1(*  Title:      HOL/Code_Numeral.thy
2    Author:     Florian Haftmann, TU Muenchen
3*)
4
5section \<open>Numeric types for code generation onto target language numerals only\<close>
6
7theory Code_Numeral
8imports Divides Lifting
9begin
10
11subsection \<open>Type of target language integers\<close>
12
13typedef integer = "UNIV :: int set"
14  morphisms int_of_integer integer_of_int ..
15
16setup_lifting type_definition_integer
17
18lemma integer_eq_iff:
19  "k = l \<longleftrightarrow> int_of_integer k = int_of_integer l"
20  by transfer rule
21
22lemma integer_eqI:
23  "int_of_integer k = int_of_integer l \<Longrightarrow> k = l"
24  using integer_eq_iff [of k l] by simp
25
26lemma int_of_integer_integer_of_int [simp]:
27  "int_of_integer (integer_of_int k) = k"
28  by transfer rule
29
30lemma integer_of_int_int_of_integer [simp]:
31  "integer_of_int (int_of_integer k) = k"
32  by transfer rule
33
34instantiation integer :: ring_1
35begin
36
37lift_definition zero_integer :: integer
38  is "0 :: int"
39  .
40
41declare zero_integer.rep_eq [simp]
42
43lift_definition one_integer :: integer
44  is "1 :: int"
45  .
46
47declare one_integer.rep_eq [simp]
48
49lift_definition plus_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer"
50  is "plus :: int \<Rightarrow> int \<Rightarrow> int"
51  .
52
53declare plus_integer.rep_eq [simp]
54
55lift_definition uminus_integer :: "integer \<Rightarrow> integer"
56  is "uminus :: int \<Rightarrow> int"
57  .
58
59declare uminus_integer.rep_eq [simp]
60
61lift_definition minus_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer"
62  is "minus :: int \<Rightarrow> int \<Rightarrow> int"
63  .
64
65declare minus_integer.rep_eq [simp]
66
67lift_definition times_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer"
68  is "times :: int \<Rightarrow> int \<Rightarrow> int"
69  .
70
71declare times_integer.rep_eq [simp]
72
73instance proof
74qed (transfer, simp add: algebra_simps)+
75
76end
77
78instance integer :: Rings.dvd ..
79
80context
81  includes lifting_syntax
82  notes transfer_rule_numeral [transfer_rule]
83begin
84
85lemma [transfer_rule]:
86  "(pcr_integer ===> pcr_integer ===> (\<longleftrightarrow>)) (dvd) (dvd)"
87  by (unfold dvd_def) transfer_prover
88
89lemma [transfer_rule]:
90  "((\<longleftrightarrow>) ===> pcr_integer) of_bool of_bool"
91  by (unfold of_bool_def) transfer_prover
92
93lemma [transfer_rule]:
94  "((=) ===> pcr_integer) int of_nat"
95  by (rule transfer_rule_of_nat) transfer_prover+
96
97lemma [transfer_rule]:
98  "((=) ===> pcr_integer) (\<lambda>k. k) of_int"
99proof -
100  have "((=) ===> pcr_integer) of_int of_int"
101    by (rule transfer_rule_of_int) transfer_prover+
102  then show ?thesis by (simp add: id_def)
103qed
104
105lemma [transfer_rule]:
106  "((=) ===> pcr_integer) numeral numeral"
107  by transfer_prover
108
109lemma [transfer_rule]:
110  "((=) ===> (=) ===> pcr_integer) Num.sub Num.sub"
111  by (unfold Num.sub_def) transfer_prover
112
113lemma [transfer_rule]:
114  "(pcr_integer ===> (=) ===> pcr_integer) (^) (^)"
115  by (unfold power_def) transfer_prover
116
117end
118
119lemma int_of_integer_of_nat [simp]:
120  "int_of_integer (of_nat n) = of_nat n"
121  by transfer rule
122
123lift_definition integer_of_nat :: "nat \<Rightarrow> integer"
124  is "of_nat :: nat \<Rightarrow> int"
125  .
126
127lemma integer_of_nat_eq_of_nat [code]:
128  "integer_of_nat = of_nat"
129  by transfer rule
130
131lemma int_of_integer_integer_of_nat [simp]:
132  "int_of_integer (integer_of_nat n) = of_nat n"
133  by transfer rule
134
135lift_definition nat_of_integer :: "integer \<Rightarrow> nat"
136  is Int.nat
137  .
138
139lemma nat_of_integer_of_nat [simp]:
140  "nat_of_integer (of_nat n) = n"
141  by transfer simp
142
143lemma int_of_integer_of_int [simp]:
144  "int_of_integer (of_int k) = k"
145  by transfer simp
146
147lemma nat_of_integer_integer_of_nat [simp]:
148  "nat_of_integer (integer_of_nat n) = n"
149  by transfer simp
150
151lemma integer_of_int_eq_of_int [simp, code_abbrev]:
152  "integer_of_int = of_int"
153  by transfer (simp add: fun_eq_iff)
154
155lemma of_int_integer_of [simp]:
156  "of_int (int_of_integer k) = (k :: integer)"
157  by transfer rule
158
159lemma int_of_integer_numeral [simp]:
160  "int_of_integer (numeral k) = numeral k"
161  by transfer rule
162
163lemma int_of_integer_sub [simp]:
164  "int_of_integer (Num.sub k l) = Num.sub k l"
165  by transfer rule
166
167definition integer_of_num :: "num \<Rightarrow> integer"
168  where [simp]: "integer_of_num = numeral"
169
170lemma integer_of_num [code]:
171  "integer_of_num Num.One = 1"
172  "integer_of_num (Num.Bit0 n) = (let k = integer_of_num n in k + k)"
173  "integer_of_num (Num.Bit1 n) = (let k = integer_of_num n in k + k + 1)"
174  by (simp_all only: integer_of_num_def numeral.simps Let_def)
175
176lemma integer_of_num_triv:
177  "integer_of_num Num.One = 1"
178  "integer_of_num (Num.Bit0 Num.One) = 2"
179  by simp_all
180
181instantiation integer :: "{linordered_idom, equal}"
182begin
183
184lift_definition abs_integer :: "integer \<Rightarrow> integer"
185  is "abs :: int \<Rightarrow> int"
186  .
187
188declare abs_integer.rep_eq [simp]
189
190lift_definition sgn_integer :: "integer \<Rightarrow> integer"
191  is "sgn :: int \<Rightarrow> int"
192  .
193
194declare sgn_integer.rep_eq [simp]
195
196lift_definition less_eq_integer :: "integer \<Rightarrow> integer \<Rightarrow> bool"
197  is "less_eq :: int \<Rightarrow> int \<Rightarrow> bool"
198  .
199
200lemma integer_less_eq_iff:
201  "k \<le> l \<longleftrightarrow> int_of_integer k \<le> int_of_integer l"
202  by (fact less_eq_integer.rep_eq)
203
204lift_definition less_integer :: "integer \<Rightarrow> integer \<Rightarrow> bool"
205  is "less :: int \<Rightarrow> int \<Rightarrow> bool"
206  .
207
208lemma integer_less_iff:
209  "k < l \<longleftrightarrow> int_of_integer k < int_of_integer l"
210  by (fact less_integer.rep_eq)
211
212lift_definition equal_integer :: "integer \<Rightarrow> integer \<Rightarrow> bool"
213  is "HOL.equal :: int \<Rightarrow> int \<Rightarrow> bool"
214  .
215
216instance
217  by standard (transfer, simp add: algebra_simps equal less_le_not_le [symmetric] mult_strict_right_mono linear)+
218
219end
220
221context
222  includes lifting_syntax
223begin
224
225lemma [transfer_rule]:
226  \<open>(pcr_integer ===> pcr_integer ===> pcr_integer) min min\<close>
227  by (unfold min_def) transfer_prover
228
229lemma [transfer_rule]:
230  \<open>(pcr_integer ===> pcr_integer ===> pcr_integer) max max\<close>
231  by (unfold max_def) transfer_prover
232
233end
234
235lemma int_of_integer_min [simp]:
236  "int_of_integer (min k l) = min (int_of_integer k) (int_of_integer l)"
237  by transfer rule
238
239lemma int_of_integer_max [simp]:
240  "int_of_integer (max k l) = max (int_of_integer k) (int_of_integer l)"
241  by transfer rule
242
243lemma nat_of_integer_non_positive [simp]:
244  "k \<le> 0 \<Longrightarrow> nat_of_integer k = 0"
245  by transfer simp
246
247lemma of_nat_of_integer [simp]:
248  "of_nat (nat_of_integer k) = max 0 k"
249  by transfer auto
250
251instantiation integer :: unique_euclidean_ring
252begin
253
254lift_definition divide_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer"
255  is "divide :: int \<Rightarrow> int \<Rightarrow> int"
256  .
257
258declare divide_integer.rep_eq [simp]
259
260lift_definition modulo_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer"
261  is "modulo :: int \<Rightarrow> int \<Rightarrow> int"
262  .
263
264declare modulo_integer.rep_eq [simp]
265
266lift_definition euclidean_size_integer :: "integer \<Rightarrow> nat"
267  is "euclidean_size :: int \<Rightarrow> nat"
268  .
269
270declare euclidean_size_integer.rep_eq [simp]
271
272lift_definition division_segment_integer :: "integer \<Rightarrow> integer"
273  is "division_segment :: int \<Rightarrow> int"
274  .
275
276declare division_segment_integer.rep_eq [simp]
277
278instance
279  by (standard; transfer)
280    (use mult_le_mono2 [of 1] in \<open>auto simp add: sgn_mult_abs abs_mult sgn_mult abs_mod_less sgn_mod nat_mult_distrib
281     division_segment_mult division_segment_mod intro: div_eqI\<close>)
282
283end
284
285lemma [code]:
286  "euclidean_size = nat_of_integer \<circ> abs"
287  by (simp add: fun_eq_iff nat_of_integer.rep_eq)
288
289lemma [code]:
290  "division_segment (k :: integer) = (if k \<ge> 0 then 1 else - 1)"
291  by transfer (simp add: division_segment_int_def)
292
293instance integer :: unique_euclidean_ring_with_nat
294  by (standard; transfer) (simp_all add: of_nat_div division_segment_int_def)
295
296instantiation integer :: semiring_bit_shifts
297begin
298
299lift_definition push_bit_integer :: \<open>nat \<Rightarrow> integer \<Rightarrow> integer\<close>
300  is \<open>push_bit\<close> .
301
302lift_definition drop_bit_integer :: \<open>nat \<Rightarrow> integer \<Rightarrow> integer\<close>
303  is \<open>drop_bit\<close> .
304
305instance by (standard; transfer)
306  (fact bit_eq_rec bits_induct push_bit_eq_mult drop_bit_eq_div
307    bits_div_0 bits_div_by_1 bits_mod_div_trivial even_succ_div_2
308    exp_div_exp_eq div_exp_eq mod_exp_eq mult_exp_mod_exp_eq div_exp_mod_exp_eq
309    even_mask_div_iff even_mult_exp_div_exp_iff)+
310
311end
312
313context
314  includes lifting_syntax
315begin
316
317lemma [transfer_rule]:
318  \<open>(pcr_integer ===> (=) ===> (\<longleftrightarrow>)) bit bit\<close>
319  by (unfold bit_def) transfer_prover
320
321lemma [transfer_rule]:
322  \<open>((=) ===> pcr_integer ===> pcr_integer) take_bit take_bit\<close>
323  by (unfold take_bit_eq_mod) transfer_prover
324
325end
326
327instance integer :: unique_euclidean_semiring_with_bit_shifts ..
328
329lemma [code]:
330  \<open>push_bit n k = k * 2 ^ n\<close>
331  \<open>drop_bit n k = k div 2 ^ n\<close> for k :: integer
332  by (fact push_bit_eq_mult drop_bit_eq_div)+
333
334instantiation integer :: unique_euclidean_semiring_numeral
335begin
336
337definition divmod_integer :: "num \<Rightarrow> num \<Rightarrow> integer \<times> integer"
338where
339  divmod_integer'_def: "divmod_integer m n = (numeral m div numeral n, numeral m mod numeral n)"
340
341definition divmod_step_integer :: "num \<Rightarrow> integer \<times> integer \<Rightarrow> integer \<times> integer"
342where
343  "divmod_step_integer l qr = (let (q, r) = qr
344    in if r \<ge> numeral l then (2 * q + 1, r - numeral l)
345    else (2 * q, r))"
346
347instance proof
348  show "divmod m n = (numeral m div numeral n :: integer, numeral m mod numeral n)"
349    for m n by (fact divmod_integer'_def)
350  show "divmod_step l qr = (let (q, r) = qr
351    in if r \<ge> numeral l then (2 * q + 1, r - numeral l)
352    else (2 * q, r))" for l and qr :: "integer \<times> integer"
353    by (fact divmod_step_integer_def)
354qed (transfer,
355  fact le_add_diff_inverse2
356  unique_euclidean_semiring_numeral_class.div_less
357  unique_euclidean_semiring_numeral_class.mod_less
358  unique_euclidean_semiring_numeral_class.div_positive
359  unique_euclidean_semiring_numeral_class.mod_less_eq_dividend
360  unique_euclidean_semiring_numeral_class.pos_mod_bound
361  unique_euclidean_semiring_numeral_class.pos_mod_sign
362  unique_euclidean_semiring_numeral_class.mod_mult2_eq
363  unique_euclidean_semiring_numeral_class.div_mult2_eq
364  unique_euclidean_semiring_numeral_class.discrete)+
365
366end
367
368declare divmod_algorithm_code [where ?'a = integer,
369  folded integer_of_num_def, unfolded integer_of_num_triv,
370  code]
371
372lemma integer_of_nat_0: "integer_of_nat 0 = 0"
373by transfer simp
374
375lemma integer_of_nat_1: "integer_of_nat 1 = 1"
376by transfer simp
377
378lemma integer_of_nat_numeral:
379  "integer_of_nat (numeral n) = numeral n"
380by transfer simp
381
382
383subsection \<open>Code theorems for target language integers\<close>
384
385text \<open>Constructors\<close>
386
387definition Pos :: "num \<Rightarrow> integer"
388where
389  [simp, code_post]: "Pos = numeral"
390
391context
392  includes lifting_syntax
393begin
394
395lemma [transfer_rule]:
396  \<open>((=) ===> pcr_integer) numeral Pos\<close>
397  by simp transfer_prover
398
399end
400
401lemma Pos_fold [code_unfold]:
402  "numeral Num.One = Pos Num.One"
403  "numeral (Num.Bit0 k) = Pos (Num.Bit0 k)"
404  "numeral (Num.Bit1 k) = Pos (Num.Bit1 k)"
405  by simp_all
406
407definition Neg :: "num \<Rightarrow> integer"
408where
409  [simp, code_abbrev]: "Neg n = - Pos n"
410
411context
412  includes lifting_syntax
413begin
414
415lemma [transfer_rule]:
416  \<open>((=) ===> pcr_integer) (\<lambda>n. - numeral n) Neg\<close>
417  by (unfold Neg_def) transfer_prover
418
419end
420
421code_datatype "0::integer" Pos Neg
422
423  
424text \<open>A further pair of constructors for generated computations\<close>
425
426context
427begin  
428
429qualified definition positive :: "num \<Rightarrow> integer"
430  where [simp]: "positive = numeral"
431
432qualified definition negative :: "num \<Rightarrow> integer"
433  where [simp]: "negative = uminus \<circ> numeral"
434
435lemma [code_computation_unfold]:
436  "numeral = positive"
437  "Pos = positive"
438  "Neg = negative"
439  by (simp_all add: fun_eq_iff)
440
441end
442
443
444text \<open>Auxiliary operations\<close>
445
446lift_definition dup :: "integer \<Rightarrow> integer"
447  is "\<lambda>k::int. k + k"
448  .
449
450lemma dup_code [code]:
451  "dup 0 = 0"
452  "dup (Pos n) = Pos (Num.Bit0 n)"
453  "dup (Neg n) = Neg (Num.Bit0 n)"
454  by (transfer, simp only: numeral_Bit0 minus_add_distrib)+
455
456lift_definition sub :: "num \<Rightarrow> num \<Rightarrow> integer"
457  is "\<lambda>m n. numeral m - numeral n :: int"
458  .
459
460lemma sub_code [code]:
461  "sub Num.One Num.One = 0"
462  "sub (Num.Bit0 m) Num.One = Pos (Num.BitM m)"
463  "sub (Num.Bit1 m) Num.One = Pos (Num.Bit0 m)"
464  "sub Num.One (Num.Bit0 n) = Neg (Num.BitM n)"
465  "sub Num.One (Num.Bit1 n) = Neg (Num.Bit0 n)"
466  "sub (Num.Bit0 m) (Num.Bit0 n) = dup (sub m n)"
467  "sub (Num.Bit1 m) (Num.Bit1 n) = dup (sub m n)"
468  "sub (Num.Bit1 m) (Num.Bit0 n) = dup (sub m n) + 1"
469  "sub (Num.Bit0 m) (Num.Bit1 n) = dup (sub m n) - 1"
470  by (transfer, simp add: dbl_def dbl_inc_def dbl_dec_def)+
471
472
473text \<open>Implementations\<close>
474
475lemma one_integer_code [code, code_unfold]:
476  "1 = Pos Num.One"
477  by simp
478
479lemma plus_integer_code [code]:
480  "k + 0 = (k::integer)"
481  "0 + l = (l::integer)"
482  "Pos m + Pos n = Pos (m + n)"
483  "Pos m + Neg n = sub m n"
484  "Neg m + Pos n = sub n m"
485  "Neg m + Neg n = Neg (m + n)"
486  by (transfer, simp)+
487
488lemma uminus_integer_code [code]:
489  "uminus 0 = (0::integer)"
490  "uminus (Pos m) = Neg m"
491  "uminus (Neg m) = Pos m"
492  by simp_all
493
494lemma minus_integer_code [code]:
495  "k - 0 = (k::integer)"
496  "0 - l = uminus (l::integer)"
497  "Pos m - Pos n = sub m n"
498  "Pos m - Neg n = Pos (m + n)"
499  "Neg m - Pos n = Neg (m + n)"
500  "Neg m - Neg n = sub n m"
501  by (transfer, simp)+
502
503lemma abs_integer_code [code]:
504  "\<bar>k\<bar> = (if (k::integer) < 0 then - k else k)"
505  by simp
506
507lemma sgn_integer_code [code]:
508  "sgn k = (if k = 0 then 0 else if (k::integer) < 0 then - 1 else 1)"
509  by simp
510
511lemma times_integer_code [code]:
512  "k * 0 = (0::integer)"
513  "0 * l = (0::integer)"
514  "Pos m * Pos n = Pos (m * n)"
515  "Pos m * Neg n = Neg (m * n)"
516  "Neg m * Pos n = Neg (m * n)"
517  "Neg m * Neg n = Pos (m * n)"
518  by simp_all
519
520definition divmod_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer \<times> integer"
521where
522  "divmod_integer k l = (k div l, k mod l)"
523
524lemma fst_divmod_integer [simp]:
525  "fst (divmod_integer k l) = k div l"
526  by (simp add: divmod_integer_def)
527
528lemma snd_divmod_integer [simp]:
529  "snd (divmod_integer k l) = k mod l"
530  by (simp add: divmod_integer_def)
531
532definition divmod_abs :: "integer \<Rightarrow> integer \<Rightarrow> integer \<times> integer"
533where
534  "divmod_abs k l = (\<bar>k\<bar> div \<bar>l\<bar>, \<bar>k\<bar> mod \<bar>l\<bar>)"
535
536lemma fst_divmod_abs [simp]:
537  "fst (divmod_abs k l) = \<bar>k\<bar> div \<bar>l\<bar>"
538  by (simp add: divmod_abs_def)
539
540lemma snd_divmod_abs [simp]:
541  "snd (divmod_abs k l) = \<bar>k\<bar> mod \<bar>l\<bar>"
542  by (simp add: divmod_abs_def)
543
544lemma divmod_abs_code [code]:
545  "divmod_abs (Pos k) (Pos l) = divmod k l"
546  "divmod_abs (Neg k) (Neg l) = divmod k l"
547  "divmod_abs (Neg k) (Pos l) = divmod k l"
548  "divmod_abs (Pos k) (Neg l) = divmod k l"
549  "divmod_abs j 0 = (0, \<bar>j\<bar>)"
550  "divmod_abs 0 j = (0, 0)"
551  by (simp_all add: prod_eq_iff)
552
553lemma divmod_integer_eq_cases:
554  "divmod_integer k l =
555    (if k = 0 then (0, 0) else if l = 0 then (0, k) else
556    (apsnd \<circ> times \<circ> sgn) l (if sgn k = sgn l
557      then divmod_abs k l
558      else (let (r, s) = divmod_abs k l in
559        if s = 0 then (- r, 0) else (- r - 1, \<bar>l\<bar> - s))))"
560proof -
561  have *: "sgn k = sgn l \<longleftrightarrow> k = 0 \<and> l = 0 \<or> 0 < l \<and> 0 < k \<or> l < 0 \<and> k < 0" for k l :: int
562    by (auto simp add: sgn_if)
563  have **: "- k = l * q \<longleftrightarrow> k = - (l * q)" for k l q :: int
564    by auto
565  show ?thesis
566    by (simp add: divmod_integer_def divmod_abs_def)
567      (transfer, auto simp add: * ** not_less zdiv_zminus1_eq_if zmod_zminus1_eq_if div_minus_right mod_minus_right)
568qed
569
570lemma divmod_integer_code [code]: \<^marker>\<open>contributor \<open>Ren�� Thiemann\<close>\<close> \<^marker>\<open>contributor \<open>Akihisa Yamada\<close>\<close>
571  "divmod_integer k l =
572   (if k = 0 then (0, 0)
573    else if l > 0 then
574            (if k > 0 then Code_Numeral.divmod_abs k l
575             else case Code_Numeral.divmod_abs k l of (r, s) \<Rightarrow>
576                  if s = 0 then (- r, 0) else (- r - 1, l - s))
577    else if l = 0 then (0, k)
578    else apsnd uminus
579            (if k < 0 then Code_Numeral.divmod_abs k l
580             else case Code_Numeral.divmod_abs k l of (r, s) \<Rightarrow>
581                  if s = 0 then (- r, 0) else (- r - 1, - l - s)))"
582  by (cases l "0 :: integer" rule: linorder_cases)
583    (auto split: prod.splits simp add: divmod_integer_eq_cases)
584
585lemma div_integer_code [code]:
586  "k div l = fst (divmod_integer k l)"
587  by simp
588
589lemma mod_integer_code [code]:
590  "k mod l = snd (divmod_integer k l)"
591  by simp
592
593definition bit_cut_integer :: "integer \<Rightarrow> integer \<times> bool"
594  where "bit_cut_integer k = (k div 2, odd k)"
595
596lemma bit_cut_integer_code [code]:
597  "bit_cut_integer k = (if k = 0 then (0, False)
598     else let (r, s) = Code_Numeral.divmod_abs k 2
599       in (if k > 0 then r else - r - s, s = 1))"
600proof -
601  have "bit_cut_integer k = (let (r, s) = divmod_integer k 2 in (r, s = 1))"
602    by (simp add: divmod_integer_def bit_cut_integer_def odd_iff_mod_2_eq_one)
603  then show ?thesis
604    by (simp add: divmod_integer_code) (auto simp add: split_def)
605qed
606
607lemma equal_integer_code [code]:
608  "HOL.equal 0 (0::integer) \<longleftrightarrow> True"
609  "HOL.equal 0 (Pos l) \<longleftrightarrow> False"
610  "HOL.equal 0 (Neg l) \<longleftrightarrow> False"
611  "HOL.equal (Pos k) 0 \<longleftrightarrow> False"
612  "HOL.equal (Pos k) (Pos l) \<longleftrightarrow> HOL.equal k l"
613  "HOL.equal (Pos k) (Neg l) \<longleftrightarrow> False"
614  "HOL.equal (Neg k) 0 \<longleftrightarrow> False"
615  "HOL.equal (Neg k) (Pos l) \<longleftrightarrow> False"
616  "HOL.equal (Neg k) (Neg l) \<longleftrightarrow> HOL.equal k l"
617  by (simp_all add: equal)
618
619lemma equal_integer_refl [code nbe]:
620  "HOL.equal (k::integer) k \<longleftrightarrow> True"
621  by (fact equal_refl)
622
623lemma less_eq_integer_code [code]:
624  "0 \<le> (0::integer) \<longleftrightarrow> True"
625  "0 \<le> Pos l \<longleftrightarrow> True"
626  "0 \<le> Neg l \<longleftrightarrow> False"
627  "Pos k \<le> 0 \<longleftrightarrow> False"
628  "Pos k \<le> Pos l \<longleftrightarrow> k \<le> l"
629  "Pos k \<le> Neg l \<longleftrightarrow> False"
630  "Neg k \<le> 0 \<longleftrightarrow> True"
631  "Neg k \<le> Pos l \<longleftrightarrow> True"
632  "Neg k \<le> Neg l \<longleftrightarrow> l \<le> k"
633  by simp_all
634
635lemma less_integer_code [code]:
636  "0 < (0::integer) \<longleftrightarrow> False"
637  "0 < Pos l \<longleftrightarrow> True"
638  "0 < Neg l \<longleftrightarrow> False"
639  "Pos k < 0 \<longleftrightarrow> False"
640  "Pos k < Pos l \<longleftrightarrow> k < l"
641  "Pos k < Neg l \<longleftrightarrow> False"
642  "Neg k < 0 \<longleftrightarrow> True"
643  "Neg k < Pos l \<longleftrightarrow> True"
644  "Neg k < Neg l \<longleftrightarrow> l < k"
645  by simp_all
646
647lift_definition num_of_integer :: "integer \<Rightarrow> num"
648  is "num_of_nat \<circ> nat"
649  .
650
651lemma num_of_integer_code [code]:
652  "num_of_integer k = (if k \<le> 1 then Num.One
653     else let
654       (l, j) = divmod_integer k 2;
655       l' = num_of_integer l;
656       l'' = l' + l'
657     in if j = 0 then l'' else l'' + Num.One)"
658proof -
659  {
660    assume "int_of_integer k mod 2 = 1"
661    then have "nat (int_of_integer k mod 2) = nat 1" by simp
662    moreover assume *: "1 < int_of_integer k"
663    ultimately have **: "nat (int_of_integer k) mod 2 = 1" by (simp add: nat_mod_distrib)
664    have "num_of_nat (nat (int_of_integer k)) =
665      num_of_nat (2 * (nat (int_of_integer k) div 2) + nat (int_of_integer k) mod 2)"
666      by simp
667    then have "num_of_nat (nat (int_of_integer k)) =
668      num_of_nat (nat (int_of_integer k) div 2 + nat (int_of_integer k) div 2 + nat (int_of_integer k) mod 2)"
669      by (simp add: mult_2)
670    with ** have "num_of_nat (nat (int_of_integer k)) =
671      num_of_nat (nat (int_of_integer k) div 2 + nat (int_of_integer k) div 2 + 1)"
672      by simp
673  }
674  note aux = this
675  show ?thesis
676    by (auto simp add: num_of_integer_def nat_of_integer_def Let_def case_prod_beta
677      not_le integer_eq_iff less_eq_integer_def
678      nat_mult_distrib nat_div_distrib num_of_nat_One num_of_nat_plus_distrib
679       mult_2 [where 'a=nat] aux add_One)
680qed
681
682lemma nat_of_integer_code [code]:
683  "nat_of_integer k = (if k \<le> 0 then 0
684     else let
685       (l, j) = divmod_integer k 2;
686       l' = nat_of_integer l;
687       l'' = l' + l'
688     in if j = 0 then l'' else l'' + 1)"
689proof -
690  obtain j where k: "k = integer_of_int j"
691  proof
692    show "k = integer_of_int (int_of_integer k)" by simp
693  qed
694  have *: "nat j mod 2 = nat_of_integer (of_int j mod 2)" if "j \<ge> 0"
695    using that by transfer (simp add: nat_mod_distrib)
696  from k show ?thesis
697    by (auto simp add: split_def Let_def nat_of_integer_def nat_div_distrib mult_2 [symmetric]
698      minus_mod_eq_mult_div [symmetric] *)
699qed
700
701lemma int_of_integer_code [code]:
702  "int_of_integer k = (if k < 0 then - (int_of_integer (- k))
703     else if k = 0 then 0
704     else let
705       (l, j) = divmod_integer k 2;
706       l' = 2 * int_of_integer l
707     in if j = 0 then l' else l' + 1)"
708  by (auto simp add: split_def Let_def integer_eq_iff minus_mod_eq_mult_div [symmetric])
709
710lemma integer_of_int_code [code]:
711  "integer_of_int k = (if k < 0 then - (integer_of_int (- k))
712     else if k = 0 then 0
713     else let
714       l = 2 * integer_of_int (k div 2);
715       j = k mod 2
716     in if j = 0 then l else l + 1)"
717  by (auto simp add: split_def Let_def integer_eq_iff minus_mod_eq_mult_div [symmetric])
718
719hide_const (open) Pos Neg sub dup divmod_abs
720
721
722subsection \<open>Serializer setup for target language integers\<close>
723
724code_reserved Eval int Integer abs
725
726code_printing
727  type_constructor integer \<rightharpoonup>
728    (SML) "IntInf.int"
729    and (OCaml) "Z.t"
730    and (Haskell) "Integer"
731    and (Scala) "BigInt"
732    and (Eval) "int"
733| class_instance integer :: equal \<rightharpoonup>
734    (Haskell) -
735
736code_printing
737  constant "0::integer" \<rightharpoonup>
738    (SML) "!(0/ :/ IntInf.int)"
739    and (OCaml) "Z.zero"
740    and (Haskell) "!(0/ ::/ Integer)"
741    and (Scala) "BigInt(0)"
742
743setup \<open>
744  fold (fn target =>
745    Numeral.add_code \<^const_name>\<open>Code_Numeral.Pos\<close> I Code_Printer.literal_numeral target
746    #> Numeral.add_code \<^const_name>\<open>Code_Numeral.Neg\<close> (~) Code_Printer.literal_numeral target)
747    ["SML", "OCaml", "Haskell", "Scala"]
748\<close>
749
750code_printing
751  constant "plus :: integer \<Rightarrow> _ \<Rightarrow> _" \<rightharpoonup>
752    (SML) "IntInf.+ ((_), (_))"
753    and (OCaml) "Z.add"
754    and (Haskell) infixl 6 "+"
755    and (Scala) infixl 7 "+"
756    and (Eval) infixl 8 "+"
757| constant "uminus :: integer \<Rightarrow> _" \<rightharpoonup>
758    (SML) "IntInf.~"
759    and (OCaml) "Z.neg"
760    and (Haskell) "negate"
761    and (Scala) "!(- _)"
762    and (Eval) "~/ _"
763| constant "minus :: integer \<Rightarrow> _" \<rightharpoonup>
764    (SML) "IntInf.- ((_), (_))"
765    and (OCaml) "Z.sub"
766    and (Haskell) infixl 6 "-"
767    and (Scala) infixl 7 "-"
768    and (Eval) infixl 8 "-"
769| constant Code_Numeral.dup \<rightharpoonup>
770    (SML) "IntInf.*/ (2,/ (_))"
771    and (OCaml) "Z.shift'_left/ _/ 1"
772    and (Haskell) "!(2 * _)"
773    and (Scala) "!(2 * _)"
774    and (Eval) "!(2 * _)"
775| constant Code_Numeral.sub \<rightharpoonup>
776    (SML) "!(raise/ Fail/ \"sub\")"
777    and (OCaml) "failwith/ \"sub\""
778    and (Haskell) "error/ \"sub\""
779    and (Scala) "!sys.error(\"sub\")"
780| constant "times :: integer \<Rightarrow> _ \<Rightarrow> _" \<rightharpoonup>
781    (SML) "IntInf.* ((_), (_))"
782    and (OCaml) "Z.mul"
783    and (Haskell) infixl 7 "*"
784    and (Scala) infixl 8 "*"
785    and (Eval) infixl 9 "*"
786| constant Code_Numeral.divmod_abs \<rightharpoonup>
787    (SML) "IntInf.divMod/ (IntInf.abs _,/ IntInf.abs _)"
788    and (OCaml) "!(fun k l ->/ if Z.equal Z.zero l then/ (Z.zero, l) else/ Z.div'_rem/ (Z.abs k)/ (Z.abs l))"
789    and (Haskell) "divMod/ (abs _)/ (abs _)"
790    and (Scala) "!((k: BigInt) => (l: BigInt) =>/ if (l == 0)/ (BigInt(0), k) else/ (k.abs '/% l.abs))"
791    and (Eval) "Integer.div'_mod/ (abs _)/ (abs _)"
792| constant "HOL.equal :: integer \<Rightarrow> _ \<Rightarrow> bool" \<rightharpoonup>
793    (SML) "!((_ : IntInf.int) = _)"
794    and (OCaml) "Z.equal"
795    and (Haskell) infix 4 "=="
796    and (Scala) infixl 5 "=="
797    and (Eval) infixl 6 "="
798| constant "less_eq :: integer \<Rightarrow> _ \<Rightarrow> bool" \<rightharpoonup>
799    (SML) "IntInf.<= ((_), (_))"
800    and (OCaml) "Z.leq"
801    and (Haskell) infix 4 "<="
802    and (Scala) infixl 4 "<="
803    and (Eval) infixl 6 "<="
804| constant "less :: integer \<Rightarrow> _ \<Rightarrow> bool" \<rightharpoonup>
805    (SML) "IntInf.< ((_), (_))"
806    and (OCaml) "Z.lt"
807    and (Haskell) infix 4 "<"
808    and (Scala) infixl 4 "<"
809    and (Eval) infixl 6 "<"
810| constant "abs :: integer \<Rightarrow> _" \<rightharpoonup>
811    (SML) "IntInf.abs"
812    and (OCaml) "Z.abs"
813    and (Haskell) "Prelude.abs"
814    and (Scala) "_.abs"
815    and (Eval) "abs"
816
817code_identifier
818  code_module Code_Numeral \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith
819
820
821subsection \<open>Type of target language naturals\<close>
822
823typedef natural = "UNIV :: nat set"
824  morphisms nat_of_natural natural_of_nat ..
825
826setup_lifting type_definition_natural
827
828lemma natural_eq_iff [termination_simp]:
829  "m = n \<longleftrightarrow> nat_of_natural m = nat_of_natural n"
830  by transfer rule
831
832lemma natural_eqI:
833  "nat_of_natural m = nat_of_natural n \<Longrightarrow> m = n"
834  using natural_eq_iff [of m n] by simp
835
836lemma nat_of_natural_of_nat_inverse [simp]:
837  "nat_of_natural (natural_of_nat n) = n"
838  by transfer rule
839
840lemma natural_of_nat_of_natural_inverse [simp]:
841  "natural_of_nat (nat_of_natural n) = n"
842  by transfer rule
843
844instantiation natural :: "{comm_monoid_diff, semiring_1}"
845begin
846
847lift_definition zero_natural :: natural
848  is "0 :: nat"
849  .
850
851declare zero_natural.rep_eq [simp]
852
853lift_definition one_natural :: natural
854  is "1 :: nat"
855  .
856
857declare one_natural.rep_eq [simp]
858
859lift_definition plus_natural :: "natural \<Rightarrow> natural \<Rightarrow> natural"
860  is "plus :: nat \<Rightarrow> nat \<Rightarrow> nat"
861  .
862
863declare plus_natural.rep_eq [simp]
864
865lift_definition minus_natural :: "natural \<Rightarrow> natural \<Rightarrow> natural"
866  is "minus :: nat \<Rightarrow> nat \<Rightarrow> nat"
867  .
868
869declare minus_natural.rep_eq [simp]
870
871lift_definition times_natural :: "natural \<Rightarrow> natural \<Rightarrow> natural"
872  is "times :: nat \<Rightarrow> nat \<Rightarrow> nat"
873  .
874
875declare times_natural.rep_eq [simp]
876
877instance proof
878qed (transfer, simp add: algebra_simps)+
879
880end
881
882instance natural :: Rings.dvd ..
883
884context
885  includes lifting_syntax
886begin
887
888lemma [transfer_rule]:
889  \<open>(pcr_natural ===> pcr_natural ===> (\<longleftrightarrow>)) (dvd) (dvd)\<close>
890  by (unfold dvd_def) transfer_prover
891
892lemma [transfer_rule]:
893  \<open>((\<longleftrightarrow>) ===> pcr_natural) of_bool of_bool\<close>
894  by (unfold of_bool_def) transfer_prover
895
896lemma [transfer_rule]:
897  \<open>((=) ===> pcr_natural) (\<lambda>n. n) of_nat\<close>
898proof -
899  have "rel_fun HOL.eq pcr_natural (of_nat :: nat \<Rightarrow> nat) (of_nat :: nat \<Rightarrow> natural)"
900    by (unfold of_nat_def) transfer_prover
901  then show ?thesis by (simp add: id_def)
902qed
903
904lemma [transfer_rule]:
905  \<open>((=) ===> pcr_natural) numeral numeral\<close>
906proof -
907  have \<open>((=) ===> pcr_natural) numeral (\<lambda>n. of_nat (numeral n))\<close>
908    by transfer_prover
909  then show ?thesis by simp
910qed
911
912lemma [transfer_rule]:
913  \<open>(pcr_natural ===> (=) ===> pcr_natural) (^) (^)\<close>
914  by (unfold power_def) transfer_prover
915
916end
917
918lemma nat_of_natural_of_nat [simp]:
919  "nat_of_natural (of_nat n) = n"
920  by transfer rule
921
922lemma natural_of_nat_of_nat [simp, code_abbrev]:
923  "natural_of_nat = of_nat"
924  by transfer rule
925
926lemma of_nat_of_natural [simp]:
927  "of_nat (nat_of_natural n) = n"
928  by transfer rule
929
930lemma nat_of_natural_numeral [simp]:
931  "nat_of_natural (numeral k) = numeral k"
932  by transfer rule
933
934instantiation natural :: "{linordered_semiring, equal}"
935begin
936
937lift_definition less_eq_natural :: "natural \<Rightarrow> natural \<Rightarrow> bool"
938  is "less_eq :: nat \<Rightarrow> nat \<Rightarrow> bool"
939  .
940
941declare less_eq_natural.rep_eq [termination_simp]
942
943lift_definition less_natural :: "natural \<Rightarrow> natural \<Rightarrow> bool"
944  is "less :: nat \<Rightarrow> nat \<Rightarrow> bool"
945  .
946
947declare less_natural.rep_eq [termination_simp]
948
949lift_definition equal_natural :: "natural \<Rightarrow> natural \<Rightarrow> bool"
950  is "HOL.equal :: nat \<Rightarrow> nat \<Rightarrow> bool"
951  .
952
953instance proof
954qed (transfer, simp add: algebra_simps equal less_le_not_le [symmetric] linear)+
955
956end
957
958context
959  includes lifting_syntax
960begin
961
962lemma [transfer_rule]:
963  \<open>(pcr_natural ===> pcr_natural ===> pcr_natural) min min\<close>
964  by (unfold min_def) transfer_prover
965
966lemma [transfer_rule]:
967  \<open>(pcr_natural ===> pcr_natural ===> pcr_natural) max max\<close>
968  by (unfold max_def) transfer_prover
969
970end
971
972lemma nat_of_natural_min [simp]:
973  "nat_of_natural (min k l) = min (nat_of_natural k) (nat_of_natural l)"
974  by transfer rule
975
976lemma nat_of_natural_max [simp]:
977  "nat_of_natural (max k l) = max (nat_of_natural k) (nat_of_natural l)"
978  by transfer rule
979
980instantiation natural :: unique_euclidean_semiring
981begin
982
983lift_definition divide_natural :: "natural \<Rightarrow> natural \<Rightarrow> natural"
984  is "divide :: nat \<Rightarrow> nat \<Rightarrow> nat"
985  .
986
987declare divide_natural.rep_eq [simp]
988
989lift_definition modulo_natural :: "natural \<Rightarrow> natural \<Rightarrow> natural"
990  is "modulo :: nat \<Rightarrow> nat \<Rightarrow> nat"
991  .
992
993declare modulo_natural.rep_eq [simp]
994
995lift_definition euclidean_size_natural :: "natural \<Rightarrow> nat"
996  is "euclidean_size :: nat \<Rightarrow> nat"
997  .
998
999declare euclidean_size_natural.rep_eq [simp]
1000
1001lift_definition division_segment_natural :: "natural \<Rightarrow> natural"
1002  is "division_segment :: nat \<Rightarrow> nat"
1003  .
1004
1005declare division_segment_natural.rep_eq [simp]
1006
1007instance
1008  by (standard; transfer)
1009    (auto simp add: algebra_simps unit_factor_nat_def gr0_conv_Suc)
1010
1011end
1012
1013lemma [code]:
1014  "euclidean_size = nat_of_natural"
1015  by (simp add: fun_eq_iff)
1016
1017lemma [code]:
1018  "division_segment (n::natural) = 1"
1019  by (simp add: natural_eq_iff)
1020
1021instance natural :: linordered_semidom
1022  by (standard; transfer) simp_all
1023
1024instance natural :: unique_euclidean_semiring_with_nat
1025  by (standard; transfer) simp_all
1026
1027instantiation natural :: semiring_bit_shifts
1028begin
1029
1030lift_definition push_bit_natural :: \<open>nat \<Rightarrow> natural \<Rightarrow> natural\<close>
1031  is \<open>push_bit\<close> .
1032
1033lift_definition drop_bit_natural :: \<open>nat \<Rightarrow> natural \<Rightarrow> natural\<close>
1034  is \<open>drop_bit\<close> .
1035
1036instance by (standard; transfer)
1037  (fact bit_eq_rec bits_induct push_bit_eq_mult drop_bit_eq_div
1038    bits_div_0 bits_div_by_1 bits_mod_div_trivial even_succ_div_2
1039    exp_div_exp_eq div_exp_eq mod_exp_eq mult_exp_mod_exp_eq div_exp_mod_exp_eq
1040    even_mask_div_iff even_mult_exp_div_exp_iff)+
1041
1042end
1043
1044context
1045  includes lifting_syntax
1046begin
1047
1048lemma [transfer_rule]:
1049  \<open>(pcr_natural ===> (=) ===> (\<longleftrightarrow>)) bit bit\<close>
1050  by (unfold bit_def) transfer_prover
1051
1052lemma [transfer_rule]:
1053  \<open>((=) ===> pcr_natural ===> pcr_natural) take_bit take_bit\<close>
1054  by (unfold take_bit_eq_mod) transfer_prover
1055
1056end
1057
1058instance natural :: unique_euclidean_semiring_with_bit_shifts ..
1059
1060lemma [code]:
1061  \<open>push_bit n m = m * 2 ^ n\<close>
1062  \<open>drop_bit n m = m div 2 ^ n\<close> for m :: natural
1063  by (fact push_bit_eq_mult drop_bit_eq_div)+
1064
1065lift_definition natural_of_integer :: "integer \<Rightarrow> natural"
1066  is "nat :: int \<Rightarrow> nat"
1067  .
1068
1069lift_definition integer_of_natural :: "natural \<Rightarrow> integer"
1070  is "of_nat :: nat \<Rightarrow> int"
1071  .
1072
1073lemma natural_of_integer_of_natural [simp]:
1074  "natural_of_integer (integer_of_natural n) = n"
1075  by transfer simp
1076
1077lemma integer_of_natural_of_integer [simp]:
1078  "integer_of_natural (natural_of_integer k) = max 0 k"
1079  by transfer auto
1080
1081lemma int_of_integer_of_natural [simp]:
1082  "int_of_integer (integer_of_natural n) = of_nat (nat_of_natural n)"
1083  by transfer rule
1084
1085lemma integer_of_natural_of_nat [simp]:
1086  "integer_of_natural (of_nat n) = of_nat n"
1087  by transfer rule
1088
1089lemma [measure_function]:
1090  "is_measure nat_of_natural"
1091  by (rule is_measure_trivial)
1092
1093
1094subsection \<open>Inductive representation of target language naturals\<close>
1095
1096lift_definition Suc :: "natural \<Rightarrow> natural"
1097  is Nat.Suc
1098  .
1099
1100declare Suc.rep_eq [simp]
1101
1102old_rep_datatype "0::natural" Suc
1103  by (transfer, fact nat.induct nat.inject nat.distinct)+
1104
1105lemma natural_cases [case_names nat, cases type: natural]:
1106  fixes m :: natural
1107  assumes "\<And>n. m = of_nat n \<Longrightarrow> P"
1108  shows P
1109  using assms by transfer blast
1110
1111instantiation natural :: size
1112begin
1113
1114definition size_nat where [simp, code]: "size_nat = nat_of_natural"
1115
1116instance ..
1117
1118end
1119
1120lemma natural_decr [termination_simp]:
1121  "n \<noteq> 0 \<Longrightarrow> nat_of_natural n - Nat.Suc 0 < nat_of_natural n"
1122  by transfer simp
1123
1124lemma natural_zero_minus_one: "(0::natural) - 1 = 0"
1125  by (rule zero_diff)
1126
1127lemma Suc_natural_minus_one: "Suc n - 1 = n"
1128  by transfer simp
1129
1130hide_const (open) Suc
1131
1132
1133subsection \<open>Code refinement for target language naturals\<close>
1134
1135lift_definition Nat :: "integer \<Rightarrow> natural"
1136  is nat
1137  .
1138
1139lemma [code_post]:
1140  "Nat 0 = 0"
1141  "Nat 1 = 1"
1142  "Nat (numeral k) = numeral k"
1143  by (transfer, simp)+
1144
1145lemma [code abstype]:
1146  "Nat (integer_of_natural n) = n"
1147  by transfer simp
1148
1149lemma [code]:
1150  "natural_of_nat n = natural_of_integer (integer_of_nat n)"
1151  by transfer simp
1152
1153lemma [code abstract]:
1154  "integer_of_natural (natural_of_integer k) = max 0 k"
1155  by simp
1156
1157lemma [code_abbrev]:
1158  "natural_of_integer (Code_Numeral.Pos k) = numeral k"
1159  by transfer simp
1160
1161lemma [code abstract]:
1162  "integer_of_natural 0 = 0"
1163  by transfer simp
1164
1165lemma [code abstract]:
1166  "integer_of_natural 1 = 1"
1167  by transfer simp
1168
1169lemma [code abstract]:
1170  "integer_of_natural (Code_Numeral.Suc n) = integer_of_natural n + 1"
1171  by transfer simp
1172
1173lemma [code]:
1174  "nat_of_natural = nat_of_integer \<circ> integer_of_natural"
1175  by transfer (simp add: fun_eq_iff)
1176
1177lemma [code, code_unfold]:
1178  "case_natural f g n = (if n = 0 then f else g (n - 1))"
1179  by (cases n rule: natural.exhaust) (simp_all, simp add: Suc_def)
1180
1181declare natural.rec [code del]
1182
1183lemma [code abstract]:
1184  "integer_of_natural (m + n) = integer_of_natural m + integer_of_natural n"
1185  by transfer simp
1186
1187lemma [code abstract]:
1188  "integer_of_natural (m - n) = max 0 (integer_of_natural m - integer_of_natural n)"
1189  by transfer simp
1190
1191lemma [code abstract]:
1192  "integer_of_natural (m * n) = integer_of_natural m * integer_of_natural n"
1193  by transfer simp
1194
1195lemma [code abstract]:
1196  "integer_of_natural (m div n) = integer_of_natural m div integer_of_natural n"
1197  by transfer (simp add: zdiv_int)
1198
1199lemma [code abstract]:
1200  "integer_of_natural (m mod n) = integer_of_natural m mod integer_of_natural n"
1201  by transfer (simp add: zmod_int)
1202
1203lemma [code]:
1204  "HOL.equal m n \<longleftrightarrow> HOL.equal (integer_of_natural m) (integer_of_natural n)"
1205  by transfer (simp add: equal)
1206
1207lemma [code nbe]: "HOL.equal n (n::natural) \<longleftrightarrow> True"
1208  by (rule equal_class.equal_refl)
1209
1210lemma [code]: "m \<le> n \<longleftrightarrow> integer_of_natural m \<le> integer_of_natural n"
1211  by transfer simp
1212
1213lemma [code]: "m < n \<longleftrightarrow> integer_of_natural m < integer_of_natural n"
1214  by transfer simp
1215
1216hide_const (open) Nat
1217
1218lifting_update integer.lifting
1219lifting_forget integer.lifting
1220
1221lifting_update natural.lifting
1222lifting_forget natural.lifting
1223
1224code_reflect Code_Numeral
1225  datatypes natural
1226  functions "Code_Numeral.Suc" "0 :: natural" "1 :: natural"
1227    "plus :: natural \<Rightarrow> _" "minus :: natural \<Rightarrow> _"
1228    "times :: natural \<Rightarrow> _" "divide :: natural \<Rightarrow> _"
1229    "modulo :: natural \<Rightarrow> _"
1230    integer_of_natural natural_of_integer
1231
1232end
1233