1(*  Title:      HOL/Filter.thy
2    Author:     Brian Huffman
3    Author:     Johannes H��lzl
4*)
5
6section \<open>Filters on predicates\<close>
7
8theory Filter
9imports Set_Interval Lifting_Set
10begin
11
12subsection \<open>Filters\<close>
13
14text \<open>
15  This definition also allows non-proper filters.
16\<close>
17
18locale is_filter =
19  fixes F :: "('a \<Rightarrow> bool) \<Rightarrow> bool"
20  assumes True: "F (\<lambda>x. True)"
21  assumes conj: "F (\<lambda>x. P x) \<Longrightarrow> F (\<lambda>x. Q x) \<Longrightarrow> F (\<lambda>x. P x \<and> Q x)"
22  assumes mono: "\<forall>x. P x \<longrightarrow> Q x \<Longrightarrow> F (\<lambda>x. P x) \<Longrightarrow> F (\<lambda>x. Q x)"
23
24typedef 'a filter = "{F :: ('a \<Rightarrow> bool) \<Rightarrow> bool. is_filter F}"
25proof
26  show "(\<lambda>x. True) \<in> ?filter" by (auto intro: is_filter.intro)
27qed
28
29lemma is_filter_Rep_filter: "is_filter (Rep_filter F)"
30  using Rep_filter [of F] by simp
31
32lemma Abs_filter_inverse':
33  assumes "is_filter F" shows "Rep_filter (Abs_filter F) = F"
34  using assms by (simp add: Abs_filter_inverse)
35
36
37subsubsection \<open>Eventually\<close>
38
39definition eventually :: "('a \<Rightarrow> bool) \<Rightarrow> 'a filter \<Rightarrow> bool"
40  where "eventually P F \<longleftrightarrow> Rep_filter F P"
41
42syntax
43  "_eventually" :: "pttrn => 'a filter => bool => bool"  ("(3\<forall>\<^sub>F _ in _./ _)" [0, 0, 10] 10)
44translations
45  "\<forall>\<^sub>Fx in F. P" == "CONST eventually (\<lambda>x. P) F"
46
47lemma eventually_Abs_filter:
48  assumes "is_filter F" shows "eventually P (Abs_filter F) = F P"
49  unfolding eventually_def using assms by (simp add: Abs_filter_inverse)
50
51lemma filter_eq_iff:
52  shows "F = F' \<longleftrightarrow> (\<forall>P. eventually P F = eventually P F')"
53  unfolding Rep_filter_inject [symmetric] fun_eq_iff eventually_def ..
54
55lemma eventually_True [simp]: "eventually (\<lambda>x. True) F"
56  unfolding eventually_def
57  by (rule is_filter.True [OF is_filter_Rep_filter])
58
59lemma always_eventually: "\<forall>x. P x \<Longrightarrow> eventually P F"
60proof -
61  assume "\<forall>x. P x" hence "P = (\<lambda>x. True)" by (simp add: ext)
62  thus "eventually P F" by simp
63qed
64
65lemma eventuallyI: "(\<And>x. P x) \<Longrightarrow> eventually P F"
66  by (auto intro: always_eventually)
67
68lemma eventually_mono:
69  "\<lbrakk>eventually P F; \<And>x. P x \<Longrightarrow> Q x\<rbrakk> \<Longrightarrow> eventually Q F"
70  unfolding eventually_def
71  by (blast intro: is_filter.mono [OF is_filter_Rep_filter])
72
73lemma eventually_conj:
74  assumes P: "eventually (\<lambda>x. P x) F"
75  assumes Q: "eventually (\<lambda>x. Q x) F"
76  shows "eventually (\<lambda>x. P x \<and> Q x) F"
77  using assms unfolding eventually_def
78  by (rule is_filter.conj [OF is_filter_Rep_filter])
79
80lemma eventually_mp:
81  assumes "eventually (\<lambda>x. P x \<longrightarrow> Q x) F"
82  assumes "eventually (\<lambda>x. P x) F"
83  shows "eventually (\<lambda>x. Q x) F"
84proof -
85  have "eventually (\<lambda>x. (P x \<longrightarrow> Q x) \<and> P x) F"
86    using assms by (rule eventually_conj)
87  then show ?thesis
88    by (blast intro: eventually_mono)
89qed
90
91lemma eventually_rev_mp:
92  assumes "eventually (\<lambda>x. P x) F"
93  assumes "eventually (\<lambda>x. P x \<longrightarrow> Q x) F"
94  shows "eventually (\<lambda>x. Q x) F"
95using assms(2) assms(1) by (rule eventually_mp)
96
97lemma eventually_conj_iff:
98  "eventually (\<lambda>x. P x \<and> Q x) F \<longleftrightarrow> eventually P F \<and> eventually Q F"
99  by (auto intro: eventually_conj elim: eventually_rev_mp)
100
101lemma eventually_elim2:
102  assumes "eventually (\<lambda>i. P i) F"
103  assumes "eventually (\<lambda>i. Q i) F"
104  assumes "\<And>i. P i \<Longrightarrow> Q i \<Longrightarrow> R i"
105  shows "eventually (\<lambda>i. R i) F"
106  using assms by (auto elim!: eventually_rev_mp)
107
108lemma eventually_ball_finite_distrib:
109  "finite A \<Longrightarrow> (eventually (\<lambda>x. \<forall>y\<in>A. P x y) net) \<longleftrightarrow> (\<forall>y\<in>A. eventually (\<lambda>x. P x y) net)"
110  by (induction A rule: finite_induct) (auto simp: eventually_conj_iff)
111
112lemma eventually_ball_finite:
113  "finite A \<Longrightarrow> \<forall>y\<in>A. eventually (\<lambda>x. P x y) net \<Longrightarrow> eventually (\<lambda>x. \<forall>y\<in>A. P x y) net"
114  by (auto simp: eventually_ball_finite_distrib)
115
116lemma eventually_all_finite:
117  fixes P :: "'a \<Rightarrow> 'b::finite \<Rightarrow> bool"
118  assumes "\<And>y. eventually (\<lambda>x. P x y) net"
119  shows "eventually (\<lambda>x. \<forall>y. P x y) net"
120using eventually_ball_finite [of UNIV P] assms by simp
121
122lemma eventually_ex: "(\<forall>\<^sub>Fx in F. \<exists>y. P x y) \<longleftrightarrow> (\<exists>Y. \<forall>\<^sub>Fx in F. P x (Y x))"
123proof
124  assume "\<forall>\<^sub>Fx in F. \<exists>y. P x y"
125  then have "\<forall>\<^sub>Fx in F. P x (SOME y. P x y)"
126    by (auto intro: someI_ex eventually_mono)
127  then show "\<exists>Y. \<forall>\<^sub>Fx in F. P x (Y x)"
128    by auto
129qed (auto intro: eventually_mono)
130
131lemma not_eventually_impI: "eventually P F \<Longrightarrow> \<not> eventually Q F \<Longrightarrow> \<not> eventually (\<lambda>x. P x \<longrightarrow> Q x) F"
132  by (auto intro: eventually_mp)
133
134lemma not_eventuallyD: "\<not> eventually P F \<Longrightarrow> \<exists>x. \<not> P x"
135  by (metis always_eventually)
136
137lemma eventually_subst:
138  assumes "eventually (\<lambda>n. P n = Q n) F"
139  shows "eventually P F = eventually Q F" (is "?L = ?R")
140proof -
141  from assms have "eventually (\<lambda>x. P x \<longrightarrow> Q x) F"
142      and "eventually (\<lambda>x. Q x \<longrightarrow> P x) F"
143    by (auto elim: eventually_mono)
144  then show ?thesis by (auto elim: eventually_elim2)
145qed
146
147subsection \<open> Frequently as dual to eventually \<close>
148
149definition frequently :: "('a \<Rightarrow> bool) \<Rightarrow> 'a filter \<Rightarrow> bool"
150  where "frequently P F \<longleftrightarrow> \<not> eventually (\<lambda>x. \<not> P x) F"
151
152syntax
153  "_frequently" :: "pttrn \<Rightarrow> 'a filter \<Rightarrow> bool \<Rightarrow> bool"  ("(3\<exists>\<^sub>F _ in _./ _)" [0, 0, 10] 10)
154translations
155  "\<exists>\<^sub>Fx in F. P" == "CONST frequently (\<lambda>x. P) F"
156
157lemma not_frequently_False [simp]: "\<not> (\<exists>\<^sub>Fx in F. False)"
158  by (simp add: frequently_def)
159
160lemma frequently_ex: "\<exists>\<^sub>Fx in F. P x \<Longrightarrow> \<exists>x. P x"
161  by (auto simp: frequently_def dest: not_eventuallyD)
162
163lemma frequentlyE: assumes "frequently P F" obtains x where "P x"
164  using frequently_ex[OF assms] by auto
165
166lemma frequently_mp:
167  assumes ev: "\<forall>\<^sub>Fx in F. P x \<longrightarrow> Q x" and P: "\<exists>\<^sub>Fx in F. P x" shows "\<exists>\<^sub>Fx in F. Q x"
168proof -
169  from ev have "eventually (\<lambda>x. \<not> Q x \<longrightarrow> \<not> P x) F"
170    by (rule eventually_rev_mp) (auto intro!: always_eventually)
171  from eventually_mp[OF this] P show ?thesis
172    by (auto simp: frequently_def)
173qed
174
175lemma frequently_rev_mp:
176  assumes "\<exists>\<^sub>Fx in F. P x"
177  assumes "\<forall>\<^sub>Fx in F. P x \<longrightarrow> Q x"
178  shows "\<exists>\<^sub>Fx in F. Q x"
179using assms(2) assms(1) by (rule frequently_mp)
180
181lemma frequently_mono: "(\<forall>x. P x \<longrightarrow> Q x) \<Longrightarrow> frequently P F \<Longrightarrow> frequently Q F"
182  using frequently_mp[of P Q] by (simp add: always_eventually)
183
184lemma frequently_elim1: "\<exists>\<^sub>Fx in F. P x \<Longrightarrow> (\<And>i. P i \<Longrightarrow> Q i) \<Longrightarrow> \<exists>\<^sub>Fx in F. Q x"
185  by (metis frequently_mono)
186
187lemma frequently_disj_iff: "(\<exists>\<^sub>Fx in F. P x \<or> Q x) \<longleftrightarrow> (\<exists>\<^sub>Fx in F. P x) \<or> (\<exists>\<^sub>Fx in F. Q x)"
188  by (simp add: frequently_def eventually_conj_iff)
189
190lemma frequently_disj: "\<exists>\<^sub>Fx in F. P x \<Longrightarrow> \<exists>\<^sub>Fx in F. Q x \<Longrightarrow> \<exists>\<^sub>Fx in F. P x \<or> Q x"
191  by (simp add: frequently_disj_iff)
192
193lemma frequently_bex_finite_distrib:
194  assumes "finite A" shows "(\<exists>\<^sub>Fx in F. \<exists>y\<in>A. P x y) \<longleftrightarrow> (\<exists>y\<in>A. \<exists>\<^sub>Fx in F. P x y)"
195  using assms by induction (auto simp: frequently_disj_iff)
196
197lemma frequently_bex_finite: "finite A \<Longrightarrow> \<exists>\<^sub>Fx in F. \<exists>y\<in>A. P x y \<Longrightarrow> \<exists>y\<in>A. \<exists>\<^sub>Fx in F. P x y"
198  by (simp add: frequently_bex_finite_distrib)
199
200lemma frequently_all: "(\<exists>\<^sub>Fx in F. \<forall>y. P x y) \<longleftrightarrow> (\<forall>Y. \<exists>\<^sub>Fx in F. P x (Y x))"
201  using eventually_ex[of "\<lambda>x y. \<not> P x y" F] by (simp add: frequently_def)
202
203lemma
204  shows not_eventually: "\<not> eventually P F \<longleftrightarrow> (\<exists>\<^sub>Fx in F. \<not> P x)"
205    and not_frequently: "\<not> frequently P F \<longleftrightarrow> (\<forall>\<^sub>Fx in F. \<not> P x)"
206  by (auto simp: frequently_def)
207
208lemma frequently_imp_iff:
209  "(\<exists>\<^sub>Fx in F. P x \<longrightarrow> Q x) \<longleftrightarrow> (eventually P F \<longrightarrow> frequently Q F)"
210  unfolding imp_conv_disj frequently_disj_iff not_eventually[symmetric] ..
211
212lemma eventually_frequently_const_simps:
213  "(\<exists>\<^sub>Fx in F. P x \<and> C) \<longleftrightarrow> (\<exists>\<^sub>Fx in F. P x) \<and> C"
214  "(\<exists>\<^sub>Fx in F. C \<and> P x) \<longleftrightarrow> C \<and> (\<exists>\<^sub>Fx in F. P x)"
215  "(\<forall>\<^sub>Fx in F. P x \<or> C) \<longleftrightarrow> (\<forall>\<^sub>Fx in F. P x) \<or> C"
216  "(\<forall>\<^sub>Fx in F. C \<or> P x) \<longleftrightarrow> C \<or> (\<forall>\<^sub>Fx in F. P x)"
217  "(\<forall>\<^sub>Fx in F. P x \<longrightarrow> C) \<longleftrightarrow> ((\<exists>\<^sub>Fx in F. P x) \<longrightarrow> C)"
218  "(\<forall>\<^sub>Fx in F. C \<longrightarrow> P x) \<longleftrightarrow> (C \<longrightarrow> (\<forall>\<^sub>Fx in F. P x))"
219  by (cases C; simp add: not_frequently)+
220
221lemmas eventually_frequently_simps =
222  eventually_frequently_const_simps
223  not_eventually
224  eventually_conj_iff
225  eventually_ball_finite_distrib
226  eventually_ex
227  not_frequently
228  frequently_disj_iff
229  frequently_bex_finite_distrib
230  frequently_all
231  frequently_imp_iff
232
233ML \<open>
234  fun eventually_elim_tac facts =
235    CONTEXT_SUBGOAL (fn (goal, i) => fn (ctxt, st) =>
236      let
237        val mp_facts = facts RL @{thms eventually_rev_mp}
238        val rule =
239          @{thm eventuallyI}
240          |> fold (fn mp_fact => fn th => th RS mp_fact) mp_facts
241          |> funpow (length facts) (fn th => @{thm impI} RS th)
242        val cases_prop =
243          Thm.prop_of (Rule_Cases.internalize_params (rule RS Goal.init (Thm.cterm_of ctxt goal)))
244        val cases = Rule_Cases.make_common ctxt cases_prop [(("elim", []), [])]
245      in CONTEXT_CASES cases (resolve_tac ctxt [rule] i) (ctxt, st) end)
246\<close>
247
248method_setup eventually_elim = \<open>
249  Scan.succeed (fn _ => CONTEXT_METHOD (fn facts => eventually_elim_tac facts 1))
250\<close> "elimination of eventually quantifiers"
251
252subsubsection \<open>Finer-than relation\<close>
253
254text \<open>@{term "F \<le> F'"} means that filter @{term F} is finer than
255filter @{term F'}.\<close>
256
257instantiation filter :: (type) complete_lattice
258begin
259
260definition le_filter_def:
261  "F \<le> F' \<longleftrightarrow> (\<forall>P. eventually P F' \<longrightarrow> eventually P F)"
262
263definition
264  "(F :: 'a filter) < F' \<longleftrightarrow> F \<le> F' \<and> \<not> F' \<le> F"
265
266definition
267  "top = Abs_filter (\<lambda>P. \<forall>x. P x)"
268
269definition
270  "bot = Abs_filter (\<lambda>P. True)"
271
272definition
273  "sup F F' = Abs_filter (\<lambda>P. eventually P F \<and> eventually P F')"
274
275definition
276  "inf F F' = Abs_filter
277      (\<lambda>P. \<exists>Q R. eventually Q F \<and> eventually R F' \<and> (\<forall>x. Q x \<and> R x \<longrightarrow> P x))"
278
279definition
280  "Sup S = Abs_filter (\<lambda>P. \<forall>F\<in>S. eventually P F)"
281
282definition
283  "Inf S = Sup {F::'a filter. \<forall>F'\<in>S. F \<le> F'}"
284
285lemma eventually_top [simp]: "eventually P top \<longleftrightarrow> (\<forall>x. P x)"
286  unfolding top_filter_def
287  by (rule eventually_Abs_filter, rule is_filter.intro, auto)
288
289lemma eventually_bot [simp]: "eventually P bot"
290  unfolding bot_filter_def
291  by (subst eventually_Abs_filter, rule is_filter.intro, auto)
292
293lemma eventually_sup:
294  "eventually P (sup F F') \<longleftrightarrow> eventually P F \<and> eventually P F'"
295  unfolding sup_filter_def
296  by (rule eventually_Abs_filter, rule is_filter.intro)
297     (auto elim!: eventually_rev_mp)
298
299lemma eventually_inf:
300  "eventually P (inf F F') \<longleftrightarrow>
301   (\<exists>Q R. eventually Q F \<and> eventually R F' \<and> (\<forall>x. Q x \<and> R x \<longrightarrow> P x))"
302  unfolding inf_filter_def
303  apply (rule eventually_Abs_filter, rule is_filter.intro)
304  apply (fast intro: eventually_True)
305  apply clarify
306  apply (intro exI conjI)
307  apply (erule (1) eventually_conj)
308  apply (erule (1) eventually_conj)
309  apply simp
310  apply auto
311  done
312
313lemma eventually_Sup:
314  "eventually P (Sup S) \<longleftrightarrow> (\<forall>F\<in>S. eventually P F)"
315  unfolding Sup_filter_def
316  apply (rule eventually_Abs_filter, rule is_filter.intro)
317  apply (auto intro: eventually_conj elim!: eventually_rev_mp)
318  done
319
320instance proof
321  fix F F' F'' :: "'a filter" and S :: "'a filter set"
322  { show "F < F' \<longleftrightarrow> F \<le> F' \<and> \<not> F' \<le> F"
323    by (rule less_filter_def) }
324  { show "F \<le> F"
325    unfolding le_filter_def by simp }
326  { assume "F \<le> F'" and "F' \<le> F''" thus "F \<le> F''"
327    unfolding le_filter_def by simp }
328  { assume "F \<le> F'" and "F' \<le> F" thus "F = F'"
329    unfolding le_filter_def filter_eq_iff by fast }
330  { show "inf F F' \<le> F" and "inf F F' \<le> F'"
331    unfolding le_filter_def eventually_inf by (auto intro: eventually_True) }
332  { assume "F \<le> F'" and "F \<le> F''" thus "F \<le> inf F' F''"
333    unfolding le_filter_def eventually_inf
334    by (auto intro: eventually_mono [OF eventually_conj]) }
335  { show "F \<le> sup F F'" and "F' \<le> sup F F'"
336    unfolding le_filter_def eventually_sup by simp_all }
337  { assume "F \<le> F''" and "F' \<le> F''" thus "sup F F' \<le> F''"
338    unfolding le_filter_def eventually_sup by simp }
339  { assume "F'' \<in> S" thus "Inf S \<le> F''"
340    unfolding le_filter_def Inf_filter_def eventually_Sup Ball_def by simp }
341  { assume "\<And>F'. F' \<in> S \<Longrightarrow> F \<le> F'" thus "F \<le> Inf S"
342    unfolding le_filter_def Inf_filter_def eventually_Sup Ball_def by simp }
343  { assume "F \<in> S" thus "F \<le> Sup S"
344    unfolding le_filter_def eventually_Sup by simp }
345  { assume "\<And>F. F \<in> S \<Longrightarrow> F \<le> F'" thus "Sup S \<le> F'"
346    unfolding le_filter_def eventually_Sup by simp }
347  { show "Inf {} = (top::'a filter)"
348    by (auto simp: top_filter_def Inf_filter_def Sup_filter_def)
349      (metis (full_types) top_filter_def always_eventually eventually_top) }
350  { show "Sup {} = (bot::'a filter)"
351    by (auto simp: bot_filter_def Sup_filter_def) }
352qed
353
354end
355
356instance filter :: (type) distrib_lattice
357proof
358  fix F G H :: "'a filter"
359  show "sup F (inf G H) = inf (sup F G) (sup F H)"
360  proof (rule order.antisym)
361    show "inf (sup F G) (sup F H) \<le> sup F (inf G H)" 
362      unfolding le_filter_def eventually_sup
363    proof safe
364      fix P assume 1: "eventually P F" and 2: "eventually P (inf G H)"
365      from 2 obtain Q R 
366        where QR: "eventually Q G" "eventually R H" "\<And>x. Q x \<Longrightarrow> R x \<Longrightarrow> P x"
367        by (auto simp: eventually_inf)
368      define Q' where "Q' = (\<lambda>x. Q x \<or> P x)"
369      define R' where "R' = (\<lambda>x. R x \<or> P x)"
370      from 1 have "eventually Q' F" 
371        by (elim eventually_mono) (auto simp: Q'_def)
372      moreover from 1 have "eventually R' F" 
373        by (elim eventually_mono) (auto simp: R'_def)
374      moreover from QR(1) have "eventually Q' G" 
375        by (elim eventually_mono) (auto simp: Q'_def)
376      moreover from QR(2) have "eventually R' H" 
377        by (elim eventually_mono)(auto simp: R'_def)
378      moreover from QR have "P x" if "Q' x" "R' x" for x 
379        using that by (auto simp: Q'_def R'_def)
380      ultimately show "eventually P (inf (sup F G) (sup F H))"
381        by (auto simp: eventually_inf eventually_sup)
382    qed
383  qed (auto intro: inf.coboundedI1 inf.coboundedI2)
384qed
385
386
387lemma filter_leD:
388  "F \<le> F' \<Longrightarrow> eventually P F' \<Longrightarrow> eventually P F"
389  unfolding le_filter_def by simp
390
391lemma filter_leI:
392  "(\<And>P. eventually P F' \<Longrightarrow> eventually P F) \<Longrightarrow> F \<le> F'"
393  unfolding le_filter_def by simp
394
395lemma eventually_False:
396  "eventually (\<lambda>x. False) F \<longleftrightarrow> F = bot"
397  unfolding filter_eq_iff by (auto elim: eventually_rev_mp)
398
399lemma eventually_frequently: "F \<noteq> bot \<Longrightarrow> eventually P F \<Longrightarrow> frequently P F"
400  using eventually_conj[of P F "\<lambda>x. \<not> P x"]
401  by (auto simp add: frequently_def eventually_False)
402
403lemma eventually_frequentlyE:
404  assumes "eventually P F"
405  assumes "eventually (\<lambda>x. \<not> P x \<or> Q x) F" "F\<noteq>bot"
406  shows "frequently Q F"
407proof -
408  have "eventually Q F"
409    using eventually_conj[OF assms(1,2),simplified] by (auto elim:eventually_mono)
410  then show ?thesis using eventually_frequently[OF \<open>F\<noteq>bot\<close>] by auto
411qed
412
413lemma eventually_const_iff: "eventually (\<lambda>x. P) F \<longleftrightarrow> P \<or> F = bot"
414  by (cases P) (auto simp: eventually_False)
415
416lemma eventually_const[simp]: "F \<noteq> bot \<Longrightarrow> eventually (\<lambda>x. P) F \<longleftrightarrow> P"
417  by (simp add: eventually_const_iff)
418
419lemma frequently_const_iff: "frequently (\<lambda>x. P) F \<longleftrightarrow> P \<and> F \<noteq> bot"
420  by (simp add: frequently_def eventually_const_iff)
421
422lemma frequently_const[simp]: "F \<noteq> bot \<Longrightarrow> frequently (\<lambda>x. P) F \<longleftrightarrow> P"
423  by (simp add: frequently_const_iff)
424
425lemma eventually_happens: "eventually P net \<Longrightarrow> net = bot \<or> (\<exists>x. P x)"
426  by (metis frequentlyE eventually_frequently)
427
428lemma eventually_happens':
429  assumes "F \<noteq> bot" "eventually P F"
430  shows   "\<exists>x. P x"
431  using assms eventually_frequently frequentlyE by blast
432
433abbreviation (input) trivial_limit :: "'a filter \<Rightarrow> bool"
434  where "trivial_limit F \<equiv> F = bot"
435
436lemma trivial_limit_def: "trivial_limit F \<longleftrightarrow> eventually (\<lambda>x. False) F"
437  by (rule eventually_False [symmetric])
438
439lemma False_imp_not_eventually: "(\<forall>x. \<not> P x ) \<Longrightarrow> \<not> trivial_limit net \<Longrightarrow> \<not> eventually (\<lambda>x. P x) net"
440  by (simp add: eventually_False)
441
442lemma eventually_Inf: "eventually P (Inf B) \<longleftrightarrow> (\<exists>X\<subseteq>B. finite X \<and> eventually P (Inf X))"
443proof -
444  let ?F = "\<lambda>P. \<exists>X\<subseteq>B. finite X \<and> eventually P (Inf X)"
445
446  { fix P have "eventually P (Abs_filter ?F) \<longleftrightarrow> ?F P"
447    proof (rule eventually_Abs_filter is_filter.intro)+
448      show "?F (\<lambda>x. True)"
449        by (rule exI[of _ "{}"]) (simp add: le_fun_def)
450    next
451      fix P Q
452      assume "?F P" then guess X ..
453      moreover
454      assume "?F Q" then guess Y ..
455      ultimately show "?F (\<lambda>x. P x \<and> Q x)"
456        by (intro exI[of _ "X \<union> Y"])
457           (auto simp: Inf_union_distrib eventually_inf)
458    next
459      fix P Q
460      assume "?F P" then guess X ..
461      moreover assume "\<forall>x. P x \<longrightarrow> Q x"
462      ultimately show "?F Q"
463        by (intro exI[of _ X]) (auto elim: eventually_mono)
464    qed }
465  note eventually_F = this
466
467  have "Inf B = Abs_filter ?F"
468  proof (intro antisym Inf_greatest)
469    show "Inf B \<le> Abs_filter ?F"
470      by (auto simp: le_filter_def eventually_F dest: Inf_superset_mono)
471  next
472    fix F assume "F \<in> B" then show "Abs_filter ?F \<le> F"
473      by (auto simp add: le_filter_def eventually_F intro!: exI[of _ "{F}"])
474  qed
475  then show ?thesis
476    by (simp add: eventually_F)
477qed
478
479lemma eventually_INF: "eventually P (\<Sqinter>b\<in>B. F b) \<longleftrightarrow> (\<exists>X\<subseteq>B. finite X \<and> eventually P (\<Sqinter>b\<in>X. F b))"
480  unfolding eventually_Inf [of P "F`B"]
481  by (metis finite_imageI image_mono finite_subset_image)
482
483lemma Inf_filter_not_bot:
484  fixes B :: "'a filter set"
485  shows "(\<And>X. X \<subseteq> B \<Longrightarrow> finite X \<Longrightarrow> Inf X \<noteq> bot) \<Longrightarrow> Inf B \<noteq> bot"
486  unfolding trivial_limit_def eventually_Inf[of _ B]
487    bot_bool_def [symmetric] bot_fun_def [symmetric] bot_unique by simp
488
489lemma INF_filter_not_bot:
490  fixes F :: "'i \<Rightarrow> 'a filter"
491  shows "(\<And>X. X \<subseteq> B \<Longrightarrow> finite X \<Longrightarrow> (\<Sqinter>b\<in>X. F b) \<noteq> bot) \<Longrightarrow> (\<Sqinter>b\<in>B. F b) \<noteq> bot"
492  unfolding trivial_limit_def eventually_INF [of _ _ B]
493    bot_bool_def [symmetric] bot_fun_def [symmetric] bot_unique by simp
494
495lemma eventually_Inf_base:
496  assumes "B \<noteq> {}" and base: "\<And>F G. F \<in> B \<Longrightarrow> G \<in> B \<Longrightarrow> \<exists>x\<in>B. x \<le> inf F G"
497  shows "eventually P (Inf B) \<longleftrightarrow> (\<exists>b\<in>B. eventually P b)"
498proof (subst eventually_Inf, safe)
499  fix X assume "finite X" "X \<subseteq> B"
500  then have "\<exists>b\<in>B. \<forall>x\<in>X. b \<le> x"
501  proof induct
502    case empty then show ?case
503      using \<open>B \<noteq> {}\<close> by auto
504  next
505    case (insert x X)
506    then obtain b where "b \<in> B" "\<And>x. x \<in> X \<Longrightarrow> b \<le> x"
507      by auto
508    with \<open>insert x X \<subseteq> B\<close> base[of b x] show ?case
509      by (auto intro: order_trans)
510  qed
511  then obtain b where "b \<in> B" "b \<le> Inf X"
512    by (auto simp: le_Inf_iff)
513  then show "eventually P (Inf X) \<Longrightarrow> Bex B (eventually P)"
514    by (intro bexI[of _ b]) (auto simp: le_filter_def)
515qed (auto intro!: exI[of _ "{x}" for x])
516
517lemma eventually_INF_base:
518  "B \<noteq> {} \<Longrightarrow> (\<And>a b. a \<in> B \<Longrightarrow> b \<in> B \<Longrightarrow> \<exists>x\<in>B. F x \<le> inf (F a) (F b)) \<Longrightarrow>
519    eventually P (\<Sqinter>b\<in>B. F b) \<longleftrightarrow> (\<exists>b\<in>B. eventually P (F b))"
520  by (subst eventually_Inf_base) auto
521
522lemma eventually_INF1: "i \<in> I \<Longrightarrow> eventually P (F i) \<Longrightarrow> eventually P (\<Sqinter>i\<in>I. F i)"
523  using filter_leD[OF INF_lower] .
524
525subsubsection \<open>Map function for filters\<close>
526
527definition filtermap :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a filter \<Rightarrow> 'b filter"
528  where "filtermap f F = Abs_filter (\<lambda>P. eventually (\<lambda>x. P (f x)) F)"
529
530lemma eventually_filtermap:
531  "eventually P (filtermap f F) = eventually (\<lambda>x. P (f x)) F"
532  unfolding filtermap_def
533  apply (rule eventually_Abs_filter)
534  apply (rule is_filter.intro)
535  apply (auto elim!: eventually_rev_mp)
536  done
537
538lemma filtermap_ident: "filtermap (\<lambda>x. x) F = F"
539  by (simp add: filter_eq_iff eventually_filtermap)
540
541lemma filtermap_filtermap:
542  "filtermap f (filtermap g F) = filtermap (\<lambda>x. f (g x)) F"
543  by (simp add: filter_eq_iff eventually_filtermap)
544
545lemma filtermap_mono: "F \<le> F' \<Longrightarrow> filtermap f F \<le> filtermap f F'"
546  unfolding le_filter_def eventually_filtermap by simp
547
548lemma filtermap_bot [simp]: "filtermap f bot = bot"
549  by (simp add: filter_eq_iff eventually_filtermap)
550
551lemma filtermap_bot_iff: "filtermap f F = bot \<longleftrightarrow> F = bot"
552  by (simp add: trivial_limit_def eventually_filtermap)
553
554lemma filtermap_sup: "filtermap f (sup F1 F2) = sup (filtermap f F1) (filtermap f F2)"
555  by (simp add: filter_eq_iff eventually_filtermap eventually_sup)
556
557lemma filtermap_SUP: "filtermap f (\<Squnion>b\<in>B. F b) = (\<Squnion>b\<in>B. filtermap f (F b))"
558  by (simp add: filter_eq_iff eventually_Sup eventually_filtermap)
559
560lemma filtermap_inf: "filtermap f (inf F1 F2) \<le> inf (filtermap f F1) (filtermap f F2)"
561  by (intro inf_greatest filtermap_mono inf_sup_ord)
562
563lemma filtermap_INF: "filtermap f (\<Sqinter>b\<in>B. F b) \<le> (\<Sqinter>b\<in>B. filtermap f (F b))"
564  by (rule INF_greatest, rule filtermap_mono, erule INF_lower)
565
566
567subsubsection \<open>Contravariant map function for filters\<close>
568
569definition filtercomap :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b filter \<Rightarrow> 'a filter" where
570  "filtercomap f F = Abs_filter (\<lambda>P. \<exists>Q. eventually Q F \<and> (\<forall>x. Q (f x) \<longrightarrow> P x))"
571
572lemma eventually_filtercomap:
573  "eventually P (filtercomap f F) \<longleftrightarrow> (\<exists>Q. eventually Q F \<and> (\<forall>x. Q (f x) \<longrightarrow> P x))"
574  unfolding filtercomap_def
575proof (intro eventually_Abs_filter, unfold_locales, goal_cases)
576  case 1
577  show ?case by (auto intro!: exI[of _ "\<lambda>_. True"])
578next
579  case (2 P Q)
580  from 2(1) guess P' by (elim exE conjE) note P' = this
581  from 2(2) guess Q' by (elim exE conjE) note Q' = this
582  show ?case
583    by (rule exI[of _ "\<lambda>x. P' x \<and> Q' x"])
584       (insert P' Q', auto intro!: eventually_conj)
585next
586  case (3 P Q)
587  thus ?case by blast
588qed
589
590lemma filtercomap_ident: "filtercomap (\<lambda>x. x) F = F"
591  by (auto simp: filter_eq_iff eventually_filtercomap elim!: eventually_mono)
592
593lemma filtercomap_filtercomap: "filtercomap f (filtercomap g F) = filtercomap (\<lambda>x. g (f x)) F"
594  unfolding filter_eq_iff by (auto simp: eventually_filtercomap)
595  
596lemma filtercomap_mono: "F \<le> F' \<Longrightarrow> filtercomap f F \<le> filtercomap f F'"
597  by (auto simp: eventually_filtercomap le_filter_def)
598
599lemma filtercomap_bot [simp]: "filtercomap f bot = bot"
600  by (auto simp: filter_eq_iff eventually_filtercomap)
601
602lemma filtercomap_top [simp]: "filtercomap f top = top"
603  by (auto simp: filter_eq_iff eventually_filtercomap)
604
605lemma filtercomap_inf: "filtercomap f (inf F1 F2) = inf (filtercomap f F1) (filtercomap f F2)"
606  unfolding filter_eq_iff
607proof safe
608  fix P
609  assume "eventually P (filtercomap f (F1 \<sqinter> F2))"
610  then obtain Q R S where *:
611    "eventually Q F1" "eventually R F2" "\<And>x. Q x \<Longrightarrow> R x \<Longrightarrow> S x" "\<And>x. S (f x) \<Longrightarrow> P x"
612    unfolding eventually_filtercomap eventually_inf by blast
613  from * have "eventually (\<lambda>x. Q (f x)) (filtercomap f F1)" 
614              "eventually (\<lambda>x. R (f x)) (filtercomap f F2)"
615    by (auto simp: eventually_filtercomap)
616  with * show "eventually P (filtercomap f F1 \<sqinter> filtercomap f F2)"
617    unfolding eventually_inf by blast
618next
619  fix P
620  assume "eventually P (inf (filtercomap f F1) (filtercomap f F2))"
621  then obtain Q Q' R R' where *:
622    "eventually Q F1" "eventually R F2" "\<And>x. Q (f x) \<Longrightarrow> Q' x" "\<And>x. R (f x) \<Longrightarrow> R' x" 
623    "\<And>x. Q' x \<Longrightarrow> R' x \<Longrightarrow> P x"
624    unfolding eventually_filtercomap eventually_inf by blast
625  from * have "eventually (\<lambda>x. Q x \<and> R x) (F1 \<sqinter> F2)" by (auto simp: eventually_inf)
626  with * show "eventually P (filtercomap f (F1 \<sqinter> F2))"
627    by (auto simp: eventually_filtercomap)
628qed
629
630lemma filtercomap_sup: "filtercomap f (sup F1 F2) \<ge> sup (filtercomap f F1) (filtercomap f F2)"
631  by (intro sup_least filtercomap_mono inf_sup_ord)
632
633lemma filtercomap_INF: "filtercomap f (\<Sqinter>b\<in>B. F b) = (\<Sqinter>b\<in>B. filtercomap f (F b))"
634proof -
635  have *: "filtercomap f (\<Sqinter>b\<in>B. F b) = (\<Sqinter>b\<in>B. filtercomap f (F b))" if "finite B" for B
636    using that by induction (simp_all add: filtercomap_inf)
637  show ?thesis unfolding filter_eq_iff
638  proof
639    fix P
640    have "eventually P (\<Sqinter>b\<in>B. filtercomap f (F b)) \<longleftrightarrow> 
641            (\<exists>X. (X \<subseteq> B \<and> finite X) \<and> eventually P (\<Sqinter>b\<in>X. filtercomap f (F b)))"
642      by (subst eventually_INF) blast
643    also have "\<dots> \<longleftrightarrow> (\<exists>X. (X \<subseteq> B \<and> finite X) \<and> eventually P (filtercomap f (\<Sqinter>b\<in>X. F b)))"
644      by (rule ex_cong) (simp add: *)
645    also have "\<dots> \<longleftrightarrow> eventually P (filtercomap f (INFIMUM B F))"
646      unfolding eventually_filtercomap by (subst eventually_INF) blast
647    finally show "eventually P (filtercomap f (INFIMUM B F)) = 
648                    eventually P (\<Sqinter>b\<in>B. filtercomap f (F b))" ..
649  qed
650qed
651
652lemma filtercomap_SUP:
653  "filtercomap f (\<Squnion>b\<in>B. F b) \<ge> (\<Squnion>b\<in>B. filtercomap f (F b))"
654  by (intro SUP_least filtercomap_mono SUP_upper)
655
656lemma eventually_filtercomapI [intro]:
657  assumes "eventually P F"
658  shows   "eventually (\<lambda>x. P (f x)) (filtercomap f F)"
659  using assms by (auto simp: eventually_filtercomap)
660
661lemma filtermap_filtercomap: "filtermap f (filtercomap f F) \<le> F"
662  by (auto simp: le_filter_def eventually_filtermap eventually_filtercomap)
663
664lemma filtercomap_filtermap: "filtercomap f (filtermap f F) \<ge> F"
665  unfolding le_filter_def eventually_filtermap eventually_filtercomap
666  by (auto elim!: eventually_mono)
667
668
669subsubsection \<open>Standard filters\<close>
670
671definition principal :: "'a set \<Rightarrow> 'a filter" where
672  "principal S = Abs_filter (\<lambda>P. \<forall>x\<in>S. P x)"
673
674lemma eventually_principal: "eventually P (principal S) \<longleftrightarrow> (\<forall>x\<in>S. P x)"
675  unfolding principal_def
676  by (rule eventually_Abs_filter, rule is_filter.intro) auto
677
678lemma eventually_inf_principal: "eventually P (inf F (principal s)) \<longleftrightarrow> eventually (\<lambda>x. x \<in> s \<longrightarrow> P x) F"
679  unfolding eventually_inf eventually_principal by (auto elim: eventually_mono)
680
681lemma principal_UNIV[simp]: "principal UNIV = top"
682  by (auto simp: filter_eq_iff eventually_principal)
683
684lemma principal_empty[simp]: "principal {} = bot"
685  by (auto simp: filter_eq_iff eventually_principal)
686
687lemma principal_eq_bot_iff: "principal X = bot \<longleftrightarrow> X = {}"
688  by (auto simp add: filter_eq_iff eventually_principal)
689
690lemma principal_le_iff[iff]: "principal A \<le> principal B \<longleftrightarrow> A \<subseteq> B"
691  by (auto simp: le_filter_def eventually_principal)
692
693lemma le_principal: "F \<le> principal A \<longleftrightarrow> eventually (\<lambda>x. x \<in> A) F"
694  unfolding le_filter_def eventually_principal
695  apply safe
696  apply (erule_tac x="\<lambda>x. x \<in> A" in allE)
697  apply (auto elim: eventually_mono)
698  done
699
700lemma principal_inject[iff]: "principal A = principal B \<longleftrightarrow> A = B"
701  unfolding eq_iff by simp
702
703lemma sup_principal[simp]: "sup (principal A) (principal B) = principal (A \<union> B)"
704  unfolding filter_eq_iff eventually_sup eventually_principal by auto
705
706lemma inf_principal[simp]: "inf (principal A) (principal B) = principal (A \<inter> B)"
707  unfolding filter_eq_iff eventually_inf eventually_principal
708  by (auto intro: exI[of _ "\<lambda>x. x \<in> A"] exI[of _ "\<lambda>x. x \<in> B"])
709
710lemma SUP_principal[simp]: "(\<Squnion>i\<in>I. principal (A i)) = principal (\<Union>i\<in>I. A i)"
711  unfolding filter_eq_iff eventually_Sup by (auto simp: eventually_principal)
712
713lemma INF_principal_finite: "finite X \<Longrightarrow> (\<Sqinter>x\<in>X. principal (f x)) = principal (\<Inter>x\<in>X. f x)"
714  by (induct X rule: finite_induct) auto
715
716lemma filtermap_principal[simp]: "filtermap f (principal A) = principal (f ` A)"
717  unfolding filter_eq_iff eventually_filtermap eventually_principal by simp
718    
719lemma filtercomap_principal[simp]: "filtercomap f (principal A) = principal (f -` A)"
720  unfolding filter_eq_iff eventually_filtercomap eventually_principal by fast
721
722subsubsection \<open>Order filters\<close>
723
724definition at_top :: "('a::order) filter"
725  where "at_top = (\<Sqinter>k. principal {k ..})"
726
727lemma at_top_sub: "at_top = (\<Sqinter>k\<in>{c::'a::linorder..}. principal {k ..})"
728  by (auto intro!: INF_eq max.cobounded1 max.cobounded2 simp: at_top_def)
729
730lemma eventually_at_top_linorder: "eventually P at_top \<longleftrightarrow> (\<exists>N::'a::linorder. \<forall>n\<ge>N. P n)"
731  unfolding at_top_def
732  by (subst eventually_INF_base) (auto simp: eventually_principal intro: max.cobounded1 max.cobounded2)
733
734lemma eventually_filtercomap_at_top_linorder: 
735  "eventually P (filtercomap f at_top) \<longleftrightarrow> (\<exists>N::'a::linorder. \<forall>x. f x \<ge> N \<longrightarrow> P x)"
736  by (auto simp: eventually_filtercomap eventually_at_top_linorder)
737
738lemma eventually_at_top_linorderI:
739  fixes c::"'a::linorder"
740  assumes "\<And>x. c \<le> x \<Longrightarrow> P x"
741  shows "eventually P at_top"
742  using assms by (auto simp: eventually_at_top_linorder)
743
744lemma eventually_ge_at_top [simp]:
745  "eventually (\<lambda>x. (c::_::linorder) \<le> x) at_top"
746  unfolding eventually_at_top_linorder by auto
747
748lemma eventually_at_top_dense: "eventually P at_top \<longleftrightarrow> (\<exists>N::'a::{no_top, linorder}. \<forall>n>N. P n)"
749proof -
750  have "eventually P (\<Sqinter>k. principal {k <..}) \<longleftrightarrow> (\<exists>N::'a. \<forall>n>N. P n)"
751    by (subst eventually_INF_base) (auto simp: eventually_principal intro: max.cobounded1 max.cobounded2)
752  also have "(\<Sqinter>k. principal {k::'a <..}) = at_top"
753    unfolding at_top_def
754    by (intro INF_eq) (auto intro: less_imp_le simp: Ici_subset_Ioi_iff gt_ex)
755  finally show ?thesis .
756qed
757  
758lemma eventually_filtercomap_at_top_dense: 
759  "eventually P (filtercomap f at_top) \<longleftrightarrow> (\<exists>N::'a::{no_top, linorder}. \<forall>x. f x > N \<longrightarrow> P x)"
760  by (auto simp: eventually_filtercomap eventually_at_top_dense)
761
762lemma eventually_at_top_not_equal [simp]: "eventually (\<lambda>x::'a::{no_top, linorder}. x \<noteq> c) at_top"
763  unfolding eventually_at_top_dense by auto
764
765lemma eventually_gt_at_top [simp]: "eventually (\<lambda>x. (c::_::{no_top, linorder}) < x) at_top"
766  unfolding eventually_at_top_dense by auto
767
768lemma eventually_all_ge_at_top:
769  assumes "eventually P (at_top :: ('a :: linorder) filter)"
770  shows   "eventually (\<lambda>x. \<forall>y\<ge>x. P y) at_top"
771proof -
772  from assms obtain x where "\<And>y. y \<ge> x \<Longrightarrow> P y" by (auto simp: eventually_at_top_linorder)
773  hence "\<forall>z\<ge>y. P z" if "y \<ge> x" for y using that by simp
774  thus ?thesis by (auto simp: eventually_at_top_linorder)
775qed
776
777definition at_bot :: "('a::order) filter"
778  where "at_bot = (\<Sqinter>k. principal {.. k})"
779
780lemma at_bot_sub: "at_bot = (\<Sqinter>k\<in>{.. c::'a::linorder}. principal {.. k})"
781  by (auto intro!: INF_eq min.cobounded1 min.cobounded2 simp: at_bot_def)
782
783lemma eventually_at_bot_linorder:
784  fixes P :: "'a::linorder \<Rightarrow> bool" shows "eventually P at_bot \<longleftrightarrow> (\<exists>N. \<forall>n\<le>N. P n)"
785  unfolding at_bot_def
786  by (subst eventually_INF_base) (auto simp: eventually_principal intro: min.cobounded1 min.cobounded2)
787
788lemma eventually_filtercomap_at_bot_linorder: 
789  "eventually P (filtercomap f at_bot) \<longleftrightarrow> (\<exists>N::'a::linorder. \<forall>x. f x \<le> N \<longrightarrow> P x)"
790  by (auto simp: eventually_filtercomap eventually_at_bot_linorder)
791
792lemma eventually_le_at_bot [simp]:
793  "eventually (\<lambda>x. x \<le> (c::_::linorder)) at_bot"
794  unfolding eventually_at_bot_linorder by auto
795
796lemma eventually_at_bot_dense: "eventually P at_bot \<longleftrightarrow> (\<exists>N::'a::{no_bot, linorder}. \<forall>n<N. P n)"
797proof -
798  have "eventually P (\<Sqinter>k. principal {..< k}) \<longleftrightarrow> (\<exists>N::'a. \<forall>n<N. P n)"
799    by (subst eventually_INF_base) (auto simp: eventually_principal intro: min.cobounded1 min.cobounded2)
800  also have "(\<Sqinter>k. principal {..< k::'a}) = at_bot"
801    unfolding at_bot_def
802    by (intro INF_eq) (auto intro: less_imp_le simp: Iic_subset_Iio_iff lt_ex)
803  finally show ?thesis .
804qed
805
806lemma eventually_filtercomap_at_bot_dense: 
807  "eventually P (filtercomap f at_bot) \<longleftrightarrow> (\<exists>N::'a::{no_bot, linorder}. \<forall>x. f x < N \<longrightarrow> P x)"
808  by (auto simp: eventually_filtercomap eventually_at_bot_dense)
809
810lemma eventually_at_bot_not_equal [simp]: "eventually (\<lambda>x::'a::{no_bot, linorder}. x \<noteq> c) at_bot"
811  unfolding eventually_at_bot_dense by auto
812
813lemma eventually_gt_at_bot [simp]:
814  "eventually (\<lambda>x. x < (c::_::unbounded_dense_linorder)) at_bot"
815  unfolding eventually_at_bot_dense by auto
816
817lemma trivial_limit_at_bot_linorder [simp]: "\<not> trivial_limit (at_bot ::('a::linorder) filter)"
818  unfolding trivial_limit_def
819  by (metis eventually_at_bot_linorder order_refl)
820
821lemma trivial_limit_at_top_linorder [simp]: "\<not> trivial_limit (at_top ::('a::linorder) filter)"
822  unfolding trivial_limit_def
823  by (metis eventually_at_top_linorder order_refl)
824
825subsection \<open>Sequentially\<close>
826
827abbreviation sequentially :: "nat filter"
828  where "sequentially \<equiv> at_top"
829
830lemma eventually_sequentially:
831  "eventually P sequentially \<longleftrightarrow> (\<exists>N. \<forall>n\<ge>N. P n)"
832  by (rule eventually_at_top_linorder)
833
834lemma sequentially_bot [simp, intro]: "sequentially \<noteq> bot"
835  unfolding filter_eq_iff eventually_sequentially by auto
836
837lemmas trivial_limit_sequentially = sequentially_bot
838
839lemma eventually_False_sequentially [simp]:
840  "\<not> eventually (\<lambda>n. False) sequentially"
841  by (simp add: eventually_False)
842
843lemma le_sequentially:
844  "F \<le> sequentially \<longleftrightarrow> (\<forall>N. eventually (\<lambda>n. N \<le> n) F)"
845  by (simp add: at_top_def le_INF_iff le_principal)
846
847lemma eventually_sequentiallyI [intro?]:
848  assumes "\<And>x. c \<le> x \<Longrightarrow> P x"
849  shows "eventually P sequentially"
850using assms by (auto simp: eventually_sequentially)
851
852lemma eventually_sequentially_Suc [simp]: "eventually (\<lambda>i. P (Suc i)) sequentially \<longleftrightarrow> eventually P sequentially"
853  unfolding eventually_sequentially by (metis Suc_le_D Suc_le_mono le_Suc_eq)
854
855lemma eventually_sequentially_seg [simp]: "eventually (\<lambda>n. P (n + k)) sequentially \<longleftrightarrow> eventually P sequentially"
856  using eventually_sequentially_Suc[of "\<lambda>n. P (n + k)" for k] by (induction k) auto
857
858lemma filtermap_sequentually_ne_bot: "filtermap f sequentially \<noteq> bot"
859  by (simp add: filtermap_bot_iff)
860
861subsection \<open>The cofinite filter\<close>
862
863definition "cofinite = Abs_filter (\<lambda>P. finite {x. \<not> P x})"
864
865abbreviation Inf_many :: "('a \<Rightarrow> bool) \<Rightarrow> bool"  (binder "\<exists>\<^sub>\<infinity>" 10)
866  where "Inf_many P \<equiv> frequently P cofinite"
867
868abbreviation Alm_all :: "('a \<Rightarrow> bool) \<Rightarrow> bool"  (binder "\<forall>\<^sub>\<infinity>" 10)
869  where "Alm_all P \<equiv> eventually P cofinite"
870
871notation (ASCII)
872  Inf_many  (binder "INFM " 10) and
873  Alm_all  (binder "MOST " 10)
874
875lemma eventually_cofinite: "eventually P cofinite \<longleftrightarrow> finite {x. \<not> P x}"
876  unfolding cofinite_def
877proof (rule eventually_Abs_filter, rule is_filter.intro)
878  fix P Q :: "'a \<Rightarrow> bool" assume "finite {x. \<not> P x}" "finite {x. \<not> Q x}"
879  from finite_UnI[OF this] show "finite {x. \<not> (P x \<and> Q x)}"
880    by (rule rev_finite_subset) auto
881next
882  fix P Q :: "'a \<Rightarrow> bool" assume P: "finite {x. \<not> P x}" and *: "\<forall>x. P x \<longrightarrow> Q x"
883  from * show "finite {x. \<not> Q x}"
884    by (intro finite_subset[OF _ P]) auto
885qed simp
886
887lemma frequently_cofinite: "frequently P cofinite \<longleftrightarrow> \<not> finite {x. P x}"
888  by (simp add: frequently_def eventually_cofinite)
889
890lemma cofinite_bot[simp]: "cofinite = (bot::'a filter) \<longleftrightarrow> finite (UNIV :: 'a set)"
891  unfolding trivial_limit_def eventually_cofinite by simp
892
893lemma cofinite_eq_sequentially: "cofinite = sequentially"
894  unfolding filter_eq_iff eventually_sequentially eventually_cofinite
895proof safe
896  fix P :: "nat \<Rightarrow> bool" assume [simp]: "finite {x. \<not> P x}"
897  show "\<exists>N. \<forall>n\<ge>N. P n"
898  proof cases
899    assume "{x. \<not> P x} \<noteq> {}" then show ?thesis
900      by (intro exI[of _ "Suc (Max {x. \<not> P x})"]) (auto simp: Suc_le_eq)
901  qed auto
902next
903  fix P :: "nat \<Rightarrow> bool" and N :: nat assume "\<forall>n\<ge>N. P n"
904  then have "{x. \<not> P x} \<subseteq> {..< N}"
905    by (auto simp: not_le)
906  then show "finite {x. \<not> P x}"
907    by (blast intro: finite_subset)
908qed
909
910subsubsection \<open>Product of filters\<close>
911
912definition prod_filter :: "'a filter \<Rightarrow> 'b filter \<Rightarrow> ('a \<times> 'b) filter" (infixr "\<times>\<^sub>F" 80) where
913  "prod_filter F G =
914    (\<Sqinter>(P, Q)\<in>{(P, Q). eventually P F \<and> eventually Q G}. principal {(x, y). P x \<and> Q y})"
915
916lemma eventually_prod_filter: "eventually P (F \<times>\<^sub>F G) \<longleftrightarrow>
917  (\<exists>Pf Pg. eventually Pf F \<and> eventually Pg G \<and> (\<forall>x y. Pf x \<longrightarrow> Pg y \<longrightarrow> P (x, y)))"
918  unfolding prod_filter_def
919proof (subst eventually_INF_base, goal_cases)
920  case 2
921  moreover have "eventually Pf F \<Longrightarrow> eventually Qf F \<Longrightarrow> eventually Pg G \<Longrightarrow> eventually Qg G \<Longrightarrow>
922    \<exists>P Q. eventually P F \<and> eventually Q G \<and>
923      Collect P \<times> Collect Q \<subseteq> Collect Pf \<times> Collect Pg \<inter> Collect Qf \<times> Collect Qg" for Pf Pg Qf Qg
924    by (intro conjI exI[of _ "inf Pf Qf"] exI[of _ "inf Pg Qg"])
925       (auto simp: inf_fun_def eventually_conj)
926  ultimately show ?case
927    by auto
928qed (auto simp: eventually_principal intro: eventually_True)
929
930lemma eventually_prod1:
931  assumes "B \<noteq> bot"
932  shows "(\<forall>\<^sub>F (x, y) in A \<times>\<^sub>F B. P x) \<longleftrightarrow> (\<forall>\<^sub>F x in A. P x)"
933  unfolding eventually_prod_filter
934proof safe
935  fix R Q
936  assume *: "\<forall>\<^sub>F x in A. R x" "\<forall>\<^sub>F x in B. Q x" "\<forall>x y. R x \<longrightarrow> Q y \<longrightarrow> P x"
937  with \<open>B \<noteq> bot\<close> obtain y where "Q y" by (auto dest: eventually_happens)
938  with * show "eventually P A"
939    by (force elim: eventually_mono)
940next
941  assume "eventually P A"
942  then show "\<exists>Pf Pg. eventually Pf A \<and> eventually Pg B \<and> (\<forall>x y. Pf x \<longrightarrow> Pg y \<longrightarrow> P x)"
943    by (intro exI[of _ P] exI[of _ "\<lambda>x. True"]) auto
944qed
945
946lemma eventually_prod2:
947  assumes "A \<noteq> bot"
948  shows "(\<forall>\<^sub>F (x, y) in A \<times>\<^sub>F B. P y) \<longleftrightarrow> (\<forall>\<^sub>F y in B. P y)"
949  unfolding eventually_prod_filter
950proof safe
951  fix R Q
952  assume *: "\<forall>\<^sub>F x in A. R x" "\<forall>\<^sub>F x in B. Q x" "\<forall>x y. R x \<longrightarrow> Q y \<longrightarrow> P y"
953  with \<open>A \<noteq> bot\<close> obtain x where "R x" by (auto dest: eventually_happens)
954  with * show "eventually P B"
955    by (force elim: eventually_mono)
956next
957  assume "eventually P B"
958  then show "\<exists>Pf Pg. eventually Pf A \<and> eventually Pg B \<and> (\<forall>x y. Pf x \<longrightarrow> Pg y \<longrightarrow> P y)"
959    by (intro exI[of _ P] exI[of _ "\<lambda>x. True"]) auto
960qed
961
962lemma INF_filter_bot_base:
963  fixes F :: "'a \<Rightarrow> 'b filter"
964  assumes *: "\<And>i j. i \<in> I \<Longrightarrow> j \<in> I \<Longrightarrow> \<exists>k\<in>I. F k \<le> F i \<sqinter> F j"
965  shows "(\<Sqinter>i\<in>I. F i) = bot \<longleftrightarrow> (\<exists>i\<in>I. F i = bot)"
966proof (cases "\<exists>i\<in>I. F i = bot")
967  case True
968  then have "(\<Sqinter>i\<in>I. F i) \<le> bot"
969    by (auto intro: INF_lower2)
970  with True show ?thesis
971    by (auto simp: bot_unique)
972next
973  case False
974  moreover have "(\<Sqinter>i\<in>I. F i) \<noteq> bot"
975  proof (cases "I = {}")
976    case True
977    then show ?thesis
978      by (auto simp add: filter_eq_iff)
979  next
980    case False': False
981    show ?thesis
982    proof (rule INF_filter_not_bot)
983      fix J
984      assume "finite J" "J \<subseteq> I"
985      then have "\<exists>k\<in>I. F k \<le> (\<Sqinter>i\<in>J. F i)"
986      proof (induct J)
987        case empty
988        then show ?case
989          using \<open>I \<noteq> {}\<close> by auto
990      next
991        case (insert i J)
992        then obtain k where "k \<in> I" "F k \<le> (\<Sqinter>i\<in>J. F i)" by auto
993        with insert *[of i k] show ?case
994          by auto
995      qed
996      with False show "(\<Sqinter>i\<in>J. F i) \<noteq> \<bottom>"
997        by (auto simp: bot_unique)
998    qed
999  qed
1000  ultimately show ?thesis
1001    by auto
1002qed
1003
1004lemma Collect_empty_eq_bot: "Collect P = {} \<longleftrightarrow> P = \<bottom>"
1005  by auto
1006
1007lemma prod_filter_eq_bot: "A \<times>\<^sub>F B = bot \<longleftrightarrow> A = bot \<or> B = bot"
1008  unfolding trivial_limit_def
1009proof
1010  assume "\<forall>\<^sub>F x in A \<times>\<^sub>F B. False"
1011  then obtain Pf Pg
1012    where Pf: "eventually (\<lambda>x. Pf x) A" and Pg: "eventually (\<lambda>y. Pg y) B"
1013    and *: "\<forall>x y. Pf x \<longrightarrow> Pg y \<longrightarrow> False"
1014    unfolding eventually_prod_filter by fast
1015  from * have "(\<forall>x. \<not> Pf x) \<or> (\<forall>y. \<not> Pg y)" by fast
1016  with Pf Pg show "(\<forall>\<^sub>F x in A. False) \<or> (\<forall>\<^sub>F x in B. False)" by auto
1017next
1018  assume "(\<forall>\<^sub>F x in A. False) \<or> (\<forall>\<^sub>F x in B. False)"
1019  then show "\<forall>\<^sub>F x in A \<times>\<^sub>F B. False"
1020    unfolding eventually_prod_filter by (force intro: eventually_True)
1021qed
1022
1023lemma prod_filter_mono: "F \<le> F' \<Longrightarrow> G \<le> G' \<Longrightarrow> F \<times>\<^sub>F G \<le> F' \<times>\<^sub>F G'"
1024  by (auto simp: le_filter_def eventually_prod_filter)
1025
1026lemma prod_filter_mono_iff:
1027  assumes nAB: "A \<noteq> bot" "B \<noteq> bot"
1028  shows "A \<times>\<^sub>F B \<le> C \<times>\<^sub>F D \<longleftrightarrow> A \<le> C \<and> B \<le> D"
1029proof safe
1030  assume *: "A \<times>\<^sub>F B \<le> C \<times>\<^sub>F D"
1031  with assms have "A \<times>\<^sub>F B \<noteq> bot"
1032    by (auto simp: bot_unique prod_filter_eq_bot)
1033  with * have "C \<times>\<^sub>F D \<noteq> bot"
1034    by (auto simp: bot_unique)
1035  then have nCD: "C \<noteq> bot" "D \<noteq> bot"
1036    by (auto simp: prod_filter_eq_bot)
1037
1038  show "A \<le> C"
1039  proof (rule filter_leI)
1040    fix P assume "eventually P C" with *[THEN filter_leD, of "\<lambda>(x, y). P x"] show "eventually P A"
1041      using nAB nCD by (simp add: eventually_prod1 eventually_prod2)
1042  qed
1043
1044  show "B \<le> D"
1045  proof (rule filter_leI)
1046    fix P assume "eventually P D" with *[THEN filter_leD, of "\<lambda>(x, y). P y"] show "eventually P B"
1047      using nAB nCD by (simp add: eventually_prod1 eventually_prod2)
1048  qed
1049qed (intro prod_filter_mono)
1050
1051lemma eventually_prod_same: "eventually P (F \<times>\<^sub>F F) \<longleftrightarrow>
1052    (\<exists>Q. eventually Q F \<and> (\<forall>x y. Q x \<longrightarrow> Q y \<longrightarrow> P (x, y)))"
1053  unfolding eventually_prod_filter
1054  apply safe
1055  apply (rule_tac x="inf Pf Pg" in exI)
1056  apply (auto simp: inf_fun_def intro!: eventually_conj)
1057  done
1058
1059lemma eventually_prod_sequentially:
1060  "eventually P (sequentially \<times>\<^sub>F sequentially) \<longleftrightarrow> (\<exists>N. \<forall>m \<ge> N. \<forall>n \<ge> N. P (n, m))"
1061  unfolding eventually_prod_same eventually_sequentially by auto
1062
1063lemma principal_prod_principal: "principal A \<times>\<^sub>F principal B = principal (A \<times> B)"
1064  unfolding filter_eq_iff eventually_prod_filter eventually_principal
1065  by (fast intro: exI[of _ "\<lambda>x. x \<in> A"] exI[of _ "\<lambda>x. x \<in> B"])
1066
1067lemma le_prod_filterI:
1068  "filtermap fst F \<le> A \<Longrightarrow> filtermap snd F \<le> B \<Longrightarrow> F \<le> A \<times>\<^sub>F B"
1069  unfolding le_filter_def eventually_filtermap eventually_prod_filter
1070  by (force elim: eventually_elim2)
1071
1072lemma filtermap_fst_prod_filter: "filtermap fst (A \<times>\<^sub>F B) \<le> A"
1073  unfolding le_filter_def eventually_filtermap eventually_prod_filter
1074  by (force intro: eventually_True)
1075
1076lemma filtermap_snd_prod_filter: "filtermap snd (A \<times>\<^sub>F B) \<le> B"
1077  unfolding le_filter_def eventually_filtermap eventually_prod_filter
1078  by (force intro: eventually_True)
1079
1080lemma prod_filter_INF:
1081  assumes "I \<noteq> {}" and "J \<noteq> {}"
1082  shows "(\<Sqinter>i\<in>I. A i) \<times>\<^sub>F (\<Sqinter>j\<in>J. B j) = (\<Sqinter>i\<in>I. \<Sqinter>j\<in>J. A i \<times>\<^sub>F B j)"
1083proof (rule antisym)
1084  from \<open>I \<noteq> {}\<close> obtain i where "i \<in> I" by auto
1085  from \<open>J \<noteq> {}\<close> obtain j where "j \<in> J" by auto
1086
1087  show "(\<Sqinter>i\<in>I. \<Sqinter>j\<in>J. A i \<times>\<^sub>F B j) \<le> (\<Sqinter>i\<in>I. A i) \<times>\<^sub>F (\<Sqinter>j\<in>J. B j)"
1088    by (fast intro: le_prod_filterI INF_greatest INF_lower2
1089      order_trans[OF filtermap_INF] `i \<in> I` `j \<in> J`
1090      filtermap_fst_prod_filter filtermap_snd_prod_filter)
1091  show "(\<Sqinter>i\<in>I. A i) \<times>\<^sub>F (\<Sqinter>j\<in>J. B j) \<le> (\<Sqinter>i\<in>I. \<Sqinter>j\<in>J. A i \<times>\<^sub>F B j)"
1092    by (intro INF_greatest prod_filter_mono INF_lower)
1093qed
1094
1095lemma filtermap_Pair: "filtermap (\<lambda>x. (f x, g x)) F \<le> filtermap f F \<times>\<^sub>F filtermap g F"
1096  by (rule le_prod_filterI, simp_all add: filtermap_filtermap)
1097
1098lemma eventually_prodI: "eventually P F \<Longrightarrow> eventually Q G \<Longrightarrow> eventually (\<lambda>x. P (fst x) \<and> Q (snd x)) (F \<times>\<^sub>F G)"
1099  unfolding eventually_prod_filter by auto
1100
1101lemma prod_filter_INF1: "I \<noteq> {} \<Longrightarrow> (\<Sqinter>i\<in>I. A i) \<times>\<^sub>F B = (\<Sqinter>i\<in>I. A i \<times>\<^sub>F B)"
1102  using prod_filter_INF[of I "{B}" A "\<lambda>x. x"] by simp
1103
1104lemma prod_filter_INF2: "J \<noteq> {} \<Longrightarrow> A \<times>\<^sub>F (\<Sqinter>i\<in>J. B i) = (\<Sqinter>i\<in>J. A \<times>\<^sub>F B i)"
1105  using prod_filter_INF[of "{A}" J "\<lambda>x. x" B] by simp
1106
1107lemma prod_filtermap1: "prod_filter (filtermap f F) G = filtermap (apfst f) (prod_filter F G)"
1108  apply(clarsimp simp add: filter_eq_iff eventually_filtermap eventually_prod_filter; safe)
1109  subgoal by auto
1110  subgoal for P Q R by(rule exI[where x="\<lambda>y. \<exists>x. y = f x \<and> Q x"])(auto intro: eventually_mono)
1111  done
1112
1113lemma prod_filtermap2: "prod_filter F (filtermap g G) = filtermap (apsnd g) (prod_filter F G)"
1114  apply(clarsimp simp add: filter_eq_iff eventually_filtermap eventually_prod_filter; safe)
1115  subgoal by auto
1116  subgoal for P Q R  by(auto intro: exI[where x="\<lambda>y. \<exists>x. y = g x \<and> R x"] eventually_mono)
1117  done
1118
1119lemma prod_filter_assoc:
1120  "prod_filter (prod_filter F G) H = filtermap (\<lambda>(x, y, z). ((x, y), z)) (prod_filter F (prod_filter G H))"
1121  apply(clarsimp simp add: filter_eq_iff eventually_filtermap eventually_prod_filter; safe)
1122  subgoal for P Q R S T by(auto 4 4 intro: exI[where x="\<lambda>(a, b). T a \<and> S b"])
1123  subgoal for P Q R S T by(auto 4 3 intro: exI[where x="\<lambda>(a, b). Q a \<and> S b"])
1124  done
1125
1126lemma prod_filter_principal_singleton: "prod_filter (principal {x}) F = filtermap (Pair x) F"
1127  by(fastforce simp add: filter_eq_iff eventually_prod_filter eventually_principal eventually_filtermap elim: eventually_mono intro: exI[where x="\<lambda>a. a = x"])
1128
1129lemma prod_filter_principal_singleton2: "prod_filter F (principal {x}) = filtermap (\<lambda>a. (a, x)) F"
1130  by(fastforce simp add: filter_eq_iff eventually_prod_filter eventually_principal eventually_filtermap elim: eventually_mono intro: exI[where x="\<lambda>a. a = x"])
1131
1132lemma prod_filter_commute: "prod_filter F G = filtermap prod.swap (prod_filter G F)"
1133  by(auto simp add: filter_eq_iff eventually_prod_filter eventually_filtermap)
1134
1135subsection \<open>Limits\<close>
1136
1137definition filterlim :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b filter \<Rightarrow> 'a filter \<Rightarrow> bool" where
1138  "filterlim f F2 F1 \<longleftrightarrow> filtermap f F1 \<le> F2"
1139
1140syntax
1141  "_LIM" :: "pttrns \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> bool" ("(3LIM (_)/ (_)./ (_) :> (_))" [1000, 10, 0, 10] 10)
1142
1143translations
1144  "LIM x F1. f :> F2" == "CONST filterlim (\<lambda>x. f) F2 F1"
1145
1146lemma filterlim_top [simp]: "filterlim f top F"
1147  by (simp add: filterlim_def)
1148
1149lemma filterlim_iff:
1150  "(LIM x F1. f x :> F2) \<longleftrightarrow> (\<forall>P. eventually P F2 \<longrightarrow> eventually (\<lambda>x. P (f x)) F1)"
1151  unfolding filterlim_def le_filter_def eventually_filtermap ..
1152
1153lemma filterlim_compose:
1154  "filterlim g F3 F2 \<Longrightarrow> filterlim f F2 F1 \<Longrightarrow> filterlim (\<lambda>x. g (f x)) F3 F1"
1155  unfolding filterlim_def filtermap_filtermap[symmetric] by (metis filtermap_mono order_trans)
1156
1157lemma filterlim_mono:
1158  "filterlim f F2 F1 \<Longrightarrow> F2 \<le> F2' \<Longrightarrow> F1' \<le> F1 \<Longrightarrow> filterlim f F2' F1'"
1159  unfolding filterlim_def by (metis filtermap_mono order_trans)
1160
1161lemma filterlim_ident: "LIM x F. x :> F"
1162  by (simp add: filterlim_def filtermap_ident)
1163
1164lemma filterlim_cong:
1165  "F1 = F1' \<Longrightarrow> F2 = F2' \<Longrightarrow> eventually (\<lambda>x. f x = g x) F2 \<Longrightarrow> filterlim f F1 F2 = filterlim g F1' F2'"
1166  by (auto simp: filterlim_def le_filter_def eventually_filtermap elim: eventually_elim2)
1167
1168lemma filterlim_mono_eventually:
1169  assumes "filterlim f F G" and ord: "F \<le> F'" "G' \<le> G"
1170  assumes eq: "eventually (\<lambda>x. f x = f' x) G'"
1171  shows "filterlim f' F' G'"
1172  apply (rule filterlim_cong[OF refl refl eq, THEN iffD1])
1173  apply (rule filterlim_mono[OF _ ord])
1174  apply fact
1175  done
1176
1177lemma filtermap_mono_strong: "inj f \<Longrightarrow> filtermap f F \<le> filtermap f G \<longleftrightarrow> F \<le> G"
1178  apply (safe intro!: filtermap_mono)
1179  apply (auto simp: le_filter_def eventually_filtermap)
1180  apply (erule_tac x="\<lambda>x. P (inv f x)" in allE)
1181  apply auto
1182  done
1183
1184lemma eventually_compose_filterlim:
1185  assumes "eventually P F" "filterlim f F G"
1186  shows "eventually (\<lambda>x. P (f x)) G"
1187  using assms by (simp add: filterlim_iff)
1188
1189lemma filtermap_eq_strong: "inj f \<Longrightarrow> filtermap f F = filtermap f G \<longleftrightarrow> F = G"
1190  by (simp add: filtermap_mono_strong eq_iff)
1191
1192lemma filtermap_fun_inverse:
1193  assumes g: "filterlim g F G"
1194  assumes f: "filterlim f G F"
1195  assumes ev: "eventually (\<lambda>x. f (g x) = x) G"
1196  shows "filtermap f F = G"
1197proof (rule antisym)
1198  show "filtermap f F \<le> G"
1199    using f unfolding filterlim_def .
1200  have "G = filtermap f (filtermap g G)"
1201    using ev by (auto elim: eventually_elim2 simp: filter_eq_iff eventually_filtermap)
1202  also have "\<dots> \<le> filtermap f F"
1203    using g by (intro filtermap_mono) (simp add: filterlim_def)
1204  finally show "G \<le> filtermap f F" .
1205qed
1206
1207lemma filterlim_principal:
1208  "(LIM x F. f x :> principal S) \<longleftrightarrow> (eventually (\<lambda>x. f x \<in> S) F)"
1209  unfolding filterlim_def eventually_filtermap le_principal ..
1210
1211lemma filterlim_inf:
1212  "(LIM x F1. f x :> inf F2 F3) \<longleftrightarrow> ((LIM x F1. f x :> F2) \<and> (LIM x F1. f x :> F3))"
1213  unfolding filterlim_def by simp
1214
1215lemma filterlim_INF:
1216  "(LIM x F. f x :> (\<Sqinter>b\<in>B. G b)) \<longleftrightarrow> (\<forall>b\<in>B. LIM x F. f x :> G b)"
1217  unfolding filterlim_def le_INF_iff ..
1218
1219lemma filterlim_INF_INF:
1220  "(\<And>m. m \<in> J \<Longrightarrow> \<exists>i\<in>I. filtermap f (F i) \<le> G m) \<Longrightarrow> LIM x (\<Sqinter>i\<in>I. F i). f x :> (\<Sqinter>j\<in>J. G j)"
1221  unfolding filterlim_def by (rule order_trans[OF filtermap_INF INF_mono])
1222
1223lemma filterlim_base:
1224  "(\<And>m x. m \<in> J \<Longrightarrow> i m \<in> I) \<Longrightarrow> (\<And>m x. m \<in> J \<Longrightarrow> x \<in> F (i m) \<Longrightarrow> f x \<in> G m) \<Longrightarrow>
1225    LIM x (\<Sqinter>i\<in>I. principal (F i)). f x :> (\<Sqinter>j\<in>J. principal (G j))"
1226  by (force intro!: filterlim_INF_INF simp: image_subset_iff)
1227
1228lemma filterlim_base_iff:
1229  assumes "I \<noteq> {}" and chain: "\<And>i j. i \<in> I \<Longrightarrow> j \<in> I \<Longrightarrow> F i \<subseteq> F j \<or> F j \<subseteq> F i"
1230  shows "(LIM x (\<Sqinter>i\<in>I. principal (F i)). f x :> \<Sqinter>j\<in>J. principal (G j)) \<longleftrightarrow>
1231    (\<forall>j\<in>J. \<exists>i\<in>I. \<forall>x\<in>F i. f x \<in> G j)"
1232  unfolding filterlim_INF filterlim_principal
1233proof (subst eventually_INF_base)
1234  fix i j assume "i \<in> I" "j \<in> I"
1235  with chain[OF this] show "\<exists>x\<in>I. principal (F x) \<le> inf (principal (F i)) (principal (F j))"
1236    by auto
1237qed (auto simp: eventually_principal \<open>I \<noteq> {}\<close>)
1238
1239lemma filterlim_filtermap: "filterlim f F1 (filtermap g F2) = filterlim (\<lambda>x. f (g x)) F1 F2"
1240  unfolding filterlim_def filtermap_filtermap ..
1241
1242lemma filterlim_sup:
1243  "filterlim f F F1 \<Longrightarrow> filterlim f F F2 \<Longrightarrow> filterlim f F (sup F1 F2)"
1244  unfolding filterlim_def filtermap_sup by auto
1245
1246lemma filterlim_sequentially_Suc:
1247  "(LIM x sequentially. f (Suc x) :> F) \<longleftrightarrow> (LIM x sequentially. f x :> F)"
1248  unfolding filterlim_iff by (subst eventually_sequentially_Suc) simp
1249
1250lemma filterlim_Suc: "filterlim Suc sequentially sequentially"
1251  by (simp add: filterlim_iff eventually_sequentially)
1252
1253lemma filterlim_If:
1254  "LIM x inf F (principal {x. P x}). f x :> G \<Longrightarrow>
1255    LIM x inf F (principal {x. \<not> P x}). g x :> G \<Longrightarrow>
1256    LIM x F. if P x then f x else g x :> G"
1257  unfolding filterlim_iff eventually_inf_principal by (auto simp: eventually_conj_iff)
1258
1259lemma filterlim_Pair:
1260  "LIM x F. f x :> G \<Longrightarrow> LIM x F. g x :> H \<Longrightarrow> LIM x F. (f x, g x) :> G \<times>\<^sub>F H"
1261  unfolding filterlim_def
1262  by (rule order_trans[OF filtermap_Pair prod_filter_mono])
1263
1264subsection \<open>Limits to @{const at_top} and @{const at_bot}\<close>
1265
1266lemma filterlim_at_top:
1267  fixes f :: "'a \<Rightarrow> ('b::linorder)"
1268  shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. Z \<le> f x) F)"
1269  by (auto simp: filterlim_iff eventually_at_top_linorder elim!: eventually_mono)
1270
1271lemma filterlim_at_top_mono:
1272  "LIM x F. f x :> at_top \<Longrightarrow> eventually (\<lambda>x. f x \<le> (g x::'a::linorder)) F \<Longrightarrow>
1273    LIM x F. g x :> at_top"
1274  by (auto simp: filterlim_at_top elim: eventually_elim2 intro: order_trans)
1275
1276lemma filterlim_at_top_dense:
1277  fixes f :: "'a \<Rightarrow> ('b::unbounded_dense_linorder)"
1278  shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. Z < f x) F)"
1279  by (metis eventually_mono[of _ F] eventually_gt_at_top order_less_imp_le
1280            filterlim_at_top[of f F] filterlim_iff[of f at_top F])
1281
1282lemma filterlim_at_top_ge:
1283  fixes f :: "'a \<Rightarrow> ('b::linorder)" and c :: "'b"
1284  shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z\<ge>c. eventually (\<lambda>x. Z \<le> f x) F)"
1285  unfolding at_top_sub[of c] filterlim_INF by (auto simp add: filterlim_principal)
1286
1287lemma filterlim_at_top_at_top:
1288  fixes f :: "'a::linorder \<Rightarrow> 'b::linorder"
1289  assumes mono: "\<And>x y. Q x \<Longrightarrow> Q y \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y"
1290  assumes bij: "\<And>x. P x \<Longrightarrow> f (g x) = x" "\<And>x. P x \<Longrightarrow> Q (g x)"
1291  assumes Q: "eventually Q at_top"
1292  assumes P: "eventually P at_top"
1293  shows "filterlim f at_top at_top"
1294proof -
1295  from P obtain x where x: "\<And>y. x \<le> y \<Longrightarrow> P y"
1296    unfolding eventually_at_top_linorder by auto
1297  show ?thesis
1298  proof (intro filterlim_at_top_ge[THEN iffD2] allI impI)
1299    fix z assume "x \<le> z"
1300    with x have "P z" by auto
1301    have "eventually (\<lambda>x. g z \<le> x) at_top"
1302      by (rule eventually_ge_at_top)
1303    with Q show "eventually (\<lambda>x. z \<le> f x) at_top"
1304      by eventually_elim (metis mono bij \<open>P z\<close>)
1305  qed
1306qed
1307
1308lemma filterlim_at_top_gt:
1309  fixes f :: "'a \<Rightarrow> ('b::unbounded_dense_linorder)" and c :: "'b"
1310  shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z>c. eventually (\<lambda>x. Z \<le> f x) F)"
1311  by (metis filterlim_at_top order_less_le_trans gt_ex filterlim_at_top_ge)
1312
1313lemma filterlim_at_bot:
1314  fixes f :: "'a \<Rightarrow> ('b::linorder)"
1315  shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. f x \<le> Z) F)"
1316  by (auto simp: filterlim_iff eventually_at_bot_linorder elim!: eventually_mono)
1317
1318lemma filterlim_at_bot_dense:
1319  fixes f :: "'a \<Rightarrow> ('b::{dense_linorder, no_bot})"
1320  shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. f x < Z) F)"
1321proof (auto simp add: filterlim_at_bot[of f F])
1322  fix Z :: 'b
1323  from lt_ex [of Z] obtain Z' where 1: "Z' < Z" ..
1324  assume "\<forall>Z. eventually (\<lambda>x. f x \<le> Z) F"
1325  hence "eventually (\<lambda>x. f x \<le> Z') F" by auto
1326  thus "eventually (\<lambda>x. f x < Z) F"
1327    apply (rule eventually_mono)
1328    using 1 by auto
1329  next
1330    fix Z :: 'b
1331    show "\<forall>Z. eventually (\<lambda>x. f x < Z) F \<Longrightarrow> eventually (\<lambda>x. f x \<le> Z) F"
1332      by (drule spec [of _ Z], erule eventually_mono, auto simp add: less_imp_le)
1333qed
1334
1335lemma filterlim_at_bot_le:
1336  fixes f :: "'a \<Rightarrow> ('b::linorder)" and c :: "'b"
1337  shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z\<le>c. eventually (\<lambda>x. Z \<ge> f x) F)"
1338  unfolding filterlim_at_bot
1339proof safe
1340  fix Z assume *: "\<forall>Z\<le>c. eventually (\<lambda>x. Z \<ge> f x) F"
1341  with *[THEN spec, of "min Z c"] show "eventually (\<lambda>x. Z \<ge> f x) F"
1342    by (auto elim!: eventually_mono)
1343qed simp
1344
1345lemma filterlim_at_bot_lt:
1346  fixes f :: "'a \<Rightarrow> ('b::unbounded_dense_linorder)" and c :: "'b"
1347  shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z<c. eventually (\<lambda>x. Z \<ge> f x) F)"
1348  by (metis filterlim_at_bot filterlim_at_bot_le lt_ex order_le_less_trans)
1349    
1350lemma filterlim_filtercomap [intro]: "filterlim f F (filtercomap f F)"
1351  unfolding filterlim_def by (rule filtermap_filtercomap)
1352
1353
1354subsection \<open>Setup @{typ "'a filter"} for lifting and transfer\<close>
1355
1356lemma filtermap_id [simp, id_simps]: "filtermap id = id"
1357by(simp add: fun_eq_iff id_def filtermap_ident)
1358
1359lemma filtermap_id' [simp]: "filtermap (\<lambda>x. x) = (\<lambda>F. F)"
1360using filtermap_id unfolding id_def .
1361
1362context includes lifting_syntax
1363begin
1364
1365definition map_filter_on :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a filter \<Rightarrow> 'b filter" where
1366  "map_filter_on X f F = Abs_filter (\<lambda>P. eventually (\<lambda>x. P (f x) \<and> x \<in> X) F)"
1367
1368lemma is_filter_map_filter_on:
1369  "is_filter (\<lambda>P. \<forall>\<^sub>F x in F. P (f x) \<and> x \<in> X) \<longleftrightarrow> eventually (\<lambda>x. x \<in> X) F"
1370proof(rule iffI; unfold_locales)
1371  show "\<forall>\<^sub>F x in F. True \<and> x \<in> X" if "eventually (\<lambda>x. x \<in> X) F" using that by simp
1372  show "\<forall>\<^sub>F x in F. (P (f x) \<and> Q (f x)) \<and> x \<in> X" if "\<forall>\<^sub>F x in F. P (f x) \<and> x \<in> X" "\<forall>\<^sub>F x in F. Q (f x) \<and> x \<in> X" for P Q
1373    using eventually_conj[OF that] by(auto simp add: conj_ac cong: conj_cong)
1374  show "\<forall>\<^sub>F x in F. Q (f x) \<and> x \<in> X" if "\<forall>x. P x \<longrightarrow> Q x" "\<forall>\<^sub>F x in F. P (f x) \<and> x \<in> X" for P Q
1375    using that(2) by(rule eventually_mono)(use that(1) in auto)
1376  show "eventually (\<lambda>x. x \<in> X) F" if "is_filter (\<lambda>P. \<forall>\<^sub>F x in F. P (f x) \<and> x \<in> X)"
1377    using is_filter.True[OF that] by simp
1378qed
1379
1380lemma eventually_map_filter_on: "eventually P (map_filter_on X f F) = (\<forall>\<^sub>F x in F. P (f x) \<and> x \<in> X)"
1381  if "eventually (\<lambda>x. x \<in> X) F"
1382  by(simp add: is_filter_map_filter_on map_filter_on_def eventually_Abs_filter that)
1383
1384lemma map_filter_on_UNIV: "map_filter_on UNIV = filtermap"
1385  by(simp add: map_filter_on_def filtermap_def fun_eq_iff)
1386
1387lemma map_filter_on_comp: "map_filter_on X f (map_filter_on Y g F) = map_filter_on Y (f \<circ> g) F"
1388  if "g ` Y \<subseteq> X" and "eventually (\<lambda>x. x \<in> Y) F"
1389  unfolding map_filter_on_def using that(1)
1390  by(auto simp add: eventually_Abs_filter that(2) is_filter_map_filter_on intro!: arg_cong[where f=Abs_filter] arg_cong2[where f=eventually])
1391
1392inductive rel_filter :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a filter \<Rightarrow> 'b filter \<Rightarrow> bool" for R F G where
1393  "rel_filter R F G" if "eventually (case_prod R) Z" "map_filter_on {(x, y). R x y} fst Z = F" "map_filter_on {(x, y). R x y} snd Z = G"
1394
1395lemma rel_filter_eq [relator_eq]: "rel_filter (=) = (=)"
1396proof(intro ext iffI)+
1397  show "F = G" if "rel_filter (=) F G" for F G using that
1398    by cases(clarsimp simp add: filter_eq_iff eventually_map_filter_on split_def cong: rev_conj_cong)
1399  show "rel_filter (=) F G" if "F = G" for F G unfolding \<open>F = G\<close>
1400  proof
1401    let ?Z = "map_filter_on UNIV (\<lambda>x. (x, x)) G"
1402    have [simp]: "range (\<lambda>x. (x, x)) \<subseteq> {(x, y). x = y}" by auto
1403    show "map_filter_on {(x, y). x = y} fst ?Z = G" and "map_filter_on {(x, y). x = y} snd ?Z = G"
1404      by(simp_all add: map_filter_on_comp)(simp_all add: map_filter_on_UNIV o_def)
1405    show "\<forall>\<^sub>F (x, y) in ?Z. x = y" by(simp add: eventually_map_filter_on)
1406  qed
1407qed
1408
1409lemma rel_filter_mono [relator_mono]: "rel_filter A \<le> rel_filter B" if le: "A \<le> B"
1410proof(clarify elim!: rel_filter.cases)
1411  show "rel_filter B (map_filter_on {(x, y). A x y} fst Z) (map_filter_on {(x, y). A x y} snd Z)"
1412    (is "rel_filter _ ?X ?Y") if "\<forall>\<^sub>F (x, y) in Z. A x y" for Z
1413  proof
1414    let ?Z = "map_filter_on {(x, y). A x y} id Z"
1415    show "\<forall>\<^sub>F (x, y) in ?Z. B x y" using le that
1416      by(simp add: eventually_map_filter_on le_fun_def split_def conj_commute cong: conj_cong)
1417    have [simp]: "{(x, y). A x y} \<subseteq> {(x, y). B x y}" using le by auto
1418    show "map_filter_on {(x, y). B x y} fst ?Z = ?X" "map_filter_on {(x, y). B x y} snd ?Z = ?Y"
1419      using le that by(simp_all add: le_fun_def map_filter_on_comp)
1420  qed
1421qed
1422
1423lemma rel_filter_conversep: "rel_filter A\<inverse>\<inverse> = (rel_filter A)\<inverse>\<inverse>"
1424proof(safe intro!: ext elim!: rel_filter.cases)
1425  show *: "rel_filter A (map_filter_on {(x, y). A\<inverse>\<inverse> x y} snd Z) (map_filter_on {(x, y). A\<inverse>\<inverse> x y} fst Z)"
1426    (is "rel_filter _ ?X ?Y") if "\<forall>\<^sub>F (x, y) in Z. A\<inverse>\<inverse> x y" for A Z
1427  proof
1428    let ?Z = "map_filter_on {(x, y). A y x} prod.swap Z"
1429    show "\<forall>\<^sub>F (x, y) in ?Z. A x y" using that by(simp add: eventually_map_filter_on)
1430    have [simp]: "prod.swap ` {(x, y). A y x} \<subseteq> {(x, y). A x y}" by auto
1431    show "map_filter_on {(x, y). A x y} fst ?Z = ?X" "map_filter_on {(x, y). A x y} snd ?Z = ?Y"
1432      using that by(simp_all add: map_filter_on_comp o_def)
1433  qed
1434  show "rel_filter A\<inverse>\<inverse> (map_filter_on {(x, y). A x y} snd Z) (map_filter_on {(x, y). A x y} fst Z)"
1435    if "\<forall>\<^sub>F (x, y) in Z. A x y" for Z using *[of "A\<inverse>\<inverse>" Z] that by simp
1436qed
1437
1438lemma rel_filter_distr [relator_distr]:
1439  "rel_filter A OO rel_filter B = rel_filter (A OO B)"
1440proof(safe intro!: ext elim!: rel_filter.cases)
1441  let ?AB = "{(x, y). (A OO B) x y}"
1442  show "(rel_filter A OO rel_filter B)
1443     (map_filter_on {(x, y). (A OO B) x y} fst Z) (map_filter_on {(x, y). (A OO B) x y} snd Z)"
1444    (is "(_ OO _) ?F ?H") if "\<forall>\<^sub>F (x, y) in Z. (A OO B) x y" for Z
1445  proof
1446    let ?G = "map_filter_on ?AB (\<lambda>(x, y). SOME z. A x z \<and> B z y) Z"
1447    show "rel_filter A ?F ?G"
1448    proof
1449      let ?Z = "map_filter_on ?AB (\<lambda>(x, y). (x, SOME z. A x z \<and> B z y)) Z"
1450      show "\<forall>\<^sub>F (x, y) in ?Z. A x y" using that
1451        by(auto simp add: eventually_map_filter_on split_def elim!: eventually_mono intro: someI2)
1452      have [simp]: "(\<lambda>p. (fst p, SOME z. A (fst p) z \<and> B z (snd p))) ` {p. (A OO B) (fst p) (snd p)} \<subseteq> {p. A (fst p) (snd p)}" by(auto intro: someI2)
1453      show "map_filter_on {(x, y). A x y} fst ?Z = ?F" "map_filter_on {(x, y). A x y} snd ?Z = ?G"
1454        using that by(simp_all add: map_filter_on_comp split_def o_def)
1455    qed
1456    show "rel_filter B ?G ?H"
1457    proof
1458      let ?Z = "map_filter_on ?AB (\<lambda>(x, y). (SOME z. A x z \<and> B z y, y)) Z"
1459      show "\<forall>\<^sub>F (x, y) in ?Z. B x y" using that
1460        by(auto simp add: eventually_map_filter_on split_def elim!: eventually_mono intro: someI2)
1461      have [simp]: "(\<lambda>p. (SOME z. A (fst p) z \<and> B z (snd p), snd p)) ` {p. (A OO B) (fst p) (snd p)} \<subseteq> {p. B (fst p) (snd p)}" by(auto intro: someI2)
1462      show "map_filter_on {(x, y). B x y} fst ?Z = ?G" "map_filter_on {(x, y). B x y} snd ?Z = ?H"
1463        using that by(simp_all add: map_filter_on_comp split_def o_def)
1464    qed
1465  qed
1466
1467  fix F G
1468  assume F: "\<forall>\<^sub>F (x, y) in F. A x y" and G: "\<forall>\<^sub>F (x, y) in G. B x y"
1469    and eq: "map_filter_on {(x, y). B x y} fst G = map_filter_on {(x, y). A x y} snd F" (is "?Y2 = ?Y1")
1470  let ?X = "map_filter_on {(x, y). A x y} fst F"
1471    and ?Z = "(map_filter_on {(x, y). B x y} snd G)"
1472  have step: "\<exists>P'\<le>P. \<exists>Q' \<le> Q. eventually P' F \<and> eventually Q' G \<and> {y. \<exists>x. P' (x, y)} = {y. \<exists>z. Q' (y, z)}"
1473    if P: "eventually P F" and Q: "eventually Q G" for P Q
1474  proof -
1475    let ?P = "\<lambda>(x, y). P (x, y) \<and> A x y" and ?Q = "\<lambda>(y, z). Q (y, z) \<and> B y z"
1476    define P' where "P' \<equiv> \<lambda>(x, y). ?P (x, y) \<and> (\<exists>z. ?Q (y, z))"
1477    define Q' where "Q' \<equiv> \<lambda>(y, z). ?Q (y, z) \<and> (\<exists>x. ?P (x, y))"
1478    have "P' \<le> P" "Q' \<le> Q" "{y. \<exists>x. P' (x, y)} = {y. \<exists>z. Q' (y, z)}"
1479      by(auto simp add: P'_def Q'_def)
1480    moreover
1481    from P Q F G have P': "eventually ?P F" and Q': "eventually ?Q G" 
1482      by(simp_all add: eventually_conj_iff split_def)
1483    from P' F have "\<forall>\<^sub>F y in ?Y1. \<exists>x. P (x, y) \<and> A x y"
1484      by(auto simp add: eventually_map_filter_on elim!: eventually_mono)
1485    from this[folded eq] obtain Q'' where Q'': "eventually Q'' G"
1486      and Q''P: "{y. \<exists>z. Q'' (y, z)} \<subseteq> {y. \<exists>x. ?P (x, y)}"
1487      using G by(fastforce simp add: eventually_map_filter_on)
1488    have "eventually (inf Q'' ?Q) G" using Q'' Q' by(auto intro: eventually_conj simp add: inf_fun_def)
1489    then have "eventually Q' G" using Q''P  by(auto elim!: eventually_mono simp add: Q'_def)
1490    moreover
1491    from Q' G have "\<forall>\<^sub>F y in ?Y2. \<exists>z. Q (y, z) \<and> B y z"
1492      by(auto simp add: eventually_map_filter_on elim!: eventually_mono)
1493    from this[unfolded eq] obtain P'' where P'': "eventually P'' F"
1494      and P''Q: "{y. \<exists>x. P'' (x, y)} \<subseteq> {y. \<exists>z. ?Q (y, z)}"
1495      using F by(fastforce simp add: eventually_map_filter_on)
1496    have "eventually (inf P'' ?P) F" using P'' P' by(auto intro: eventually_conj simp add: inf_fun_def)
1497    then have "eventually P' F" using P''Q  by(auto elim!: eventually_mono simp add: P'_def)
1498    ultimately show ?thesis by blast
1499  qed
1500
1501  show "rel_filter (A OO B) ?X ?Z"
1502  proof
1503    let ?Y = "\<lambda>Y. \<exists>X Z. eventually X ?X \<and> eventually Z ?Z \<and> (\<lambda>(x, z). X x \<and> Z z \<and> (A OO B) x z) \<le> Y"
1504    have Y: "is_filter ?Y"
1505    proof
1506      show "?Y (\<lambda>_. True)" by(auto simp add: le_fun_def intro: eventually_True)
1507      show "?Y (\<lambda>x. P x \<and> Q x)" if "?Y P" "?Y Q" for P Q using that
1508        apply clarify
1509        apply(intro exI conjI; (elim eventually_rev_mp; fold imp_conjL; intro always_eventually allI; rule imp_refl)?)
1510        apply auto
1511        done
1512      show "?Y Q" if "?Y P" "\<forall>x. P x \<longrightarrow> Q x" for P Q using that by blast
1513    qed
1514    define Y where "Y = Abs_filter ?Y"
1515    have eventually_Y: "eventually P Y \<longleftrightarrow> ?Y P" for P
1516      using eventually_Abs_filter[OF Y, of P] by(simp add: Y_def)
1517    show YY: "\<forall>\<^sub>F (x, y) in Y. (A OO B) x y" using F G
1518      by(auto simp add: eventually_Y eventually_map_filter_on eventually_conj_iff intro!: eventually_True)
1519    have "?Y (\<lambda>(x, z). P x \<and> (A OO B) x z) \<longleftrightarrow> (\<forall>\<^sub>F (x, y) in F. P x \<and> A x y)" (is "?lhs = ?rhs") for P
1520    proof
1521      show ?lhs if ?rhs using G F that
1522        by(auto 4 3 intro: exI[where x="\<lambda>_. True"] simp add: eventually_map_filter_on split_def)
1523      assume ?lhs
1524      then obtain X Z where "\<forall>\<^sub>F (x, y) in F. X x \<and> A x y"
1525        and "\<forall>\<^sub>F (x, y) in G. Z y \<and> B x y"
1526        and "(\<lambda>(x, z). X x \<and> Z z \<and> (A OO B) x z) \<le> (\<lambda>(x, z). P x \<and> (A OO B) x z)"
1527        using F G by(auto simp add: eventually_map_filter_on split_def)
1528      from step[OF this(1, 2)] this(3)
1529      show ?rhs by(clarsimp elim!: eventually_rev_mp simp add: le_fun_def)(fastforce intro: always_eventually)
1530    qed
1531    then show "map_filter_on ?AB fst Y = ?X"
1532      by(simp add: filter_eq_iff YY eventually_map_filter_on)(simp add: eventually_Y eventually_map_filter_on F G; simp add: split_def)
1533
1534    have "?Y (\<lambda>(x, z). P z \<and> (A OO B) x z) \<longleftrightarrow> (\<forall>\<^sub>F (x, y) in G. P y \<and> B x y)" (is "?lhs = ?rhs") for P
1535    proof
1536      show ?lhs if ?rhs using G F that
1537        by(auto 4 3 intro: exI[where x="\<lambda>_. True"] simp add: eventually_map_filter_on split_def)
1538      assume ?lhs
1539      then obtain X Z where "\<forall>\<^sub>F (x, y) in F. X x \<and> A x y"
1540        and "\<forall>\<^sub>F (x, y) in G. Z y \<and> B x y"
1541        and "(\<lambda>(x, z). X x \<and> Z z \<and> (A OO B) x z) \<le> (\<lambda>(x, z). P z \<and> (A OO B) x z)"
1542        using F G by(auto simp add: eventually_map_filter_on split_def)
1543      from step[OF this(1, 2)] this(3)
1544      show ?rhs by(clarsimp elim!: eventually_rev_mp simp add: le_fun_def)(fastforce intro: always_eventually)
1545    qed
1546    then show "map_filter_on ?AB snd Y = ?Z"
1547      by(simp add: filter_eq_iff YY eventually_map_filter_on)(simp add: eventually_Y eventually_map_filter_on F G; simp add: split_def)
1548  qed
1549qed
1550
1551lemma filtermap_parametric: "((A ===> B) ===> rel_filter A ===> rel_filter B) filtermap filtermap"
1552proof(intro rel_funI; erule rel_filter.cases; hypsubst)
1553  fix f g Z
1554  assume fg: "(A ===> B) f g" and Z: "\<forall>\<^sub>F (x, y) in Z. A x y"
1555  have "rel_filter B (map_filter_on {(x, y). A x y} (f \<circ> fst) Z) (map_filter_on {(x, y). A x y} (g \<circ> snd) Z)"
1556    (is "rel_filter _ ?F ?G")
1557  proof
1558    let ?Z = "map_filter_on {(x, y). A x y} (map_prod f g) Z"
1559    show "\<forall>\<^sub>F (x, y) in ?Z. B x y" using fg Z
1560      by(auto simp add: eventually_map_filter_on split_def elim!: eventually_mono rel_funD)
1561    have [simp]: "map_prod f g ` {p. A (fst p) (snd p)} \<subseteq> {p. B (fst p) (snd p)}"
1562      using fg by(auto dest: rel_funD)
1563    show "map_filter_on {(x, y). B x y} fst ?Z = ?F" "map_filter_on {(x, y). B x y} snd ?Z = ?G"
1564      using Z by(auto simp add: map_filter_on_comp split_def)
1565  qed
1566  thus "rel_filter B (filtermap f (map_filter_on {(x, y). A x y} fst Z)) (filtermap g (map_filter_on {(x, y). A x y} snd Z))"
1567    using Z by(simp add: map_filter_on_UNIV[symmetric] map_filter_on_comp)
1568qed
1569
1570lemma rel_filter_Grp: "rel_filter (Grp UNIV f) = Grp UNIV (filtermap f)"
1571proof((intro antisym predicate2I; (elim GrpE; hypsubst)?), rule GrpI[OF _ UNIV_I])
1572  fix F G
1573  assume "rel_filter (Grp UNIV f) F G"
1574  hence "rel_filter (=) (filtermap f F) (filtermap id G)"
1575    by(rule filtermap_parametric[THEN rel_funD, THEN rel_funD, rotated])(simp add: Grp_def rel_fun_def)
1576  thus "filtermap f F = G" by(simp add: rel_filter_eq)
1577next
1578  fix F :: "'a filter"
1579  have "rel_filter (=) F F" by(simp add: rel_filter_eq)
1580  hence "rel_filter (Grp UNIV f) (filtermap id F) (filtermap f F)"
1581    by(rule filtermap_parametric[THEN rel_funD, THEN rel_funD, rotated])(simp add: Grp_def rel_fun_def)
1582  thus "rel_filter (Grp UNIV f) F (filtermap f F)" by simp
1583qed
1584
1585lemma Quotient_filter [quot_map]:
1586  "Quotient R Abs Rep T \<Longrightarrow> Quotient (rel_filter R) (filtermap Abs) (filtermap Rep) (rel_filter T)"
1587  unfolding Quotient_alt_def5 rel_filter_eq[symmetric] rel_filter_Grp[symmetric]
1588  by(simp add: rel_filter_distr[symmetric] rel_filter_conversep[symmetric] rel_filter_mono)
1589
1590lemma left_total_rel_filter [transfer_rule]: "left_total A \<Longrightarrow> left_total (rel_filter A)"
1591unfolding left_total_alt_def rel_filter_eq[symmetric] rel_filter_conversep[symmetric] rel_filter_distr
1592by(rule rel_filter_mono)
1593
1594lemma right_total_rel_filter [transfer_rule]: "right_total A \<Longrightarrow> right_total (rel_filter A)"
1595using left_total_rel_filter[of "A\<inverse>\<inverse>"] by(simp add: rel_filter_conversep)
1596
1597lemma bi_total_rel_filter [transfer_rule]: "bi_total A \<Longrightarrow> bi_total (rel_filter A)"
1598unfolding bi_total_alt_def by(simp add: left_total_rel_filter right_total_rel_filter)
1599
1600lemma left_unique_rel_filter [transfer_rule]: "left_unique A \<Longrightarrow> left_unique (rel_filter A)"
1601unfolding left_unique_alt_def rel_filter_eq[symmetric] rel_filter_conversep[symmetric] rel_filter_distr
1602by(rule rel_filter_mono)
1603
1604lemma right_unique_rel_filter [transfer_rule]:
1605  "right_unique A \<Longrightarrow> right_unique (rel_filter A)"
1606using left_unique_rel_filter[of "A\<inverse>\<inverse>"] by(simp add: rel_filter_conversep)
1607
1608lemma bi_unique_rel_filter [transfer_rule]: "bi_unique A \<Longrightarrow> bi_unique (rel_filter A)"
1609by(simp add: bi_unique_alt_def left_unique_rel_filter right_unique_rel_filter)
1610
1611lemma eventually_parametric [transfer_rule]:
1612  "((A ===> (=)) ===> rel_filter A ===> (=)) eventually eventually"
1613by(auto 4 4 intro!: rel_funI elim!: rel_filter.cases simp add: eventually_map_filter_on dest: rel_funD intro: always_eventually elim!: eventually_rev_mp)
1614
1615lemma frequently_parametric [transfer_rule]: "((A ===> (=)) ===> rel_filter A ===> (=)) frequently frequently"
1616  unfolding frequently_def[abs_def] by transfer_prover
1617
1618lemma is_filter_parametric [transfer_rule]:
1619  assumes [transfer_rule]: "bi_total A"
1620  assumes [transfer_rule]: "bi_unique A"
1621  shows "(((A ===> (=)) ===> (=)) ===> (=)) is_filter is_filter"
1622  unfolding is_filter_def by transfer_prover
1623
1624lemma top_filter_parametric [transfer_rule]: "rel_filter A top top" if "bi_total A"
1625proof
1626  let ?Z = "principal {(x, y). A x y}"
1627  show "\<forall>\<^sub>F (x, y) in ?Z. A x y" by(simp add: eventually_principal)
1628  show "map_filter_on {(x, y). A x y} fst ?Z = top" "map_filter_on {(x, y). A x y} snd ?Z = top"
1629    using that by(auto simp add: filter_eq_iff eventually_map_filter_on eventually_principal bi_total_def)
1630qed
1631
1632lemma bot_filter_parametric [transfer_rule]: "rel_filter A bot bot"
1633proof
1634  show "\<forall>\<^sub>F (x, y) in bot. A x y" by simp
1635  show "map_filter_on {(x, y). A x y} fst bot = bot" "map_filter_on {(x, y). A x y} snd bot = bot"
1636    by(simp_all add: filter_eq_iff eventually_map_filter_on)
1637qed
1638
1639lemma principal_parametric [transfer_rule]: "(rel_set A ===> rel_filter A) principal principal"
1640proof(rule rel_funI rel_filter.intros)+
1641  fix S S'
1642  assume *: "rel_set A S S'"
1643  define SS' where "SS' = S \<times> S' \<inter> {(x, y). A x y}"
1644  have SS': "SS' \<subseteq> {(x, y). A x y}" and [simp]: "S = fst ` SS'" "S' = snd ` SS'"
1645    using * by(auto 4 3 dest: rel_setD1 rel_setD2 intro: rev_image_eqI simp add: SS'_def)
1646  let ?Z = "principal SS'"
1647  show "\<forall>\<^sub>F (x, y) in ?Z. A x y" using SS' by(auto simp add: eventually_principal)
1648  then show "map_filter_on {(x, y). A x y} fst ?Z = principal S"
1649    and "map_filter_on {(x, y). A x y} snd ?Z = principal S'"
1650    by(auto simp add: filter_eq_iff eventually_map_filter_on eventually_principal)
1651qed
1652
1653lemma sup_filter_parametric [transfer_rule]:
1654  "(rel_filter A ===> rel_filter A ===> rel_filter A) sup sup"
1655proof(intro rel_funI; elim rel_filter.cases; hypsubst)
1656  show "rel_filter A
1657    (map_filter_on {(x, y). A x y} fst FG \<squnion> map_filter_on {(x, y). A x y} fst FG')
1658    (map_filter_on {(x, y). A x y} snd FG \<squnion> map_filter_on {(x, y). A x y} snd FG')"
1659    (is "rel_filter _ (sup ?F ?G) (sup ?F' ?G')")
1660    if "\<forall>\<^sub>F (x, y) in FG. A x y" "\<forall>\<^sub>F (x, y) in FG'. A x y" for FG FG'
1661  proof
1662    let ?Z = "sup FG FG'"
1663    show "\<forall>\<^sub>F (x, y) in ?Z. A x y" by(simp add: eventually_sup that)
1664    then show "map_filter_on {(x, y). A x y} fst ?Z = sup ?F ?G" 
1665      and "map_filter_on {(x, y). A x y} snd ?Z = sup ?F' ?G'"
1666      by(simp_all add: filter_eq_iff eventually_map_filter_on eventually_sup)
1667  qed
1668qed
1669
1670lemma Sup_filter_parametric [transfer_rule]: "(rel_set (rel_filter A) ===> rel_filter A) Sup Sup"
1671proof(rule rel_funI)
1672  fix S S'
1673  define SS' where "SS' = S \<times> S' \<inter> {(F, G). rel_filter A F G}"
1674  assume "rel_set (rel_filter A) S S'"
1675  then have SS': "SS' \<subseteq> {(F, G). rel_filter A F G}" and [simp]: "S = fst ` SS'" "S' = snd ` SS'"
1676    by(auto 4 3 dest: rel_setD1 rel_setD2 intro: rev_image_eqI simp add: SS'_def)
1677  from SS' obtain Z where Z: "\<And>F G. (F, G) \<in> SS' \<Longrightarrow>
1678    (\<forall>\<^sub>F (x, y) in Z F G. A x y) \<and>
1679    id F = map_filter_on {(x, y). A x y} fst (Z F G) \<and>
1680    id G = map_filter_on {(x, y). A x y} snd (Z F G)"
1681    unfolding rel_filter.simps by atomize_elim((rule choice allI)+; auto)
1682  have id: "eventually P F = eventually P (id F)" "eventually Q G = eventually Q (id G)"
1683    if "(F, G) \<in> SS'" for P Q F G by simp_all
1684  show "rel_filter A (Sup S) (Sup S')"
1685  proof
1686    let ?Z = "SUP (F, G):SS'. Z F G"
1687    show *: "\<forall>\<^sub>F (x, y) in ?Z. A x y" using Z by(auto simp add: eventually_Sup)
1688    show "map_filter_on {(x, y). A x y} fst ?Z = Sup S" "map_filter_on {(x, y). A x y} snd ?Z = Sup S'"
1689      unfolding filter_eq_iff
1690      by(auto 4 4 simp add: id eventually_Sup eventually_map_filter_on *[simplified eventually_Sup] simp del: id_apply dest: Z)
1691  qed
1692qed
1693
1694context
1695  fixes A :: "'a \<Rightarrow> 'b \<Rightarrow> bool"
1696  assumes [transfer_rule]: "bi_unique A"
1697begin
1698
1699lemma le_filter_parametric [transfer_rule]:
1700  "(rel_filter A ===> rel_filter A ===> (=)) (\<le>) (\<le>)"
1701unfolding le_filter_def[abs_def] by transfer_prover
1702
1703lemma less_filter_parametric [transfer_rule]:
1704  "(rel_filter A ===> rel_filter A ===> (=)) (<) (<)"
1705unfolding less_filter_def[abs_def] by transfer_prover
1706
1707context
1708  assumes [transfer_rule]: "bi_total A"
1709begin
1710
1711lemma Inf_filter_parametric [transfer_rule]:
1712  "(rel_set (rel_filter A) ===> rel_filter A) Inf Inf"
1713unfolding Inf_filter_def[abs_def] by transfer_prover
1714
1715lemma inf_filter_parametric [transfer_rule]:
1716  "(rel_filter A ===> rel_filter A ===> rel_filter A) inf inf"
1717proof(intro rel_funI)+
1718  fix F F' G G'
1719  assume [transfer_rule]: "rel_filter A F F'" "rel_filter A G G'"
1720  have "rel_filter A (Inf {F, G}) (Inf {F', G'})" by transfer_prover
1721  thus "rel_filter A (inf F G) (inf F' G')" by simp
1722qed
1723
1724end
1725
1726end
1727
1728end
1729
1730lemma prod_filter_parametric [transfer_rule]: includes lifting_syntax shows
1731   "(rel_filter R ===> rel_filter S ===> rel_filter (rel_prod R S)) prod_filter prod_filter"
1732proof(intro rel_funI; elim rel_filter.cases; hypsubst)
1733  fix F G
1734  assume F: "\<forall>\<^sub>F (x, y) in F. R x y" and G: "\<forall>\<^sub>F (x, y) in G. S x y"
1735  show "rel_filter (rel_prod R S)
1736    (map_filter_on {(x, y). R x y} fst F \<times>\<^sub>F map_filter_on {(x, y). S x y} fst G)
1737    (map_filter_on {(x, y). R x y} snd F \<times>\<^sub>F map_filter_on {(x, y). S x y} snd G)"
1738    (is "rel_filter ?RS ?F ?G")
1739  proof
1740    let ?Z = "filtermap (\<lambda>((a, b), (a', b')). ((a, a'), (b, b'))) (prod_filter F G)"
1741    show *: "\<forall>\<^sub>F (x, y) in ?Z. rel_prod R S x y" using F G
1742      by(auto simp add: eventually_filtermap split_beta eventually_prod_filter)
1743    show "map_filter_on {(x, y). ?RS x y} fst ?Z = ?F"
1744      using F G
1745      apply(clarsimp simp add: filter_eq_iff eventually_map_filter_on *)
1746      apply(simp add: eventually_filtermap split_beta eventually_prod_filter)
1747      apply(subst eventually_map_filter_on; simp)+
1748      apply(rule iffI; clarsimp)
1749      subgoal for P P' P''
1750        apply(rule exI[where x="\<lambda>a. \<exists>b. P' (a, b) \<and> R a b"]; rule conjI)
1751        subgoal by(fastforce elim: eventually_rev_mp eventually_mono)
1752        subgoal
1753          by(rule exI[where x="\<lambda>a. \<exists>b. P'' (a, b) \<and> S a b"])(fastforce elim: eventually_rev_mp eventually_mono)
1754        done
1755      subgoal by fastforce
1756      done
1757    show "map_filter_on {(x, y). ?RS x y} snd ?Z = ?G"
1758      using F G
1759      apply(clarsimp simp add: filter_eq_iff eventually_map_filter_on *)
1760      apply(simp add: eventually_filtermap split_beta eventually_prod_filter)
1761      apply(subst eventually_map_filter_on; simp)+
1762      apply(rule iffI; clarsimp)
1763      subgoal for P P' P''
1764        apply(rule exI[where x="\<lambda>b. \<exists>a. P' (a, b) \<and> R a b"]; rule conjI)
1765        subgoal by(fastforce elim: eventually_rev_mp eventually_mono)
1766        subgoal
1767          by(rule exI[where x="\<lambda>b. \<exists>a. P'' (a, b) \<and> S a b"])(fastforce elim: eventually_rev_mp eventually_mono)
1768        done
1769      subgoal by fastforce
1770      done
1771  qed
1772qed
1773
1774text \<open>Code generation for filters\<close>
1775
1776definition abstract_filter :: "(unit \<Rightarrow> 'a filter) \<Rightarrow> 'a filter"
1777  where [simp]: "abstract_filter f = f ()"
1778
1779code_datatype principal abstract_filter
1780
1781hide_const (open) abstract_filter
1782
1783declare [[code drop: filterlim prod_filter filtermap eventually
1784  "inf :: _ filter \<Rightarrow> _" "sup :: _ filter \<Rightarrow> _" "less_eq :: _ filter \<Rightarrow> _"
1785  Abs_filter]]
1786
1787declare filterlim_principal [code]
1788declare principal_prod_principal [code]
1789declare filtermap_principal [code]
1790declare filtercomap_principal [code]
1791declare eventually_principal [code]
1792declare inf_principal [code]
1793declare sup_principal [code]
1794declare principal_le_iff [code]
1795
1796lemma Rep_filter_iff_eventually [simp, code]:
1797  "Rep_filter F P \<longleftrightarrow> eventually P F"
1798  by (simp add: eventually_def)
1799
1800lemma bot_eq_principal_empty [code]:
1801  "bot = principal {}"
1802  by simp
1803
1804lemma top_eq_principal_UNIV [code]:
1805  "top = principal UNIV"
1806  by simp
1807
1808instantiation filter :: (equal) equal
1809begin
1810
1811definition equal_filter :: "'a filter \<Rightarrow> 'a filter \<Rightarrow> bool"
1812  where "equal_filter F F' \<longleftrightarrow> F = F'"
1813
1814lemma equal_filter [code]:
1815  "HOL.equal (principal A) (principal B) \<longleftrightarrow> A = B"
1816  by (simp add: equal_filter_def)
1817
1818instance
1819  by standard (simp add: equal_filter_def)
1820
1821end
1822
1823end
1824