1(*  Title:      HOL/Set_Interval.thy
2    Author:     Tobias Nipkow
3    Author:     Clemens Ballarin
4    Author:     Jeremy Avigad
5
6lessThan, greaterThan, atLeast, atMost and two-sided intervals
7
8Modern convention: Ixy stands for an interval where x and y
9describe the lower and upper bound and x,y : {c,o,i}
10where c = closed, o = open, i = infinite.
11Examples: Ico = {_ ..< _} and Ici = {_ ..}
12*)
13
14section \<open>Set intervals\<close>
15
16theory Set_Interval
17imports Divides
18begin
19
20context ord
21begin
22
23definition
24  lessThan    :: "'a => 'a set" ("(1{..<_})") where
25  "{..<u} == {x. x < u}"
26
27definition
28  atMost      :: "'a => 'a set" ("(1{.._})") where
29  "{..u} == {x. x \<le> u}"
30
31definition
32  greaterThan :: "'a => 'a set" ("(1{_<..})") where
33  "{l<..} == {x. l<x}"
34
35definition
36  atLeast     :: "'a => 'a set" ("(1{_..})") where
37  "{l..} == {x. l\<le>x}"
38
39definition
40  greaterThanLessThan :: "'a => 'a => 'a set"  ("(1{_<..<_})") where
41  "{l<..<u} == {l<..} Int {..<u}"
42
43definition
44  atLeastLessThan :: "'a => 'a => 'a set"      ("(1{_..<_})") where
45  "{l..<u} == {l..} Int {..<u}"
46
47definition
48  greaterThanAtMost :: "'a => 'a => 'a set"    ("(1{_<.._})") where
49  "{l<..u} == {l<..} Int {..u}"
50
51definition
52  atLeastAtMost :: "'a => 'a => 'a set"        ("(1{_.._})") where
53  "{l..u} == {l..} Int {..u}"
54
55end
56
57
58text\<open>A note of warning when using @{term"{..<n}"} on type @{typ
59nat}: it is equivalent to @{term"{0::nat..<n}"} but some lemmas involving
60@{term"{m..<n}"} may not exist in @{term"{..<n}"}-form as well.\<close>
61
62syntax (ASCII)
63  "_UNION_le"   :: "'a => 'a => 'b set => 'b set"       ("(3UN _<=_./ _)" [0, 0, 10] 10)
64  "_UNION_less" :: "'a => 'a => 'b set => 'b set"       ("(3UN _<_./ _)" [0, 0, 10] 10)
65  "_INTER_le"   :: "'a => 'a => 'b set => 'b set"       ("(3INT _<=_./ _)" [0, 0, 10] 10)
66  "_INTER_less" :: "'a => 'a => 'b set => 'b set"       ("(3INT _<_./ _)" [0, 0, 10] 10)
67
68syntax (latex output)
69  "_UNION_le"   :: "'a \<Rightarrow> 'a => 'b set => 'b set"       ("(3\<Union>(\<open>unbreakable\<close>_ \<le> _)/ _)" [0, 0, 10] 10)
70  "_UNION_less" :: "'a \<Rightarrow> 'a => 'b set => 'b set"       ("(3\<Union>(\<open>unbreakable\<close>_ < _)/ _)" [0, 0, 10] 10)
71  "_INTER_le"   :: "'a \<Rightarrow> 'a => 'b set => 'b set"       ("(3\<Inter>(\<open>unbreakable\<close>_ \<le> _)/ _)" [0, 0, 10] 10)
72  "_INTER_less" :: "'a \<Rightarrow> 'a => 'b set => 'b set"       ("(3\<Inter>(\<open>unbreakable\<close>_ < _)/ _)" [0, 0, 10] 10)
73
74syntax
75  "_UNION_le"   :: "'a => 'a => 'b set => 'b set"       ("(3\<Union>_\<le>_./ _)" [0, 0, 10] 10)
76  "_UNION_less" :: "'a => 'a => 'b set => 'b set"       ("(3\<Union>_<_./ _)" [0, 0, 10] 10)
77  "_INTER_le"   :: "'a => 'a => 'b set => 'b set"       ("(3\<Inter>_\<le>_./ _)" [0, 0, 10] 10)
78  "_INTER_less" :: "'a => 'a => 'b set => 'b set"       ("(3\<Inter>_<_./ _)" [0, 0, 10] 10)
79
80translations
81  "\<Union>i\<le>n. A" \<rightleftharpoons> "\<Union>i\<in>{..n}. A"
82  "\<Union>i<n. A" \<rightleftharpoons> "\<Union>i\<in>{..<n}. A"
83  "\<Inter>i\<le>n. A" \<rightleftharpoons> "\<Inter>i\<in>{..n}. A"
84  "\<Inter>i<n. A" \<rightleftharpoons> "\<Inter>i\<in>{..<n}. A"
85
86
87subsection \<open>Various equivalences\<close>
88
89lemma (in ord) lessThan_iff [iff]: "(i \<in> lessThan k) = (i<k)"
90by (simp add: lessThan_def)
91
92lemma Compl_lessThan [simp]:
93    "!!k:: 'a::linorder. -lessThan k = atLeast k"
94  by (auto simp add: lessThan_def atLeast_def)
95
96lemma single_Diff_lessThan [simp]: "!!k:: 'a::order. {k} - lessThan k = {k}"
97  by auto
98
99lemma (in ord) greaterThan_iff [iff]: "(i \<in> greaterThan k) = (k<i)"
100  by (simp add: greaterThan_def)
101
102lemma Compl_greaterThan [simp]:
103    "!!k:: 'a::linorder. -greaterThan k = atMost k"
104  by (auto simp add: greaterThan_def atMost_def)
105
106lemma Compl_atMost [simp]: "!!k:: 'a::linorder. -atMost k = greaterThan k"
107  apply (subst Compl_greaterThan [symmetric])
108  apply (rule double_complement)
109  done
110
111lemma (in ord) atLeast_iff [iff]: "(i \<in> atLeast k) = (k<=i)"
112by (simp add: atLeast_def)
113
114lemma Compl_atLeast [simp]: "!!k:: 'a::linorder. -atLeast k = lessThan k"
115  by (auto simp add: lessThan_def atLeast_def)
116
117lemma (in ord) atMost_iff [iff]: "(i \<in> atMost k) = (i<=k)"
118by (simp add: atMost_def)
119
120lemma atMost_Int_atLeast: "!!n:: 'a::order. atMost n Int atLeast n = {n}"
121by (blast intro: order_antisym)
122
123lemma (in linorder) lessThan_Int_lessThan: "{ a <..} \<inter> { b <..} = { max a b <..}"
124  by auto
125
126lemma (in linorder) greaterThan_Int_greaterThan: "{..< a} \<inter> {..< b} = {..< min a b}"
127  by auto
128
129subsection \<open>Logical Equivalences for Set Inclusion and Equality\<close>
130
131lemma atLeast_empty_triv [simp]: "{{}..} = UNIV"
132  by auto
133
134lemma atMost_UNIV_triv [simp]: "{..UNIV} = UNIV"
135  by auto
136
137lemma atLeast_subset_iff [iff]:
138     "(atLeast x \<subseteq> atLeast y) = (y \<le> (x::'a::order))"
139by (blast intro: order_trans)
140
141lemma atLeast_eq_iff [iff]:
142     "(atLeast x = atLeast y) = (x = (y::'a::linorder))"
143by (blast intro: order_antisym order_trans)
144
145lemma greaterThan_subset_iff [iff]:
146     "(greaterThan x \<subseteq> greaterThan y) = (y \<le> (x::'a::linorder))"
147  unfolding greaterThan_def by (auto simp: linorder_not_less [symmetric])
148
149lemma greaterThan_eq_iff [iff]:
150     "(greaterThan x = greaterThan y) = (x = (y::'a::linorder))"
151  by (auto simp: elim!: equalityE)
152
153lemma atMost_subset_iff [iff]: "(atMost x \<subseteq> atMost y) = (x \<le> (y::'a::order))"
154  by (blast intro: order_trans)
155
156lemma atMost_eq_iff [iff]: "(atMost x = atMost y) = (x = (y::'a::linorder))"
157  by (blast intro: order_antisym order_trans)
158
159lemma lessThan_subset_iff [iff]:
160     "(lessThan x \<subseteq> lessThan y) = (x \<le> (y::'a::linorder))"
161  unfolding lessThan_def by (auto simp: linorder_not_less [symmetric])
162
163lemma lessThan_eq_iff [iff]:
164     "(lessThan x = lessThan y) = (x = (y::'a::linorder))"
165  by (auto simp: elim!: equalityE)
166
167lemma lessThan_strict_subset_iff:
168  fixes m n :: "'a::linorder"
169  shows "{..<m} < {..<n} \<longleftrightarrow> m < n"
170  by (metis leD lessThan_subset_iff linorder_linear not_less_iff_gr_or_eq psubset_eq)
171
172lemma (in linorder) Ici_subset_Ioi_iff: "{a ..} \<subseteq> {b <..} \<longleftrightarrow> b < a"
173  by auto
174
175lemma (in linorder) Iic_subset_Iio_iff: "{.. a} \<subseteq> {..< b} \<longleftrightarrow> a < b"
176  by auto
177
178lemma (in preorder) Ioi_le_Ico: "{a <..} \<subseteq> {a ..}"
179  by (auto intro: less_imp_le)
180
181subsection \<open>Two-sided intervals\<close>
182
183context ord
184begin
185
186lemma greaterThanLessThan_iff [simp]: "(i \<in> {l<..<u}) = (l < i \<and> i < u)"
187  by (simp add: greaterThanLessThan_def)
188
189lemma atLeastLessThan_iff [simp]: "(i \<in> {l..<u}) = (l \<le> i \<and> i < u)"
190  by (simp add: atLeastLessThan_def)
191
192lemma greaterThanAtMost_iff [simp]: "(i \<in> {l<..u}) = (l < i \<and> i \<le> u)"
193  by (simp add: greaterThanAtMost_def)
194
195lemma atLeastAtMost_iff [simp]: "(i \<in> {l..u}) = (l \<le> i \<and> i \<le> u)"
196  by (simp add: atLeastAtMost_def)
197
198text \<open>The above four lemmas could be declared as iffs. Unfortunately this
199breaks many proofs. Since it only helps blast, it is better to leave them
200alone.\<close>
201
202lemma greaterThanLessThan_eq: "{ a <..< b} = { a <..} \<inter> {..< b }"
203  by auto
204
205lemma (in order) atLeastLessThan_eq_atLeastAtMost_diff:
206  "{a..<b} = {a..b} - {b}"
207  by (auto simp add: atLeastLessThan_def atLeastAtMost_def)
208
209lemma (in order) greaterThanAtMost_eq_atLeastAtMost_diff:
210  "{a<..b} = {a..b} - {a}"
211  by (auto simp add: greaterThanAtMost_def atLeastAtMost_def)
212
213end
214
215subsubsection\<open>Emptyness, singletons, subset\<close>
216
217context order
218begin
219
220lemma atLeastatMost_empty[simp]:
221  "b < a \<Longrightarrow> {a..b} = {}"
222by(auto simp: atLeastAtMost_def atLeast_def atMost_def)
223
224lemma atLeastatMost_empty_iff[simp]:
225  "{a..b} = {} \<longleftrightarrow> (\<not> a \<le> b)"
226by auto (blast intro: order_trans)
227
228lemma atLeastatMost_empty_iff2[simp]:
229  "{} = {a..b} \<longleftrightarrow> (\<not> a \<le> b)"
230by auto (blast intro: order_trans)
231
232lemma atLeastLessThan_empty[simp]:
233  "b <= a \<Longrightarrow> {a..<b} = {}"
234by(auto simp: atLeastLessThan_def)
235
236lemma atLeastLessThan_empty_iff[simp]:
237  "{a..<b} = {} \<longleftrightarrow> (\<not> a < b)"
238by auto (blast intro: le_less_trans)
239
240lemma atLeastLessThan_empty_iff2[simp]:
241  "{} = {a..<b} \<longleftrightarrow> (\<not> a < b)"
242by auto (blast intro: le_less_trans)
243
244lemma greaterThanAtMost_empty[simp]: "l \<le> k ==> {k<..l} = {}"
245by(auto simp:greaterThanAtMost_def greaterThan_def atMost_def)
246
247lemma greaterThanAtMost_empty_iff[simp]: "{k<..l} = {} \<longleftrightarrow> \<not> k < l"
248by auto (blast intro: less_le_trans)
249
250lemma greaterThanAtMost_empty_iff2[simp]: "{} = {k<..l} \<longleftrightarrow> \<not> k < l"
251by auto (blast intro: less_le_trans)
252
253lemma greaterThanLessThan_empty[simp]:"l \<le> k ==> {k<..<l} = {}"
254by(auto simp:greaterThanLessThan_def greaterThan_def lessThan_def)
255
256lemma atLeastAtMost_singleton [simp]: "{a..a} = {a}"
257by (auto simp add: atLeastAtMost_def atMost_def atLeast_def)
258
259lemma atLeastAtMost_singleton': "a = b \<Longrightarrow> {a .. b} = {a}" by simp
260
261lemma atLeastatMost_subset_iff[simp]:
262  "{a..b} \<le> {c..d} \<longleftrightarrow> (\<not> a \<le> b) \<or> c \<le> a \<and> b \<le> d"
263unfolding atLeastAtMost_def atLeast_def atMost_def
264by (blast intro: order_trans)
265
266lemma atLeastatMost_psubset_iff:
267  "{a..b} < {c..d} \<longleftrightarrow>
268   ((\<not> a \<le> b) \<or> c \<le> a \<and> b \<le> d \<and> (c < a \<or> b < d)) \<and> c \<le> d"
269by(simp add: psubset_eq set_eq_iff less_le_not_le)(blast intro: order_trans)
270
271lemma Icc_eq_Icc[simp]:
272  "{l..h} = {l'..h'} = (l=l' \<and> h=h' \<or> \<not> l\<le>h \<and> \<not> l'\<le>h')"
273by(simp add: order_class.eq_iff)(auto intro: order_trans)
274
275lemma atLeastAtMost_singleton_iff[simp]:
276  "{a .. b} = {c} \<longleftrightarrow> a = b \<and> b = c"
277proof
278  assume "{a..b} = {c}"
279  hence *: "\<not> (\<not> a \<le> b)" unfolding atLeastatMost_empty_iff[symmetric] by simp
280  with \<open>{a..b} = {c}\<close> have "c \<le> a \<and> b \<le> c" by auto
281  with * show "a = b \<and> b = c" by auto
282qed simp
283
284lemma Icc_subset_Ici_iff[simp]:
285  "{l..h} \<subseteq> {l'..} = (\<not> l\<le>h \<or> l\<ge>l')"
286by(auto simp: subset_eq intro: order_trans)
287
288lemma Icc_subset_Iic_iff[simp]:
289  "{l..h} \<subseteq> {..h'} = (\<not> l\<le>h \<or> h\<le>h')"
290by(auto simp: subset_eq intro: order_trans)
291
292lemma not_Ici_eq_empty[simp]: "{l..} \<noteq> {}"
293by(auto simp: set_eq_iff)
294
295lemma not_Iic_eq_empty[simp]: "{..h} \<noteq> {}"
296by(auto simp: set_eq_iff)
297
298lemmas not_empty_eq_Ici_eq_empty[simp] = not_Ici_eq_empty[symmetric]
299lemmas not_empty_eq_Iic_eq_empty[simp] = not_Iic_eq_empty[symmetric]
300
301end
302
303context no_top
304begin
305
306(* also holds for no_bot but no_top should suffice *)
307lemma not_UNIV_le_Icc[simp]: "\<not> UNIV \<subseteq> {l..h}"
308using gt_ex[of h] by(auto simp: subset_eq less_le_not_le)
309
310lemma not_UNIV_le_Iic[simp]: "\<not> UNIV \<subseteq> {..h}"
311using gt_ex[of h] by(auto simp: subset_eq less_le_not_le)
312
313lemma not_Ici_le_Icc[simp]: "\<not> {l..} \<subseteq> {l'..h'}"
314using gt_ex[of h']
315by(auto simp: subset_eq less_le)(blast dest:antisym_conv intro: order_trans)
316
317lemma not_Ici_le_Iic[simp]: "\<not> {l..} \<subseteq> {..h'}"
318using gt_ex[of h']
319by(auto simp: subset_eq less_le)(blast dest:antisym_conv intro: order_trans)
320
321end
322
323context no_bot
324begin
325
326lemma not_UNIV_le_Ici[simp]: "\<not> UNIV \<subseteq> {l..}"
327using lt_ex[of l] by(auto simp: subset_eq less_le_not_le)
328
329lemma not_Iic_le_Icc[simp]: "\<not> {..h} \<subseteq> {l'..h'}"
330using lt_ex[of l']
331by(auto simp: subset_eq less_le)(blast dest:antisym_conv intro: order_trans)
332
333lemma not_Iic_le_Ici[simp]: "\<not> {..h} \<subseteq> {l'..}"
334using lt_ex[of l']
335by(auto simp: subset_eq less_le)(blast dest:antisym_conv intro: order_trans)
336
337end
338
339
340context no_top
341begin
342
343(* also holds for no_bot but no_top should suffice *)
344lemma not_UNIV_eq_Icc[simp]: "\<not> UNIV = {l'..h'}"
345using gt_ex[of h'] by(auto simp: set_eq_iff  less_le_not_le)
346
347lemmas not_Icc_eq_UNIV[simp] = not_UNIV_eq_Icc[symmetric]
348
349lemma not_UNIV_eq_Iic[simp]: "\<not> UNIV = {..h'}"
350using gt_ex[of h'] by(auto simp: set_eq_iff  less_le_not_le)
351
352lemmas not_Iic_eq_UNIV[simp] = not_UNIV_eq_Iic[symmetric]
353
354lemma not_Icc_eq_Ici[simp]: "\<not> {l..h} = {l'..}"
355unfolding atLeastAtMost_def using not_Ici_le_Iic[of l'] by blast
356
357lemmas not_Ici_eq_Icc[simp] = not_Icc_eq_Ici[symmetric]
358
359(* also holds for no_bot but no_top should suffice *)
360lemma not_Iic_eq_Ici[simp]: "\<not> {..h} = {l'..}"
361using not_Ici_le_Iic[of l' h] by blast
362
363lemmas not_Ici_eq_Iic[simp] = not_Iic_eq_Ici[symmetric]
364
365end
366
367context no_bot
368begin
369
370lemma not_UNIV_eq_Ici[simp]: "\<not> UNIV = {l'..}"
371using lt_ex[of l'] by(auto simp: set_eq_iff  less_le_not_le)
372
373lemmas not_Ici_eq_UNIV[simp] = not_UNIV_eq_Ici[symmetric]
374
375lemma not_Icc_eq_Iic[simp]: "\<not> {l..h} = {..h'}"
376unfolding atLeastAtMost_def using not_Iic_le_Ici[of h'] by blast
377
378lemmas not_Iic_eq_Icc[simp] = not_Icc_eq_Iic[symmetric]
379
380end
381
382
383context dense_linorder
384begin
385
386lemma greaterThanLessThan_empty_iff[simp]:
387  "{ a <..< b } = {} \<longleftrightarrow> b \<le> a"
388  using dense[of a b] by (cases "a < b") auto
389
390lemma greaterThanLessThan_empty_iff2[simp]:
391  "{} = { a <..< b } \<longleftrightarrow> b \<le> a"
392  using dense[of a b] by (cases "a < b") auto
393
394lemma atLeastLessThan_subseteq_atLeastAtMost_iff:
395  "{a ..< b} \<subseteq> { c .. d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b \<le> d)"
396  using dense[of "max a d" "b"]
397  by (force simp: subset_eq Ball_def not_less[symmetric])
398
399lemma greaterThanAtMost_subseteq_atLeastAtMost_iff:
400  "{a <.. b} \<subseteq> { c .. d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b \<le> d)"
401  using dense[of "a" "min c b"]
402  by (force simp: subset_eq Ball_def not_less[symmetric])
403
404lemma greaterThanLessThan_subseteq_atLeastAtMost_iff:
405  "{a <..< b} \<subseteq> { c .. d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b \<le> d)"
406  using dense[of "a" "min c b"] dense[of "max a d" "b"]
407  by (force simp: subset_eq Ball_def not_less[symmetric])
408
409lemma atLeastAtMost_subseteq_atLeastLessThan_iff:
410  "{a .. b} \<subseteq> { c ..< d } \<longleftrightarrow> (a \<le> b \<longrightarrow> c \<le> a \<and> b < d)"
411  using dense[of "max a d" "b"]
412  by (force simp: subset_eq Ball_def not_less[symmetric])
413
414lemma greaterThanLessThan_subseteq_greaterThanLessThan:
415  "{a <..< b} \<subseteq> {c <..< d} \<longleftrightarrow> (a < b \<longrightarrow> a \<ge> c \<and> b \<le> d)"
416  using dense[of "a" "min c b"] dense[of "max a d" "b"]
417  by (force simp: subset_eq Ball_def not_less[symmetric])
418
419lemma greaterThanAtMost_subseteq_atLeastLessThan_iff:
420  "{a <.. b} \<subseteq> { c ..< d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b < d)"
421  using dense[of "a" "min c b"]
422  by (force simp: subset_eq Ball_def not_less[symmetric])
423
424lemma greaterThanLessThan_subseteq_atLeastLessThan_iff:
425  "{a <..< b} \<subseteq> { c ..< d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b \<le> d)"
426  using dense[of "a" "min c b"] dense[of "max a d" "b"]
427  by (force simp: subset_eq Ball_def not_less[symmetric])
428
429lemma greaterThanLessThan_subseteq_greaterThanAtMost_iff:
430  "{a <..< b} \<subseteq> { c <.. d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b \<le> d)"
431  using dense[of "a" "min c b"] dense[of "max a d" "b"]
432  by (force simp: subset_eq Ball_def not_less[symmetric])
433
434end
435
436context no_top
437begin
438
439lemma greaterThan_non_empty[simp]: "{x <..} \<noteq> {}"
440  using gt_ex[of x] by auto
441
442end
443
444context no_bot
445begin
446
447lemma lessThan_non_empty[simp]: "{..< x} \<noteq> {}"
448  using lt_ex[of x] by auto
449
450end
451
452lemma (in linorder) atLeastLessThan_subset_iff:
453  "{a..<b} \<subseteq> {c..<d} \<Longrightarrow> b \<le> a \<or> c\<le>a \<and> b\<le>d"
454  apply (auto simp:subset_eq Ball_def not_le)
455  apply(frule_tac x=a in spec)
456  apply(erule_tac x=d in allE)
457  apply (auto simp: )
458  done
459
460lemma atLeastLessThan_inj:
461  fixes a b c d :: "'a::linorder"
462  assumes eq: "{a ..< b} = {c ..< d}" and "a < b" "c < d"
463  shows "a = c" "b = d"
464using assms by (metis atLeastLessThan_subset_iff eq less_le_not_le linorder_antisym_conv2 subset_refl)+
465
466lemma atLeastLessThan_eq_iff:
467  fixes a b c d :: "'a::linorder"
468  assumes "a < b" "c < d"
469  shows "{a ..< b} = {c ..< d} \<longleftrightarrow> a = c \<and> b = d"
470  using atLeastLessThan_inj assms by auto
471
472lemma (in linorder) Ioc_inj: "{a <.. b} = {c <.. d} \<longleftrightarrow> (b \<le> a \<and> d \<le> c) \<or> a = c \<and> b = d"
473  by (metis eq_iff greaterThanAtMost_empty_iff2 greaterThanAtMost_iff le_cases not_le)
474
475lemma (in order) Iio_Int_singleton: "{..<k} \<inter> {x} = (if x < k then {x} else {})"
476  by auto
477
478lemma (in linorder) Ioc_subset_iff: "{a<..b} \<subseteq> {c<..d} \<longleftrightarrow> (b \<le> a \<or> c \<le> a \<and> b \<le> d)"
479  by (auto simp: subset_eq Ball_def) (metis less_le not_less)
480
481lemma (in order_bot) atLeast_eq_UNIV_iff: "{x..} = UNIV \<longleftrightarrow> x = bot"
482by (auto simp: set_eq_iff intro: le_bot)
483
484lemma (in order_top) atMost_eq_UNIV_iff: "{..x} = UNIV \<longleftrightarrow> x = top"
485by (auto simp: set_eq_iff intro: top_le)
486
487lemma (in bounded_lattice) atLeastAtMost_eq_UNIV_iff:
488  "{x..y} = UNIV \<longleftrightarrow> (x = bot \<and> y = top)"
489by (auto simp: set_eq_iff intro: top_le le_bot)
490
491lemma Iio_eq_empty_iff: "{..< n::'a::{linorder, order_bot}} = {} \<longleftrightarrow> n = bot"
492  by (auto simp: set_eq_iff not_less le_bot)
493
494lemma lessThan_empty_iff: "{..< n::nat} = {} \<longleftrightarrow> n = 0"
495  by (simp add: Iio_eq_empty_iff bot_nat_def)
496
497lemma mono_image_least:
498  assumes f_mono: "mono f" and f_img: "f ` {m ..< n} = {m' ..< n'}" "m < n"
499  shows "f m = m'"
500proof -
501  from f_img have "{m' ..< n'} \<noteq> {}"
502    by (metis atLeastLessThan_empty_iff image_is_empty)
503  with f_img have "m' \<in> f ` {m ..< n}" by auto
504  then obtain k where "f k = m'" "m \<le> k" by auto
505  moreover have "m' \<le> f m" using f_img by auto
506  ultimately show "f m = m'"
507    using f_mono by (auto elim: monoE[where x=m and y=k])
508qed
509
510
511subsection \<open>Infinite intervals\<close>
512
513context dense_linorder
514begin
515
516lemma infinite_Ioo:
517  assumes "a < b"
518  shows "\<not> finite {a<..<b}"
519proof
520  assume fin: "finite {a<..<b}"
521  moreover have ne: "{a<..<b} \<noteq> {}"
522    using \<open>a < b\<close> by auto
523  ultimately have "a < Max {a <..< b}" "Max {a <..< b} < b"
524    using Max_in[of "{a <..< b}"] by auto
525  then obtain x where "Max {a <..< b} < x" "x < b"
526    using dense[of "Max {a<..<b}" b] by auto
527  then have "x \<in> {a <..< b}"
528    using \<open>a < Max {a <..< b}\<close> by auto
529  then have "x \<le> Max {a <..< b}"
530    using fin by auto
531  with \<open>Max {a <..< b} < x\<close> show False by auto
532qed
533
534lemma infinite_Icc: "a < b \<Longrightarrow> \<not> finite {a .. b}"
535  using greaterThanLessThan_subseteq_atLeastAtMost_iff[of a b a b] infinite_Ioo[of a b]
536  by (auto dest: finite_subset)
537
538lemma infinite_Ico: "a < b \<Longrightarrow> \<not> finite {a ..< b}"
539  using greaterThanLessThan_subseteq_atLeastLessThan_iff[of a b a b] infinite_Ioo[of a b]
540  by (auto dest: finite_subset)
541
542lemma infinite_Ioc: "a < b \<Longrightarrow> \<not> finite {a <.. b}"
543  using greaterThanLessThan_subseteq_greaterThanAtMost_iff[of a b a b] infinite_Ioo[of a b]
544  by (auto dest: finite_subset)
545
546lemma infinite_Ioo_iff [simp]: "infinite {a<..<b} \<longleftrightarrow> a < b"
547  using not_less_iff_gr_or_eq by (fastforce simp: infinite_Ioo)
548
549lemma infinite_Icc_iff [simp]: "infinite {a .. b} \<longleftrightarrow> a < b"
550  using not_less_iff_gr_or_eq by (fastforce simp: infinite_Icc)
551
552lemma infinite_Ico_iff [simp]: "infinite {a..<b} \<longleftrightarrow> a < b"
553  using not_less_iff_gr_or_eq by (fastforce simp: infinite_Ico)
554
555lemma infinite_Ioc_iff [simp]: "infinite {a<..b} \<longleftrightarrow> a < b"
556  using not_less_iff_gr_or_eq by (fastforce simp: infinite_Ioc)
557
558end
559
560lemma infinite_Iio: "\<not> finite {..< a :: 'a :: {no_bot, linorder}}"
561proof
562  assume "finite {..< a}"
563  then have *: "\<And>x. x < a \<Longrightarrow> Min {..< a} \<le> x"
564    by auto
565  obtain x where "x < a"
566    using lt_ex by auto
567
568  obtain y where "y < Min {..< a}"
569    using lt_ex by auto
570  also have "Min {..< a} \<le> x"
571    using \<open>x < a\<close> by fact
572  also note \<open>x < a\<close>
573  finally have "Min {..< a} \<le> y"
574    by fact
575  with \<open>y < Min {..< a}\<close> show False by auto
576qed
577
578lemma infinite_Iic: "\<not> finite {.. a :: 'a :: {no_bot, linorder}}"
579  using infinite_Iio[of a] finite_subset[of "{..< a}" "{.. a}"]
580  by (auto simp: subset_eq less_imp_le)
581
582lemma infinite_Ioi: "\<not> finite {a :: 'a :: {no_top, linorder} <..}"
583proof
584  assume "finite {a <..}"
585  then have *: "\<And>x. a < x \<Longrightarrow> x \<le> Max {a <..}"
586    by auto
587
588  obtain y where "Max {a <..} < y"
589    using gt_ex by auto
590
591  obtain x where x: "a < x"
592    using gt_ex by auto
593  also from x have "x \<le> Max {a <..}"
594    by fact
595  also note \<open>Max {a <..} < y\<close>
596  finally have "y \<le> Max { a <..}"
597    by fact
598  with \<open>Max {a <..} < y\<close> show False by auto
599qed
600
601lemma infinite_Ici: "\<not> finite {a :: 'a :: {no_top, linorder} ..}"
602  using infinite_Ioi[of a] finite_subset[of "{a <..}" "{a ..}"]
603  by (auto simp: subset_eq less_imp_le)
604
605subsubsection \<open>Intersection\<close>
606
607context linorder
608begin
609
610lemma Int_atLeastAtMost[simp]: "{a..b} Int {c..d} = {max a c .. min b d}"
611by auto
612
613lemma Int_atLeastAtMostR1[simp]: "{..b} Int {c..d} = {c .. min b d}"
614by auto
615
616lemma Int_atLeastAtMostR2[simp]: "{a..} Int {c..d} = {max a c .. d}"
617by auto
618
619lemma Int_atLeastAtMostL1[simp]: "{a..b} Int {..d} = {a .. min b d}"
620by auto
621
622lemma Int_atLeastAtMostL2[simp]: "{a..b} Int {c..} = {max a c .. b}"
623by auto
624
625lemma Int_atLeastLessThan[simp]: "{a..<b} Int {c..<d} = {max a c ..< min b d}"
626by auto
627
628lemma Int_greaterThanAtMost[simp]: "{a<..b} Int {c<..d} = {max a c <.. min b d}"
629by auto
630
631lemma Int_greaterThanLessThan[simp]: "{a<..<b} Int {c<..<d} = {max a c <..< min b d}"
632by auto
633
634lemma Int_atMost[simp]: "{..a} \<inter> {..b} = {.. min a b}"
635  by (auto simp: min_def)
636
637lemma Ioc_disjoint: "{a<..b} \<inter> {c<..d} = {} \<longleftrightarrow> b \<le> a \<or> d \<le> c \<or> b \<le> c \<or> d \<le> a"
638  by auto
639
640end
641
642context complete_lattice
643begin
644
645lemma
646  shows Sup_atLeast[simp]: "Sup {x ..} = top"
647    and Sup_greaterThanAtLeast[simp]: "x < top \<Longrightarrow> Sup {x <..} = top"
648    and Sup_atMost[simp]: "Sup {.. y} = y"
649    and Sup_atLeastAtMost[simp]: "x \<le> y \<Longrightarrow> Sup { x .. y} = y"
650    and Sup_greaterThanAtMost[simp]: "x < y \<Longrightarrow> Sup { x <.. y} = y"
651  by (auto intro!: Sup_eqI)
652
653lemma
654  shows Inf_atMost[simp]: "Inf {.. x} = bot"
655    and Inf_atMostLessThan[simp]: "top < x \<Longrightarrow> Inf {..< x} = bot"
656    and Inf_atLeast[simp]: "Inf {x ..} = x"
657    and Inf_atLeastAtMost[simp]: "x \<le> y \<Longrightarrow> Inf { x .. y} = x"
658    and Inf_atLeastLessThan[simp]: "x < y \<Longrightarrow> Inf { x ..< y} = x"
659  by (auto intro!: Inf_eqI)
660
661end
662
663lemma
664  fixes x y :: "'a :: {complete_lattice, dense_linorder}"
665  shows Sup_lessThan[simp]: "Sup {..< y} = y"
666    and Sup_atLeastLessThan[simp]: "x < y \<Longrightarrow> Sup { x ..< y} = y"
667    and Sup_greaterThanLessThan[simp]: "x < y \<Longrightarrow> Sup { x <..< y} = y"
668    and Inf_greaterThan[simp]: "Inf {x <..} = x"
669    and Inf_greaterThanAtMost[simp]: "x < y \<Longrightarrow> Inf { x <.. y} = x"
670    and Inf_greaterThanLessThan[simp]: "x < y \<Longrightarrow> Inf { x <..< y} = x"
671  by (auto intro!: Inf_eqI Sup_eqI intro: dense_le dense_le_bounded dense_ge dense_ge_bounded)
672
673subsection \<open>Intervals of natural numbers\<close>
674
675subsubsection \<open>The Constant @{term lessThan}\<close>
676
677lemma lessThan_0 [simp]: "lessThan (0::nat) = {}"
678by (simp add: lessThan_def)
679
680lemma lessThan_Suc: "lessThan (Suc k) = insert k (lessThan k)"
681by (simp add: lessThan_def less_Suc_eq, blast)
682
683text \<open>The following proof is convenient in induction proofs where
684new elements get indices at the beginning. So it is used to transform
685@{term "{..<Suc n}"} to @{term "0::nat"} and @{term "{..< n}"}.\<close>
686
687lemma zero_notin_Suc_image: "0 \<notin> Suc ` A"
688  by auto
689
690lemma lessThan_Suc_eq_insert_0: "{..<Suc n} = insert 0 (Suc ` {..<n})"
691  by (auto simp: image_iff less_Suc_eq_0_disj)
692
693lemma lessThan_Suc_atMost: "lessThan (Suc k) = atMost k"
694by (simp add: lessThan_def atMost_def less_Suc_eq_le)
695
696lemma atMost_Suc_eq_insert_0: "{.. Suc n} = insert 0 (Suc ` {.. n})"
697  unfolding lessThan_Suc_atMost[symmetric] lessThan_Suc_eq_insert_0[of "Suc n"] ..
698
699lemma UN_lessThan_UNIV: "(UN m::nat. lessThan m) = UNIV"
700by blast
701
702subsubsection \<open>The Constant @{term greaterThan}\<close>
703
704lemma greaterThan_0: "greaterThan 0 = range Suc"
705  unfolding greaterThan_def
706  by (blast dest: gr0_conv_Suc [THEN iffD1])
707
708lemma greaterThan_Suc: "greaterThan (Suc k) = greaterThan k - {Suc k}"
709  unfolding greaterThan_def
710  by (auto elim: linorder_neqE)
711
712lemma INT_greaterThan_UNIV: "(INT m::nat. greaterThan m) = {}"
713  by blast
714
715subsubsection \<open>The Constant @{term atLeast}\<close>
716
717lemma atLeast_0 [simp]: "atLeast (0::nat) = UNIV"
718by (unfold atLeast_def UNIV_def, simp)
719
720lemma atLeast_Suc: "atLeast (Suc k) = atLeast k - {k}"
721  unfolding atLeast_def by (auto simp: order_le_less Suc_le_eq)
722
723lemma atLeast_Suc_greaterThan: "atLeast (Suc k) = greaterThan k"
724  by (auto simp add: greaterThan_def atLeast_def less_Suc_eq_le)
725
726lemma UN_atLeast_UNIV: "(UN m::nat. atLeast m) = UNIV"
727  by blast
728
729subsubsection \<open>The Constant @{term atMost}\<close>
730
731lemma atMost_0 [simp]: "atMost (0::nat) = {0}"
732  by (simp add: atMost_def)
733
734lemma atMost_Suc: "atMost (Suc k) = insert (Suc k) (atMost k)"
735  unfolding atMost_def by (auto simp add: less_Suc_eq order_le_less)
736
737lemma UN_atMost_UNIV: "(UN m::nat. atMost m) = UNIV"
738  by blast
739
740subsubsection \<open>The Constant @{term atLeastLessThan}\<close>
741
742text\<open>The orientation of the following 2 rules is tricky. The lhs is
743defined in terms of the rhs.  Hence the chosen orientation makes sense
744in this theory --- the reverse orientation complicates proofs (eg
745nontermination). But outside, when the definition of the lhs is rarely
746used, the opposite orientation seems preferable because it reduces a
747specific concept to a more general one.\<close>
748
749lemma atLeast0LessThan [code_abbrev]: "{0::nat..<n} = {..<n}"
750  by(simp add:lessThan_def atLeastLessThan_def)
751
752lemma atLeast0AtMost [code_abbrev]: "{0..n::nat} = {..n}"
753  by(simp add:atMost_def atLeastAtMost_def)
754
755lemma lessThan_atLeast0: "{..<n} = {0::nat..<n}"
756  by (simp add: atLeast0LessThan)
757
758lemma atMost_atLeast0: "{..n} = {0::nat..n}"
759  by (simp add: atLeast0AtMost)
760
761lemma atLeastLessThan0: "{m..<0::nat} = {}"
762  by (simp add: atLeastLessThan_def)
763
764lemma atLeast0_lessThan_Suc: "{0..<Suc n} = insert n {0..<n}"
765  by (simp add: atLeast0LessThan lessThan_Suc)
766
767lemma atLeast0_lessThan_Suc_eq_insert_0: "{0..<Suc n} = insert 0 (Suc ` {0..<n})"
768  by (simp add: atLeast0LessThan lessThan_Suc_eq_insert_0)
769
770
771subsubsection \<open>The Constant @{term atLeastAtMost}\<close>
772
773lemma atLeast0_atMost_Suc:
774  "{0..Suc n} = insert (Suc n) {0..n}"
775  by (simp add: atLeast0AtMost atMost_Suc)
776
777lemma atLeast0_atMost_Suc_eq_insert_0:
778  "{0..Suc n} = insert 0 (Suc ` {0..n})"
779  by (simp add: atLeast0AtMost atMost_Suc_eq_insert_0)
780
781
782subsubsection \<open>Intervals of nats with @{term Suc}\<close>
783
784text\<open>Not a simprule because the RHS is too messy.\<close>
785lemma atLeastLessThanSuc:
786    "{m..<Suc n} = (if m \<le> n then insert n {m..<n} else {})"
787by (auto simp add: atLeastLessThan_def)
788
789lemma atLeastLessThan_singleton [simp]: "{m..<Suc m} = {m}"
790by (auto simp add: atLeastLessThan_def)
791
792lemma atLeastLessThanSuc_atLeastAtMost: "{l..<Suc u} = {l..u}"
793  by (simp add: lessThan_Suc_atMost atLeastAtMost_def atLeastLessThan_def)
794
795lemma atLeastSucAtMost_greaterThanAtMost: "{Suc l..u} = {l<..u}"
796  by (simp add: atLeast_Suc_greaterThan atLeastAtMost_def
797      greaterThanAtMost_def)
798
799lemma atLeastSucLessThan_greaterThanLessThan: "{Suc l..<u} = {l<..<u}"
800  by (simp add: atLeast_Suc_greaterThan atLeastLessThan_def
801    greaterThanLessThan_def)
802
803lemma atLeastAtMostSuc_conv: "m \<le> Suc n \<Longrightarrow> {m..Suc n} = insert (Suc n) {m..n}"
804by (auto simp add: atLeastAtMost_def)
805
806lemma atLeastAtMost_insertL: "m \<le> n \<Longrightarrow> insert m {Suc m..n} = {m ..n}"
807by auto
808
809text \<open>The analogous result is useful on @{typ int}:\<close>
810(* here, because we don't have an own int section *)
811lemma atLeastAtMostPlus1_int_conv:
812  "m <= 1+n \<Longrightarrow> {m..1+n} = insert (1+n) {m..n::int}"
813  by (auto intro: set_eqI)
814
815lemma atLeastLessThan_add_Un: "i \<le> j \<Longrightarrow> {i..<j+k} = {i..<j} \<union> {j..<j+k::nat}"
816  by (induct k) (simp_all add: atLeastLessThanSuc)
817
818
819subsubsection \<open>Intervals and numerals\<close>
820
821lemma lessThan_nat_numeral:  \<comment> \<open>Evaluation for specific numerals\<close>
822  "lessThan (numeral k :: nat) = insert (pred_numeral k) (lessThan (pred_numeral k))"
823  by (simp add: numeral_eq_Suc lessThan_Suc)
824
825lemma atMost_nat_numeral:  \<comment> \<open>Evaluation for specific numerals\<close>
826  "atMost (numeral k :: nat) = insert (numeral k) (atMost (pred_numeral k))"
827  by (simp add: numeral_eq_Suc atMost_Suc)
828
829lemma atLeastLessThan_nat_numeral:  \<comment> \<open>Evaluation for specific numerals\<close>
830  "atLeastLessThan m (numeral k :: nat) =
831     (if m \<le> (pred_numeral k) then insert (pred_numeral k) (atLeastLessThan m (pred_numeral k))
832                 else {})"
833  by (simp add: numeral_eq_Suc atLeastLessThanSuc)
834
835
836subsubsection \<open>Image\<close>
837
838context linordered_semidom
839begin
840
841lemma image_add_atLeast[simp]: "plus k ` {i..} = {k + i..}"
842proof -
843  have "n = k + (n - k)" if "i + k \<le> n" for n
844  proof -
845    have "n = (n - (k + i)) + (k + i)" using that
846      by (metis add_commute le_add_diff_inverse)
847    then show "n = k + (n - k)"
848      by (metis local.add_diff_cancel_left' add_assoc add_commute)
849  qed
850  then show ?thesis
851    by (fastforce simp: add_le_imp_le_diff add.commute)
852qed
853
854lemma image_add_atLeastAtMost [simp]:
855  "plus k ` {i..j} = {i + k..j + k}" (is "?A = ?B")
856proof
857  show "?A \<subseteq> ?B"
858    by (auto simp add: ac_simps)
859next
860  show "?B \<subseteq> ?A"
861  proof
862    fix n
863    assume "n \<in> ?B"
864    then have "i \<le> n - k"
865      by (simp add: add_le_imp_le_diff)
866    have "n = n - k + k"
867    proof -
868      from \<open>n \<in> ?B\<close> have "n = n - (i + k) + (i + k)"
869        by simp
870      also have "\<dots> = n - k - i + i + k"
871        by (simp add: algebra_simps)
872      also have "\<dots> = n - k + k"
873        using \<open>i \<le> n - k\<close> by simp
874      finally show ?thesis .
875    qed
876    moreover have "n - k \<in> {i..j}"
877      using \<open>n \<in> ?B\<close>
878      by (auto simp: add_le_imp_le_diff add_le_add_imp_diff_le)
879    ultimately show "n \<in> ?A"
880      by (simp add: ac_simps) 
881  qed
882qed
883
884lemma image_add_atLeastAtMost' [simp]:
885  "(\<lambda>n. n + k) ` {i..j} = {i + k..j + k}"
886  by (simp add: add.commute [of _ k])
887
888lemma image_add_atLeastLessThan [simp]:
889  "plus k ` {i..<j} = {i + k..<j + k}"
890  by (simp add: image_set_diff atLeastLessThan_eq_atLeastAtMost_diff ac_simps)
891
892lemma image_add_atLeastLessThan' [simp]:
893  "(\<lambda>n. n + k) ` {i..<j} = {i + k..<j + k}"
894  by (simp add: add.commute [of _ k])
895
896lemma image_add_greaterThanAtMost[simp]: "(+) c ` {a<..b} = {c + a<..c + b}"
897  by (simp add: image_set_diff greaterThanAtMost_eq_atLeastAtMost_diff ac_simps)
898
899end
900
901context ordered_ab_group_add
902begin
903
904lemma
905  fixes x :: 'a
906  shows image_uminus_greaterThan[simp]: "uminus ` {x<..} = {..<-x}"
907  and image_uminus_atLeast[simp]: "uminus ` {x..} = {..-x}"
908proof safe
909  fix y assume "y < -x"
910  hence *:  "x < -y" using neg_less_iff_less[of "-y" x] by simp
911  have "- (-y) \<in> uminus ` {x<..}"
912    by (rule imageI) (simp add: *)
913  thus "y \<in> uminus ` {x<..}" by simp
914next
915  fix y assume "y \<le> -x"
916  have "- (-y) \<in> uminus ` {x..}"
917    by (rule imageI) (insert \<open>y \<le> -x\<close>[THEN le_imp_neg_le], simp)
918  thus "y \<in> uminus ` {x..}" by simp
919qed simp_all
920
921lemma
922  fixes x :: 'a
923  shows image_uminus_lessThan[simp]: "uminus ` {..<x} = {-x<..}"
924  and image_uminus_atMost[simp]: "uminus ` {..x} = {-x..}"
925proof -
926  have "uminus ` {..<x} = uminus ` uminus ` {-x<..}"
927    and "uminus ` {..x} = uminus ` uminus ` {-x..}" by simp_all
928  thus "uminus ` {..<x} = {-x<..}" and "uminus ` {..x} = {-x..}"
929    by (simp_all add: image_image
930        del: image_uminus_greaterThan image_uminus_atLeast)
931qed
932
933lemma
934  fixes x :: 'a
935  shows image_uminus_atLeastAtMost[simp]: "uminus ` {x..y} = {-y..-x}"
936  and image_uminus_greaterThanAtMost[simp]: "uminus ` {x<..y} = {-y..<-x}"
937  and image_uminus_atLeastLessThan[simp]: "uminus ` {x..<y} = {-y<..-x}"
938  and image_uminus_greaterThanLessThan[simp]: "uminus ` {x<..<y} = {-y<..<-x}"
939  by (simp_all add: atLeastAtMost_def greaterThanAtMost_def atLeastLessThan_def
940      greaterThanLessThan_def image_Int[OF inj_uminus] Int_commute)
941
942lemma image_add_atMost[simp]: "(+) c ` {..a} = {..c + a}"
943  by (auto intro!: image_eqI[where x="x - c" for x] simp: algebra_simps)
944
945end
946
947lemma image_Suc_atLeastAtMost [simp]:
948  "Suc ` {i..j} = {Suc i..Suc j}"
949  using image_add_atLeastAtMost [of 1 i j]
950    by (simp only: plus_1_eq_Suc) simp
951
952lemma image_Suc_atLeastLessThan [simp]:
953  "Suc ` {i..<j} = {Suc i..<Suc j}"
954  using image_add_atLeastLessThan [of 1 i j]
955    by (simp only: plus_1_eq_Suc) simp
956
957corollary image_Suc_atMost:
958  "Suc ` {..n} = {1..Suc n}"
959  by (simp add: atMost_atLeast0 atLeastLessThanSuc_atLeastAtMost)
960
961corollary image_Suc_lessThan:
962  "Suc ` {..<n} = {1..n}"
963  by (simp add: lessThan_atLeast0 atLeastLessThanSuc_atLeastAtMost)
964
965lemma image_diff_atLeastAtMost [simp]:
966  fixes d::"'a::linordered_idom" shows "((-) d ` {a..b}) = {d-b..d-a}"
967  apply auto
968  apply (rule_tac x="d-x" in rev_image_eqI, auto)
969  done
970
971lemma image_diff_atLeastLessThan [simp]:
972  fixes a b c::"'a::linordered_idom"
973  shows "(-) c ` {a..<b} = {c - b<..c - a}"
974proof -
975  have "(-) c ` {a..<b} = (+) c ` uminus ` {a ..<b}"
976    unfolding image_image by simp
977  also have "\<dots> = {c - b<..c - a}" by simp
978  finally show ?thesis by simp
979qed
980
981lemma image_minus_const_greaterThanAtMost[simp]:
982  fixes a b c::"'a::linordered_idom"
983  shows "(-) c ` {a<..b} = {c - b..<c - a}"
984proof -
985  have "(-) c ` {a<..b} = (+) c ` uminus ` {a<..b}"
986    unfolding image_image by simp
987  also have "\<dots> = {c - b..<c - a}" by simp
988  finally show ?thesis by simp
989qed
990
991lemma image_minus_const_atLeast[simp]:
992  fixes a c::"'a::linordered_idom"
993  shows "(-) c ` {a..} = {..c - a}"
994proof -
995  have "(-) c ` {a..} = (+) c ` uminus ` {a ..}"
996    unfolding image_image by simp
997  also have "\<dots> = {..c - a}" by simp
998  finally show ?thesis by simp
999qed
1000
1001lemma image_minus_const_AtMost[simp]:
1002  fixes b c::"'a::linordered_idom"
1003  shows "(-) c ` {..b} = {c - b..}"
1004proof -
1005  have "(-) c ` {..b} = (+) c ` uminus ` {..b}"
1006    unfolding image_image by simp
1007  also have "\<dots> = {c - b..}" by simp
1008  finally show ?thesis by simp
1009qed
1010
1011lemma image_minus_const_atLeastAtMost' [simp]:
1012  "(\<lambda>t. t-d)`{a..b} = {a-d..b-d}" for d::"'a::linordered_idom"
1013  by (metis (no_types, lifting) diff_conv_add_uminus image_add_atLeastAtMost' image_cong)
1014
1015context linordered_field begin
1016
1017lemma image_mult_atLeastAtMost [simp]:
1018  "(( * ) d ` {a..b}) = {d*a..d*b}" if "d>0"
1019  using that
1020  by (auto simp: field_simps mult_le_cancel_right intro: rev_image_eqI [where x="x/d" for x])
1021
1022lemma image_mult_atLeastAtMost_if:
1023  "( * ) c ` {x .. y} =
1024    (if c > 0 then {c * x .. c * y} else if x \<le> y then {c * y .. c * x} else {})"
1025proof -
1026  consider "c < 0" "x \<le> y" | "c = 0" "x \<le> y" | "c > 0" "x \<le> y" | "x > y"
1027    using local.antisym_conv3 local.leI by blast
1028  then show ?thesis
1029  proof cases
1030    case 1
1031    have "( * ) c ` {x .. y} = uminus ` ( * ) (- c) ` {x .. y}"
1032      by (simp add: image_image)
1033    also have "\<dots> = {c * y .. c * x}"
1034      using \<open>c < 0\<close>
1035      by simp
1036    finally show ?thesis
1037      using \<open>c < 0\<close> by auto
1038  qed (auto simp: not_le local.mult_less_cancel_left_pos)
1039qed
1040
1041lemma image_mult_atLeastAtMost_if':
1042  "(\<lambda>x. x * c) ` {x..y} =
1043    (if x \<le> y then if c > 0 then {x * c .. y * c} else {y * c .. x * c} else {})"
1044  by (subst mult.commute)
1045    (simp add: image_mult_atLeastAtMost_if mult.commute mult_le_cancel_left_pos)
1046
1047lemma image_affinity_atLeastAtMost:
1048  "((\<lambda>x. m*x + c) ` {a..b}) = (if {a..b}={} then {}
1049            else if 0 \<le> m then {m*a + c .. m *b + c}
1050            else {m*b + c .. m*a + c})"
1051proof -
1052  have "(\<lambda>x. m*x + c) = ((\<lambda>x. x + c) o ( * ) m)"
1053    unfolding image_comp[symmetric]
1054    by (simp add: o_def)
1055  then show ?thesis
1056    by (auto simp add: image_comp[symmetric] image_mult_atLeastAtMost_if mult_le_cancel_left)
1057qed
1058
1059lemma image_affinity_atLeastAtMost_diff:
1060  "((\<lambda>x. m*x - c) ` {a..b}) = (if {a..b}={} then {}
1061            else if 0 \<le> m then {m*a - c .. m*b - c}
1062            else {m*b - c .. m*a - c})"
1063  using image_affinity_atLeastAtMost [of m "-c" a b]
1064  by simp
1065
1066lemma image_affinity_atLeastAtMost_div:
1067  "((\<lambda>x. x/m + c) ` {a..b}) = (if {a..b}={} then {}
1068            else if 0 \<le> m then {a/m + c .. b/m + c}
1069            else {b/m + c .. a/m + c})"
1070  using image_affinity_atLeastAtMost [of "inverse m" c a b]
1071  by (simp add: field_class.field_divide_inverse algebra_simps inverse_eq_divide)
1072
1073lemma image_affinity_atLeastAtMost_div_diff:
1074  "((\<lambda>x. x/m - c) ` {a..b}) = (if {a..b}={} then {}
1075            else if 0 \<le> m then {a/m - c .. b/m - c}
1076            else {b/m - c .. a/m - c})"
1077  using image_affinity_atLeastAtMost_diff [of "inverse m" c a b]
1078  by (simp add: field_class.field_divide_inverse algebra_simps inverse_eq_divide)
1079
1080end
1081
1082lemma atLeast1_lessThan_eq_remove0:
1083  "{Suc 0..<n} = {..<n} - {0}"
1084  by auto
1085
1086lemma atLeast1_atMost_eq_remove0:
1087  "{Suc 0..n} = {..n} - {0}"
1088  by auto
1089
1090lemma image_add_int_atLeastLessThan:
1091    "(\<lambda>x. x + (l::int)) ` {0..<u-l} = {l..<u}"
1092  apply (auto simp add: image_def)
1093  apply (rule_tac x = "x - l" in bexI)
1094  apply auto
1095  done
1096
1097lemma image_minus_const_atLeastLessThan_nat:
1098  fixes c :: nat
1099  shows "(\<lambda>i. i - c) ` {x ..< y} =
1100      (if c < y then {x - c ..< y - c} else if x < y then {0} else {})"
1101    (is "_ = ?right")
1102proof safe
1103  fix a assume a: "a \<in> ?right"
1104  show "a \<in> (\<lambda>i. i - c) ` {x ..< y}"
1105  proof cases
1106    assume "c < y" with a show ?thesis
1107      by (auto intro!: image_eqI[of _ _ "a + c"])
1108  next
1109    assume "\<not> c < y" with a show ?thesis
1110      by (auto intro!: image_eqI[of _ _ x] split: if_split_asm)
1111  qed
1112qed auto
1113
1114lemma image_int_atLeastLessThan:
1115  "int ` {a..<b} = {int a..<int b}"
1116  by (auto intro!: image_eqI [where x = "nat x" for x])
1117
1118lemma image_int_atLeastAtMost:
1119  "int ` {a..b} = {int a..int b}"
1120  by (auto intro!: image_eqI [where x = "nat x" for x])
1121
1122
1123subsubsection \<open>Finiteness\<close>
1124
1125lemma finite_lessThan [iff]: fixes k :: nat shows "finite {..<k}"
1126  by (induct k) (simp_all add: lessThan_Suc)
1127
1128lemma finite_atMost [iff]: fixes k :: nat shows "finite {..k}"
1129  by (induct k) (simp_all add: atMost_Suc)
1130
1131lemma finite_greaterThanLessThan [iff]:
1132  fixes l :: nat shows "finite {l<..<u}"
1133  by (simp add: greaterThanLessThan_def)
1134
1135lemma finite_atLeastLessThan [iff]:
1136  fixes l :: nat shows "finite {l..<u}"
1137  by (simp add: atLeastLessThan_def)
1138
1139lemma finite_greaterThanAtMost [iff]:
1140  fixes l :: nat shows "finite {l<..u}"
1141  by (simp add: greaterThanAtMost_def)
1142
1143lemma finite_atLeastAtMost [iff]:
1144  fixes l :: nat shows "finite {l..u}"
1145  by (simp add: atLeastAtMost_def)
1146
1147text \<open>A bounded set of natural numbers is finite.\<close>
1148lemma bounded_nat_set_is_finite: "(\<forall>i\<in>N. i < (n::nat)) \<Longrightarrow> finite N"
1149  by (rule finite_subset [OF _ finite_lessThan]) auto
1150
1151text \<open>A set of natural numbers is finite iff it is bounded.\<close>
1152lemma finite_nat_set_iff_bounded:
1153  "finite(N::nat set) = (\<exists>m. \<forall>n\<in>N. n<m)" (is "?F = ?B")
1154proof
1155  assume f:?F  show ?B
1156    using Max_ge[OF \<open>?F\<close>, simplified less_Suc_eq_le[symmetric]] by blast
1157next
1158  assume ?B show ?F using \<open>?B\<close> by(blast intro:bounded_nat_set_is_finite)
1159qed
1160
1161lemma finite_nat_set_iff_bounded_le: "finite(N::nat set) = (\<exists>m. \<forall>n\<in>N. n\<le>m)"
1162  unfolding finite_nat_set_iff_bounded
1163  by (blast dest:less_imp_le_nat le_imp_less_Suc)
1164
1165lemma finite_less_ub:
1166     "!!f::nat=>nat. (!!n. n \<le> f n) ==> finite {n. f n \<le> u}"
1167by (rule_tac B="{..u}" in finite_subset, auto intro: order_trans)
1168
1169lemma bounded_Max_nat:
1170  fixes P :: "nat \<Rightarrow> bool"
1171  assumes x: "P x" and M: "\<And>x. P x \<Longrightarrow> x \<le> M"
1172  obtains m where "P m" "\<And>x. P x \<Longrightarrow> x \<le> m"
1173proof -
1174  have "finite {x. P x}"
1175    using M finite_nat_set_iff_bounded_le by auto
1176  then have "Max {x. P x} \<in> {x. P x}"
1177    using Max_in x by auto
1178  then show ?thesis
1179    by (simp add: \<open>finite {x. P x}\<close> that)
1180qed
1181
1182
1183text\<open>Any subset of an interval of natural numbers the size of the
1184subset is exactly that interval.\<close>
1185
1186lemma subset_card_intvl_is_intvl:
1187  assumes "A \<subseteq> {k..<k + card A}"
1188  shows "A = {k..<k + card A}"
1189proof (cases "finite A")
1190  case True
1191  from this and assms show ?thesis
1192  proof (induct A rule: finite_linorder_max_induct)
1193    case empty thus ?case by auto
1194  next
1195    case (insert b A)
1196    hence *: "b \<notin> A" by auto
1197    with insert have "A <= {k..<k + card A}" and "b = k + card A"
1198      by fastforce+
1199    with insert * show ?case by auto
1200  qed
1201next
1202  case False
1203  with assms show ?thesis by simp
1204qed
1205
1206
1207subsubsection \<open>Proving Inclusions and Equalities between Unions\<close>
1208
1209lemma UN_le_eq_Un0:
1210  "(\<Union>i\<le>n::nat. M i) = (\<Union>i\<in>{1..n}. M i) \<union> M 0" (is "?A = ?B")
1211proof
1212  show "?A \<subseteq> ?B"
1213  proof
1214    fix x assume "x \<in> ?A"
1215    then obtain i where i: "i\<le>n" "x \<in> M i" by auto
1216    show "x \<in> ?B"
1217    proof(cases i)
1218      case 0 with i show ?thesis by simp
1219    next
1220      case (Suc j) with i show ?thesis by auto
1221    qed
1222  qed
1223next
1224  show "?B \<subseteq> ?A" by fastforce
1225qed
1226
1227lemma UN_le_add_shift:
1228  "(\<Union>i\<le>n::nat. M(i+k)) = (\<Union>i\<in>{k..n+k}. M i)" (is "?A = ?B")
1229proof
1230  show "?A \<subseteq> ?B" by fastforce
1231next
1232  show "?B \<subseteq> ?A"
1233  proof
1234    fix x assume "x \<in> ?B"
1235    then obtain i where i: "i \<in> {k..n+k}" "x \<in> M(i)" by auto
1236    hence "i-k\<le>n \<and> x \<in> M((i-k)+k)" by auto
1237    thus "x \<in> ?A" by blast
1238  qed
1239qed
1240
1241lemma UN_UN_finite_eq: "(\<Union>n::nat. \<Union>i\<in>{0..<n}. A i) = (\<Union>n. A n)"
1242  by (auto simp add: atLeast0LessThan)
1243
1244lemma UN_finite_subset:
1245  "(\<And>n::nat. (\<Union>i\<in>{0..<n}. A i) \<subseteq> C) \<Longrightarrow> (\<Union>n. A n) \<subseteq> C"
1246  by (subst UN_UN_finite_eq [symmetric]) blast
1247
1248lemma UN_finite2_subset:
1249  assumes "\<And>n::nat. (\<Union>i\<in>{0..<n}. A i) \<subseteq> (\<Union>i\<in>{0..<n + k}. B i)"
1250  shows "(\<Union>n. A n) \<subseteq> (\<Union>n. B n)"
1251proof (rule UN_finite_subset, rule)
1252  fix n and a
1253  from assms have "(\<Union>i\<in>{0..<n}. A i) \<subseteq> (\<Union>i\<in>{0..<n + k}. B i)" .
1254  moreover assume "a \<in> (\<Union>i\<in>{0..<n}. A i)"
1255  ultimately have "a \<in> (\<Union>i\<in>{0..<n + k}. B i)" by blast
1256  then show "a \<in> (\<Union>i. B i)" by (auto simp add: UN_UN_finite_eq)
1257qed
1258
1259lemma UN_finite2_eq:
1260  "(\<And>n::nat. (\<Union>i\<in>{0..<n}. A i) = (\<Union>i\<in>{0..<n + k}. B i)) \<Longrightarrow>
1261    (\<Union>n. A n) = (\<Union>n. B n)"
1262  apply (rule subset_antisym [OF UN_finite_subset UN_finite2_subset])
1263   apply auto
1264  apply (force simp add: atLeastLessThan_add_Un [of 0])+
1265  done
1266
1267
1268subsubsection \<open>Cardinality\<close>
1269
1270lemma card_lessThan [simp]: "card {..<u} = u"
1271  by (induct u, simp_all add: lessThan_Suc)
1272
1273lemma card_atMost [simp]: "card {..u} = Suc u"
1274  by (simp add: lessThan_Suc_atMost [THEN sym])
1275
1276lemma card_atLeastLessThan [simp]: "card {l..<u} = u - l"
1277proof -
1278  have "{l..<u} = (\<lambda>x. x + l) ` {..<u-l}"
1279    apply (auto simp add: image_def atLeastLessThan_def lessThan_def)
1280    apply (rule_tac x = "x - l" in exI)
1281    apply arith
1282    done
1283  then have "card {l..<u} = card {..<u-l}"
1284    by (simp add: card_image inj_on_def)
1285  then show ?thesis
1286    by simp
1287qed
1288
1289lemma card_atLeastAtMost [simp]: "card {l..u} = Suc u - l"
1290  by (subst atLeastLessThanSuc_atLeastAtMost [THEN sym], simp)
1291
1292lemma card_greaterThanAtMost [simp]: "card {l<..u} = u - l"
1293  by (subst atLeastSucAtMost_greaterThanAtMost [THEN sym], simp)
1294
1295lemma card_greaterThanLessThan [simp]: "card {l<..<u} = u - Suc l"
1296  by (subst atLeastSucLessThan_greaterThanLessThan [THEN sym], simp)
1297
1298lemma subset_eq_atLeast0_lessThan_finite:
1299  fixes n :: nat
1300  assumes "N \<subseteq> {0..<n}"
1301  shows "finite N"
1302  using assms finite_atLeastLessThan by (rule finite_subset)
1303
1304lemma subset_eq_atLeast0_atMost_finite:
1305  fixes n :: nat
1306  assumes "N \<subseteq> {0..n}"
1307  shows "finite N"
1308  using assms finite_atLeastAtMost by (rule finite_subset)
1309
1310lemma ex_bij_betw_nat_finite:
1311  "finite M \<Longrightarrow> \<exists>h. bij_betw h {0..<card M} M"
1312  apply(drule finite_imp_nat_seg_image_inj_on)
1313  apply(auto simp:atLeast0LessThan[symmetric] lessThan_def[symmetric] card_image bij_betw_def)
1314  done
1315
1316lemma ex_bij_betw_finite_nat:
1317  "finite M \<Longrightarrow> \<exists>h. bij_betw h M {0..<card M}"
1318  by (blast dest: ex_bij_betw_nat_finite bij_betw_inv)
1319
1320lemma finite_same_card_bij:
1321  "finite A \<Longrightarrow> finite B \<Longrightarrow> card A = card B \<Longrightarrow> \<exists>h. bij_betw h A B"
1322  apply(drule ex_bij_betw_finite_nat)
1323  apply(drule ex_bij_betw_nat_finite)
1324  apply(auto intro!:bij_betw_trans)
1325  done
1326
1327lemma ex_bij_betw_nat_finite_1:
1328  "finite M \<Longrightarrow> \<exists>h. bij_betw h {1 .. card M} M"
1329  by (rule finite_same_card_bij) auto
1330
1331lemma bij_betw_iff_card:
1332  assumes "finite A" "finite B"
1333  shows "(\<exists>f. bij_betw f A B) \<longleftrightarrow> (card A = card B)"
1334proof
1335  assume "card A = card B"
1336  moreover obtain f where "bij_betw f A {0 ..< card A}"
1337    using assms ex_bij_betw_finite_nat by blast
1338  moreover obtain g where "bij_betw g {0 ..< card B} B"
1339    using assms ex_bij_betw_nat_finite by blast
1340  ultimately have "bij_betw (g \<circ> f) A B"
1341    by (auto simp: bij_betw_trans)
1342  thus "(\<exists>f. bij_betw f A B)" by blast
1343qed (auto simp: bij_betw_same_card)
1344
1345lemma inj_on_iff_card_le:
1346  assumes FIN: "finite A" and FIN': "finite B"
1347  shows "(\<exists>f. inj_on f A \<and> f ` A \<le> B) = (card A \<le> card B)"
1348proof (safe intro!: card_inj_on_le)
1349  assume *: "card A \<le> card B"
1350  obtain f where 1: "inj_on f A" and 2: "f ` A = {0 ..< card A}"
1351  using FIN ex_bij_betw_finite_nat unfolding bij_betw_def by force
1352  moreover obtain g where "inj_on g {0 ..< card B}" and 3: "g ` {0 ..< card B} = B"
1353  using FIN' ex_bij_betw_nat_finite unfolding bij_betw_def by force
1354  ultimately have "inj_on g (f ` A)" using subset_inj_on[of g _ "f ` A"] * by force
1355  hence "inj_on (g \<circ> f) A" using 1 comp_inj_on by blast
1356  moreover
1357  {have "{0 ..< card A} \<le> {0 ..< card B}" using * by force
1358   with 2 have "f ` A  \<le> {0 ..< card B}" by blast
1359   hence "(g \<circ> f) ` A \<le> B" unfolding comp_def using 3 by force
1360  }
1361  ultimately show "(\<exists>f. inj_on f A \<and> f ` A \<le> B)" by blast
1362qed (insert assms, auto)
1363
1364lemma subset_eq_atLeast0_lessThan_card:
1365  fixes n :: nat
1366  assumes "N \<subseteq> {0..<n}"
1367  shows "card N \<le> n"
1368proof -
1369  from assms finite_lessThan have "card N \<le> card {0..<n}"
1370    using card_mono by blast
1371  then show ?thesis by simp
1372qed
1373
1374
1375subsection \<open>Intervals of integers\<close>
1376
1377lemma atLeastLessThanPlusOne_atLeastAtMost_int: "{l..<u+1} = {l..(u::int)}"
1378  by (auto simp add: atLeastAtMost_def atLeastLessThan_def)
1379
1380lemma atLeastPlusOneAtMost_greaterThanAtMost_int: "{l+1..u} = {l<..(u::int)}"
1381  by (auto simp add: atLeastAtMost_def greaterThanAtMost_def)
1382
1383lemma atLeastPlusOneLessThan_greaterThanLessThan_int:
1384    "{l+1..<u} = {l<..<u::int}"
1385  by (auto simp add: atLeastLessThan_def greaterThanLessThan_def)
1386
1387subsubsection \<open>Finiteness\<close>
1388
1389lemma image_atLeastZeroLessThan_int: "0 \<le> u ==>
1390    {(0::int)..<u} = int ` {..<nat u}"
1391  unfolding image_def lessThan_def
1392  apply auto
1393  apply (rule_tac x = "nat x" in exI)
1394  apply (auto simp add: zless_nat_eq_int_zless [THEN sym])
1395  done
1396
1397lemma finite_atLeastZeroLessThan_int: "finite {(0::int)..<u}"
1398proof (cases "0 \<le> u")
1399  case True
1400  then show ?thesis
1401    by (auto simp: image_atLeastZeroLessThan_int)
1402qed auto
1403
1404lemma finite_atLeastLessThan_int [iff]: "finite {l..<u::int}"
1405  by (simp only: image_add_int_atLeastLessThan [symmetric, of l] finite_imageI finite_atLeastZeroLessThan_int)
1406
1407lemma finite_atLeastAtMost_int [iff]: "finite {l..(u::int)}"
1408  by (subst atLeastLessThanPlusOne_atLeastAtMost_int [THEN sym], simp)
1409
1410lemma finite_greaterThanAtMost_int [iff]: "finite {l<..(u::int)}"
1411  by (subst atLeastPlusOneAtMost_greaterThanAtMost_int [THEN sym], simp)
1412
1413lemma finite_greaterThanLessThan_int [iff]: "finite {l<..<u::int}"
1414  by (subst atLeastPlusOneLessThan_greaterThanLessThan_int [THEN sym], simp)
1415
1416
1417subsubsection \<open>Cardinality\<close>
1418
1419lemma card_atLeastZeroLessThan_int: "card {(0::int)..<u} = nat u"
1420proof (cases "0 \<le> u")
1421  case True
1422  then show ?thesis
1423    by (auto simp: image_atLeastZeroLessThan_int card_image inj_on_def)    
1424qed auto
1425
1426lemma card_atLeastLessThan_int [simp]: "card {l..<u} = nat (u - l)"
1427proof -
1428  have "card {l..<u} = card {0..<u-l}"
1429    apply (subst image_add_int_atLeastLessThan [symmetric])
1430    apply (rule card_image)
1431    apply (simp add: inj_on_def)
1432    done
1433  then show ?thesis
1434    by (simp add: card_atLeastZeroLessThan_int)
1435qed
1436
1437lemma card_atLeastAtMost_int [simp]: "card {l..u} = nat (u - l + 1)"
1438  apply (subst atLeastLessThanPlusOne_atLeastAtMost_int [THEN sym])
1439  apply (auto simp add: algebra_simps)
1440  done
1441
1442lemma card_greaterThanAtMost_int [simp]: "card {l<..u} = nat (u - l)"
1443  by (subst atLeastPlusOneAtMost_greaterThanAtMost_int [THEN sym], simp)
1444
1445lemma card_greaterThanLessThan_int [simp]: "card {l<..<u} = nat (u - (l + 1))"
1446  by (subst atLeastPlusOneLessThan_greaterThanLessThan_int [THEN sym], simp)
1447
1448lemma finite_M_bounded_by_nat: "finite {k. P k \<and> k < (i::nat)}"
1449proof -
1450  have "{k. P k \<and> k < i} \<subseteq> {..<i}" by auto
1451  with finite_lessThan[of "i"] show ?thesis by (simp add: finite_subset)
1452qed
1453
1454lemma card_less:
1455  assumes zero_in_M: "0 \<in> M"
1456  shows "card {k \<in> M. k < Suc i} \<noteq> 0"
1457proof -
1458  from zero_in_M have "{k \<in> M. k < Suc i} \<noteq> {}" by auto
1459  with finite_M_bounded_by_nat show ?thesis by (auto simp add: card_eq_0_iff)
1460qed
1461
1462lemma card_less_Suc2: 
1463  assumes "0 \<notin> M" shows "card {k. Suc k \<in> M \<and> k < i} = card {k \<in> M. k < Suc i}"
1464proof -
1465  have *: "\<lbrakk>j \<in> M; j < Suc i\<rbrakk> \<Longrightarrow> j - Suc 0 < i \<and> Suc (j - Suc 0) \<in> M \<and> Suc 0 \<le> j" for j
1466    by (cases j) (use assms in auto)
1467  show ?thesis
1468  proof (rule card_bij_eq)
1469    show "inj_on Suc {k. Suc k \<in> M \<and> k < i}"
1470      by force
1471    show "inj_on (\<lambda>x. x - Suc 0) {k \<in> M. k < Suc i}"
1472      by (rule inj_on_diff_nat) (use * in blast)
1473  qed (use * in auto)
1474qed
1475
1476lemma card_less_Suc:
1477  assumes "0 \<in> M"
1478    shows "Suc (card {k. Suc k \<in> M \<and> k < i}) = card {k \<in> M. k < Suc i}"
1479proof -
1480  have "Suc (card {k. Suc k \<in> M \<and> k < i}) = Suc (card {k. Suc k \<in> M - {0} \<and> k < i})"
1481    by simp
1482  also have "\<dots> = Suc (card {k \<in> M - {0}. k < Suc i})"
1483    apply (subst card_less_Suc2)
1484    using assms by auto
1485  also have "\<dots> = Suc (card ({k \<in> M. k < Suc i} - {0}))"
1486    by (force intro: arg_cong [where f=card])
1487  also have "\<dots> = card (insert 0 ({k \<in> M. k < Suc i} - {0}))"
1488    by (simp add: card_insert)
1489  also have "... = card {k \<in> M. k < Suc i}"
1490    using assms
1491    by (force simp add: intro: arg_cong [where f=card])
1492  finally show ?thesis.
1493qed
1494
1495
1496subsection \<open>Lemmas useful with the summation operator sum\<close>
1497
1498text \<open>For examples, see Algebra/poly/UnivPoly2.thy\<close>
1499
1500subsubsection \<open>Disjoint Unions\<close>
1501
1502text \<open>Singletons and open intervals\<close>
1503
1504lemma ivl_disj_un_singleton:
1505  "{l::'a::linorder} Un {l<..} = {l..}"
1506  "{..<u} Un {u::'a::linorder} = {..u}"
1507  "(l::'a::linorder) < u ==> {l} Un {l<..<u} = {l..<u}"
1508  "(l::'a::linorder) < u ==> {l<..<u} Un {u} = {l<..u}"
1509  "(l::'a::linorder) \<le> u ==> {l} Un {l<..u} = {l..u}"
1510  "(l::'a::linorder) \<le> u ==> {l..<u} Un {u} = {l..u}"
1511by auto
1512
1513text \<open>One- and two-sided intervals\<close>
1514
1515lemma ivl_disj_un_one:
1516  "(l::'a::linorder) < u ==> {..l} Un {l<..<u} = {..<u}"
1517  "(l::'a::linorder) \<le> u ==> {..<l} Un {l..<u} = {..<u}"
1518  "(l::'a::linorder) \<le> u ==> {..l} Un {l<..u} = {..u}"
1519  "(l::'a::linorder) \<le> u ==> {..<l} Un {l..u} = {..u}"
1520  "(l::'a::linorder) \<le> u ==> {l<..u} Un {u<..} = {l<..}"
1521  "(l::'a::linorder) < u ==> {l<..<u} Un {u..} = {l<..}"
1522  "(l::'a::linorder) \<le> u ==> {l..u} Un {u<..} = {l..}"
1523  "(l::'a::linorder) \<le> u ==> {l..<u} Un {u..} = {l..}"
1524by auto
1525
1526text \<open>Two- and two-sided intervals\<close>
1527
1528lemma ivl_disj_un_two:
1529  "[| (l::'a::linorder) < m; m \<le> u |] ==> {l<..<m} Un {m..<u} = {l<..<u}"
1530  "[| (l::'a::linorder) \<le> m; m < u |] ==> {l<..m} Un {m<..<u} = {l<..<u}"
1531  "[| (l::'a::linorder) \<le> m; m \<le> u |] ==> {l..<m} Un {m..<u} = {l..<u}"
1532  "[| (l::'a::linorder) \<le> m; m < u |] ==> {l..m} Un {m<..<u} = {l..<u}"
1533  "[| (l::'a::linorder) < m; m \<le> u |] ==> {l<..<m} Un {m..u} = {l<..u}"
1534  "[| (l::'a::linorder) \<le> m; m \<le> u |] ==> {l<..m} Un {m<..u} = {l<..u}"
1535  "[| (l::'a::linorder) \<le> m; m \<le> u |] ==> {l..<m} Un {m..u} = {l..u}"
1536  "[| (l::'a::linorder) \<le> m; m \<le> u |] ==> {l..m} Un {m<..u} = {l..u}"
1537by auto
1538
1539lemma ivl_disj_un_two_touch:
1540  "[| (l::'a::linorder) < m; m < u |] ==> {l<..m} Un {m..<u} = {l<..<u}"
1541  "[| (l::'a::linorder) \<le> m; m < u |] ==> {l..m} Un {m..<u} = {l..<u}"
1542  "[| (l::'a::linorder) < m; m \<le> u |] ==> {l<..m} Un {m..u} = {l<..u}"
1543  "[| (l::'a::linorder) \<le> m; m \<le> u |] ==> {l..m} Un {m..u} = {l..u}"
1544by auto
1545
1546lemmas ivl_disj_un = ivl_disj_un_singleton ivl_disj_un_one ivl_disj_un_two ivl_disj_un_two_touch
1547
1548subsubsection \<open>Disjoint Intersections\<close>
1549
1550text \<open>One- and two-sided intervals\<close>
1551
1552lemma ivl_disj_int_one:
1553  "{..l::'a::order} Int {l<..<u} = {}"
1554  "{..<l} Int {l..<u} = {}"
1555  "{..l} Int {l<..u} = {}"
1556  "{..<l} Int {l..u} = {}"
1557  "{l<..u} Int {u<..} = {}"
1558  "{l<..<u} Int {u..} = {}"
1559  "{l..u} Int {u<..} = {}"
1560  "{l..<u} Int {u..} = {}"
1561  by auto
1562
1563text \<open>Two- and two-sided intervals\<close>
1564
1565lemma ivl_disj_int_two:
1566  "{l::'a::order<..<m} Int {m..<u} = {}"
1567  "{l<..m} Int {m<..<u} = {}"
1568  "{l..<m} Int {m..<u} = {}"
1569  "{l..m} Int {m<..<u} = {}"
1570  "{l<..<m} Int {m..u} = {}"
1571  "{l<..m} Int {m<..u} = {}"
1572  "{l..<m} Int {m..u} = {}"
1573  "{l..m} Int {m<..u} = {}"
1574  by auto
1575
1576lemmas ivl_disj_int = ivl_disj_int_one ivl_disj_int_two
1577
1578subsubsection \<open>Some Differences\<close>
1579
1580lemma ivl_diff[simp]:
1581 "i \<le> n \<Longrightarrow> {i..<m} - {i..<n} = {n..<(m::'a::linorder)}"
1582by(auto)
1583
1584lemma (in linorder) lessThan_minus_lessThan [simp]:
1585  "{..< n} - {..< m} = {m ..< n}"
1586  by auto
1587
1588lemma (in linorder) atLeastAtMost_diff_ends:
1589  "{a..b} - {a, b} = {a<..<b}"
1590  by auto
1591
1592
1593subsubsection \<open>Some Subset Conditions\<close>
1594
1595lemma ivl_subset [simp]: "({i..<j} \<subseteq> {m..<n}) = (j \<le> i \<or> m \<le> i \<and> j \<le> (n::'a::linorder))"
1596  using linorder_class.le_less_linear[of i n]
1597  apply (auto simp: linorder_not_le)
1598   apply (force intro: leI)+
1599  done
1600
1601
1602subsection \<open>Generic big monoid operation over intervals\<close>
1603
1604context semiring_char_0
1605begin
1606
1607lemma inj_on_of_nat [simp]:
1608  "inj_on of_nat N"
1609  by rule simp
1610
1611lemma bij_betw_of_nat [simp]:
1612  "bij_betw of_nat N A \<longleftrightarrow> of_nat ` N = A"
1613  by (simp add: bij_betw_def)
1614
1615end
1616
1617context comm_monoid_set
1618begin
1619
1620lemma atLeastLessThan_reindex:
1621  "F g {h m..<h n} = F (g \<circ> h) {m..<n}"
1622  if "bij_betw h {m..<n} {h m..<h n}" for m n ::nat
1623proof -
1624  from that have "inj_on h {m..<n}" and "h ` {m..<n} = {h m..<h n}"
1625    by (simp_all add: bij_betw_def)
1626  then show ?thesis
1627    using reindex [of h "{m..<n}" g] by simp
1628qed
1629
1630lemma atLeastAtMost_reindex:
1631  "F g {h m..h n} = F (g \<circ> h) {m..n}"
1632  if "bij_betw h {m..n} {h m..h n}" for m n ::nat
1633proof -
1634  from that have "inj_on h {m..n}" and "h ` {m..n} = {h m..h n}"
1635    by (simp_all add: bij_betw_def)
1636  then show ?thesis
1637    using reindex [of h "{m..n}" g] by simp
1638qed
1639
1640lemma atLeastLessThan_shift_bounds:
1641  "F g {m + k..<n + k} = F (g \<circ> plus k) {m..<n}"
1642  for m n k :: nat
1643  using atLeastLessThan_reindex [of "plus k" m n g]
1644  by (simp add: ac_simps)
1645
1646lemma atLeastAtMost_shift_bounds:
1647  "F g {m + k..n + k} = F (g \<circ> plus k) {m..n}"
1648  for m n k :: nat
1649  using atLeastAtMost_reindex [of "plus k" m n g]
1650  by (simp add: ac_simps)
1651
1652lemma atLeast_Suc_lessThan_Suc_shift:
1653  "F g {Suc m..<Suc n} = F (g \<circ> Suc) {m..<n}"
1654  using atLeastLessThan_shift_bounds [of _ _ 1]
1655  by (simp add: plus_1_eq_Suc)
1656
1657lemma atLeast_Suc_atMost_Suc_shift:
1658  "F g {Suc m..Suc n} = F (g \<circ> Suc) {m..n}"
1659  using atLeastAtMost_shift_bounds [of _ _ 1]
1660  by (simp add: plus_1_eq_Suc)
1661
1662lemma atLeast_int_lessThan_int_shift:
1663  "F g {int m..<int n} = F (g \<circ> int) {m..<n}"
1664  by (rule atLeastLessThan_reindex)
1665    (simp add: image_int_atLeastLessThan)
1666
1667lemma atLeast_int_atMost_int_shift:
1668  "F g {int m..int n} = F (g \<circ> int) {m..n}"
1669  by (rule atLeastAtMost_reindex)
1670    (simp add: image_int_atLeastAtMost)
1671
1672lemma atLeast0_lessThan_Suc:
1673  "F g {0..<Suc n} = F g {0..<n} \<^bold>* g n"
1674  by (simp add: atLeast0_lessThan_Suc ac_simps)
1675
1676lemma atLeast0_atMost_Suc:
1677  "F g {0..Suc n} = F g {0..n} \<^bold>* g (Suc n)"
1678  by (simp add: atLeast0_atMost_Suc ac_simps)
1679
1680lemma atLeast0_lessThan_Suc_shift:
1681  "F g {0..<Suc n} = g 0 \<^bold>* F (g \<circ> Suc) {0..<n}"
1682  by (simp add: atLeast0_lessThan_Suc_eq_insert_0 atLeast_Suc_lessThan_Suc_shift)
1683
1684lemma atLeast0_atMost_Suc_shift:
1685  "F g {0..Suc n} = g 0 \<^bold>* F (g \<circ> Suc) {0..n}"
1686  by (simp add: atLeast0_atMost_Suc_eq_insert_0 atLeast_Suc_atMost_Suc_shift)
1687
1688lemma atLeast_Suc_lessThan:
1689  "F g {m..<n} = g m \<^bold>* F g {Suc m..<n}" if "m < n"
1690proof -
1691  from that have "{m..<n} = insert m {Suc m..<n}"
1692    by auto
1693  then show ?thesis by simp
1694qed
1695
1696lemma atLeast_Suc_atMost:
1697  "F g {m..n} = g m \<^bold>* F g {Suc m..n}" if "m \<le> n"
1698proof -
1699  from that have "{m..n} = insert m {Suc m..n}"
1700    by auto
1701  then show ?thesis by simp
1702qed
1703
1704lemma ivl_cong:
1705  "a = c \<Longrightarrow> b = d \<Longrightarrow> (\<And>x. c \<le> x \<Longrightarrow> x < d \<Longrightarrow> g x = h x)
1706    \<Longrightarrow> F g {a..<b} = F h {c..<d}"
1707  by (rule cong) simp_all
1708
1709lemma atLeastLessThan_shift_0:
1710  fixes m n p :: nat
1711  shows "F g {m..<n} = F (g \<circ> plus m) {0..<n - m}"
1712  using atLeastLessThan_shift_bounds [of g 0 m "n - m"]
1713  by (cases "m \<le> n") simp_all
1714
1715lemma atLeastAtMost_shift_0:
1716  fixes m n p :: nat
1717  assumes "m \<le> n"
1718  shows "F g {m..n} = F (g \<circ> plus m) {0..n - m}"
1719  using assms atLeastAtMost_shift_bounds [of g 0 m "n - m"] by simp
1720
1721lemma atLeastLessThan_concat:
1722  fixes m n p :: nat
1723  shows "m \<le> n \<Longrightarrow> n \<le> p \<Longrightarrow> F g {m..<n} \<^bold>* F g {n..<p} = F g {m..<p}"
1724  by (simp add: union_disjoint [symmetric] ivl_disj_un)
1725
1726lemma atLeastLessThan_rev:
1727  "F g {n..<m} = F (\<lambda>i. g (m + n - Suc i)) {n..<m}"
1728  by (rule reindex_bij_witness [where i="\<lambda>i. m + n - Suc i" and j="\<lambda>i. m + n - Suc i"], auto)
1729
1730lemma atLeastAtMost_rev:
1731  fixes n m :: nat
1732  shows "F g {n..m} = F (\<lambda>i. g (m + n - i)) {n..m}"
1733  by (rule reindex_bij_witness [where i="\<lambda>i. m + n - i" and j="\<lambda>i. m + n - i"]) auto
1734
1735lemma atLeastLessThan_rev_at_least_Suc_atMost:
1736  "F g {n..<m} = F (\<lambda>i. g (m + n - i)) {Suc n..m}"
1737  unfolding atLeastLessThan_rev [of g n m]
1738  by (cases m) (simp_all add: atLeast_Suc_atMost_Suc_shift atLeastLessThanSuc_atLeastAtMost)
1739
1740end
1741
1742
1743subsection \<open>Summation indexed over intervals\<close>
1744
1745syntax (ASCII)
1746  "_from_to_sum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(SUM _ = _.._./ _)" [0,0,0,10] 10)
1747  "_from_upto_sum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(SUM _ = _..<_./ _)" [0,0,0,10] 10)
1748  "_upt_sum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(SUM _<_./ _)" [0,0,10] 10)
1749  "_upto_sum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(SUM _<=_./ _)" [0,0,10] 10)
1750
1751syntax (latex_sum output)
1752  "_from_to_sum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"
1753 ("(3\<^latex>\<open>$\\sum_{\<close>_ = _\<^latex>\<open>}^{\<close>_\<^latex>\<open>}$\<close> _)" [0,0,0,10] 10)
1754  "_from_upto_sum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"
1755 ("(3\<^latex>\<open>$\\sum_{\<close>_ = _\<^latex>\<open>}^{<\<close>_\<^latex>\<open>}$\<close> _)" [0,0,0,10] 10)
1756  "_upt_sum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"
1757 ("(3\<^latex>\<open>$\\sum_{\<close>_ < _\<^latex>\<open>}$\<close> _)" [0,0,10] 10)
1758  "_upto_sum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"
1759 ("(3\<^latex>\<open>$\\sum_{\<close>_ \<le> _\<^latex>\<open>}$\<close> _)" [0,0,10] 10)
1760
1761syntax
1762  "_from_to_sum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Sum>_ = _.._./ _)" [0,0,0,10] 10)
1763  "_from_upto_sum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Sum>_ = _..<_./ _)" [0,0,0,10] 10)
1764  "_upt_sum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Sum>_<_./ _)" [0,0,10] 10)
1765  "_upto_sum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Sum>_\<le>_./ _)" [0,0,10] 10)
1766
1767translations
1768  "\<Sum>x=a..b. t" == "CONST sum (\<lambda>x. t) {a..b}"
1769  "\<Sum>x=a..<b. t" == "CONST sum (\<lambda>x. t) {a..<b}"
1770  "\<Sum>i\<le>n. t" == "CONST sum (\<lambda>i. t) {..n}"
1771  "\<Sum>i<n. t" == "CONST sum (\<lambda>i. t) {..<n}"
1772
1773text\<open>The above introduces some pretty alternative syntaxes for
1774summation over intervals:
1775\begin{center}
1776\begin{tabular}{lll}
1777Old & New & \LaTeX\\
1778@{term[source]"\<Sum>x\<in>{a..b}. e"} & @{term"\<Sum>x=a..b. e"} & @{term[mode=latex_sum]"\<Sum>x=a..b. e"}\\
1779@{term[source]"\<Sum>x\<in>{a..<b}. e"} & @{term"\<Sum>x=a..<b. e"} & @{term[mode=latex_sum]"\<Sum>x=a..<b. e"}\\
1780@{term[source]"\<Sum>x\<in>{..b}. e"} & @{term"\<Sum>x\<le>b. e"} & @{term[mode=latex_sum]"\<Sum>x\<le>b. e"}\\
1781@{term[source]"\<Sum>x\<in>{..<b}. e"} & @{term"\<Sum>x<b. e"} & @{term[mode=latex_sum]"\<Sum>x<b. e"}
1782\end{tabular}
1783\end{center}
1784The left column shows the term before introduction of the new syntax,
1785the middle column shows the new (default) syntax, and the right column
1786shows a special syntax. The latter is only meaningful for latex output
1787and has to be activated explicitly by setting the print mode to
1788\<open>latex_sum\<close> (e.g.\ via \<open>mode = latex_sum\<close> in
1789antiquotations). It is not the default \LaTeX\ output because it only
1790works well with italic-style formulae, not tt-style.
1791
1792Note that for uniformity on @{typ nat} it is better to use
1793@{term"\<Sum>x::nat=0..<n. e"} rather than \<open>\<Sum>x<n. e\<close>: \<open>sum\<close> may
1794not provide all lemmas available for @{term"{m..<n}"} also in the
1795special form for @{term"{..<n}"}.\<close>
1796
1797text\<open>This congruence rule should be used for sums over intervals as
1798the standard theorem @{text[source]sum.cong} does not work well
1799with the simplifier who adds the unsimplified premise @{term"x\<in>B"} to
1800the context.\<close>
1801
1802lemmas sum_ivl_cong = sum.ivl_cong
1803
1804(* FIXME why are the following simp rules but the corresponding eqns
1805on intervals are not? *)
1806
1807lemma sum_atMost_Suc [simp]:
1808  "(\<Sum>i \<le> Suc n. f i) = (\<Sum>i \<le> n. f i) + f (Suc n)"
1809  by (simp add: atMost_Suc ac_simps)
1810
1811lemma sum_lessThan_Suc [simp]:
1812  "(\<Sum>i < Suc n. f i) = (\<Sum>i < n. f i) + f n"
1813  by (simp add: lessThan_Suc ac_simps)
1814
1815lemma sum_cl_ivl_Suc [simp]:
1816  "sum f {m..Suc n} = (if Suc n < m then 0 else sum f {m..n} + f(Suc n))"
1817  by (auto simp: ac_simps atLeastAtMostSuc_conv)
1818
1819lemma sum_op_ivl_Suc [simp]:
1820  "sum f {m..<Suc n} = (if n < m then 0 else sum f {m..<n} + f(n))"
1821  by (auto simp: ac_simps atLeastLessThanSuc)
1822(*
1823lemma sum_cl_ivl_add_one_nat: "(n::nat) \<le> m + 1 ==>
1824    (\<Sum>i=n..m+1. f i) = (\<Sum>i=n..m. f i) + f(m + 1)"
1825by (auto simp:ac_simps atLeastAtMostSuc_conv)
1826*)
1827
1828lemma sum_head:
1829  fixes n :: nat
1830  assumes mn: "m \<le> n"
1831  shows "(\<Sum>x\<in>{m..n}. P x) = P m + (\<Sum>x\<in>{m<..n}. P x)" (is "?lhs = ?rhs")
1832proof -
1833  from mn
1834  have "{m..n} = {m} \<union> {m<..n}"
1835    by (auto intro: ivl_disj_un_singleton)
1836  hence "?lhs = (\<Sum>x\<in>{m} \<union> {m<..n}. P x)"
1837    by (simp add: atLeast0LessThan)
1838  also have "\<dots> = ?rhs" by simp
1839  finally show ?thesis .
1840qed
1841
1842lemma sum_head_Suc:
1843  "m \<le> n \<Longrightarrow> sum f {m..n} = f m + sum f {Suc m..n}"
1844  by (fact sum.atLeast_Suc_atMost)
1845
1846lemma sum_head_upt_Suc:
1847  "m < n \<Longrightarrow> sum f {m..<n} = f m + sum f {Suc m..<n}"
1848  by (fact sum.atLeast_Suc_lessThan)
1849
1850lemma sum_ub_add_nat: assumes "(m::nat) \<le> n + 1"
1851  shows "sum f {m..n + p} = sum f {m..n} + sum f {n + 1..n + p}"
1852proof-
1853  have "{m .. n+p} = {m..n} \<union> {n+1..n+p}" using \<open>m \<le> n+1\<close> by auto
1854  thus ?thesis by (auto simp: ivl_disj_int sum.union_disjoint
1855    atLeastSucAtMost_greaterThanAtMost)
1856qed
1857
1858lemmas sum_add_nat_ivl = sum.atLeastLessThan_concat
1859
1860lemma sum_diff_nat_ivl:
1861  fixes f :: "nat \<Rightarrow> 'a::ab_group_add"
1862  shows "\<lbrakk> m \<le> n; n \<le> p \<rbrakk> \<Longrightarrow> sum f {m..<p} - sum f {m..<n} = sum f {n..<p}"
1863  using sum_add_nat_ivl [of m n p f,symmetric]
1864  by (simp add: ac_simps)
1865
1866lemma sum_natinterval_difff:
1867  fixes f:: "nat \<Rightarrow> ('a::ab_group_add)"
1868  shows  "sum (\<lambda>k. f k - f(k + 1)) {(m::nat) .. n} =
1869          (if m \<le> n then f m - f(n + 1) else 0)"
1870by (induct n, auto simp add: algebra_simps not_le le_Suc_eq)
1871
1872lemma sum_nat_group: "(\<Sum>m<n::nat. sum f {m * k ..< m*k + k}) = sum f {..< n * k}"
1873proof (cases k)
1874  case (Suc l)
1875  then have "k > 0"
1876    by auto
1877  then show ?thesis
1878    by (induct n) (simp_all add: sum_add_nat_ivl add.commute atLeast0LessThan[symmetric])
1879qed auto   
1880
1881lemma sum_triangle_reindex:
1882  fixes n :: nat
1883  shows "(\<Sum>(i,j)\<in>{(i,j). i+j < n}. f i j) = (\<Sum>k<n. \<Sum>i\<le>k. f i (k - i))"
1884  apply (simp add: sum.Sigma)
1885  apply (rule sum.reindex_bij_witness[where j="\<lambda>(i, j). (i+j, i)" and i="\<lambda>(k, i). (i, k - i)"])
1886  apply auto
1887  done
1888
1889lemma sum_triangle_reindex_eq:
1890  fixes n :: nat
1891  shows "(\<Sum>(i,j)\<in>{(i,j). i+j \<le> n}. f i j) = (\<Sum>k\<le>n. \<Sum>i\<le>k. f i (k - i))"
1892using sum_triangle_reindex [of f "Suc n"]
1893by (simp only: Nat.less_Suc_eq_le lessThan_Suc_atMost)
1894
1895lemma nat_diff_sum_reindex: "(\<Sum>i<n. f (n - Suc i)) = (\<Sum>i<n. f i)"
1896  by (rule sum.reindex_bij_witness[where i="\<lambda>i. n - Suc i" and j="\<lambda>i. n - Suc i"]) auto
1897
1898lemma sum_diff_distrib: "\<forall>x. Q x \<le> P x  \<Longrightarrow> (\<Sum>x<n. P x) - (\<Sum>x<n. Q x) = (\<Sum>x<n. P x - Q x :: nat)"
1899  by (subst sum_subtractf_nat) auto
1900
1901context semiring_parity
1902begin
1903
1904lemma take_bit_sum:
1905  "take_bit n a = (\<Sum>k = 0..<n. push_bit k (of_bool (odd (drop_bit k a))))"
1906  for n :: nat
1907proof (induction n arbitrary: a)
1908  case 0
1909  then show ?case
1910    by simp
1911next
1912  case (Suc n)
1913  have "(\<Sum>k = 0..<Suc n. push_bit k (of_bool (odd (drop_bit k a)))) = 
1914    of_bool (odd a) + (\<Sum>k = Suc 0..<Suc n. push_bit k (of_bool (odd (drop_bit k a))))"
1915    by (simp add: sum.atLeast_Suc_lessThan ac_simps)
1916  also have "(\<Sum>k = Suc 0..<Suc n. push_bit k (of_bool (odd (drop_bit k a))))
1917    = (\<Sum>k = 0..<n. push_bit k (of_bool (odd (drop_bit k (a div 2))))) * 2"
1918    by (simp only: sum.atLeast_Suc_lessThan_Suc_shift) (simp add: sum_distrib_right push_bit_double)
1919  finally show ?case
1920    using Suc [of "a div 2"] by (simp add: ac_simps)
1921qed
1922
1923end
1924
1925
1926subsubsection \<open>Shifting bounds\<close>
1927
1928lemma sum_shift_bounds_nat_ivl:
1929  "sum f {m+k..<n+k} = sum (\<lambda>i. f(i + k)){m..<n::nat}"
1930by (induct "n", auto simp:atLeastLessThanSuc)
1931
1932lemma sum_shift_bounds_cl_nat_ivl:
1933  "sum f {m+k..n+k} = sum (\<lambda>i. f(i + k)){m..n::nat}"
1934  by (rule sum.reindex_bij_witness[where i="\<lambda>i. i + k" and j="\<lambda>i. i - k"]) auto
1935
1936corollary sum_shift_bounds_cl_Suc_ivl:
1937  "sum f {Suc m..Suc n} = sum (\<lambda>i. f(Suc i)){m..n}"
1938by (simp add:sum_shift_bounds_cl_nat_ivl[where k="Suc 0", simplified])
1939
1940corollary sum_shift_bounds_Suc_ivl:
1941  "sum f {Suc m..<Suc n} = sum (\<lambda>i. f(Suc i)){m..<n}"
1942by (simp add:sum_shift_bounds_nat_ivl[where k="Suc 0", simplified])
1943
1944context comm_monoid_add
1945begin
1946
1947context
1948  fixes f :: "nat \<Rightarrow> 'a"
1949  assumes "f 0 = 0"
1950begin
1951
1952lemma sum_shift_lb_Suc0_0_upt:
1953  "sum f {Suc 0..<k} = sum f {0..<k}"
1954proof (cases k)
1955  case 0
1956  then show ?thesis
1957    by simp
1958next
1959  case (Suc k)
1960  moreover have "{0..<Suc k} = insert 0 {Suc 0..<Suc k}"
1961    by auto
1962  ultimately show ?thesis
1963    using \<open>f 0 = 0\<close> by simp
1964qed
1965
1966lemma sum_shift_lb_Suc0_0: "sum f {Suc 0..k} = sum f {0..k}"
1967proof (cases k)
1968  case 0
1969  with \<open>f 0 = 0\<close> show ?thesis
1970    by simp
1971next
1972  case (Suc k)
1973  moreover have "{0..Suc k} = insert 0 {Suc 0..Suc k}"
1974    by auto
1975  ultimately show ?thesis
1976    using \<open>f 0 = 0\<close> by simp
1977qed
1978
1979end
1980
1981end
1982
1983lemma sum_atMost_Suc_shift:
1984  fixes f :: "nat \<Rightarrow> 'a::comm_monoid_add"
1985  shows "(\<Sum>i\<le>Suc n. f i) = f 0 + (\<Sum>i\<le>n. f (Suc i))"
1986proof (induct n)
1987  case 0 show ?case by simp
1988next
1989  case (Suc n) note IH = this
1990  have "(\<Sum>i\<le>Suc (Suc n). f i) = (\<Sum>i\<le>Suc n. f i) + f (Suc (Suc n))"
1991    by (rule sum_atMost_Suc)
1992  also have "(\<Sum>i\<le>Suc n. f i) = f 0 + (\<Sum>i\<le>n. f (Suc i))"
1993    by (rule IH)
1994  also have "f 0 + (\<Sum>i\<le>n. f (Suc i)) + f (Suc (Suc n)) =
1995             f 0 + ((\<Sum>i\<le>n. f (Suc i)) + f (Suc (Suc n)))"
1996    by (rule add.assoc)
1997  also have "(\<Sum>i\<le>n. f (Suc i)) + f (Suc (Suc n)) = (\<Sum>i\<le>Suc n. f (Suc i))"
1998    by (rule sum_atMost_Suc [symmetric])
1999  finally show ?case .
2000qed
2001
2002lemma sum_lessThan_Suc_shift:
2003  "(\<Sum>i<Suc n. f i) = f 0 + (\<Sum>i<n. f (Suc i))"
2004  by (induction n) (simp_all add: add_ac)
2005
2006lemma sum_atMost_shift:
2007  fixes f :: "nat \<Rightarrow> 'a::comm_monoid_add"
2008  shows "(\<Sum>i\<le>n. f i) = f 0 + (\<Sum>i<n. f (Suc i))"
2009by (metis atLeast0AtMost atLeast0LessThan atLeastLessThanSuc_atLeastAtMost atLeastSucAtMost_greaterThanAtMost le0 sum_head sum_shift_bounds_Suc_ivl)
2010
2011lemma sum_last_plus: fixes n::nat shows "m \<le> n \<Longrightarrow> (\<Sum>i = m..n. f i) = f n + (\<Sum>i = m..<n. f i)"
2012  by (cases n) (auto simp: atLeastLessThanSuc_atLeastAtMost add.commute)
2013
2014lemma sum_Suc_diff:
2015  fixes f :: "nat \<Rightarrow> 'a::ab_group_add"
2016  assumes "m \<le> Suc n"
2017  shows "(\<Sum>i = m..n. f(Suc i) - f i) = f (Suc n) - f m"
2018using assms by (induct n) (auto simp: le_Suc_eq)
2019
2020lemma sum_Suc_diff':
2021  fixes f :: "nat \<Rightarrow> 'a::ab_group_add"
2022  assumes "m \<le> n"
2023  shows "(\<Sum>i = m..<n. f (Suc i) - f i) = f n - f m"
2024using assms by (induct n) (auto simp: le_Suc_eq)
2025
2026lemma nested_sum_swap:
2027     "(\<Sum>i = 0..n. (\<Sum>j = 0..<i. a i j)) = (\<Sum>j = 0..<n. \<Sum>i = Suc j..n. a i j)"
2028  by (induction n) (auto simp: sum.distrib)
2029
2030lemma nested_sum_swap':
2031     "(\<Sum>i\<le>n. (\<Sum>j<i. a i j)) = (\<Sum>j<n. \<Sum>i = Suc j..n. a i j)"
2032  by (induction n) (auto simp: sum.distrib)
2033
2034lemma sum_atLeast1_atMost_eq:
2035  "sum f {Suc 0..n} = (\<Sum>k<n. f (Suc k))"
2036proof -
2037  have "sum f {Suc 0..n} = sum f (Suc ` {..<n})"
2038    by (simp add: image_Suc_lessThan)
2039  also have "\<dots> = (\<Sum>k<n. f (Suc k))"
2040    by (simp add: sum.reindex)
2041  finally show ?thesis .
2042qed
2043
2044
2045subsubsection \<open>Telescoping\<close>
2046
2047lemma sum_telescope:
2048  fixes f::"nat \<Rightarrow> 'a::ab_group_add"
2049  shows "sum (\<lambda>i. f i - f (Suc i)) {.. i} = f 0 - f (Suc i)"
2050  by (induct i) simp_all
2051
2052lemma sum_telescope'':
2053  assumes "m \<le> n"
2054  shows   "(\<Sum>k\<in>{Suc m..n}. f k - f (k - 1)) = f n - (f m :: 'a :: ab_group_add)"
2055  by (rule dec_induct[OF assms]) (simp_all add: algebra_simps)
2056
2057lemma sum_lessThan_telescope:
2058  "(\<Sum>n<m. f (Suc n) - f n :: 'a :: ab_group_add) = f m - f 0"
2059  by (induction m) (simp_all add: algebra_simps)
2060
2061lemma sum_lessThan_telescope':
2062  "(\<Sum>n<m. f n - f (Suc n) :: 'a :: ab_group_add) = f 0 - f m"
2063  by (induction m) (simp_all add: algebra_simps)
2064
2065
2066subsubsection \<open>The formula for geometric sums\<close>
2067
2068lemma sum_power2: "(\<Sum>i=0..<k. (2::nat)^i) = 2^k-1"
2069by (induction k) (auto simp: mult_2)
2070
2071lemma geometric_sum:
2072  assumes "x \<noteq> 1"
2073  shows "(\<Sum>i<n. x ^ i) = (x ^ n - 1) / (x - 1::'a::field)"
2074proof -
2075  from assms obtain y where "y = x - 1" and "y \<noteq> 0" by simp_all
2076  moreover have "(\<Sum>i<n. (y + 1) ^ i) = ((y + 1) ^ n - 1) / y"
2077    by (induct n) (simp_all add: field_simps \<open>y \<noteq> 0\<close>)
2078  ultimately show ?thesis by simp
2079qed
2080
2081lemma diff_power_eq_sum:
2082  fixes y :: "'a::{comm_ring,monoid_mult}"
2083  shows
2084    "x ^ (Suc n) - y ^ (Suc n) =
2085      (x - y) * (\<Sum>p<Suc n. (x ^ p) * y ^ (n - p))"
2086proof (induct n)
2087  case (Suc n)
2088  have "x ^ Suc (Suc n) - y ^ Suc (Suc n) = x * (x * x^n) - y * (y * y ^ n)"
2089    by simp
2090  also have "... = y * (x ^ (Suc n) - y ^ (Suc n)) + (x - y) * (x * x^n)"
2091    by (simp add: algebra_simps)
2092  also have "... = y * ((x - y) * (\<Sum>p<Suc n. (x ^ p) * y ^ (n - p))) + (x - y) * (x * x^n)"
2093    by (simp only: Suc)
2094  also have "... = (x - y) * (y * (\<Sum>p<Suc n. (x ^ p) * y ^ (n - p))) + (x - y) * (x * x^n)"
2095    by (simp only: mult.left_commute)
2096  also have "... = (x - y) * (\<Sum>p<Suc (Suc n). x ^ p * y ^ (Suc n - p))"
2097    by (simp add: field_simps Suc_diff_le sum_distrib_right sum_distrib_left)
2098  finally show ?case .
2099qed simp
2100
2101corollary power_diff_sumr2: \<comment> \<open>\<open>COMPLEX_POLYFUN\<close> in HOL Light\<close>
2102  fixes x :: "'a::{comm_ring,monoid_mult}"
2103  shows   "x^n - y^n = (x - y) * (\<Sum>i<n. y^(n - Suc i) * x^i)"
2104using diff_power_eq_sum[of x "n - 1" y]
2105by (cases "n = 0") (simp_all add: field_simps)
2106
2107lemma power_diff_1_eq:
2108  fixes x :: "'a::{comm_ring,monoid_mult}"
2109  shows "n \<noteq> 0 \<Longrightarrow> x^n - 1 = (x - 1) * (\<Sum>i<n. (x^i))"
2110using diff_power_eq_sum [of x _ 1]
2111  by (cases n) auto
2112
2113lemma one_diff_power_eq':
2114  fixes x :: "'a::{comm_ring,monoid_mult}"
2115  shows "n \<noteq> 0 \<Longrightarrow> 1 - x^n = (1 - x) * (\<Sum>i<n. x^(n - Suc i))"
2116using diff_power_eq_sum [of 1 _ x]
2117  by (cases n) auto
2118
2119lemma one_diff_power_eq:
2120  fixes x :: "'a::{comm_ring,monoid_mult}"
2121  shows "n \<noteq> 0 \<Longrightarrow> 1 - x^n = (1 - x) * (\<Sum>i<n. x^i)"
2122by (metis one_diff_power_eq' [of n x] nat_diff_sum_reindex)
2123
2124lemma sum_gp_basic:
2125  fixes x :: "'a::{comm_ring,monoid_mult}"
2126  shows "(1 - x) * (\<Sum>i\<le>n. x^i) = 1 - x^Suc n"
2127  by (simp only: one_diff_power_eq [of "Suc n" x] lessThan_Suc_atMost)
2128
2129lemma sum_power_shift:
2130  fixes x :: "'a::{comm_ring,monoid_mult}"
2131  assumes "m \<le> n"
2132  shows "(\<Sum>i=m..n. x^i) = x^m * (\<Sum>i\<le>n-m. x^i)"
2133proof -
2134  have "(\<Sum>i=m..n. x^i) = x^m * (\<Sum>i=m..n. x^(i-m))"
2135    by (simp add: sum_distrib_left power_add [symmetric])
2136  also have "(\<Sum>i=m..n. x^(i-m)) = (\<Sum>i\<le>n-m. x^i)"
2137    using \<open>m \<le> n\<close> by (intro sum.reindex_bij_witness[where j="\<lambda>i. i - m" and i="\<lambda>i. i + m"]) auto
2138  finally show ?thesis .
2139qed
2140
2141lemma sum_gp_multiplied:
2142  fixes x :: "'a::{comm_ring,monoid_mult}"
2143  assumes "m \<le> n"
2144  shows "(1 - x) * (\<Sum>i=m..n. x^i) = x^m - x^Suc n"
2145proof -
2146  have  "(1 - x) * (\<Sum>i=m..n. x^i) = x^m * (1 - x) * (\<Sum>i\<le>n-m. x^i)"
2147    by (metis mult.assoc mult.commute assms sum_power_shift)
2148  also have "... =x^m * (1 - x^Suc(n-m))"
2149    by (metis mult.assoc sum_gp_basic)
2150  also have "... = x^m - x^Suc n"
2151    using assms
2152    by (simp add: algebra_simps) (metis le_add_diff_inverse power_add)
2153  finally show ?thesis .
2154qed
2155
2156lemma sum_gp:
2157  fixes x :: "'a::{comm_ring,division_ring}"
2158  shows   "(\<Sum>i=m..n. x^i) =
2159               (if n < m then 0
2160                else if x = 1 then of_nat((n + 1) - m)
2161                else (x^m - x^Suc n) / (1 - x))"
2162using sum_gp_multiplied [of m n x] apply auto
2163by (metis eq_iff_diff_eq_0 mult.commute nonzero_divide_eq_eq)
2164
2165
2166subsubsection\<open>Geometric progressions\<close>
2167
2168lemma sum_gp0:
2169  fixes x :: "'a::{comm_ring,division_ring}"
2170  shows   "(\<Sum>i\<le>n. x^i) = (if x = 1 then of_nat(n + 1) else (1 - x^Suc n) / (1 - x))"
2171  using sum_gp_basic[of x n]
2172  by (simp add: mult.commute divide_simps)
2173
2174lemma sum_power_add:
2175  fixes x :: "'a::{comm_ring,monoid_mult}"
2176  shows "(\<Sum>i\<in>I. x^(m+i)) = x^m * (\<Sum>i\<in>I. x^i)"
2177  by (simp add: sum_distrib_left power_add)
2178
2179lemma sum_gp_offset:
2180  fixes x :: "'a::{comm_ring,division_ring}"
2181  shows   "(\<Sum>i=m..m+n. x^i) =
2182       (if x = 1 then of_nat n + 1 else x^m * (1 - x^Suc n) / (1 - x))"
2183  using sum_gp [of x m "m+n"]
2184  by (auto simp: power_add algebra_simps)
2185
2186lemma sum_gp_strict:
2187  fixes x :: "'a::{comm_ring,division_ring}"
2188  shows "(\<Sum>i<n. x^i) = (if x = 1 then of_nat n else (1 - x^n) / (1 - x))"
2189  by (induct n) (auto simp: algebra_simps divide_simps)
2190
2191
2192subsubsection \<open>The formulae for arithmetic sums\<close>
2193
2194context comm_semiring_1
2195begin
2196
2197lemma double_gauss_sum:
2198  "2 * (\<Sum>i = 0..n. of_nat i) = of_nat n * (of_nat n + 1)"
2199  by (induct n) (simp_all add: sum.atLeast0_atMost_Suc algebra_simps left_add_twice)
2200
2201lemma double_gauss_sum_from_Suc_0:
2202  "2 * (\<Sum>i = Suc 0..n. of_nat i) = of_nat n * (of_nat n + 1)"
2203proof -
2204  have "sum of_nat {Suc 0..n} = sum of_nat (insert 0 {Suc 0..n})"
2205    by simp
2206  also have "\<dots> = sum of_nat {0..n}"
2207    by (cases n) (simp_all add: atLeast0_atMost_Suc_eq_insert_0)
2208  finally show ?thesis
2209    by (simp add: double_gauss_sum)
2210qed
2211
2212lemma double_arith_series:
2213  "2 * (\<Sum>i = 0..n. a + of_nat i * d) = (of_nat n + 1) * (2 * a + of_nat n * d)"
2214proof -
2215  have "(\<Sum>i = 0..n. a + of_nat i * d) = ((\<Sum>i = 0..n. a) + (\<Sum>i = 0..n. of_nat i * d))"
2216    by (rule sum.distrib)
2217  also have "\<dots> = (of_nat (Suc n) * a + d * (\<Sum>i = 0..n. of_nat i))"
2218    by (simp add: sum_distrib_left algebra_simps)
2219  finally show ?thesis
2220    by (simp add: algebra_simps double_gauss_sum left_add_twice)
2221qed
2222
2223end
2224
2225context semiring_parity
2226begin
2227
2228lemma gauss_sum:
2229  "(\<Sum>i = 0..n. of_nat i) = of_nat n * (of_nat n + 1) div 2"
2230  using double_gauss_sum [of n, symmetric] by simp
2231
2232lemma gauss_sum_from_Suc_0:
2233  "(\<Sum>i = Suc 0..n. of_nat i) = of_nat n * (of_nat n + 1) div 2"
2234  using double_gauss_sum_from_Suc_0 [of n, symmetric] by simp
2235
2236lemma arith_series:
2237  "(\<Sum>i = 0..n. a + of_nat i * d) = (of_nat n + 1) * (2 * a + of_nat n * d) div 2"
2238  using double_arith_series [of a d n, symmetric] by simp
2239
2240end
2241
2242lemma gauss_sum_nat:
2243  "\<Sum>{0..n} = (n * Suc n) div 2"
2244  using gauss_sum [of n, where ?'a = nat] by simp
2245
2246lemma arith_series_nat:
2247  "(\<Sum>i = 0..n. a + i * d) = Suc n * (2 * a + n * d) div 2"
2248  using arith_series [of a d n] by simp
2249
2250lemma Sum_Icc_int:
2251  "\<Sum>{m..n} = (n * (n + 1) - m * (m - 1)) div 2"
2252  if "m \<le> n" for m n :: int
2253using that proof (induct i \<equiv> "nat (n - m)" arbitrary: m n)
2254  case 0
2255  then have "m = n"
2256    by arith
2257  then show ?case
2258    by (simp add: algebra_simps mult_2 [symmetric])
2259next
2260  case (Suc i)
2261  have 0: "i = nat((n-1) - m)" "m \<le> n-1" using Suc(2,3) by arith+
2262  have "\<Sum> {m..n} = \<Sum> {m..1+(n-1)}" by simp
2263  also have "\<dots> = \<Sum> {m..n-1} + n" using \<open>m \<le> n\<close>
2264    by(subst atLeastAtMostPlus1_int_conv) simp_all
2265  also have "\<dots> = ((n-1)*(n-1+1) - m*(m-1)) div 2 + n"
2266    by(simp add: Suc(1)[OF 0])
2267  also have "\<dots> = ((n-1)*(n-1+1) - m*(m-1) + 2*n) div 2" by simp
2268  also have "\<dots> = (n*(n+1) - m*(m-1)) div 2"
2269    by (simp add: algebra_simps mult_2_right)
2270  finally show ?case .
2271qed
2272
2273lemma Sum_Icc_nat:
2274  "\<Sum>{m..n} = (n * (n + 1) - m * (m - 1)) div 2"
2275  if "m \<le> n" for m n :: nat
2276proof -
2277  have *: "m * (m - 1) \<le> n * (n + 1)"
2278    using that by (meson diff_le_self order_trans le_add1 mult_le_mono)
2279  have "int (\<Sum>{m..n}) = (\<Sum>{int m..int n})"
2280    by (simp add: sum.atLeast_int_atMost_int_shift)
2281  also have "\<dots> = (int n * (int n + 1) - int m * (int m - 1)) div 2"
2282    using that by (simp add: Sum_Icc_int)
2283  also have "\<dots> = int ((n * (n + 1) - m * (m - 1)) div 2)"
2284    using le_square * by (simp add: algebra_simps of_nat_div of_nat_diff)
2285  finally show ?thesis
2286    by (simp only: of_nat_eq_iff)
2287qed
2288
2289lemma Sum_Ico_nat: 
2290  "\<Sum>{m..<n} = (n * (n - 1) - m * (m - 1)) div 2"
2291  if "m \<le> n" for m n :: nat
2292proof -
2293  from that consider "m < n" | "m = n"
2294    by (auto simp add: less_le)
2295  then show ?thesis proof cases
2296    case 1
2297    then have "{m..<n} = {m..n - 1}"
2298      by auto
2299    then have "\<Sum>{m..<n} = \<Sum>{m..n - 1}"
2300      by simp
2301    also have "\<dots> = (n * (n - 1) - m * (m - 1)) div 2"
2302      using \<open>m < n\<close> by (simp add: Sum_Icc_nat mult.commute)
2303    finally show ?thesis .
2304  next
2305    case 2
2306    then show ?thesis
2307      by simp
2308  qed
2309qed
2310
2311
2312subsubsection \<open>Division remainder\<close>
2313
2314lemma range_mod:
2315  fixes n :: nat
2316  assumes "n > 0"
2317  shows "range (\<lambda>m. m mod n) = {0..<n}" (is "?A = ?B")
2318proof (rule set_eqI)
2319  fix m
2320  show "m \<in> ?A \<longleftrightarrow> m \<in> ?B"
2321  proof
2322    assume "m \<in> ?A"
2323    with assms show "m \<in> ?B"
2324      by auto
2325  next
2326    assume "m \<in> ?B"
2327    moreover have "m mod n \<in> ?A"
2328      by (rule rangeI)
2329    ultimately show "m \<in> ?A"
2330      by simp
2331  qed
2332qed
2333
2334
2335subsection \<open>Products indexed over intervals\<close>
2336
2337syntax (ASCII)
2338  "_from_to_prod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(PROD _ = _.._./ _)" [0,0,0,10] 10)
2339  "_from_upto_prod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(PROD _ = _..<_./ _)" [0,0,0,10] 10)
2340  "_upt_prod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(PROD _<_./ _)" [0,0,10] 10)
2341  "_upto_prod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(PROD _<=_./ _)" [0,0,10] 10)
2342
2343syntax (latex_prod output)
2344  "_from_to_prod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"
2345 ("(3\<^latex>\<open>$\\prod_{\<close>_ = _\<^latex>\<open>}^{\<close>_\<^latex>\<open>}$\<close> _)" [0,0,0,10] 10)
2346  "_from_upto_prod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"
2347 ("(3\<^latex>\<open>$\\prod_{\<close>_ = _\<^latex>\<open>}^{<\<close>_\<^latex>\<open>}$\<close> _)" [0,0,0,10] 10)
2348  "_upt_prod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"
2349 ("(3\<^latex>\<open>$\\prod_{\<close>_ < _\<^latex>\<open>}$\<close> _)" [0,0,10] 10)
2350  "_upto_prod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"
2351 ("(3\<^latex>\<open>$\\prod_{\<close>_ \<le> _\<^latex>\<open>}$\<close> _)" [0,0,10] 10)
2352
2353syntax
2354  "_from_to_prod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Prod>_ = _.._./ _)" [0,0,0,10] 10)
2355  "_from_upto_prod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Prod>_ = _..<_./ _)" [0,0,0,10] 10)
2356  "_upt_prod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Prod>_<_./ _)" [0,0,10] 10)
2357  "_upto_prod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Prod>_\<le>_./ _)" [0,0,10] 10)
2358
2359translations
2360  "\<Prod>x=a..b. t" \<rightleftharpoons> "CONST prod (\<lambda>x. t) {a..b}"
2361  "\<Prod>x=a..<b. t" \<rightleftharpoons> "CONST prod (\<lambda>x. t) {a..<b}"
2362  "\<Prod>i\<le>n. t" \<rightleftharpoons> "CONST prod (\<lambda>i. t) {..n}"
2363  "\<Prod>i<n. t" \<rightleftharpoons> "CONST prod (\<lambda>i. t) {..<n}"
2364
2365lemma prod_atLeast1_atMost_eq:
2366  "prod f {Suc 0..n} = (\<Prod>k<n. f (Suc k))"
2367proof -
2368  have "prod f {Suc 0..n} = prod f (Suc ` {..<n})"
2369    by (simp add: image_Suc_lessThan)
2370  also have "\<dots> = (\<Prod>k<n. f (Suc k))"
2371    by (simp add: prod.reindex)
2372  finally show ?thesis .
2373qed
2374
2375lemma prod_int_plus_eq: "prod int {i..i+j} =  \<Prod>{int i..int (i+j)}"
2376  by (induct j) (auto simp add: atLeastAtMostSuc_conv atLeastAtMostPlus1_int_conv)
2377
2378lemma prod_int_eq: "prod int {i..j} =  \<Prod>{int i..int j}"
2379proof (cases "i \<le> j")
2380  case True
2381  then show ?thesis
2382    by (metis le_iff_add prod_int_plus_eq)
2383next
2384  case False
2385  then show ?thesis
2386    by auto
2387qed
2388
2389
2390subsubsection \<open>Shifting bounds\<close>
2391
2392lemma prod_shift_bounds_nat_ivl:
2393  "prod f {m+k..<n+k} = prod (\<lambda>i. f(i + k)){m..<n::nat}"
2394by (induct "n", auto simp:atLeastLessThanSuc)
2395
2396lemma prod_shift_bounds_cl_nat_ivl:
2397  "prod f {m+k..n+k} = prod (\<lambda>i. f(i + k)){m..n::nat}"
2398  by (rule prod.reindex_bij_witness[where i="\<lambda>i. i + k" and j="\<lambda>i. i - k"]) auto
2399
2400corollary prod_shift_bounds_cl_Suc_ivl:
2401  "prod f {Suc m..Suc n} = prod (\<lambda>i. f(Suc i)){m..n}"
2402by (simp add:prod_shift_bounds_cl_nat_ivl[where k="Suc 0", simplified])
2403
2404corollary prod_shift_bounds_Suc_ivl:
2405  "prod f {Suc m..<Suc n} = prod (\<lambda>i. f(Suc i)){m..<n}"
2406by (simp add:prod_shift_bounds_nat_ivl[where k="Suc 0", simplified])
2407
2408lemma prod_lessThan_Suc [simp]: "prod f {..<Suc n} = prod f {..<n} * f n"
2409  by (simp add: lessThan_Suc mult.commute)
2410
2411lemma prod_lessThan_Suc_shift:"(\<Prod>i<Suc n. f i) = f 0 * (\<Prod>i<n. f (Suc i))"
2412  by (induction n) (simp_all add: lessThan_Suc mult_ac)
2413
2414lemma prod_atLeastLessThan_Suc: "a \<le> b \<Longrightarrow> prod f {a..<Suc b} = prod f {a..<b} * f b"
2415  by (simp add: atLeastLessThanSuc mult.commute)
2416
2417lemma prod_nat_ivl_Suc':
2418  assumes "m \<le> Suc n"
2419  shows   "prod f {m..Suc n} = f (Suc n) * prod f {m..n}"
2420proof -
2421  from assms have "{m..Suc n} = insert (Suc n) {m..n}" by auto
2422  also have "prod f \<dots> = f (Suc n) * prod f {m..n}" by simp
2423  finally show ?thesis .
2424qed
2425
2426lemma prod_nat_group: "(\<Prod>m<n::nat. prod f {m * k ..< m*k + k}) = prod f {..< n * k}"
2427proof (cases "k = 0")
2428  case True
2429  then show ?thesis
2430    by auto
2431next
2432  case False
2433  then show ?thesis 
2434    by (induct "n"; simp add: prod.atLeastLessThan_concat algebra_simps atLeast0_lessThan_Suc atLeast0LessThan[symmetric])
2435qed
2436
2437
2438subsection \<open>Efficient folding over intervals\<close>
2439
2440function fold_atLeastAtMost_nat where
2441  [simp del]: "fold_atLeastAtMost_nat f a (b::nat) acc =
2442                 (if a > b then acc else fold_atLeastAtMost_nat f (a+1) b (f a acc))"
2443by pat_completeness auto
2444termination by (relation "measure (\<lambda>(_,a,b,_). Suc b - a)") auto
2445
2446lemma fold_atLeastAtMost_nat:
2447  assumes "comp_fun_commute f"
2448  shows   "fold_atLeastAtMost_nat f a b acc = Finite_Set.fold f acc {a..b}"
2449using assms
2450proof (induction f a b acc rule: fold_atLeastAtMost_nat.induct, goal_cases)
2451  case (1 f a b acc)
2452  interpret comp_fun_commute f by fact
2453  show ?case
2454  proof (cases "a > b")
2455    case True
2456    thus ?thesis by (subst fold_atLeastAtMost_nat.simps) auto
2457  next
2458    case False
2459    with 1 show ?thesis
2460      by (subst fold_atLeastAtMost_nat.simps)
2461         (auto simp: atLeastAtMost_insertL[symmetric] fold_fun_left_comm)
2462  qed
2463qed
2464
2465lemma sum_atLeastAtMost_code:
2466  "sum f {a..b} = fold_atLeastAtMost_nat (\<lambda>a acc. f a + acc) a b 0"
2467proof -
2468  have "comp_fun_commute (\<lambda>a. (+) (f a))"
2469    by unfold_locales (auto simp: o_def add_ac)
2470  thus ?thesis
2471    by (simp add: sum.eq_fold fold_atLeastAtMost_nat o_def)
2472qed
2473
2474lemma prod_atLeastAtMost_code:
2475  "prod f {a..b} = fold_atLeastAtMost_nat (\<lambda>a acc. f a * acc) a b 1"
2476proof -
2477  have "comp_fun_commute (\<lambda>a. ( * ) (f a))"
2478    by unfold_locales (auto simp: o_def mult_ac)
2479  thus ?thesis
2480    by (simp add: prod.eq_fold fold_atLeastAtMost_nat o_def)
2481qed
2482
2483(* TODO: Add support for more kinds of intervals here *)
2484
2485end
2486