1(*  Title:      HOL/Order_Relation.thy
2    Author:     Tobias Nipkow
3    Author:     Andrei Popescu, TU Muenchen
4*)
5
6section \<open>Orders as Relations\<close>
7
8theory Order_Relation
9imports Wfrec
10begin
11
12subsection \<open>Orders on a set\<close>
13
14definition "preorder_on A r \<equiv> refl_on A r \<and> trans r"
15
16definition "partial_order_on A r \<equiv> preorder_on A r \<and> antisym r"
17
18definition "linear_order_on A r \<equiv> partial_order_on A r \<and> total_on A r"
19
20definition "strict_linear_order_on A r \<equiv> trans r \<and> irrefl r \<and> total_on A r"
21
22definition "well_order_on A r \<equiv> linear_order_on A r \<and> wf(r - Id)"
23
24lemmas order_on_defs =
25  preorder_on_def partial_order_on_def linear_order_on_def
26  strict_linear_order_on_def well_order_on_def
27
28
29lemma preorder_on_empty[simp]: "preorder_on {} {}"
30  by (simp add: preorder_on_def trans_def)
31
32lemma partial_order_on_empty[simp]: "partial_order_on {} {}"
33  by (simp add: partial_order_on_def)
34
35lemma lnear_order_on_empty[simp]: "linear_order_on {} {}"
36  by (simp add: linear_order_on_def)
37
38lemma well_order_on_empty[simp]: "well_order_on {} {}"
39  by (simp add: well_order_on_def)
40
41
42lemma preorder_on_converse[simp]: "preorder_on A (r\<inverse>) = preorder_on A r"
43  by (simp add: preorder_on_def)
44
45lemma partial_order_on_converse[simp]: "partial_order_on A (r\<inverse>) = partial_order_on A r"
46  by (simp add: partial_order_on_def)
47
48lemma linear_order_on_converse[simp]: "linear_order_on A (r\<inverse>) = linear_order_on A r"
49  by (simp add: linear_order_on_def)
50
51
52lemma strict_linear_order_on_diff_Id: "linear_order_on A r \<Longrightarrow> strict_linear_order_on A (r - Id)"
53  by (simp add: order_on_defs trans_diff_Id)
54
55lemma linear_order_on_singleton [simp]: "linear_order_on {x} {(x, x)}"
56  by (simp add: order_on_defs)
57
58lemma linear_order_on_acyclic:
59  assumes "linear_order_on A r"
60  shows "acyclic (r - Id)"
61  using strict_linear_order_on_diff_Id[OF assms]
62  by (auto simp add: acyclic_irrefl strict_linear_order_on_def)
63
64lemma linear_order_on_well_order_on:
65  assumes "finite r"
66  shows "linear_order_on A r \<longleftrightarrow> well_order_on A r"
67  unfolding well_order_on_def
68  using assms finite_acyclic_wf[OF _ linear_order_on_acyclic, of r] by blast
69
70
71subsection \<open>Orders on the field\<close>
72
73abbreviation "Refl r \<equiv> refl_on (Field r) r"
74
75abbreviation "Preorder r \<equiv> preorder_on (Field r) r"
76
77abbreviation "Partial_order r \<equiv> partial_order_on (Field r) r"
78
79abbreviation "Total r \<equiv> total_on (Field r) r"
80
81abbreviation "Linear_order r \<equiv> linear_order_on (Field r) r"
82
83abbreviation "Well_order r \<equiv> well_order_on (Field r) r"
84
85
86lemma subset_Image_Image_iff:
87  "Preorder r \<Longrightarrow> A \<subseteq> Field r \<Longrightarrow> B \<subseteq> Field r \<Longrightarrow>
88    r `` A \<subseteq> r `` B \<longleftrightarrow> (\<forall>a\<in>A.\<exists>b\<in>B. (b, a) \<in> r)"
89  apply (simp add: preorder_on_def refl_on_def Image_def subset_eq)
90  apply (simp only: trans_def)
91  apply fast
92  done
93
94lemma subset_Image1_Image1_iff:
95  "Preorder r \<Longrightarrow> a \<in> Field r \<Longrightarrow> b \<in> Field r \<Longrightarrow> r `` {a} \<subseteq> r `` {b} \<longleftrightarrow> (b, a) \<in> r"
96  by (simp add: subset_Image_Image_iff)
97
98lemma Refl_antisym_eq_Image1_Image1_iff:
99  assumes "Refl r"
100    and as: "antisym r"
101    and abf: "a \<in> Field r" "b \<in> Field r"
102  shows "r `` {a} = r `` {b} \<longleftrightarrow> a = b"
103    (is "?lhs \<longleftrightarrow> ?rhs")
104proof
105  assume ?lhs
106  then have *: "\<And>x. (a, x) \<in> r \<longleftrightarrow> (b, x) \<in> r"
107    by (simp add: set_eq_iff)
108  have "(a, a) \<in> r" "(b, b) \<in> r" using \<open>Refl r\<close> abf by (simp_all add: refl_on_def)
109  then have "(a, b) \<in> r" "(b, a) \<in> r" using *[of a] *[of b] by simp_all
110  then show ?rhs
111    using \<open>antisym r\<close>[unfolded antisym_def] by blast
112next
113  assume ?rhs
114  then show ?lhs by fast
115qed
116
117lemma Partial_order_eq_Image1_Image1_iff:
118  "Partial_order r \<Longrightarrow> a \<in> Field r \<Longrightarrow> b \<in> Field r \<Longrightarrow> r `` {a} = r `` {b} \<longleftrightarrow> a = b"
119  by (auto simp: order_on_defs Refl_antisym_eq_Image1_Image1_iff)
120
121lemma Total_Id_Field:
122  assumes "Total r"
123    and not_Id: "\<not> r \<subseteq> Id"
124  shows "Field r = Field (r - Id)"
125  using mono_Field[of "r - Id" r] Diff_subset[of r Id]
126proof auto
127  fix a assume *: "a \<in> Field r"
128  from not_Id have "r \<noteq> {}" by fast
129  with not_Id obtain b and c where "b \<noteq> c \<and> (b,c) \<in> r" by auto
130  then have "b \<noteq> c \<and> {b, c} \<subseteq> Field r" by (auto simp: Field_def)
131  with * obtain d where "d \<in> Field r" "d \<noteq> a" by auto
132  with * \<open>Total r\<close> have "(a, d) \<in> r \<or> (d, a) \<in> r" by (simp add: total_on_def)
133  with \<open>d \<noteq> a\<close> show "a \<in> Field (r - Id)" unfolding Field_def by blast
134qed
135
136
137subsection \<open>Orders on a type\<close>
138
139abbreviation "strict_linear_order \<equiv> strict_linear_order_on UNIV"
140
141abbreviation "linear_order \<equiv> linear_order_on UNIV"
142
143abbreviation "well_order \<equiv> well_order_on UNIV"
144
145
146subsection \<open>Order-like relations\<close>
147
148text \<open>
149  In this subsection, we develop basic concepts and results pertaining
150  to order-like relations, i.e., to reflexive and/or transitive and/or symmetric and/or
151  total relations. We also further define upper and lower bounds operators.
152\<close>
153
154
155subsubsection \<open>Auxiliaries\<close>
156
157lemma refl_on_domain: "refl_on A r \<Longrightarrow> (a, b) \<in> r \<Longrightarrow> a \<in> A \<and> b \<in> A"
158  by (auto simp add: refl_on_def)
159
160corollary well_order_on_domain: "well_order_on A r \<Longrightarrow> (a, b) \<in> r \<Longrightarrow> a \<in> A \<and> b \<in> A"
161  by (auto simp add: refl_on_domain order_on_defs)
162
163lemma well_order_on_Field: "well_order_on A r \<Longrightarrow> A = Field r"
164  by (auto simp add: refl_on_def Field_def order_on_defs)
165
166lemma well_order_on_Well_order: "well_order_on A r \<Longrightarrow> A = Field r \<and> Well_order r"
167  using well_order_on_Field [of A] by auto
168
169lemma Total_subset_Id:
170  assumes "Total r"
171    and "r \<subseteq> Id"
172  shows "r = {} \<or> (\<exists>a. r = {(a, a)})"
173proof -
174  have "\<exists>a. r = {(a, a)}" if "r \<noteq> {}"
175  proof -
176    from that obtain a b where ab: "(a, b) \<in> r" by fast
177    with \<open>r \<subseteq> Id\<close> have "a = b" by blast
178    with ab have aa: "(a, a) \<in> r" by simp
179    have "a = c \<and> a = d" if "(c, d) \<in> r" for c d
180    proof -
181      from that have "{a, c, d} \<subseteq> Field r"
182        using ab unfolding Field_def by blast
183      then have "((a, c) \<in> r \<or> (c, a) \<in> r \<or> a = c) \<and> ((a, d) \<in> r \<or> (d, a) \<in> r \<or> a = d)"
184        using \<open>Total r\<close> unfolding total_on_def by blast
185      with \<open>r \<subseteq> Id\<close> show ?thesis by blast
186    qed
187    then have "r \<subseteq> {(a, a)}" by auto
188    with aa show ?thesis by blast
189  qed
190  then show ?thesis by blast
191qed
192
193lemma Linear_order_in_diff_Id:
194  assumes "Linear_order r"
195    and "a \<in> Field r"
196    and "b \<in> Field r"
197  shows "(a, b) \<in> r \<longleftrightarrow> (b, a) \<notin> r - Id"
198  using assms unfolding order_on_defs total_on_def antisym_def Id_def refl_on_def by force
199
200
201subsubsection \<open>The upper and lower bounds operators\<close>
202
203text \<open>
204  Here we define upper (``above") and lower (``below") bounds operators. We
205  think of \<open>r\<close> as a \<^emph>\<open>non-strict\<close> relation. The suffix \<open>S\<close> at the names of
206  some operators indicates that the bounds are strict -- e.g., \<open>underS a\<close> is
207  the set of all strict lower bounds of \<open>a\<close> (w.r.t. \<open>r\<close>). Capitalization of
208  the first letter in the name reminds that the operator acts on sets, rather
209  than on individual elements.
210\<close>
211
212definition under :: "'a rel \<Rightarrow> 'a \<Rightarrow> 'a set"
213  where "under r a \<equiv> {b. (b, a) \<in> r}"
214
215definition underS :: "'a rel \<Rightarrow> 'a \<Rightarrow> 'a set"
216  where "underS r a \<equiv> {b. b \<noteq> a \<and> (b, a) \<in> r}"
217
218definition Under :: "'a rel \<Rightarrow> 'a set \<Rightarrow> 'a set"
219  where "Under r A \<equiv> {b \<in> Field r. \<forall>a \<in> A. (b, a) \<in> r}"
220
221definition UnderS :: "'a rel \<Rightarrow> 'a set \<Rightarrow> 'a set"
222  where "UnderS r A \<equiv> {b \<in> Field r. \<forall>a \<in> A. b \<noteq> a \<and> (b, a) \<in> r}"
223
224definition above :: "'a rel \<Rightarrow> 'a \<Rightarrow> 'a set"
225  where "above r a \<equiv> {b. (a, b) \<in> r}"
226
227definition aboveS :: "'a rel \<Rightarrow> 'a \<Rightarrow> 'a set"
228  where "aboveS r a \<equiv> {b. b \<noteq> a \<and> (a, b) \<in> r}"
229
230definition Above :: "'a rel \<Rightarrow> 'a set \<Rightarrow> 'a set"
231  where "Above r A \<equiv> {b \<in> Field r. \<forall>a \<in> A. (a, b) \<in> r}"
232
233definition AboveS :: "'a rel \<Rightarrow> 'a set \<Rightarrow> 'a set"
234  where "AboveS r A \<equiv> {b \<in> Field r. \<forall>a \<in> A. b \<noteq> a \<and> (a, b) \<in> r}"
235
236definition ofilter :: "'a rel \<Rightarrow> 'a set \<Rightarrow> bool"
237  where "ofilter r A \<equiv> A \<subseteq> Field r \<and> (\<forall>a \<in> A. under r a \<subseteq> A)"
238
239text \<open>
240  Note: In the definitions of \<open>Above[S]\<close> and \<open>Under[S]\<close>, we bounded
241  comprehension by \<open>Field r\<close> in order to properly cover the case of \<open>A\<close> being
242  empty.
243\<close>
244
245lemma underS_subset_under: "underS r a \<subseteq> under r a"
246  by (auto simp add: underS_def under_def)
247
248lemma underS_notIn: "a \<notin> underS r a"
249  by (simp add: underS_def)
250
251lemma Refl_under_in: "Refl r \<Longrightarrow> a \<in> Field r \<Longrightarrow> a \<in> under r a"
252  by (simp add: refl_on_def under_def)
253
254lemma AboveS_disjoint: "A \<inter> (AboveS r A) = {}"
255  by (auto simp add: AboveS_def)
256
257lemma in_AboveS_underS: "a \<in> Field r \<Longrightarrow> a \<in> AboveS r (underS r a)"
258  by (auto simp add: AboveS_def underS_def)
259
260lemma Refl_under_underS: "Refl r \<Longrightarrow> a \<in> Field r \<Longrightarrow> under r a = underS r a \<union> {a}"
261  unfolding under_def underS_def
262  using refl_on_def[of _ r] by fastforce
263
264lemma underS_empty: "a \<notin> Field r \<Longrightarrow> underS r a = {}"
265  by (auto simp: Field_def underS_def)
266
267lemma under_Field: "under r a \<subseteq> Field r"
268  by (auto simp: under_def Field_def)
269
270lemma underS_Field: "underS r a \<subseteq> Field r"
271  by (auto simp: underS_def Field_def)
272
273lemma underS_Field2: "a \<in> Field r \<Longrightarrow> underS r a \<subset> Field r"
274  using underS_notIn underS_Field by fast
275
276lemma underS_Field3: "Field r \<noteq> {} \<Longrightarrow> underS r a \<subset> Field r"
277  by (cases "a \<in> Field r") (auto simp: underS_Field2 underS_empty)
278
279lemma AboveS_Field: "AboveS r A \<subseteq> Field r"
280  by (auto simp: AboveS_def Field_def)
281
282lemma under_incr:
283  assumes "trans r"
284    and "(a, b) \<in> r"
285  shows "under r a \<subseteq> under r b"
286  unfolding under_def
287proof auto
288  fix x assume "(x, a) \<in> r"
289  with assms trans_def[of r] show "(x, b) \<in> r" by blast
290qed
291
292lemma underS_incr:
293  assumes "trans r"
294    and "antisym r"
295    and ab: "(a, b) \<in> r"
296  shows "underS r a \<subseteq> underS r b"
297  unfolding underS_def
298proof auto
299  assume *: "b \<noteq> a" and **: "(b, a) \<in> r"
300  with \<open>antisym r\<close> antisym_def[of r] ab show False
301    by blast
302next
303  fix x assume "x \<noteq> a" "(x, a) \<in> r"
304  with ab \<open>trans r\<close> trans_def[of r] show "(x, b) \<in> r"
305    by blast
306qed
307
308lemma underS_incl_iff:
309  assumes LO: "Linear_order r"
310    and INa: "a \<in> Field r"
311    and INb: "b \<in> Field r"
312  shows "underS r a \<subseteq> underS r b \<longleftrightarrow> (a, b) \<in> r"
313    (is "?lhs \<longleftrightarrow> ?rhs")
314proof
315  assume ?rhs
316  with \<open>Linear_order r\<close> show ?lhs
317    by (simp add: order_on_defs underS_incr)
318next
319  assume *: ?lhs
320  have "(a, b) \<in> r" if "a = b"
321    using assms that by (simp add: order_on_defs refl_on_def)
322  moreover have False if "a \<noteq> b" "(b, a) \<in> r"
323  proof -
324    from that have "b \<in> underS r a" unfolding underS_def by blast
325    with * have "b \<in> underS r b" by blast
326    then show ?thesis by (simp add: underS_notIn)
327  qed
328  ultimately show "(a,b) \<in> r"
329    using assms order_on_defs[of "Field r" r] total_on_def[of "Field r" r] by blast
330qed
331
332lemma finite_Linear_order_induct[consumes 3, case_names step]:
333  assumes "Linear_order r"
334    and "x \<in> Field r"
335    and "finite r"
336    and step: "\<And>x. x \<in> Field r \<Longrightarrow> (\<And>y. y \<in> aboveS r x \<Longrightarrow> P y) \<Longrightarrow> P x"
337  shows "P x"
338  using assms(2)
339proof (induct rule: wf_induct[of "r\<inverse> - Id"])
340  case 1
341  from assms(1,3) show "wf (r\<inverse> - Id)"
342    using linear_order_on_well_order_on linear_order_on_converse
343    unfolding well_order_on_def by blast
344next
345  case prems: (2 x)
346  show ?case
347    by (rule step) (use prems in \<open>auto simp: aboveS_def intro: FieldI2\<close>)
348qed
349
350
351subsection \<open>Variations on Well-Founded Relations\<close>
352
353text \<open>
354  This subsection contains some variations of the results from \<^theory>\<open>HOL.Wellfounded\<close>:
355    \<^item> means for slightly more direct definitions by well-founded recursion;
356    \<^item> variations of well-founded induction;
357    \<^item> means for proving a linear order to be a well-order.
358\<close>
359
360
361subsubsection \<open>Characterizations of well-foundedness\<close>
362
363text \<open>
364  A transitive relation is well-founded iff it is ``locally'' well-founded,
365  i.e., iff its restriction to the lower bounds of of any element is
366  well-founded.
367\<close>
368
369lemma trans_wf_iff:
370  assumes "trans r"
371  shows "wf r \<longleftrightarrow> (\<forall>a. wf (r \<inter> (r\<inverse>``{a} \<times> r\<inverse>``{a})))"
372proof -
373  define R where "R a = r \<inter> (r\<inverse>``{a} \<times> r\<inverse>``{a})" for a
374  have "wf (R a)" if "wf r" for a
375    using that R_def wf_subset[of r "R a"] by auto
376  moreover
377  have "wf r" if *: "\<forall>a. wf(R a)"
378    unfolding wf_def
379  proof clarify
380    fix phi a
381    assume **: "\<forall>a. (\<forall>b. (b, a) \<in> r \<longrightarrow> phi b) \<longrightarrow> phi a"
382    define chi where "chi b \<longleftrightarrow> (b, a) \<in> r \<longrightarrow> phi b" for b
383    with * have "wf (R a)" by auto
384    then have "(\<forall>b. (\<forall>c. (c, b) \<in> R a \<longrightarrow> chi c) \<longrightarrow> chi b) \<longrightarrow> (\<forall>b. chi b)"
385      unfolding wf_def by blast
386    also have "\<forall>b. (\<forall>c. (c, b) \<in> R a \<longrightarrow> chi c) \<longrightarrow> chi b"
387    proof (auto simp add: chi_def R_def)
388      fix b
389      assume "(b, a) \<in> r" and "\<forall>c. (c, b) \<in> r \<and> (c, a) \<in> r \<longrightarrow> phi c"
390      then have "\<forall>c. (c, b) \<in> r \<longrightarrow> phi c"
391        using assms trans_def[of r] by blast
392      with ** show "phi b" by blast
393    qed
394    finally have  "\<forall>b. chi b" .
395    with ** chi_def show "phi a" by blast
396  qed
397  ultimately show ?thesis unfolding R_def by blast
398qed
399
400text\<open>A transitive relation is well-founded if all initial segments are finite.\<close>
401corollary wf_finite_segments:
402  assumes "irrefl r" and "trans r" and "\<And>x. finite {y. (y, x) \<in> r}"
403  shows "wf (r)"
404proof (clarsimp simp: trans_wf_iff wf_iff_acyclic_if_finite converse_def assms)
405  fix a
406  have "trans (r \<inter> ({x. (x, a) \<in> r} \<times> {x. (x, a) \<in> r}))"
407    using assms unfolding trans_def Field_def by blast
408  then show "acyclic (r \<inter> {x. (x, a) \<in> r} \<times> {x. (x, a) \<in> r})"
409    using assms acyclic_def assms irrefl_def by fastforce
410qed
411
412text \<open>The next lemma is a variation of \<open>wf_eq_minimal\<close> from Wellfounded,
413  allowing one to assume the set included in the field.\<close>
414
415lemma wf_eq_minimal2: "wf r \<longleftrightarrow> (\<forall>A. A \<subseteq> Field r \<and> A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a', a) \<notin> r))"
416proof-
417  let ?phi = "\<lambda>A. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a',a) \<notin> r)"
418  have "wf r \<longleftrightarrow> (\<forall>A. ?phi A)"
419    apply (auto simp: ex_in_conv [THEN sym])
420     apply (erule wfE_min)
421      apply assumption
422     apply blast
423    apply (rule wfI_min)
424    apply fast
425    done
426  also have "(\<forall>A. ?phi A) \<longleftrightarrow> (\<forall>B \<subseteq> Field r. ?phi B)"
427  proof
428    assume "\<forall>A. ?phi A"
429    then show "\<forall>B \<subseteq> Field r. ?phi B" by simp
430  next
431    assume *: "\<forall>B \<subseteq> Field r. ?phi B"
432    show "\<forall>A. ?phi A"
433    proof clarify
434      fix A :: "'a set"
435      assume **: "A \<noteq> {}"
436      define B where "B = A \<inter> Field r"
437      show "\<exists>a \<in> A. \<forall>a' \<in> A. (a', a) \<notin> r"
438      proof (cases "B = {}")
439        case True
440        with ** obtain a where a: "a \<in> A" "a \<notin> Field r"
441          unfolding B_def by blast
442        with a have "\<forall>a' \<in> A. (a',a) \<notin> r"
443          unfolding Field_def by blast
444        with a show ?thesis by blast
445      next
446        case False
447        have "B \<subseteq> Field r" unfolding B_def by blast
448        with False * obtain a where a: "a \<in> B" "\<forall>a' \<in> B. (a', a) \<notin> r"
449          by blast
450        have "(a', a) \<notin> r" if "a' \<in> A" for a'
451        proof
452          assume a'a: "(a', a) \<in> r"
453          with that have "a' \<in> B" unfolding B_def Field_def by blast
454          with a a'a show False by blast
455        qed
456        with a show ?thesis unfolding B_def by blast
457      qed
458    qed
459  qed
460  finally show ?thesis by blast
461qed
462
463
464subsubsection \<open>Characterizations of well-foundedness\<close>
465
466text \<open>
467  The next lemma and its corollary enable one to prove that a linear order is
468  a well-order in a way which is more standard than via well-foundedness of
469  the strict version of the relation.
470\<close>
471
472lemma Linear_order_wf_diff_Id:
473  assumes "Linear_order r"
474  shows "wf (r - Id) \<longleftrightarrow> (\<forall>A \<subseteq> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r))"
475proof (cases "r \<subseteq> Id")
476  case True
477  then have *: "r - Id = {}" by blast
478  have "wf (r - Id)" by (simp add: *)
479  moreover have "\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r"
480    if *: "A \<subseteq> Field r" and **: "A \<noteq> {}" for A
481  proof -
482    from \<open>Linear_order r\<close> True
483    obtain a where a: "r = {} \<or> r = {(a, a)}"
484      unfolding order_on_defs using Total_subset_Id [of r] by blast
485    with * ** have "A = {a} \<and> r = {(a, a)}"
486      unfolding Field_def by blast
487    with a show ?thesis by blast
488  qed
489  ultimately show ?thesis by blast
490next
491  case False
492  with \<open>Linear_order r\<close> have Field: "Field r = Field (r - Id)"
493    unfolding order_on_defs using Total_Id_Field [of r] by blast
494  show ?thesis
495  proof
496    assume *: "wf (r - Id)"
497    show "\<forall>A \<subseteq> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r)"
498    proof clarify
499      fix A
500      assume **: "A \<subseteq> Field r" and ***: "A \<noteq> {}"
501      then have "\<exists>a \<in> A. \<forall>a' \<in> A. (a',a) \<notin> r - Id"
502        using Field * unfolding wf_eq_minimal2 by simp
503      moreover have "\<forall>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r \<longleftrightarrow> (a', a) \<notin> r - Id"
504        using Linear_order_in_diff_Id [OF \<open>Linear_order r\<close>] ** by blast
505      ultimately show "\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r" by blast
506    qed
507  next
508    assume *: "\<forall>A \<subseteq> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r)"
509    show "wf (r - Id)"
510      unfolding wf_eq_minimal2
511    proof clarify
512      fix A
513      assume **: "A \<subseteq> Field(r - Id)" and ***: "A \<noteq> {}"
514      then have "\<exists>a \<in> A. \<forall>a' \<in> A. (a,a') \<in> r"
515        using Field * by simp
516      moreover have "\<forall>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r \<longleftrightarrow> (a', a) \<notin> r - Id"
517        using Linear_order_in_diff_Id [OF \<open>Linear_order r\<close>] ** mono_Field[of "r - Id" r] by blast
518      ultimately show "\<exists>a \<in> A. \<forall>a' \<in> A. (a',a) \<notin> r - Id"
519        by blast
520    qed
521  qed
522qed
523
524corollary Linear_order_Well_order_iff:
525  "Linear_order r \<Longrightarrow>
526    Well_order r \<longleftrightarrow> (\<forall>A \<subseteq> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r))"
527  unfolding well_order_on_def using Linear_order_wf_diff_Id[of r] by blast
528
529end
530