converting between type \<^typ>\<open>num\<close> and type \<^typ>\<open>nat\<close>\<close>
25
26primrec nat_of_num :: "num \<Rightarrow> nat"
27  where
28    "nat_of_num One = Suc 0"
29  | "nat_of_num (Bit0 x) = nat_of_num x + nat_of_num x"
30  | "nat_of_num (Bit1 x) = Suc (nat_of_num x + nat_of_num x)"
31
32primrec num_of_nat :: "nat \<Rightarrow> num"
33  where
34    "num_of_nat 0 = One"
35  | "num_of_nat (Suc n) = (if 0 < n then inc (num_of_nat n) else One)"
36
37lemma nat_of_num_pos: "0 < nat_of_num x"
38  by (induct x) simp_all
39
40lemma nat_of_num_neq_0: " nat_of_num x \<noteq> 0"
41  by (induct x) simp_all
42
43lemma nat_of_num_inc: "nat_of_num (inc x) = Suc (nat_of_num x)"
44  by (induct x) simp_all
45
46lemma num_of_nat_double: "0 < n \<Longrightarrow> num_of_nat (n + n) = Bit0 (num_of_nat n)"
47  by (induct n) simp_all
48
49text \<open>Type \<^typ>\<open>num\<close> is isomorphic to the strictly positive natural numbers.\<close>
50
51lemma nat_of_num_inverse: "num_of_nat (nat_of_num x) = x"
52  by (induct x) (simp_all add: num_of_nat_double nat_of_num_pos)
53
54lemma num_of_nat_inverse: "0 < n \<Longrightarrow> nat_of_num (num_of_nat n) = n"
55  by (induct n) (simp_all add: nat_of_num_inc)
56
57lemma num_eq_iff: "x = y \<longleftrightarrow> nat_of_num x = nat_of_num y"
58  apply safe
59  apply (drule arg_cong [where f=num_of_nat])
60  apply (simp add: nat_of_num_inverse)
61  done
62
63lemma num_induct [case_names One inc]:
64  fixes P :: "num \<Rightarrow> bool"
65  assumes One: "P One"
66    and inc: "\<And>x. P x \<Longrightarrow> P (inc x)"
67  shows "P x"
68proof -
69  obtain n where n: "Suc n = nat_of_num x"
70    by (cases "nat_of_num x") (simp_all add: nat_of_num_neq_0)
71  have "P (num_of_nat (Suc n))"
72  proof (induct n)
73    case 0
74    from One show ?case by simp
75  next
76    case (Suc n)
77    then have "P (inc (num_of_nat (Suc n)))" by (rule inc)
78    then show "P (num_of_nat (Suc (Suc n)))" by simp
79  qed
80  with n show "P x"
81    by (simp add: nat_of_num_inverse)
82qed
83
84text \<open>
85  From now on, there are two possible models for \<^typ>\<open>num\<close>: as positive
86  naturals (rule \<open>num_induct\<close>) and as digit representation (rules
87  \<open>num.induct\<close>, \<open>num.cases\<close>).
88\<close>
89
90
91subsection \<open>Numeral operations\<close>
92
93instantiation num :: "{plus,times,linorder}"
94begin
95
96definition [code del]: "m + n = num_of_nat (nat_of_num m + nat_of_num n)"
97
98definition [code del]: "m * n = num_of_nat (nat_of_num m * nat_of_num n)"
99
100definition [code del]: "m \<le> n \<longleftrightarrow> nat_of_num m \<le> nat_of_num n"
101
102definition [code del]: "m < n \<longleftrightarrow> nat_of_num m < nat_of_num n"
103
104instance
105  by standard (auto simp add: less_num_def less_eq_num_def num_eq_iff)
106
107end
108
109lemma nat_of_num_add: "nat_of_num (x + y) = nat_of_num x + nat_of_num y"
110  unfolding plus_num_def
111  by (intro num_of_nat_inverse add_pos_pos nat_of_num_pos)
112
113lemma nat_of_num_mult: "nat_of_num (x * y) = nat_of_num x * nat_of_num y"
114  unfolding times_num_def
115  by (intro num_of_nat_inverse mult_pos_pos nat_of_num_pos)
116
117lemma add_num_simps [simp, code]:
118  "One + One = Bit0 One"
119  "One + Bit0 n = Bit1 n"
120  "One + Bit1 n = Bit0 (n + One)"
121  "Bit0 m + One = Bit1 m"
122  "Bit0 m + Bit0 n = Bit0 (m + n)"
123  "Bit0 m + Bit1 n = Bit1 (m + n)"
124  "Bit1 m + One = Bit0 (m + One)"
125  "Bit1 m + Bit0 n = Bit1 (m + n)"
126  "Bit1 m + Bit1 n = Bit0 (m + n + One)"
127  by (simp_all add: num_eq_iff nat_of_num_add)
128
129lemma mult_num_simps [simp, code]:
130  "m * One = m"
131  "One * n = n"
132  "Bit0 m * Bit0 n = Bit0 (Bit0 (m * n))"
133  "Bit0 m * Bit1 n = Bit0 (m * Bit1 n)"
134  "Bit1 m * Bit0 n = Bit0 (Bit1 m * n)"
135  "Bit1 m * Bit1 n = Bit1 (m + n + Bit0 (m * n))"
136  by (simp_all add: num_eq_iff nat_of_num_add nat_of_num_mult distrib_right distrib_left)
137
138lemma eq_num_simps:
139  "One = One \<longleftrightarrow> True"
140  "One = Bit0 n \<longleftrightarrow> False"
141  "One = Bit1 n \<longleftrightarrow> False"
142  "Bit0 m = One \<longleftrightarrow> False"
143  "Bit1 m = One \<longleftrightarrow> False"
144  "Bit0 m = Bit0 n \<longleftrightarrow> m = n"
145  "Bit0 m = Bit1 n \<longleftrightarrow> False"
146  "Bit1 m = Bit0 n \<longleftrightarrow> False"
147  "Bit1 m = Bit1 n \<longleftrightarrow> m = n"
148  by simp_all
149
150lemma le_num_simps [simp, code]:
151  "One \<le> n \<longleftrightarrow> True"
152  "Bit0 m \<le> One \<longleftrightarrow> False"
153  "Bit1 m \<le> One \<longleftrightarrow> False"
154  "Bit0 m \<le> Bit0 n \<longleftrightarrow> m \<le> n"
155  "Bit0 m \<le> Bit1 n \<longleftrightarrow> m \<le> n"
156  "Bit1 m \<le> Bit1 n \<longleftrightarrow> m \<le> n"
157  "Bit1 m \<le> Bit0 n \<longleftrightarrow> m < n"
158  using nat_of_num_pos [of n] nat_of_num_pos [of m]
159  by (auto simp add: less_eq_num_def less_num_def)
160
161lemma less_num_simps [simp, code]:
162  "m < One \<longleftrightarrow> False"
163  "One < Bit0 n \<longleftrightarrow> True"
164  "One < Bit1 n \<longleftrightarrow> True"
165  "Bit0 m < Bit0 n \<longleftrightarrow> m < n"
166  "Bit0 m < Bit1 n \<longleftrightarrow> m \<le> n"
167  "Bit1 m < Bit1 n \<longleftrightarrow> m < n"
168  "Bit1 m < Bit0 n \<longleftrightarrow> m < n"
169  using nat_of_num_pos [of n] nat_of_num_pos [of m]
170  by (auto simp add: less_eq_num_def less_num_def)
171
172lemma le_num_One_iff: "x \<le> num.One \<longleftrightarrow> x = num.One"
173  by (simp add: antisym_conv)
174
175text \<open>Rules using \<open>One\<close> and \<open>inc\<close> as constructors.\<close>
176
177lemma add_One: "x + One = inc x"
178  by (simp add: num_eq_iff nat_of_num_add nat_of_num_inc)
179
180lemma add_One_commute: "One + n = n + One"
181  by (induct n) simp_all
182
183lemma add_inc: "x + inc y = inc (x + y)"
184  by (simp add: num_eq_iff nat_of_num_add nat_of_num_inc)
185
186lemma mult_inc: "x * inc y = x * y + x"
187  by (simp add: num_eq_iff nat_of_num_mult nat_of_num_add nat_of_num_inc)
188
189text \<open>The \<^const>\<open>num_of_nat\<close> conversion.\<close>
190
191lemma num_of_nat_One: "n \<le> 1 \<Longrightarrow> num_of_nat n = One"
192  by (cases n) simp_all
193
194lemma num_of_nat_plus_distrib:
195  "0 < m \<Longrightarrow> 0 < n \<Longrightarrow> num_of_nat (m + n) = num_of_nat m + num_of_nat n"
196  by (induct n) (auto simp add: add_One add_One_commute add_inc)
197
198text \<open>A double-and-decrement function.\<close>
199
200primrec BitM :: "num \<Rightarrow> num"
201  where
202    "BitM One = One"
203  | "BitM (Bit0 n) = Bit1 (BitM n)"
204  | "BitM (Bit1 n) = Bit1 (Bit0 n)"
205
206lemma BitM_plus_one: "BitM n + One = Bit0 n"
207  by (induct n) simp_all
208
209lemma one_plus_BitM: "One + BitM n = Bit0 n"
210  unfolding add_One_commute BitM_plus_one ..
211
212text \<open>Squaring and exponentiation.\<close>
213
214primrec sqr :: "num \<Rightarrow> num"
215  where
216    "sqr One = One"
217  | "sqr (Bit0 n) = Bit0 (Bit0 (sqr n))"
218  | "sqr (Bit1 n) = Bit1 (Bit0 (sqr n + n))"
219
220primrec pow :: "num \<Rightarrow> num \<Rightarrow> num"
221  where
222    "pow x One = x"
223  | "pow x (Bit0 y) = sqr (pow x y)"
224  | "pow x (Bit1 y) = sqr (pow x y) * x"
225
226lemma nat_of_num_sqr: "nat_of_num (sqr x) = nat_of_num x * nat_of_num x"
227  by (induct x) (simp_all add: algebra_simps nat_of_num_add)
228
229lemma sqr_conv_mult: "sqr x = x * x"
230  by (simp add: num_eq_iff nat_of_num_sqr nat_of_num_mult)
231
232lemma num_double [simp]:
233  "num.Bit0 num.One * n = num.Bit0 n"
234  by (simp add: num_eq_iff nat_of_num_mult)
235
236
237subsection \<open>Binary numerals\<close>
238
239text \<open>
240  We embed binary representations into a generic algebraic
241  structure using \<open>numeral\<close>.
242\<close>
243
244class numeral = one + semigroup_add
245begin
246
247primrec numeral :: "num \<Rightarrow> 'a"
248  where
249    numeral_One: "numeral One = 1"
250  | numeral_Bit0: "numeral (Bit0 n) = numeral n + numeral n"
251  | numeral_Bit1: "numeral (Bit1 n) = numeral n + numeral n + 1"
252
253lemma numeral_code [code]:
254  "numeral One = 1"
255  "numeral (Bit0 n) = (let m = numeral n in m + m)"
256  "numeral (Bit1 n) = (let m = numeral n in m + m + 1)"
257  by (simp_all add: Let_def)
258
259lemma one_plus_numeral_commute: "1 + numeral x = numeral x + 1"
260proof (induct x)
261  case One
262  then show ?case by simp
263next
264  case Bit0
265  then show ?case by (simp add: add.assoc [symmetric]) (simp add: add.assoc)
266next
267  case Bit1
268  then show ?case by (simp add: add.assoc [symmetric]) (simp add: add.assoc)
269qed
270
271lemma numeral_inc: "numeral (inc x) = numeral x + 1"
272proof (induct x)
273  case One
274  then show ?case by simp
275next
276  case Bit0
277  then show ?case by simp
278next
279  case (Bit1 x)
280  have "numeral x + (1 + numeral x) + 1 = numeral x + (numeral x + 1) + 1"
281    by (simp only: one_plus_numeral_commute)
282  with Bit1 show ?case
283    by (simp add: add.assoc)
284qed
285
286declare numeral.simps [simp del]
287
288abbreviation "Numeral1 \<equiv> numeral One"
289
290declare numeral_One [code_post]
291
292end
293
294text \<open>Numeral syntax.\<close>
295
296syntax
297  "_Numeral" :: "num_const \<Rightarrow> 'a"    ("_")
298
299ML_file \<open>Tools/numeral.ML\<close>
300
301parse_translation \<open>
302  let
303    fun numeral_tr [(c as Const (\<^syntax_const>\<open>_constrain\<close>, _)) $ t $ u] =
304          c $ numeral_tr [t] $ u
305      | numeral_tr [Const (num, _)] =
306          (Numeral.mk_number_syntax o #value o Lexicon.read_num) num
307      | numeral_tr ts = raise TERM ("numeral_tr", ts);
308  in [(\<^syntax_const>\<open>_Numeral\<close>, K numeral_tr)] end
309\<close>
310
311typed_print_translation \<open>
312  let
313    fun num_tr' ctxt T [n] =
314      let
315        val k = Numeral.dest_num_syntax n;
316        val t' =
317          Syntax.const \<^syntax_const>\<open>_Numeral\<close> $
318            Syntax.free (string_of_int k);
319      in
320        (case T of
321          Type (\<^type_name>\<open>fun\<close>, [_, T']) =>
322            if Printer.type_emphasis ctxt T' then
323              Syntax.const \<^syntax_const>\<open>_constrain\<close> $ t' $
324                Syntax_Phases.term_of_typ ctxt T'
325            else t'
326        | _ => if T = dummyT then t' else raise Match)
327      end;
328  in
329   [(\<^const_syntax>\<open>numeral\<close>, num_tr')]
330  end
331\<close>
332
333
334subsection \<open>Class-specific numeral rules\<close>
335
336text \<open>\<^const>\<open>numeral\<close> is a morphism.\<close>
337
338
339subsubsection \<open>Structures with addition: class \<open>numeral\<close>\<close>
340
341context numeral
342begin
343
344lemma numeral_add: "numeral (m + n) = numeral m + numeral n"
345  by (induct n rule: num_induct)
346    (simp_all only: numeral_One add_One add_inc numeral_inc add.assoc)
347
348lemma numeral_plus_numeral: "numeral m + numeral n = numeral (m + n)"
349  by (rule numeral_add [symmetric])
350
351lemma numeral_plus_one: "numeral n + 1 = numeral (n + One)"
352  using numeral_add [of n One] by (simp add: numeral_One)
353
354lemma one_plus_numeral: "1 + numeral n = numeral (One + n)"
355  using numeral_add [of One n] by (simp add: numeral_One)
356
357lemma one_add_one: "1 + 1 = 2"
358  using numeral_add [of One One] by (simp add: numeral_One)
359
360lemmas add_numeral_special =
361  numeral_plus_one one_plus_numeral one_add_one
362
363end
364
365
366subsubsection \<open>Structures with negation: class \<open>neg_numeral\<close>\<close>
367
368class neg_numeral = numeral + group_add
369begin
370
371lemma uminus_numeral_One: "- Numeral1 = - 1"
372  by (simp add: numeral_One)
373
374text \<open>Numerals form an abelian subgroup.\<close>
375
376inductive is_num :: "'a \<Rightarrow> bool"
377  where
378    "is_num 1"
379  | "is_num x \<Longrightarrow> is_num (- x)"
380  | "is_num x \<Longrightarrow> is_num y \<Longrightarrow> is_num (x + y)"
381
382lemma is_num_numeral: "is_num (numeral k)"
383  by (induct k) (simp_all add: numeral.simps is_num.intros)
384
385lemma is_num_add_commute: "is_num x \<Longrightarrow> is_num y \<Longrightarrow> x + y = y + x"
386  apply (induct x rule: is_num.induct)
387    apply (induct y rule: is_num.induct)
388      apply simp
389     apply (rule_tac a=x in add_left_imp_eq)
390     apply (rule_tac a=x in add_right_imp_eq)
391     apply (simp add: add.assoc)
392    apply (simp add: add.assoc [symmetric])
393    apply (simp add: add.assoc)
394   apply (rule_tac a=x in add_left_imp_eq)
395   apply (rule_tac a=x in add_right_imp_eq)
396   apply (simp add: add.assoc)
397  apply (simp add: add.assoc)
398  apply (simp add: add.assoc [symmetric])
399  done
400
401lemma is_num_add_left_commute: "is_num x \<Longrightarrow> is_num y \<Longrightarrow> x + (y + z) = y + (x + z)"
402  by (simp only: add.assoc [symmetric] is_num_add_commute)
403
404lemmas is_num_normalize =
405  add.assoc is_num_add_commute is_num_add_left_commute
406  is_num.intros is_num_numeral
407  minus_add
408
409definition dbl :: "'a \<Rightarrow> 'a"
410  where "dbl x = x + x"
411
412definition dbl_inc :: "'a \<Rightarrow> 'a"
413  where "dbl_inc x = x + x + 1"
414
415definition dbl_dec :: "'a \<Rightarrow> 'a"
416  where "dbl_dec x = x + x - 1"
417
418definition sub :: "num \<Rightarrow> num \<Rightarrow> 'a"
419  where "sub k l = numeral k - numeral l"
420
421lemma numeral_BitM: "numeral (BitM n) = numeral (Bit0 n) - 1"
422  by (simp only: BitM_plus_one [symmetric] numeral_add numeral_One eq_diff_eq)
423
424lemma dbl_simps [simp]:
425  "dbl (- numeral k) = - dbl (numeral k)"
426  "dbl 0 = 0"
427  "dbl 1 = 2"
428  "dbl (- 1) = - 2"
429  "dbl (numeral k) = numeral (Bit0 k)"
430  by (simp_all add: dbl_def numeral.simps minus_add)
431
432lemma dbl_inc_simps [simp]:
433  "dbl_inc (- numeral k) = - dbl_dec (numeral k)"
434  "dbl_inc 0 = 1"
435  "dbl_inc 1 = 3"
436  "dbl_inc (- 1) = - 1"
437  "dbl_inc (numeral k) = numeral (Bit1 k)"
438  by (simp_all add: dbl_inc_def dbl_dec_def numeral.simps numeral_BitM is_num_normalize algebra_simps
439      del: add_uminus_conv_diff)
440
441lemma dbl_dec_simps [simp]:
442  "dbl_dec (- numeral k) = - dbl_inc (numeral k)"
443  "dbl_dec 0 = - 1"
444  "dbl_dec 1 = 1"
445  "dbl_dec (- 1) = - 3"
446  "dbl_dec (numeral k) = numeral (BitM k)"
447  by (simp_all add: dbl_dec_def dbl_inc_def numeral.simps numeral_BitM is_num_normalize)
448
449lemma sub_num_simps [simp]:
450  "sub One One = 0"
451  "sub One (Bit0 l) = - numeral (BitM l)"
452  "sub One (Bit1 l) = - numeral (Bit0 l)"
453  "sub (Bit0 k) One = numeral (BitM k)"
454  "sub (Bit1 k) One = numeral (Bit0 k)"
455  "sub (Bit0 k) (Bit0 l) = dbl (sub k l)"
456  "sub (Bit0 k) (Bit1 l) = dbl_dec (sub k l)"
457  "sub (Bit1 k) (Bit0 l) = dbl_inc (sub k l)"
458  "sub (Bit1 k) (Bit1 l) = dbl (sub k l)"
459  by (simp_all add: dbl_def dbl_dec_def dbl_inc_def sub_def numeral.simps
460    numeral_BitM is_num_normalize del: add_uminus_conv_diff add: diff_conv_add_uminus)
461
462lemma add_neg_numeral_simps:
463  "numeral m + - numeral n = sub m n"
464  "- numeral m + numeral n = sub n m"
465  "- numeral m + - numeral n = - (numeral m + numeral n)"
466  by (simp_all add: sub_def numeral_add numeral.simps is_num_normalize
467      del: add_uminus_conv_diff add: diff_conv_add_uminus)
468
469lemma add_neg_numeral_special:
470  "1 + - numeral m = sub One m"
471  "- numeral m + 1 = sub One m"
472  "numeral m + - 1 = sub m One"
473  "- 1 + numeral n = sub n One"
474  "- 1 + - numeral n = - numeral (inc n)"
475  "- numeral m + - 1 = - numeral (inc m)"
476  "1 + - 1 = 0"
477  "- 1 + 1 = 0"
478  "- 1 + - 1 = - 2"
479  by (simp_all add: sub_def numeral_add numeral.simps is_num_normalize right_minus numeral_inc
480      del: add_uminus_conv_diff add: diff_conv_add_uminus)
481
482lemma diff_numeral_simps:
483  "numeral m - numeral n = sub m n"
484  "numeral m - - numeral n = numeral (m + n)"
485  "- numeral m - numeral n = - numeral (m + n)"
486  "- numeral m - - numeral n = sub n m"
487  by (simp_all add: sub_def numeral_add numeral.simps is_num_normalize
488      del: add_uminus_conv_diff add: diff_conv_add_uminus)
489
490lemma diff_numeral_special:
491  "1 - numeral n = sub One n"
492  "numeral m - 1 = sub m One"
493  "1 - - numeral n = numeral (One + n)"
494  "- numeral m - 1 = - numeral (m + One)"
495  "- 1 - numeral n = - numeral (inc n)"
496  "numeral m - - 1 = numeral (inc m)"
497  "- 1 - - numeral n = sub n One"
498  "- numeral m - - 1 = sub One m"
499  "1 - 1 = 0"
500  "- 1 - 1 = - 2"
501  "1 - - 1 = 2"
502  "- 1 - - 1 = 0"
503  by (simp_all add: sub_def numeral_add numeral.simps is_num_normalize numeral_inc
504      del: add_uminus_conv_diff add: diff_conv_add_uminus)
505
506end
507
508
509subsubsection \<open>Structures with multiplication: class \<open>semiring_numeral\<close>\<close>
510
511class semiring_numeral = semiring + monoid_mult
512begin
513
514subclass numeral ..
515
516lemma numeral_mult: "numeral (m * n) = numeral m * numeral n"
517  by (induct n rule: num_induct)
518    (simp_all add: numeral_One mult_inc numeral_inc numeral_add distrib_left)
519
520lemma numeral_times_numeral: "numeral m * numeral n = numeral (m * n)"
521  by (rule numeral_mult [symmetric])
522
523lemma mult_2: "2 * z = z + z"
524  by (simp add: one_add_one [symmetric] distrib_right)
525
526lemma mult_2_right: "z * 2 = z + z"
527  by (simp add: one_add_one [symmetric] distrib_left)
528
529lemma left_add_twice:
530  "a + (a + b) = 2 * a + b"
531  by (simp add: mult_2 ac_simps)
532
533end
534
535
536subsubsection \<open>Structures with a zero: class \<open>semiring_1\<close>\<close>
537
538context semiring_1
539begin
540
541subclass semiring_numeral ..
542
543lemma of_nat_numeral [simp]: "of_nat (numeral n) = numeral n"
544  by (induct n) (simp_all only: numeral.simps numeral_class.numeral.simps of_nat_add of_nat_1)
545
546lemma numeral_unfold_funpow:
547  "numeral k = ((+) 1 ^^ numeral k) 0"
548  unfolding of_nat_def [symmetric] by simp
549
550end
551
552context
553  includes lifting_syntax
554begin
555
556lemma transfer_rule_numeral:
557  "((=) ===> R) numeral numeral"
558    if [transfer_rule]: "R 0 0" "R 1 1"
559      "(R ===> R ===> R) (+) (+)"
560    for R :: "'a::semiring_1 \<Rightarrow> 'b::semiring_1 \<Rightarrow> bool"
561proof -
562  have "((=) ===> R) (\<lambda>k. ((+) 1 ^^ numeral k) 0) (\<lambda>k. ((+) 1 ^^ numeral k) 0)"
563    by transfer_prover
564  then show ?thesis
565    by (simp flip: numeral_unfold_funpow [abs_def])
566qed
567
568end
569
570lemma nat_of_num_numeral [code_abbrev]: "nat_of_num = numeral"
571proof
572  fix n
573  have "numeral n = nat_of_num n"
574    by (induct n) (simp_all add: numeral.simps)
575  then show "nat_of_num n = numeral n"
576    by simp
577qed
578
579lemma nat_of_num_code [code]:
580  "nat_of_num One = 1"
581  "nat_of_num (Bit0 n) = (let m = nat_of_num n in m + m)"
582  "nat_of_num (Bit1 n) = (let m = nat_of_num n in Suc (m + m))"
583  by (simp_all add: Let_def)
584
585
586subsubsection \<open>Equality: class \<open>semiring_char_0\<close>\<close>
587
588context semiring_char_0
589begin
590
591lemma numeral_eq_iff: "numeral m = numeral n \<longleftrightarrow> m = n"
592  by (simp only: of_nat_numeral [symmetric] nat_of_num_numeral [symmetric]
593    of_nat_eq_iff num_eq_iff)
594
595lemma numeral_eq_one_iff: "numeral n = 1 \<longleftrightarrow> n = One"
596  by (rule numeral_eq_iff [of n One, unfolded numeral_One])
597
598lemma one_eq_numeral_iff: "1 = numeral n \<longleftrightarrow> One = n"
599  by (rule numeral_eq_iff [of One n, unfolded numeral_One])
600
601lemma numeral_neq_zero: "numeral n \<noteq> 0"
602  by (simp add: of_nat_numeral [symmetric] nat_of_num_numeral [symmetric] nat_of_num_pos)
603
604lemma zero_neq_numeral: "0 \<noteq> numeral n"
605  unfolding eq_commute [of 0] by (rule numeral_neq_zero)
606
607lemmas eq_numeral_simps [simp] =
608  numeral_eq_iff
609  numeral_eq_one_iff
610  one_eq_numeral_iff
611  numeral_neq_zero
612  zero_neq_numeral
613
614end
615
616
617subsubsection \<open>Comparisons: class \<open>linordered_nonzero_semiring\<close>\<close>
618
619context linordered_nonzero_semiring
620begin
621
622lemma numeral_le_iff: "numeral m \<le> numeral n \<longleftrightarrow> m \<le> n"
623proof -
624  have "of_nat (numeral m) \<le> of_nat (numeral n) \<longleftrightarrow> m \<le> n"
625    by (simp only: less_eq_num_def nat_of_num_numeral of_nat_le_iff)
626  then show ?thesis by simp
627qed
628
629lemma one_le_numeral: "1 \<le> numeral n"
630  using numeral_le_iff [of num.One n] by (simp add: numeral_One)
631
632lemma numeral_le_one_iff: "numeral n \<le> 1 \<longleftrightarrow> n \<le> num.One"
633  using numeral_le_iff [of n num.One] by (simp add: numeral_One)
634
635lemma numeral_less_iff: "numeral m < numeral n \<longleftrightarrow> m < n"
636proof -
637  have "of_nat (numeral m) < of_nat (numeral n) \<longleftrightarrow> m < n"
638    unfolding less_num_def nat_of_num_numeral of_nat_less_iff ..
639  then show ?thesis by simp
640qed
641
642lemma not_numeral_less_one: "\<not> numeral n < 1"
643  using numeral_less_iff [of n num.One] by (simp add: numeral_One)
644
645lemma one_less_numeral_iff: "1 < numeral n \<longleftrightarrow> num.One < n"
646  using numeral_less_iff [of num.One n] by (simp add: numeral_One)
647
648lemma zero_le_numeral: "0 \<le> numeral n"
649  using dual_order.trans one_le_numeral zero_le_one by blast
650
651lemma zero_less_numeral: "0 < numeral n"
652  using less_linear not_numeral_less_one order.strict_trans zero_less_one by blast
653
654lemma not_numeral_le_zero: "\<not> numeral n \<le> 0"
655  by (simp add: not_le zero_less_numeral)
656
657lemma not_numeral_less_zero: "\<not> numeral n < 0"
658  by (simp add: not_less zero_le_numeral)
659
660lemmas le_numeral_extra =
661  zero_le_one not_one_le_zero
662  order_refl [of 0] order_refl [of 1]
663
664lemmas less_numeral_extra =
665  zero_less_one not_one_less_zero
666  less_irrefl [of 0] less_irrefl [of 1]
667
668lemmas le_numeral_simps [simp] =
669  numeral_le_iff
670  one_le_numeral
671  numeral_le_one_iff
672  zero_le_numeral
673  not_numeral_le_zero
674
675lemmas less_numeral_simps [simp] =
676  numeral_less_iff
677  one_less_numeral_iff
678  not_numeral_less_one
679  zero_less_numeral
680  not_numeral_less_zero
681
682lemma min_0_1 [simp]:
683  fixes min' :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
684  defines "min' \<equiv> min"
685  shows
686    "min' 0 1 = 0"
687    "min' 1 0 = 0"
688    "min' 0 (numeral x) = 0"
689    "min' (numeral x) 0 = 0"
690    "min' 1 (numeral x) = 1"
691    "min' (numeral x) 1 = 1"
692  by (simp_all add: min'_def min_def le_num_One_iff)
693
694lemma max_0_1 [simp]:
695  fixes max' :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
696  defines "max' \<equiv> max"
697  shows
698    "max' 0 1 = 1"
699    "max' 1 0 = 1"
700    "max' 0 (numeral x) = numeral x"
701    "max' (numeral x) 0 = numeral x"
702    "max' 1 (numeral x) = numeral x"
703    "max' (numeral x) 1 = numeral x"
704  by (simp_all add: max'_def max_def le_num_One_iff)
705
706end
707
708text \<open>Unfold \<open>min\<close> and \<open>max\<close> on numerals.\<close>
709
710lemmas max_number_of [simp] =
711  max_def [of "numeral u" "numeral v"]
712  max_def [of "numeral u" "- numeral v"]
713  max_def [of "- numeral u" "numeral v"]
714  max_def [of "- numeral u" "- numeral v"] for u v
715
716lemmas min_number_of [simp] =
717  min_def [of "numeral u" "numeral v"]
718  min_def [of "numeral u" "- numeral v"]
719  min_def [of "- numeral u" "numeral v"]
720  min_def [of "- numeral u" "- numeral v"] for u v
721
722
723subsubsection \<open>Multiplication and negation: class \<open>ring_1\<close>\<close>
724
725context ring_1
726begin
727
728subclass neg_numeral ..
729
730lemma mult_neg_numeral_simps:
731  "- numeral m * - numeral n = numeral (m * n)"
732  "- numeral m * numeral n = - numeral (m * n)"
733  "numeral m * - numeral n = - numeral (m * n)"
734  by (simp_all only: mult_minus_left mult_minus_right minus_minus numeral_mult)
735
736lemma mult_minus1 [simp]: "- 1 * z = - z"
737  by (simp add: numeral.simps)
738
739lemma mult_minus1_right [simp]: "z * - 1 = - z"
740  by (simp add: numeral.simps)
741
742end
743
744
745subsubsection \<open>Equality using \<open>iszero\<close> for rings with non-zero characteristic\<close>
746
747context ring_1
748begin
749
750definition iszero :: "'a \<Rightarrow> bool"
751  where "iszero z \<longleftrightarrow> z = 0"
752
753lemma iszero_0 [simp]: "iszero 0"
754  by (simp add: iszero_def)
755
756lemma not_iszero_1 [simp]: "\<not> iszero 1"
757  by (simp add: iszero_def)
758
759lemma not_iszero_Numeral1: "\<not> iszero Numeral1"
760  by (simp add: numeral_One)
761
762lemma not_iszero_neg_1 [simp]: "\<not> iszero (- 1)"
763  by (simp add: iszero_def)
764
765lemma not_iszero_neg_Numeral1: "\<not> iszero (- Numeral1)"
766  by (simp add: numeral_One)
767
768lemma iszero_neg_numeral [simp]: "iszero (- numeral w) \<longleftrightarrow> iszero (numeral w)"
769  unfolding iszero_def by (rule neg_equal_0_iff_equal)
770
771lemma eq_iff_iszero_diff: "x = y \<longleftrightarrow> iszero (x - y)"
772  unfolding iszero_def by (rule eq_iff_diff_eq_0)
773
774text \<open>
775  The \<open>eq_numeral_iff_iszero\<close> lemmas are not declared \<open>[simp]\<close> by default,
776  because for rings of characteristic zero, better simp rules are possible.
777  For a type like integers mod \<open>n\<close>, type-instantiated versions of these rules
778  should be added to the simplifier, along with a type-specific rule for
779  deciding propositions of the form \<open>iszero (numeral w)\<close>.
780
781  bh: Maybe it would not be so bad to just declare these as simp rules anyway?
782  I should test whether these rules take precedence over the \<open>ring_char_0\<close>
783  rules in the simplifier.
784\<close>
785
786lemma eq_numeral_iff_iszero:
787  "numeral x = numeral y \<longleftrightarrow> iszero (sub x y)"
788  "numeral x = - numeral y \<longleftrightarrow> iszero (numeral (x + y))"
789  "- numeral x = numeral y \<longleftrightarrow> iszero (numeral (x + y))"
790  "- numeral x = - numeral y \<longleftrightarrow> iszero (sub y x)"
791  "numeral x = 1 \<longleftrightarrow> iszero (sub x One)"
792  "1 = numeral y \<longleftrightarrow> iszero (sub One y)"
793  "- numeral x = 1 \<longleftrightarrow> iszero (numeral (x + One))"
794  "1 = - numeral y \<longleftrightarrow> iszero (numeral (One + y))"
795  "numeral x = 0 \<longleftrightarrow> iszero (numeral x)"
796  "0 = numeral y \<longleftrightarrow> iszero (numeral y)"
797  "- numeral x = 0 \<longleftrightarrow> iszero (numeral x)"
798  "0 = - numeral y \<longleftrightarrow> iszero (numeral y)"
799  unfolding eq_iff_iszero_diff diff_numeral_simps diff_numeral_special
800  by simp_all
801
802end
803
804
805subsubsection \<open>Equality and negation: class \<open>ring_char_0\<close>\<close>
806
807context ring_char_0
808begin
809
810lemma not_iszero_numeral [simp]: "\<not> iszero (numeral w)"
811  by (simp add: iszero_def)
812
813lemma neg_numeral_eq_iff: "- numeral m = - numeral n \<longleftrightarrow> m = n"
814  by simp
815
816lemma numeral_neq_neg_numeral: "numeral m \<noteq> - numeral n"
817  by (simp add: eq_neg_iff_add_eq_0 numeral_plus_numeral)
818
819lemma neg_numeral_neq_numeral: "- numeral m \<noteq> numeral n"
820  by (rule numeral_neq_neg_numeral [symmetric])
821
822lemma zero_neq_neg_numeral: "0 \<noteq> - numeral n"
823  by simp
824
825lemma neg_numeral_neq_zero: "- numeral n \<noteq> 0"
826  by simp
827
828lemma one_neq_neg_numeral: "1 \<noteq> - numeral n"
829  using numeral_neq_neg_numeral [of One n] by (simp add: numeral_One)
830
831lemma neg_numeral_neq_one: "- numeral n \<noteq> 1"
832  using neg_numeral_neq_numeral [of n One] by (simp add: numeral_One)
833
834lemma neg_one_neq_numeral: "- 1 \<noteq> numeral n"
835  using neg_numeral_neq_numeral [of One n] by (simp add: numeral_One)
836
837lemma numeral_neq_neg_one: "numeral n \<noteq> - 1"
838  using numeral_neq_neg_numeral [of n One] by (simp add: numeral_One)
839
840lemma neg_one_eq_numeral_iff: "- 1 = - numeral n \<longleftrightarrow> n = One"
841  using neg_numeral_eq_iff [of One n] by (auto simp add: numeral_One)
842
843lemma numeral_eq_neg_one_iff: "- numeral n = - 1 \<longleftrightarrow> n = One"
844  using neg_numeral_eq_iff [of n One] by (auto simp add: numeral_One)
845
846lemma neg_one_neq_zero: "- 1 \<noteq> 0"
847  by simp
848
849lemma zero_neq_neg_one: "0 \<noteq> - 1"
850  by simp
851
852lemma neg_one_neq_one: "- 1 \<noteq> 1"
853  using neg_numeral_neq_numeral [of One One] by (simp only: numeral_One not_False_eq_True)
854
855lemma one_neq_neg_one: "1 \<noteq> - 1"
856  using numeral_neq_neg_numeral [of One One] by (simp only: numeral_One not_False_eq_True)
857
858lemmas eq_neg_numeral_simps [simp] =
859  neg_numeral_eq_iff
860  numeral_neq_neg_numeral neg_numeral_neq_numeral
861  one_neq_neg_numeral neg_numeral_neq_one
862  zero_neq_neg_numeral neg_numeral_neq_zero
863  neg_one_neq_numeral numeral_neq_neg_one
864  neg_one_eq_numeral_iff numeral_eq_neg_one_iff
865  neg_one_neq_zero zero_neq_neg_one
866  neg_one_neq_one one_neq_neg_one
867
868end
869
870
871subsubsection \<open>Structures with negation and order: class \<open>linordered_idom\<close>\<close>
872
873context linordered_idom
874begin
875
876subclass ring_char_0 ..
877
878lemma neg_numeral_le_iff: "- numeral m \<le> - numeral n \<longleftrightarrow> n \<le> m"
879  by (simp only: neg_le_iff_le numeral_le_iff)
880
881lemma neg_numeral_less_iff: "- numeral m < - numeral n \<longleftrightarrow> n < m"
882  by (simp only: neg_less_iff_less numeral_less_iff)
883
884lemma neg_numeral_less_zero: "- numeral n < 0"
885  by (simp only: neg_less_0_iff_less zero_less_numeral)
886
887lemma neg_numeral_le_zero: "- numeral n \<le> 0"
888  by (simp only: neg_le_0_iff_le zero_le_numeral)
889
890lemma not_zero_less_neg_numeral: "\<not> 0 < - numeral n"
891  by (simp only: not_less neg_numeral_le_zero)
892
893lemma not_zero_le_neg_numeral: "\<not> 0 \<le> - numeral n"
894  by (simp only: not_le neg_numeral_less_zero)
895
896lemma neg_numeral_less_numeral: "- numeral m < numeral n"
897  using neg_numeral_less_zero zero_less_numeral by (rule less_trans)
898
899lemma neg_numeral_le_numeral: "- numeral m \<le> numeral n"
900  by (simp only: less_imp_le neg_numeral_less_numeral)
901
902lemma not_numeral_less_neg_numeral: "\<not> numeral m < - numeral n"
903  by (simp only: not_less neg_numeral_le_numeral)
904
905lemma not_numeral_le_neg_numeral: "\<not> numeral m \<le> - numeral n"
906  by (simp only: not_le neg_numeral_less_numeral)
907
908lemma neg_numeral_less_one: "- numeral m < 1"
909  by (rule neg_numeral_less_numeral [of m One, unfolded numeral_One])
910
911lemma neg_numeral_le_one: "- numeral m \<le> 1"
912  by (rule neg_numeral_le_numeral [of m One, unfolded numeral_One])
913
914lemma not_one_less_neg_numeral: "\<not> 1 < - numeral m"
915  by (simp only: not_less neg_numeral_le_one)
916
917lemma not_one_le_neg_numeral: "\<not> 1 \<le> - numeral m"
918  by (simp only: not_le neg_numeral_less_one)
919
920lemma not_numeral_less_neg_one: "\<not> numeral m < - 1"
921  using not_numeral_less_neg_numeral [of m One] by (simp add: numeral_One)
922
923lemma not_numeral_le_neg_one: "\<not> numeral m \<le> - 1"
924  using not_numeral_le_neg_numeral [of m One] by (simp add: numeral_One)
925
926lemma neg_one_less_numeral: "- 1 < numeral m"
927  using neg_numeral_less_numeral [of One m] by (simp add: numeral_One)
928
929lemma neg_one_le_numeral: "- 1 \<le> numeral m"
930  using neg_numeral_le_numeral [of One m] by (simp add: numeral_One)
931
932lemma neg_numeral_less_neg_one_iff: "- numeral m < - 1 \<longleftrightarrow> m \<noteq> One"
933  by (cases m) simp_all
934
935lemma neg_numeral_le_neg_one: "- numeral m \<le> - 1"
936  by simp
937
938lemma not_neg_one_less_neg_numeral: "\<not> - 1 < - numeral m"
939  by simp
940
941lemma not_neg_one_le_neg_numeral_iff: "\<not> - 1 \<le> - numeral m \<longleftrightarrow> m \<noteq> One"
942  by (cases m) simp_all
943
944lemma sub_non_negative: "sub n m \<ge> 0 \<longleftrightarrow> n \<ge> m"
945  by (simp only: sub_def le_diff_eq) simp
946
947lemma sub_positive: "sub n m > 0 \<longleftrightarrow> n > m"
948  by (simp only: sub_def less_diff_eq) simp
949
950lemma sub_non_positive: "sub n m \<le> 0 \<longleftrightarrow> n \<le> m"
951  by (simp only: sub_def diff_le_eq) simp
952
953lemma sub_negative: "sub n m < 0 \<longleftrightarrow> n < m"
954  by (simp only: sub_def diff_less_eq) simp
955
956lemmas le_neg_numeral_simps [simp] =
957  neg_numeral_le_iff
958  neg_numeral_le_numeral not_numeral_le_neg_numeral
959  neg_numeral_le_zero not_zero_le_neg_numeral
960  neg_numeral_le_one not_one_le_neg_numeral
961  neg_one_le_numeral not_numeral_le_neg_one
962  neg_numeral_le_neg_one not_neg_one_le_neg_numeral_iff
963
964lemma le_minus_one_simps [simp]:
965  "- 1 \<le> 0"
966  "- 1 \<le> 1"
967  "\<not> 0 \<le> - 1"
968  "\<not> 1 \<le> - 1"
969  by simp_all
970
971lemmas less_neg_numeral_simps [simp] =
972  neg_numeral_less_iff
973  neg_numeral_less_numeral not_numeral_less_neg_numeral
974  neg_numeral_less_zero not_zero_less_neg_numeral
975  neg_numeral_less_one not_one_less_neg_numeral
976  neg_one_less_numeral not_numeral_less_neg_one
977  neg_numeral_less_neg_one_iff not_neg_one_less_neg_numeral
978
979lemma less_minus_one_simps [simp]:
980  "- 1 < 0"
981  "- 1 < 1"
982  "\<not> 0 < - 1"
983  "\<not> 1 < - 1"
984  by (simp_all add: less_le)
985
986lemma abs_numeral [simp]: "\<bar>numeral n\<bar> = numeral n"
987  by simp
988
989lemma abs_neg_numeral [simp]: "\<bar>- numeral n\<bar> = numeral n"
990  by (simp only: abs_minus_cancel abs_numeral)
991
992lemma abs_neg_one [simp]: "\<bar>- 1\<bar> = 1"
993  by simp
994
995end
996
997
998subsubsection \<open>Natural numbers\<close>
999
1000lemma numeral_num_of_nat:
1001  "numeral (num_of_nat n) = n" if "n > 0"
1002  using that nat_of_num_numeral num_of_nat_inverse by simp
1003
1004lemma Suc_1 [simp]: "Suc 1 = 2"
1005  unfolding Suc_eq_plus1 by (rule one_add_one)
1006
1007lemma Suc_numeral [simp]: "Suc (numeral n) = numeral (n + One)"
1008  unfolding Suc_eq_plus1 by (rule numeral_plus_one)
1009
1010definition pred_numeral :: "num \<Rightarrow> nat"
1011  where "pred_numeral k = numeral k - 1"
1012
1013declare [[code drop: pred_numeral]]
1014
1015lemma numeral_eq_Suc: "numeral k = Suc (pred_numeral k)"
1016  by (simp add: pred_numeral_def)
1017
1018lemma eval_nat_numeral:
1019  "numeral One = Suc 0"
1020  "numeral (Bit0 n) = Suc (numeral (BitM n))"
1021  "numeral (Bit1 n) = Suc (numeral (Bit0 n))"
1022  by (simp_all add: numeral.simps BitM_plus_one)
1023
1024lemma pred_numeral_simps [simp]:
1025  "pred_numeral One = 0"
1026  "pred_numeral (Bit0 k) = numeral (BitM k)"
1027  "pred_numeral (Bit1 k) = numeral (Bit0 k)"
1028  by (simp_all only: pred_numeral_def eval_nat_numeral diff_Suc_Suc diff_0)
1029
1030lemma pred_numeral_inc [simp]:
1031  "pred_numeral (Num.inc k) = numeral k"
1032  by (simp only: pred_numeral_def numeral_inc diff_add_inverse2)
1033
1034lemma numeral_2_eq_2: "2 = Suc (Suc 0)"
1035  by (simp add: eval_nat_numeral)
1036
1037lemma numeral_3_eq_3: "3 = Suc (Suc (Suc 0))"
1038  by (simp add: eval_nat_numeral)
1039
1040lemma numeral_1_eq_Suc_0: "Numeral1 = Suc 0"
1041  by (simp only: numeral_One One_nat_def)
1042
1043lemma Suc_nat_number_of_add: "Suc (numeral v + n) = numeral (v + One) + n"
1044  by simp
1045
1046lemma numerals: "Numeral1 = (1::nat)" "2 = Suc (Suc 0)"
1047  by (rule numeral_One) (rule numeral_2_eq_2)
1048
1049lemmas numeral_nat = eval_nat_numeral BitM.simps One_nat_def
1050
1051text \<open>Comparisons involving \<^term>\<open>Suc\<close>.\<close>
1052
1053lemma eq_numeral_Suc [simp]: "numeral k = Suc n \<longleftrightarrow> pred_numeral k = n"
1054  by (simp add: numeral_eq_Suc)
1055
1056lemma Suc_eq_numeral [simp]: "Suc n = numeral k \<longleftrightarrow> n = pred_numeral k"
1057  by (simp add: numeral_eq_Suc)
1058
1059lemma less_numeral_Suc [simp]: "numeral k < Suc n \<longleftrightarrow> pred_numeral k < n"
1060  by (simp add: numeral_eq_Suc)
1061
1062lemma less_Suc_numeral [simp]: "Suc n < numeral k \<longleftrightarrow> n < pred_numeral k"
1063  by (simp add: numeral_eq_Suc)
1064
1065lemma le_numeral_Suc [simp]: "numeral k \<le> Suc n \<longleftrightarrow> pred_numeral k \<le> n"
1066  by (simp add: numeral_eq_Suc)
1067
1068lemma le_Suc_numeral [simp]: "Suc n \<le> numeral k \<longleftrightarrow> n \<le> pred_numeral k"
1069  by (simp add: numeral_eq_Suc)
1070
1071lemma diff_Suc_numeral [simp]: "Suc n - numeral k = n - pred_numeral k"
1072  by (simp add: numeral_eq_Suc)
1073
1074lemma diff_numeral_Suc [simp]: "numeral k - Suc n = pred_numeral k - n"
1075  by (simp add: numeral_eq_Suc)
1076
1077lemma max_Suc_numeral [simp]: "max (Suc n) (numeral k) = Suc (max n (pred_numeral k))"
1078  by (simp add: numeral_eq_Suc)
1079
1080lemma max_numeral_Suc [simp]: "max (numeral k) (Suc n) = Suc (max (pred_numeral k) n)"
1081  by (simp add: numeral_eq_Suc)
1082
1083lemma min_Suc_numeral [simp]: "min (Suc n) (numeral k) = Suc (min n (pred_numeral k))"
1084  by (simp add: numeral_eq_Suc)
1085
1086lemma min_numeral_Suc [simp]: "min (numeral k) (Suc n) = Suc (min (pred_numeral k) n)"
1087  by (simp add: numeral_eq_Suc)
1088
1089text \<open>For \<^term>\<open>case_nat\<close> and \<^term>\<open>rec_nat\<close>.\<close>
1090
1091lemma case_nat_numeral [simp]: "case_nat a f (numeral v) = (let pv = pred_numeral v in f pv)"
1092  by (simp add: numeral_eq_Suc)
1093
1094lemma case_nat_add_eq_if [simp]:
1095  "case_nat a f ((numeral v) + n) = (let pv = pred_numeral v in f (pv + n))"
1096  by (simp add: numeral_eq_Suc)
1097
1098lemma rec_nat_numeral [simp]:
1099  "rec_nat a f (numeral v) = (let pv = pred_numeral v in f pv (rec_nat a f pv))"
1100  by (simp add: numeral_eq_Suc Let_def)
1101
1102lemma rec_nat_add_eq_if [simp]:
1103  "rec_nat a f (numeral v + n) = (let pv = pred_numeral v in f (pv + n) (rec_nat a f (pv + n)))"
1104  by (simp add: numeral_eq_Suc Let_def)
1105
1106text \<open>Case analysis on \<^term>\<open>n < 2\<close>.\<close>
1107lemma less_2_cases: "n < 2 \<Longrightarrow> n = 0 \<or> n = Suc 0"
1108  by (auto simp add: numeral_2_eq_2)
1109
1110lemma less_2_cases_iff: "n < 2 \<longleftrightarrow> n = 0 \<or> n = Suc 0"
1111  by (auto simp add: numeral_2_eq_2)
1112
1113text \<open>Removal of Small Numerals: 0, 1 and (in additive positions) 2.\<close>
1114text \<open>bh: Are these rules really a good idea? LCP: well, it already happens for 0 and 1!\<close>
1115
1116lemma add_2_eq_Suc [simp]: "2 + n = Suc (Suc n)"
1117  by simp
1118
1119lemma add_2_eq_Suc' [simp]: "n + 2 = Suc (Suc n)"
1120  by simp
1121
1122text \<open>Can be used to eliminate long strings of Sucs, but not by default.\<close>
1123lemma Suc3_eq_add_3: "Suc (Suc (Suc n)) = 3 + n"
1124  by simp
1125
1126lemmas nat_1_add_1 = one_add_one [where 'a=nat] (* legacy *)
1127
1128
1129subsection \<open>Particular lemmas concerning \<^term>\<open>2\<close>\<close>
1130
1131context linordered_field
1132begin
1133
1134subclass field_char_0 ..
1135
1136lemma half_gt_zero_iff: "0 < a / 2 \<longleftrightarrow> 0 < a"
1137  by (auto simp add: field_simps)
1138
1139lemma half_gt_zero [simp]: "0 < a \<Longrightarrow> 0 < a / 2"
1140  by (simp add: half_gt_zero_iff)
1141
1142end
1143
1144
1145subsection \<open>Numeral equations as default simplification rules\<close>
1146
1147declare (in numeral) numeral_One [simp]
1148declare (in numeral) numeral_plus_numeral [simp]
1149declare (in numeral) add_numeral_special [simp]
1150declare (in neg_numeral) add_neg_numeral_simps [simp]
1151declare (in neg_numeral) add_neg_numeral_special [simp]
1152declare (in neg_numeral) diff_numeral_simps [simp]
1153declare (in neg_numeral) diff_numeral_special [simp]
1154declare (in semiring_numeral) numeral_times_numeral [simp]
1155declare (in ring_1) mult_neg_numeral_simps [simp]
1156
1157
1158subsubsection \<open>Special Simplification for Constants\<close>
1159
1160text \<open>These distributive laws move literals inside sums and differences.\<close>
1161
1162lemmas distrib_right_numeral [simp] = distrib_right [of _ _ "numeral v"] for v
1163lemmas distrib_left_numeral [simp] = distrib_left [of "numeral v"] for v
1164lemmas left_diff_distrib_numeral [simp] = left_diff_distrib [of _ _ "numeral v"] for v
1165lemmas right_diff_distrib_numeral [simp] = right_diff_distrib [of "numeral v"] for v
1166
1167text \<open>These are actually for fields, like real\<close>
1168
1169lemmas zero_less_divide_iff_numeral [simp, no_atp] = zero_less_divide_iff [of "numeral w"] for w
1170lemmas divide_less_0_iff_numeral [simp, no_atp] = divide_less_0_iff [of "numeral w"] for w
1171lemmas zero_le_divide_iff_numeral [simp, no_atp] = zero_le_divide_iff [of "numeral w"] for w
1172lemmas divide_le_0_iff_numeral [simp, no_atp] = divide_le_0_iff [of "numeral w"] for w
1173
1174text \<open>Replaces \<open>inverse #nn\<close> by \<open>1/#nn\<close>.  It looks
1175  strange, but then other simprocs simplify the quotient.\<close>
1176
1177lemmas inverse_eq_divide_numeral [simp] =
1178  inverse_eq_divide [of "numeral w"] for w
1179
1180lemmas inverse_eq_divide_neg_numeral [simp] =
1181  inverse_eq_divide [of "- numeral w"] for w
1182
1183text \<open>These laws simplify inequalities, moving unary minus from a term
1184  into the literal.\<close>
1185
1186lemmas equation_minus_iff_numeral [no_atp] =
1187  equation_minus_iff [of "numeral v"] for v
1188
1189lemmas minus_equation_iff_numeral [no_atp] =
1190  minus_equation_iff [of _ "numeral v"] for v
1191
1192lemmas le_minus_iff_numeral [no_atp] =
1193  le_minus_iff [of "numeral v"] for v
1194
1195lemmas minus_le_iff_numeral [no_atp] =
1196  minus_le_iff [of _ "numeral v"] for v
1197
1198lemmas less_minus_iff_numeral [no_atp] =
1199  less_minus_iff [of "numeral v"] for v
1200
1201lemmas minus_less_iff_numeral [no_atp] =
1202  minus_less_iff [of _ "numeral v"] for v
1203
1204(* FIXME maybe simproc *)
1205
1206text \<open>Cancellation of constant factors in comparisons (\<open><\<close> and \<open>\<le>\<close>)\<close>
1207
1208lemmas mult_less_cancel_left_numeral [simp, no_atp] = mult_less_cancel_left [of "numeral v"] for v
1209lemmas mult_less_cancel_right_numeral [simp, no_atp] = mult_less_cancel_right [of _ "numeral v"] for v
1210lemmas mult_le_cancel_left_numeral [simp, no_atp] = mult_le_cancel_left [of "numeral v"] for v
1211lemmas mult_le_cancel_right_numeral [simp, no_atp] = mult_le_cancel_right [of _ "numeral v"] for v
1212
1213text \<open>Multiplying out constant divisors in comparisons (\<open><\<close>, \<open>\<le>\<close> and \<open>=\<close>)\<close>
1214
1215named_theorems divide_const_simps "simplification rules to simplify comparisons involving constant divisors"
1216
1217lemmas le_divide_eq_numeral1 [simp,divide_const_simps] =
1218  pos_le_divide_eq [of "numeral w", OF zero_less_numeral]
1219  neg_le_divide_eq [of "- numeral w", OF neg_numeral_less_zero] for w
1220
1221lemmas divide_le_eq_numeral1 [simp,divide_const_simps] =
1222  pos_divide_le_eq [of "numeral w", OF zero_less_numeral]
1223  neg_divide_le_eq [of "- numeral w", OF neg_numeral_less_zero] for w
1224
1225lemmas less_divide_eq_numeral1 [simp,divide_const_simps] =
1226  pos_less_divide_eq [of "numeral w", OF zero_less_numeral]
1227  neg_less_divide_eq [of "- numeral w", OF neg_numeral_less_zero] for w
1228
1229lemmas divide_less_eq_numeral1 [simp,divide_const_simps] =
1230  pos_divide_less_eq [of "numeral w", OF zero_less_numeral]
1231  neg_divide_less_eq [of "- numeral w", OF neg_numeral_less_zero] for w
1232
1233lemmas eq_divide_eq_numeral1 [simp,divide_const_simps] =
1234  eq_divide_eq [of _ _ "numeral w"]
1235  eq_divide_eq [of _ _ "- numeral w"] for w
1236
1237lemmas divide_eq_eq_numeral1 [simp,divide_const_simps] =
1238  divide_eq_eq [of _ "numeral w"]
1239  divide_eq_eq [of _ "- numeral w"] for w
1240
1241
1242subsubsection \<open>Optional Simplification Rules Involving Constants\<close>
1243
1244text \<open>Simplify quotients that are compared with a literal constant.\<close>
1245
1246lemmas le_divide_eq_numeral [divide_const_simps] =
1247  le_divide_eq [of "numeral w"]
1248  le_divide_eq [of "- numeral w"] for w
1249
1250lemmas divide_le_eq_numeral [divide_const_simps] =
1251  divide_le_eq [of _ _ "numeral w"]
1252  divide_le_eq [of _ _ "- numeral w"] for w
1253
1254lemmas less_divide_eq_numeral [divide_const_simps] =
1255  less_divide_eq [of "numeral w"]
1256  less_divide_eq [of "- numeral w"] for w
1257
1258lemmas divide_less_eq_numeral [divide_const_simps] =
1259  divide_less_eq [of _ _ "numeral w"]
1260  divide_less_eq [of _ _ "- numeral w"] for w
1261
1262lemmas eq_divide_eq_numeral [divide_const_simps] =
1263  eq_divide_eq [of "numeral w"]
1264  eq_divide_eq [of "- numeral w"] for w
1265
1266lemmas divide_eq_eq_numeral [divide_const_simps] =
1267  divide_eq_eq [of _ _ "numeral w"]
1268  divide_eq_eq [of _ _ "- numeral w"] for w
1269
1270text \<open>Not good as automatic simprules because they cause case splits.\<close>
1271
1272lemmas [divide_const_simps] =
1273  le_divide_eq_1 divide_le_eq_1 less_divide_eq_1 divide_less_eq_1
1274
1275
1276subsection \<open>Setting up simprocs\<close>
1277
1278lemma mult_numeral_1: "Numeral1 * a = a"
1279  for a :: "'a::semiring_numeral"
1280  by simp
1281
1282lemma mult_numeral_1_right: "a * Numeral1 = a"
1283  for a :: "'a::semiring_numeral"
1284  by simp
1285
1286lemma divide_numeral_1: "a / Numeral1 = a"
1287  for a :: "'a::field"
1288  by simp
1289
1290lemma inverse_numeral_1: "inverse Numeral1 = (Numeral1::'a::division_ring)"
1291  by simp
1292
1293text \<open>
1294  Theorem lists for the cancellation simprocs. The use of a binary
1295  numeral for 1 reduces the number of special cases.
1296\<close>
1297
1298lemma mult_1s_semiring_numeral:
1299  "Numeral1 * a = a"
1300  "a * Numeral1 = a"
1301  for a :: "'a::semiring_numeral"
1302  by simp_all
1303
1304lemma mult_1s_ring_1:
1305  "- Numeral1 * b = - b"
1306  "b * - Numeral1 = - b"
1307  for b :: "'a::ring_1"
1308  by simp_all
1309
1310lemmas mult_1s = mult_1s_semiring_numeral mult_1s_ring_1
1311
1312setup \<open>
1313  Reorient_Proc.add
1314    (fn Const (\<^const_name>\<open>numeral\<close>, _) $ _ => true
1315      | Const (\<^const_name>\<open>uminus\<close>, _) $ (Const (\<^const_name>\<open>numeral\<close>, _) $ _) => true
1316      | _ => false)
1317\<close>
1318
1319simproc_setup reorient_numeral ("numeral w = x" | "- numeral w = y") =
1320  Reorient_Proc.proc
1321
1322
1323subsubsection \<open>Simplification of arithmetic operations on integer constants\<close>
1324
1325lemmas arith_special = (* already declared simp above *)
1326  add_numeral_special add_neg_numeral_special
1327  diff_numeral_special
1328
1329lemmas arith_extra_simps = (* rules already in simpset *)
1330  numeral_plus_numeral add_neg_numeral_simps add_0_left add_0_right
1331  minus_zero
1332  diff_numeral_simps diff_0 diff_0_right
1333  numeral_times_numeral mult_neg_numeral_simps
1334  mult_zero_left mult_zero_right
1335  abs_numeral abs_neg_numeral
1336
1337text \<open>
1338  For making a minimal simpset, one must include these default simprules.
1339  Also include \<open>simp_thms\<close>.
1340\<close>
1341
1342lemmas arith_simps =
1343  add_num_simps mult_num_simps sub_num_simps
1344  BitM.simps dbl_simps dbl_inc_simps dbl_dec_simps
1345  abs_zero abs_one arith_extra_simps
1346
1347lemmas more_arith_simps =
1348  neg_le_iff_le
1349  minus_zero left_minus right_minus
1350  mult_1_left mult_1_right
1351  mult_minus_left mult_minus_right
1352  minus_add_distrib minus_minus mult.assoc
1353
1354lemmas of_nat_simps =
1355  of_nat_0 of_nat_1 of_nat_Suc of_nat_add of_nat_mult
1356
1357text \<open>Simplification of relational operations.\<close>
1358
1359lemmas eq_numeral_extra =
1360  zero_neq_one one_neq_zero
1361
1362lemmas rel_simps =
1363  le_num_simps less_num_simps eq_num_simps
1364  le_numeral_simps le_neg_numeral_simps le_minus_one_simps le_numeral_extra
1365  less_numeral_simps less_neg_numeral_simps less_minus_one_simps less_numeral_extra
1366  eq_numeral_simps eq_neg_numeral_simps eq_numeral_extra
1367
1368lemma Let_numeral [simp]: "Let (numeral v) f = f (numeral v)"
1369  \<comment> \<open>Unfold all \<open>let\<close>s involving constants\<close>
1370  unfolding Let_def ..
1371
1372lemma Let_neg_numeral [simp]: "Let (- numeral v) f = f (- numeral v)"
1373  \<comment> \<open>Unfold all \<open>let\<close>s involving constants\<close>
1374  unfolding Let_def ..
1375
1376declaration \<open>
1377let
1378  fun number_of ctxt T n =
1379    if not (Sign.of_sort (Proof_Context.theory_of ctxt) (T, \<^sort>\<open>numeral\<close>))
1380    then raise CTERM ("number_of", [])
1381    else Numeral.mk_cnumber (Thm.ctyp_of ctxt T) n;
1382in
1383  K (
1384    Lin_Arith.set_number_of number_of
1385    #> Lin_Arith.add_simps
1386      @{thms arith_simps more_arith_simps rel_simps pred_numeral_simps
1387        arith_special numeral_One of_nat_simps uminus_numeral_One
1388        Suc_numeral Let_numeral Let_neg_numeral Let_0 Let_1
1389        le_Suc_numeral le_numeral_Suc less_Suc_numeral less_numeral_Suc
1390        Suc_eq_numeral eq_numeral_Suc mult_Suc mult_Suc_right of_nat_numeral})
1391end
1392\<close>
1393
1394
1395subsubsection \<open>Simplification of arithmetic when nested to the right\<close>
1396
1397lemma add_numeral_left [simp]: "numeral v + (numeral w + z) = (numeral(v + w) + z)"
1398  by (simp_all add: add.assoc [symmetric])
1399
1400lemma add_neg_numeral_left [simp]:
1401  "numeral v + (- numeral w + y) = (sub v w + y)"
1402  "- numeral v + (numeral w + y) = (sub w v + y)"
1403  "- numeral v + (- numeral w + y) = (- numeral(v + w) + y)"
1404  by (simp_all add: add.assoc [symmetric])
1405
1406lemma mult_numeral_left_semiring_numeral:
1407  "numeral v * (numeral w * z) = (numeral(v * w) * z :: 'a::semiring_numeral)"
1408  by (simp add: mult.assoc [symmetric])
1409
1410lemma mult_numeral_left_ring_1:
1411  "- numeral v * (numeral w * y) = (- numeral(v * w) * y :: 'a::ring_1)"
1412  "numeral v * (- numeral w * y) = (- numeral(v * w) * y :: 'a::ring_1)"
1413  "- numeral v * (- numeral w * y) = (numeral(v * w) * y :: 'a::ring_1)"
1414  by (simp_all add: mult.assoc [symmetric])
1415
1416lemmas mult_numeral_left [simp] =
1417  mult_numeral_left_semiring_numeral
1418  mult_numeral_left_ring_1
1419
1420hide_const (open) One Bit0 Bit1 BitM inc pow sqr sub dbl dbl_inc dbl_dec
1421
1422
1423subsection \<open>Code module namespace\<close>
1424
1425code_identifier
1426  code_module Num \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith
1427
1428subsection \<open>Printing of evaluated natural numbers as numerals\<close>
1429
1430lemma [code_post]:
1431  "Suc 0 = 1"
1432  "Suc 1 = 2"
1433  "Suc (numeral n) = numeral (Num.inc n)"
1434  by (simp_all add: numeral_inc)
1435
1436lemmas [code_post] = Num.inc.simps
1437
1438end
1439