1(*  Title:      HOL/Map.thy
2    Author:     Tobias Nipkow, based on a theory by David von Oheimb
3    Copyright   1997-2003 TU Muenchen
4
5The datatype of "maps"; strongly resembles maps in VDM.
6*)
7
8section \<open>Maps\<close>
9
10theory Map
11  imports List
12  abbrevs "(=" = "\<subseteq>\<^sub>m"
13begin
14
15type_synonym ('a, 'b) "map" = "'a \<Rightarrow> 'b option" (infixr "\<rightharpoonup>" 0)
16
17abbreviation
18  empty :: "'a \<rightharpoonup> 'b" where
19  "empty \<equiv> \<lambda>x. None"
20
21definition
22  map_comp :: "('b \<rightharpoonup> 'c) \<Rightarrow> ('a \<rightharpoonup> 'b) \<Rightarrow> ('a \<rightharpoonup> 'c)"  (infixl "\<circ>\<^sub>m" 55) where
23  "f \<circ>\<^sub>m g = (\<lambda>k. case g k of None \<Rightarrow> None | Some v \<Rightarrow> f v)"
24
25definition
26  map_add :: "('a \<rightharpoonup> 'b) \<Rightarrow> ('a \<rightharpoonup> 'b) \<Rightarrow> ('a \<rightharpoonup> 'b)"  (infixl "++" 100) where
27  "m1 ++ m2 = (\<lambda>x. case m2 x of None \<Rightarrow> m1 x | Some y \<Rightarrow> Some y)"
28
29definition
30  restrict_map :: "('a \<rightharpoonup> 'b) \<Rightarrow> 'a set \<Rightarrow> ('a \<rightharpoonup> 'b)"  (infixl "|`"  110) where
31  "m|`A = (\<lambda>x. if x \<in> A then m x else None)"
32
33notation (latex output)
34  restrict_map  ("_\<restriction>\<^bsub>_\<^esub>" [111,110] 110)
35
36definition
37  dom :: "('a \<rightharpoonup> 'b) \<Rightarrow> 'a set" where
38  "dom m = {a. m a \<noteq> None}"
39
40definition
41  ran :: "('a \<rightharpoonup> 'b) \<Rightarrow> 'b set" where
42  "ran m = {b. \<exists>a. m a = Some b}"
43
44definition
45  map_le :: "('a \<rightharpoonup> 'b) \<Rightarrow> ('a \<rightharpoonup> 'b) \<Rightarrow> bool"  (infix "\<subseteq>\<^sub>m" 50) where
46  "(m\<^sub>1 \<subseteq>\<^sub>m m\<^sub>2) \<longleftrightarrow> (\<forall>a \<in> dom m\<^sub>1. m\<^sub>1 a = m\<^sub>2 a)"
47
48nonterminal maplets and maplet
49
50syntax
51  "_maplet"  :: "['a, 'a] \<Rightarrow> maplet"             ("_ /\<mapsto>/ _")
52  "_maplets" :: "['a, 'a] \<Rightarrow> maplet"             ("_ /[\<mapsto>]/ _")
53  ""         :: "maplet \<Rightarrow> maplets"             ("_")
54  "_Maplets" :: "[maplet, maplets] \<Rightarrow> maplets" ("_,/ _")
55  "_MapUpd"  :: "['a \<rightharpoonup> 'b, maplets] \<Rightarrow> 'a \<rightharpoonup> 'b" ("_/'(_')" [900, 0] 900)
56  "_Map"     :: "maplets \<Rightarrow> 'a \<rightharpoonup> 'b"            ("(1[_])")
57
58syntax (ASCII)
59  "_maplet"  :: "['a, 'a] \<Rightarrow> maplet"             ("_ /|->/ _")
60  "_maplets" :: "['a, 'a] \<Rightarrow> maplet"             ("_ /[|->]/ _")
61
62translations
63  "_MapUpd m (_Maplets xy ms)"  \<rightleftharpoons> "_MapUpd (_MapUpd m xy) ms"
64  "_MapUpd m (_maplet  x y)"    \<rightleftharpoons> "m(x := CONST Some y)"
65  "_Map ms"                     \<rightleftharpoons> "_MapUpd (CONST empty) ms"
66  "_Map (_Maplets ms1 ms2)"     \<leftharpoondown> "_MapUpd (_Map ms1) ms2"
67  "_Maplets ms1 (_Maplets ms2 ms3)" \<leftharpoondown> "_Maplets (_Maplets ms1 ms2) ms3"
68
69primrec map_of :: "('a \<times> 'b) list \<Rightarrow> 'a \<rightharpoonup> 'b"
70where
71  "map_of [] = empty"
72| "map_of (p # ps) = (map_of ps)(fst p \<mapsto> snd p)"
73
74definition map_upds :: "('a \<rightharpoonup> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> 'a \<rightharpoonup> 'b"
75  where "map_upds m xs ys = m ++ map_of (rev (zip xs ys))"
76translations
77  "_MapUpd m (_maplets x y)" \<rightleftharpoons> "CONST map_upds m x y"
78
79lemma map_of_Cons_code [code]:
80  "map_of [] k = None"
81  "map_of ((l, v) # ps) k = (if l = k then Some v else map_of ps k)"
82  by simp_all
83
84
85subsection \<open>@{term [source] empty}\<close>
86
87lemma empty_upd_none [simp]: "empty(x := None) = empty"
88  by (rule ext) simp
89
90
91subsection \<open>@{term [source] map_upd}\<close>
92
93lemma map_upd_triv: "t k = Some x \<Longrightarrow> t(k\<mapsto>x) = t"
94  by (rule ext) simp
95
96lemma map_upd_nonempty [simp]: "t(k\<mapsto>x) \<noteq> empty"
97proof
98  assume "t(k \<mapsto> x) = empty"
99  then have "(t(k \<mapsto> x)) k = None" by simp
100  then show False by simp
101qed
102
103lemma map_upd_eqD1:
104  assumes "m(a\<mapsto>x) = n(a\<mapsto>y)"
105  shows "x = y"
106proof -
107  from assms have "(m(a\<mapsto>x)) a = (n(a\<mapsto>y)) a" by simp
108  then show ?thesis by simp
109qed
110
111lemma map_upd_Some_unfold:
112  "((m(a\<mapsto>b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)"
113by auto
114
115lemma image_map_upd [simp]: "x \<notin> A \<Longrightarrow> m(x \<mapsto> y) ` A = m ` A"
116by auto
117
118lemma finite_range_updI: "finite (range f) \<Longrightarrow> finite (range (f(a\<mapsto>b)))"
119unfolding image_def
120apply (simp (no_asm_use) add:full_SetCompr_eq)
121apply (rule finite_subset)
122 prefer 2 apply assumption
123apply (auto)
124done
125
126
127subsection \<open>@{term [source] map_of}\<close>
128
129lemma map_of_eq_empty_iff [simp]:
130  "map_of xys = empty \<longleftrightarrow> xys = []"
131proof
132  show "map_of xys = empty \<Longrightarrow> xys = []"
133    by (induction xys) simp_all
134qed simp
135
136lemma empty_eq_map_of_iff [simp]:
137  "empty = map_of xys \<longleftrightarrow> xys = []"
138by(subst eq_commute) simp
139
140lemma map_of_eq_None_iff:
141  "(map_of xys x = None) = (x \<notin> fst ` (set xys))"
142by (induct xys) simp_all
143
144lemma map_of_eq_Some_iff [simp]:
145  "distinct(map fst xys) \<Longrightarrow> (map_of xys x = Some y) = ((x,y) \<in> set xys)"
146apply (induct xys)
147 apply simp
148apply (auto simp: map_of_eq_None_iff [symmetric])
149done
150
151lemma Some_eq_map_of_iff [simp]:
152  "distinct(map fst xys) \<Longrightarrow> (Some y = map_of xys x) = ((x,y) \<in> set xys)"
153by (auto simp del: map_of_eq_Some_iff simp: map_of_eq_Some_iff [symmetric])
154
155lemma map_of_is_SomeI [simp]: "\<lbrakk> distinct(map fst xys); (x,y) \<in> set xys \<rbrakk>
156    \<Longrightarrow> map_of xys x = Some y"
157apply (induct xys)
158 apply simp
159apply force
160done
161
162lemma map_of_zip_is_None [simp]:
163  "length xs = length ys \<Longrightarrow> (map_of (zip xs ys) x = None) = (x \<notin> set xs)"
164by (induct rule: list_induct2) simp_all
165
166lemma map_of_zip_is_Some:
167  assumes "length xs = length ys"
168  shows "x \<in> set xs \<longleftrightarrow> (\<exists>y. map_of (zip xs ys) x = Some y)"
169using assms by (induct rule: list_induct2) simp_all
170
171lemma map_of_zip_upd:
172  fixes x :: 'a and xs :: "'a list" and ys zs :: "'b list"
173  assumes "length ys = length xs"
174    and "length zs = length xs"
175    and "x \<notin> set xs"
176    and "map_of (zip xs ys)(x \<mapsto> y) = map_of (zip xs zs)(x \<mapsto> z)"
177  shows "map_of (zip xs ys) = map_of (zip xs zs)"
178proof
179  fix x' :: 'a
180  show "map_of (zip xs ys) x' = map_of (zip xs zs) x'"
181  proof (cases "x = x'")
182    case True
183    from assms True map_of_zip_is_None [of xs ys x']
184      have "map_of (zip xs ys) x' = None" by simp
185    moreover from assms True map_of_zip_is_None [of xs zs x']
186      have "map_of (zip xs zs) x' = None" by simp
187    ultimately show ?thesis by simp
188  next
189    case False from assms
190      have "(map_of (zip xs ys)(x \<mapsto> y)) x' = (map_of (zip xs zs)(x \<mapsto> z)) x'" by auto
191    with False show ?thesis by simp
192  qed
193qed
194
195lemma map_of_zip_inject:
196  assumes "length ys = length xs"
197    and "length zs = length xs"
198    and dist: "distinct xs"
199    and map_of: "map_of (zip xs ys) = map_of (zip xs zs)"
200  shows "ys = zs"
201  using assms(1) assms(2)[symmetric]
202  using dist map_of
203proof (induct ys xs zs rule: list_induct3)
204  case Nil show ?case by simp
205next
206  case (Cons y ys x xs z zs)
207  from \<open>map_of (zip (x#xs) (y#ys)) = map_of (zip (x#xs) (z#zs))\<close>
208    have map_of: "map_of (zip xs ys)(x \<mapsto> y) = map_of (zip xs zs)(x \<mapsto> z)" by simp
209  from Cons have "length ys = length xs" and "length zs = length xs"
210    and "x \<notin> set xs" by simp_all
211  then have "map_of (zip xs ys) = map_of (zip xs zs)" using map_of by (rule map_of_zip_upd)
212  with Cons.hyps \<open>distinct (x # xs)\<close> have "ys = zs" by simp
213  moreover from map_of have "y = z" by (rule map_upd_eqD1)
214  ultimately show ?case by simp
215qed
216
217lemma map_of_zip_nth:
218  assumes "length xs = length ys"
219  assumes "distinct xs"
220  assumes "i < length ys"
221  shows "map_of (zip xs ys) (xs ! i) = Some (ys ! i)"
222using assms proof (induct arbitrary: i rule: list_induct2)
223  case Nil
224  then show ?case by simp
225next
226  case (Cons x xs y ys)
227  then show ?case
228    using less_Suc_eq_0_disj by auto
229qed
230
231lemma map_of_zip_map:
232  "map_of (zip xs (map f xs)) = (\<lambda>x. if x \<in> set xs then Some (f x) else None)"
233  by (induct xs) (simp_all add: fun_eq_iff)
234
235lemma finite_range_map_of: "finite (range (map_of xys))"
236apply (induct xys)
237 apply (simp_all add: image_constant)
238apply (rule finite_subset)
239 prefer 2 apply assumption
240apply auto
241done
242
243lemma map_of_SomeD: "map_of xs k = Some y \<Longrightarrow> (k, y) \<in> set xs"
244  by (induct xs) (auto split: if_splits)
245
246lemma map_of_mapk_SomeI:
247  "inj f \<Longrightarrow> map_of t k = Some x \<Longrightarrow>
248   map_of (map (case_prod (\<lambda>k. Pair (f k))) t) (f k) = Some x"
249by (induct t) (auto simp: inj_eq)
250
251lemma weak_map_of_SomeI: "(k, x) \<in> set l \<Longrightarrow> \<exists>x. map_of l k = Some x"
252by (induct l) auto
253
254lemma map_of_filter_in:
255  "map_of xs k = Some z \<Longrightarrow> P k z \<Longrightarrow> map_of (filter (case_prod P) xs) k = Some z"
256by (induct xs) auto
257
258lemma map_of_map:
259  "map_of (map (\<lambda>(k, v). (k, f v)) xs) = map_option f \<circ> map_of xs"
260  by (induct xs) (auto simp: fun_eq_iff)
261
262lemma dom_map_option:
263  "dom (\<lambda>k. map_option (f k) (m k)) = dom m"
264  by (simp add: dom_def)
265
266lemma dom_map_option_comp [simp]:
267  "dom (map_option g \<circ> m) = dom m"
268  using dom_map_option [of "\<lambda>_. g" m] by (simp add: comp_def)
269
270
271subsection \<open>@{const map_option} related\<close>
272
273lemma map_option_o_empty [simp]: "map_option f \<circ> empty = empty"
274by (rule ext) simp
275
276lemma map_option_o_map_upd [simp]:
277  "map_option f \<circ> m(a\<mapsto>b) = (map_option f \<circ> m)(a\<mapsto>f b)"
278by (rule ext) simp
279
280
281subsection \<open>@{term [source] map_comp} related\<close>
282
283lemma map_comp_empty [simp]:
284  "m \<circ>\<^sub>m empty = empty"
285  "empty \<circ>\<^sub>m m = empty"
286by (auto simp: map_comp_def split: option.splits)
287
288lemma map_comp_simps [simp]:
289  "m2 k = None \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = None"
290  "m2 k = Some k' \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = m1 k'"
291by (auto simp: map_comp_def)
292
293lemma map_comp_Some_iff:
294  "((m1 \<circ>\<^sub>m m2) k = Some v) = (\<exists>k'. m2 k = Some k' \<and> m1 k' = Some v)"
295by (auto simp: map_comp_def split: option.splits)
296
297lemma map_comp_None_iff:
298  "((m1 \<circ>\<^sub>m m2) k = None) = (m2 k = None \<or> (\<exists>k'. m2 k = Some k' \<and> m1 k' = None)) "
299by (auto simp: map_comp_def split: option.splits)
300
301
302subsection \<open>\<open>++\<close>\<close>
303
304lemma map_add_empty[simp]: "m ++ empty = m"
305by(simp add: map_add_def)
306
307lemma empty_map_add[simp]: "empty ++ m = m"
308by (rule ext) (simp add: map_add_def split: option.split)
309
310lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3"
311by (rule ext) (simp add: map_add_def split: option.split)
312
313lemma map_add_Some_iff:
314  "((m ++ n) k = Some x) = (n k = Some x \<or> n k = None \<and> m k = Some x)"
315by (simp add: map_add_def split: option.split)
316
317lemma map_add_SomeD [dest!]:
318  "(m ++ n) k = Some x \<Longrightarrow> n k = Some x \<or> n k = None \<and> m k = Some x"
319by (rule map_add_Some_iff [THEN iffD1])
320
321lemma map_add_find_right [simp]: "n k = Some xx \<Longrightarrow> (m ++ n) k = Some xx"
322by (subst map_add_Some_iff) fast
323
324lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None \<and> m k = None)"
325by (simp add: map_add_def split: option.split)
326
327lemma map_add_upd[simp]: "f ++ g(x\<mapsto>y) = (f ++ g)(x\<mapsto>y)"
328by (rule ext) (simp add: map_add_def)
329
330lemma map_add_upds[simp]: "m1 ++ (m2(xs[\<mapsto>]ys)) = (m1++m2)(xs[\<mapsto>]ys)"
331by (simp add: map_upds_def)
332
333lemma map_add_upd_left: "m\<notin>dom e2 \<Longrightarrow> e1(m \<mapsto> u1) ++ e2 = (e1 ++ e2)(m \<mapsto> u1)"
334by (rule ext) (auto simp: map_add_def dom_def split: option.split)
335
336lemma map_of_append[simp]: "map_of (xs @ ys) = map_of ys ++ map_of xs"
337unfolding map_add_def
338apply (induct xs)
339 apply simp
340apply (rule ext)
341apply (simp split: option.split)
342done
343
344lemma finite_range_map_of_map_add:
345  "finite (range f) \<Longrightarrow> finite (range (f ++ map_of l))"
346apply (induct l)
347 apply (auto simp del: fun_upd_apply)
348apply (erule finite_range_updI)
349done
350
351lemma inj_on_map_add_dom [iff]:
352  "inj_on (m ++ m') (dom m') = inj_on m' (dom m')"
353by (fastforce simp: map_add_def dom_def inj_on_def split: option.splits)
354
355lemma map_upds_fold_map_upd:
356  "m(ks[\<mapsto>]vs) = foldl (\<lambda>m (k, v). m(k \<mapsto> v)) m (zip ks vs)"
357unfolding map_upds_def proof (rule sym, rule zip_obtain_same_length)
358  fix ks :: "'a list" and vs :: "'b list"
359  assume "length ks = length vs"
360  then show "foldl (\<lambda>m (k, v). m(k\<mapsto>v)) m (zip ks vs) = m ++ map_of (rev (zip ks vs))"
361    by(induct arbitrary: m rule: list_induct2) simp_all
362qed
363
364lemma map_add_map_of_foldr:
365  "m ++ map_of ps = foldr (\<lambda>(k, v) m. m(k \<mapsto> v)) ps m"
366  by (induct ps) (auto simp: fun_eq_iff map_add_def)
367
368
369subsection \<open>@{term [source] restrict_map}\<close>
370
371lemma restrict_map_to_empty [simp]: "m|`{} = empty"
372by (simp add: restrict_map_def)
373
374lemma restrict_map_insert: "f |` (insert a A) = (f |` A)(a := f a)"
375by (auto simp: restrict_map_def)
376
377lemma restrict_map_empty [simp]: "empty|`D = empty"
378by (simp add: restrict_map_def)
379
380lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m|`A) x = m x"
381by (simp add: restrict_map_def)
382
383lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m|`A) x = None"
384by (simp add: restrict_map_def)
385
386lemma ran_restrictD: "y \<in> ran (m|`A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y"
387by (auto simp: restrict_map_def ran_def split: if_split_asm)
388
389lemma dom_restrict [simp]: "dom (m|`A) = dom m \<inter> A"
390by (auto simp: restrict_map_def dom_def split: if_split_asm)
391
392lemma restrict_upd_same [simp]: "m(x\<mapsto>y)|`(-{x}) = m|`(-{x})"
393by (rule ext) (auto simp: restrict_map_def)
394
395lemma restrict_restrict [simp]: "m|`A|`B = m|`(A\<inter>B)"
396by (rule ext) (auto simp: restrict_map_def)
397
398lemma restrict_fun_upd [simp]:
399  "m(x := y)|`D = (if x \<in> D then (m|`(D-{x}))(x := y) else m|`D)"
400by (simp add: restrict_map_def fun_eq_iff)
401
402lemma fun_upd_None_restrict [simp]:
403  "(m|`D)(x := None) = (if x \<in> D then m|`(D - {x}) else m|`D)"
404by (simp add: restrict_map_def fun_eq_iff)
405
406lemma fun_upd_restrict: "(m|`D)(x := y) = (m|`(D-{x}))(x := y)"
407by (simp add: restrict_map_def fun_eq_iff)
408
409lemma fun_upd_restrict_conv [simp]:
410  "x \<in> D \<Longrightarrow> (m|`D)(x := y) = (m|`(D-{x}))(x := y)"
411by (simp add: restrict_map_def fun_eq_iff)
412
413lemma map_of_map_restrict:
414  "map_of (map (\<lambda>k. (k, f k)) ks) = (Some \<circ> f) |` set ks"
415  by (induct ks) (simp_all add: fun_eq_iff restrict_map_insert)
416
417lemma restrict_complement_singleton_eq:
418  "f |` (- {x}) = f(x := None)"
419  by (simp add: restrict_map_def fun_eq_iff)
420
421
422subsection \<open>@{term [source] map_upds}\<close>
423
424lemma map_upds_Nil1 [simp]: "m([] [\<mapsto>] bs) = m"
425by (simp add: map_upds_def)
426
427lemma map_upds_Nil2 [simp]: "m(as [\<mapsto>] []) = m"
428by (simp add:map_upds_def)
429
430lemma map_upds_Cons [simp]: "m(a#as [\<mapsto>] b#bs) = (m(a\<mapsto>b))(as[\<mapsto>]bs)"
431by (simp add:map_upds_def)
432
433lemma map_upds_append1 [simp]: "size xs < size ys \<Longrightarrow>
434  m(xs@[x] [\<mapsto>] ys) = m(xs [\<mapsto>] ys)(x \<mapsto> ys!size xs)"
435apply(induct xs arbitrary: ys m)
436 apply (clarsimp simp add: neq_Nil_conv)
437apply (case_tac ys)
438 apply simp
439apply simp
440done
441
442lemma map_upds_list_update2_drop [simp]:
443  "size xs \<le> i \<Longrightarrow> m(xs[\<mapsto>]ys[i:=y]) = m(xs[\<mapsto>]ys)"
444apply (induct xs arbitrary: m ys i)
445 apply simp
446apply (case_tac ys)
447 apply simp
448apply (simp split: nat.split)
449done
450
451lemma map_upd_upds_conv_if:
452  "(f(x\<mapsto>y))(xs [\<mapsto>] ys) =
453   (if x \<in> set(take (length ys) xs) then f(xs [\<mapsto>] ys)
454                                    else (f(xs [\<mapsto>] ys))(x\<mapsto>y))"
455apply (induct xs arbitrary: x y ys f)
456 apply simp
457apply (case_tac ys)
458 apply (auto split: if_split simp: fun_upd_twist)
459done
460
461lemma map_upds_twist [simp]:
462  "a \<notin> set as \<Longrightarrow> m(a\<mapsto>b)(as[\<mapsto>]bs) = m(as[\<mapsto>]bs)(a\<mapsto>b)"
463using set_take_subset by (fastforce simp add: map_upd_upds_conv_if)
464
465lemma map_upds_apply_nontin [simp]:
466  "x \<notin> set xs \<Longrightarrow> (f(xs[\<mapsto>]ys)) x = f x"
467apply (induct xs arbitrary: ys)
468 apply simp
469apply (case_tac ys)
470 apply (auto simp: map_upd_upds_conv_if)
471done
472
473lemma fun_upds_append_drop [simp]:
474  "size xs = size ys \<Longrightarrow> m(xs@zs[\<mapsto>]ys) = m(xs[\<mapsto>]ys)"
475apply (induct xs arbitrary: m ys)
476 apply simp
477apply (case_tac ys)
478 apply simp_all
479done
480
481lemma fun_upds_append2_drop [simp]:
482  "size xs = size ys \<Longrightarrow> m(xs[\<mapsto>]ys@zs) = m(xs[\<mapsto>]ys)"
483apply (induct xs arbitrary: m ys)
484 apply simp
485apply (case_tac ys)
486 apply simp_all
487done
488
489
490lemma restrict_map_upds[simp]:
491  "\<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk>
492    \<Longrightarrow> m(xs [\<mapsto>] ys)|`D = (m|`(D - set xs))(xs [\<mapsto>] ys)"
493apply (induct xs arbitrary: m ys)
494 apply simp
495apply (case_tac ys)
496 apply simp
497apply (simp add: Diff_insert [symmetric] insert_absorb)
498apply (simp add: map_upd_upds_conv_if)
499done
500
501
502subsection \<open>@{term [source] dom}\<close>
503
504lemma dom_eq_empty_conv [simp]: "dom f = {} \<longleftrightarrow> f = empty"
505  by (auto simp: dom_def)
506
507lemma domI: "m a = Some b \<Longrightarrow> a \<in> dom m"
508  by (simp add: dom_def)
509(* declare domI [intro]? *)
510
511lemma domD: "a \<in> dom m \<Longrightarrow> \<exists>b. m a = Some b"
512  by (cases "m a") (auto simp add: dom_def)
513
514lemma domIff [iff, simp del, code_unfold]: "a \<in> dom m \<longleftrightarrow> m a \<noteq> None"
515  by (simp add: dom_def)
516
517lemma dom_empty [simp]: "dom empty = {}"
518  by (simp add: dom_def)
519
520lemma dom_fun_upd [simp]:
521  "dom(f(x := y)) = (if y = None then dom f - {x} else insert x (dom f))"
522  by (auto simp: dom_def)
523
524lemma dom_if:
525  "dom (\<lambda>x. if P x then f x else g x) = dom f \<inter> {x. P x} \<union> dom g \<inter> {x. \<not> P x}"
526  by (auto split: if_splits)
527
528lemma dom_map_of_conv_image_fst:
529  "dom (map_of xys) = fst ` set xys"
530  by (induct xys) (auto simp add: dom_if)
531
532lemma dom_map_of_zip [simp]: "length xs = length ys \<Longrightarrow> dom (map_of (zip xs ys)) = set xs"
533  by (induct rule: list_induct2) (auto simp: dom_if)
534
535lemma finite_dom_map_of: "finite (dom (map_of l))"
536  by (induct l) (auto simp: dom_def insert_Collect [symmetric])
537
538lemma dom_map_upds [simp]:
539  "dom(m(xs[\<mapsto>]ys)) = set(take (length ys) xs) \<union> dom m"
540apply (induct xs arbitrary: m ys)
541 apply simp
542apply (case_tac ys)
543 apply auto
544done
545
546lemma dom_map_add [simp]: "dom (m ++ n) = dom n \<union> dom m"
547  by (auto simp: dom_def)
548
549lemma dom_override_on [simp]:
550  "dom (override_on f g A) =
551    (dom f  - {a. a \<in> A - dom g}) \<union> {a. a \<in> A \<inter> dom g}"
552  by (auto simp: dom_def override_on_def)
553
554lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1 ++ m2 = m2 ++ m1"
555  by (rule ext) (force simp: map_add_def dom_def split: option.split)
556
557lemma map_add_dom_app_simps:
558  "m \<in> dom l2 \<Longrightarrow> (l1 ++ l2) m = l2 m"
559  "m \<notin> dom l1 \<Longrightarrow> (l1 ++ l2) m = l2 m"
560  "m \<notin> dom l2 \<Longrightarrow> (l1 ++ l2) m = l1 m"
561  by (auto simp add: map_add_def split: option.split_asm)
562
563lemma dom_const [simp]:
564  "dom (\<lambda>x. Some (f x)) = UNIV"
565  by auto
566
567(* Due to John Matthews - could be rephrased with dom *)
568lemma finite_map_freshness:
569  "finite (dom (f :: 'a \<rightharpoonup> 'b)) \<Longrightarrow> \<not> finite (UNIV :: 'a set) \<Longrightarrow>
570   \<exists>x. f x = None"
571  by (bestsimp dest: ex_new_if_finite)
572
573lemma dom_minus:
574  "f x = None \<Longrightarrow> dom f - insert x A = dom f - A"
575  unfolding dom_def by simp
576
577lemma insert_dom:
578  "f x = Some y \<Longrightarrow> insert x (dom f) = dom f"
579  unfolding dom_def by auto
580
581lemma map_of_map_keys:
582  "set xs = dom m \<Longrightarrow> map_of (map (\<lambda>k. (k, the (m k))) xs) = m"
583  by (rule ext) (auto simp add: map_of_map_restrict restrict_map_def)
584
585lemma map_of_eqI:
586  assumes set_eq: "set (map fst xs) = set (map fst ys)"
587  assumes map_eq: "\<forall>k\<in>set (map fst xs). map_of xs k = map_of ys k"
588  shows "map_of xs = map_of ys"
589proof (rule ext)
590  fix k show "map_of xs k = map_of ys k"
591  proof (cases "map_of xs k")
592    case None
593    then have "k \<notin> set (map fst xs)" by (simp add: map_of_eq_None_iff)
594    with set_eq have "k \<notin> set (map fst ys)" by simp
595    then have "map_of ys k = None" by (simp add: map_of_eq_None_iff)
596    with None show ?thesis by simp
597  next
598    case (Some v)
599    then have "k \<in> set (map fst xs)" by (auto simp add: dom_map_of_conv_image_fst [symmetric])
600    with map_eq show ?thesis by auto
601  qed
602qed
603
604lemma map_of_eq_dom:
605  assumes "map_of xs = map_of ys"
606  shows "fst ` set xs = fst ` set ys"
607proof -
608  from assms have "dom (map_of xs) = dom (map_of ys)" by simp
609  then show ?thesis by (simp add: dom_map_of_conv_image_fst)
610qed
611
612lemma finite_set_of_finite_maps:
613  assumes "finite A" "finite B"
614  shows "finite {m. dom m = A \<and> ran m \<subseteq> B}" (is "finite ?S")
615proof -
616  let ?S' = "{m. \<forall>x. (x \<in> A \<longrightarrow> m x \<in> Some ` B) \<and> (x \<notin> A \<longrightarrow> m x = None)}"
617  have "?S = ?S'"
618  proof
619    show "?S \<subseteq> ?S'" by (auto simp: dom_def ran_def image_def)
620    show "?S' \<subseteq> ?S"
621    proof
622      fix m assume "m \<in> ?S'"
623      hence 1: "dom m = A" by force
624      hence 2: "ran m \<subseteq> B" using \<open>m \<in> ?S'\<close> by (auto simp: dom_def ran_def)
625      from 1 2 show "m \<in> ?S" by blast
626    qed
627  qed
628  with assms show ?thesis by(simp add: finite_set_of_finite_funs)
629qed
630
631
632subsection \<open>@{term [source] ran}\<close>
633
634lemma ranI: "m a = Some b \<Longrightarrow> b \<in> ran m"
635  by (auto simp: ran_def)
636(* declare ranI [intro]? *)
637
638lemma ran_empty [simp]: "ran empty = {}"
639  by (auto simp: ran_def)
640
641lemma ran_map_upd [simp]: "m a = None \<Longrightarrow> ran(m(a\<mapsto>b)) = insert b (ran m)"
642  unfolding ran_def
643apply auto
644apply (subgoal_tac "aa \<noteq> a")
645 apply auto
646done
647
648lemma ran_map_add:
649  assumes "dom m1 \<inter> dom m2 = {}"
650  shows "ran (m1 ++ m2) = ran m1 \<union> ran m2"
651proof
652  show "ran (m1 ++ m2) \<subseteq> ran m1 \<union> ran m2"
653    unfolding ran_def by auto
654next
655  show "ran m1 \<union> ran m2 \<subseteq> ran (m1 ++ m2)"
656  proof -
657    have "(m1 ++ m2) x = Some y" if "m1 x = Some y" for x y
658      using assms map_add_comm that by fastforce
659    moreover have "(m1 ++ m2) x = Some y" if "m2 x = Some y" for x y
660      using assms that by auto
661    ultimately show ?thesis
662      unfolding ran_def by blast
663  qed
664qed
665
666lemma finite_ran:
667  assumes "finite (dom p)"
668  shows "finite (ran p)"
669proof -
670  have "ran p = (\<lambda>x. the (p x)) ` dom p"
671    unfolding ran_def by force
672  from this \<open>finite (dom p)\<close> show ?thesis by auto
673qed
674
675lemma ran_distinct:
676  assumes dist: "distinct (map fst al)"
677  shows "ran (map_of al) = snd ` set al"
678  using assms
679proof (induct al)
680  case Nil
681  then show ?case by simp
682next
683  case (Cons kv al)
684  then have "ran (map_of al) = snd ` set al" by simp
685  moreover from Cons.prems have "map_of al (fst kv) = None"
686    by (simp add: map_of_eq_None_iff)
687  ultimately show ?case by (simp only: map_of.simps ran_map_upd) simp
688qed
689
690lemma ran_map_of_zip:
691  assumes "length xs = length ys" "distinct xs"
692  shows "ran (map_of (zip xs ys)) = set ys"
693using assms by (simp add: ran_distinct set_map[symmetric])
694
695lemma ran_map_option: "ran (\<lambda>x. map_option f (m x)) = f ` ran m"
696  by (auto simp add: ran_def)
697
698
699subsection \<open>\<open>map_le\<close>\<close>
700
701lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g"
702  by (simp add: map_le_def)
703
704lemma upd_None_map_le [simp]: "f(x := None) \<subseteq>\<^sub>m f"
705  by (force simp add: map_le_def)
706
707lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)"
708  by (fastforce simp add: map_le_def)
709
710lemma map_le_imp_upd_le [simp]: "m1 \<subseteq>\<^sub>m m2 \<Longrightarrow> m1(x := None) \<subseteq>\<^sub>m m2(x \<mapsto> y)"
711  by (force simp add: map_le_def)
712
713lemma map_le_upds [simp]:
714  "f \<subseteq>\<^sub>m g \<Longrightarrow> f(as [\<mapsto>] bs) \<subseteq>\<^sub>m g(as [\<mapsto>] bs)"
715apply (induct as arbitrary: f g bs)
716 apply simp
717apply (case_tac bs)
718 apply auto
719done
720
721lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)"
722  by (fastforce simp add: map_le_def dom_def)
723
724lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f"
725  by (simp add: map_le_def)
726
727lemma map_le_trans[trans]: "\<lbrakk> m1 \<subseteq>\<^sub>m m2; m2 \<subseteq>\<^sub>m m3\<rbrakk> \<Longrightarrow> m1 \<subseteq>\<^sub>m m3"
728  by (auto simp add: map_le_def dom_def)
729
730lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g"
731unfolding map_le_def
732apply (rule ext)
733apply (case_tac "x \<in> dom f", simp)
734apply (case_tac "x \<in> dom g", simp, fastforce)
735done
736
737lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m g ++ f"
738  by (fastforce simp: map_le_def)
739
740lemma map_le_iff_map_add_commute: "f \<subseteq>\<^sub>m f ++ g \<longleftrightarrow> f ++ g = g ++ f"
741  by (fastforce simp: map_add_def map_le_def fun_eq_iff split: option.splits)
742
743lemma map_add_le_mapE: "f ++ g \<subseteq>\<^sub>m h \<Longrightarrow> g \<subseteq>\<^sub>m h"
744  by (fastforce simp: map_le_def map_add_def dom_def)
745
746lemma map_add_le_mapI: "\<lbrakk> f \<subseteq>\<^sub>m h; g \<subseteq>\<^sub>m h \<rbrakk> \<Longrightarrow> f ++ g \<subseteq>\<^sub>m h"
747  by (auto simp: map_le_def map_add_def dom_def split: option.splits)
748
749lemma map_add_subsumed1: "f \<subseteq>\<^sub>m g \<Longrightarrow> f++g = g"
750by (simp add: map_add_le_mapI map_le_antisym)
751
752lemma map_add_subsumed2: "f \<subseteq>\<^sub>m g \<Longrightarrow> g++f = g"
753by (metis map_add_subsumed1 map_le_iff_map_add_commute)
754
755lemma dom_eq_singleton_conv: "dom f = {x} \<longleftrightarrow> (\<exists>v. f = [x \<mapsto> v])"
756  (is "?lhs \<longleftrightarrow> ?rhs")
757proof
758  assume ?rhs
759  then show ?lhs by (auto split: if_split_asm)
760next
761  assume ?lhs
762  then obtain v where v: "f x = Some v" by auto
763  show ?rhs
764  proof
765    show "f = [x \<mapsto> v]"
766    proof (rule map_le_antisym)
767      show "[x \<mapsto> v] \<subseteq>\<^sub>m f"
768        using v by (auto simp add: map_le_def)
769      show "f \<subseteq>\<^sub>m [x \<mapsto> v]"
770        using \<open>dom f = {x}\<close> \<open>f x = Some v\<close> by (auto simp add: map_le_def)
771    qed
772  qed
773qed
774
775lemma map_add_eq_empty_iff[simp]:
776  "(f++g = empty) \<longleftrightarrow> f = empty \<and> g = empty"
777by (metis map_add_None)
778
779lemma empty_eq_map_add_iff[simp]:
780  "(empty = f++g) \<longleftrightarrow> f = empty \<and> g = empty"
781by(subst map_add_eq_empty_iff[symmetric])(rule eq_commute)
782
783
784subsection \<open>Various\<close>
785
786lemma set_map_of_compr:
787  assumes distinct: "distinct (map fst xs)"
788  shows "set xs = {(k, v). map_of xs k = Some v}"
789  using assms
790proof (induct xs)
791  case Nil
792  then show ?case by simp
793next
794  case (Cons x xs)
795  obtain k v where "x = (k, v)" by (cases x) blast
796  with Cons.prems have "k \<notin> dom (map_of xs)"
797    by (simp add: dom_map_of_conv_image_fst)
798  then have *: "insert (k, v) {(k, v). map_of xs k = Some v} =
799    {(k', v'). (map_of xs(k \<mapsto> v)) k' = Some v'}"
800    by (auto split: if_splits)
801  from Cons have "set xs = {(k, v). map_of xs k = Some v}" by simp
802  with * \<open>x = (k, v)\<close> show ?case by simp
803qed
804
805lemma eq_key_imp_eq_value:
806  "v1 = v2"
807  if "distinct (map fst xs)" "(k, v1) \<in> set xs" "(k, v2) \<in> set xs"
808proof -
809  from that have "inj_on fst (set xs)"
810    by (simp add: distinct_map)
811  moreover have "fst (k, v1) = fst (k, v2)"
812    by simp
813  ultimately have "(k, v1) = (k, v2)"
814    by (rule inj_onD) (fact that)+
815  then show ?thesis
816    by simp
817qed
818
819lemma map_of_inject_set:
820  assumes distinct: "distinct (map fst xs)" "distinct (map fst ys)"
821  shows "map_of xs = map_of ys \<longleftrightarrow> set xs = set ys" (is "?lhs \<longleftrightarrow> ?rhs")
822proof
823  assume ?lhs
824  moreover from \<open>distinct (map fst xs)\<close> have "set xs = {(k, v). map_of xs k = Some v}"
825    by (rule set_map_of_compr)
826  moreover from \<open>distinct (map fst ys)\<close> have "set ys = {(k, v). map_of ys k = Some v}"
827    by (rule set_map_of_compr)
828  ultimately show ?rhs by simp
829next
830  assume ?rhs show ?lhs
831  proof
832    fix k
833    show "map_of xs k = map_of ys k"
834    proof (cases "map_of xs k")
835      case None
836      with \<open>?rhs\<close> have "map_of ys k = None"
837        by (simp add: map_of_eq_None_iff)
838      with None show ?thesis by simp
839    next
840      case (Some v)
841      with distinct \<open>?rhs\<close> have "map_of ys k = Some v"
842        by simp
843      with Some show ?thesis by simp
844    qed
845  qed
846qed
847
848hide_const (open) Map.empty
849
850end
851