1(*  Title:      HOL/Binomial.thy
2    Author:     Jacques D. Fleuriot
3    Author:     Lawrence C Paulson
4    Author:     Jeremy Avigad
5    Author:     Chaitanya Mangla
6    Author:     Manuel Eberl
7*)
8
9section \<open>Binomial Coefficients and Binomial Theorem\<close>
10
11theory Binomial
12  imports Presburger Factorial
13begin
14
15subsection \<open>Binomial coefficients\<close>
16
17text \<open>This development is based on the work of Andy Gordon and Florian Kammueller.\<close>
18
19text \<open>Combinatorial definition\<close>
20
21definition binomial :: "nat \<Rightarrow> nat \<Rightarrow> nat"  (infixl "choose" 65)
22  where "n choose k = card {K\<in>Pow {0..<n}. card K = k}"
23
24theorem n_subsets:
25  assumes "finite A"
26  shows "card {B. B \<subseteq> A \<and> card B = k} = card A choose k"
27proof -
28  from assms obtain f where bij: "bij_betw f {0..<card A} A"
29    by (blast dest: ex_bij_betw_nat_finite)
30  then have [simp]: "card (f ` C) = card C" if "C \<subseteq> {0..<card A}" for C
31    by (meson bij_betw_imp_inj_on bij_betw_subset card_image that)
32  from bij have "bij_betw (image f) (Pow {0..<card A}) (Pow A)"
33    by (rule bij_betw_Pow)
34  then have "inj_on (image f) (Pow {0..<card A})"
35    by (rule bij_betw_imp_inj_on)
36  moreover have "{K. K \<subseteq> {0..<card A} \<and> card K = k} \<subseteq> Pow {0..<card A}"
37    by auto
38  ultimately have "inj_on (image f) {K. K \<subseteq> {0..<card A} \<and> card K = k}"
39    by (rule inj_on_subset)
40  then have "card {K. K \<subseteq> {0..<card A} \<and> card K = k} =
41      card (image f ` {K. K \<subseteq> {0..<card A} \<and> card K = k})" (is "_ = card ?C")
42    by (simp add: card_image)
43  also have "?C = {K. K \<subseteq> f ` {0..<card A} \<and> card K = k}"
44    by (auto elim!: subset_imageE)
45  also have "f ` {0..<card A} = A"
46    by (meson bij bij_betw_def)
47  finally show ?thesis
48    by (simp add: binomial_def)
49qed
50
51text \<open>Recursive characterization\<close>
52
53lemma binomial_n_0 [simp]: "n choose 0 = 1"
54proof -
55  have "{K \<in> Pow {0..<n}. card K = 0} = {{}}"
56    by (auto dest: finite_subset)
57  then show ?thesis
58    by (simp add: binomial_def)
59qed
60
61lemma binomial_0_Suc [simp]: "0 choose Suc k = 0"
62  by (simp add: binomial_def)
63
64lemma binomial_Suc_Suc [simp]: "Suc n choose Suc k = (n choose k) + (n choose Suc k)"
65proof -
66  let ?P = "\<lambda>n k. {K. K \<subseteq> {0..<n} \<and> card K = k}"
67  let ?Q = "?P (Suc n) (Suc k)"
68  have inj: "inj_on (insert n) (?P n k)"
69    by rule (auto; metis atLeastLessThan_iff insert_iff less_irrefl subsetCE)
70  have disjoint: "insert n ` ?P n k \<inter> ?P n (Suc k) = {}"
71    by auto
72  have "?Q = {K\<in>?Q. n \<in> K} \<union> {K\<in>?Q. n \<notin> K}"
73    by auto
74  also have "{K\<in>?Q. n \<in> K} = insert n ` ?P n k" (is "?A = ?B")
75  proof (rule set_eqI)
76    fix K
77    have K_finite: "finite K" if "K \<subseteq> insert n {0..<n}"
78      using that by (rule finite_subset) simp_all
79    have Suc_card_K: "Suc (card K - Suc 0) = card K" if "n \<in> K"
80      and "finite K"
81    proof -
82      from \<open>n \<in> K\<close> obtain L where "K = insert n L" and "n \<notin> L"
83        by (blast elim: Set.set_insert)
84      with that show ?thesis by (simp add: card_insert)
85    qed
86    show "K \<in> ?A \<longleftrightarrow> K \<in> ?B"
87      by (subst in_image_insert_iff)
88        (auto simp add: card_insert subset_eq_atLeast0_lessThan_finite
89          Diff_subset_conv K_finite Suc_card_K)
90  qed
91  also have "{K\<in>?Q. n \<notin> K} = ?P n (Suc k)"
92    by (auto simp add: atLeast0_lessThan_Suc)
93  finally show ?thesis using inj disjoint
94    by (simp add: binomial_def card_Un_disjoint card_image)
95qed
96
97lemma binomial_eq_0: "n < k \<Longrightarrow> n choose k = 0"
98  by (auto simp add: binomial_def dest: subset_eq_atLeast0_lessThan_card)
99
100lemma zero_less_binomial: "k \<le> n \<Longrightarrow> n choose k > 0"
101  by (induct n k rule: diff_induct) simp_all
102
103lemma binomial_eq_0_iff [simp]: "n choose k = 0 \<longleftrightarrow> n < k"
104  by (metis binomial_eq_0 less_numeral_extra(3) not_less zero_less_binomial)
105
106lemma zero_less_binomial_iff [simp]: "n choose k > 0 \<longleftrightarrow> k \<le> n"
107  by (metis binomial_eq_0_iff not_less0 not_less zero_less_binomial)
108
109lemma binomial_n_n [simp]: "n choose n = 1"
110  by (induct n) (simp_all add: binomial_eq_0)
111
112lemma binomial_Suc_n [simp]: "Suc n choose n = Suc n"
113  by (induct n) simp_all
114
115lemma binomial_1 [simp]: "n choose Suc 0 = n"
116  by (induct n) simp_all
117
118lemma choose_reduce_nat:
119  "0 < n \<Longrightarrow> 0 < k \<Longrightarrow>
120    n choose k = ((n - 1) choose (k - 1)) + ((n - 1) choose k)"
121  using binomial_Suc_Suc [of "n - 1" "k - 1"] by simp
122
123lemma Suc_times_binomial_eq: "Suc n * (n choose k) = (Suc n choose Suc k) * Suc k"
124  apply (induct n arbitrary: k)
125   apply simp
126   apply arith
127  apply (case_tac k)
128   apply (auto simp add: add_mult_distrib add_mult_distrib2 le_Suc_eq binomial_eq_0)
129  done
130
131lemma binomial_le_pow2: "n choose k \<le> 2^n"
132  apply (induct n arbitrary: k)
133   apply (case_tac k)
134    apply simp_all
135  apply (case_tac k)
136   apply auto
137  apply (simp add: add_le_mono mult_2)
138  done
139
140text \<open>The absorption property.\<close>
141lemma Suc_times_binomial: "Suc k * (Suc n choose Suc k) = Suc n * (n choose k)"
142  using Suc_times_binomial_eq by auto
143
144text \<open>This is the well-known version of absorption, but it's harder to use
145  because of the need to reason about division.\<close>
146lemma binomial_Suc_Suc_eq_times: "(Suc n choose Suc k) = (Suc n * (n choose k)) div Suc k"
147  by (simp add: Suc_times_binomial_eq del: mult_Suc mult_Suc_right)
148
149text \<open>Another version of absorption, with \<open>-1\<close> instead of \<open>Suc\<close>.\<close>
150lemma times_binomial_minus1_eq: "0 < k \<Longrightarrow> k * (n choose k) = n * ((n - 1) choose (k - 1))"
151  using Suc_times_binomial_eq [where n = "n - 1" and k = "k - 1"]
152  by (auto split: nat_diff_split)
153
154
155subsection \<open>The binomial theorem (courtesy of Tobias Nipkow):\<close>
156
157text \<open>Avigad's version, generalized to any commutative ring\<close>
158theorem binomial_ring: "(a + b :: 'a::comm_semiring_1)^n =
159  (\<Sum>k\<le>n. (of_nat (n choose k)) * a^k * b^(n-k))"
160proof (induct n)
161  case 0
162  then show ?case by simp
163next
164  case (Suc n)
165  have decomp: "{0..n+1} = {0} \<union> {n + 1} \<union> {1..n}"
166    by auto
167  have decomp2: "{0..n} = {0} \<union> {1..n}"
168    by auto
169  have "(a + b)^(n+1) = (a + b) * (\<Sum>k\<le>n. of_nat (n choose k) * a^k * b^(n - k))"
170    using Suc.hyps by simp
171  also have "\<dots> = a * (\<Sum>k\<le>n. of_nat (n choose k) * a^k * b^(n-k)) +
172      b * (\<Sum>k\<le>n. of_nat (n choose k) * a^k * b^(n-k))"
173    by (rule distrib_right)
174  also have "\<dots> = (\<Sum>k\<le>n. of_nat (n choose k) * a^(k+1) * b^(n-k)) +
175      (\<Sum>k\<le>n. of_nat (n choose k) * a^k * b^(n - k + 1))"
176    by (auto simp add: sum_distrib_left ac_simps)
177  also have "\<dots> = (\<Sum>k\<le>n. of_nat (n choose k) * a^k * b^(n + 1 - k)) +
178      (\<Sum>k=1..n+1. of_nat (n choose (k - 1)) * a^k * b^(n + 1 - k))"
179    by (simp add: atMost_atLeast0 sum.shift_bounds_cl_Suc_ivl Suc_diff_le field_simps del: sum.cl_ivl_Suc)
180  also have "\<dots> = b^(n + 1) +
181      (\<Sum>k=1..n. of_nat (n choose k) * a^k * b^(n + 1 - k)) + (a^(n + 1) +
182      (\<Sum>k=1..n. of_nat (n choose (k - 1)) * a^k * b^(n + 1 - k)))"
183      using sum.nat_ivl_Suc' [of 1 n "\<lambda>k. of_nat (n choose (k-1)) * a ^ k * b ^ (n + 1 - k)"]
184    by (simp add: sum.atLeast_Suc_atMost atMost_atLeast0)
185  also have "\<dots> = a^(n + 1) + b^(n + 1) +
186      (\<Sum>k=1..n. of_nat (n + 1 choose k) * a^k * b^(n + 1 - k))"
187    by (auto simp add: field_simps sum.distrib [symmetric] choose_reduce_nat)
188  also have "\<dots> = (\<Sum>k\<le>n+1. of_nat (n + 1 choose k) * a^k * b^(n + 1 - k))"
189    using decomp by (simp add: atMost_atLeast0 field_simps)
190  finally show ?case
191    by simp
192qed
193
194text \<open>Original version for the naturals.\<close>
195corollary binomial: "(a + b :: nat)^n = (\<Sum>k\<le>n. (of_nat (n choose k)) * a^k * b^(n - k))"
196  using binomial_ring [of "int a" "int b" n]
197  by (simp only: of_nat_add [symmetric] of_nat_mult [symmetric] of_nat_power [symmetric]
198      of_nat_sum [symmetric] of_nat_eq_iff of_nat_id)
199
200lemma binomial_fact_lemma: "k \<le> n \<Longrightarrow> fact k * fact (n - k) * (n choose k) = fact n"
201proof (induct n arbitrary: k rule: nat_less_induct)
202  fix n k
203  assume H: "\<forall>m<n. \<forall>x\<le>m. fact x * fact (m - x) * (m choose x) = fact m"
204  assume kn: "k \<le> n"
205  let ?ths = "fact k * fact (n - k) * (n choose k) = fact n"
206  consider "n = 0 \<or> k = 0 \<or> n = k" | m h where "n = Suc m" "k = Suc h" "h < m"
207    using kn by atomize_elim presburger
208  then show "fact k * fact (n - k) * (n choose k) = fact n"
209  proof cases
210    case 1
211    with kn show ?thesis by auto
212  next
213    case 2
214    note n = \<open>n = Suc m\<close>
215    note k = \<open>k = Suc h\<close>
216    note hm = \<open>h < m\<close>
217    have mn: "m < n"
218      using n by arith
219    have hm': "h \<le> m"
220      using hm by arith
221    have km: "k \<le> m"
222      using hm k n kn by arith
223    have "m - h = Suc (m - Suc h)"
224      using  k km hm by arith
225    with km k have "fact (m - h) = (m - h) * fact (m - k)"
226      by simp
227    with n k have "fact k * fact (n - k) * (n choose k) =
228        k * (fact h * fact (m - h) * (m choose h)) +
229        (m - h) * (fact k * fact (m - k) * (m choose k))"
230      by (simp add: field_simps)
231    also have "\<dots> = (k + (m - h)) * fact m"
232      using H[rule_format, OF mn hm'] H[rule_format, OF mn km]
233      by (simp add: field_simps)
234    finally show ?thesis
235      using k n km by simp
236  qed
237qed
238
239lemma binomial_fact':
240  assumes "k \<le> n"
241  shows "n choose k = fact n div (fact k * fact (n - k))"
242  using binomial_fact_lemma [OF assms]
243  by (metis fact_nonzero mult_eq_0_iff nonzero_mult_div_cancel_left)
244
245lemma binomial_fact:
246  assumes kn: "k \<le> n"
247  shows "(of_nat (n choose k) :: 'a::field_char_0) = fact n / (fact k * fact (n - k))"
248  using binomial_fact_lemma[OF kn]
249  apply (simp add: field_simps)
250  apply (metis mult.commute of_nat_fact of_nat_mult)
251  done
252
253lemma fact_binomial:
254  assumes "k \<le> n"
255  shows "fact k * of_nat (n choose k) = (fact n / fact (n - k) :: 'a::field_char_0)"
256  unfolding binomial_fact [OF assms] by (simp add: field_simps)
257
258lemma choose_two: "n choose 2 = n * (n - 1) div 2"
259proof (cases "n \<ge> 2")
260  case False
261  then have "n = 0 \<or> n = 1"
262    by auto
263  then show ?thesis by auto
264next
265  case True
266  define m where "m = n - 2"
267  with True have "n = m + 2"
268    by simp
269  then have "fact n = n * (n - 1) * fact (n - 2)"
270    by (simp add: fact_prod_Suc atLeast0_lessThan_Suc algebra_simps)
271  with True show ?thesis
272    by (simp add: binomial_fact')
273qed
274
275lemma choose_row_sum: "(\<Sum>k\<le>n. n choose k) = 2^n"
276  using binomial [of 1 "1" n] by (simp add: numeral_2_eq_2)
277
278lemma sum_choose_lower: "(\<Sum>k\<le>n. (r+k) choose k) = Suc (r+n) choose n"
279  by (induct n) auto
280
281lemma sum_choose_upper: "(\<Sum>k\<le>n. k choose m) = Suc n choose Suc m"
282  by (induct n) auto
283
284lemma choose_alternating_sum:
285  "n > 0 \<Longrightarrow> (\<Sum>i\<le>n. (-1)^i * of_nat (n choose i)) = (0 :: 'a::comm_ring_1)"
286  using binomial_ring[of "-1 :: 'a" 1 n]
287  by (simp add: atLeast0AtMost mult_of_nat_commute zero_power)
288
289lemma choose_even_sum:
290  assumes "n > 0"
291  shows "2 * (\<Sum>i\<le>n. if even i then of_nat (n choose i) else 0) = (2 ^ n :: 'a::comm_ring_1)"
292proof -
293  have "2 ^ n = (\<Sum>i\<le>n. of_nat (n choose i)) + (\<Sum>i\<le>n. (-1) ^ i * of_nat (n choose i) :: 'a)"
294    using choose_row_sum[of n]
295    by (simp add: choose_alternating_sum assms atLeast0AtMost of_nat_sum[symmetric])
296  also have "\<dots> = (\<Sum>i\<le>n. of_nat (n choose i) + (-1) ^ i * of_nat (n choose i))"
297    by (simp add: sum.distrib)
298  also have "\<dots> = 2 * (\<Sum>i\<le>n. if even i then of_nat (n choose i) else 0)"
299    by (subst sum_distrib_left, intro sum.cong) simp_all
300  finally show ?thesis ..
301qed
302
303lemma choose_odd_sum:
304  assumes "n > 0"
305  shows "2 * (\<Sum>i\<le>n. if odd i then of_nat (n choose i) else 0) = (2 ^ n :: 'a::comm_ring_1)"
306proof -
307  have "2 ^ n = (\<Sum>i\<le>n. of_nat (n choose i)) - (\<Sum>i\<le>n. (-1) ^ i * of_nat (n choose i) :: 'a)"
308    using choose_row_sum[of n]
309    by (simp add: choose_alternating_sum assms atLeast0AtMost of_nat_sum[symmetric])
310  also have "\<dots> = (\<Sum>i\<le>n. of_nat (n choose i) - (-1) ^ i * of_nat (n choose i))"
311    by (simp add: sum_subtractf)
312  also have "\<dots> = 2 * (\<Sum>i\<le>n. if odd i then of_nat (n choose i) else 0)"
313    by (subst sum_distrib_left, intro sum.cong) simp_all
314  finally show ?thesis ..
315qed
316
317text\<open>NW diagonal sum property\<close>
318lemma sum_choose_diagonal:
319  assumes "m \<le> n"
320  shows "(\<Sum>k\<le>m. (n - k) choose (m - k)) = Suc n choose m"
321proof -
322  have "(\<Sum>k\<le>m. (n-k) choose (m - k)) = (\<Sum>k\<le>m. (n - m + k) choose k)"
323    using sum.atLeastAtMost_rev [of "\<lambda>k. (n - k) choose (m - k)" 0 m] assms
324    by (simp add: atMost_atLeast0)
325  also have "\<dots> = Suc (n - m + m) choose m"
326    by (rule sum_choose_lower)
327  also have "\<dots> = Suc n choose m"
328    using assms by simp
329  finally show ?thesis .
330qed
331
332
333subsection \<open>Generalized binomial coefficients\<close>
334
335definition gbinomial :: "'a::{semidom_divide,semiring_char_0} \<Rightarrow> nat \<Rightarrow> 'a"  (infixl "gchoose" 65)
336  where gbinomial_prod_rev: "a gchoose k = prod (\<lambda>i. a - of_nat i) {0..<k} div fact k"
337
338lemma gbinomial_0 [simp]:
339  "a gchoose 0 = 1"
340  "0 gchoose (Suc k) = 0"
341  by (simp_all add: gbinomial_prod_rev prod.atLeast0_lessThan_Suc_shift del: prod.op_ivl_Suc)
342
343lemma gbinomial_Suc: "a gchoose (Suc k) = prod (\<lambda>i. a - of_nat i) {0..k} div fact (Suc k)"
344  by (simp add: gbinomial_prod_rev atLeastLessThanSuc_atLeastAtMost)
345
346lemma gbinomial_1 [simp]: "a gchoose 1 = a"
347  by (simp add: gbinomial_prod_rev lessThan_Suc)
348
349lemma gbinomial_Suc0 [simp]: "a gchoose Suc 0 = a"
350  by (simp add: gbinomial_prod_rev lessThan_Suc)
351
352lemma gbinomial_mult_fact: "fact k * (a gchoose k) = (\<Prod>i = 0..<k. a - of_nat i)"
353  for a :: "'a::field_char_0"
354  by (simp_all add: gbinomial_prod_rev field_simps)
355
356lemma gbinomial_mult_fact': "(a gchoose k) * fact k = (\<Prod>i = 0..<k. a - of_nat i)"
357  for a :: "'a::field_char_0"
358  using gbinomial_mult_fact [of k a] by (simp add: ac_simps)
359
360lemma gbinomial_pochhammer: "a gchoose k = (- 1) ^ k * pochhammer (- a) k / fact k"
361  for a :: "'a::field_char_0"
362proof (cases k)
363  case (Suc k')
364  then show ?thesis
365    apply (simp add: pochhammer_minus)
366    apply (simp add: gbinomial_prod_rev pochhammer_prod_rev power_mult_distrib [symmetric] atLeastLessThanSuc_atLeastAtMost
367        prod.atLeast_Suc_atMost_Suc_shift of_nat_diff del: prod.cl_ivl_Suc)
368    done
369qed auto
370
371lemma gbinomial_pochhammer': "a gchoose k = pochhammer (a - of_nat k + 1) k / fact k"
372  for a :: "'a::field_char_0"
373proof -
374  have "a gchoose k = ((-1)^k * (-1)^k) * pochhammer (a - of_nat k + 1) k / fact k"
375    by (simp add: gbinomial_pochhammer pochhammer_minus mult_ac)
376  also have "(-1 :: 'a)^k * (-1)^k = 1"
377    by (subst power_add [symmetric]) simp
378  finally show ?thesis
379    by simp
380qed
381
382lemma gbinomial_binomial: "n gchoose k = n choose k"
383proof (cases "k \<le> n")
384  case False
385  then have "n < k"
386    by (simp add: not_le)
387  then have "0 \<in> ((-) n) ` {0..<k}"
388    by auto
389  then have "prod ((-) n) {0..<k} = 0"
390    by (auto intro: prod_zero)
391  with \<open>n < k\<close> show ?thesis
392    by (simp add: binomial_eq_0 gbinomial_prod_rev prod_zero)
393next
394  case True
395  from True have *: "prod ((-) n) {0..<k} = \<Prod>{Suc (n - k)..n}"
396    by (intro prod.reindex_bij_witness[of _ "\<lambda>i. n - i" "\<lambda>i. n - i"]) auto
397  from True have "n choose k = fact n div (fact k * fact (n - k))"
398    by (rule binomial_fact')
399  with * show ?thesis
400    by (simp add: gbinomial_prod_rev mult.commute [of "fact k"] div_mult2_eq fact_div_fact)
401qed
402
403lemma of_nat_gbinomial: "of_nat (n gchoose k) = (of_nat n gchoose k :: 'a::field_char_0)"
404proof (cases "k \<le> n")
405  case False
406  then show ?thesis
407    by (simp add: not_le gbinomial_binomial binomial_eq_0 gbinomial_prod_rev)
408next
409  case True
410  define m where "m = n - k"
411  with True have n: "n = m + k"
412    by arith
413  from n have "fact n = ((\<Prod>i = 0..<m + k. of_nat (m + k - i) ):: 'a)"
414    by (simp add: fact_prod_rev)
415  also have "\<dots> = ((\<Prod>i\<in>{0..<k} \<union> {k..<m + k}. of_nat (m + k - i)) :: 'a)"
416    by (simp add: ivl_disj_un)
417  finally have "fact n = (fact m * (\<Prod>i = 0..<k. of_nat m + of_nat k - of_nat i) :: 'a)"
418    using prod.shift_bounds_nat_ivl [of "\<lambda>i. of_nat (m + k - i) :: 'a" 0 k m]
419    by (simp add: fact_prod_rev [of m] prod.union_disjoint of_nat_diff)
420  then have "fact n / fact (n - k) = ((\<Prod>i = 0..<k. of_nat n - of_nat i) :: 'a)"
421    by (simp add: n)
422  with True have "fact k * of_nat (n gchoose k) = (fact k * (of_nat n gchoose k) :: 'a)"
423    by (simp only: gbinomial_mult_fact [of k "of_nat n"] gbinomial_binomial [of n k] fact_binomial)
424  then show ?thesis
425    by simp
426qed
427
428lemma binomial_gbinomial: "of_nat (n choose k) = (of_nat n gchoose k :: 'a::field_char_0)"
429  by (simp add: gbinomial_binomial [symmetric] of_nat_gbinomial)
430
431setup
432  \<open>Sign.add_const_constraint (\<^const_name>\<open>gbinomial\<close>, SOME \<^typ>\<open>'a::field_char_0 \<Rightarrow> nat \<Rightarrow> 'a\<close>)\<close>
433
434lemma gbinomial_mult_1:
435  fixes a :: "'a::field_char_0"
436  shows "a * (a gchoose k) = of_nat k * (a gchoose k) + of_nat (Suc k) * (a gchoose (Suc k))"
437  (is "?l = ?r")
438proof -
439  have "?r = ((- 1) ^k * pochhammer (- a) k / fact k) * (of_nat k - (- a + of_nat k))"
440    apply (simp only: gbinomial_pochhammer pochhammer_Suc right_diff_distrib power_Suc)
441    apply (simp del: of_nat_Suc fact_Suc)
442    apply (auto simp add: field_simps simp del: of_nat_Suc)
443    done
444  also have "\<dots> = ?l"
445    by (simp add: field_simps gbinomial_pochhammer)
446  finally show ?thesis ..
447qed
448
449lemma gbinomial_mult_1':
450  "(a gchoose k) * a = of_nat k * (a gchoose k) + of_nat (Suc k) * (a gchoose (Suc k))"
451  for a :: "'a::field_char_0"
452  by (simp add: mult.commute gbinomial_mult_1)
453
454lemma gbinomial_Suc_Suc: "(a + 1) gchoose (Suc k) = a gchoose k + (a gchoose (Suc k))"
455  for a :: "'a::field_char_0"
456proof (cases k)
457  case 0
458  then show ?thesis by simp
459next
460  case (Suc h)
461  have eq0: "(\<Prod>i\<in>{1..k}. (a + 1) - of_nat i) = (\<Prod>i\<in>{0..h}. a - of_nat i)"
462    apply (rule prod.reindex_cong [where l = Suc])
463      using Suc
464      apply (auto simp add: image_Suc_atMost)
465    done
466  have "fact (Suc k) * (a gchoose k + (a gchoose (Suc k))) =
467      (a gchoose Suc h) * (fact (Suc (Suc h))) +
468      (a gchoose Suc (Suc h)) * (fact (Suc (Suc h)))"
469    by (simp add: Suc field_simps del: fact_Suc)
470  also have "\<dots> =
471    (a gchoose Suc h) * of_nat (Suc (Suc h) * fact (Suc h)) + (\<Prod>i=0..Suc h. a - of_nat i)"
472    apply (simp del: fact_Suc prod.op_ivl_Suc add: gbinomial_mult_fact field_simps mult.left_commute [of _ "2"])
473    apply (simp del: fact_Suc add: fact_Suc [of "Suc h"] field_simps gbinomial_mult_fact
474      mult.left_commute [of _ "2"] atLeastLessThanSuc_atLeastAtMost)
475    done
476  also have "\<dots> =
477    (fact (Suc h) * (a gchoose Suc h)) * of_nat (Suc (Suc h)) + (\<Prod>i=0..Suc h. a - of_nat i)"
478    by (simp only: fact_Suc mult.commute mult.left_commute of_nat_fact of_nat_id of_nat_mult)
479  also have "\<dots> =
480    of_nat (Suc (Suc h)) * (\<Prod>i=0..h. a - of_nat i) + (\<Prod>i=0..Suc h. a - of_nat i)"
481    unfolding gbinomial_mult_fact atLeastLessThanSuc_atLeastAtMost by auto
482  also have "\<dots> =
483    (\<Prod>i=0..Suc h. a - of_nat i) + (of_nat h * (\<Prod>i=0..h. a - of_nat i) + 2 * (\<Prod>i=0..h. a - of_nat i))"
484    by (simp add: field_simps)
485  also have "\<dots> =
486    ((a gchoose Suc h) * (fact (Suc h)) * of_nat (Suc k)) + (\<Prod>i\<in>{0..Suc h}. a - of_nat i)"
487    unfolding gbinomial_mult_fact'
488    by (simp add: comm_semiring_class.distrib field_simps Suc atLeastLessThanSuc_atLeastAtMost)
489  also have "\<dots> = (\<Prod>i\<in>{0..h}. a - of_nat i) * (a + 1)"
490    unfolding gbinomial_mult_fact' atLeast0_atMost_Suc
491    by (simp add: field_simps Suc atLeastLessThanSuc_atLeastAtMost)
492  also have "\<dots> = (\<Prod>i\<in>{0..k}. (a + 1) - of_nat i)"
493    using eq0
494    by (simp add: Suc prod.atLeast0_atMost_Suc_shift del: prod.cl_ivl_Suc)
495  also have "\<dots> = (fact (Suc k)) * ((a + 1) gchoose (Suc k))"
496    by (simp only: gbinomial_mult_fact atLeastLessThanSuc_atLeastAtMost)
497  finally show ?thesis
498    using fact_nonzero [of "Suc k"] by auto
499qed
500
501lemma gbinomial_reduce_nat: "0 < k \<Longrightarrow> a gchoose k = (a - 1) gchoose (k - 1) + ((a - 1) gchoose k)"
502  for a :: "'a::field_char_0"
503  by (metis Suc_pred' diff_add_cancel gbinomial_Suc_Suc)
504
505lemma gchoose_row_sum_weighted:
506  "(\<Sum>k = 0..m. (r gchoose k) * (r/2 - of_nat k)) = of_nat(Suc m) / 2 * (r gchoose (Suc m))"
507  for r :: "'a::field_char_0"
508  by (induct m) (simp_all add: field_simps distrib gbinomial_mult_1)
509
510lemma binomial_symmetric:
511  assumes kn: "k \<le> n"
512  shows "n choose k = n choose (n - k)"
513proof -
514  have kn': "n - k \<le> n"
515    using kn by arith
516  from binomial_fact_lemma[OF kn] binomial_fact_lemma[OF kn']
517  have "fact k * fact (n - k) * (n choose k) = fact (n - k) * fact (n - (n - k)) * (n choose (n - k))"
518    by simp
519  then show ?thesis
520    using kn by simp
521qed
522
523lemma choose_rising_sum:
524  "(\<Sum>j\<le>m. ((n + j) choose n)) = ((n + m + 1) choose (n + 1))"
525  "(\<Sum>j\<le>m. ((n + j) choose n)) = ((n + m + 1) choose m)"
526proof -
527  show "(\<Sum>j\<le>m. ((n + j) choose n)) = ((n + m + 1) choose (n + 1))"
528    by (induct m) simp_all
529  also have "\<dots> = (n + m + 1) choose m"
530    by (subst binomial_symmetric) simp_all
531  finally show "(\<Sum>j\<le>m. ((n + j) choose n)) = (n + m + 1) choose m" .
532qed
533
534lemma choose_linear_sum: "(\<Sum>i\<le>n. i * (n choose i)) = n * 2 ^ (n - 1)"
535proof (cases n)
536  case 0
537  then show ?thesis by simp
538next
539  case (Suc m)
540  have "(\<Sum>i\<le>n. i * (n choose i)) = (\<Sum>i\<le>Suc m. i * (Suc m choose i))"
541    by (simp add: Suc)
542  also have "\<dots> = Suc m * 2 ^ m"
543    unfolding sum.atMost_Suc_shift Suc_times_binomial sum_distrib_left[symmetric]
544    by (simp add: choose_row_sum)
545  finally show ?thesis
546    using Suc by simp
547qed
548
549lemma choose_alternating_linear_sum:
550  assumes "n \<noteq> 1"
551  shows "(\<Sum>i\<le>n. (-1)^i * of_nat i * of_nat (n choose i) :: 'a::comm_ring_1) = 0"
552proof (cases n)
553  case 0
554  then show ?thesis by simp
555next
556  case (Suc m)
557  with assms have "m > 0"
558    by simp
559  have "(\<Sum>i\<le>n. (-1) ^ i * of_nat i * of_nat (n choose i) :: 'a) =
560      (\<Sum>i\<le>Suc m. (-1) ^ i * of_nat i * of_nat (Suc m choose i))"
561    by (simp add: Suc)
562  also have "\<dots> = (\<Sum>i\<le>m. (-1) ^ (Suc i) * of_nat (Suc i * (Suc m choose Suc i)))"
563    by (simp only: sum.atMost_Suc_shift sum_distrib_left[symmetric] mult_ac of_nat_mult) simp
564  also have "\<dots> = - of_nat (Suc m) * (\<Sum>i\<le>m. (-1) ^ i * of_nat (m choose i))"
565    by (subst sum_distrib_left, rule sum.cong[OF refl], subst Suc_times_binomial)
566       (simp add: algebra_simps)
567  also have "(\<Sum>i\<le>m. (-1 :: 'a) ^ i * of_nat ((m choose i))) = 0"
568    using choose_alternating_sum[OF \<open>m > 0\<close>] by simp
569  finally show ?thesis
570    by simp
571qed
572
573lemma vandermonde: "(\<Sum>k\<le>r. (m choose k) * (n choose (r - k))) = (m + n) choose r"
574proof (induct n arbitrary: r)
575  case 0
576  have "(\<Sum>k\<le>r. (m choose k) * (0 choose (r - k))) = (\<Sum>k\<le>r. if k = r then (m choose k) else 0)"
577    by (intro sum.cong) simp_all
578  also have "\<dots> = m choose r"
579    by simp
580  finally show ?case
581    by simp
582next
583  case (Suc n r)
584  show ?case
585    by (cases r) (simp_all add: Suc [symmetric] algebra_simps sum.distrib Suc_diff_le)
586qed
587
588lemma choose_square_sum: "(\<Sum>k\<le>n. (n choose k)^2) = ((2*n) choose n)"
589  using vandermonde[of n n n]
590  by (simp add: power2_eq_square mult_2 binomial_symmetric [symmetric])
591
592lemma pochhammer_binomial_sum:
593  fixes a b :: "'a::comm_ring_1"
594  shows "pochhammer (a + b) n = (\<Sum>k\<le>n. of_nat (n choose k) * pochhammer a k * pochhammer b (n - k))"
595proof (induction n arbitrary: a b)
596  case 0
597  then show ?case by simp
598next
599  case (Suc n a b)
600  have "(\<Sum>k\<le>Suc n. of_nat (Suc n choose k) * pochhammer a k * pochhammer b (Suc n - k)) =
601      (\<Sum>i\<le>n. of_nat (n choose i) * pochhammer a (Suc i) * pochhammer b (n - i)) +
602      ((\<Sum>i\<le>n. of_nat (n choose Suc i) * pochhammer a (Suc i) * pochhammer b (n - i)) +
603      pochhammer b (Suc n))"
604    by (subst sum.atMost_Suc_shift) (simp add: ring_distribs sum.distrib)
605  also have "(\<Sum>i\<le>n. of_nat (n choose i) * pochhammer a (Suc i) * pochhammer b (n - i)) =
606      a * pochhammer ((a + 1) + b) n"
607    by (subst Suc) (simp add: sum_distrib_left pochhammer_rec mult_ac)
608  also have "(\<Sum>i\<le>n. of_nat (n choose Suc i) * pochhammer a (Suc i) * pochhammer b (n - i)) +
609        pochhammer b (Suc n) =
610      (\<Sum>i=0..Suc n. of_nat (n choose i) * pochhammer a i * pochhammer b (Suc n - i))"
611    apply (subst sum.atLeast_Suc_atMost)
612    apply simp
613    apply (subst sum.shift_bounds_cl_Suc_ivl)
614    apply (simp add: atLeast0AtMost)
615    done
616  also have "\<dots> = (\<Sum>i\<le>n. of_nat (n choose i) * pochhammer a i * pochhammer b (Suc n - i))"
617    using Suc by (intro sum.mono_neutral_right) (auto simp: not_le binomial_eq_0)
618  also have "\<dots> = (\<Sum>i\<le>n. of_nat (n choose i) * pochhammer a i * pochhammer b (Suc (n - i)))"
619    by (intro sum.cong) (simp_all add: Suc_diff_le)
620  also have "\<dots> = b * pochhammer (a + (b + 1)) n"
621    by (subst Suc) (simp add: sum_distrib_left mult_ac pochhammer_rec)
622  also have "a * pochhammer ((a + 1) + b) n + b * pochhammer (a + (b + 1)) n =
623      pochhammer (a + b) (Suc n)"
624    by (simp add: pochhammer_rec algebra_simps)
625  finally show ?case ..
626qed
627
628text \<open>Contributed by Manuel Eberl, generalised by LCP.
629  Alternative definition of the binomial coefficient as \<^term>\<open>\<Prod>i<k. (n - i) / (k - i)\<close>.\<close>
630lemma gbinomial_altdef_of_nat: "a gchoose k = (\<Prod>i = 0..<k. (a - of_nat i) / of_nat (k - i) :: 'a)"
631  for k :: nat and a :: "'a::field_char_0"
632  by (simp add: prod_dividef gbinomial_prod_rev fact_prod_rev)
633
634lemma gbinomial_ge_n_over_k_pow_k:
635  fixes k :: nat
636    and a :: "'a::linordered_field"
637  assumes "of_nat k \<le> a"
638  shows "(a / of_nat k :: 'a) ^ k \<le> a gchoose k"
639proof -
640  have x: "0 \<le> a"
641    using assms of_nat_0_le_iff order_trans by blast
642  have "(a / of_nat k :: 'a) ^ k = (\<Prod>i = 0..<k. a / of_nat k :: 'a)"
643    by simp
644  also have "\<dots> \<le> a gchoose k" (* FIXME *)
645    unfolding gbinomial_altdef_of_nat
646    apply (safe intro!: prod_mono)
647    apply simp_all
648    prefer 2
649    subgoal premises for i
650    proof -
651      from assms have "a * of_nat i \<ge> of_nat (i * k)"
652        by (metis mult.commute mult_le_cancel_right of_nat_less_0_iff of_nat_mult)
653      then have "a * of_nat k - a * of_nat i \<le> a * of_nat k - of_nat (i * k)"
654        by arith
655      then have "a * of_nat (k - i) \<le> (a - of_nat i) * of_nat k"
656        using \<open>i < k\<close> by (simp add: algebra_simps zero_less_mult_iff of_nat_diff)
657      then have "a * of_nat (k - i) \<le> (a - of_nat i) * (of_nat k :: 'a)"
658        by (simp only: of_nat_mult[symmetric] of_nat_le_iff)
659      with assms show ?thesis
660        using \<open>i < k\<close> by (simp add: field_simps)
661    qed
662    apply (simp add: x zero_le_divide_iff)
663    done
664  finally show ?thesis .
665qed
666
667lemma gbinomial_negated_upper: "(a gchoose k) = (-1) ^ k * ((of_nat k - a - 1) gchoose k)"
668  by (simp add: gbinomial_pochhammer pochhammer_minus algebra_simps)
669
670lemma gbinomial_minus: "((-a) gchoose k) = (-1) ^ k * ((a + of_nat k - 1) gchoose k)"
671  by (subst gbinomial_negated_upper) (simp add: add_ac)
672
673lemma Suc_times_gbinomial: "of_nat (Suc k) * ((a + 1) gchoose (Suc k)) = (a + 1) * (a gchoose k)"
674proof (cases k)
675  case 0
676  then show ?thesis by simp
677next
678  case (Suc b)
679  then have "((a + 1) gchoose (Suc (Suc b))) = (\<Prod>i = 0..Suc b. a + (1 - of_nat i)) / fact (b + 2)"
680    by (simp add: field_simps gbinomial_prod_rev atLeastLessThanSuc_atLeastAtMost)
681  also have "(\<Prod>i = 0..Suc b. a + (1 - of_nat i)) = (a + 1) * (\<Prod>i = 0..b. a - of_nat i)"
682    by (simp add: prod.atLeast0_atMost_Suc_shift del: prod.cl_ivl_Suc)
683  also have "\<dots> / fact (b + 2) = (a + 1) / of_nat (Suc (Suc b)) * (a gchoose Suc b)"
684    by (simp_all add: gbinomial_prod_rev atLeastLessThanSuc_atLeastAtMost)
685  finally show ?thesis by (simp add: Suc field_simps del: of_nat_Suc)
686qed
687
688lemma gbinomial_factors: "((a + 1) gchoose (Suc k)) = (a + 1) / of_nat (Suc k) * (a gchoose k)"
689proof (cases k)
690  case 0
691  then show ?thesis by simp
692next
693  case (Suc b)
694  then have "((a + 1) gchoose (Suc (Suc b))) = (\<Prod>i = 0 .. Suc b. a + (1 - of_nat i)) / fact (b + 2)"
695    by (simp add: field_simps gbinomial_prod_rev atLeastLessThanSuc_atLeastAtMost)
696  also have "(\<Prod>i = 0 .. Suc b. a + (1 - of_nat i)) = (a + 1) * (\<Prod>i = 0..b. a - of_nat i)"
697    by (simp add: prod.atLeast0_atMost_Suc_shift del: prod.cl_ivl_Suc)
698  also have "\<dots> / fact (b + 2) = (a + 1) / of_nat (Suc (Suc b)) * (a gchoose Suc b)"
699    by (simp_all add: gbinomial_prod_rev atLeastLessThanSuc_atLeastAtMost atLeast0AtMost)
700  finally show ?thesis
701    by (simp add: Suc)
702qed
703
704lemma gbinomial_rec: "((a + 1) gchoose (Suc k)) = (a gchoose k) * ((a + 1) / of_nat (Suc k))"
705  using gbinomial_mult_1[of a k]
706  by (subst gbinomial_Suc_Suc) (simp add: field_simps del: of_nat_Suc, simp add: algebra_simps)
707
708lemma gbinomial_of_nat_symmetric: "k \<le> n \<Longrightarrow> (of_nat n) gchoose k = (of_nat n) gchoose (n - k)"
709  using binomial_symmetric[of k n] by (simp add: binomial_gbinomial [symmetric])
710
711
712text \<open>The absorption identity (equation 5.5 @{cite \<open>p.~157\<close> GKP_CM}):
713\[
714{r \choose k} = \frac{r}{k}{r - 1 \choose k - 1},\quad \textnormal{integer } k \neq 0.
715\]\<close>
716lemma gbinomial_absorption': "k > 0 \<Longrightarrow> a gchoose k = (a / of_nat k) * (a - 1 gchoose (k - 1))"
717  using gbinomial_rec[of "a - 1" "k - 1"]
718  by (simp_all add: gbinomial_rec field_simps del: of_nat_Suc)
719
720text \<open>The absorption identity is written in the following form to avoid
721division by $k$ (the lower index) and therefore remove the $k \neq 0$
722restriction @{cite \<open>p.~157\<close> GKP_CM}:
723\[
724k{r \choose k} = r{r - 1 \choose k - 1}, \quad \textnormal{integer } k.
725\]\<close>
726lemma gbinomial_absorption: "of_nat (Suc k) * (a gchoose Suc k) = a * ((a - 1) gchoose k)"
727  using gbinomial_absorption'[of "Suc k" a] by (simp add: field_simps del: of_nat_Suc)
728
729text \<open>The absorption identity for natural number binomial coefficients:\<close>
730lemma binomial_absorption: "Suc k * (n choose Suc k) = n * ((n - 1) choose k)"
731  by (cases n) (simp_all add: binomial_eq_0 Suc_times_binomial del: binomial_Suc_Suc mult_Suc)
732
733text \<open>The absorption companion identity for natural number coefficients,
734  following the proof by GKP @{cite \<open>p.~157\<close> GKP_CM}:\<close>
735lemma binomial_absorb_comp: "(n - k) * (n choose k) = n * ((n - 1) choose k)"
736  (is "?lhs = ?rhs")
737proof (cases "n \<le> k")
738  case True
739  then show ?thesis by auto
740next
741  case False
742  then have "?rhs = Suc ((n - 1) - k) * (n choose Suc ((n - 1) - k))"
743    using binomial_symmetric[of k "n - 1"] binomial_absorption[of "(n - 1) - k" n]
744    by simp
745  also have "Suc ((n - 1) - k) = n - k"
746    using False by simp
747  also have "n choose \<dots> = n choose k"
748    using False by (intro binomial_symmetric [symmetric]) simp_all
749  finally show ?thesis ..
750qed
751
752text \<open>The generalised absorption companion identity:\<close>
753lemma gbinomial_absorb_comp: "(a - of_nat k) * (a gchoose k) = a * ((a - 1) gchoose k)"
754  using pochhammer_absorb_comp[of a k] by (simp add: gbinomial_pochhammer)
755
756lemma gbinomial_addition_formula:
757  "a gchoose (Suc k) = ((a - 1) gchoose (Suc k)) + ((a - 1) gchoose k)"
758  using gbinomial_Suc_Suc[of "a - 1" k] by (simp add: algebra_simps)
759
760lemma binomial_addition_formula:
761  "0 < n \<Longrightarrow> n choose (Suc k) = ((n - 1) choose (Suc k)) + ((n - 1) choose k)"
762  by (subst choose_reduce_nat) simp_all
763
764text \<open>
765  Equation 5.9 of the reference material @{cite \<open>p.~159\<close> GKP_CM} is a useful
766  summation formula, operating on both indices:
767  \[
768   \sum\limits_{k \leq n}{r + k \choose k} = {r + n + 1 \choose n},
769   \quad \textnormal{integer } n.
770  \]
771\<close>
772lemma gbinomial_parallel_sum: "(\<Sum>k\<le>n. (a + of_nat k) gchoose k) = (a + of_nat n + 1) gchoose n"
773proof (induct n)
774  case 0
775  then show ?case by simp
776next
777  case (Suc m)
778  then show ?case
779    using gbinomial_Suc_Suc[of "(a + of_nat m + 1)" m]
780    by (simp add: add_ac)
781qed
782
783
784subsubsection \<open>Summation on the upper index\<close>
785
786text \<open>
787  Another summation formula is equation 5.10 of the reference material @{cite \<open>p.~160\<close> GKP_CM},
788  aptly named \emph{summation on the upper index}:\[\sum_{0 \leq k \leq n} {k \choose m} =
789  {n + 1 \choose m + 1}, \quad \textnormal{integers } m, n \geq 0.\]
790\<close>
791lemma gbinomial_sum_up_index:
792  "(\<Sum>j = 0..n. (of_nat j gchoose k) :: 'a::field_char_0) = (of_nat n + 1) gchoose (k + 1)"
793proof (induct n)
794  case 0
795  show ?case
796    using gbinomial_Suc_Suc[of 0 k]
797    by (cases k) auto
798next
799  case (Suc n)
800  then show ?case
801    using gbinomial_Suc_Suc[of "of_nat (Suc n) :: 'a" k]
802    by (simp add: add_ac)
803qed
804
805lemma gbinomial_index_swap:
806  "((-1) ^ k) * ((- (of_nat n) - 1) gchoose k) = ((-1) ^ n) * ((- (of_nat k) - 1) gchoose n)"
807  (is "?lhs = ?rhs")
808proof -
809  have "?lhs = (of_nat (k + n) gchoose k)"
810    by (subst gbinomial_negated_upper) (simp add: power_mult_distrib [symmetric])
811  also have "\<dots> = (of_nat (k + n) gchoose n)"
812    by (subst gbinomial_of_nat_symmetric) simp_all
813  also have "\<dots> = ?rhs"
814    by (subst gbinomial_negated_upper) simp
815  finally show ?thesis .
816qed
817
818lemma gbinomial_sum_lower_neg: "(\<Sum>k\<le>m. (a gchoose k) * (- 1) ^ k) = (- 1) ^ m * (a - 1 gchoose m)"
819  (is "?lhs = ?rhs")
820proof -
821  have "?lhs = (\<Sum>k\<le>m. -(a + 1) + of_nat k gchoose k)"
822    by (intro sum.cong[OF refl]) (subst gbinomial_negated_upper, simp add: power_mult_distrib)
823  also have "\<dots>  = - a + of_nat m gchoose m"
824    by (subst gbinomial_parallel_sum) simp
825  also have "\<dots> = ?rhs"
826    by (subst gbinomial_negated_upper) (simp add: power_mult_distrib)
827  finally show ?thesis .
828qed
829
830lemma gbinomial_partial_row_sum:
831  "(\<Sum>k\<le>m. (a gchoose k) * ((a / 2) - of_nat k)) = ((of_nat m + 1)/2) * (a gchoose (m + 1))"
832proof (induct m)
833  case 0
834  then show ?case by simp
835next
836  case (Suc mm)
837  then have "(\<Sum>k\<le>Suc mm. (a gchoose k) * (a / 2 - of_nat k)) =
838      (a - of_nat (Suc mm)) * (a gchoose Suc mm) / 2"
839    by (simp add: field_simps)
840  also have "\<dots> = a * (a - 1 gchoose Suc mm) / 2"
841    by (subst gbinomial_absorb_comp) (rule refl)
842  also have "\<dots> = (of_nat (Suc mm) + 1) / 2 * (a gchoose (Suc mm + 1))"
843    by (subst gbinomial_absorption [symmetric]) simp
844  finally show ?case .
845qed
846
847lemma sum_bounds_lt_plus1: "(\<Sum>k<mm. f (Suc k)) = (\<Sum>k=1..mm. f k)"
848  by (induct mm) simp_all
849
850lemma gbinomial_partial_sum_poly:
851  "(\<Sum>k\<le>m. (of_nat m + a gchoose k) * x^k * y^(m-k)) =
852    (\<Sum>k\<le>m. (-a gchoose k) * (-x)^k * (x + y)^(m-k))"
853  (is "?lhs m = ?rhs m")
854proof (induction m)
855  case 0
856  then show ?case by simp
857next
858  case (Suc mm)
859  define G where "G i k = (of_nat i + a gchoose k) * x^k * y^(i - k)" for i k
860  define S where "S = ?lhs"
861  have SG_def: "S = (\<lambda>i. (\<Sum>k\<le>i. (G i k)))"
862    unfolding S_def G_def ..
863
864  have "S (Suc mm) = G (Suc mm) 0 + (\<Sum>k=Suc 0..Suc mm. G (Suc mm) k)"
865    using SG_def by (simp add: sum.atLeast_Suc_atMost atLeast0AtMost [symmetric])
866  also have "(\<Sum>k=Suc 0..Suc mm. G (Suc mm) k) = (\<Sum>k=0..mm. G (Suc mm) (Suc k))"
867    by (subst sum.shift_bounds_cl_Suc_ivl) simp
868  also have "\<dots> = (\<Sum>k=0..mm. ((of_nat mm + a gchoose (Suc k)) +
869      (of_nat mm + a gchoose k)) * x^(Suc k) * y^(mm - k))"
870    unfolding G_def by (subst gbinomial_addition_formula) simp
871  also have "\<dots> = (\<Sum>k=0..mm. (of_nat mm + a gchoose (Suc k)) * x^(Suc k) * y^(mm - k)) +
872      (\<Sum>k=0..mm. (of_nat mm + a gchoose k) * x^(Suc k) * y^(mm - k))"
873    by (subst sum.distrib [symmetric]) (simp add: algebra_simps)
874  also have "(\<Sum>k=0..mm. (of_nat mm + a gchoose (Suc k)) * x^(Suc k) * y^(mm - k)) =
875      (\<Sum>k<Suc mm. (of_nat mm + a gchoose (Suc k)) * x^(Suc k) * y^(mm - k))"
876    by (simp only: atLeast0AtMost lessThan_Suc_atMost)
877  also have "\<dots> = (\<Sum>k<mm. (of_nat mm + a gchoose Suc k) * x^(Suc k) * y^(mm-k)) +
878      (of_nat mm + a gchoose (Suc mm)) * x^(Suc mm)"
879    (is "_ = ?A + ?B")
880    by (subst sum.lessThan_Suc) simp
881  also have "?A = (\<Sum>k=1..mm. (of_nat mm + a gchoose k) * x^k * y^(mm - k + 1))"
882  proof (subst sum_bounds_lt_plus1 [symmetric], intro sum.cong[OF refl], clarify)
883    fix k
884    assume "k < mm"
885    then have "mm - k = mm - Suc k + 1"
886      by linarith
887    then show "(of_nat mm + a gchoose Suc k) * x ^ Suc k * y ^ (mm - k) =
888        (of_nat mm + a gchoose Suc k) * x ^ Suc k * y ^ (mm - Suc k + 1)"
889      by (simp only:)
890  qed
891  also have "\<dots> + ?B = y * (\<Sum>k=1..mm. (G mm k)) + (of_nat mm + a gchoose (Suc mm)) * x^(Suc mm)"
892    unfolding G_def by (subst sum_distrib_left) (simp add: algebra_simps)
893  also have "(\<Sum>k=0..mm. (of_nat mm + a gchoose k) * x^(Suc k) * y^(mm - k)) = x * (S mm)"
894    unfolding S_def by (subst sum_distrib_left) (simp add: atLeast0AtMost algebra_simps)
895  also have "(G (Suc mm) 0) = y * (G mm 0)"
896    by (simp add: G_def)
897  finally have "S (Suc mm) =
898      y * (G mm 0 + (\<Sum>k=1..mm. (G mm k))) + (of_nat mm + a gchoose (Suc mm)) * x^(Suc mm) + x * (S mm)"
899    by (simp add: ring_distribs)
900  also have "G mm 0 + (\<Sum>k=1..mm. (G mm k)) = S mm"
901    by (simp add: sum.atLeast_Suc_atMost[symmetric] SG_def atLeast0AtMost)
902  finally have "S (Suc mm) = (x + y) * (S mm) + (of_nat mm + a gchoose (Suc mm)) * x^(Suc mm)"
903    by (simp add: algebra_simps)
904  also have "(of_nat mm + a gchoose (Suc mm)) = (-1) ^ (Suc mm) * (- a gchoose (Suc mm))"
905    by (subst gbinomial_negated_upper) simp
906  also have "(-1) ^ Suc mm * (- a gchoose Suc mm) * x ^ Suc mm =
907      (- a gchoose (Suc mm)) * (-x) ^ Suc mm"
908    by (simp add: power_minus[of x])
909  also have "(x + y) * S mm + \<dots> = (x + y) * ?rhs mm + (- a gchoose (Suc mm)) * (- x)^Suc mm"
910    unfolding S_def by (subst Suc.IH) simp
911  also have "(x + y) * ?rhs mm = (\<Sum>n\<le>mm. ((- a gchoose n) * (- x) ^ n * (x + y) ^ (Suc mm - n)))"
912    by (subst sum_distrib_left, rule sum.cong) (simp_all add: Suc_diff_le)
913  also have "\<dots> + (-a gchoose (Suc mm)) * (-x)^Suc mm =
914      (\<Sum>n\<le>Suc mm. (- a gchoose n) * (- x) ^ n * (x + y) ^ (Suc mm - n))"
915    by simp
916  finally show ?case
917    by (simp only: S_def)
918qed
919
920lemma gbinomial_partial_sum_poly_xpos:
921    "(\<Sum>k\<le>m. (of_nat m + a gchoose k) * x^k * y^(m-k)) =
922     (\<Sum>k\<le>m. (of_nat k + a - 1 gchoose k) * x^k * (x + y)^(m-k))"
923  apply (subst gbinomial_partial_sum_poly)
924  apply (subst gbinomial_negated_upper)
925  apply (intro sum.cong, rule refl)
926  apply (simp add: power_mult_distrib [symmetric])
927  done
928
929lemma binomial_r_part_sum: "(\<Sum>k\<le>m. (2 * m + 1 choose k)) = 2 ^ (2 * m)"
930proof -
931  have "2 * 2^(2*m) = (\<Sum>k = 0..(2 * m + 1). (2 * m + 1 choose k))"
932    using choose_row_sum[where n="2 * m + 1"]  by (simp add: atMost_atLeast0)
933  also have "(\<Sum>k = 0..(2 * m + 1). (2 * m + 1 choose k)) =
934      (\<Sum>k = 0..m. (2 * m + 1 choose k)) +
935      (\<Sum>k = m+1..2*m+1. (2 * m + 1 choose k))"
936    using sum.ub_add_nat[of 0 m "\<lambda>k. 2 * m + 1 choose k" "m+1"]
937    by (simp add: mult_2)
938  also have "(\<Sum>k = m+1..2*m+1. (2 * m + 1 choose k)) =
939      (\<Sum>k = 0..m. (2 * m + 1 choose (k + (m + 1))))"
940    by (subst sum.shift_bounds_cl_nat_ivl [symmetric]) (simp add: mult_2)
941  also have "\<dots> = (\<Sum>k = 0..m. (2 * m + 1 choose (m - k)))"
942    by (intro sum.cong[OF refl], subst binomial_symmetric) simp_all
943  also have "\<dots> = (\<Sum>k = 0..m. (2 * m + 1 choose k))"
944    using sum.atLeastAtMost_rev [of "\<lambda>k. 2 * m + 1 choose (m - k)" 0 m]
945    by simp
946  also have "\<dots> + \<dots> = 2 * \<dots>"
947    by simp
948  finally show ?thesis
949    by (subst (asm) mult_cancel1) (simp add: atLeast0AtMost)
950qed
951
952lemma gbinomial_r_part_sum: "(\<Sum>k\<le>m. (2 * (of_nat m) + 1 gchoose k)) = 2 ^ (2 * m)"
953  (is "?lhs = ?rhs")
954proof -
955  have "?lhs = of_nat (\<Sum>k\<le>m. (2 * m + 1) choose k)"
956    by (simp add: binomial_gbinomial add_ac)
957  also have "\<dots> = of_nat (2 ^ (2 * m))"
958    by (subst binomial_r_part_sum) (rule refl)
959  finally show ?thesis by simp
960qed
961
962lemma gbinomial_sum_nat_pow2:
963  "(\<Sum>k\<le>m. (of_nat (m + k) gchoose k :: 'a::field_char_0) / 2 ^ k) = 2 ^ m"
964  (is "?lhs = ?rhs")
965proof -
966  have "2 ^ m * 2 ^ m = (2 ^ (2*m) :: 'a)"
967    by (induct m) simp_all
968  also have "\<dots> = (\<Sum>k\<le>m. (2 * (of_nat m) + 1 gchoose k))"
969    using gbinomial_r_part_sum ..
970  also have "\<dots> = (\<Sum>k\<le>m. (of_nat (m + k) gchoose k) * 2 ^ (m - k))"
971    using gbinomial_partial_sum_poly_xpos[where x="1" and y="1" and a="of_nat m + 1" and m="m"]
972    by (simp add: add_ac)
973  also have "\<dots> = 2 ^ m * (\<Sum>k\<le>m. (of_nat (m + k) gchoose k) / 2 ^ k)"
974    by (subst sum_distrib_left) (simp add: algebra_simps power_diff)
975  finally show ?thesis
976    by (subst (asm) mult_left_cancel) simp_all
977qed
978
979lemma gbinomial_trinomial_revision:
980  assumes "k \<le> m"
981  shows "(a gchoose m) * (of_nat m gchoose k) = (a gchoose k) * (a - of_nat k gchoose (m - k))"
982proof -
983  have "(a gchoose m) * (of_nat m gchoose k) = (a gchoose m) * fact m / (fact k * fact (m - k))"
984    using assms by (simp add: binomial_gbinomial [symmetric] binomial_fact)
985  also have "\<dots> = (a gchoose k) * (a - of_nat k gchoose (m - k))"
986    using assms by (simp add: gbinomial_pochhammer power_diff pochhammer_product)
987  finally show ?thesis .
988qed
989
990text \<open>Versions of the theorems above for the natural-number version of "choose"\<close>
991lemma binomial_altdef_of_nat:
992  "k \<le> n \<Longrightarrow> of_nat (n choose k) = (\<Prod>i = 0..<k. of_nat (n - i) / of_nat (k - i) :: 'a)"
993  for n k :: nat and x :: "'a::field_char_0"
994  by (simp add: gbinomial_altdef_of_nat binomial_gbinomial of_nat_diff)
995
996lemma binomial_ge_n_over_k_pow_k: "k \<le> n \<Longrightarrow> (of_nat n / of_nat k :: 'a) ^ k \<le> of_nat (n choose k)"
997  for k n :: nat and x :: "'a::linordered_field"
998  by (simp add: gbinomial_ge_n_over_k_pow_k binomial_gbinomial of_nat_diff)
999
1000lemma binomial_le_pow:
1001  assumes "r \<le> n"
1002  shows "n choose r \<le> n ^ r"
1003proof -
1004  have "n choose r \<le> fact n div fact (n - r)"
1005    using assms by (subst binomial_fact_lemma[symmetric]) auto
1006  with fact_div_fact_le_pow [OF assms] show ?thesis
1007    by auto
1008qed
1009
1010lemma binomial_altdef_nat: "k \<le> n \<Longrightarrow> n choose k = fact n div (fact k * fact (n - k))"
1011  for k n :: nat
1012  by (subst binomial_fact_lemma [symmetric]) auto
1013
1014lemma choose_dvd:
1015  "k \<le> n \<Longrightarrow> fact k * fact (n - k) dvd (fact n :: 'a::linordered_semidom)"
1016  unfolding dvd_def
1017  apply (rule exI [where x="of_nat (n choose k)"])
1018  using binomial_fact_lemma [of k n, THEN arg_cong [where f = of_nat and 'b='a]]
1019  apply auto
1020  done
1021
1022lemma fact_fact_dvd_fact:
1023  "fact k * fact n dvd (fact (k + n) :: 'a::linordered_semidom)"
1024  by (metis add.commute add_diff_cancel_left' choose_dvd le_add2)
1025
1026lemma choose_mult_lemma:
1027  "((m + r + k) choose (m + k)) * ((m + k) choose k) = ((m + r + k) choose k) * ((m + r) choose m)"
1028  (is "?lhs = _")
1029proof -
1030  have "?lhs =
1031      fact (m + r + k) div (fact (m + k) * fact (m + r - m)) * (fact (m + k) div (fact k * fact m))"
1032    by (simp add: binomial_altdef_nat)
1033  also have "\<dots> = fact (m + r + k) div (fact r * (fact k * fact m))"
1034    apply (subst div_mult_div_if_dvd)
1035    apply (auto simp: algebra_simps fact_fact_dvd_fact)
1036    apply (metis add.assoc add.commute fact_fact_dvd_fact)
1037    done
1038  also have "\<dots> = (fact (m + r + k) * fact (m + r)) div (fact r * (fact k * fact m) * fact (m + r))"
1039    apply (subst div_mult_div_if_dvd [symmetric])
1040    apply (auto simp add: algebra_simps)
1041    apply (metis fact_fact_dvd_fact dvd_trans nat_mult_dvd_cancel_disj)
1042    done
1043  also have "\<dots> =
1044      (fact (m + r + k) div (fact k * fact (m + r)) * (fact (m + r) div (fact r * fact m)))"
1045    apply (subst div_mult_div_if_dvd)
1046    apply (auto simp: fact_fact_dvd_fact algebra_simps)
1047    done
1048  finally show ?thesis
1049    by (simp add: binomial_altdef_nat mult.commute)
1050qed
1051
1052text \<open>The "Subset of a Subset" identity.\<close>
1053lemma choose_mult:
1054  "k \<le> m \<Longrightarrow> m \<le> n \<Longrightarrow> (n choose m) * (m choose k) = (n choose k) * ((n - k) choose (m - k))"
1055  using choose_mult_lemma [of "m-k" "n-m" k] by simp
1056
1057
1058subsection \<open>More on Binomial Coefficients\<close>
1059
1060lemma choose_one: "n choose 1 = n" for n :: nat
1061  by simp
1062
1063lemma card_UNION:
1064  assumes "finite A"
1065    and "\<forall>k \<in> A. finite k"
1066  shows "card (\<Union>A) = nat (\<Sum>I | I \<subseteq> A \<and> I \<noteq> {}. (- 1) ^ (card I + 1) * int (card (\<Inter>I)))"
1067  (is "?lhs = ?rhs")
1068proof -
1069  have "?rhs = nat (\<Sum>I | I \<subseteq> A \<and> I \<noteq> {}. (- 1) ^ (card I + 1) * (\<Sum>_\<in>\<Inter>I. 1))"
1070    by simp
1071  also have "\<dots> = nat (\<Sum>I | I \<subseteq> A \<and> I \<noteq> {}. (\<Sum>_\<in>\<Inter>I. (- 1) ^ (card I + 1)))"
1072    (is "_ = nat ?rhs")
1073    by (subst sum_distrib_left) simp
1074  also have "?rhs = (\<Sum>(I, _)\<in>Sigma {I. I \<subseteq> A \<and> I \<noteq> {}} Inter. (- 1) ^ (card I + 1))"
1075    using assms by (subst sum.Sigma) auto
1076  also have "\<dots> = (\<Sum>(x, I)\<in>(SIGMA x:UNIV. {I. I \<subseteq> A \<and> I \<noteq> {} \<and> x \<in> \<Inter>I}). (- 1) ^ (card I + 1))"
1077    by (rule sum.reindex_cong [where l = "\<lambda>(x, y). (y, x)"]) (auto intro: inj_onI)
1078  also have "\<dots> = (\<Sum>(x, I)\<in>(SIGMA x:\<Union>A. {I. I \<subseteq> A \<and> I \<noteq> {} \<and> x \<in> \<Inter>I}). (- 1) ^ (card I + 1))"
1079    using assms
1080    by (auto intro!: sum.mono_neutral_cong_right finite_SigmaI2 intro: finite_subset[where B="\<Union>A"])
1081  also have "\<dots> = (\<Sum>x\<in>\<Union>A. (\<Sum>I|I \<subseteq> A \<and> I \<noteq> {} \<and> x \<in> \<Inter>I. (- 1) ^ (card I + 1)))"
1082    using assms by (subst sum.Sigma) auto
1083  also have "\<dots> = (\<Sum>_\<in>\<Union>A. 1)" (is "sum ?lhs _ = _")
1084  proof (rule sum.cong[OF refl])
1085    fix x
1086    assume x: "x \<in> \<Union>A"
1087    define K where "K = {X \<in> A. x \<in> X}"
1088    with \<open>finite A\<close> have K: "finite K"
1089      by auto
1090    let ?I = "\<lambda>i. {I. I \<subseteq> A \<and> card I = i \<and> x \<in> \<Inter>I}"
1091    have "inj_on snd (SIGMA i:{1..card A}. ?I i)"
1092      using assms by (auto intro!: inj_onI)
1093    moreover have [symmetric]: "snd ` (SIGMA i:{1..card A}. ?I i) = {I. I \<subseteq> A \<and> I \<noteq> {} \<and> x \<in> \<Inter>I}"
1094      using assms
1095      by (auto intro!: rev_image_eqI[where x="(card a, a)" for a]
1096        simp add: card_gt_0_iff[folded Suc_le_eq]
1097        dest: finite_subset intro: card_mono)
1098    ultimately have "?lhs x = (\<Sum>(i, I)\<in>(SIGMA i:{1..card A}. ?I i). (- 1) ^ (i + 1))"
1099      by (rule sum.reindex_cong [where l = snd]) fastforce
1100    also have "\<dots> = (\<Sum>i=1..card A. (\<Sum>I|I \<subseteq> A \<and> card I = i \<and> x \<in> \<Inter>I. (- 1) ^ (i + 1)))"
1101      using assms by (subst sum.Sigma) auto
1102    also have "\<dots> = (\<Sum>i=1..card A. (- 1) ^ (i + 1) * (\<Sum>I|I \<subseteq> A \<and> card I = i \<and> x \<in> \<Inter>I. 1))"
1103      by (subst sum_distrib_left) simp
1104    also have "\<dots> = (\<Sum>i=1..card K. (- 1) ^ (i + 1) * (\<Sum>I|I \<subseteq> K \<and> card I = i. 1))"
1105      (is "_ = ?rhs")
1106    proof (rule sum.mono_neutral_cong_right[rule_format])
1107      show "finite {1..card A}"
1108        by simp
1109      show "{1..card K} \<subseteq> {1..card A}"
1110        using \<open>finite A\<close> by (auto simp add: K_def intro: card_mono)
1111    next
1112      fix i
1113      assume "i \<in> {1..card A} - {1..card K}"
1114      then have i: "i \<le> card A" "card K < i"
1115        by auto
1116      have "{I. I \<subseteq> A \<and> card I = i \<and> x \<in> \<Inter>I} = {I. I \<subseteq> K \<and> card I = i}"
1117        by (auto simp add: K_def)
1118      also have "\<dots> = {}"
1119        using \<open>finite A\<close> i by (auto simp add: K_def dest: card_mono[rotated 1])
1120      finally show "(- 1) ^ (i + 1) * (\<Sum>I | I \<subseteq> A \<and> card I = i \<and> x \<in> \<Inter>I. 1 :: int) = 0"
1121        by (simp only:) simp
1122    next
1123      fix i
1124      have "(\<Sum>I | I \<subseteq> A \<and> card I = i \<and> x \<in> \<Inter>I. 1) = (\<Sum>I | I \<subseteq> K \<and> card I = i. 1 :: int)"
1125        (is "?lhs = ?rhs")
1126        by (rule sum.cong) (auto simp add: K_def)
1127      then show "(- 1) ^ (i + 1) * ?lhs = (- 1) ^ (i + 1) * ?rhs"
1128        by simp
1129    qed
1130    also have "{I. I \<subseteq> K \<and> card I = 0} = {{}}"
1131      using assms by (auto simp add: card_eq_0_iff K_def dest: finite_subset)
1132    then have "?rhs = (\<Sum>i = 0..card K. (- 1) ^ (i + 1) * (\<Sum>I | I \<subseteq> K \<and> card I = i. 1 :: int)) + 1"
1133      by (subst (2) sum.atLeast_Suc_atMost) simp_all
1134    also have "\<dots> = (\<Sum>i = 0..card K. (- 1) * ((- 1) ^ i * int (card K choose i))) + 1"
1135      using K by (subst n_subsets[symmetric]) simp_all
1136    also have "\<dots> = - (\<Sum>i = 0..card K. (- 1) ^ i * int (card K choose i)) + 1"
1137      by (subst sum_distrib_left[symmetric]) simp
1138    also have "\<dots> =  - ((-1 + 1) ^ card K) + 1"
1139      by (subst binomial_ring) (simp add: ac_simps atMost_atLeast0)
1140    also have "\<dots> = 1"
1141      using x K by (auto simp add: K_def card_gt_0_iff)
1142    finally show "?lhs x = 1" .
1143  qed
1144  also have "nat \<dots> = card (\<Union>A)"
1145    by simp
1146  finally show ?thesis ..
1147qed
1148
1149text \<open>The number of nat lists of length \<open>m\<close> summing to \<open>N\<close> is \<^term>\<open>(N + m - 1) choose N\<close>:\<close>
1150lemma card_length_sum_list_rec:
1151  assumes "m \<ge> 1"
1152  shows "card {l::nat list. length l = m \<and> sum_list l = N} =
1153      card {l. length l = (m - 1) \<and> sum_list l = N} +
1154      card {l. length l = m \<and> sum_list l + 1 = N}"
1155    (is "card ?C = card ?A + card ?B")
1156proof -
1157  let ?A' = "{l. length l = m \<and> sum_list l = N \<and> hd l = 0}"
1158  let ?B' = "{l. length l = m \<and> sum_list l = N \<and> hd l \<noteq> 0}"
1159  let ?f = "\<lambda>l. 0 # l"
1160  let ?g = "\<lambda>l. (hd l + 1) # tl l"
1161  have 1: "xs \<noteq> [] \<Longrightarrow> x = hd xs \<Longrightarrow> x # tl xs = xs" for x :: nat and xs
1162    by simp
1163  have 2: "xs \<noteq> [] \<Longrightarrow> sum_list(tl xs) = sum_list xs - hd xs" for xs :: "nat list"
1164    by (auto simp add: neq_Nil_conv)
1165  have f: "bij_betw ?f ?A ?A'"
1166    apply (rule bij_betw_byWitness[where f' = tl])
1167    using assms
1168    apply (auto simp: 2 length_0_conv[symmetric] 1 simp del: length_0_conv)
1169    done
1170  have 3: "xs \<noteq> [] \<Longrightarrow> hd xs + (sum_list xs - hd xs) = sum_list xs" for xs :: "nat list"
1171    by (metis 1 sum_list_simps(2) 2)
1172  have g: "bij_betw ?g ?B ?B'"
1173    apply (rule bij_betw_byWitness[where f' = "\<lambda>l. (hd l - 1) # tl l"])
1174    using assms
1175    by (auto simp: 2 length_0_conv[symmetric] intro!: 3
1176        simp del: length_greater_0_conv length_0_conv)
1177  have fin: "finite {xs. size xs = M \<and> set xs \<subseteq> {0..<N}}" for M N :: nat
1178    using finite_lists_length_eq[OF finite_atLeastLessThan] conj_commute by auto
1179  have fin_A: "finite ?A" using fin[of _ "N+1"]
1180    by (intro finite_subset[where ?A = "?A" and ?B = "{xs. size xs = m - 1 \<and> set xs \<subseteq> {0..<N+1}}"])
1181      (auto simp: member_le_sum_list less_Suc_eq_le)
1182  have fin_B: "finite ?B"
1183    by (intro finite_subset[where ?A = "?B" and ?B = "{xs. size xs = m \<and> set xs \<subseteq> {0..<N}}"])
1184      (auto simp: member_le_sum_list less_Suc_eq_le fin)
1185  have uni: "?C = ?A' \<union> ?B'"
1186    by auto
1187  have disj: "?A' \<inter> ?B' = {}" by blast
1188  have "card ?C = card(?A' \<union> ?B')"
1189    using uni by simp
1190  also have "\<dots> = card ?A + card ?B"
1191    using card_Un_disjoint[OF _ _ disj] bij_betw_finite[OF f] bij_betw_finite[OF g]
1192      bij_betw_same_card[OF f] bij_betw_same_card[OF g] fin_A fin_B
1193    by presburger
1194  finally show ?thesis .
1195qed
1196
1197lemma card_length_sum_list: "card {l::nat list. size l = m \<and> sum_list l = N} = (N + m - 1) choose N"
1198  \<comment> \<open>by Holden Lee, tidied by Tobias Nipkow\<close>
1199proof (cases m)
1200  case 0
1201  then show ?thesis
1202    by (cases N) (auto cong: conj_cong)
1203next
1204  case (Suc m')
1205  have m: "m \<ge> 1"
1206    by (simp add: Suc)
1207  then show ?thesis
1208  proof (induct "N + m - 1" arbitrary: N m)
1209    case 0  \<comment> \<open>In the base case, the only solution is [0].\<close>
1210    have [simp]: "{l::nat list. length l = Suc 0 \<and> (\<forall>n\<in>set l. n = 0)} = {[0]}"
1211      by (auto simp: length_Suc_conv)
1212    have "m = 1 \<and> N = 0"
1213      using 0 by linarith
1214    then show ?case
1215      by simp
1216  next
1217    case (Suc k)
1218    have c1: "card {l::nat list. size l = (m - 1) \<and> sum_list l =  N} = (N + (m - 1) - 1) choose N"
1219    proof (cases "m = 1")
1220      case True
1221      with Suc.hyps have "N \<ge> 1"
1222        by auto
1223      with True show ?thesis
1224        by (simp add: binomial_eq_0)
1225    next
1226      case False
1227      then show ?thesis
1228        using Suc by fastforce
1229    qed
1230    from Suc have c2: "card {l::nat list. size l = m \<and> sum_list l + 1 = N} =
1231      (if N > 0 then ((N - 1) + m - 1) choose (N - 1) else 0)"
1232    proof -
1233      have *: "n > 0 \<Longrightarrow> Suc m = n \<longleftrightarrow> m = n - 1" for m n
1234        by arith
1235      from Suc have "N > 0 \<Longrightarrow>
1236        card {l::nat list. size l = m \<and> sum_list l + 1 = N} =
1237          ((N - 1) + m - 1) choose (N - 1)"
1238        by (simp add: *)
1239      then show ?thesis
1240        by auto
1241    qed
1242    from Suc.prems have "(card {l::nat list. size l = (m - 1) \<and> sum_list l = N} +
1243          card {l::nat list. size l = m \<and> sum_list l + 1 = N}) = (N + m - 1) choose N"
1244      by (auto simp: c1 c2 choose_reduce_nat[of "N + m - 1" N] simp del: One_nat_def)
1245    then show ?case
1246      using card_length_sum_list_rec[OF Suc.prems] by auto
1247  qed
1248qed
1249
1250lemma card_disjoint_shuffles:
1251  assumes "set xs \<inter> set ys = {}"
1252  shows   "card (shuffles xs ys) = (length xs + length ys) choose length xs"
1253using assms
1254proof (induction xs ys rule: shuffles.induct)
1255  case (3 x xs y ys)
1256  have "shuffles (x # xs) (y # ys) = (#) x ` shuffles xs (y # ys) \<union> (#) y ` shuffles (x # xs) ys"
1257    by (rule shuffles.simps)
1258  also have "card \<dots> = card ((#) x ` shuffles xs (y # ys)) + card ((#) y ` shuffles (x # xs) ys)"
1259    by (rule card_Un_disjoint) (insert "3.prems", auto)
1260  also have "card ((#) x ` shuffles xs (y # ys)) = card (shuffles xs (y # ys))"
1261    by (rule card_image) auto
1262  also have "\<dots> = (length xs + length (y # ys)) choose length xs"
1263    using "3.prems" by (intro "3.IH") auto
1264  also have "card ((#) y ` shuffles (x # xs) ys) = card (shuffles (x # xs) ys)"
1265    by (rule card_image) auto
1266  also have "\<dots> = (length (x # xs) + length ys) choose length (x # xs)"
1267    using "3.prems" by (intro "3.IH") auto
1268  also have "length xs + length (y # ys) choose length xs + \<dots> =
1269               (length (x # xs) + length (y # ys)) choose length (x # xs)" by simp
1270  finally show ?case .
1271qed auto
1272
1273lemma Suc_times_binomial_add: "Suc a * (Suc (a + b) choose Suc a) = Suc b * (Suc (a + b) choose a)"
1274  \<comment> \<open>by Lukas Bulwahn\<close>
1275proof -
1276  have dvd: "Suc a * (fact a * fact b) dvd fact (Suc (a + b))" for a b
1277    using fact_fact_dvd_fact[of "Suc a" "b", where 'a=nat]
1278    by (simp only: fact_Suc add_Suc[symmetric] of_nat_id mult.assoc)
1279  have "Suc a * (fact (Suc (a + b)) div (Suc a * fact a * fact b)) =
1280      Suc a * fact (Suc (a + b)) div (Suc a * (fact a * fact b))"
1281    by (subst div_mult_swap[symmetric]; simp only: mult.assoc dvd)
1282  also have "\<dots> = Suc b * fact (Suc (a + b)) div (Suc b * (fact a * fact b))"
1283    by (simp only: div_mult_mult1)
1284  also have "\<dots> = Suc b * (fact (Suc (a + b)) div (Suc b * (fact a * fact b)))"
1285    using dvd[of b a] by (subst div_mult_swap[symmetric]; simp only: ac_simps dvd)
1286  finally show ?thesis
1287    by (subst (1 2) binomial_altdef_nat)
1288      (simp_all only: ac_simps diff_Suc_Suc Suc_diff_le diff_add_inverse fact_Suc of_nat_id)
1289qed
1290
1291
1292subsection \<open>Executable code\<close>
1293
1294lemma gbinomial_code [code]:
1295  "a gchoose k =
1296    (if k = 0 then 1
1297     else fold_atLeastAtMost_nat (\<lambda>k acc. (a - of_nat k) * acc) 0 (k - 1) 1 / fact k)"
1298  by (cases k)
1299    (simp_all add: gbinomial_prod_rev prod_atLeastAtMost_code [symmetric]
1300      atLeastLessThanSuc_atLeastAtMost)
1301
1302lemma binomial_code [code]:
1303  "n choose k =
1304      (if k > n then 0
1305       else if 2 * k > n then n choose (n - k)
1306       else (fold_atLeastAtMost_nat (*) (n - k + 1) n 1 div fact k))"
1307proof -
1308  {
1309    assume "k \<le> n"
1310    then have "{1..n} = {1..n-k} \<union> {n-k+1..n}" by auto
1311    then have "(fact n :: nat) = fact (n-k) * \<Prod>{n-k+1..n}"
1312      by (simp add: prod.union_disjoint fact_prod)
1313  }
1314  then show ?thesis by (auto simp: binomial_altdef_nat mult_ac prod_atLeastAtMost_code)
1315qed
1316
1317end
1318