1(*  Title:      HOL/MacLaurin.thy
2    Author:     Jacques D. Fleuriot, 2001 University of Edinburgh
3    Author:     Lawrence C Paulson, 2004
4    Author:     Lukas Bulwahn and Bernhard H��upler, 2005
5*)
6
7section \<open>MacLaurin and Taylor Series\<close>
8
9theory MacLaurin
10imports Transcendental
11begin
12
13subsection \<open>Maclaurin's Theorem with Lagrange Form of Remainder\<close>
14
15text \<open>This is a very long, messy proof even now that it's been broken down
16  into lemmas.\<close>
17
18lemma Maclaurin_lemma:
19  "0 < h \<Longrightarrow>
20    \<exists>B::real. f h = (\<Sum>m<n. (j m / (fact m)) * (h^m)) + (B * ((h^n) /(fact n)))"
21  by (rule exI[where x = "(f h - (\<Sum>m<n. (j m / (fact m)) * h^m)) * (fact n) / (h^n)"]) simp
22
23lemma eq_diff_eq': "x = y - z \<longleftrightarrow> y = x + z"
24  for x y z :: real
25  by arith
26
27lemma fact_diff_Suc: "n < Suc m \<Longrightarrow> fact (Suc m - n) = (Suc m - n) * fact (m - n)"
28  by (subst fact_reduce) auto
29
30lemma Maclaurin_lemma2:
31  fixes B
32  assumes DERIV: "\<forall>m t. m < n \<and> 0\<le>t \<and> t\<le>h \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t"
33    and INIT: "n = Suc k"
34  defines "difg \<equiv>
35    (\<lambda>m t::real. diff m t -
36      ((\<Sum>p<n - m. diff (m + p) 0 / fact p * t ^ p) + B * (t ^ (n - m) / fact (n - m))))"
37    (is "difg \<equiv> (\<lambda>m t. diff m t - ?difg m t)")
38  shows "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> h \<longrightarrow> DERIV (difg m) t :> difg (Suc m) t"
39proof (rule allI impI)+
40  fix m t
41  assume INIT2: "m < n \<and> 0 \<le> t \<and> t \<le> h"
42  have "DERIV (difg m) t :> diff (Suc m) t -
43    ((\<Sum>x<n - m. real x * t ^ (x - Suc 0) * diff (m + x) 0 / fact x) +
44     real (n - m) * t ^ (n - Suc m) * B / fact (n - m))"
45    by (auto simp: difg_def intro!: derivative_eq_intros DERIV[rule_format, OF INIT2])
46  moreover
47  from INIT2 have intvl: "{..<n - m} = insert 0 (Suc ` {..<n - Suc m})" and "0 < n - m"
48    unfolding atLeast0LessThan[symmetric] by auto
49  have "(\<Sum>x<n - m. real x * t ^ (x - Suc 0) * diff (m + x) 0 / fact x) =
50      (\<Sum>x<n - Suc m. real (Suc x) * t ^ x * diff (Suc m + x) 0 / fact (Suc x))"
51    unfolding intvl by (subst sum.insert) (auto simp: sum.reindex)
52  moreover
53  have fact_neq_0: "\<And>x. (fact x) + real x * (fact x) \<noteq> 0"
54    by (metis add_pos_pos fact_gt_zero less_add_same_cancel1 less_add_same_cancel2
55        less_numeral_extra(3) mult_less_0_iff of_nat_less_0_iff)
56  have "\<And>x. (Suc x) * t ^ x * diff (Suc m + x) 0 / fact (Suc x) = diff (Suc m + x) 0 * t^x / fact x"
57    by (rule nonzero_divide_eq_eq[THEN iffD2]) auto
58  moreover
59  have "(n - m) * t ^ (n - Suc m) * B / fact (n - m) = B * (t ^ (n - Suc m) / fact (n - Suc m))"
60    using \<open>0 < n - m\<close> by (simp add: field_split_simps fact_reduce)
61  ultimately show "DERIV (difg m) t :> difg (Suc m) t"
62    unfolding difg_def  by (simp add: mult.commute)
63qed
64
65lemma Maclaurin:
66  assumes h: "0 < h"
67    and n: "0 < n"
68    and diff_0: "diff 0 = f"
69    and diff_Suc: "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> h \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t"
70  shows
71    "\<exists>t::real. 0 < t \<and> t < h \<and>
72      f h = sum (\<lambda>m. (diff m 0 / fact m) * h ^ m) {..<n} + (diff n t / fact n) * h ^ n"
73proof -
74  from n obtain m where m: "n = Suc m"
75    by (cases n) (simp add: n)
76  from m have "m < n" by simp
77
78  obtain B where f_h: "f h = (\<Sum>m<n. diff m 0 / fact m * h ^ m) + B * (h ^ n / fact n)"
79    using Maclaurin_lemma [OF h] ..
80
81  define g where [abs_def]: "g t =
82    f t - (sum (\<lambda>m. (diff m 0 / fact m) * t^m) {..<n} + B * (t^n / fact n))" for t
83  have g2: "g 0 = 0" "g h = 0"
84    by (simp_all add: m f_h g_def lessThan_Suc_eq_insert_0 image_iff diff_0 sum.reindex)
85
86  define difg where [abs_def]: "difg m t =
87    diff m t - (sum (\<lambda>p. (diff (m + p) 0 / fact p) * (t ^ p)) {..<n-m} +
88      B * ((t ^ (n - m)) / fact (n - m)))" for m t
89  have difg_0: "difg 0 = g"
90    by (simp add: difg_def g_def diff_0)
91  have difg_Suc: "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> h \<longrightarrow> DERIV (difg m) t :> difg (Suc m) t"
92    using diff_Suc m unfolding difg_def [abs_def] by (rule Maclaurin_lemma2)
93  have difg_eq_0: "\<forall>m<n. difg m 0 = 0"
94    by (auto simp: difg_def m Suc_diff_le lessThan_Suc_eq_insert_0 image_iff sum.reindex)
95  have isCont_difg: "\<And>m x. m < n \<Longrightarrow> 0 \<le> x \<Longrightarrow> x \<le> h \<Longrightarrow> isCont (difg m) x"
96    by (rule DERIV_isCont [OF difg_Suc [rule_format]]) simp
97  have differentiable_difg: "\<And>m x. m < n \<Longrightarrow> 0 \<le> x \<Longrightarrow> x \<le> h \<Longrightarrow> difg m differentiable (at x)"
98    using difg_Suc real_differentiable_def by auto
99  have difg_Suc_eq_0:
100    "\<And>m t. m < n \<Longrightarrow> 0 \<le> t \<Longrightarrow> t \<le> h \<Longrightarrow> DERIV (difg m) t :> 0 \<Longrightarrow> difg (Suc m) t = 0"
101    by (rule DERIV_unique [OF difg_Suc [rule_format]]) simp
102
103  have "\<exists>t. 0 < t \<and> t < h \<and> DERIV (difg m) t :> 0"
104  using \<open>m < n\<close>
105  proof (induct m)
106    case 0
107    show ?case
108    proof (rule Rolle)
109      show "0 < h" by fact
110      show "difg 0 0 = difg 0 h"
111        by (simp add: difg_0 g2)
112      show "continuous_on {0..h} (difg 0)"
113        by (simp add: continuous_at_imp_continuous_on isCont_difg n)
114    qed (simp add: differentiable_difg n)
115  next
116    case (Suc m')
117    then have "\<exists>t. 0 < t \<and> t < h \<and> DERIV (difg m') t :> 0"
118      by simp
119    then obtain t where t: "0 < t" "t < h" "DERIV (difg m') t :> 0"
120      by fast
121    have "\<exists>t'. 0 < t' \<and> t' < t \<and> DERIV (difg (Suc m')) t' :> 0"
122    proof (rule Rolle)
123      show "0 < t" by fact
124      show "difg (Suc m') 0 = difg (Suc m') t"
125        using t \<open>Suc m' < n\<close> by (simp add: difg_Suc_eq_0 difg_eq_0)
126      have "\<And>x. 0 \<le> x \<and> x \<le> t \<Longrightarrow> isCont (difg (Suc m')) x"
127        using \<open>t < h\<close> \<open>Suc m' < n\<close> by (simp add: isCont_difg)
128      then show "continuous_on {0..t} (difg (Suc m'))"
129        by (simp add: continuous_at_imp_continuous_on)
130    qed (use \<open>t < h\<close> \<open>Suc m' < n\<close> in \<open>simp add: differentiable_difg\<close>)
131    with \<open>t < h\<close> show ?case
132      by auto
133  qed
134  then obtain t where "0 < t" "t < h" "DERIV (difg m) t :> 0"
135    by fast
136  with \<open>m < n\<close> have "difg (Suc m) t = 0"
137    by (simp add: difg_Suc_eq_0)
138  show ?thesis
139  proof (intro exI conjI)
140    show "0 < t" by fact
141    show "t < h" by fact
142    show "f h = (\<Sum>m<n. diff m 0 / (fact m) * h ^ m) + diff n t / (fact n) * h ^ n"
143      using \<open>difg (Suc m) t = 0\<close> by (simp add: m f_h difg_def)
144  qed
145qed
146
147lemma Maclaurin2:
148  fixes n :: nat
149    and h :: real
150  assumes INIT1: "0 < h"
151    and INIT2: "diff 0 = f"
152    and DERIV: "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> h \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t"
153  shows "\<exists>t. 0 < t \<and> t \<le> h \<and> f h = (\<Sum>m<n. diff m 0 / (fact m) * h ^ m) + diff n t / fact n * h ^ n"
154proof (cases n)
155  case 0
156  with INIT1 INIT2 show ?thesis by fastforce
157next
158  case Suc
159  then have "n > 0" by simp
160  from INIT1 this INIT2 DERIV
161  have "\<exists>t>0. t < h \<and> f h = (\<Sum>m<n. diff m 0 / fact m * h ^ m) + diff n t / fact n * h ^ n"
162    by (rule Maclaurin)
163  then show ?thesis by fastforce
164qed
165
166lemma Maclaurin_minus:
167  fixes n :: nat and h :: real
168  assumes "h < 0" "0 < n" "diff 0 = f"
169    and DERIV: "\<forall>m t. m < n \<and> h \<le> t \<and> t \<le> 0 \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t"
170  shows "\<exists>t. h < t \<and> t < 0 \<and> f h = (\<Sum>m<n. diff m 0 / fact m * h ^ m) + diff n t / fact n * h ^ n"
171proof -
172  txt \<open>Transform \<open>ABL'\<close> into \<open>derivative_intros\<close> format.\<close>
173  note DERIV' = DERIV_chain'[OF _ DERIV[rule_format], THEN DERIV_cong]
174  let ?sum = "\<lambda>t.
175    (\<Sum>m<n. (- 1) ^ m * diff m (- 0) / (fact m) * (- h) ^ m) +
176    (- 1) ^ n * diff n (- t) / (fact n) * (- h) ^ n"
177  from assms have "\<exists>t>0. t < - h \<and> f (- (- h)) = ?sum t"
178    by (intro Maclaurin) (auto intro!: derivative_eq_intros DERIV')
179  then obtain t where "0 < t" "t < - h" "f (- (- h)) = ?sum t"
180    by blast
181  moreover have "(- 1) ^ n * diff n (- t) * (- h) ^ n / fact n = diff n (- t) * h ^ n / fact n"
182    by (auto simp: power_mult_distrib[symmetric])
183  moreover
184    have "(\<Sum>m<n. (- 1) ^ m * diff m 0 * (- h) ^ m / fact m) = (\<Sum>m<n. diff m 0 * h ^ m / fact m)"
185    by (auto intro: sum.cong simp add: power_mult_distrib[symmetric])
186  ultimately have "h < - t \<and> - t < 0 \<and>
187    f h = (\<Sum>m<n. diff m 0 / (fact m) * h ^ m) + diff n (- t) / (fact n) * h ^ n"
188    by auto
189  then show ?thesis ..
190qed
191
192
193subsection \<open>More Convenient "Bidirectional" Version.\<close>
194
195lemma Maclaurin_bi_le:
196  fixes n :: nat and x :: real
197  assumes "diff 0 = f"
198    and DERIV : "\<forall>m t. m < n \<and> \<bar>t\<bar> \<le> \<bar>x\<bar> \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t"
199  shows "\<exists>t. \<bar>t\<bar> \<le> \<bar>x\<bar> \<and> f x = (\<Sum>m<n. diff m 0 / (fact m) * x ^ m) + diff n t / (fact n) * x ^ n"
200    (is "\<exists>t. _ \<and> f x = ?f x t")
201proof (cases "n = 0")
202  case True
203  with \<open>diff 0 = f\<close> show ?thesis by force
204next
205  case False
206  show ?thesis
207  proof (cases rule: linorder_cases)
208    assume "x = 0"
209    with \<open>n \<noteq> 0\<close> \<open>diff 0 = f\<close> DERIV have "\<bar>0\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x 0"
210      by auto
211    then show ?thesis ..
212  next
213    assume "x < 0"
214    with \<open>n \<noteq> 0\<close> DERIV have "\<exists>t>x. t < 0 \<and> diff 0 x = ?f x t"
215      by (intro Maclaurin_minus) auto
216    then obtain t where "x < t" "t < 0"
217      "diff 0 x = (\<Sum>m<n. diff m 0 / fact m * x ^ m) + diff n t / fact n * x ^ n"
218      by blast
219    with \<open>x < 0\<close> \<open>diff 0 = f\<close> have "\<bar>t\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x t"
220      by simp
221    then show ?thesis ..
222  next
223    assume "x > 0"
224    with \<open>n \<noteq> 0\<close> \<open>diff 0 = f\<close> DERIV have "\<exists>t>0. t < x \<and> diff 0 x = ?f x t"
225      by (intro Maclaurin) auto
226    then obtain t where "0 < t" "t < x"
227      "diff 0 x = (\<Sum>m<n. diff m 0 / fact m * x ^ m) + diff n t / fact n * x ^ n"
228      by blast
229    with \<open>x > 0\<close> \<open>diff 0 = f\<close> have "\<bar>t\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x t" by simp
230    then show ?thesis ..
231  qed
232qed
233
234lemma Maclaurin_all_lt:
235  fixes x :: real
236  assumes INIT1: "diff 0 = f"
237    and INIT2: "0 < n"
238    and INIT3: "x \<noteq> 0"
239    and DERIV: "\<forall>m x. DERIV (diff m) x :> diff(Suc m) x"
240  shows "\<exists>t. 0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> f x =
241      (\<Sum>m<n. (diff m 0 / fact m) * x ^ m) + (diff n t / fact n) * x ^ n"
242    (is "\<exists>t. _ \<and> _ \<and> f x = ?f x t")
243proof (cases rule: linorder_cases)
244  assume "x = 0"
245  with INIT3 show ?thesis ..
246next
247  assume "x < 0"
248  with assms have "\<exists>t>x. t < 0 \<and> f x = ?f x t"
249    by (intro Maclaurin_minus) auto
250  then obtain t where "t > x" "t < 0" "f x = ?f x t"
251    by blast
252  with \<open>x < 0\<close> have "0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> f x = ?f x t"
253    by simp
254  then show ?thesis ..
255next
256  assume "x > 0"
257  with assms have "\<exists>t>0. t < x \<and> f x = ?f x t"
258    by (intro Maclaurin) auto
259  then obtain t where "t > 0" "t < x" "f x = ?f x t"
260    by blast
261  with \<open>x > 0\<close> have "0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> f x = ?f x t"
262    by simp
263  then show ?thesis ..
264qed
265
266lemma Maclaurin_zero: "x = 0 \<Longrightarrow> n \<noteq> 0 \<Longrightarrow> (\<Sum>m<n. (diff m 0 / fact m) * x ^ m) = diff 0 0"
267  for x :: real and n :: nat
268  by simp
269
270
271lemma Maclaurin_all_le:
272  fixes x :: real and n :: nat
273  assumes INIT: "diff 0 = f"
274    and DERIV: "\<forall>m x. DERIV (diff m) x :> diff (Suc m) x"
275  shows "\<exists>t. \<bar>t\<bar> \<le> \<bar>x\<bar> \<and> f x = (\<Sum>m<n. (diff m 0 / fact m) * x ^ m) + (diff n t / fact n) * x ^ n"
276    (is "\<exists>t. _ \<and> f x = ?f x t")
277proof (cases "n = 0")
278  case True
279  with INIT show ?thesis by force
280next
281  case False
282  show ?thesis
283  proof (cases "x = 0")
284    case True
285    with \<open>n \<noteq> 0\<close> have "(\<Sum>m<n. diff m 0 / (fact m) * x ^ m) = diff 0 0"
286      by (intro Maclaurin_zero) auto
287    with INIT \<open>x = 0\<close> \<open>n \<noteq> 0\<close> have " \<bar>0\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x 0"
288      by force
289    then show ?thesis ..
290  next
291    case False
292    with INIT \<open>n \<noteq> 0\<close> DERIV have "\<exists>t. 0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> f x = ?f x t"
293      by (intro Maclaurin_all_lt) auto
294    then obtain t where "0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> f x = ?f x t" ..
295    then have "\<bar>t\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x t"
296      by simp
297    then show ?thesis ..
298  qed
299qed
300
301lemma Maclaurin_all_le_objl:
302  "diff 0 = f \<and> (\<forall>m x. DERIV (diff m) x :> diff (Suc m) x) \<longrightarrow>
303    (\<exists>t::real. \<bar>t\<bar> \<le> \<bar>x\<bar> \<and> f x = (\<Sum>m<n. (diff m 0 / fact m) * x ^ m) + (diff n t / fact n) * x ^ n)"
304  for x :: real and n :: nat
305  by (blast intro: Maclaurin_all_le)
306
307
308subsection \<open>Version for Exponential Function\<close>
309
310lemma Maclaurin_exp_lt:
311  fixes x :: real and n :: nat
312  shows
313    "x \<noteq> 0 \<Longrightarrow> n > 0 \<Longrightarrow>
314      (\<exists>t. 0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> exp x = (\<Sum>m<n. (x ^ m) / fact m) + (exp t / fact n) * x ^ n)"
315 using Maclaurin_all_lt [where diff = "\<lambda>n. exp" and f = exp and x = x and n = n] by auto
316
317lemma Maclaurin_exp_le:
318  fixes x :: real and n :: nat
319  shows "\<exists>t. \<bar>t\<bar> \<le> \<bar>x\<bar> \<and> exp x = (\<Sum>m<n. (x ^ m) / fact m) + (exp t / fact n) * x ^ n"
320  using Maclaurin_all_le_objl [where diff = "\<lambda>n. exp" and f = exp and x = x and n = n] by auto
321
322corollary exp_lower_Taylor_quadratic: "0 \<le> x \<Longrightarrow> 1 + x + x\<^sup>2 / 2 \<le> exp x"
323  for x :: real
324  using Maclaurin_exp_le [of x 3] by (auto simp: numeral_3_eq_3 power2_eq_square)
325
326corollary ln_2_less_1: "ln 2 < (1::real)"
327proof -
328  have "2 < 5/(2::real)" by simp
329  also have "5/2 \<le> exp (1::real)" using exp_lower_Taylor_quadratic[of 1, simplified] by simp
330  finally have "exp (ln 2) < exp (1::real)" by simp
331  thus "ln 2 < (1::real)" by (subst (asm) exp_less_cancel_iff) simp
332qed
333
334subsection \<open>Version for Sine Function\<close>
335
336lemma mod_exhaust_less_4: "m mod 4 = 0 \<or> m mod 4 = 1 \<or> m mod 4 = 2 \<or> m mod 4 = 3"
337  for m :: nat
338  by auto
339
340
341text \<open>It is unclear why so many variant results are needed.\<close>
342
343lemma sin_expansion_lemma: "sin (x + real (Suc m) * pi / 2) = cos (x + real m * pi / 2)"
344  by (auto simp: cos_add sin_add add_divide_distrib distrib_right)
345
346lemma Maclaurin_sin_expansion2:
347  "\<exists>t. \<bar>t\<bar> \<le> \<bar>x\<bar> \<and>
348    sin x = (\<Sum>m<n. sin_coeff m * x ^ m) + (sin (t + 1/2 * real n * pi) / fact n) * x ^ n"
349proof (cases "n = 0 \<or> x = 0")
350  case False
351  let ?diff = "\<lambda>n x. sin (x + 1/2 * real n * pi)"
352  have "\<exists>t. 0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> sin x =
353      (\<Sum>m<n. (?diff m 0 / fact m) * x ^ m) + (?diff n t / fact n) * x ^ n"
354  proof (rule Maclaurin_all_lt)
355    show "\<forall>m x. ((\<lambda>t. sin (t + 1/2 * real m * pi)) has_real_derivative
356           sin (x + 1/2 * real (Suc m) * pi)) (at x)"
357      by (rule allI derivative_eq_intros | use sin_expansion_lemma in force)+
358  qed (use False in auto)
359  then show ?thesis
360    apply (rule ex_forward, simp)
361    apply (rule sum.cong[OF refl])
362    apply (auto simp: sin_coeff_def sin_zero_iff elim: oddE simp del: of_nat_Suc)
363    done
364qed auto
365
366lemma Maclaurin_sin_expansion:
367  "\<exists>t. sin x = (\<Sum>m<n. sin_coeff m * x ^ m) + (sin (t + 1/2 * real n * pi) / fact n) * x ^ n"
368  using Maclaurin_sin_expansion2 [of x n] by blast
369
370lemma Maclaurin_sin_expansion3:
371  assumes "n > 0" "x > 0"
372    shows "\<exists>t. 0 < t \<and> t < x \<and>
373          sin x = (\<Sum>m<n. sin_coeff m * x ^ m) + (sin (t + 1/2 * real n * pi) / fact n) * x ^ n"
374proof -
375  let ?diff = "\<lambda>n x. sin (x + 1/2 * real n * pi)"
376  have "\<exists>t. 0 < t \<and> t < x \<and> sin x = (\<Sum>m<n. ?diff m 0 / (fact m) * x ^ m) + ?diff n t / fact n * x ^ n"
377  proof (rule Maclaurin)
378    show "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> x \<longrightarrow>
379                ((\<lambda>u. sin (u + 1/2 * real m * pi)) has_real_derivative
380                 sin (t + 1/2 * real (Suc m) * pi)) (at t)"
381      apply (simp add: sin_expansion_lemma del: of_nat_Suc)
382      apply (force intro!: derivative_eq_intros)
383      done
384  qed (use assms in auto)
385  then show ?thesis
386    apply (rule ex_forward, simp)
387    apply (rule sum.cong[OF refl])
388    apply (auto simp: sin_coeff_def sin_zero_iff elim: oddE simp del: of_nat_Suc)
389    done
390qed
391
392lemma Maclaurin_sin_expansion4:
393  assumes "0 < x"
394  shows "\<exists>t. 0 < t \<and> t \<le> x \<and> sin x = (\<Sum>m<n. sin_coeff m * x ^ m) + (sin (t + 1/2 * real n * pi) / fact n) * x ^ n"
395proof -
396  let ?diff = "\<lambda>n x. sin (x + 1/2 * real n * pi)"
397  have "\<exists>t. 0 < t \<and> t \<le> x \<and> sin x = (\<Sum>m<n. ?diff m 0 / (fact m) * x ^ m) + ?diff n t / fact n * x ^ n"
398  proof (rule Maclaurin2)
399    show "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> x \<longrightarrow>
400                ((\<lambda>u. sin (u + 1/2 * real m * pi)) has_real_derivative
401                 sin (t + 1/2 * real (Suc m) * pi)) (at t)"
402      apply (simp add: sin_expansion_lemma del: of_nat_Suc)
403      apply (force intro!: derivative_eq_intros)
404      done
405  qed (use assms in auto)
406  then show ?thesis
407    apply (rule ex_forward, simp)
408    apply (rule sum.cong[OF refl])
409    apply (auto simp: sin_coeff_def sin_zero_iff elim: oddE simp del: of_nat_Suc)
410    done
411qed
412
413
414subsection \<open>Maclaurin Expansion for Cosine Function\<close>
415
416lemma sumr_cos_zero_one [simp]: "(\<Sum>m<Suc n. cos_coeff m * 0 ^ m) = 1"
417  by (induct n) auto
418
419lemma cos_expansion_lemma: "cos (x + real (Suc m) * pi / 2) = - sin (x + real m * pi / 2)"
420  by (auto simp: cos_add sin_add distrib_right add_divide_distrib)
421
422lemma Maclaurin_cos_expansion:
423  "\<exists>t::real. \<bar>t\<bar> \<le> \<bar>x\<bar> \<and>
424    cos x = (\<Sum>m<n. cos_coeff m * x ^ m) + (cos(t + 1/2 * real n * pi) / fact n) * x ^ n"
425proof (cases "n = 0 \<or> x = 0")
426  case False
427  let ?diff = "\<lambda>n x. cos (x + 1/2 * real n * pi)"
428  have "\<exists>t. 0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> cos x =
429      (\<Sum>m<n. (?diff m 0 / fact m) * x ^ m) + (?diff n t / fact n) * x ^ n"
430  proof (rule Maclaurin_all_lt)
431    show "\<forall>m x. ((\<lambda>t. cos (t + 1/2 * real m * pi)) has_real_derivative
432           cos (x + 1/2 * real (Suc m) * pi)) (at x)"
433      apply (rule allI derivative_eq_intros | simp)+
434      using cos_expansion_lemma by force
435  qed (use False in auto)
436  then show ?thesis
437    apply (rule ex_forward, simp)
438    apply (rule sum.cong[OF refl])
439    apply (auto simp: cos_coeff_def cos_zero_iff elim: evenE simp del: of_nat_Suc)
440    done
441qed auto
442
443lemma Maclaurin_cos_expansion2:
444  assumes "x > 0" "n > 0"
445  shows "\<exists>t. 0 < t \<and> t < x \<and>
446      cos x = (\<Sum>m<n. cos_coeff m * x ^ m) + (cos (t + 1/2 * real n * pi) / fact n) * x ^ n"
447proof -
448  let ?diff = "\<lambda>n x. cos (x + 1/2 * real n * pi)"
449  have "\<exists>t. 0 < t \<and> t < x \<and> cos x = (\<Sum>m<n. ?diff m 0 / (fact m) * x ^ m) + ?diff n t / fact n * x ^ n"
450  proof (rule Maclaurin)
451    show "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> x \<longrightarrow>
452              ((\<lambda>u. cos (u + 1 / 2 * real m * pi)) has_real_derivative 
453               cos (t + 1 / 2 * real (Suc m) * pi)) (at t)"
454      by (simp add: cos_expansion_lemma del: of_nat_Suc)
455  qed (use assms in auto)
456  then show ?thesis
457    apply (rule ex_forward, simp)
458    apply (rule sum.cong[OF refl])
459    apply (auto simp: cos_coeff_def cos_zero_iff elim: evenE)
460    done
461qed
462
463lemma Maclaurin_minus_cos_expansion:
464  assumes "n > 0" "x < 0"
465  shows "\<exists>t. x < t \<and> t < 0 \<and>
466         cos x = (\<Sum>m<n. cos_coeff m * x ^ m) + ((cos (t + 1/2 * real n * pi) / fact n) * x ^ n)"
467proof -
468  let ?diff = "\<lambda>n x. cos (x + 1/2 * real n * pi)"
469  have "\<exists>t. x < t \<and> t < 0 \<and> cos x = (\<Sum>m<n. ?diff m 0 / (fact m) * x ^ m) + ?diff n t / fact n * x ^ n"
470  proof (rule Maclaurin_minus)
471    show "\<forall>m t. m < n \<and> x \<le> t \<and> t \<le> 0 \<longrightarrow>
472              ((\<lambda>u. cos (u + 1 / 2 * real m * pi)) has_real_derivative 
473               cos (t + 1 / 2 * real (Suc m) * pi)) (at t)"
474      by (simp add: cos_expansion_lemma del: of_nat_Suc)
475  qed (use assms in auto)
476  then show ?thesis
477    apply (rule ex_forward, simp)
478    apply (rule sum.cong[OF refl])
479    apply (auto simp: cos_coeff_def cos_zero_iff elim: evenE)
480    done
481qed
482
483
484(* Version for ln(1 +/- x). Where is it?? *)
485
486
487lemma sin_bound_lemma: "x = y \<Longrightarrow> \<bar>u\<bar> \<le> v \<Longrightarrow> \<bar>(x + u) - y\<bar> \<le> v"
488  for x y u v :: real
489  by auto
490
491lemma Maclaurin_sin_bound: "\<bar>sin x - (\<Sum>m<n. sin_coeff m * x ^ m)\<bar> \<le> inverse (fact n) * \<bar>x\<bar> ^ n"
492proof -
493  have est: "x \<le> 1 \<Longrightarrow> 0 \<le> y \<Longrightarrow> x * y \<le> 1 * y" for x y :: real
494    by (rule mult_right_mono) simp_all
495  let ?diff = "\<lambda>(n::nat) (x::real).
496    if n mod 4 = 0 then sin x
497    else if n mod 4 = 1 then cos x
498    else if n mod 4 = 2 then - sin x
499    else - cos x"
500  have diff_0: "?diff 0 = sin" by simp
501  have "DERIV (?diff m) x :> ?diff (Suc m) x" for m and x
502    using mod_exhaust_less_4 [of m]
503    by (auto simp: mod_Suc intro!: derivative_eq_intros)
504  then have DERIV_diff: "\<forall>m x. DERIV (?diff m) x :> ?diff (Suc m) x"
505    by blast
506  from Maclaurin_all_le [OF diff_0 DERIV_diff]
507  obtain t where t1: "\<bar>t\<bar> \<le> \<bar>x\<bar>"
508    and t2: "sin x = (\<Sum>m<n. ?diff m 0 / (fact m) * x ^ m) + ?diff n t / (fact n) * x ^ n"
509    by fast
510  have diff_m_0: "?diff m 0 = (if even m then 0 else (- 1) ^ ((m - Suc 0) div 2))" for m
511    using mod_exhaust_less_4 [of m]
512    by (auto simp: minus_one_power_iff even_even_mod_4_iff [of m] dest: even_mod_4_div_2 odd_mod_4_div_2)
513  show ?thesis
514    unfolding sin_coeff_def
515    apply (subst t2)
516    apply (rule sin_bound_lemma)
517     apply (rule sum.cong[OF refl])
518     apply (subst diff_m_0, simp)
519    using est
520    apply (auto intro: mult_right_mono [where b=1, simplified] mult_right_mono
521        simp: ac_simps divide_inverse power_abs [symmetric] abs_mult)
522    done
523qed
524
525
526section \<open>Taylor series\<close>
527
528text \<open>
529  We use MacLaurin and the translation of the expansion point \<open>c\<close> to \<open>0\<close>
530  to prove Taylor's theorem.
531\<close>
532
533lemma Taylor_up:
534  assumes INIT: "n > 0" "diff 0 = f"
535    and DERIV: "\<forall>m t. m < n \<and> a \<le> t \<and> t \<le> b \<longrightarrow> DERIV (diff m) t :> (diff (Suc m) t)"
536    and INTERV: "a \<le> c" "c < b"
537  shows "\<exists>t::real. c < t \<and> t < b \<and>
538    f b = (\<Sum>m<n. (diff m c / fact m) * (b - c)^m) + (diff n t / fact n) * (b - c)^n"
539proof -
540  from INTERV have "0 < b - c" by arith
541  moreover from INIT have "n > 0" "(\<lambda>m x. diff m (x + c)) 0 = (\<lambda>x. f (x + c))"
542    by auto
543  moreover
544  have "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> b - c \<longrightarrow> DERIV (\<lambda>x. diff m (x + c)) t :> diff (Suc m) (t + c)"
545  proof (intro strip)
546    fix m t
547    assume "m < n \<and> 0 \<le> t \<and> t \<le> b - c"
548    with DERIV and INTERV have "DERIV (diff m) (t + c) :> diff (Suc m) (t + c)"
549      by auto
550    moreover from DERIV_ident and DERIV_const have "DERIV (\<lambda>x. x + c) t :> 1 + 0"
551      by (rule DERIV_add)
552    ultimately have "DERIV (\<lambda>x. diff m (x + c)) t :> diff (Suc m) (t + c) * (1 + 0)"
553      by (rule DERIV_chain2)
554    then show "DERIV (\<lambda>x. diff m (x + c)) t :> diff (Suc m) (t + c)"
555      by simp
556  qed
557  ultimately obtain x where
558    "0 < x \<and> x < b - c \<and>
559      f (b - c + c) =
560        (\<Sum>m<n. diff m (0 + c) / fact m * (b - c) ^ m) + diff n (x + c) / fact n * (b - c) ^ n"
561     by (rule Maclaurin [THEN exE])
562   then have "c < x + c \<and> x + c < b \<and> f b =
563     (\<Sum>m<n. diff m c / fact m * (b - c) ^ m) + diff n (x + c) / fact n * (b - c) ^ n"
564    by fastforce
565  then show ?thesis by fastforce
566qed
567
568lemma Taylor_down:
569  fixes a :: real and n :: nat
570  assumes INIT: "n > 0" "diff 0 = f"
571    and DERIV: "(\<forall>m t. m < n \<and> a \<le> t \<and> t \<le> b \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t)"
572    and INTERV: "a < c" "c \<le> b"
573  shows "\<exists>t. a < t \<and> t < c \<and>
574    f a = (\<Sum>m<n. (diff m c / fact m) * (a - c)^m) + (diff n t / fact n) * (a - c)^n"
575proof -
576  from INTERV have "a-c < 0" by arith
577  moreover from INIT have "n > 0" "(\<lambda>m x. diff m (x + c)) 0 = (\<lambda>x. f (x + c))"
578    by auto
579  moreover
580  have "\<forall>m t. m < n \<and> a - c \<le> t \<and> t \<le> 0 \<longrightarrow> DERIV (\<lambda>x. diff m (x + c)) t :> diff (Suc m) (t + c)"
581  proof (rule allI impI)+
582    fix m t
583    assume "m < n \<and> a - c \<le> t \<and> t \<le> 0"
584    with DERIV and INTERV have "DERIV (diff m) (t + c) :> diff (Suc m) (t + c)"
585      by auto
586    moreover from DERIV_ident and DERIV_const have "DERIV (\<lambda>x. x + c) t :> 1 + 0"
587      by (rule DERIV_add)
588    ultimately have "DERIV (\<lambda>x. diff m (x + c)) t :> diff (Suc m) (t + c) * (1 + 0)"
589      by (rule DERIV_chain2)
590    then show "DERIV (\<lambda>x. diff m (x + c)) t :> diff (Suc m) (t + c)"
591      by simp
592  qed
593  ultimately obtain x where
594    "a - c < x \<and> x < 0 \<and>
595      f (a - c + c) =
596        (\<Sum>m<n. diff m (0 + c) / fact m * (a - c) ^ m) + diff n (x + c) / fact n * (a - c) ^ n"
597    by (rule Maclaurin_minus [THEN exE])
598  then have "a < x + c \<and> x + c < c \<and>
599    f a = (\<Sum>m<n. diff m c / fact m * (a - c) ^ m) + diff n (x + c) / fact n * (a - c) ^ n"
600    by fastforce
601  then show ?thesis by fastforce
602qed
603
604theorem Taylor:
605  fixes a :: real and n :: nat
606  assumes INIT: "n > 0" "diff 0 = f"
607    and DERIV: "\<forall>m t. m < n \<and> a \<le> t \<and> t \<le> b \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t"
608    and INTERV: "a \<le> c " "c \<le> b" "a \<le> x" "x \<le> b" "x \<noteq> c"
609  shows "\<exists>t.
610    (if x < c then x < t \<and> t < c else c < t \<and> t < x) \<and>
611    f x = (\<Sum>m<n. (diff m c / fact m) * (x - c)^m) + (diff n t / fact n) * (x - c)^n"
612proof (cases "x < c")
613  case True
614  note INIT
615  moreover have "\<forall>m t. m < n \<and> x \<le> t \<and> t \<le> b \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t"
616    using DERIV and INTERV by fastforce
617  moreover note True
618  moreover from INTERV have "c \<le> b"
619    by simp
620  ultimately have "\<exists>t>x. t < c \<and> f x =
621    (\<Sum>m<n. diff m c / (fact m) * (x - c) ^ m) + diff n t / (fact n) * (x - c) ^ n"
622    by (rule Taylor_down)
623  with True show ?thesis by simp
624next
625  case False
626  note INIT
627  moreover have "\<forall>m t. m < n \<and> a \<le> t \<and> t \<le> x \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t"
628    using DERIV and INTERV by fastforce
629  moreover from INTERV have "a \<le> c"
630    by arith
631  moreover from False and INTERV have "c < x"
632    by arith
633  ultimately have "\<exists>t>c. t < x \<and> f x =
634    (\<Sum>m<n. diff m c / (fact m) * (x - c) ^ m) + diff n t / (fact n) * (x - c) ^ n"
635    by (rule Taylor_up)
636  with False show ?thesis by simp
637qed
638
639end
640