1(*  Title:      HOL/HOLCF/FOCUS/Stream_adm.thy
2    Author:     David von Oheimb, TU Muenchen
3*)
4
5section \<open>Admissibility for streams\<close>
6
7theory Stream_adm
8imports "HOLCF-Library.Stream" "HOL-Library.Order_Continuity"
9begin
10
11definition
12  stream_monoP  :: "(('a stream) set \<Rightarrow> ('a stream) set) \<Rightarrow> bool" where
13  "stream_monoP F = (\<exists>Q i. \<forall>P s. enat i \<le> #s \<longrightarrow>
14                    (s \<in> F P) = (stream_take i\<cdot>s \<in> Q \<and> iterate i\<cdot>rt\<cdot>s \<in> P))"
15
16definition
17  stream_antiP  :: "(('a stream) set \<Rightarrow> ('a stream) set) \<Rightarrow> bool" where
18  "stream_antiP F = (\<forall>P x. \<exists>Q i.
19                (#x  < enat i \<longrightarrow> (\<forall>y. x \<sqsubseteq> y \<longrightarrow> y \<in> F P \<longrightarrow> x \<in> F P)) \<and>
20                (enat i <= #x \<longrightarrow> (\<forall>y. x \<sqsubseteq> y \<longrightarrow>
21                (y \<in> F P) = (stream_take i\<cdot>y \<in> Q \<and> iterate i\<cdot>rt\<cdot>y \<in> P))))"
22
23definition
24  antitonP :: "'a set => bool" where
25  "antitonP P = (\<forall>x y. x \<sqsubseteq> y \<longrightarrow> y\<in>P \<longrightarrow> x\<in>P)"
26
27
28(* ----------------------------------------------------------------------- *)
29
30section "admissibility"
31
32lemma infinite_chain_adm_lemma:
33  "\<lbrakk>Porder.chain Y; \<forall>i. P (Y i);  
34    \<And>Y. \<lbrakk>Porder.chain Y; \<forall>i. P (Y i); \<not> finite_chain Y\<rbrakk> \<Longrightarrow> P (\<Squnion>i. Y i)\<rbrakk>
35      \<Longrightarrow> P (\<Squnion>i. Y i)"
36apply (case_tac "finite_chain Y")
37prefer 2 apply fast
38apply (unfold finite_chain_def)
39apply safe
40apply (erule lub_finch1 [THEN lub_eqI, THEN ssubst])
41apply assumption
42apply (erule spec)
43done
44
45lemma increasing_chain_adm_lemma:
46  "\<lbrakk>Porder.chain Y;  \<forall>i. P (Y i); \<And>Y. \<lbrakk>Porder.chain Y; \<forall>i. P (Y i);
47    \<forall>i. \<exists>j>i. Y i \<noteq> Y j \<and> Y i \<sqsubseteq> Y j\<rbrakk> \<Longrightarrow> P (\<Squnion>i. Y i)\<rbrakk>
48      \<Longrightarrow> P (\<Squnion>i. Y i)"
49apply (erule infinite_chain_adm_lemma)
50apply assumption
51apply (erule thin_rl)
52apply (unfold finite_chain_def)
53apply (unfold max_in_chain_def)
54apply (fast dest: le_imp_less_or_eq elim: chain_mono_less)
55done
56
57lemma flatstream_adm_lemma:
58  assumes 1: "Porder.chain Y"
59  assumes 2: "\<forall>i. P (Y i)"
60  assumes 3: "(\<And>Y. [| Porder.chain Y; \<forall>i. P (Y i); \<forall>k. \<exists>j. enat k < #((Y j)::'a::flat stream)|]
61  ==> P(LUB i. Y i))"
62  shows "P(LUB i. Y i)"
63apply (rule increasing_chain_adm_lemma [OF 1 2])
64apply (erule 3, assumption)
65apply (erule thin_rl)
66apply (rule allI)
67apply (case_tac "\<forall>j. stream_finite (Y j)")
68apply ( rule chain_incr)
69apply ( rule allI)
70apply ( drule spec)
71apply ( safe)
72apply ( rule exI)
73apply ( rule slen_strict_mono)
74apply (   erule spec)
75apply (  assumption)
76apply ( assumption)
77apply (metis enat_ord_code(4) slen_infinite)
78done
79
80(* should be without reference to stream length? *)
81lemma flatstream_admI: "[|(\<And>Y. [| Porder.chain Y; \<forall>i. P (Y i); 
82 \<forall>k. \<exists>j. enat k < #((Y j)::'a::flat stream)|] ==> P(LUB i. Y i))|]==> adm P"
83apply (unfold adm_def)
84apply (intro strip)
85apply (erule (1) flatstream_adm_lemma)
86apply (fast)
87done
88
89
90(* context (theory "Extended_Nat");*)
91lemma ile_lemma: "enat (i + j) <= x ==> enat i <= x"
92  by (rule order_trans) auto
93
94lemma stream_monoP2I:
95"\<And>X. stream_monoP F \<Longrightarrow> \<forall>i. \<exists>l. \<forall>x y.
96  enat l \<le> #x \<longrightarrow> (x::'a::flat stream) << y --> x \<in> (F ^^ i) top \<longrightarrow> y \<in> (F ^^ i) top"
97apply (unfold stream_monoP_def)
98apply (safe)
99apply (rule_tac x="i*ia" in exI)
100apply (induct_tac "ia")
101apply ( simp)
102apply (simp)
103apply (intro strip)
104apply (erule allE, erule all_dupE, drule mp, erule ile_lemma)
105apply (drule_tac P="%x. x" in subst, assumption)
106apply (erule allE, drule mp, rule ile_lemma) back
107apply ( erule order_trans)
108apply ( erule slen_mono)
109apply (erule ssubst)
110apply (safe)
111apply ( erule (2) ile_lemma [THEN slen_take_lemma3, THEN subst])
112apply (erule allE)
113apply (drule mp)
114apply ( erule slen_rt_mult)
115apply (erule allE)
116apply (drule mp)
117apply (erule monofun_rt_mult)
118apply (drule (1) mp)
119apply (assumption)
120done
121
122lemma stream_monoP2_gfp_admI: "[| \<forall>i. \<exists>l. \<forall>x y.
123 enat l \<le> #x \<longrightarrow> (x::'a::flat stream) << y \<longrightarrow> x \<in> (F ^^ i) top \<longrightarrow> y \<in> (F ^^ i) top;
124    inf_continuous F |] ==> adm (\<lambda>x. x \<in> gfp F)"
125apply (erule inf_continuous_gfp[of F, THEN ssubst])
126apply (simp (no_asm))
127apply (rule adm_lemmas)
128apply (rule flatstream_admI)
129apply (erule allE)
130apply (erule exE)
131apply (erule allE, erule exE)
132apply (erule allE, erule allE, drule mp) (* stream_monoP *)
133apply ( drule ileI1)
134apply ( drule order_trans)
135apply (  rule ile_eSuc)
136apply ( drule eSuc_ile_mono [THEN iffD1])
137apply ( assumption)
138apply (drule mp)
139apply ( erule is_ub_thelub)
140apply (fast)
141done
142
143lemmas fstream_gfp_admI = stream_monoP2I [THEN stream_monoP2_gfp_admI]
144
145lemma stream_antiP2I:
146"\<And>X. [|stream_antiP (F::(('a::flat stream)set => ('a stream set)))|]
147  ==> \<forall>i x y. x << y \<longrightarrow> y \<in> (F ^^ i) top \<longrightarrow> x \<in> (F ^^ i) top"
148apply (unfold stream_antiP_def)
149apply (rule allI)
150apply (induct_tac "i")
151apply ( simp)
152apply (simp)
153apply (intro strip)
154apply (erule allE, erule all_dupE, erule exE, erule exE)
155apply (erule conjE)
156apply (case_tac "#x < enat i")
157apply ( fast)
158apply (unfold linorder_not_less)
159apply (drule (1) mp)
160apply (erule all_dupE, drule mp, rule below_refl)
161apply (erule ssubst)
162apply (erule allE, drule (1) mp)
163apply (drule_tac P="%x. x" in subst, assumption)
164apply (erule conjE, rule conjI)
165apply ( erule slen_take_lemma3 [THEN ssubst], assumption)
166apply ( assumption)
167apply (erule allE, erule allE, drule mp, erule monofun_rt_mult)
168apply (drule (1) mp)
169apply (assumption)
170done
171
172lemma stream_antiP2_non_gfp_admI:
173"\<And>X. [|\<forall>i x y. x << y \<longrightarrow> y \<in> (F ^^ i) top \<longrightarrow> x \<in> (F ^^ i) top; inf_continuous F |]
174  ==> adm (\<lambda>u. \<not> u \<in> gfp F)"
175apply (unfold adm_def)
176apply (simp add: inf_continuous_gfp)
177apply (fast dest!: is_ub_thelub)
178done
179
180lemmas fstream_non_gfp_admI = stream_antiP2I [THEN stream_antiP2_non_gfp_admI]
181
182
183
184(**new approach for adm********************************************************)
185
186section "antitonP"
187
188lemma antitonPD: "[| antitonP P; y \<in> P; x<<y |] ==> x \<in> P"
189apply (unfold antitonP_def)
190apply auto
191done
192
193lemma antitonPI: "\<forall>x y. y \<in> P \<longrightarrow> x<<y --> x \<in> P \<Longrightarrow> antitonP P"
194apply (unfold antitonP_def)
195apply (fast)
196done
197
198lemma antitonP_adm_non_P: "antitonP P \<Longrightarrow> adm (\<lambda>u. u \<notin> P)"
199apply (unfold adm_def)
200apply (auto dest: antitonPD elim: is_ub_thelub)
201done
202
203lemma def_gfp_adm_nonP: "P \<equiv> gfp F \<Longrightarrow> {y. \<exists>x::'a::pcpo. y \<sqsubseteq> x \<and> x \<in> P} \<subseteq> F {y. \<exists>x. y \<sqsubseteq> x \<and> x \<in> P} \<Longrightarrow> 
204  adm (\<lambda>u. u\<notin>P)"
205apply (simp)
206apply (rule antitonP_adm_non_P)
207apply (rule antitonPI)
208apply (drule gfp_upperbound)
209apply (fast)
210done
211
212lemma adm_set:
213"{\<Squnion>i. Y i |Y. Porder.chain Y \<and> (\<forall>i. Y i \<in> P)} \<subseteq> P \<Longrightarrow> adm (\<lambda>x. x\<in>P)"
214apply (unfold adm_def)
215apply (fast)
216done
217
218lemma def_gfp_admI: "P \<equiv> gfp F \<Longrightarrow> {\<Squnion>i. Y i |Y. Porder.chain Y \<and> (\<forall>i. Y i \<in> P)} \<subseteq> 
219  F {\<Squnion>i. Y i |Y. Porder.chain Y \<and> (\<forall>i. Y i \<in> P)} \<Longrightarrow> adm (\<lambda>x. x\<in>P)"
220apply (simp)
221apply (rule adm_set)
222apply (erule gfp_upperbound)
223done
224
225end
226