1(*  Title:      HOL/Set.thy
2    Author:     Tobias Nipkow
3    Author:     Lawrence C Paulson
4    Author:     Markus Wenzel
5*)
6
7section \<open>Set theory for higher-order logic\<close>
8
9theory Set
10  imports Lattices
11begin
12
13subsection \<open>Sets as predicates\<close>
14
15typedecl 'a set
16
17axiomatization Collect :: "('a \<Rightarrow> bool) \<Rightarrow> 'a set" \<comment> \<open>comprehension\<close>
18  and member :: "'a \<Rightarrow> 'a set \<Rightarrow> bool" \<comment> \<open>membership\<close>
19  where mem_Collect_eq [iff, code_unfold]: "member a (Collect P) = P a"
20    and Collect_mem_eq [simp]: "Collect (\<lambda>x. member x A) = A"
21
22notation
23  member  ("'(\<in>')") and
24  member  ("(_/ \<in> _)" [51, 51] 50)
25
26abbreviation not_member
27  where "not_member x A \<equiv> \<not> (x \<in> A)" \<comment> \<open>non-membership\<close>
28notation
29  not_member  ("'(\<notin>')") and
30  not_member  ("(_/ \<notin> _)" [51, 51] 50)
31
32notation (ASCII)
33  member  ("'(:')") and
34  member  ("(_/ : _)" [51, 51] 50) and
35  not_member  ("'(~:')") and
36  not_member  ("(_/ ~: _)" [51, 51] 50)
37
38
39text \<open>Set comprehensions\<close>
40
41syntax
42  "_Coll" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a set"    ("(1{_./ _})")
43translations
44  "{x. P}" \<rightleftharpoons> "CONST Collect (\<lambda>x. P)"
45
46syntax (ASCII)
47  "_Collect" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> bool \<Rightarrow> 'a set"  ("(1{(_/: _)./ _})")
48syntax
49  "_Collect" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> bool \<Rightarrow> 'a set"  ("(1{(_/ \<in> _)./ _})")
50translations
51  "{p:A. P}" \<rightharpoonup> "CONST Collect (\<lambda>p. p \<in> A \<and> P)"
52
53lemma CollectI: "P a \<Longrightarrow> a \<in> {x. P x}"
54  by simp
55
56lemma CollectD: "a \<in> {x. P x} \<Longrightarrow> P a"
57  by simp
58
59lemma Collect_cong: "(\<And>x. P x = Q x) \<Longrightarrow> {x. P x} = {x. Q x}"
60  by simp
61
62text \<open>
63  Simproc for pulling \<open>x = t\<close> in \<open>{x. \<dots> \<and> x = t \<and> \<dots>}\<close>
64  to the front (and similarly for \<open>t = x\<close>):
65\<close>
66
67simproc_setup defined_Collect ("{x. P x \<and> Q x}") = \<open>
68  fn _ => Quantifier1.rearrange_Collect
69    (fn ctxt =>
70      resolve_tac ctxt @{thms Collect_cong} 1 THEN
71      resolve_tac ctxt @{thms iffI} 1 THEN
72      ALLGOALS
73        (EVERY' [REPEAT_DETERM o eresolve_tac ctxt @{thms conjE},
74          DEPTH_SOLVE_1 o (assume_tac ctxt ORELSE' resolve_tac ctxt @{thms conjI})]))
75\<close>
76
77lemmas CollectE = CollectD [elim_format]
78
79lemma set_eqI:
80  assumes "\<And>x. x \<in> A \<longleftrightarrow> x \<in> B"
81  shows "A = B"
82proof -
83  from assms have "{x. x \<in> A} = {x. x \<in> B}"
84    by simp
85  then show ?thesis by simp
86qed
87
88lemma set_eq_iff: "A = B \<longleftrightarrow> (\<forall>x. x \<in> A \<longleftrightarrow> x \<in> B)"
89  by (auto intro:set_eqI)
90
91lemma Collect_eqI:
92  assumes "\<And>x. P x = Q x"
93  shows "Collect P = Collect Q"
94  using assms by (auto intro: set_eqI)
95
96text \<open>Lifting of predicate class instances\<close>
97
98instantiation set :: (type) boolean_algebra
99begin
100
101definition less_eq_set
102  where "A \<le> B \<longleftrightarrow> (\<lambda>x. member x A) \<le> (\<lambda>x. member x B)"
103
104definition less_set
105  where "A < B \<longleftrightarrow> (\<lambda>x. member x A) < (\<lambda>x. member x B)"
106
107definition inf_set
108  where "A \<sqinter> B = Collect ((\<lambda>x. member x A) \<sqinter> (\<lambda>x. member x B))"
109
110definition sup_set
111  where "A \<squnion> B = Collect ((\<lambda>x. member x A) \<squnion> (\<lambda>x. member x B))"
112
113definition bot_set
114  where "\<bottom> = Collect \<bottom>"
115
116definition top_set
117  where "\<top> = Collect \<top>"
118
119definition uminus_set
120  where "- A = Collect (- (\<lambda>x. member x A))"
121
122definition minus_set
123  where "A - B = Collect ((\<lambda>x. member x A) - (\<lambda>x. member x B))"
124
125instance
126  by standard
127    (simp_all add: less_eq_set_def less_set_def inf_set_def sup_set_def
128      bot_set_def top_set_def uminus_set_def minus_set_def
129      less_le_not_le sup_inf_distrib1 diff_eq set_eqI fun_eq_iff
130      del: inf_apply sup_apply bot_apply top_apply minus_apply uminus_apply)
131
132end
133
134text \<open>Set enumerations\<close>
135
136abbreviation empty :: "'a set" ("{}")
137  where "{} \<equiv> bot"
138
139definition insert :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set"
140  where insert_compr: "insert a B = {x. x = a \<or> x \<in> B}"
141
142syntax
143  "_Finset" :: "args \<Rightarrow> 'a set"    ("{(_)}")
144translations
145  "{x, xs}" \<rightleftharpoons> "CONST insert x {xs}"
146  "{x}" \<rightleftharpoons> "CONST insert x {}"
147
148
149subsection \<open>Subsets and bounded quantifiers\<close>
150
151abbreviation subset :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool"
152  where "subset \<equiv> less"
153
154abbreviation subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool"
155  where "subset_eq \<equiv> less_eq"
156
157notation
158  subset  ("'(\<subset>')") and
159  subset  ("(_/ \<subset> _)" [51, 51] 50) and
160  subset_eq  ("'(\<subseteq>')") and
161  subset_eq  ("(_/ \<subseteq> _)" [51, 51] 50)
162
163abbreviation (input)
164  supset :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where
165  "supset \<equiv> greater"
166
167abbreviation (input)
168  supset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where
169  "supset_eq \<equiv> greater_eq"
170
171notation
172  supset  ("'(\<supset>')") and
173  supset  ("(_/ \<supset> _)" [51, 51] 50) and
174  supset_eq  ("'(\<supseteq>')") and
175  supset_eq  ("(_/ \<supseteq> _)" [51, 51] 50)
176
177notation (ASCII output)
178  subset  ("'(<')") and
179  subset  ("(_/ < _)" [51, 51] 50) and
180  subset_eq  ("'(<=')") and
181  subset_eq  ("(_/ <= _)" [51, 51] 50)
182
183definition Ball :: "'a set \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
184  where "Ball A P \<longleftrightarrow> (\<forall>x. x \<in> A \<longrightarrow> P x)"   \<comment> \<open>bounded universal quantifiers\<close>
185
186definition Bex :: "'a set \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
187  where "Bex A P \<longleftrightarrow> (\<exists>x. x \<in> A \<and> P x)"   \<comment> \<open>bounded existential quantifiers\<close>
188
189syntax (ASCII)
190  "_Ball"       :: "pttrn \<Rightarrow> 'a set \<Rightarrow> bool \<Rightarrow> bool"      ("(3ALL (_/:_)./ _)" [0, 0, 10] 10)
191  "_Bex"        :: "pttrn \<Rightarrow> 'a set \<Rightarrow> bool \<Rightarrow> bool"      ("(3EX (_/:_)./ _)" [0, 0, 10] 10)
192  "_Bex1"       :: "pttrn \<Rightarrow> 'a set \<Rightarrow> bool \<Rightarrow> bool"      ("(3EX! (_/:_)./ _)" [0, 0, 10] 10)
193  "_Bleast"     :: "id \<Rightarrow> 'a set \<Rightarrow> bool \<Rightarrow> 'a"           ("(3LEAST (_/:_)./ _)" [0, 0, 10] 10)
194
195syntax (input)
196  "_Ball"       :: "pttrn \<Rightarrow> 'a set \<Rightarrow> bool \<Rightarrow> bool"      ("(3! (_/:_)./ _)" [0, 0, 10] 10)
197  "_Bex"        :: "pttrn \<Rightarrow> 'a set \<Rightarrow> bool \<Rightarrow> bool"      ("(3? (_/:_)./ _)" [0, 0, 10] 10)
198  "_Bex1"       :: "pttrn \<Rightarrow> 'a set \<Rightarrow> bool \<Rightarrow> bool"      ("(3?! (_/:_)./ _)" [0, 0, 10] 10)
199
200syntax
201  "_Ball"       :: "pttrn \<Rightarrow> 'a set \<Rightarrow> bool \<Rightarrow> bool"      ("(3\<forall>(_/\<in>_)./ _)" [0, 0, 10] 10)
202  "_Bex"        :: "pttrn \<Rightarrow> 'a set \<Rightarrow> bool \<Rightarrow> bool"      ("(3\<exists>(_/\<in>_)./ _)" [0, 0, 10] 10)
203  "_Bex1"       :: "pttrn \<Rightarrow> 'a set \<Rightarrow> bool \<Rightarrow> bool"      ("(3\<exists>!(_/\<in>_)./ _)" [0, 0, 10] 10)
204  "_Bleast"     :: "id \<Rightarrow> 'a set \<Rightarrow> bool \<Rightarrow> 'a"           ("(3LEAST(_/\<in>_)./ _)" [0, 0, 10] 10)
205
206translations
207  "\<forall>x\<in>A. P" \<rightleftharpoons> "CONST Ball A (\<lambda>x. P)"
208  "\<exists>x\<in>A. P" \<rightleftharpoons> "CONST Bex A (\<lambda>x. P)"
209  "\<exists>!x\<in>A. P" \<rightharpoonup> "\<exists>!x. x \<in> A \<and> P"
210  "LEAST x:A. P" \<rightharpoonup> "LEAST x. x \<in> A \<and> P"
211
212syntax (ASCII output)
213  "_setlessAll" :: "[idt, 'a, bool] \<Rightarrow> bool"  ("(3ALL _<_./ _)"  [0, 0, 10] 10)
214  "_setlessEx"  :: "[idt, 'a, bool] \<Rightarrow> bool"  ("(3EX _<_./ _)"  [0, 0, 10] 10)
215  "_setleAll"   :: "[idt, 'a, bool] \<Rightarrow> bool"  ("(3ALL _<=_./ _)" [0, 0, 10] 10)
216  "_setleEx"    :: "[idt, 'a, bool] \<Rightarrow> bool"  ("(3EX _<=_./ _)" [0, 0, 10] 10)
217  "_setleEx1"   :: "[idt, 'a, bool] \<Rightarrow> bool"  ("(3EX! _<=_./ _)" [0, 0, 10] 10)
218
219syntax
220  "_setlessAll" :: "[idt, 'a, bool] \<Rightarrow> bool"   ("(3\<forall>_\<subset>_./ _)"  [0, 0, 10] 10)
221  "_setlessEx"  :: "[idt, 'a, bool] \<Rightarrow> bool"   ("(3\<exists>_\<subset>_./ _)"  [0, 0, 10] 10)
222  "_setleAll"   :: "[idt, 'a, bool] \<Rightarrow> bool"   ("(3\<forall>_\<subseteq>_./ _)" [0, 0, 10] 10)
223  "_setleEx"    :: "[idt, 'a, bool] \<Rightarrow> bool"   ("(3\<exists>_\<subseteq>_./ _)" [0, 0, 10] 10)
224  "_setleEx1"   :: "[idt, 'a, bool] \<Rightarrow> bool"   ("(3\<exists>!_\<subseteq>_./ _)" [0, 0, 10] 10)
225
226translations
227 "\<forall>A\<subset>B. P" \<rightharpoonup> "\<forall>A. A \<subset> B \<longrightarrow> P"
228 "\<exists>A\<subset>B. P" \<rightharpoonup> "\<exists>A. A \<subset> B \<and> P"
229 "\<forall>A\<subseteq>B. P" \<rightharpoonup> "\<forall>A. A \<subseteq> B \<longrightarrow> P"
230 "\<exists>A\<subseteq>B. P" \<rightharpoonup> "\<exists>A. A \<subseteq> B \<and> P"
231 "\<exists>!A\<subseteq>B. P" \<rightharpoonup> "\<exists>!A. A \<subseteq> B \<and> P"
232
233print_translation \<open>
234  let
235    val All_binder = Mixfix.binder_name @{const_syntax All};
236    val Ex_binder = Mixfix.binder_name @{const_syntax Ex};
237    val impl = @{const_syntax HOL.implies};
238    val conj = @{const_syntax HOL.conj};
239    val sbset = @{const_syntax subset};
240    val sbset_eq = @{const_syntax subset_eq};
241
242    val trans =
243     [((All_binder, impl, sbset), @{syntax_const "_setlessAll"}),
244      ((All_binder, impl, sbset_eq), @{syntax_const "_setleAll"}),
245      ((Ex_binder, conj, sbset), @{syntax_const "_setlessEx"}),
246      ((Ex_binder, conj, sbset_eq), @{syntax_const "_setleEx"})];
247
248    fun mk v (v', T) c n P =
249      if v = v' andalso not (Term.exists_subterm (fn Free (x, _) => x = v | _ => false) n)
250      then Syntax.const c $ Syntax_Trans.mark_bound_body (v', T) $ n $ P
251      else raise Match;
252
253    fun tr' q = (q, fn _ =>
254      (fn [Const (@{syntax_const "_bound"}, _) $ Free (v, Type (@{type_name set}, _)),
255          Const (c, _) $
256            (Const (d, _) $ (Const (@{syntax_const "_bound"}, _) $ Free (v', T)) $ n) $ P] =>
257          (case AList.lookup (=) trans (q, c, d) of
258            NONE => raise Match
259          | SOME l => mk v (v', T) l n P)
260        | _ => raise Match));
261  in
262    [tr' All_binder, tr' Ex_binder]
263  end
264\<close>
265
266
267text \<open>
268  \<^medskip>
269  Translate between \<open>{e | x1\<dots>xn. P}\<close> and \<open>{u. \<exists>x1\<dots>xn. u = e \<and> P}\<close>;
270  \<open>{y. \<exists>x1\<dots>xn. y = e \<and> P}\<close> is only translated if \<open>[0..n] \<subseteq> bvs e\<close>.
271\<close>
272
273syntax
274  "_Setcompr" :: "'a \<Rightarrow> idts \<Rightarrow> bool \<Rightarrow> 'a set"    ("(1{_ |/_./ _})")
275
276parse_translation \<open>
277  let
278    val ex_tr = snd (Syntax_Trans.mk_binder_tr ("EX ", @{const_syntax Ex}));
279
280    fun nvars (Const (@{syntax_const "_idts"}, _) $ _ $ idts) = nvars idts + 1
281      | nvars _ = 1;
282
283    fun setcompr_tr ctxt [e, idts, b] =
284      let
285        val eq = Syntax.const @{const_syntax HOL.eq} $ Bound (nvars idts) $ e;
286        val P = Syntax.const @{const_syntax HOL.conj} $ eq $ b;
287        val exP = ex_tr ctxt [idts, P];
288      in Syntax.const @{const_syntax Collect} $ absdummy dummyT exP end;
289
290  in [(@{syntax_const "_Setcompr"}, setcompr_tr)] end;
291\<close>
292
293print_translation \<open>
294 [Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax Ball} @{syntax_const "_Ball"},
295  Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax Bex} @{syntax_const "_Bex"}]
296\<close> \<comment> \<open>to avoid eta-contraction of body\<close>
297
298print_translation \<open>
299let
300  val ex_tr' = snd (Syntax_Trans.mk_binder_tr' (@{const_syntax Ex}, "DUMMY"));
301
302  fun setcompr_tr' ctxt [Abs (abs as (_, _, P))] =
303    let
304      fun check (Const (@{const_syntax Ex}, _) $ Abs (_, _, P), n) = check (P, n + 1)
305        | check (Const (@{const_syntax HOL.conj}, _) $
306              (Const (@{const_syntax HOL.eq}, _) $ Bound m $ e) $ P, n) =
307            n > 0 andalso m = n andalso not (loose_bvar1 (P, n)) andalso
308            subset (=) (0 upto (n - 1), add_loose_bnos (e, 0, []))
309        | check _ = false;
310
311        fun tr' (_ $ abs) =
312          let val _ $ idts $ (_ $ (_ $ _ $ e) $ Q) = ex_tr' ctxt [abs]
313          in Syntax.const @{syntax_const "_Setcompr"} $ e $ idts $ Q end;
314    in
315      if check (P, 0) then tr' P
316      else
317        let
318          val (x as _ $ Free(xN, _), t) = Syntax_Trans.atomic_abs_tr' abs;
319          val M = Syntax.const @{syntax_const "_Coll"} $ x $ t;
320        in
321          case t of
322            Const (@{const_syntax HOL.conj}, _) $
323              (Const (@{const_syntax Set.member}, _) $
324                (Const (@{syntax_const "_bound"}, _) $ Free (yN, _)) $ A) $ P =>
325            if xN = yN then Syntax.const @{syntax_const "_Collect"} $ x $ A $ P else M
326          | _ => M
327        end
328    end;
329  in [(@{const_syntax Collect}, setcompr_tr')] end;
330\<close>
331
332simproc_setup defined_Bex ("\<exists>x\<in>A. P x \<and> Q x") = \<open>
333  fn _ => Quantifier1.rearrange_bex
334    (fn ctxt =>
335      unfold_tac ctxt @{thms Bex_def} THEN
336      Quantifier1.prove_one_point_ex_tac ctxt)
337\<close>
338
339simproc_setup defined_All ("\<forall>x\<in>A. P x \<longrightarrow> Q x") = \<open>
340  fn _ => Quantifier1.rearrange_ball
341    (fn ctxt =>
342      unfold_tac ctxt @{thms Ball_def} THEN
343      Quantifier1.prove_one_point_all_tac ctxt)
344\<close>
345
346lemma ballI [intro!]: "(\<And>x. x \<in> A \<Longrightarrow> P x) \<Longrightarrow> \<forall>x\<in>A. P x"
347  by (simp add: Ball_def)
348
349lemmas strip = impI allI ballI
350
351lemma bspec [dest?]: "\<forall>x\<in>A. P x \<Longrightarrow> x \<in> A \<Longrightarrow> P x"
352  by (simp add: Ball_def)
353
354text \<open>Gives better instantiation for bound:\<close>
355setup \<open>
356  map_theory_claset (fn ctxt =>
357    ctxt addbefore ("bspec", fn ctxt' => dresolve_tac ctxt' @{thms bspec} THEN' assume_tac ctxt'))
358\<close>
359
360ML \<open>
361structure Simpdata =
362struct
363  open Simpdata;
364  val mksimps_pairs = [(@{const_name Ball}, @{thms bspec})] @ mksimps_pairs;
365end;
366
367open Simpdata;
368\<close>
369
370declaration \<open>fn _ => Simplifier.map_ss (Simplifier.set_mksimps (mksimps mksimps_pairs))\<close>
371
372lemma ballE [elim]: "\<forall>x\<in>A. P x \<Longrightarrow> (P x \<Longrightarrow> Q) \<Longrightarrow> (x \<notin> A \<Longrightarrow> Q) \<Longrightarrow> Q"
373  unfolding Ball_def by blast
374
375lemma bexI [intro]: "P x \<Longrightarrow> x \<in> A \<Longrightarrow> \<exists>x\<in>A. P x"
376  \<comment> \<open>Normally the best argument order: \<open>P x\<close> constrains the choice of \<open>x \<in> A\<close>.\<close>
377  unfolding Bex_def by blast
378
379lemma rev_bexI [intro?]: "x \<in> A \<Longrightarrow> P x \<Longrightarrow> \<exists>x\<in>A. P x"
380  \<comment> \<open>The best argument order when there is only one \<open>x \<in> A\<close>.\<close>
381  unfolding Bex_def by blast
382
383lemma bexCI: "(\<forall>x\<in>A. \<not> P x \<Longrightarrow> P a) \<Longrightarrow> a \<in> A \<Longrightarrow> \<exists>x\<in>A. P x"
384  unfolding Bex_def by blast
385
386lemma bexE [elim!]: "\<exists>x\<in>A. P x \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> P x \<Longrightarrow> Q) \<Longrightarrow> Q"
387  unfolding Bex_def by blast
388
389lemma ball_triv [simp]: "(\<forall>x\<in>A. P) \<longleftrightarrow> ((\<exists>x. x \<in> A) \<longrightarrow> P)"
390  \<comment> \<open>Trival rewrite rule.\<close>
391  by (simp add: Ball_def)
392
393lemma bex_triv [simp]: "(\<exists>x\<in>A. P) \<longleftrightarrow> ((\<exists>x. x \<in> A) \<and> P)"
394  \<comment> \<open>Dual form for existentials.\<close>
395  by (simp add: Bex_def)
396
397lemma bex_triv_one_point1 [simp]: "(\<exists>x\<in>A. x = a) \<longleftrightarrow> a \<in> A"
398  by blast
399
400lemma bex_triv_one_point2 [simp]: "(\<exists>x\<in>A. a = x) \<longleftrightarrow> a \<in> A"
401  by blast
402
403lemma bex_one_point1 [simp]: "(\<exists>x\<in>A. x = a \<and> P x) \<longleftrightarrow> a \<in> A \<and> P a"
404  by blast
405
406lemma bex_one_point2 [simp]: "(\<exists>x\<in>A. a = x \<and> P x) \<longleftrightarrow> a \<in> A \<and> P a"
407  by blast
408
409lemma ball_one_point1 [simp]: "(\<forall>x\<in>A. x = a \<longrightarrow> P x) \<longleftrightarrow> (a \<in> A \<longrightarrow> P a)"
410  by blast
411
412lemma ball_one_point2 [simp]: "(\<forall>x\<in>A. a = x \<longrightarrow> P x) \<longleftrightarrow> (a \<in> A \<longrightarrow> P a)"
413  by blast
414
415lemma ball_conj_distrib: "(\<forall>x\<in>A. P x \<and> Q x) \<longleftrightarrow> (\<forall>x\<in>A. P x) \<and> (\<forall>x\<in>A. Q x)"
416  by blast
417
418lemma bex_disj_distrib: "(\<exists>x\<in>A. P x \<or> Q x) \<longleftrightarrow> (\<exists>x\<in>A. P x) \<or> (\<exists>x\<in>A. Q x)"
419  by blast
420
421
422text \<open>Congruence rules\<close>
423
424lemma ball_cong:
425  "A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> P x \<longleftrightarrow> Q x) \<Longrightarrow>
426    (\<forall>x\<in>A. P x) \<longleftrightarrow> (\<forall>x\<in>B. Q x)"
427  by (simp add: Ball_def)
428
429lemma strong_ball_cong [cong]:
430  "A = B \<Longrightarrow> (\<And>x. x \<in> B =simp=> P x \<longleftrightarrow> Q x) \<Longrightarrow>
431    (\<forall>x\<in>A. P x) \<longleftrightarrow> (\<forall>x\<in>B. Q x)"
432  by (simp add: simp_implies_def Ball_def)
433
434lemma bex_cong:
435  "A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> P x \<longleftrightarrow> Q x) \<Longrightarrow>
436    (\<exists>x\<in>A. P x) \<longleftrightarrow> (\<exists>x\<in>B. Q x)"
437  by (simp add: Bex_def cong: conj_cong)
438
439lemma strong_bex_cong [cong]:
440  "A = B \<Longrightarrow> (\<And>x. x \<in> B =simp=> P x \<longleftrightarrow> Q x) \<Longrightarrow>
441    (\<exists>x\<in>A. P x) \<longleftrightarrow> (\<exists>x\<in>B. Q x)"
442  by (simp add: simp_implies_def Bex_def cong: conj_cong)
443
444lemma bex1_def: "(\<exists>!x\<in>X. P x) \<longleftrightarrow> (\<exists>x\<in>X. P x) \<and> (\<forall>x\<in>X. \<forall>y\<in>X. P x \<longrightarrow> P y \<longrightarrow> x = y)"
445  by auto
446
447
448subsection \<open>Basic operations\<close>
449
450subsubsection \<open>Subsets\<close>
451
452lemma subsetI [intro!]: "(\<And>x. x \<in> A \<Longrightarrow> x \<in> B) \<Longrightarrow> A \<subseteq> B"
453  by (simp add: less_eq_set_def le_fun_def)
454
455text \<open>
456  \<^medskip>
457  Map the type \<open>'a set \<Rightarrow> anything\<close> to just \<open>'a\<close>; for overloading constants
458  whose first argument has type \<open>'a set\<close>.
459\<close>
460
461lemma subsetD [elim, intro?]: "A \<subseteq> B \<Longrightarrow> c \<in> A \<Longrightarrow> c \<in> B"
462  by (simp add: less_eq_set_def le_fun_def)
463  \<comment> \<open>Rule in Modus Ponens style.\<close>
464
465lemma rev_subsetD [intro?]: "c \<in> A \<Longrightarrow> A \<subseteq> B \<Longrightarrow> c \<in> B"
466  \<comment> \<open>The same, with reversed premises for use with @{method erule} -- cf. @{thm rev_mp}.\<close>
467  by (rule subsetD)
468
469lemma subsetCE [elim]: "A \<subseteq> B \<Longrightarrow> (c \<notin> A \<Longrightarrow> P) \<Longrightarrow> (c \<in> B \<Longrightarrow> P) \<Longrightarrow> P"
470  \<comment> \<open>Classical elimination rule.\<close>
471  by (auto simp add: less_eq_set_def le_fun_def)
472
473lemma subset_eq: "A \<subseteq> B \<longleftrightarrow> (\<forall>x\<in>A. x \<in> B)"
474  by blast
475
476lemma contra_subsetD: "A \<subseteq> B \<Longrightarrow> c \<notin> B \<Longrightarrow> c \<notin> A"
477  by blast
478
479lemma subset_refl: "A \<subseteq> A"
480  by (fact order_refl) (* already [iff] *)
481
482lemma subset_trans: "A \<subseteq> B \<Longrightarrow> B \<subseteq> C \<Longrightarrow> A \<subseteq> C"
483  by (fact order_trans)
484
485lemma set_rev_mp: "x \<in> A \<Longrightarrow> A \<subseteq> B \<Longrightarrow> x \<in> B"
486  by (rule subsetD)
487
488lemma set_mp: "A \<subseteq> B \<Longrightarrow> x \<in> A \<Longrightarrow> x \<in> B"
489  by (rule subsetD)
490
491lemma subset_not_subset_eq [code]: "A \<subset> B \<longleftrightarrow> A \<subseteq> B \<and> \<not> B \<subseteq> A"
492  by (fact less_le_not_le)
493
494lemma eq_mem_trans: "a = b \<Longrightarrow> b \<in> A \<Longrightarrow> a \<in> A"
495  by simp
496
497lemmas basic_trans_rules [trans] =
498  order_trans_rules set_rev_mp set_mp eq_mem_trans
499
500
501subsubsection \<open>Equality\<close>
502
503lemma subset_antisym [intro!]: "A \<subseteq> B \<Longrightarrow> B \<subseteq> A \<Longrightarrow> A = B"
504  \<comment> \<open>Anti-symmetry of the subset relation.\<close>
505  by (iprover intro: set_eqI subsetD)
506
507text \<open>\<^medskip> Equality rules from ZF set theory -- are they appropriate here?\<close>
508
509lemma equalityD1: "A = B \<Longrightarrow> A \<subseteq> B"
510  by simp
511
512lemma equalityD2: "A = B \<Longrightarrow> B \<subseteq> A"
513  by simp
514
515text \<open>
516  \<^medskip>
517  Be careful when adding this to the claset as \<open>subset_empty\<close> is in the
518  simpset: @{prop "A = {}"} goes to @{prop "{} \<subseteq> A"} and @{prop "A \<subseteq> {}"}
519  and then back to @{prop "A = {}"}!
520\<close>
521
522lemma equalityE: "A = B \<Longrightarrow> (A \<subseteq> B \<Longrightarrow> B \<subseteq> A \<Longrightarrow> P) \<Longrightarrow> P"
523  by simp
524
525lemma equalityCE [elim]: "A = B \<Longrightarrow> (c \<in> A \<Longrightarrow> c \<in> B \<Longrightarrow> P) \<Longrightarrow> (c \<notin> A \<Longrightarrow> c \<notin> B \<Longrightarrow> P) \<Longrightarrow> P"
526  by blast
527
528lemma eqset_imp_iff: "A = B \<Longrightarrow> x \<in> A \<longleftrightarrow> x \<in> B"
529  by simp
530
531lemma eqelem_imp_iff: "x = y \<Longrightarrow> x \<in> A \<longleftrightarrow> y \<in> A"
532  by simp
533
534
535subsubsection \<open>The empty set\<close>
536
537lemma empty_def: "{} = {x. False}"
538  by (simp add: bot_set_def bot_fun_def)
539
540lemma empty_iff [simp]: "c \<in> {} \<longleftrightarrow> False"
541  by (simp add: empty_def)
542
543lemma emptyE [elim!]: "a \<in> {} \<Longrightarrow> P"
544  by simp
545
546lemma empty_subsetI [iff]: "{} \<subseteq> A"
547  \<comment> \<open>One effect is to delete the ASSUMPTION @{prop "{} \<subseteq> A"}\<close>
548  by blast
549
550lemma equals0I: "(\<And>y. y \<in> A \<Longrightarrow> False) \<Longrightarrow> A = {}"
551  by blast
552
553lemma equals0D: "A = {} \<Longrightarrow> a \<notin> A"
554  \<comment> \<open>Use for reasoning about disjointness: \<open>A \<inter> B = {}\<close>\<close>
555  by blast
556
557lemma ball_empty [simp]: "Ball {} P \<longleftrightarrow> True"
558  by (simp add: Ball_def)
559
560lemma bex_empty [simp]: "Bex {} P \<longleftrightarrow> False"
561  by (simp add: Bex_def)
562
563
564subsubsection \<open>The universal set -- UNIV\<close>
565
566abbreviation UNIV :: "'a set"
567  where "UNIV \<equiv> top"
568
569lemma UNIV_def: "UNIV = {x. True}"
570  by (simp add: top_set_def top_fun_def)
571
572lemma UNIV_I [simp]: "x \<in> UNIV"
573  by (simp add: UNIV_def)
574
575declare UNIV_I [intro]  \<comment> \<open>unsafe makes it less likely to cause problems\<close>
576
577lemma UNIV_witness [intro?]: "\<exists>x. x \<in> UNIV"
578  by simp
579
580lemma subset_UNIV: "A \<subseteq> UNIV"
581  by (fact top_greatest) (* already simp *)
582
583text \<open>
584  \<^medskip>
585  Eta-contracting these two rules (to remove \<open>P\<close>) causes them
586  to be ignored because of their interaction with congruence rules.
587\<close>
588
589lemma ball_UNIV [simp]: "Ball UNIV P \<longleftrightarrow> All P"
590  by (simp add: Ball_def)
591
592lemma bex_UNIV [simp]: "Bex UNIV P \<longleftrightarrow> Ex P"
593  by (simp add: Bex_def)
594
595lemma UNIV_eq_I: "(\<And>x. x \<in> A) \<Longrightarrow> UNIV = A"
596  by auto
597
598lemma UNIV_not_empty [iff]: "UNIV \<noteq> {}"
599  by (blast elim: equalityE)
600
601lemma empty_not_UNIV[simp]: "{} \<noteq> UNIV"
602  by blast
603
604
605subsubsection \<open>The Powerset operator -- Pow\<close>
606
607definition Pow :: "'a set \<Rightarrow> 'a set set"
608  where Pow_def: "Pow A = {B. B \<subseteq> A}"
609
610lemma Pow_iff [iff]: "A \<in> Pow B \<longleftrightarrow> A \<subseteq> B"
611  by (simp add: Pow_def)
612
613lemma PowI: "A \<subseteq> B \<Longrightarrow> A \<in> Pow B"
614  by (simp add: Pow_def)
615
616lemma PowD: "A \<in> Pow B \<Longrightarrow> A \<subseteq> B"
617  by (simp add: Pow_def)
618
619lemma Pow_bottom: "{} \<in> Pow B"
620  by simp
621
622lemma Pow_top: "A \<in> Pow A"
623  by simp
624
625lemma Pow_not_empty: "Pow A \<noteq> {}"
626  using Pow_top by blast
627
628
629subsubsection \<open>Set complement\<close>
630
631lemma Compl_iff [simp]: "c \<in> - A \<longleftrightarrow> c \<notin> A"
632  by (simp add: fun_Compl_def uminus_set_def)
633
634lemma ComplI [intro!]: "(c \<in> A \<Longrightarrow> False) \<Longrightarrow> c \<in> - A"
635  by (simp add: fun_Compl_def uminus_set_def) blast
636
637text \<open>
638  \<^medskip>
639  This form, with negated conclusion, works well with the Classical prover.
640  Negated assumptions behave like formulae on the right side of the
641  notional turnstile \dots
642\<close>
643
644lemma ComplD [dest!]: "c \<in> - A \<Longrightarrow> c \<notin> A"
645  by simp
646
647lemmas ComplE = ComplD [elim_format]
648
649lemma Compl_eq: "- A = {x. \<not> x \<in> A}"
650  by blast
651
652
653subsubsection \<open>Binary intersection\<close>
654
655abbreviation inter :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set"  (infixl "\<inter>" 70)
656  where "(\<inter>) \<equiv> inf"
657
658notation (ASCII)
659  inter  (infixl "Int" 70)
660
661lemma Int_def: "A \<inter> B = {x. x \<in> A \<and> x \<in> B}"
662  by (simp add: inf_set_def inf_fun_def)
663
664lemma Int_iff [simp]: "c \<in> A \<inter> B \<longleftrightarrow> c \<in> A \<and> c \<in> B"
665  unfolding Int_def by blast
666
667lemma IntI [intro!]: "c \<in> A \<Longrightarrow> c \<in> B \<Longrightarrow> c \<in> A \<inter> B"
668  by simp
669
670lemma IntD1: "c \<in> A \<inter> B \<Longrightarrow> c \<in> A"
671  by simp
672
673lemma IntD2: "c \<in> A \<inter> B \<Longrightarrow> c \<in> B"
674  by simp
675
676lemma IntE [elim!]: "c \<in> A \<inter> B \<Longrightarrow> (c \<in> A \<Longrightarrow> c \<in> B \<Longrightarrow> P) \<Longrightarrow> P"
677  by simp
678
679lemma mono_Int: "mono f \<Longrightarrow> f (A \<inter> B) \<subseteq> f A \<inter> f B"
680  by (fact mono_inf)
681
682
683subsubsection \<open>Binary union\<close>
684
685abbreviation union :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set"  (infixl "\<union>" 65)
686  where "union \<equiv> sup"
687
688notation (ASCII)
689  union  (infixl "Un" 65)
690
691lemma Un_def: "A \<union> B = {x. x \<in> A \<or> x \<in> B}"
692  by (simp add: sup_set_def sup_fun_def)
693
694lemma Un_iff [simp]: "c \<in> A \<union> B \<longleftrightarrow> c \<in> A \<or> c \<in> B"
695  unfolding Un_def by blast
696
697lemma UnI1 [elim?]: "c \<in> A \<Longrightarrow> c \<in> A \<union> B"
698  by simp
699
700lemma UnI2 [elim?]: "c \<in> B \<Longrightarrow> c \<in> A \<union> B"
701  by simp
702
703text \<open>\<^medskip> Classical introduction rule: no commitment to \<open>A\<close> vs. \<open>B\<close>.\<close>
704lemma UnCI [intro!]: "(c \<notin> B \<Longrightarrow> c \<in> A) \<Longrightarrow> c \<in> A \<union> B"
705  by auto
706
707lemma UnE [elim!]: "c \<in> A \<union> B \<Longrightarrow> (c \<in> A \<Longrightarrow> P) \<Longrightarrow> (c \<in> B \<Longrightarrow> P) \<Longrightarrow> P"
708  unfolding Un_def by blast
709
710lemma insert_def: "insert a B = {x. x = a} \<union> B"
711  by (simp add: insert_compr Un_def)
712
713lemma mono_Un: "mono f \<Longrightarrow> f A \<union> f B \<subseteq> f (A \<union> B)"
714  by (fact mono_sup)
715
716
717subsubsection \<open>Set difference\<close>
718
719lemma Diff_iff [simp]: "c \<in> A - B \<longleftrightarrow> c \<in> A \<and> c \<notin> B"
720  by (simp add: minus_set_def fun_diff_def)
721
722lemma DiffI [intro!]: "c \<in> A \<Longrightarrow> c \<notin> B \<Longrightarrow> c \<in> A - B"
723  by simp
724
725lemma DiffD1: "c \<in> A - B \<Longrightarrow> c \<in> A"
726  by simp
727
728lemma DiffD2: "c \<in> A - B \<Longrightarrow> c \<in> B \<Longrightarrow> P"
729  by simp
730
731lemma DiffE [elim!]: "c \<in> A - B \<Longrightarrow> (c \<in> A \<Longrightarrow> c \<notin> B \<Longrightarrow> P) \<Longrightarrow> P"
732  by simp
733
734lemma set_diff_eq: "A - B = {x. x \<in> A \<and> x \<notin> B}"
735  by blast
736
737lemma Compl_eq_Diff_UNIV: "- A = (UNIV - A)"
738  by blast
739
740
741subsubsection \<open>Augmenting a set -- @{const insert}\<close>
742
743lemma insert_iff [simp]: "a \<in> insert b A \<longleftrightarrow> a = b \<or> a \<in> A"
744  unfolding insert_def by blast
745
746lemma insertI1: "a \<in> insert a B"
747  by simp
748
749lemma insertI2: "a \<in> B \<Longrightarrow> a \<in> insert b B"
750  by simp
751
752lemma insertE [elim!]: "a \<in> insert b A \<Longrightarrow> (a = b \<Longrightarrow> P) \<Longrightarrow> (a \<in> A \<Longrightarrow> P) \<Longrightarrow> P"
753  unfolding insert_def by blast
754
755lemma insertCI [intro!]: "(a \<notin> B \<Longrightarrow> a = b) \<Longrightarrow> a \<in> insert b B"
756  \<comment> \<open>Classical introduction rule.\<close>
757  by auto
758
759lemma subset_insert_iff: "A \<subseteq> insert x B \<longleftrightarrow> (if x \<in> A then A - {x} \<subseteq> B else A \<subseteq> B)"
760  by auto
761
762lemma set_insert:
763  assumes "x \<in> A"
764  obtains B where "A = insert x B" and "x \<notin> B"
765proof
766  show "A = insert x (A - {x})" using assms by blast
767  show "x \<notin> A - {x}" by blast
768qed
769
770lemma insert_ident: "x \<notin> A \<Longrightarrow> x \<notin> B \<Longrightarrow> insert x A = insert x B \<longleftrightarrow> A = B"
771  by auto
772
773lemma insert_eq_iff:
774  assumes "a \<notin> A" "b \<notin> B"
775  shows "insert a A = insert b B \<longleftrightarrow>
776    (if a = b then A = B else \<exists>C. A = insert b C \<and> b \<notin> C \<and> B = insert a C \<and> a \<notin> C)"
777    (is "?L \<longleftrightarrow> ?R")
778proof
779  show ?R if ?L
780  proof (cases "a = b")
781    case True
782    with assms \<open>?L\<close> show ?R
783      by (simp add: insert_ident)
784  next
785    case False
786    let ?C = "A - {b}"
787    have "A = insert b ?C \<and> b \<notin> ?C \<and> B = insert a ?C \<and> a \<notin> ?C"
788      using assms \<open>?L\<close> \<open>a \<noteq> b\<close> by auto
789    then show ?R using \<open>a \<noteq> b\<close> by auto
790  qed
791  show ?L if ?R
792    using that by (auto split: if_splits)
793qed
794
795lemma insert_UNIV: "insert x UNIV = UNIV"
796  by auto
797
798
799subsubsection \<open>Singletons, using insert\<close>
800
801lemma singletonI [intro!]: "a \<in> {a}"
802  \<comment> \<open>Redundant? But unlike \<open>insertCI\<close>, it proves the subgoal immediately!\<close>
803  by (rule insertI1)
804
805lemma singletonD [dest!]: "b \<in> {a} \<Longrightarrow> b = a"
806  by blast
807
808lemmas singletonE = singletonD [elim_format]
809
810lemma singleton_iff: "b \<in> {a} \<longleftrightarrow> b = a"
811  by blast
812
813lemma singleton_inject [dest!]: "{a} = {b} \<Longrightarrow> a = b"
814  by blast
815
816lemma singleton_insert_inj_eq [iff]: "{b} = insert a A \<longleftrightarrow> a = b \<and> A \<subseteq> {b}"
817  by blast
818
819lemma singleton_insert_inj_eq' [iff]: "insert a A = {b} \<longleftrightarrow> a = b \<and> A \<subseteq> {b}"
820  by blast
821
822lemma subset_singletonD: "A \<subseteq> {x} \<Longrightarrow> A = {} \<or> A = {x}"
823  by fast
824
825lemma subset_singleton_iff: "X \<subseteq> {a} \<longleftrightarrow> X = {} \<or> X = {a}"
826  by blast
827
828lemma singleton_conv [simp]: "{x. x = a} = {a}"
829  by blast
830
831lemma singleton_conv2 [simp]: "{x. a = x} = {a}"
832  by blast
833
834lemma Diff_single_insert: "A - {x} \<subseteq> B \<Longrightarrow> A \<subseteq> insert x B"
835  by blast
836
837lemma subset_Diff_insert: "A \<subseteq> B - insert x C \<longleftrightarrow> A \<subseteq> B - C \<and> x \<notin> A"
838  by blast
839
840lemma doubleton_eq_iff: "{a, b} = {c, d} \<longleftrightarrow> a = c \<and> b = d \<or> a = d \<and> b = c"
841  by (blast elim: equalityE)
842
843lemma Un_singleton_iff: "A \<union> B = {x} \<longleftrightarrow> A = {} \<and> B = {x} \<or> A = {x} \<and> B = {} \<or> A = {x} \<and> B = {x}"
844  by auto
845
846lemma singleton_Un_iff: "{x} = A \<union> B \<longleftrightarrow> A = {} \<and> B = {x} \<or> A = {x} \<and> B = {} \<or> A = {x} \<and> B = {x}"
847  by auto
848
849
850subsubsection \<open>Image of a set under a function\<close>
851
852text \<open>Frequently \<open>b\<close> does not have the syntactic form of \<open>f x\<close>.\<close>
853
854definition image :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set"    (infixr "`" 90)
855  where "f ` A = {y. \<exists>x\<in>A. y = f x}"
856
857lemma image_eqI [simp, intro]: "b = f x \<Longrightarrow> x \<in> A \<Longrightarrow> b \<in> f ` A"
858  unfolding image_def by blast
859
860lemma imageI: "x \<in> A \<Longrightarrow> f x \<in> f ` A"
861  by (rule image_eqI) (rule refl)
862
863lemma rev_image_eqI: "x \<in> A \<Longrightarrow> b = f x \<Longrightarrow> b \<in> f ` A"
864  \<comment> \<open>This version's more effective when we already have the required \<open>x\<close>.\<close>
865  by (rule image_eqI)
866
867lemma imageE [elim!]:
868  assumes "b \<in> (\<lambda>x. f x) ` A"  \<comment> \<open>The eta-expansion gives variable-name preservation.\<close>
869  obtains x where "b = f x" and "x \<in> A"
870  using assms unfolding image_def by blast
871
872lemma Compr_image_eq: "{x \<in> f ` A. P x} = f ` {x \<in> A. P (f x)}"
873  by auto
874
875lemma image_Un: "f ` (A \<union> B) = f ` A \<union> f ` B"
876  by blast
877
878lemma image_iff: "z \<in> f ` A \<longleftrightarrow> (\<exists>x\<in>A. z = f x)"
879  by blast
880
881lemma image_subsetI: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> B) \<Longrightarrow> f ` A \<subseteq> B"
882  \<comment> \<open>Replaces the three steps \<open>subsetI\<close>, \<open>imageE\<close>,
883    \<open>hypsubst\<close>, but breaks too many existing proofs.\<close>
884  by blast
885
886lemma image_subset_iff: "f ` A \<subseteq> B \<longleftrightarrow> (\<forall>x\<in>A. f x \<in> B)"
887  \<comment> \<open>This rewrite rule would confuse users if made default.\<close>
888  by blast
889
890lemma subset_imageE:
891  assumes "B \<subseteq> f ` A"
892  obtains C where "C \<subseteq> A" and "B = f ` C"
893proof -
894  from assms have "B = f ` {a \<in> A. f a \<in> B}" by fast
895  moreover have "{a \<in> A. f a \<in> B} \<subseteq> A" by blast
896  ultimately show thesis by (blast intro: that)
897qed
898
899lemma subset_image_iff: "B \<subseteq> f ` A \<longleftrightarrow> (\<exists>AA\<subseteq>A. B = f ` AA)"
900  by (blast elim: subset_imageE)
901
902lemma image_ident [simp]: "(\<lambda>x. x) ` Y = Y"
903  by blast
904
905lemma image_empty [simp]: "f ` {} = {}"
906  by blast
907
908lemma image_insert [simp]: "f ` insert a B = insert (f a) (f ` B)"
909  by blast
910
911lemma image_constant: "x \<in> A \<Longrightarrow> (\<lambda>x. c) ` A = {c}"
912  by auto
913
914lemma image_constant_conv: "(\<lambda>x. c) ` A = (if A = {} then {} else {c})"
915  by auto
916
917lemma image_image: "f ` (g ` A) = (\<lambda>x. f (g x)) ` A"
918  by blast
919
920lemma insert_image [simp]: "x \<in> A \<Longrightarrow> insert (f x) (f ` A) = f ` A"
921  by blast
922
923lemma image_is_empty [iff]: "f ` A = {} \<longleftrightarrow> A = {}"
924  by blast
925
926lemma empty_is_image [iff]: "{} = f ` A \<longleftrightarrow> A = {}"
927  by blast
928
929lemma image_Collect: "f ` {x. P x} = {f x | x. P x}"
930  \<comment> \<open>NOT suitable as a default simp rule: the RHS isn't simpler than the LHS,
931      with its implicit quantifier and conjunction.  Also image enjoys better
932      equational properties than does the RHS.\<close>
933  by blast
934
935lemma if_image_distrib [simp]:
936  "(\<lambda>x. if P x then f x else g x) ` S = f ` (S \<inter> {x. P x}) \<union> g ` (S \<inter> {x. \<not> P x})"
937  by auto
938
939lemma image_cong: "M = N \<Longrightarrow> (\<And>x. x \<in> N \<Longrightarrow> f x = g x) \<Longrightarrow> f ` M = g ` N"
940  by (simp add: image_def)
941
942lemma image_Int_subset: "f ` (A \<inter> B) \<subseteq> f ` A \<inter> f ` B"
943  by blast
944
945lemma image_diff_subset: "f ` A - f ` B \<subseteq> f ` (A - B)"
946  by blast
947
948lemma Setcompr_eq_image: "{f x |x. x \<in> A} = f ` A"
949  by blast
950
951lemma setcompr_eq_image: "{f x |x. P x} = f ` {x. P x}"
952  by auto
953
954lemma ball_imageD: "\<forall>x\<in>f ` A. P x \<Longrightarrow> \<forall>x\<in>A. P (f x)"
955  by simp
956
957lemma bex_imageD: "\<exists>x\<in>f ` A. P x \<Longrightarrow> \<exists>x\<in>A. P (f x)"
958  by auto
959
960lemma image_add_0 [simp]: "(+) (0::'a::comm_monoid_add) ` S = S"
961  by auto
962
963
964text \<open>\<^medskip> Range of a function -- just an abbreviation for image!\<close>
965
966abbreviation range :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b set"  \<comment> \<open>of function\<close>
967  where "range f \<equiv> f ` UNIV"
968
969lemma range_eqI: "b = f x \<Longrightarrow> b \<in> range f"
970  by simp
971
972lemma rangeI: "f x \<in> range f"
973  by simp
974
975lemma rangeE [elim?]: "b \<in> range (\<lambda>x. f x) \<Longrightarrow> (\<And>x. b = f x \<Longrightarrow> P) \<Longrightarrow> P"
976  by (rule imageE)
977
978lemma full_SetCompr_eq: "{u. \<exists>x. u = f x} = range f"
979  by auto
980
981lemma range_composition: "range (\<lambda>x. f (g x)) = f ` range g"
982  by auto
983
984lemma range_eq_singletonD: "range f = {a} \<Longrightarrow> f x = a"
985  by auto
986
987
988subsubsection \<open>Some rules with \<open>if\<close>\<close>
989
990text \<open>Elimination of \<open>{x. \<dots> \<and> x = t \<and> \<dots>}\<close>.\<close>
991
992lemma Collect_conv_if: "{x. x = a \<and> P x} = (if P a then {a} else {})"
993  by auto
994
995lemma Collect_conv_if2: "{x. a = x \<and> P x} = (if P a then {a} else {})"
996  by auto
997
998text \<open>
999  Rewrite rules for boolean case-splitting: faster than \<open>if_split [split]\<close>.
1000\<close>
1001
1002lemma if_split_eq1: "(if Q then x else y) = b \<longleftrightarrow> (Q \<longrightarrow> x = b) \<and> (\<not> Q \<longrightarrow> y = b)"
1003  by (rule if_split)
1004
1005lemma if_split_eq2: "a = (if Q then x else y) \<longleftrightarrow> (Q \<longrightarrow> a = x) \<and> (\<not> Q \<longrightarrow> a = y)"
1006  by (rule if_split)
1007
1008text \<open>
1009  Split ifs on either side of the membership relation.
1010  Not for \<open>[simp]\<close> -- can cause goals to blow up!
1011\<close>
1012
1013lemma if_split_mem1: "(if Q then x else y) \<in> b \<longleftrightarrow> (Q \<longrightarrow> x \<in> b) \<and> (\<not> Q \<longrightarrow> y \<in> b)"
1014  by (rule if_split)
1015
1016lemma if_split_mem2: "(a \<in> (if Q then x else y)) \<longleftrightarrow> (Q \<longrightarrow> a \<in> x) \<and> (\<not> Q \<longrightarrow> a \<in> y)"
1017  by (rule if_split [where P = "\<lambda>S. a \<in> S"])
1018
1019lemmas split_ifs = if_bool_eq_conj if_split_eq1 if_split_eq2 if_split_mem1 if_split_mem2
1020
1021(*Would like to add these, but the existing code only searches for the
1022  outer-level constant, which in this case is just Set.member; we instead need
1023  to use term-nets to associate patterns with rules.  Also, if a rule fails to
1024  apply, then the formula should be kept.
1025  [("uminus", Compl_iff RS iffD1), ("minus", [Diff_iff RS iffD1]),
1026   ("Int", [IntD1,IntD2]),
1027   ("Collect", [CollectD]), ("Inter", [InterD]), ("INTER", [INT_D])]
1028 *)
1029
1030
1031subsection \<open>Further operations and lemmas\<close>
1032
1033subsubsection \<open>The ``proper subset'' relation\<close>
1034
1035lemma psubsetI [intro!]: "A \<subseteq> B \<Longrightarrow> A \<noteq> B \<Longrightarrow> A \<subset> B"
1036  unfolding less_le by blast
1037
1038lemma psubsetE [elim!]: "A \<subset> B \<Longrightarrow> (A \<subseteq> B \<Longrightarrow> \<not> B \<subseteq> A \<Longrightarrow> R) \<Longrightarrow> R"
1039  unfolding less_le by blast
1040
1041lemma psubset_insert_iff:
1042  "A \<subset> insert x B \<longleftrightarrow> (if x \<in> B then A \<subset> B else if x \<in> A then A - {x} \<subset> B else A \<subseteq> B)"
1043  by (auto simp add: less_le subset_insert_iff)
1044
1045lemma psubset_eq: "A \<subset> B \<longleftrightarrow> A \<subseteq> B \<and> A \<noteq> B"
1046  by (simp only: less_le)
1047
1048lemma psubset_imp_subset: "A \<subset> B \<Longrightarrow> A \<subseteq> B"
1049  by (simp add: psubset_eq)
1050
1051lemma psubset_trans: "A \<subset> B \<Longrightarrow> B \<subset> C \<Longrightarrow> A \<subset> C"
1052  unfolding less_le by (auto dest: subset_antisym)
1053
1054lemma psubsetD: "A \<subset> B \<Longrightarrow> c \<in> A \<Longrightarrow> c \<in> B"
1055  unfolding less_le by (auto dest: subsetD)
1056
1057lemma psubset_subset_trans: "A \<subset> B \<Longrightarrow> B \<subseteq> C \<Longrightarrow> A \<subset> C"
1058  by (auto simp add: psubset_eq)
1059
1060lemma subset_psubset_trans: "A \<subseteq> B \<Longrightarrow> B \<subset> C \<Longrightarrow> A \<subset> C"
1061  by (auto simp add: psubset_eq)
1062
1063lemma psubset_imp_ex_mem: "A \<subset> B \<Longrightarrow> \<exists>b. b \<in> B - A"
1064  unfolding less_le by blast
1065
1066lemma atomize_ball: "(\<And>x. x \<in> A \<Longrightarrow> P x) \<equiv> Trueprop (\<forall>x\<in>A. P x)"
1067  by (simp only: Ball_def atomize_all atomize_imp)
1068
1069lemmas [symmetric, rulify] = atomize_ball
1070  and [symmetric, defn] = atomize_ball
1071
1072lemma image_Pow_mono: "f ` A \<subseteq> B \<Longrightarrow> image f ` Pow A \<subseteq> Pow B"
1073  by blast
1074
1075lemma image_Pow_surj: "f ` A = B \<Longrightarrow> image f ` Pow A = Pow B"
1076  by (blast elim: subset_imageE)
1077
1078
1079subsubsection \<open>Derived rules involving subsets.\<close>
1080
1081text \<open>\<open>insert\<close>.\<close>
1082
1083lemma subset_insertI: "B \<subseteq> insert a B"
1084  by (rule subsetI) (erule insertI2)
1085
1086lemma subset_insertI2: "A \<subseteq> B \<Longrightarrow> A \<subseteq> insert b B"
1087  by blast
1088
1089lemma subset_insert: "x \<notin> A \<Longrightarrow> A \<subseteq> insert x B \<longleftrightarrow> A \<subseteq> B"
1090  by blast
1091
1092
1093text \<open>\<^medskip> Finite Union -- the least upper bound of two sets.\<close>
1094
1095lemma Un_upper1: "A \<subseteq> A \<union> B"
1096  by (fact sup_ge1)
1097
1098lemma Un_upper2: "B \<subseteq> A \<union> B"
1099  by (fact sup_ge2)
1100
1101lemma Un_least: "A \<subseteq> C \<Longrightarrow> B \<subseteq> C \<Longrightarrow> A \<union> B \<subseteq> C"
1102  by (fact sup_least)
1103
1104
1105text \<open>\<^medskip> Finite Intersection -- the greatest lower bound of two sets.\<close>
1106
1107lemma Int_lower1: "A \<inter> B \<subseteq> A"
1108  by (fact inf_le1)
1109
1110lemma Int_lower2: "A \<inter> B \<subseteq> B"
1111  by (fact inf_le2)
1112
1113lemma Int_greatest: "C \<subseteq> A \<Longrightarrow> C \<subseteq> B \<Longrightarrow> C \<subseteq> A \<inter> B"
1114  by (fact inf_greatest)
1115
1116
1117text \<open>\<^medskip> Set difference.\<close>
1118
1119lemma Diff_subset: "A - B \<subseteq> A"
1120  by blast
1121
1122lemma Diff_subset_conv: "A - B \<subseteq> C \<longleftrightarrow> A \<subseteq> B \<union> C"
1123  by blast
1124
1125
1126subsubsection \<open>Equalities involving union, intersection, inclusion, etc.\<close>
1127
1128text \<open>\<open>{}\<close>.\<close>
1129
1130lemma Collect_const [simp]: "{s. P} = (if P then UNIV else {})"
1131  \<comment> \<open>supersedes \<open>Collect_False_empty\<close>\<close>
1132  by auto
1133
1134lemma subset_empty [simp]: "A \<subseteq> {} \<longleftrightarrow> A = {}"
1135  by (fact bot_unique)
1136
1137lemma not_psubset_empty [iff]: "\<not> (A < {})"
1138  by (fact not_less_bot) (* FIXME: already simp *)
1139
1140lemma Collect_empty_eq [simp]: "Collect P = {} \<longleftrightarrow> (\<forall>x. \<not> P x)"
1141  by blast
1142
1143lemma empty_Collect_eq [simp]: "{} = Collect P \<longleftrightarrow> (\<forall>x. \<not> P x)"
1144  by blast
1145
1146lemma Collect_neg_eq: "{x. \<not> P x} = - {x. P x}"
1147  by blast
1148
1149lemma Collect_disj_eq: "{x. P x \<or> Q x} = {x. P x} \<union> {x. Q x}"
1150  by blast
1151
1152lemma Collect_imp_eq: "{x. P x \<longrightarrow> Q x} = - {x. P x} \<union> {x. Q x}"
1153  by blast
1154
1155lemma Collect_conj_eq: "{x. P x \<and> Q x} = {x. P x} \<inter> {x. Q x}"
1156  by blast
1157
1158lemma Collect_mono_iff: "Collect P \<subseteq> Collect Q \<longleftrightarrow> (\<forall>x. P x \<longrightarrow> Q x)"
1159  by blast
1160
1161
1162text \<open>\<^medskip> \<open>insert\<close>.\<close>
1163
1164lemma insert_is_Un: "insert a A = {a} \<union> A"
1165  \<comment> \<open>NOT SUITABLE FOR REWRITING since \<open>{a} \<equiv> insert a {}\<close>\<close>
1166  by blast
1167
1168lemma insert_not_empty [simp]: "insert a A \<noteq> {}"
1169  and empty_not_insert [simp]: "{} \<noteq> insert a A"
1170  by blast+
1171
1172lemma insert_absorb: "a \<in> A \<Longrightarrow> insert a A = A"
1173  \<comment> \<open>\<open>[simp]\<close> causes recursive calls when there are nested inserts\<close>
1174  \<comment> \<open>with \<^emph>\<open>quadratic\<close> running time\<close>
1175  by blast
1176
1177lemma insert_absorb2 [simp]: "insert x (insert x A) = insert x A"
1178  by blast
1179
1180lemma insert_commute: "insert x (insert y A) = insert y (insert x A)"
1181  by blast
1182
1183lemma insert_subset [simp]: "insert x A \<subseteq> B \<longleftrightarrow> x \<in> B \<and> A \<subseteq> B"
1184  by blast
1185
1186lemma mk_disjoint_insert: "a \<in> A \<Longrightarrow> \<exists>B. A = insert a B \<and> a \<notin> B"
1187  \<comment> \<open>use new \<open>B\<close> rather than \<open>A - {a}\<close> to avoid infinite unfolding\<close>
1188  by (rule exI [where x = "A - {a}"]) blast
1189
1190lemma insert_Collect: "insert a (Collect P) = {u. u \<noteq> a \<longrightarrow> P u}"
1191  by auto
1192
1193lemma insert_inter_insert [simp]: "insert a A \<inter> insert a B = insert a (A \<inter> B)"
1194  by blast
1195
1196lemma insert_disjoint [simp]:
1197  "insert a A \<inter> B = {} \<longleftrightarrow> a \<notin> B \<and> A \<inter> B = {}"
1198  "{} = insert a A \<inter> B \<longleftrightarrow> a \<notin> B \<and> {} = A \<inter> B"
1199  by auto
1200
1201lemma disjoint_insert [simp]:
1202  "B \<inter> insert a A = {} \<longleftrightarrow> a \<notin> B \<and> B \<inter> A = {}"
1203  "{} = A \<inter> insert b B \<longleftrightarrow> b \<notin> A \<and> {} = A \<inter> B"
1204  by auto
1205
1206
1207text \<open>\<^medskip> \<open>Int\<close>\<close>
1208
1209lemma Int_absorb: "A \<inter> A = A"
1210  by (fact inf_idem) (* already simp *)
1211
1212lemma Int_left_absorb: "A \<inter> (A \<inter> B) = A \<inter> B"
1213  by (fact inf_left_idem)
1214
1215lemma Int_commute: "A \<inter> B = B \<inter> A"
1216  by (fact inf_commute)
1217
1218lemma Int_left_commute: "A \<inter> (B \<inter> C) = B \<inter> (A \<inter> C)"
1219  by (fact inf_left_commute)
1220
1221lemma Int_assoc: "(A \<inter> B) \<inter> C = A \<inter> (B \<inter> C)"
1222  by (fact inf_assoc)
1223
1224lemmas Int_ac = Int_assoc Int_left_absorb Int_commute Int_left_commute
1225  \<comment> \<open>Intersection is an AC-operator\<close>
1226
1227lemma Int_absorb1: "B \<subseteq> A \<Longrightarrow> A \<inter> B = B"
1228  by (fact inf_absorb2)
1229
1230lemma Int_absorb2: "A \<subseteq> B \<Longrightarrow> A \<inter> B = A"
1231  by (fact inf_absorb1)
1232
1233lemma Int_empty_left: "{} \<inter> B = {}"
1234  by (fact inf_bot_left) (* already simp *)
1235
1236lemma Int_empty_right: "A \<inter> {} = {}"
1237  by (fact inf_bot_right) (* already simp *)
1238
1239lemma disjoint_eq_subset_Compl: "A \<inter> B = {} \<longleftrightarrow> A \<subseteq> - B"
1240  by blast
1241
1242lemma disjoint_iff_not_equal: "A \<inter> B = {} \<longleftrightarrow> (\<forall>x\<in>A. \<forall>y\<in>B. x \<noteq> y)"
1243  by blast
1244
1245lemma Int_UNIV_left: "UNIV \<inter> B = B"
1246  by (fact inf_top_left) (* already simp *)
1247
1248lemma Int_UNIV_right: "A \<inter> UNIV = A"
1249  by (fact inf_top_right) (* already simp *)
1250
1251lemma Int_Un_distrib: "A \<inter> (B \<union> C) = (A \<inter> B) \<union> (A \<inter> C)"
1252  by (fact inf_sup_distrib1)
1253
1254lemma Int_Un_distrib2: "(B \<union> C) \<inter> A = (B \<inter> A) \<union> (C \<inter> A)"
1255  by (fact inf_sup_distrib2)
1256
1257lemma Int_UNIV [simp]: "A \<inter> B = UNIV \<longleftrightarrow> A = UNIV \<and> B = UNIV"
1258  by (fact inf_eq_top_iff) (* already simp *)
1259
1260lemma Int_subset_iff [simp]: "C \<subseteq> A \<inter> B \<longleftrightarrow> C \<subseteq> A \<and> C \<subseteq> B"
1261  by (fact le_inf_iff)
1262
1263lemma Int_Collect: "x \<in> A \<inter> {x. P x} \<longleftrightarrow> x \<in> A \<and> P x"
1264  by blast
1265
1266
1267text \<open>\<^medskip> \<open>Un\<close>.\<close>
1268
1269lemma Un_absorb: "A \<union> A = A"
1270  by (fact sup_idem) (* already simp *)
1271
1272lemma Un_left_absorb: "A \<union> (A \<union> B) = A \<union> B"
1273  by (fact sup_left_idem)
1274
1275lemma Un_commute: "A \<union> B = B \<union> A"
1276  by (fact sup_commute)
1277
1278lemma Un_left_commute: "A \<union> (B \<union> C) = B \<union> (A \<union> C)"
1279  by (fact sup_left_commute)
1280
1281lemma Un_assoc: "(A \<union> B) \<union> C = A \<union> (B \<union> C)"
1282  by (fact sup_assoc)
1283
1284lemmas Un_ac = Un_assoc Un_left_absorb Un_commute Un_left_commute
1285  \<comment> \<open>Union is an AC-operator\<close>
1286
1287lemma Un_absorb1: "A \<subseteq> B \<Longrightarrow> A \<union> B = B"
1288  by (fact sup_absorb2)
1289
1290lemma Un_absorb2: "B \<subseteq> A \<Longrightarrow> A \<union> B = A"
1291  by (fact sup_absorb1)
1292
1293lemma Un_empty_left: "{} \<union> B = B"
1294  by (fact sup_bot_left) (* already simp *)
1295
1296lemma Un_empty_right: "A \<union> {} = A"
1297  by (fact sup_bot_right) (* already simp *)
1298
1299lemma Un_UNIV_left: "UNIV \<union> B = UNIV"
1300  by (fact sup_top_left) (* already simp *)
1301
1302lemma Un_UNIV_right: "A \<union> UNIV = UNIV"
1303  by (fact sup_top_right) (* already simp *)
1304
1305lemma Un_insert_left [simp]: "(insert a B) \<union> C = insert a (B \<union> C)"
1306  by blast
1307
1308lemma Un_insert_right [simp]: "A \<union> (insert a B) = insert a (A \<union> B)"
1309  by blast
1310
1311lemma Int_insert_left: "(insert a B) \<inter> C = (if a \<in> C then insert a (B \<inter> C) else B \<inter> C)"
1312  by auto
1313
1314lemma Int_insert_left_if0 [simp]: "a \<notin> C \<Longrightarrow> (insert a B) \<inter> C = B \<inter> C"
1315  by auto
1316
1317lemma Int_insert_left_if1 [simp]: "a \<in> C \<Longrightarrow> (insert a B) \<inter> C = insert a (B \<inter> C)"
1318  by auto
1319
1320lemma Int_insert_right: "A \<inter> (insert a B) = (if a \<in> A then insert a (A \<inter> B) else A \<inter> B)"
1321  by auto
1322
1323lemma Int_insert_right_if0 [simp]: "a \<notin> A \<Longrightarrow> A \<inter> (insert a B) = A \<inter> B"
1324  by auto
1325
1326lemma Int_insert_right_if1 [simp]: "a \<in> A \<Longrightarrow> A \<inter> (insert a B) = insert a (A \<inter> B)"
1327  by auto
1328
1329lemma Un_Int_distrib: "A \<union> (B \<inter> C) = (A \<union> B) \<inter> (A \<union> C)"
1330  by (fact sup_inf_distrib1)
1331
1332lemma Un_Int_distrib2: "(B \<inter> C) \<union> A = (B \<union> A) \<inter> (C \<union> A)"
1333  by (fact sup_inf_distrib2)
1334
1335lemma Un_Int_crazy: "(A \<inter> B) \<union> (B \<inter> C) \<union> (C \<inter> A) = (A \<union> B) \<inter> (B \<union> C) \<inter> (C \<union> A)"
1336  by blast
1337
1338lemma subset_Un_eq: "A \<subseteq> B \<longleftrightarrow> A \<union> B = B"
1339  by (fact le_iff_sup)
1340
1341lemma Un_empty [iff]: "A \<union> B = {} \<longleftrightarrow> A = {} \<and> B = {}"
1342  by (fact sup_eq_bot_iff) (* FIXME: already simp *)
1343
1344lemma Un_subset_iff [simp]: "A \<union> B \<subseteq> C \<longleftrightarrow> A \<subseteq> C \<and> B \<subseteq> C"
1345  by (fact le_sup_iff)
1346
1347lemma Un_Diff_Int: "(A - B) \<union> (A \<inter> B) = A"
1348  by blast
1349
1350lemma Diff_Int2: "A \<inter> C - B \<inter> C = A \<inter> C - B"
1351  by blast
1352
1353
1354text \<open>\<^medskip> Set complement\<close>
1355
1356lemma Compl_disjoint [simp]: "A \<inter> - A = {}"
1357  by (fact inf_compl_bot)
1358
1359lemma Compl_disjoint2 [simp]: "- A \<inter> A = {}"
1360  by (fact compl_inf_bot)
1361
1362lemma Compl_partition: "A \<union> - A = UNIV"
1363  by (fact sup_compl_top)
1364
1365lemma Compl_partition2: "- A \<union> A = UNIV"
1366  by (fact compl_sup_top)
1367
1368lemma double_complement: "- (-A) = A" for A :: "'a set"
1369  by (fact double_compl) (* already simp *)
1370
1371lemma Compl_Un: "- (A \<union> B) = (- A) \<inter> (- B)"
1372  by (fact compl_sup) (* already simp *)
1373
1374lemma Compl_Int: "- (A \<inter> B) = (- A) \<union> (- B)"
1375  by (fact compl_inf) (* already simp *)
1376
1377lemma subset_Compl_self_eq: "A \<subseteq> - A \<longleftrightarrow> A = {}"
1378  by blast
1379
1380lemma Un_Int_assoc_eq: "(A \<inter> B) \<union> C = A \<inter> (B \<union> C) \<longleftrightarrow> C \<subseteq> A"
1381  \<comment> \<open>Halmos, Naive Set Theory, page 16.\<close>
1382  by blast
1383
1384lemma Compl_UNIV_eq: "- UNIV = {}"
1385  by (fact compl_top_eq) (* already simp *)
1386
1387lemma Compl_empty_eq: "- {} = UNIV"
1388  by (fact compl_bot_eq) (* already simp *)
1389
1390lemma Compl_subset_Compl_iff [iff]: "- A \<subseteq> - B \<longleftrightarrow> B \<subseteq> A"
1391  by (fact compl_le_compl_iff) (* FIXME: already simp *)
1392
1393lemma Compl_eq_Compl_iff [iff]: "- A = - B \<longleftrightarrow> A = B"
1394  for A B :: "'a set"
1395  by (fact compl_eq_compl_iff) (* FIXME: already simp *)
1396
1397lemma Compl_insert: "- insert x A = (- A) - {x}"
1398  by blast
1399
1400text \<open>\<^medskip> Bounded quantifiers.
1401
1402  The following are not added to the default simpset because
1403  (a) they duplicate the body and (b) there are no similar rules for \<open>Int\<close>.
1404\<close>
1405
1406lemma ball_Un: "(\<forall>x \<in> A \<union> B. P x) \<longleftrightarrow> (\<forall>x\<in>A. P x) \<and> (\<forall>x\<in>B. P x)"
1407  by blast
1408
1409lemma bex_Un: "(\<exists>x \<in> A \<union> B. P x) \<longleftrightarrow> (\<exists>x\<in>A. P x) \<or> (\<exists>x\<in>B. P x)"
1410  by blast
1411
1412
1413text \<open>\<^medskip> Set difference.\<close>
1414
1415lemma Diff_eq: "A - B = A \<inter> (- B)"
1416  by blast
1417
1418lemma Diff_eq_empty_iff [simp]: "A - B = {} \<longleftrightarrow> A \<subseteq> B"
1419  by blast
1420
1421lemma Diff_cancel [simp]: "A - A = {}"
1422  by blast
1423
1424lemma Diff_idemp [simp]: "(A - B) - B = A - B"
1425  for A B :: "'a set"
1426  by blast
1427
1428lemma Diff_triv: "A \<inter> B = {} \<Longrightarrow> A - B = A"
1429  by (blast elim: equalityE)
1430
1431lemma empty_Diff [simp]: "{} - A = {}"
1432  by blast
1433
1434lemma Diff_empty [simp]: "A - {} = A"
1435  by blast
1436
1437lemma Diff_UNIV [simp]: "A - UNIV = {}"
1438  by blast
1439
1440lemma Diff_insert0 [simp]: "x \<notin> A \<Longrightarrow> A - insert x B = A - B"
1441  by blast
1442
1443lemma Diff_insert: "A - insert a B = A - B - {a}"
1444  \<comment> \<open>NOT SUITABLE FOR REWRITING since \<open>{a} \<equiv> insert a 0\<close>\<close>
1445  by blast
1446
1447lemma Diff_insert2: "A - insert a B = A - {a} - B"
1448  \<comment> \<open>NOT SUITABLE FOR REWRITING since \<open>{a} \<equiv> insert a 0\<close>\<close>
1449  by blast
1450
1451lemma insert_Diff_if: "insert x A - B = (if x \<in> B then A - B else insert x (A - B))"
1452  by auto
1453
1454lemma insert_Diff1 [simp]: "x \<in> B \<Longrightarrow> insert x A - B = A - B"
1455  by blast
1456
1457lemma insert_Diff_single[simp]: "insert a (A - {a}) = insert a A"
1458  by blast
1459
1460lemma insert_Diff: "a \<in> A \<Longrightarrow> insert a (A - {a}) = A"
1461  by blast
1462
1463lemma Diff_insert_absorb: "x \<notin> A \<Longrightarrow> (insert x A) - {x} = A"
1464  by auto
1465
1466lemma Diff_disjoint [simp]: "A \<inter> (B - A) = {}"
1467  by blast
1468
1469lemma Diff_partition: "A \<subseteq> B \<Longrightarrow> A \<union> (B - A) = B"
1470  by blast
1471
1472lemma double_diff: "A \<subseteq> B \<Longrightarrow> B \<subseteq> C \<Longrightarrow> B - (C - A) = A"
1473  by blast
1474
1475lemma Un_Diff_cancel [simp]: "A \<union> (B - A) = A \<union> B"
1476  by blast
1477
1478lemma Un_Diff_cancel2 [simp]: "(B - A) \<union> A = B \<union> A"
1479  by blast
1480
1481lemma Diff_Un: "A - (B \<union> C) = (A - B) \<inter> (A - C)"
1482  by blast
1483
1484lemma Diff_Int: "A - (B \<inter> C) = (A - B) \<union> (A - C)"
1485  by blast
1486
1487lemma Diff_Diff_Int: "A - (A - B) = A \<inter> B"
1488  by blast
1489
1490lemma Un_Diff: "(A \<union> B) - C = (A - C) \<union> (B - C)"
1491  by blast
1492
1493lemma Int_Diff: "(A \<inter> B) - C = A \<inter> (B - C)"
1494  by blast
1495
1496lemma Diff_Int_distrib: "C \<inter> (A - B) = (C \<inter> A) - (C \<inter> B)"
1497  by blast
1498
1499lemma Diff_Int_distrib2: "(A - B) \<inter> C = (A \<inter> C) - (B \<inter> C)"
1500  by blast
1501
1502lemma Diff_Compl [simp]: "A - (- B) = A \<inter> B"
1503  by auto
1504
1505lemma Compl_Diff_eq [simp]: "- (A - B) = - A \<union> B"
1506  by blast
1507
1508lemma subset_Compl_singleton [simp]: "A \<subseteq> - {b} \<longleftrightarrow> b \<notin> A"
1509  by blast
1510
1511text \<open>\<^medskip> Quantification over type @{typ bool}.\<close>
1512
1513lemma bool_induct: "P True \<Longrightarrow> P False \<Longrightarrow> P x"
1514  by (cases x) auto
1515
1516lemma all_bool_eq: "(\<forall>b. P b) \<longleftrightarrow> P True \<and> P False"
1517  by (auto intro: bool_induct)
1518
1519lemma bool_contrapos: "P x \<Longrightarrow> \<not> P False \<Longrightarrow> P True"
1520  by (cases x) auto
1521
1522lemma ex_bool_eq: "(\<exists>b. P b) \<longleftrightarrow> P True \<or> P False"
1523  by (auto intro: bool_contrapos)
1524
1525lemma UNIV_bool: "UNIV = {False, True}"
1526  by (auto intro: bool_induct)
1527
1528text \<open>\<^medskip> \<open>Pow\<close>\<close>
1529
1530lemma Pow_empty [simp]: "Pow {} = {{}}"
1531  by (auto simp add: Pow_def)
1532
1533lemma Pow_singleton_iff [simp]: "Pow X = {Y} \<longleftrightarrow> X = {} \<and> Y = {}"
1534  by blast  (* somewhat slow *)
1535
1536lemma Pow_insert: "Pow (insert a A) = Pow A \<union> (insert a ` Pow A)"
1537  by (blast intro: image_eqI [where ?x = "u - {a}" for u])
1538
1539lemma Pow_Compl: "Pow (- A) = {- B | B. A \<in> Pow B}"
1540  by (blast intro: exI [where ?x = "- u" for u])
1541
1542lemma Pow_UNIV [simp]: "Pow UNIV = UNIV"
1543  by blast
1544
1545lemma Un_Pow_subset: "Pow A \<union> Pow B \<subseteq> Pow (A \<union> B)"
1546  by blast
1547
1548lemma Pow_Int_eq [simp]: "Pow (A \<inter> B) = Pow A \<inter> Pow B"
1549  by blast
1550
1551
1552text \<open>\<^medskip> Miscellany.\<close>
1553
1554lemma set_eq_subset: "A = B \<longleftrightarrow> A \<subseteq> B \<and> B \<subseteq> A"
1555  by blast
1556
1557lemma subset_iff: "A \<subseteq> B \<longleftrightarrow> (\<forall>t. t \<in> A \<longrightarrow> t \<in> B)"
1558  by blast
1559
1560lemma subset_iff_psubset_eq: "A \<subseteq> B \<longleftrightarrow> A \<subset> B \<or> A = B"
1561  unfolding less_le by blast
1562
1563lemma all_not_in_conv [simp]: "(\<forall>x. x \<notin> A) \<longleftrightarrow> A = {}"
1564  by blast
1565
1566lemma ex_in_conv: "(\<exists>x. x \<in> A) \<longleftrightarrow> A \<noteq> {}"
1567  by blast
1568
1569lemma ball_simps [simp, no_atp]:
1570  "\<And>A P Q. (\<forall>x\<in>A. P x \<or> Q) \<longleftrightarrow> ((\<forall>x\<in>A. P x) \<or> Q)"
1571  "\<And>A P Q. (\<forall>x\<in>A. P \<or> Q x) \<longleftrightarrow> (P \<or> (\<forall>x\<in>A. Q x))"
1572  "\<And>A P Q. (\<forall>x\<in>A. P \<longrightarrow> Q x) \<longleftrightarrow> (P \<longrightarrow> (\<forall>x\<in>A. Q x))"
1573  "\<And>A P Q. (\<forall>x\<in>A. P x \<longrightarrow> Q) \<longleftrightarrow> ((\<exists>x\<in>A. P x) \<longrightarrow> Q)"
1574  "\<And>P. (\<forall>x\<in>{}. P x) \<longleftrightarrow> True"
1575  "\<And>P. (\<forall>x\<in>UNIV. P x) \<longleftrightarrow> (\<forall>x. P x)"
1576  "\<And>a B P. (\<forall>x\<in>insert a B. P x) \<longleftrightarrow> (P a \<and> (\<forall>x\<in>B. P x))"
1577  "\<And>P Q. (\<forall>x\<in>Collect Q. P x) \<longleftrightarrow> (\<forall>x. Q x \<longrightarrow> P x)"
1578  "\<And>A P f. (\<forall>x\<in>f`A. P x) \<longleftrightarrow> (\<forall>x\<in>A. P (f x))"
1579  "\<And>A P. (\<not> (\<forall>x\<in>A. P x)) \<longleftrightarrow> (\<exists>x\<in>A. \<not> P x)"
1580  by auto
1581
1582lemma bex_simps [simp, no_atp]:
1583  "\<And>A P Q. (\<exists>x\<in>A. P x \<and> Q) \<longleftrightarrow> ((\<exists>x\<in>A. P x) \<and> Q)"
1584  "\<And>A P Q. (\<exists>x\<in>A. P \<and> Q x) \<longleftrightarrow> (P \<and> (\<exists>x\<in>A. Q x))"
1585  "\<And>P. (\<exists>x\<in>{}. P x) \<longleftrightarrow> False"
1586  "\<And>P. (\<exists>x\<in>UNIV. P x) \<longleftrightarrow> (\<exists>x. P x)"
1587  "\<And>a B P. (\<exists>x\<in>insert a B. P x) \<longleftrightarrow> (P a \<or> (\<exists>x\<in>B. P x))"
1588  "\<And>P Q. (\<exists>x\<in>Collect Q. P x) \<longleftrightarrow> (\<exists>x. Q x \<and> P x)"
1589  "\<And>A P f. (\<exists>x\<in>f`A. P x) \<longleftrightarrow> (\<exists>x\<in>A. P (f x))"
1590  "\<And>A P. (\<not>(\<exists>x\<in>A. P x)) \<longleftrightarrow> (\<forall>x\<in>A. \<not> P x)"
1591  by auto
1592
1593
1594subsubsection \<open>Monotonicity of various operations\<close>
1595
1596lemma image_mono: "A \<subseteq> B \<Longrightarrow> f ` A \<subseteq> f ` B"
1597  by blast
1598
1599lemma Pow_mono: "A \<subseteq> B \<Longrightarrow> Pow A \<subseteq> Pow B"
1600  by blast
1601
1602lemma insert_mono: "C \<subseteq> D \<Longrightarrow> insert a C \<subseteq> insert a D"
1603  by blast
1604
1605lemma Un_mono: "A \<subseteq> C \<Longrightarrow> B \<subseteq> D \<Longrightarrow> A \<union> B \<subseteq> C \<union> D"
1606  by (fact sup_mono)
1607
1608lemma Int_mono: "A \<subseteq> C \<Longrightarrow> B \<subseteq> D \<Longrightarrow> A \<inter> B \<subseteq> C \<inter> D"
1609  by (fact inf_mono)
1610
1611lemma Diff_mono: "A \<subseteq> C \<Longrightarrow> D \<subseteq> B \<Longrightarrow> A - B \<subseteq> C - D"
1612  by blast
1613
1614lemma Compl_anti_mono: "A \<subseteq> B \<Longrightarrow> - B \<subseteq> - A"
1615  by (fact compl_mono)
1616
1617text \<open>\<^medskip> Monotonicity of implications.\<close>
1618
1619lemma in_mono: "A \<subseteq> B \<Longrightarrow> x \<in> A \<longrightarrow> x \<in> B"
1620  by (rule impI) (erule subsetD)
1621
1622lemma conj_mono: "P1 \<longrightarrow> Q1 \<Longrightarrow> P2 \<longrightarrow> Q2 \<Longrightarrow> (P1 \<and> P2) \<longrightarrow> (Q1 \<and> Q2)"
1623  by iprover
1624
1625lemma disj_mono: "P1 \<longrightarrow> Q1 \<Longrightarrow> P2 \<longrightarrow> Q2 \<Longrightarrow> (P1 \<or> P2) \<longrightarrow> (Q1 \<or> Q2)"
1626  by iprover
1627
1628lemma imp_mono: "Q1 \<longrightarrow> P1 \<Longrightarrow> P2 \<longrightarrow> Q2 \<Longrightarrow> (P1 \<longrightarrow> P2) \<longrightarrow> (Q1 \<longrightarrow> Q2)"
1629  by iprover
1630
1631lemma imp_refl: "P \<longrightarrow> P" ..
1632
1633lemma not_mono: "Q \<longrightarrow> P \<Longrightarrow> \<not> P \<longrightarrow> \<not> Q"
1634  by iprover
1635
1636lemma ex_mono: "(\<And>x. P x \<longrightarrow> Q x) \<Longrightarrow> (\<exists>x. P x) \<longrightarrow> (\<exists>x. Q x)"
1637  by iprover
1638
1639lemma all_mono: "(\<And>x. P x \<longrightarrow> Q x) \<Longrightarrow> (\<forall>x. P x) \<longrightarrow> (\<forall>x. Q x)"
1640  by iprover
1641
1642lemma Collect_mono: "(\<And>x. P x \<longrightarrow> Q x) \<Longrightarrow> Collect P \<subseteq> Collect Q"
1643  by blast
1644
1645lemma Int_Collect_mono: "A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> P x \<longrightarrow> Q x) \<Longrightarrow> A \<inter> Collect P \<subseteq> B \<inter> Collect Q"
1646  by blast
1647
1648lemmas basic_monos =
1649  subset_refl imp_refl disj_mono conj_mono ex_mono Collect_mono in_mono
1650
1651lemma eq_to_mono: "a = b \<Longrightarrow> c = d \<Longrightarrow> b \<longrightarrow> d \<Longrightarrow> a \<longrightarrow> c"
1652  by iprover
1653
1654
1655subsubsection \<open>Inverse image of a function\<close>
1656
1657definition vimage :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b set \<Rightarrow> 'a set"  (infixr "-`" 90)
1658  where "f -` B \<equiv> {x. f x \<in> B}"
1659
1660lemma vimage_eq [simp]: "a \<in> f -` B \<longleftrightarrow> f a \<in> B"
1661  unfolding vimage_def by blast
1662
1663lemma vimage_singleton_eq: "a \<in> f -` {b} \<longleftrightarrow> f a = b"
1664  by simp
1665
1666lemma vimageI [intro]: "f a = b \<Longrightarrow> b \<in> B \<Longrightarrow> a \<in> f -` B"
1667  unfolding vimage_def by blast
1668
1669lemma vimageI2: "f a \<in> A \<Longrightarrow> a \<in> f -` A"
1670  unfolding vimage_def by fast
1671
1672lemma vimageE [elim!]: "a \<in> f -` B \<Longrightarrow> (\<And>x. f a = x \<Longrightarrow> x \<in> B \<Longrightarrow> P) \<Longrightarrow> P"
1673  unfolding vimage_def by blast
1674
1675lemma vimageD: "a \<in> f -` A \<Longrightarrow> f a \<in> A"
1676  unfolding vimage_def by fast
1677
1678lemma vimage_empty [simp]: "f -` {} = {}"
1679  by blast
1680
1681lemma vimage_Compl: "f -` (- A) = - (f -` A)"
1682  by blast
1683
1684lemma vimage_Un [simp]: "f -` (A \<union> B) = (f -` A) \<union> (f -` B)"
1685  by blast
1686
1687lemma vimage_Int [simp]: "f -` (A \<inter> B) = (f -` A) \<inter> (f -` B)"
1688  by fast
1689
1690lemma vimage_Collect_eq [simp]: "f -` Collect P = {y. P (f y)}"
1691  by blast
1692
1693lemma vimage_Collect: "(\<And>x. P (f x) = Q x) \<Longrightarrow> f -` (Collect P) = Collect Q"
1694  by blast
1695
1696lemma vimage_insert: "f -` (insert a B) = (f -` {a}) \<union> (f -` B)"
1697  \<comment> \<open>NOT suitable for rewriting because of the recurrence of \<open>{a}\<close>.\<close>
1698  by blast
1699
1700lemma vimage_Diff: "f -` (A - B) = (f -` A) - (f -` B)"
1701  by blast
1702
1703lemma vimage_UNIV [simp]: "f -` UNIV = UNIV"
1704  by blast
1705
1706lemma vimage_mono: "A \<subseteq> B \<Longrightarrow> f -` A \<subseteq> f -` B"
1707  \<comment> \<open>monotonicity\<close>
1708  by blast
1709
1710lemma vimage_image_eq: "f -` (f ` A) = {y. \<exists>x\<in>A. f x = f y}"
1711  by (blast intro: sym)
1712
1713lemma image_vimage_subset: "f ` (f -` A) \<subseteq> A"
1714  by blast
1715
1716lemma image_vimage_eq [simp]: "f ` (f -` A) = A \<inter> range f"
1717  by blast
1718
1719lemma image_subset_iff_subset_vimage: "f ` A \<subseteq> B \<longleftrightarrow> A \<subseteq> f -` B"
1720  by blast
1721
1722lemma vimage_const [simp]: "((\<lambda>x. c) -` A) = (if c \<in> A then UNIV else {})"
1723  by auto
1724
1725lemma vimage_if [simp]: "((\<lambda>x. if x \<in> B then c else d) -` A) =
1726   (if c \<in> A then (if d \<in> A then UNIV else B)
1727    else if d \<in> A then - B else {})"
1728  by (auto simp add: vimage_def)
1729
1730lemma vimage_inter_cong: "(\<And> w. w \<in> S \<Longrightarrow> f w = g w) \<Longrightarrow> f -` y \<inter> S = g -` y \<inter> S"
1731  by auto
1732
1733lemma vimage_ident [simp]: "(\<lambda>x. x) -` Y = Y"
1734  by blast
1735
1736
1737subsubsection \<open>Singleton sets\<close>
1738
1739definition is_singleton :: "'a set \<Rightarrow> bool"
1740  where "is_singleton A \<longleftrightarrow> (\<exists>x. A = {x})"
1741
1742lemma is_singletonI [simp, intro!]: "is_singleton {x}"
1743  unfolding is_singleton_def by simp
1744
1745lemma is_singletonI': "A \<noteq> {} \<Longrightarrow> (\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> x = y) \<Longrightarrow> is_singleton A"
1746  unfolding is_singleton_def by blast
1747
1748lemma is_singletonE: "is_singleton A \<Longrightarrow> (\<And>x. A = {x} \<Longrightarrow> P) \<Longrightarrow> P"
1749  unfolding is_singleton_def by blast
1750
1751
1752subsubsection \<open>Getting the contents of a singleton set\<close>
1753
1754definition the_elem :: "'a set \<Rightarrow> 'a"
1755  where "the_elem X = (THE x. X = {x})"
1756
1757lemma the_elem_eq [simp]: "the_elem {x} = x"
1758  by (simp add: the_elem_def)
1759
1760lemma is_singleton_the_elem: "is_singleton A \<longleftrightarrow> A = {the_elem A}"
1761  by (auto simp: is_singleton_def)
1762
1763lemma the_elem_image_unique:
1764  assumes "A \<noteq> {}"
1765    and *: "\<And>y. y \<in> A \<Longrightarrow> f y = f x"
1766  shows "the_elem (f ` A) = f x"
1767  unfolding the_elem_def
1768proof (rule the1_equality)
1769  from \<open>A \<noteq> {}\<close> obtain y where "y \<in> A" by auto
1770  with * have "f x = f y" by simp
1771  with \<open>y \<in> A\<close> have "f x \<in> f ` A" by blast
1772  with * show "f ` A = {f x}" by auto
1773  then show "\<exists>!x. f ` A = {x}" by auto
1774qed
1775
1776
1777subsubsection \<open>Least value operator\<close>
1778
1779lemma Least_mono: "mono f \<Longrightarrow> \<exists>x\<in>S. \<forall>y\<in>S. x \<le> y \<Longrightarrow> (LEAST y. y \<in> f ` S) = f (LEAST x. x \<in> S)"
1780  for f :: "'a::order \<Rightarrow> 'b::order"
1781  \<comment> \<open>Courtesy of Stephan Merz\<close>
1782  apply clarify
1783  apply (erule_tac P = "\<lambda>x. x \<in> S" in LeastI2_order)
1784   apply fast
1785  apply (rule LeastI2_order)
1786    apply (auto elim: monoD intro!: order_antisym)
1787  done
1788
1789
1790subsubsection \<open>Monad operation\<close>
1791
1792definition bind :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> 'b set"
1793  where "bind A f = {x. \<exists>B \<in> f`A. x \<in> B}"
1794
1795hide_const (open) bind
1796
1797lemma bind_bind: "Set.bind (Set.bind A B) C = Set.bind A (\<lambda>x. Set.bind (B x) C)"
1798  for A :: "'a set"
1799  by (auto simp: bind_def)
1800
1801lemma empty_bind [simp]: "Set.bind {} f = {}"
1802  by (simp add: bind_def)
1803
1804lemma nonempty_bind_const: "A \<noteq> {} \<Longrightarrow> Set.bind A (\<lambda>_. B) = B"
1805  by (auto simp: bind_def)
1806
1807lemma bind_const: "Set.bind A (\<lambda>_. B) = (if A = {} then {} else B)"
1808  by (auto simp: bind_def)
1809
1810lemma bind_singleton_conv_image: "Set.bind A (\<lambda>x. {f x}) = f ` A"
1811  by (auto simp: bind_def)
1812
1813
1814subsubsection \<open>Operations for execution\<close>
1815
1816definition is_empty :: "'a set \<Rightarrow> bool"
1817  where [code_abbrev]: "is_empty A \<longleftrightarrow> A = {}"
1818
1819hide_const (open) is_empty
1820
1821definition remove :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set"
1822  where [code_abbrev]: "remove x A = A - {x}"
1823
1824hide_const (open) remove
1825
1826lemma member_remove [simp]: "x \<in> Set.remove y A \<longleftrightarrow> x \<in> A \<and> x \<noteq> y"
1827  by (simp add: remove_def)
1828
1829definition filter :: "('a \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'a set"
1830  where [code_abbrev]: "filter P A = {a \<in> A. P a}"
1831
1832hide_const (open) filter
1833
1834lemma member_filter [simp]: "x \<in> Set.filter P A \<longleftrightarrow> x \<in> A \<and> P x"
1835  by (simp add: filter_def)
1836
1837instantiation set :: (equal) equal
1838begin
1839
1840definition "HOL.equal A B \<longleftrightarrow> A \<subseteq> B \<and> B \<subseteq> A"
1841
1842instance by standard (auto simp add: equal_set_def)
1843
1844end
1845
1846
1847text \<open>Misc\<close>
1848
1849definition pairwise :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> bool"
1850  where "pairwise R S \<longleftrightarrow> (\<forall>x \<in> S. \<forall>y \<in> S. x \<noteq> y \<longrightarrow> R x y)"
1851
1852lemma pairwiseI [intro?]:
1853  "pairwise R S" if "\<And>x y. x \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> x \<noteq> y \<Longrightarrow> R x y"
1854  using that by (simp add: pairwise_def)
1855
1856lemma pairwiseD:
1857  "R x y" and "R y x"
1858  if "pairwise R S" "x \<in> S" and "y \<in> S" and "x \<noteq> y"
1859  using that by (simp_all add: pairwise_def)
1860
1861lemma pairwise_empty [simp]: "pairwise P {}"
1862  by (simp add: pairwise_def)
1863
1864lemma pairwise_singleton [simp]: "pairwise P {A}"
1865  by (simp add: pairwise_def)
1866
1867lemma pairwise_insert:
1868  "pairwise r (insert x s) \<longleftrightarrow> (\<forall>y. y \<in> s \<and> y \<noteq> x \<longrightarrow> r x y \<and> r y x) \<and> pairwise r s"
1869  by (force simp: pairwise_def)
1870
1871lemma pairwise_subset: "pairwise P S \<Longrightarrow> T \<subseteq> S \<Longrightarrow> pairwise P T"
1872  by (force simp: pairwise_def)
1873
1874lemma pairwise_mono: "\<lbrakk>pairwise P A; \<And>x y. P x y \<Longrightarrow> Q x y; B \<subseteq> A\<rbrakk> \<Longrightarrow> pairwise Q B"
1875  by (fastforce simp: pairwise_def)
1876
1877lemma pairwise_imageI:
1878  "pairwise P (f ` A)"
1879  if "\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> x \<noteq> y \<Longrightarrow> f x \<noteq> f y \<Longrightarrow> P (f x) (f y)"
1880  using that by (auto intro: pairwiseI)
1881
1882lemma pairwise_image: "pairwise r (f ` s) \<longleftrightarrow> pairwise (\<lambda>x y. (f x \<noteq> f y) \<longrightarrow> r (f x) (f y)) s"
1883  by (force simp: pairwise_def)
1884
1885definition disjnt :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool"
1886  where "disjnt A B \<longleftrightarrow> A \<inter> B = {}"
1887
1888lemma disjnt_self_iff_empty [simp]: "disjnt S S \<longleftrightarrow> S = {}"
1889  by (auto simp: disjnt_def)
1890
1891lemma disjnt_iff: "disjnt A B \<longleftrightarrow> (\<forall>x. \<not> (x \<in> A \<and> x \<in> B))"
1892  by (force simp: disjnt_def)
1893
1894lemma disjnt_sym: "disjnt A B \<Longrightarrow> disjnt B A"
1895  using disjnt_iff by blast
1896
1897lemma disjnt_empty1 [simp]: "disjnt {} A" and disjnt_empty2 [simp]: "disjnt A {}"
1898  by (auto simp: disjnt_def)
1899
1900lemma disjnt_insert1 [simp]: "disjnt (insert a X) Y \<longleftrightarrow> a \<notin> Y \<and> disjnt X Y"
1901  by (simp add: disjnt_def)
1902
1903lemma disjnt_insert2 [simp]: "disjnt Y (insert a X) \<longleftrightarrow> a \<notin> Y \<and> disjnt Y X"
1904  by (simp add: disjnt_def)
1905
1906lemma disjnt_subset1 : "\<lbrakk>disjnt X Y; Z \<subseteq> X\<rbrakk> \<Longrightarrow> disjnt Z Y"
1907  by (auto simp: disjnt_def)
1908
1909lemma disjnt_subset2 : "\<lbrakk>disjnt X Y; Z \<subseteq> Y\<rbrakk> \<Longrightarrow> disjnt X Z"
1910  by (auto simp: disjnt_def)
1911
1912lemma disjoint_image_subset: "\<lbrakk>pairwise disjnt \<A>; \<And>X. X \<in> \<A> \<Longrightarrow> f X \<subseteq> X\<rbrakk> \<Longrightarrow> pairwise disjnt (f `\<A>)"
1913  unfolding disjnt_def pairwise_def by fast
1914
1915lemma Int_emptyI: "(\<And>x. x \<in> A \<Longrightarrow> x \<in> B \<Longrightarrow> False) \<Longrightarrow> A \<inter> B = {}"
1916  by blast
1917
1918lemma in_image_insert_iff:
1919  assumes "\<And>C. C \<in> B \<Longrightarrow> x \<notin> C"
1920  shows "A \<in> insert x ` B \<longleftrightarrow> x \<in> A \<and> A - {x} \<in> B" (is "?P \<longleftrightarrow> ?Q")
1921proof
1922  assume ?P then show ?Q
1923    using assms by auto
1924next
1925  assume ?Q
1926  then have "x \<in> A" and "A - {x} \<in> B"
1927    by simp_all
1928  from \<open>A - {x} \<in> B\<close> have "insert x (A - {x}) \<in> insert x ` B"
1929    by (rule imageI)
1930  also from \<open>x \<in> A\<close>
1931  have "insert x (A - {x}) = A"
1932    by auto
1933  finally show ?P .
1934qed
1935
1936hide_const (open) member not_member
1937
1938lemmas equalityI = subset_antisym
1939
1940ML \<open>
1941val Ball_def = @{thm Ball_def}
1942val Bex_def = @{thm Bex_def}
1943val CollectD = @{thm CollectD}
1944val CollectE = @{thm CollectE}
1945val CollectI = @{thm CollectI}
1946val Collect_conj_eq = @{thm Collect_conj_eq}
1947val Collect_mem_eq = @{thm Collect_mem_eq}
1948val IntD1 = @{thm IntD1}
1949val IntD2 = @{thm IntD2}
1950val IntE = @{thm IntE}
1951val IntI = @{thm IntI}
1952val Int_Collect = @{thm Int_Collect}
1953val UNIV_I = @{thm UNIV_I}
1954val UNIV_witness = @{thm UNIV_witness}
1955val UnE = @{thm UnE}
1956val UnI1 = @{thm UnI1}
1957val UnI2 = @{thm UnI2}
1958val ballE = @{thm ballE}
1959val ballI = @{thm ballI}
1960val bexCI = @{thm bexCI}
1961val bexE = @{thm bexE}
1962val bexI = @{thm bexI}
1963val bex_triv = @{thm bex_triv}
1964val bspec = @{thm bspec}
1965val contra_subsetD = @{thm contra_subsetD}
1966val equalityCE = @{thm equalityCE}
1967val equalityD1 = @{thm equalityD1}
1968val equalityD2 = @{thm equalityD2}
1969val equalityE = @{thm equalityE}
1970val equalityI = @{thm equalityI}
1971val imageE = @{thm imageE}
1972val imageI = @{thm imageI}
1973val image_Un = @{thm image_Un}
1974val image_insert = @{thm image_insert}
1975val insert_commute = @{thm insert_commute}
1976val insert_iff = @{thm insert_iff}
1977val mem_Collect_eq = @{thm mem_Collect_eq}
1978val rangeE = @{thm rangeE}
1979val rangeI = @{thm rangeI}
1980val range_eqI = @{thm range_eqI}
1981val subsetCE = @{thm subsetCE}
1982val subsetD = @{thm subsetD}
1983val subsetI = @{thm subsetI}
1984val subset_refl = @{thm subset_refl}
1985val subset_trans = @{thm subset_trans}
1986val vimageD = @{thm vimageD}
1987val vimageE = @{thm vimageE}
1988val vimageI = @{thm vimageI}
1989val vimageI2 = @{thm vimageI2}
1990val vimage_Collect = @{thm vimage_Collect}
1991val vimage_Int = @{thm vimage_Int}
1992val vimage_Un = @{thm vimage_Un}
1993\<close>
1994
1995end
1996