1(*  Title:      HOL/Deriv.thy
2    Author:     Jacques D. Fleuriot, University of Cambridge, 1998
3    Author:     Brian Huffman
4    Author:     Lawrence C Paulson, 2004
5    Author:     Benjamin Porter, 2005
6*)
7
8section \<open>Differentiation\<close>
9
10theory Deriv
11  imports Limits
12begin
13
14subsection \<open>Frechet derivative\<close>
15
16definition has_derivative :: "('a::real_normed_vector \<Rightarrow> 'b::real_normed_vector) \<Rightarrow>
17    ('a \<Rightarrow> 'b) \<Rightarrow> 'a filter \<Rightarrow> bool"  (infix "(has'_derivative)" 50)
18  where "(f has_derivative f') F \<longleftrightarrow>
19    bounded_linear f' \<and>
20    ((\<lambda>y. ((f y - f (Lim F (\<lambda>x. x))) - f' (y - Lim F (\<lambda>x. x))) /\<^sub>R norm (y - Lim F (\<lambda>x. x))) \<longlongrightarrow> 0) F"
21
22text \<open>
23  Usually the filter @{term F} is @{term "at x within s"}.  @{term "(f has_derivative D)
24  (at x within s)"} means: @{term D} is the derivative of function @{term f} at point @{term x}
25  within the set @{term s}. Where @{term s} is used to express left or right sided derivatives. In
26  most cases @{term s} is either a variable or @{term UNIV}.
27\<close>
28
29text \<open>These are the only cases we'll care about, probably.\<close>
30
31lemma has_derivative_within: "(f has_derivative f') (at x within s) \<longleftrightarrow>
32    bounded_linear f' \<and> ((\<lambda>y. (1 / norm(y - x)) *\<^sub>R (f y - (f x + f' (y - x)))) \<longlongrightarrow> 0) (at x within s)"
33  unfolding has_derivative_def tendsto_iff
34  by (subst eventually_Lim_ident_at) (auto simp add: field_simps)
35
36lemma has_derivative_eq_rhs: "(f has_derivative f') F \<Longrightarrow> f' = g' \<Longrightarrow> (f has_derivative g') F"
37  by simp
38
39definition has_field_derivative :: "('a::real_normed_field \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a filter \<Rightarrow> bool"
40    (infix "(has'_field'_derivative)" 50)
41  where "(f has_field_derivative D) F \<longleftrightarrow> (f has_derivative ( * ) D) F"
42
43lemma DERIV_cong: "(f has_field_derivative X) F \<Longrightarrow> X = Y \<Longrightarrow> (f has_field_derivative Y) F"
44  by simp
45
46definition has_vector_derivative :: "(real \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'b \<Rightarrow> real filter \<Rightarrow> bool"
47    (infix "has'_vector'_derivative" 50)
48  where "(f has_vector_derivative f') net \<longleftrightarrow> (f has_derivative (\<lambda>x. x *\<^sub>R f')) net"
49
50lemma has_vector_derivative_eq_rhs:
51  "(f has_vector_derivative X) F \<Longrightarrow> X = Y \<Longrightarrow> (f has_vector_derivative Y) F"
52  by simp
53
54named_theorems derivative_intros "structural introduction rules for derivatives"
55setup \<open>
56  let
57    val eq_thms = @{thms has_derivative_eq_rhs DERIV_cong has_vector_derivative_eq_rhs}
58    fun eq_rule thm = get_first (try (fn eq_thm => eq_thm OF [thm])) eq_thms
59  in
60    Global_Theory.add_thms_dynamic
61      (\<^binding>\<open>derivative_eq_intros\<close>,
62        fn context =>
63          Named_Theorems.get (Context.proof_of context) @{named_theorems derivative_intros}
64          |> map_filter eq_rule)
65  end;
66\<close>
67
68text \<open>
69  The following syntax is only used as a legacy syntax.
70\<close>
71abbreviation (input)
72  FDERIV :: "('a::real_normed_vector \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'a \<Rightarrow>  ('a \<Rightarrow> 'b) \<Rightarrow> bool"
73  ("(FDERIV (_)/ (_)/ :> (_))" [1000, 1000, 60] 60)
74  where "FDERIV f x :> f' \<equiv> (f has_derivative f') (at x)"
75
76lemma has_derivative_bounded_linear: "(f has_derivative f') F \<Longrightarrow> bounded_linear f'"
77  by (simp add: has_derivative_def)
78
79lemma has_derivative_linear: "(f has_derivative f') F \<Longrightarrow> linear f'"
80  using bounded_linear.linear[OF has_derivative_bounded_linear] .
81
82lemma has_derivative_ident[derivative_intros, simp]: "((\<lambda>x. x) has_derivative (\<lambda>x. x)) F"
83  by (simp add: has_derivative_def)
84
85lemma has_derivative_id [derivative_intros, simp]: "(id has_derivative id) (at a)"
86  by (metis eq_id_iff has_derivative_ident)
87
88lemma has_derivative_const[derivative_intros, simp]: "((\<lambda>x. c) has_derivative (\<lambda>x. 0)) F"
89  by (simp add: has_derivative_def)
90
91lemma (in bounded_linear) bounded_linear: "bounded_linear f" ..
92
93lemma (in bounded_linear) has_derivative:
94  "(g has_derivative g') F \<Longrightarrow> ((\<lambda>x. f (g x)) has_derivative (\<lambda>x. f (g' x))) F"
95  unfolding has_derivative_def
96  by (auto simp add: bounded_linear_compose [OF bounded_linear] scaleR diff dest: tendsto)
97
98lemmas has_derivative_scaleR_right [derivative_intros] =
99  bounded_linear.has_derivative [OF bounded_linear_scaleR_right]
100
101lemmas has_derivative_scaleR_left [derivative_intros] =
102  bounded_linear.has_derivative [OF bounded_linear_scaleR_left]
103
104lemmas has_derivative_mult_right [derivative_intros] =
105  bounded_linear.has_derivative [OF bounded_linear_mult_right]
106
107lemmas has_derivative_mult_left [derivative_intros] =
108  bounded_linear.has_derivative [OF bounded_linear_mult_left]
109
110lemma has_derivative_add[simp, derivative_intros]:
111  assumes f: "(f has_derivative f') F"
112    and g: "(g has_derivative g') F"
113  shows "((\<lambda>x. f x + g x) has_derivative (\<lambda>x. f' x + g' x)) F"
114  unfolding has_derivative_def
115proof safe
116  let ?x = "Lim F (\<lambda>x. x)"
117  let ?D = "\<lambda>f f' y. ((f y - f ?x) - f' (y - ?x)) /\<^sub>R norm (y - ?x)"
118  have "((\<lambda>x. ?D f f' x + ?D g g' x) \<longlongrightarrow> (0 + 0)) F"
119    using f g by (intro tendsto_add) (auto simp: has_derivative_def)
120  then show "(?D (\<lambda>x. f x + g x) (\<lambda>x. f' x + g' x) \<longlongrightarrow> 0) F"
121    by (simp add: field_simps scaleR_add_right scaleR_diff_right)
122qed (blast intro: bounded_linear_add f g has_derivative_bounded_linear)
123
124lemma has_derivative_sum[simp, derivative_intros]:
125  "(\<And>i. i \<in> I \<Longrightarrow> (f i has_derivative f' i) F) \<Longrightarrow>
126    ((\<lambda>x. \<Sum>i\<in>I. f i x) has_derivative (\<lambda>x. \<Sum>i\<in>I. f' i x)) F"
127  by (induct I rule: infinite_finite_induct) simp_all
128
129lemma has_derivative_minus[simp, derivative_intros]:
130  "(f has_derivative f') F \<Longrightarrow> ((\<lambda>x. - f x) has_derivative (\<lambda>x. - f' x)) F"
131  using has_derivative_scaleR_right[of f f' F "-1"] by simp
132
133lemma has_derivative_diff[simp, derivative_intros]:
134  "(f has_derivative f') F \<Longrightarrow> (g has_derivative g') F \<Longrightarrow>
135    ((\<lambda>x. f x - g x) has_derivative (\<lambda>x. f' x - g' x)) F"
136  by (simp only: diff_conv_add_uminus has_derivative_add has_derivative_minus)
137
138lemma has_derivative_at_within:
139  "(f has_derivative f') (at x within s) \<longleftrightarrow>
140    (bounded_linear f' \<and> ((\<lambda>y. ((f y - f x) - f' (y - x)) /\<^sub>R norm (y - x)) \<longlongrightarrow> 0) (at x within s))"
141  by (cases "at x within s = bot") (simp_all add: has_derivative_def Lim_ident_at)
142
143lemma has_derivative_iff_norm:
144  "(f has_derivative f') (at x within s) \<longleftrightarrow>
145    bounded_linear f' \<and> ((\<lambda>y. norm ((f y - f x) - f' (y - x)) / norm (y - x)) \<longlongrightarrow> 0) (at x within s)"
146  using tendsto_norm_zero_iff[of _ "at x within s", where 'b="'b", symmetric]
147  by (simp add: has_derivative_at_within divide_inverse ac_simps)
148
149lemma has_derivative_at:
150  "(f has_derivative D) (at x) \<longleftrightarrow>
151    (bounded_linear D \<and> (\<lambda>h. norm (f (x + h) - f x - D h) / norm h) \<midarrow>0\<rightarrow> 0)"
152  unfolding has_derivative_iff_norm LIM_offset_zero_iff[of _ _ x] by simp
153
154lemma field_has_derivative_at:
155  fixes x :: "'a::real_normed_field"
156  shows "(f has_derivative ( * ) D) (at x) \<longleftrightarrow> (\<lambda>h. (f (x + h) - f x) / h) \<midarrow>0\<rightarrow> D" (is "?lhs = ?rhs")
157proof -
158  have "?lhs = (\<lambda>h. norm (f (x + h) - f x - D * h) / norm h) \<midarrow>0 \<rightarrow> 0"
159    by (simp add: bounded_linear_mult_right has_derivative_at)
160  also have "... = (\<lambda>y. norm ((f (x + y) - f x - D * y) / y)) \<midarrow>0\<rightarrow> 0"
161    by (simp cong: LIM_cong flip: nonzero_norm_divide)
162  also have "... = (\<lambda>y. norm ((f (x + y) - f x) / y - D / y * y)) \<midarrow>0\<rightarrow> 0"
163    by (simp only: diff_divide_distrib times_divide_eq_left [symmetric])
164  also have "... = ?rhs"
165    by (simp add: tendsto_norm_zero_iff LIM_zero_iff cong: LIM_cong)
166  finally show ?thesis .
167qed
168
169lemma has_derivativeI:
170  "bounded_linear f' \<Longrightarrow>
171    ((\<lambda>y. ((f y - f x) - f' (y - x)) /\<^sub>R norm (y - x)) \<longlongrightarrow> 0) (at x within s) \<Longrightarrow>
172    (f has_derivative f') (at x within s)"
173  by (simp add: has_derivative_at_within)
174
175lemma has_derivativeI_sandwich:
176  assumes e: "0 < e"
177    and bounded: "bounded_linear f'"
178    and sandwich: "(\<And>y. y \<in> s \<Longrightarrow> y \<noteq> x \<Longrightarrow> dist y x < e \<Longrightarrow>
179      norm ((f y - f x) - f' (y - x)) / norm (y - x) \<le> H y)"
180    and "(H \<longlongrightarrow> 0) (at x within s)"
181  shows "(f has_derivative f') (at x within s)"
182  unfolding has_derivative_iff_norm
183proof safe
184  show "((\<lambda>y. norm (f y - f x - f' (y - x)) / norm (y - x)) \<longlongrightarrow> 0) (at x within s)"
185  proof (rule tendsto_sandwich[where f="\<lambda>x. 0"])
186    show "(H \<longlongrightarrow> 0) (at x within s)" by fact
187    show "eventually (\<lambda>n. norm (f n - f x - f' (n - x)) / norm (n - x) \<le> H n) (at x within s)"
188      unfolding eventually_at using e sandwich by auto
189  qed (auto simp: le_divide_eq)
190qed fact
191
192lemma has_derivative_subset:
193  "(f has_derivative f') (at x within s) \<Longrightarrow> t \<subseteq> s \<Longrightarrow> (f has_derivative f') (at x within t)"
194  by (auto simp add: has_derivative_iff_norm intro: tendsto_within_subset)
195
196lemmas has_derivative_within_subset = has_derivative_subset
197
198lemma has_derivative_within_singleton_iff:
199  "(f has_derivative g) (at x within {x}) \<longleftrightarrow> bounded_linear g"
200  by (auto intro!: has_derivativeI_sandwich[where e=1] has_derivative_bounded_linear)
201
202
203subsubsection \<open>Limit transformation for derivatives\<close>
204
205lemma has_derivative_transform_within:
206  assumes "(f has_derivative f') (at x within s)"
207    and "0 < d"
208    and "x \<in> s"
209    and "\<And>x'. \<lbrakk>x' \<in> s; dist x' x < d\<rbrakk> \<Longrightarrow> f x' = g x'"
210  shows "(g has_derivative f') (at x within s)"
211  using assms
212  unfolding has_derivative_within
213  by (force simp add: intro: Lim_transform_within)
214
215lemma has_derivative_transform_within_open:
216  assumes "(f has_derivative f') (at x within t)"
217    and "open s"
218    and "x \<in> s"
219    and "\<And>x. x\<in>s \<Longrightarrow> f x = g x"
220  shows "(g has_derivative f') (at x within t)"
221  using assms unfolding has_derivative_within
222  by (force simp add: intro: Lim_transform_within_open)
223
224lemma has_derivative_transform:
225  assumes "x \<in> s" "\<And>x. x \<in> s \<Longrightarrow> g x = f x"
226  assumes "(f has_derivative f') (at x within s)"
227  shows "(g has_derivative f') (at x within s)"
228  using assms
229  by (intro has_derivative_transform_within[OF _ zero_less_one, where g=g]) auto
230
231lemma has_derivative_transform_eventually:
232  assumes "(f has_derivative f') (at x within s)"
233    "(\<forall>\<^sub>F x' in at x within s. f x' = g x')"
234  assumes "f x = g x" "x \<in> s"
235  shows "(g has_derivative f') (at x within s)"
236  using assms
237proof -
238  from assms(2,3) obtain d where "d > 0" "\<And>x'. x' \<in> s \<Longrightarrow> dist x' x < d \<Longrightarrow> f x' = g x'"
239    by (force simp: eventually_at)
240  from has_derivative_transform_within[OF assms(1) this(1) assms(4) this(2)]
241  show ?thesis .
242qed
243
244
245subsection \<open>Continuity\<close>
246
247lemma has_derivative_continuous:
248  assumes f: "(f has_derivative f') (at x within s)"
249  shows "continuous (at x within s) f"
250proof -
251  from f interpret F: bounded_linear f'
252    by (rule has_derivative_bounded_linear)
253  note F.tendsto[tendsto_intros]
254  let ?L = "\<lambda>f. (f \<longlongrightarrow> 0) (at x within s)"
255  have "?L (\<lambda>y. norm ((f y - f x) - f' (y - x)) / norm (y - x))"
256    using f unfolding has_derivative_iff_norm by blast
257  then have "?L (\<lambda>y. norm ((f y - f x) - f' (y - x)) / norm (y - x) * norm (y - x))" (is ?m)
258    by (rule tendsto_mult_zero) (auto intro!: tendsto_eq_intros)
259  also have "?m \<longleftrightarrow> ?L (\<lambda>y. norm ((f y - f x) - f' (y - x)))"
260    by (intro filterlim_cong) (simp_all add: eventually_at_filter)
261  finally have "?L (\<lambda>y. (f y - f x) - f' (y - x))"
262    by (rule tendsto_norm_zero_cancel)
263  then have "?L (\<lambda>y. ((f y - f x) - f' (y - x)) + f' (y - x))"
264    by (rule tendsto_eq_intros) (auto intro!: tendsto_eq_intros simp: F.zero)
265  then have "?L (\<lambda>y. f y - f x)"
266    by simp
267  from tendsto_add[OF this tendsto_const, of "f x"] show ?thesis
268    by (simp add: continuous_within)
269qed
270
271
272subsection \<open>Composition\<close>
273
274lemma tendsto_at_iff_tendsto_nhds_within:
275  "f x = y \<Longrightarrow> (f \<longlongrightarrow> y) (at x within s) \<longleftrightarrow> (f \<longlongrightarrow> y) (inf (nhds x) (principal s))"
276  unfolding tendsto_def eventually_inf_principal eventually_at_filter
277  by (intro ext all_cong imp_cong) (auto elim!: eventually_mono)
278
279lemma has_derivative_in_compose:
280  assumes f: "(f has_derivative f') (at x within s)"
281    and g: "(g has_derivative g') (at (f x) within (f`s))"
282  shows "((\<lambda>x. g (f x)) has_derivative (\<lambda>x. g' (f' x))) (at x within s)"
283proof -
284  from f interpret F: bounded_linear f'
285    by (rule has_derivative_bounded_linear)
286  from g interpret G: bounded_linear g'
287    by (rule has_derivative_bounded_linear)
288  from F.bounded obtain kF where kF: "\<And>x. norm (f' x) \<le> norm x * kF"
289    by fast
290  from G.bounded obtain kG where kG: "\<And>x. norm (g' x) \<le> norm x * kG"
291    by fast
292  note G.tendsto[tendsto_intros]
293
294  let ?L = "\<lambda>f. (f \<longlongrightarrow> 0) (at x within s)"
295  let ?D = "\<lambda>f f' x y. (f y - f x) - f' (y - x)"
296  let ?N = "\<lambda>f f' x y. norm (?D f f' x y) / norm (y - x)"
297  let ?gf = "\<lambda>x. g (f x)" and ?gf' = "\<lambda>x. g' (f' x)"
298  define Nf where "Nf = ?N f f' x"
299  define Ng where [abs_def]: "Ng y = ?N g g' (f x) (f y)" for y
300
301  show ?thesis
302  proof (rule has_derivativeI_sandwich[of 1])
303    show "bounded_linear (\<lambda>x. g' (f' x))"
304      using f g by (blast intro: bounded_linear_compose has_derivative_bounded_linear)
305  next
306    fix y :: 'a
307    assume neq: "y \<noteq> x"
308    have "?N ?gf ?gf' x y = norm (g' (?D f f' x y) + ?D g g' (f x) (f y)) / norm (y - x)"
309      by (simp add: G.diff G.add field_simps)
310    also have "\<dots> \<le> norm (g' (?D f f' x y)) / norm (y - x) + Ng y * (norm (f y - f x) / norm (y - x))"
311      by (simp add: add_divide_distrib[symmetric] divide_right_mono norm_triangle_ineq G.zero Ng_def)
312    also have "\<dots> \<le> Nf y * kG + Ng y * (Nf y + kF)"
313    proof (intro add_mono mult_left_mono)
314      have "norm (f y - f x) = norm (?D f f' x y + f' (y - x))"
315        by simp
316      also have "\<dots> \<le> norm (?D f f' x y) + norm (f' (y - x))"
317        by (rule norm_triangle_ineq)
318      also have "\<dots> \<le> norm (?D f f' x y) + norm (y - x) * kF"
319        using kF by (intro add_mono) simp
320      finally show "norm (f y - f x) / norm (y - x) \<le> Nf y + kF"
321        by (simp add: neq Nf_def field_simps)
322    qed (use kG in \<open>simp_all add: Ng_def Nf_def neq zero_le_divide_iff field_simps\<close>)
323    finally show "?N ?gf ?gf' x y \<le> Nf y * kG + Ng y * (Nf y + kF)" .
324  next
325    have [tendsto_intros]: "?L Nf"
326      using f unfolding has_derivative_iff_norm Nf_def ..
327    from f have "(f \<longlongrightarrow> f x) (at x within s)"
328      by (blast intro: has_derivative_continuous continuous_within[THEN iffD1])
329    then have f': "LIM x at x within s. f x :> inf (nhds (f x)) (principal (f`s))"
330      unfolding filterlim_def
331      by (simp add: eventually_filtermap eventually_at_filter le_principal)
332
333    have "((?N g  g' (f x)) \<longlongrightarrow> 0) (at (f x) within f`s)"
334      using g unfolding has_derivative_iff_norm ..
335    then have g': "((?N g  g' (f x)) \<longlongrightarrow> 0) (inf (nhds (f x)) (principal (f`s)))"
336      by (rule tendsto_at_iff_tendsto_nhds_within[THEN iffD1, rotated]) simp
337
338    have [tendsto_intros]: "?L Ng"
339      unfolding Ng_def by (rule filterlim_compose[OF g' f'])
340    show "((\<lambda>y. Nf y * kG + Ng y * (Nf y + kF)) \<longlongrightarrow> 0) (at x within s)"
341      by (intro tendsto_eq_intros) auto
342  qed simp
343qed
344
345lemma has_derivative_compose:
346  "(f has_derivative f') (at x within s) \<Longrightarrow> (g has_derivative g') (at (f x)) \<Longrightarrow>
347  ((\<lambda>x. g (f x)) has_derivative (\<lambda>x. g' (f' x))) (at x within s)"
348  by (blast intro: has_derivative_in_compose has_derivative_subset)
349
350lemma has_derivative_in_compose2:
351  assumes "\<And>x. x \<in> t \<Longrightarrow> (g has_derivative g' x) (at x within t)"
352  assumes "f ` s \<subseteq> t" "x \<in> s"
353  assumes "(f has_derivative f') (at x within s)"
354  shows "((\<lambda>x. g (f x)) has_derivative (\<lambda>y. g' (f x) (f' y))) (at x within s)"
355  using assms
356  by (auto intro: has_derivative_within_subset intro!: has_derivative_in_compose[of f f' x s g])
357
358lemma (in bounded_bilinear) FDERIV:
359  assumes f: "(f has_derivative f') (at x within s)" and g: "(g has_derivative g') (at x within s)"
360  shows "((\<lambda>x. f x ** g x) has_derivative (\<lambda>h. f x ** g' h + f' h ** g x)) (at x within s)"
361proof -
362  from bounded_linear.bounded [OF has_derivative_bounded_linear [OF f]]
363  obtain KF where norm_F: "\<And>x. norm (f' x) \<le> norm x * KF" by fast
364
365  from pos_bounded obtain K
366    where K: "0 < K" and norm_prod: "\<And>a b. norm (a ** b) \<le> norm a * norm b * K"
367    by fast
368  let ?D = "\<lambda>f f' y. f y - f x - f' (y - x)"
369  let ?N = "\<lambda>f f' y. norm (?D f f' y) / norm (y - x)"
370  define Ng where "Ng = ?N g g'"
371  define Nf where "Nf = ?N f f'"
372
373  let ?fun1 = "\<lambda>y. norm (f y ** g y - f x ** g x - (f x ** g' (y - x) + f' (y - x) ** g x)) / norm (y - x)"
374  let ?fun2 = "\<lambda>y. norm (f x) * Ng y * K + Nf y * norm (g y) * K + KF * norm (g y - g x) * K"
375  let ?F = "at x within s"
376
377  show ?thesis
378  proof (rule has_derivativeI_sandwich[of 1])
379    show "bounded_linear (\<lambda>h. f x ** g' h + f' h ** g x)"
380      by (intro bounded_linear_add
381        bounded_linear_compose [OF bounded_linear_right] bounded_linear_compose [OF bounded_linear_left]
382        has_derivative_bounded_linear [OF g] has_derivative_bounded_linear [OF f])
383  next
384    from g have "(g \<longlongrightarrow> g x) ?F"
385      by (intro continuous_within[THEN iffD1] has_derivative_continuous)
386    moreover from f g have "(Nf \<longlongrightarrow> 0) ?F" "(Ng \<longlongrightarrow> 0) ?F"
387      by (simp_all add: has_derivative_iff_norm Ng_def Nf_def)
388    ultimately have "(?fun2 \<longlongrightarrow> norm (f x) * 0 * K + 0 * norm (g x) * K + KF * norm (0::'b) * K) ?F"
389      by (intro tendsto_intros) (simp_all add: LIM_zero_iff)
390    then show "(?fun2 \<longlongrightarrow> 0) ?F"
391      by simp
392  next
393    fix y :: 'd
394    assume "y \<noteq> x"
395    have "?fun1 y =
396        norm (f x ** ?D g g' y + ?D f f' y ** g y + f' (y - x) ** (g y - g x)) / norm (y - x)"
397      by (simp add: diff_left diff_right add_left add_right field_simps)
398    also have "\<dots> \<le> (norm (f x) * norm (?D g g' y) * K + norm (?D f f' y) * norm (g y) * K +
399        norm (y - x) * KF * norm (g y - g x) * K) / norm (y - x)"
400      by (intro divide_right_mono mult_mono'
401                order_trans [OF norm_triangle_ineq add_mono]
402                order_trans [OF norm_prod mult_right_mono]
403                mult_nonneg_nonneg order_refl norm_ge_zero norm_F
404                K [THEN order_less_imp_le])
405    also have "\<dots> = ?fun2 y"
406      by (simp add: add_divide_distrib Ng_def Nf_def)
407    finally show "?fun1 y \<le> ?fun2 y" .
408  qed simp
409qed
410
411lemmas has_derivative_mult[simp, derivative_intros] = bounded_bilinear.FDERIV[OF bounded_bilinear_mult]
412lemmas has_derivative_scaleR[simp, derivative_intros] = bounded_bilinear.FDERIV[OF bounded_bilinear_scaleR]
413
414lemma has_derivative_prod[simp, derivative_intros]:
415  fixes f :: "'i \<Rightarrow> 'a::real_normed_vector \<Rightarrow> 'b::real_normed_field"
416  shows "(\<And>i. i \<in> I \<Longrightarrow> (f i has_derivative f' i) (at x within S)) \<Longrightarrow>
417    ((\<lambda>x. \<Prod>i\<in>I. f i x) has_derivative (\<lambda>y. \<Sum>i\<in>I. f' i y * (\<Prod>j\<in>I - {i}. f j x))) (at x within S)"
418proof (induct I rule: infinite_finite_induct)
419  case infinite
420  then show ?case by simp
421next
422  case empty
423  then show ?case by simp
424next
425  case (insert i I)
426  let ?P = "\<lambda>y. f i x * (\<Sum>i\<in>I. f' i y * (\<Prod>j\<in>I - {i}. f j x)) + (f' i y) * (\<Prod>i\<in>I. f i x)"
427  have "((\<lambda>x. f i x * (\<Prod>i\<in>I. f i x)) has_derivative ?P) (at x within S)"
428    using insert by (intro has_derivative_mult) auto
429  also have "?P = (\<lambda>y. \<Sum>i'\<in>insert i I. f' i' y * (\<Prod>j\<in>insert i I - {i'}. f j x))"
430    using insert(1,2)
431    by (auto simp add: sum_distrib_left insert_Diff_if intro!: ext sum.cong)
432  finally show ?case
433    using insert by simp
434qed
435
436lemma has_derivative_power[simp, derivative_intros]:
437  fixes f :: "'a :: real_normed_vector \<Rightarrow> 'b :: real_normed_field"
438  assumes f: "(f has_derivative f') (at x within S)"
439  shows "((\<lambda>x. f x^n) has_derivative (\<lambda>y. of_nat n * f' y * f x^(n - 1))) (at x within S)"
440  using has_derivative_prod[OF f, of "{..< n}"] by (simp add: prod_constant ac_simps)
441
442lemma has_derivative_inverse':
443  fixes x :: "'a::real_normed_div_algebra"
444  assumes x: "x \<noteq> 0"
445  shows "(inverse has_derivative (\<lambda>h. - (inverse x * h * inverse x))) (at x within S)"
446    (is "(_ has_derivative ?f) _")
447proof (rule has_derivativeI_sandwich)
448  show "bounded_linear (\<lambda>h. - (inverse x * h * inverse x))"
449    by (simp add: bounded_linear_minus bounded_linear_mult_const bounded_linear_mult_right)
450  show "0 < norm x" using x by simp
451  have "(inverse \<longlongrightarrow> inverse x) (at x within S)"
452    using tendsto_inverse tendsto_ident_at x by auto
453  then show "((\<lambda>y. norm (inverse y - inverse x) * norm (inverse x)) \<longlongrightarrow> 0) (at x within S)"
454    by (simp add: LIM_zero_iff tendsto_mult_left_zero tendsto_norm_zero)
455next
456  fix y :: 'a
457  assume h: "y \<noteq> x" "dist y x < norm x"
458  then have "y \<noteq> 0" by auto
459  have "norm (inverse y - inverse x - ?f (y -x)) / norm (y - x) 
460        = norm (- (inverse y * (y - x) * inverse x - inverse x * (y - x) * inverse x)) /
461                norm (y - x)"
462    by (simp add: \<open>y \<noteq> 0\<close> inverse_diff_inverse x)
463  also have "... = norm ((inverse y - inverse x) * (y - x) * inverse x) / norm (y - x)"
464    by (simp add: left_diff_distrib norm_minus_commute)
465  also have "\<dots> \<le> norm (inverse y - inverse x) * norm (y - x) * norm (inverse x) / norm (y - x)"
466    by (simp add: norm_mult)
467  also have "\<dots> = norm (inverse y - inverse x) * norm (inverse x)"
468    by simp
469  finally show "norm (inverse y - inverse x - ?f (y -x)) / norm (y - x) \<le>
470    norm (inverse y - inverse x) * norm (inverse x)" .
471qed
472
473lemma has_derivative_inverse[simp, derivative_intros]:
474  fixes f :: "_ \<Rightarrow> 'a::real_normed_div_algebra"
475  assumes x:  "f x \<noteq> 0"
476    and f: "(f has_derivative f') (at x within S)"
477  shows "((\<lambda>x. inverse (f x)) has_derivative (\<lambda>h. - (inverse (f x) * f' h * inverse (f x))))
478    (at x within S)"
479  using has_derivative_compose[OF f has_derivative_inverse', OF x] .
480
481lemma has_derivative_divide[simp, derivative_intros]:
482  fixes f :: "_ \<Rightarrow> 'a::real_normed_div_algebra"
483  assumes f: "(f has_derivative f') (at x within S)"
484    and g: "(g has_derivative g') (at x within S)"
485  assumes x: "g x \<noteq> 0"
486  shows "((\<lambda>x. f x / g x) has_derivative
487                (\<lambda>h. - f x * (inverse (g x) * g' h * inverse (g x)) + f' h / g x)) (at x within S)"
488  using has_derivative_mult[OF f has_derivative_inverse[OF x g]]
489  by (simp add: field_simps)
490
491
492text \<open>Conventional form requires mult-AC laws. Types real and complex only.\<close>
493
494lemma has_derivative_divide'[derivative_intros]:
495  fixes f :: "_ \<Rightarrow> 'a::real_normed_field"
496  assumes f: "(f has_derivative f') (at x within S)"
497    and g: "(g has_derivative g') (at x within S)"
498    and x: "g x \<noteq> 0"
499  shows "((\<lambda>x. f x / g x) has_derivative (\<lambda>h. (f' h * g x - f x * g' h) / (g x * g x))) (at x within S)"
500proof -
501  have "f' h / g x - f x * (inverse (g x) * g' h * inverse (g x)) =
502      (f' h * g x - f x * g' h) / (g x * g x)" for h
503    by (simp add: field_simps x)
504  then show ?thesis
505    using has_derivative_divide [OF f g] x
506    by simp
507qed
508
509
510subsection \<open>Uniqueness\<close>
511
512text \<open>
513This can not generally shown for @{const has_derivative}, as we need to approach the point from
514all directions. There is a proof in \<open>Analysis\<close> for \<open>euclidean_space\<close>.
515\<close>
516
517lemma has_derivative_at2: "(f has_derivative f') (at x) \<longleftrightarrow>
518    bounded_linear f' \<and> ((\<lambda>y. (1 / (norm(y - x))) *\<^sub>R (f y - (f x + f' (y - x)))) \<longlongrightarrow> 0) (at x)"
519  using has_derivative_within [of f f' x UNIV]
520  by simp
521lemma has_derivative_zero_unique:
522  assumes "((\<lambda>x. 0) has_derivative F) (at x)"
523  shows "F = (\<lambda>h. 0)"
524proof -
525  interpret F: bounded_linear F
526    using assms by (rule has_derivative_bounded_linear)
527  let ?r = "\<lambda>h. norm (F h) / norm h"
528  have *: "?r \<midarrow>0\<rightarrow> 0"
529    using assms unfolding has_derivative_at by simp
530  show "F = (\<lambda>h. 0)"
531  proof
532    show "F h = 0" for h
533    proof (rule ccontr)
534      assume **: "\<not> ?thesis"
535      then have h: "h \<noteq> 0"
536        by (auto simp add: F.zero)
537      with ** have "0 < ?r h"
538        by simp
539      from LIM_D [OF * this] obtain S
540        where S: "0 < S" and r: "\<And>x. x \<noteq> 0 \<Longrightarrow> norm x < S \<Longrightarrow> ?r x < ?r h"
541        by auto
542      from dense [OF S] obtain t where t: "0 < t \<and> t < S" ..
543      let ?x = "scaleR (t / norm h) h"
544      have "?x \<noteq> 0" and "norm ?x < S"
545        using t h by simp_all
546      then have "?r ?x < ?r h"
547        by (rule r)
548      then show False
549        using t h by (simp add: F.scaleR)
550    qed
551  qed
552qed
553
554lemma has_derivative_unique:
555  assumes "(f has_derivative F) (at x)"
556    and "(f has_derivative F') (at x)"
557  shows "F = F'"
558proof -
559  have "((\<lambda>x. 0) has_derivative (\<lambda>h. F h - F' h)) (at x)"
560    using has_derivative_diff [OF assms] by simp
561  then have "(\<lambda>h. F h - F' h) = (\<lambda>h. 0)"
562    by (rule has_derivative_zero_unique)
563  then show "F = F'"
564    unfolding fun_eq_iff right_minus_eq .
565qed
566
567
568subsection \<open>Differentiability predicate\<close>
569
570definition differentiable :: "('a::real_normed_vector \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'a filter \<Rightarrow> bool"
571    (infix "differentiable" 50)
572  where "f differentiable F \<longleftrightarrow> (\<exists>D. (f has_derivative D) F)"
573
574lemma differentiable_subset:
575  "f differentiable (at x within s) \<Longrightarrow> t \<subseteq> s \<Longrightarrow> f differentiable (at x within t)"
576  unfolding differentiable_def by (blast intro: has_derivative_subset)
577
578lemmas differentiable_within_subset = differentiable_subset
579
580lemma differentiable_ident [simp, derivative_intros]: "(\<lambda>x. x) differentiable F"
581  unfolding differentiable_def by (blast intro: has_derivative_ident)
582
583lemma differentiable_const [simp, derivative_intros]: "(\<lambda>z. a) differentiable F"
584  unfolding differentiable_def by (blast intro: has_derivative_const)
585
586lemma differentiable_in_compose:
587  "f differentiable (at (g x) within (g`s)) \<Longrightarrow> g differentiable (at x within s) \<Longrightarrow>
588    (\<lambda>x. f (g x)) differentiable (at x within s)"
589  unfolding differentiable_def by (blast intro: has_derivative_in_compose)
590
591lemma differentiable_compose:
592  "f differentiable (at (g x)) \<Longrightarrow> g differentiable (at x within s) \<Longrightarrow>
593    (\<lambda>x. f (g x)) differentiable (at x within s)"
594  by (blast intro: differentiable_in_compose differentiable_subset)
595
596lemma differentiable_add [simp, derivative_intros]:
597  "f differentiable F \<Longrightarrow> g differentiable F \<Longrightarrow> (\<lambda>x. f x + g x) differentiable F"
598  unfolding differentiable_def by (blast intro: has_derivative_add)
599
600lemma differentiable_sum[simp, derivative_intros]:
601  assumes "finite s" "\<forall>a\<in>s. (f a) differentiable net"
602  shows "(\<lambda>x. sum (\<lambda>a. f a x) s) differentiable net"
603proof -
604  from bchoice[OF assms(2)[unfolded differentiable_def]]
605  show ?thesis
606    by (auto intro!: has_derivative_sum simp: differentiable_def)
607qed
608
609lemma differentiable_minus [simp, derivative_intros]:
610  "f differentiable F \<Longrightarrow> (\<lambda>x. - f x) differentiable F"
611  unfolding differentiable_def by (blast intro: has_derivative_minus)
612
613lemma differentiable_diff [simp, derivative_intros]:
614  "f differentiable F \<Longrightarrow> g differentiable F \<Longrightarrow> (\<lambda>x. f x - g x) differentiable F"
615  unfolding differentiable_def by (blast intro: has_derivative_diff)
616
617lemma differentiable_mult [simp, derivative_intros]:
618  fixes f g :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra"
619  shows "f differentiable (at x within s) \<Longrightarrow> g differentiable (at x within s) \<Longrightarrow>
620    (\<lambda>x. f x * g x) differentiable (at x within s)"
621  unfolding differentiable_def by (blast intro: has_derivative_mult)
622
623lemma differentiable_inverse [simp, derivative_intros]:
624  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_field"
625  shows "f differentiable (at x within s) \<Longrightarrow> f x \<noteq> 0 \<Longrightarrow>
626    (\<lambda>x. inverse (f x)) differentiable (at x within s)"
627  unfolding differentiable_def by (blast intro: has_derivative_inverse)
628
629lemma differentiable_divide [simp, derivative_intros]:
630  fixes f g :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_field"
631  shows "f differentiable (at x within s) \<Longrightarrow> g differentiable (at x within s) \<Longrightarrow>
632    g x \<noteq> 0 \<Longrightarrow> (\<lambda>x. f x / g x) differentiable (at x within s)"
633  unfolding divide_inverse by simp
634
635lemma differentiable_power [simp, derivative_intros]:
636  fixes f g :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_field"
637  shows "f differentiable (at x within s) \<Longrightarrow> (\<lambda>x. f x ^ n) differentiable (at x within s)"
638  unfolding differentiable_def by (blast intro: has_derivative_power)
639
640lemma differentiable_scaleR [simp, derivative_intros]:
641  "f differentiable (at x within s) \<Longrightarrow> g differentiable (at x within s) \<Longrightarrow>
642    (\<lambda>x. f x *\<^sub>R g x) differentiable (at x within s)"
643  unfolding differentiable_def by (blast intro: has_derivative_scaleR)
644
645lemma has_derivative_imp_has_field_derivative:
646  "(f has_derivative D) F \<Longrightarrow> (\<And>x. x * D' = D x) \<Longrightarrow> (f has_field_derivative D') F"
647  unfolding has_field_derivative_def
648  by (rule has_derivative_eq_rhs[of f D]) (simp_all add: fun_eq_iff mult.commute)
649
650lemma has_field_derivative_imp_has_derivative:
651  "(f has_field_derivative D) F \<Longrightarrow> (f has_derivative ( * ) D) F"
652  by (simp add: has_field_derivative_def)
653
654lemma DERIV_subset:
655  "(f has_field_derivative f') (at x within s) \<Longrightarrow> t \<subseteq> s \<Longrightarrow>
656    (f has_field_derivative f') (at x within t)"
657  by (simp add: has_field_derivative_def has_derivative_within_subset)
658
659lemma has_field_derivative_at_within:
660  "(f has_field_derivative f') (at x) \<Longrightarrow> (f has_field_derivative f') (at x within s)"
661  using DERIV_subset by blast
662
663abbreviation (input)
664  DERIV :: "('a::real_normed_field \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"
665    ("(DERIV (_)/ (_)/ :> (_))" [1000, 1000, 60] 60)
666  where "DERIV f x :> D \<equiv> (f has_field_derivative D) (at x)"
667
668abbreviation has_real_derivative :: "(real \<Rightarrow> real) \<Rightarrow> real \<Rightarrow> real filter \<Rightarrow> bool"
669    (infix "(has'_real'_derivative)" 50)
670  where "(f has_real_derivative D) F \<equiv> (f has_field_derivative D) F"
671
672lemma real_differentiable_def:
673  "f differentiable at x within s \<longleftrightarrow> (\<exists>D. (f has_real_derivative D) (at x within s))"
674proof safe
675  assume "f differentiable at x within s"
676  then obtain f' where *: "(f has_derivative f') (at x within s)"
677    unfolding differentiable_def by auto
678  then obtain c where "f' = (( * ) c)"
679    by (metis real_bounded_linear has_derivative_bounded_linear mult.commute fun_eq_iff)
680  with * show "\<exists>D. (f has_real_derivative D) (at x within s)"
681    unfolding has_field_derivative_def by auto
682qed (auto simp: differentiable_def has_field_derivative_def)
683
684lemma real_differentiableE [elim?]:
685  assumes f: "f differentiable (at x within s)"
686  obtains df where "(f has_real_derivative df) (at x within s)"
687  using assms by (auto simp: real_differentiable_def)
688
689lemma differentiableD:
690  "f differentiable (at x within s) \<Longrightarrow> \<exists>D. (f has_real_derivative D) (at x within s)"
691  by (auto elim: real_differentiableE)
692
693lemma differentiableI:
694  "(f has_real_derivative D) (at x within s) \<Longrightarrow> f differentiable (at x within s)"
695  by (force simp add: real_differentiable_def)
696
697lemma has_field_derivative_iff:
698  "(f has_field_derivative D) (at x within S) \<longleftrightarrow>
699    ((\<lambda>y. (f y - f x) / (y - x)) \<longlongrightarrow> D) (at x within S)"
700proof -
701  have "((\<lambda>y. norm (f y - f x - D * (y - x)) / norm (y - x)) \<longlongrightarrow> 0) (at x within S) 
702      = ((\<lambda>y. (f y - f x) / (y - x) - D) \<longlongrightarrow> 0) (at x within S)"
703    apply (subst tendsto_norm_zero_iff[symmetric], rule filterlim_cong)
704      apply (simp_all add: eventually_at_filter field_simps nonzero_norm_divide)
705    done
706  then show ?thesis
707    by (simp add: has_field_derivative_def has_derivative_iff_norm bounded_linear_mult_right LIM_zero_iff)
708qed
709
710lemma DERIV_def: "DERIV f x :> D \<longleftrightarrow> (\<lambda>h. (f (x + h) - f x) / h) \<midarrow>0\<rightarrow> D"
711  unfolding field_has_derivative_at has_field_derivative_def has_field_derivative_iff ..
712
713lemma mult_commute_abs: "(\<lambda>x. x * c) = ( * ) c"
714  for c :: "'a::ab_semigroup_mult"
715  by (simp add: fun_eq_iff mult.commute)
716
717lemma DERIV_compose_FDERIV:
718  fixes f::"real\<Rightarrow>real"
719  assumes "DERIV f (g x) :> f'"
720  assumes "(g has_derivative g') (at x within s)"
721  shows "((\<lambda>x. f (g x)) has_derivative (\<lambda>x. g' x * f')) (at x within s)"
722  using assms has_derivative_compose[of g g' x s f "( * ) f'"]
723  by (auto simp: has_field_derivative_def ac_simps)
724
725
726subsection \<open>Vector derivative\<close>
727
728lemma has_field_derivative_iff_has_vector_derivative:
729  "(f has_field_derivative y) F \<longleftrightarrow> (f has_vector_derivative y) F"
730  unfolding has_vector_derivative_def has_field_derivative_def real_scaleR_def mult_commute_abs ..
731
732lemma has_field_derivative_subset:
733  "(f has_field_derivative y) (at x within s) \<Longrightarrow> t \<subseteq> s \<Longrightarrow>
734    (f has_field_derivative y) (at x within t)"
735  unfolding has_field_derivative_def by (rule has_derivative_subset)
736
737lemma has_vector_derivative_const[simp, derivative_intros]: "((\<lambda>x. c) has_vector_derivative 0) net"
738  by (auto simp: has_vector_derivative_def)
739
740lemma has_vector_derivative_id[simp, derivative_intros]: "((\<lambda>x. x) has_vector_derivative 1) net"
741  by (auto simp: has_vector_derivative_def)
742
743lemma has_vector_derivative_minus[derivative_intros]:
744  "(f has_vector_derivative f') net \<Longrightarrow> ((\<lambda>x. - f x) has_vector_derivative (- f')) net"
745  by (auto simp: has_vector_derivative_def)
746
747lemma has_vector_derivative_add[derivative_intros]:
748  "(f has_vector_derivative f') net \<Longrightarrow> (g has_vector_derivative g') net \<Longrightarrow>
749    ((\<lambda>x. f x + g x) has_vector_derivative (f' + g')) net"
750  by (auto simp: has_vector_derivative_def scaleR_right_distrib)
751
752lemma has_vector_derivative_sum[derivative_intros]:
753  "(\<And>i. i \<in> I \<Longrightarrow> (f i has_vector_derivative f' i) net) \<Longrightarrow>
754    ((\<lambda>x. \<Sum>i\<in>I. f i x) has_vector_derivative (\<Sum>i\<in>I. f' i)) net"
755  by (auto simp: has_vector_derivative_def fun_eq_iff scaleR_sum_right intro!: derivative_eq_intros)
756
757lemma has_vector_derivative_diff[derivative_intros]:
758  "(f has_vector_derivative f') net \<Longrightarrow> (g has_vector_derivative g') net \<Longrightarrow>
759    ((\<lambda>x. f x - g x) has_vector_derivative (f' - g')) net"
760  by (auto simp: has_vector_derivative_def scaleR_diff_right)
761
762lemma has_vector_derivative_add_const:
763  "((\<lambda>t. g t + z) has_vector_derivative f') net = ((\<lambda>t. g t) has_vector_derivative f') net"
764  apply (intro iffI)
765   apply (force dest: has_vector_derivative_diff [where g = "\<lambda>t. z", OF _ has_vector_derivative_const])
766  apply (force dest: has_vector_derivative_add [OF _ has_vector_derivative_const])
767  done
768
769lemma has_vector_derivative_diff_const:
770  "((\<lambda>t. g t - z) has_vector_derivative f') net = ((\<lambda>t. g t) has_vector_derivative f') net"
771  using has_vector_derivative_add_const [where z = "-z"]
772  by simp
773
774lemma (in bounded_linear) has_vector_derivative:
775  assumes "(g has_vector_derivative g') F"
776  shows "((\<lambda>x. f (g x)) has_vector_derivative f g') F"
777  using has_derivative[OF assms[unfolded has_vector_derivative_def]]
778  by (simp add: has_vector_derivative_def scaleR)
779
780lemma (in bounded_bilinear) has_vector_derivative:
781  assumes "(f has_vector_derivative f') (at x within s)"
782    and "(g has_vector_derivative g') (at x within s)"
783  shows "((\<lambda>x. f x ** g x) has_vector_derivative (f x ** g' + f' ** g x)) (at x within s)"
784  using FDERIV[OF assms(1-2)[unfolded has_vector_derivative_def]]
785  by (simp add: has_vector_derivative_def scaleR_right scaleR_left scaleR_right_distrib)
786
787lemma has_vector_derivative_scaleR[derivative_intros]:
788  "(f has_field_derivative f') (at x within s) \<Longrightarrow> (g has_vector_derivative g') (at x within s) \<Longrightarrow>
789    ((\<lambda>x. f x *\<^sub>R g x) has_vector_derivative (f x *\<^sub>R g' + f' *\<^sub>R g x)) (at x within s)"
790  unfolding has_field_derivative_iff_has_vector_derivative
791  by (rule bounded_bilinear.has_vector_derivative[OF bounded_bilinear_scaleR])
792
793lemma has_vector_derivative_mult[derivative_intros]:
794  "(f has_vector_derivative f') (at x within s) \<Longrightarrow> (g has_vector_derivative g') (at x within s) \<Longrightarrow>
795    ((\<lambda>x. f x * g x) has_vector_derivative (f x * g' + f' * g x)) (at x within s)"
796  for f g :: "real \<Rightarrow> 'a::real_normed_algebra"
797  by (rule bounded_bilinear.has_vector_derivative[OF bounded_bilinear_mult])
798
799lemma has_vector_derivative_of_real[derivative_intros]:
800  "(f has_field_derivative D) F \<Longrightarrow> ((\<lambda>x. of_real (f x)) has_vector_derivative (of_real D)) F"
801  by (rule bounded_linear.has_vector_derivative[OF bounded_linear_of_real])
802    (simp add: has_field_derivative_iff_has_vector_derivative)
803
804lemma has_vector_derivative_continuous:
805  "(f has_vector_derivative D) (at x within s) \<Longrightarrow> continuous (at x within s) f"
806  by (auto intro: has_derivative_continuous simp: has_vector_derivative_def)
807
808lemma has_vector_derivative_mult_right[derivative_intros]:
809  fixes a :: "'a::real_normed_algebra"
810  shows "(f has_vector_derivative x) F \<Longrightarrow> ((\<lambda>x. a * f x) has_vector_derivative (a * x)) F"
811  by (rule bounded_linear.has_vector_derivative[OF bounded_linear_mult_right])
812
813lemma has_vector_derivative_mult_left[derivative_intros]:
814  fixes a :: "'a::real_normed_algebra"
815  shows "(f has_vector_derivative x) F \<Longrightarrow> ((\<lambda>x. f x * a) has_vector_derivative (x * a)) F"
816  by (rule bounded_linear.has_vector_derivative[OF bounded_linear_mult_left])
817
818
819subsection \<open>Derivatives\<close>
820
821lemma DERIV_D: "DERIV f x :> D \<Longrightarrow> (\<lambda>h. (f (x + h) - f x) / h) \<midarrow>0\<rightarrow> D"
822  by (simp add: DERIV_def)
823
824lemma has_field_derivativeD:
825  "(f has_field_derivative D) (at x within S) \<Longrightarrow>
826    ((\<lambda>y. (f y - f x) / (y - x)) \<longlongrightarrow> D) (at x within S)"
827  by (simp add: has_field_derivative_iff)
828
829lemma DERIV_const [simp, derivative_intros]: "((\<lambda>x. k) has_field_derivative 0) F"
830  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_const]) auto
831
832lemma DERIV_ident [simp, derivative_intros]: "((\<lambda>x. x) has_field_derivative 1) F"
833  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_ident]) auto
834
835lemma field_differentiable_add[derivative_intros]:
836  "(f has_field_derivative f') F \<Longrightarrow> (g has_field_derivative g') F \<Longrightarrow>
837    ((\<lambda>z. f z + g z) has_field_derivative f' + g') F"
838  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_add])
839     (auto simp: has_field_derivative_def field_simps mult_commute_abs)
840
841corollary DERIV_add:
842  "(f has_field_derivative D) (at x within s) \<Longrightarrow> (g has_field_derivative E) (at x within s) \<Longrightarrow>
843    ((\<lambda>x. f x + g x) has_field_derivative D + E) (at x within s)"
844  by (rule field_differentiable_add)
845
846lemma field_differentiable_minus[derivative_intros]:
847  "(f has_field_derivative f') F \<Longrightarrow> ((\<lambda>z. - (f z)) has_field_derivative -f') F"
848  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_minus])
849     (auto simp: has_field_derivative_def field_simps mult_commute_abs)
850
851corollary DERIV_minus:
852  "(f has_field_derivative D) (at x within s) \<Longrightarrow>
853    ((\<lambda>x. - f x) has_field_derivative -D) (at x within s)"
854  by (rule field_differentiable_minus)
855
856lemma field_differentiable_diff[derivative_intros]:
857  "(f has_field_derivative f') F \<Longrightarrow>
858    (g has_field_derivative g') F \<Longrightarrow> ((\<lambda>z. f z - g z) has_field_derivative f' - g') F"
859  by (simp only: diff_conv_add_uminus field_differentiable_add field_differentiable_minus)
860
861corollary DERIV_diff:
862  "(f has_field_derivative D) (at x within s) \<Longrightarrow>
863    (g has_field_derivative E) (at x within s) \<Longrightarrow>
864    ((\<lambda>x. f x - g x) has_field_derivative D - E) (at x within s)"
865  by (rule field_differentiable_diff)
866
867lemma DERIV_continuous: "(f has_field_derivative D) (at x within s) \<Longrightarrow> continuous (at x within s) f"
868  by (drule has_derivative_continuous[OF has_field_derivative_imp_has_derivative]) simp
869
870corollary DERIV_isCont: "DERIV f x :> D \<Longrightarrow> isCont f x"
871  by (rule DERIV_continuous)
872
873lemma DERIV_continuous_on:
874  "(\<And>x. x \<in> s \<Longrightarrow> (f has_field_derivative (D x)) (at x within s)) \<Longrightarrow> continuous_on s f"
875  unfolding continuous_on_eq_continuous_within
876  by (intro continuous_at_imp_continuous_on ballI DERIV_continuous)
877
878lemma DERIV_mult':
879  "(f has_field_derivative D) (at x within s) \<Longrightarrow> (g has_field_derivative E) (at x within s) \<Longrightarrow>
880    ((\<lambda>x. f x * g x) has_field_derivative f x * E + D * g x) (at x within s)"
881  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_mult])
882     (auto simp: field_simps mult_commute_abs dest: has_field_derivative_imp_has_derivative)
883
884lemma DERIV_mult[derivative_intros]:
885  "(f has_field_derivative Da) (at x within s) \<Longrightarrow> (g has_field_derivative Db) (at x within s) \<Longrightarrow>
886    ((\<lambda>x. f x * g x) has_field_derivative Da * g x + Db * f x) (at x within s)"
887  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_mult])
888     (auto simp: field_simps dest: has_field_derivative_imp_has_derivative)
889
890text \<open>Derivative of linear multiplication\<close>
891
892lemma DERIV_cmult:
893  "(f has_field_derivative D) (at x within s) \<Longrightarrow>
894    ((\<lambda>x. c * f x) has_field_derivative c * D) (at x within s)"
895  by (drule DERIV_mult' [OF DERIV_const]) simp
896
897lemma DERIV_cmult_right:
898  "(f has_field_derivative D) (at x within s) \<Longrightarrow>
899    ((\<lambda>x. f x * c) has_field_derivative D * c) (at x within s)"
900  using DERIV_cmult by (auto simp add: ac_simps)
901
902lemma DERIV_cmult_Id [simp]: "(( * ) c has_field_derivative c) (at x within s)"
903  using DERIV_ident [THEN DERIV_cmult, where c = c and x = x] by simp
904
905lemma DERIV_cdivide:
906  "(f has_field_derivative D) (at x within s) \<Longrightarrow>
907    ((\<lambda>x. f x / c) has_field_derivative D / c) (at x within s)"
908  using DERIV_cmult_right[of f D x s "1 / c"] by simp
909
910lemma DERIV_unique: "DERIV f x :> D \<Longrightarrow> DERIV f x :> E \<Longrightarrow> D = E"
911  unfolding DERIV_def by (rule LIM_unique)
912
913lemma DERIV_sum[derivative_intros]:
914  "(\<And> n. n \<in> S \<Longrightarrow> ((\<lambda>x. f x n) has_field_derivative (f' x n)) F) \<Longrightarrow>
915    ((\<lambda>x. sum (f x) S) has_field_derivative sum (f' x) S) F"
916  by (rule has_derivative_imp_has_field_derivative [OF has_derivative_sum])
917     (auto simp: sum_distrib_left mult_commute_abs dest: has_field_derivative_imp_has_derivative)
918
919lemma DERIV_inverse'[derivative_intros]:
920  assumes "(f has_field_derivative D) (at x within s)"
921    and "f x \<noteq> 0"
922  shows "((\<lambda>x. inverse (f x)) has_field_derivative - (inverse (f x) * D * inverse (f x)))
923    (at x within s)"
924proof -
925  have "(f has_derivative (\<lambda>x. x * D)) = (f has_derivative ( * ) D)"
926    by (rule arg_cong [of "\<lambda>x. x * D"]) (simp add: fun_eq_iff)
927  with assms have "(f has_derivative (\<lambda>x. x * D)) (at x within s)"
928    by (auto dest!: has_field_derivative_imp_has_derivative)
929  then show ?thesis using \<open>f x \<noteq> 0\<close>
930    by (auto intro: has_derivative_imp_has_field_derivative has_derivative_inverse)
931qed
932
933text \<open>Power of \<open>-1\<close>\<close>
934
935lemma DERIV_inverse:
936  "x \<noteq> 0 \<Longrightarrow> ((\<lambda>x. inverse(x)) has_field_derivative - (inverse x ^ Suc (Suc 0))) (at x within s)"
937  by (drule DERIV_inverse' [OF DERIV_ident]) simp
938
939text \<open>Derivative of inverse\<close>
940
941lemma DERIV_inverse_fun:
942  "(f has_field_derivative d) (at x within s) \<Longrightarrow> f x \<noteq> 0 \<Longrightarrow>
943    ((\<lambda>x. inverse (f x)) has_field_derivative (- (d * inverse(f x ^ Suc (Suc 0))))) (at x within s)"
944  by (drule (1) DERIV_inverse') (simp add: ac_simps nonzero_inverse_mult_distrib)
945
946text \<open>Derivative of quotient\<close>
947
948lemma DERIV_divide[derivative_intros]:
949  "(f has_field_derivative D) (at x within s) \<Longrightarrow>
950    (g has_field_derivative E) (at x within s) \<Longrightarrow> g x \<noteq> 0 \<Longrightarrow>
951    ((\<lambda>x. f x / g x) has_field_derivative (D * g x - f x * E) / (g x * g x)) (at x within s)"
952  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_divide])
953     (auto dest: has_field_derivative_imp_has_derivative simp: field_simps)
954
955lemma DERIV_quotient:
956  "(f has_field_derivative d) (at x within s) \<Longrightarrow>
957    (g has_field_derivative e) (at x within s)\<Longrightarrow> g x \<noteq> 0 \<Longrightarrow>
958    ((\<lambda>y. f y / g y) has_field_derivative (d * g x - (e * f x)) / (g x ^ Suc (Suc 0))) (at x within s)"
959  by (drule (2) DERIV_divide) (simp add: mult.commute)
960
961lemma DERIV_power_Suc:
962  "(f has_field_derivative D) (at x within s) \<Longrightarrow>
963    ((\<lambda>x. f x ^ Suc n) has_field_derivative (1 + of_nat n) * (D * f x ^ n)) (at x within s)"
964  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_power])
965     (auto simp: has_field_derivative_def)
966
967lemma DERIV_power[derivative_intros]:
968  "(f has_field_derivative D) (at x within s) \<Longrightarrow>
969    ((\<lambda>x. f x ^ n) has_field_derivative of_nat n * (D * f x ^ (n - Suc 0))) (at x within s)"
970  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_power])
971     (auto simp: has_field_derivative_def)
972
973lemma DERIV_pow: "((\<lambda>x. x ^ n) has_field_derivative real n * (x ^ (n - Suc 0))) (at x within s)"
974  using DERIV_power [OF DERIV_ident] by simp
975
976lemma DERIV_chain': "(f has_field_derivative D) (at x within s) \<Longrightarrow> DERIV g (f x) :> E \<Longrightarrow>
977  ((\<lambda>x. g (f x)) has_field_derivative E * D) (at x within s)"
978  using has_derivative_compose[of f "( * ) D" x s g "( * ) E"]
979  by (simp only: has_field_derivative_def mult_commute_abs ac_simps)
980
981corollary DERIV_chain2: "DERIV f (g x) :> Da \<Longrightarrow> (g has_field_derivative Db) (at x within s) \<Longrightarrow>
982  ((\<lambda>x. f (g x)) has_field_derivative Da * Db) (at x within s)"
983  by (rule DERIV_chain')
984
985text \<open>Standard version\<close>
986
987lemma DERIV_chain:
988  "DERIV f (g x) :> Da \<Longrightarrow> (g has_field_derivative Db) (at x within s) \<Longrightarrow>
989    (f \<circ> g has_field_derivative Da * Db) (at x within s)"
990  by (drule (1) DERIV_chain', simp add: o_def mult.commute)
991
992lemma DERIV_image_chain:
993  "(f has_field_derivative Da) (at (g x) within (g ` s)) \<Longrightarrow>
994    (g has_field_derivative Db) (at x within s) \<Longrightarrow>
995    (f \<circ> g has_field_derivative Da * Db) (at x within s)"
996  using has_derivative_in_compose [of g "( * ) Db" x s f "( * ) Da "]
997  by (simp add: has_field_derivative_def o_def mult_commute_abs ac_simps)
998
999(*These two are from HOL Light: HAS_COMPLEX_DERIVATIVE_CHAIN*)
1000lemma DERIV_chain_s:
1001  assumes "(\<And>x. x \<in> s \<Longrightarrow> DERIV g x :> g'(x))"
1002    and "DERIV f x :> f'"
1003    and "f x \<in> s"
1004  shows "DERIV (\<lambda>x. g(f x)) x :> f' * g'(f x)"
1005  by (metis (full_types) DERIV_chain' mult.commute assms)
1006
1007lemma DERIV_chain3: (*HAS_COMPLEX_DERIVATIVE_CHAIN_UNIV*)
1008  assumes "(\<And>x. DERIV g x :> g'(x))"
1009    and "DERIV f x :> f'"
1010  shows "DERIV (\<lambda>x. g(f x)) x :> f' * g'(f x)"
1011  by (metis UNIV_I DERIV_chain_s [of UNIV] assms)
1012
1013text \<open>Alternative definition for differentiability\<close>
1014
1015lemma DERIV_LIM_iff:
1016  fixes f :: "'a::{real_normed_vector,inverse} \<Rightarrow> 'a"
1017  shows "((\<lambda>h. (f (a + h) - f a) / h) \<midarrow>0\<rightarrow> D) = ((\<lambda>x. (f x - f a) / (x - a)) \<midarrow>a\<rightarrow> D)" (is "?lhs = ?rhs")
1018proof
1019  assume ?lhs
1020  then have "(\<lambda>x. (f (a + (x + - a)) - f a) / (x + - a)) \<midarrow>0 - - a\<rightarrow> D"
1021    by (rule LIM_offset)
1022  then show ?rhs
1023    by simp
1024next
1025  assume ?rhs
1026  then have "(\<lambda>x. (f (x+a) - f a) / ((x+a) - a)) \<midarrow>a-a\<rightarrow> D"
1027    by (rule LIM_offset)
1028  then show ?lhs
1029    by (simp add: add.commute)
1030qed
1031
1032lemma has_field_derivative_cong_ev:
1033  assumes "x = y"
1034    and *: "eventually (\<lambda>x. x \<in> S \<longrightarrow> f x = g x) (nhds x)"
1035    and "u = v" "S = t" "x \<in> S"
1036  shows "(f has_field_derivative u) (at x within S) = (g has_field_derivative v) (at y within t)"
1037  unfolding has_field_derivative_iff
1038proof (rule filterlim_cong)
1039  from assms have "f y = g y"
1040    by (auto simp: eventually_nhds)
1041  with * show "\<forall>\<^sub>F z in at x within S. (f z - f x) / (z - x) = (g z - g y) / (z - y)"
1042    unfolding eventually_at_filter
1043    by eventually_elim (auto simp: assms \<open>f y = g y\<close>)
1044qed (simp_all add: assms)
1045
1046lemma has_field_derivative_cong_eventually:
1047  assumes "eventually (\<lambda>x. f x = g x) (at x within S)" "f x = g x"
1048  shows "(f has_field_derivative u) (at x within S) = (g has_field_derivative u) (at x within S)"
1049  unfolding has_field_derivative_iff
1050proof (rule tendsto_cong)
1051  show "\<forall>\<^sub>F y in at x within S. (f y - f x) / (y - x) = (g y - g x) / (y - x)"
1052    using assms by (auto elim: eventually_mono)
1053qed
1054
1055lemma DERIV_cong_ev:
1056  "x = y \<Longrightarrow> eventually (\<lambda>x. f x = g x) (nhds x) \<Longrightarrow> u = v \<Longrightarrow>
1057    DERIV f x :> u \<longleftrightarrow> DERIV g y :> v"
1058  by (rule has_field_derivative_cong_ev) simp_all
1059
1060lemma DERIV_shift:
1061  "(f has_field_derivative y) (at (x + z)) = ((\<lambda>x. f (x + z)) has_field_derivative y) (at x)"
1062  by (simp add: DERIV_def field_simps)
1063
1064lemma DERIV_mirror: "(DERIV f (- x) :> y) \<longleftrightarrow> (DERIV (\<lambda>x. f (- x)) x :> - y)"
1065  for f :: "real \<Rightarrow> real" and x y :: real
1066  by (simp add: DERIV_def filterlim_at_split filterlim_at_left_to_right
1067      tendsto_minus_cancel_left field_simps conj_commute)
1068
1069lemma floor_has_real_derivative:
1070  fixes f :: "real \<Rightarrow> 'a::{floor_ceiling,order_topology}"
1071  assumes "isCont f x"
1072    and "f x \<notin> \<int>"
1073  shows "((\<lambda>x. floor (f x)) has_real_derivative 0) (at x)"
1074proof (subst DERIV_cong_ev[OF refl _ refl])
1075  show "((\<lambda>_. floor (f x)) has_real_derivative 0) (at x)"
1076    by simp
1077  have "\<forall>\<^sub>F y in at x. \<lfloor>f y\<rfloor> = \<lfloor>f x\<rfloor>"
1078    by (rule eventually_floor_eq[OF assms[unfolded continuous_at]])
1079  then show "\<forall>\<^sub>F y in nhds x. real_of_int \<lfloor>f y\<rfloor> = real_of_int \<lfloor>f x\<rfloor>"
1080    unfolding eventually_at_filter
1081    by eventually_elim auto
1082qed
1083
1084lemmas has_derivative_floor[derivative_intros] =
1085  floor_has_real_derivative[THEN DERIV_compose_FDERIV]
1086
1087text \<open>Caratheodory formulation of derivative at a point\<close>
1088
1089lemma CARAT_DERIV:
1090  "(DERIV f x :> l) \<longleftrightarrow> (\<exists>g. (\<forall>z. f z - f x = g z * (z - x)) \<and> isCont g x \<and> g x = l)"
1091  (is "?lhs = ?rhs")
1092proof
1093  assume ?lhs
1094  show "\<exists>g. (\<forall>z. f z - f x = g z * (z - x)) \<and> isCont g x \<and> g x = l"
1095  proof (intro exI conjI)
1096    let ?g = "(\<lambda>z. if z = x then l else (f z - f x) / (z-x))"
1097    show "\<forall>z. f z - f x = ?g z * (z - x)"
1098      by simp
1099    show "isCont ?g x"
1100      using \<open>?lhs\<close> by (simp add: isCont_iff DERIV_def cong: LIM_equal [rule_format])
1101    show "?g x = l"
1102      by simp
1103  qed
1104next
1105  assume ?rhs
1106  then show ?lhs
1107    by (auto simp add: isCont_iff DERIV_def cong: LIM_cong)
1108qed
1109
1110
1111subsection \<open>Local extrema\<close>
1112
1113text \<open>If @{term "0 < f' x"} then @{term x} is Locally Strictly Increasing At The Right.\<close>
1114
1115lemma has_real_derivative_pos_inc_right:
1116  fixes f :: "real \<Rightarrow> real"
1117  assumes der: "(f has_real_derivative l) (at x within S)"
1118    and l: "0 < l"
1119  shows "\<exists>d > 0. \<forall>h > 0. x + h \<in> S \<longrightarrow> h < d \<longrightarrow> f x < f (x + h)"
1120  using assms
1121proof -
1122  from der [THEN has_field_derivativeD, THEN tendstoD, OF l, unfolded eventually_at]
1123  obtain s where s: "0 < s"
1124    and all: "\<And>xa. xa\<in>S \<Longrightarrow> xa \<noteq> x \<and> dist xa x < s \<longrightarrow> \<bar>(f xa - f x) / (xa - x) - l\<bar> < l"
1125    by (auto simp: dist_real_def)
1126  then show ?thesis
1127  proof (intro exI conjI strip)
1128    show "0 < s" by (rule s)
1129  next
1130    fix h :: real
1131    assume "0 < h" "h < s" "x + h \<in> S"
1132    with all [of "x + h"] show "f x < f (x+h)"
1133    proof (simp add: abs_if dist_real_def pos_less_divide_eq split: if_split_asm)
1134      assume "\<not> (f (x + h) - f x) / h < l" and h: "0 < h"
1135      with l have "0 < (f (x + h) - f x) / h"
1136        by arith
1137      then show "f x < f (x + h)"
1138        by (simp add: pos_less_divide_eq h)
1139    qed
1140  qed
1141qed
1142
1143lemma DERIV_pos_inc_right:
1144  fixes f :: "real \<Rightarrow> real"
1145  assumes der: "DERIV f x :> l"
1146    and l: "0 < l"
1147  shows "\<exists>d > 0. \<forall>h > 0. h < d \<longrightarrow> f x < f (x + h)"
1148  using has_real_derivative_pos_inc_right[OF assms]
1149  by auto
1150
1151lemma has_real_derivative_neg_dec_left:
1152  fixes f :: "real \<Rightarrow> real"
1153  assumes der: "(f has_real_derivative l) (at x within S)"
1154    and "l < 0"
1155  shows "\<exists>d > 0. \<forall>h > 0. x - h \<in> S \<longrightarrow> h < d \<longrightarrow> f x < f (x - h)"
1156proof -
1157  from \<open>l < 0\<close> have l: "- l > 0"
1158    by simp
1159  from der [THEN has_field_derivativeD, THEN tendstoD, OF l, unfolded eventually_at]
1160  obtain s where s: "0 < s"
1161    and all: "\<And>xa. xa\<in>S \<Longrightarrow> xa \<noteq> x \<and> dist xa x < s \<longrightarrow> \<bar>(f xa - f x) / (xa - x) - l\<bar> < - l"
1162    by (auto simp: dist_real_def)
1163  then show ?thesis
1164  proof (intro exI conjI strip)
1165    show "0 < s" by (rule s)
1166  next
1167    fix h :: real
1168    assume "0 < h" "h < s" "x - h \<in> S"
1169    with all [of "x - h"] show "f x < f (x-h)"
1170    proof (simp add: abs_if pos_less_divide_eq dist_real_def split: if_split_asm)
1171      assume "- ((f (x-h) - f x) / h) < l" and h: "0 < h"
1172      with l have "0 < (f (x-h) - f x) / h"
1173        by arith
1174      then show "f x < f (x - h)"
1175        by (simp add: pos_less_divide_eq h)
1176    qed
1177  qed
1178qed
1179
1180lemma DERIV_neg_dec_left:
1181  fixes f :: "real \<Rightarrow> real"
1182  assumes der: "DERIV f x :> l"
1183    and l: "l < 0"
1184  shows "\<exists>d > 0. \<forall>h > 0. h < d \<longrightarrow> f x < f (x - h)"
1185  using has_real_derivative_neg_dec_left[OF assms]
1186  by auto
1187
1188lemma has_real_derivative_pos_inc_left:
1189  fixes f :: "real \<Rightarrow> real"
1190  shows "(f has_real_derivative l) (at x within S) \<Longrightarrow> 0 < l \<Longrightarrow>
1191    \<exists>d>0. \<forall>h>0. x - h \<in> S \<longrightarrow> h < d \<longrightarrow> f (x - h) < f x"
1192  by (rule has_real_derivative_neg_dec_left [of "\<lambda>x. - f x" "-l" x S, simplified])
1193      (auto simp add: DERIV_minus)
1194
1195lemma DERIV_pos_inc_left:
1196  fixes f :: "real \<Rightarrow> real"
1197  shows "DERIV f x :> l \<Longrightarrow> 0 < l \<Longrightarrow> \<exists>d > 0. \<forall>h > 0. h < d \<longrightarrow> f (x - h) < f x"
1198  using has_real_derivative_pos_inc_left
1199  by blast
1200
1201lemma has_real_derivative_neg_dec_right:
1202  fixes f :: "real \<Rightarrow> real"
1203  shows "(f has_real_derivative l) (at x within S) \<Longrightarrow> l < 0 \<Longrightarrow>
1204    \<exists>d > 0. \<forall>h > 0. x + h \<in> S \<longrightarrow> h < d \<longrightarrow> f x > f (x + h)"
1205  by (rule has_real_derivative_pos_inc_right [of "\<lambda>x. - f x" "-l" x S, simplified])
1206      (auto simp add: DERIV_minus)
1207
1208lemma DERIV_neg_dec_right:
1209  fixes f :: "real \<Rightarrow> real"
1210  shows "DERIV f x :> l \<Longrightarrow> l < 0 \<Longrightarrow> \<exists>d > 0. \<forall>h > 0. h < d \<longrightarrow> f x > f (x + h)"
1211  using has_real_derivative_neg_dec_right by blast
1212
1213lemma DERIV_local_max:
1214  fixes f :: "real \<Rightarrow> real"
1215  assumes der: "DERIV f x :> l"
1216    and d: "0 < d"
1217    and le: "\<forall>y. \<bar>x - y\<bar> < d \<longrightarrow> f y \<le> f x"
1218  shows "l = 0"
1219proof (cases rule: linorder_cases [of l 0])
1220  case equal
1221  then show ?thesis .
1222next
1223  case less
1224  from DERIV_neg_dec_left [OF der less]
1225  obtain d' where d': "0 < d'" and lt: "\<forall>h > 0. h < d' \<longrightarrow> f x < f (x - h)"
1226    by blast
1227  obtain e where "0 < e \<and> e < d \<and> e < d'"
1228    using field_lbound_gt_zero [OF d d']  ..
1229  with lt le [THEN spec [where x="x - e"]] show ?thesis
1230    by (auto simp add: abs_if)
1231next
1232  case greater
1233  from DERIV_pos_inc_right [OF der greater]
1234  obtain d' where d': "0 < d'" and lt: "\<forall>h > 0. h < d' \<longrightarrow> f x < f (x + h)"
1235    by blast
1236  obtain e where "0 < e \<and> e < d \<and> e < d'"
1237    using field_lbound_gt_zero [OF d d'] ..
1238  with lt le [THEN spec [where x="x + e"]] show ?thesis
1239    by (auto simp add: abs_if)
1240qed
1241
1242text \<open>Similar theorem for a local minimum\<close>
1243lemma DERIV_local_min:
1244  fixes f :: "real \<Rightarrow> real"
1245  shows "DERIV f x :> l \<Longrightarrow> 0 < d \<Longrightarrow> \<forall>y. \<bar>x - y\<bar> < d \<longrightarrow> f x \<le> f y \<Longrightarrow> l = 0"
1246  by (drule DERIV_minus [THEN DERIV_local_max]) auto
1247
1248
1249text\<open>In particular, if a function is locally flat\<close>
1250lemma DERIV_local_const:
1251  fixes f :: "real \<Rightarrow> real"
1252  shows "DERIV f x :> l \<Longrightarrow> 0 < d \<Longrightarrow> \<forall>y. \<bar>x - y\<bar> < d \<longrightarrow> f x = f y \<Longrightarrow> l = 0"
1253  by (auto dest!: DERIV_local_max)
1254
1255
1256subsection \<open>Rolle's Theorem\<close>
1257
1258text \<open>Lemma about introducing open ball in open interval\<close>
1259lemma lemma_interval_lt: 
1260  fixes a b x :: real
1261  assumes "a < x" "x < b"
1262  shows "\<exists>d. 0 < d \<and> (\<forall>y. \<bar>x - y\<bar> < d \<longrightarrow> a < y \<and> y < b)"
1263  using linorder_linear [of "x - a" "b - x"]
1264proof 
1265  assume "x - a \<le> b - x"
1266  with assms show ?thesis
1267    by (rule_tac x = "x - a" in exI) auto
1268next
1269  assume "b - x \<le> x - a"
1270  with assms show ?thesis
1271    by (rule_tac x = "b - x" in exI) auto
1272qed
1273
1274lemma lemma_interval: "a < x \<Longrightarrow> x < b \<Longrightarrow> \<exists>d. 0 < d \<and> (\<forall>y. \<bar>x - y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b)"
1275  for a b x :: real
1276  by (force dest: lemma_interval_lt)
1277
1278text \<open>Rolle's Theorem.
1279   If @{term f} is defined and continuous on the closed interval
1280   \<open>[a,b]\<close> and differentiable on the open interval \<open>(a,b)\<close>,
1281   and @{term "f a = f b"},
1282   then there exists \<open>x0 \<in> (a,b)\<close> such that @{term "f' x0 = 0"}\<close>
1283theorem Rolle:
1284  fixes a b :: real
1285  assumes lt: "a < b"
1286    and eq: "f a = f b"
1287    and con: "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x"
1288    and dif [rule_format]: "\<forall>x. a < x \<and> x < b \<longrightarrow> f differentiable (at x)"
1289  shows "\<exists>z. a < z \<and> z < b \<and> DERIV f z :> 0"
1290proof -
1291  have le: "a \<le> b"
1292    using lt by simp
1293  from isCont_eq_Ub [OF le con]
1294  obtain x where x_max: "\<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> f z \<le> f x" and "a \<le> x" "x \<le> b"
1295    by blast
1296  from isCont_eq_Lb [OF le con]
1297  obtain x' where x'_min: "\<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> f x' \<le> f z" and "a \<le> x'" "x' \<le> b"
1298    by blast
1299  consider "a < x" "x < b" | "x = a \<or> x = b"
1300    using \<open>a \<le> x\<close> \<open>x \<le> b\<close> by arith
1301  then show ?thesis
1302  proof cases
1303    case 1
1304    \<comment> \<open>@{term f} attains its maximum within the interval\<close>
1305    obtain d where d: "0 < d" and bound: "\<forall>y. \<bar>x - y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b"
1306      using lemma_interval [OF 1] by blast
1307    then have bound': "\<forall>y. \<bar>x - y\<bar> < d \<longrightarrow> f y \<le> f x"
1308      using x_max by blast
1309    obtain l where der: "DERIV f x :> l"
1310      using differentiableD [OF dif [OF conjI [OF 1]]] ..
1311    \<comment> \<open>the derivative at a local maximum is zero\<close>
1312    have "l = 0"
1313      by (rule DERIV_local_max [OF der d bound'])
1314    with 1 der show ?thesis by auto
1315  next
1316    case 2
1317    then have fx: "f b = f x" by (auto simp add: eq)
1318    consider "a < x'" "x' < b" | "x' = a \<or> x' = b"
1319      using \<open>a \<le> x'\<close> \<open>x' \<le> b\<close> by arith
1320    then show ?thesis
1321    proof cases
1322      case 1
1323        \<comment> \<open>@{term f} attains its minimum within the interval\<close>
1324      from lemma_interval [OF 1]
1325      obtain d where d: "0<d" and bound: "\<forall>y. \<bar>x'-y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b"
1326        by blast
1327      then have bound': "\<forall>y. \<bar>x' - y\<bar> < d \<longrightarrow> f x' \<le> f y"
1328        using x'_min by blast
1329      from differentiableD [OF dif [OF conjI [OF 1]]]
1330      obtain l where der: "DERIV f x' :> l" ..
1331      have "l = 0" by (rule DERIV_local_min [OF der d bound'])
1332        \<comment> \<open>the derivative at a local minimum is zero\<close>
1333      then show ?thesis using 1 der by auto
1334    next
1335      case 2
1336        \<comment> \<open>@{term f} is constant throughout the interval\<close>
1337      then have fx': "f b = f x'" by (auto simp: eq)
1338      from dense [OF lt] obtain r where r: "a < r" "r < b" by blast
1339      obtain d where d: "0 < d" and bound: "\<forall>y. \<bar>r - y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b"
1340        using lemma_interval [OF r] by blast
1341      have eq_fb: "f z = f b" if "a \<le> z" and "z \<le> b" for z
1342      proof (rule order_antisym)
1343        show "f z \<le> f b" by (simp add: fx x_max that)
1344        show "f b \<le> f z" by (simp add: fx' x'_min that)
1345      qed
1346      have bound': "\<forall>y. \<bar>r - y\<bar> < d \<longrightarrow> f r = f y"
1347      proof (intro strip)
1348        fix y :: real
1349        assume lt: "\<bar>r - y\<bar> < d"
1350        then have "f y = f b" by (simp add: eq_fb bound)
1351        then show "f r = f y" by (simp add: eq_fb r order_less_imp_le)
1352      qed
1353      obtain l where der: "DERIV f r :> l"
1354        using differentiableD [OF dif [OF conjI [OF r]]] ..
1355      have "l = 0"
1356        by (rule DERIV_local_const [OF der d bound'])
1357        \<comment> \<open>the derivative of a constant function is zero\<close>
1358      with r der show ?thesis by auto
1359    qed
1360  qed
1361qed
1362
1363
1364subsection \<open>Mean Value Theorem\<close>
1365
1366lemma lemma_MVT: "f a - (f b - f a) / (b - a) * a = f b - (f b - f a) / (b - a) * b"
1367  for a b :: real
1368  by (cases "a = b") (simp_all add: field_simps)
1369
1370theorem MVT:
1371  fixes a b :: real
1372  assumes lt: "a < b"
1373    and con:  "\<And>x. \<lbrakk>a \<le> x; x \<le> b\<rbrakk> \<Longrightarrow> isCont f x" 
1374    and dif: "\<And>x. \<lbrakk>a < x; x < b\<rbrakk> \<Longrightarrow> f differentiable (at x)"
1375  shows "\<exists>l z. a < z \<and> z < b \<and> DERIV f z :> l \<and> f b - f a = (b - a) * l"
1376proof -
1377  let ?F = "\<lambda>x. f x - ((f b - f a) / (b - a)) * x"
1378  have cont_f: "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont ?F x"
1379    using con by (fast intro: continuous_intros)
1380  have dif_f: "\<forall>x. a < x \<and> x < b \<longrightarrow> ?F differentiable (at x)"
1381  proof clarify
1382    fix x :: real
1383    assume x: "a < x" "x < b"
1384    obtain l where der: "DERIV f x :> l"
1385      using differentiableD [OF dif] x by blast 
1386    show "?F differentiable (at x)"
1387      by (rule differentiableI [where D = "l - (f b - f a) / (b - a)"],
1388          blast intro: DERIV_diff DERIV_cmult_Id der)
1389  qed
1390  from Rolle [where f = ?F, OF lt lemma_MVT cont_f dif_f]
1391  obtain z where z: "a < z" "z < b" and der: "DERIV ?F z :> 0"
1392    by blast
1393  have "DERIV (\<lambda>x. ((f b - f a) / (b - a)) * x) z :> (f b - f a) / (b - a)"
1394    by (rule DERIV_cmult_Id)
1395  then have der_f: "DERIV (\<lambda>x. ?F x + (f b - f a) / (b - a) * x) z :> 0 + (f b - f a) / (b - a)"
1396    by (rule DERIV_add [OF der])
1397  show ?thesis
1398  proof (intro exI conjI)
1399    show "a < z" and "z < b" using z .
1400    show "f b - f a = (b - a) * ((f b - f a) / (b - a))" by simp
1401    show "DERIV f z :> ((f b - f a) / (b - a))" using der_f by simp
1402  qed
1403qed
1404
1405corollary MVT2:
1406  assumes "a < b" and der: "\<And>x. \<lbrakk>a \<le> x; x \<le> b\<rbrakk> \<Longrightarrow> DERIV f x :> f' x"
1407  shows "\<exists>z::real. a < z \<and> z < b \<and> (f b - f a = (b - a) * f' z)"
1408proof -
1409  have "\<exists>l z. a < z \<and>
1410           z < b \<and>
1411           (f has_real_derivative l) (at z) \<and>
1412           f b - f a = (b - a) * l"
1413  proof (rule MVT [OF \<open>a < b\<close>])
1414    show  "\<And>x. \<lbrakk>a \<le> x; x \<le> b\<rbrakk> \<Longrightarrow> isCont f x" 
1415      using assms by (blast intro: DERIV_isCont)
1416    show "\<And>x. \<lbrakk>a < x; x < b\<rbrakk> \<Longrightarrow> f differentiable (at x)"
1417      using assms by (force dest: order_less_imp_le simp add: real_differentiable_def)
1418  qed
1419  with assms show ?thesis
1420    by (blast dest: DERIV_unique order_less_imp_le)
1421qed
1422
1423lemma pos_deriv_imp_strict_mono:
1424  assumes "\<And>x. (f has_real_derivative f' x) (at x)"
1425  assumes "\<And>x. f' x > 0"
1426  shows   "strict_mono f"
1427proof (rule strict_monoI)
1428  fix x y :: real assume xy: "x < y"
1429  from assms and xy have "\<exists>z>x. z < y \<and> f y - f x = (y - x) * f' z"
1430    by (intro MVT2) (auto dest: connectedD_interval)
1431  then obtain z where z: "z > x" "z < y" "f y - f x = (y - x) * f' z" by blast
1432  note \<open>f y - f x = (y - x) * f' z\<close>
1433  also have "(y - x) * f' z > 0" using xy assms by (intro mult_pos_pos) auto
1434  finally show "f x < f y" by simp
1435qed
1436
1437
1438subsubsection \<open>A function is constant if its derivative is 0 over an interval.\<close>
1439
1440lemma DERIV_isconst_end:
1441  fixes f :: "real \<Rightarrow> real"
1442  assumes "a < b" and contf: "\<And>x. \<lbrakk>a \<le> x; x \<le> b\<rbrakk> \<Longrightarrow> isCont f x" 
1443    and 0: "\<And>x. \<lbrakk>a < x; x < b\<rbrakk> \<Longrightarrow> DERIV f x :> 0"
1444  shows "f b = f a"
1445  using  MVT [OF \<open>a < b\<close>] "0" DERIV_unique contf real_differentiable_def by fastforce
1446
1447lemma DERIV_isconst2:
1448  fixes f :: "real \<Rightarrow> real"
1449  assumes "a < b" "\<And>x. \<lbrakk>a \<le> x; x \<le> b\<rbrakk> \<Longrightarrow> isCont f x" "\<And>x. \<lbrakk>a < x; x < b\<rbrakk> \<Longrightarrow> DERIV f x :> 0"
1450    and "a \<le> x" "x \<le> b"
1451shows "f x = f a"
1452proof (cases "x=a")
1453  case False
1454  show ?thesis
1455    by (rule DERIV_isconst_end [where f=f]) (use False assms in auto)
1456qed auto
1457
1458lemma DERIV_isconst3:
1459  fixes a b x y :: real
1460  assumes "a < b"
1461    and "x \<in> {a <..< b}"
1462    and "y \<in> {a <..< b}"
1463    and derivable: "\<And>x. x \<in> {a <..< b} \<Longrightarrow> DERIV f x :> 0"
1464  shows "f x = f y"
1465proof (cases "x = y")
1466  case False
1467  let ?a = "min x y"
1468  let ?b = "max x y"
1469
1470  have "DERIV f z :> 0" if "?a \<le> z" "z \<le> ?b" for z
1471  proof -
1472    have "a < z" and "z < b"
1473      using that \<open>x \<in> {a <..< b}\<close> and \<open>y \<in> {a <..< b}\<close> by auto
1474    then have "z \<in> {a<..<b}" by auto
1475    then show "DERIV f z :> 0" by (rule derivable)
1476  qed
1477  then have isCont: "\<And>z. \<lbrakk>?a \<le> z; z \<le> ?b\<rbrakk> \<Longrightarrow> isCont f z"
1478    and DERIV: "\<And>z. \<lbrakk>?a < z; z < ?b\<rbrakk> \<Longrightarrow> DERIV f z :> 0"
1479    using DERIV_isCont by auto
1480
1481  have "?a < ?b" using \<open>x \<noteq> y\<close> by auto
1482  from DERIV_isconst2[OF this isCont DERIV, of x] and DERIV_isconst2[OF this isCont DERIV, of y]
1483  show ?thesis by auto
1484qed auto
1485
1486lemma DERIV_isconst_all:
1487  fixes f :: "real \<Rightarrow> real"
1488  shows "\<forall>x. DERIV f x :> 0 \<Longrightarrow> f x = f y"
1489  apply (rule linorder_cases [of x y])
1490    apply (blast intro: sym DERIV_isCont DERIV_isconst_end)+
1491  done
1492
1493lemma DERIV_const_ratio_const:
1494  fixes f :: "real \<Rightarrow> real"
1495  assumes "a \<noteq> b" and df: "\<And>x. DERIV f x :> k"
1496  shows "f b - f a = (b - a) * k"
1497proof (cases a b rule: linorder_cases)
1498  case less
1499  show ?thesis
1500    using MVT [OF less] df by (auto dest: DERIV_isCont DERIV_unique simp: real_differentiable_def)
1501next
1502  case greater
1503  show ?thesis
1504    using MVT [OF greater] df
1505    by (fastforce dest: DERIV_continuous DERIV_unique simp: real_differentiable_def algebra_simps)
1506qed auto
1507
1508lemma DERIV_const_ratio_const2:
1509  fixes f :: "real \<Rightarrow> real"
1510  assumes "a \<noteq> b" and df: "\<And>x. DERIV f x :> k"
1511  shows "(f b - f a) / (b - a) = k"
1512  using DERIV_const_ratio_const [OF assms] \<open>a \<noteq> b\<close> by auto
1513
1514lemma real_average_minus_first [simp]: "(a + b) / 2 - a = (b - a) / 2"
1515  for a b :: real
1516  by simp
1517
1518lemma real_average_minus_second [simp]: "(b + a) / 2 - a = (b - a) / 2"
1519  for a b :: real
1520  by simp
1521
1522text \<open>Gallileo's "trick": average velocity = av. of end velocities.\<close>
1523
1524lemma DERIV_const_average:
1525  fixes v :: "real \<Rightarrow> real"
1526    and a b :: real
1527  assumes neq: "a \<noteq> b"
1528    and der: "\<And>x. DERIV v x :> k"
1529  shows "v ((a + b) / 2) = (v a + v b) / 2"
1530proof (cases rule: linorder_cases [of a b])
1531  case equal
1532  with neq show ?thesis by simp
1533next
1534  case less
1535  have "(v b - v a) / (b - a) = k"
1536    by (rule DERIV_const_ratio_const2 [OF neq der])
1537  then have "(b - a) * ((v b - v a) / (b - a)) = (b - a) * k"
1538    by simp
1539  moreover have "(v ((a + b) / 2) - v a) / ((a + b) / 2 - a) = k"
1540    by (rule DERIV_const_ratio_const2 [OF _ der]) (simp add: neq)
1541  ultimately show ?thesis
1542    using neq by force
1543next
1544  case greater
1545  have "(v b - v a) / (b - a) = k"
1546    by (rule DERIV_const_ratio_const2 [OF neq der])
1547  then have "(b - a) * ((v b - v a) / (b - a)) = (b - a) * k"
1548    by simp
1549  moreover have " (v ((b + a) / 2) - v a) / ((b + a) / 2 - a) = k"
1550    by (rule DERIV_const_ratio_const2 [OF _ der]) (simp add: neq)
1551  ultimately show ?thesis
1552    using neq by (force simp add: add.commute)
1553qed
1554
1555subsubsection\<open>A function with positive derivative is increasing\<close>
1556text \<open>A simple proof using the MVT, by Jeremy Avigad. And variants.\<close>
1557lemma DERIV_pos_imp_increasing_open:
1558  fixes a b :: real
1559    and f :: "real \<Rightarrow> real"
1560  assumes "a < b"
1561    and "\<And>x. a < x \<Longrightarrow> x < b \<Longrightarrow> (\<exists>y. DERIV f x :> y \<and> y > 0)"
1562    and con: "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> isCont f x"
1563  shows "f a < f b"
1564proof (rule ccontr)
1565  assume f: "\<not> ?thesis"
1566  have "\<exists>l z. a < z \<and> z < b \<and> DERIV f z :> l \<and> f b - f a = (b - a) * l"
1567    by (rule MVT) (use assms Deriv.differentiableI in \<open>force+\<close>)
1568  then obtain l z where z: "a < z" "z < b" "DERIV f z :> l" and "f b - f a = (b - a) * l"
1569    by auto
1570  with assms f have "\<not> l > 0"
1571    by (metis linorder_not_le mult_le_0_iff diff_le_0_iff_le)
1572  with assms z show False
1573    by (metis DERIV_unique)
1574qed
1575
1576lemma DERIV_pos_imp_increasing:
1577  fixes a b :: real
1578    and f :: "real \<Rightarrow> real"
1579  assumes "a < b"
1580    and "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> (\<exists>y. DERIV f x :> y \<and> y > 0)"
1581  shows "f a < f b"
1582  by (metis DERIV_pos_imp_increasing_open [of a b f] assms DERIV_continuous less_imp_le)
1583
1584lemma DERIV_nonneg_imp_nondecreasing:
1585  fixes a b :: real
1586    and f :: "real \<Rightarrow> real"
1587  assumes "a \<le> b"
1588    and "\<And>x. \<lbrakk>a \<le> x; x \<le> b\<rbrakk> \<Longrightarrow> \<exists>y. DERIV f x :> y \<and> y \<ge> 0"
1589  shows "f a \<le> f b"
1590proof (rule ccontr, cases "a = b")
1591  assume "\<not> ?thesis" and "a = b"
1592  then show False by auto
1593next
1594  assume *: "\<not> ?thesis"
1595  assume "a \<noteq> b"
1596  with \<open>a \<le> b\<close> have "a < b"
1597    by linarith
1598  with assms have "\<exists>l z. a < z \<and> z < b \<and> DERIV f z :> l \<and> f b - f a = (b - a) * l"
1599    by (metis (no_types) not_le not_less_iff_gr_or_eq  
1600                         MVT [OF \<open>a < b\<close>, of f] DERIV_isCont [of f] differentiableI)
1601  then obtain l z where lz: "a < z" "z < b" "DERIV f z :> l" and **: "f b - f a = (b - a) * l"
1602    by auto
1603  with * have "a < b" "f b < f a" by auto
1604  with ** have "\<not> l \<ge> 0" by (auto simp add: not_le algebra_simps)
1605    (metis * add_le_cancel_right assms(1) less_eq_real_def mult_right_mono add_left_mono linear order_refl)
1606  with assms lz show False
1607    by (metis DERIV_unique order_less_imp_le)
1608qed
1609
1610lemma DERIV_neg_imp_decreasing_open:
1611  fixes a b :: real
1612    and f :: "real \<Rightarrow> real"
1613  assumes "a < b"
1614    and "\<And>x. a < x \<Longrightarrow> x < b \<Longrightarrow> \<exists>y. DERIV f x :> y \<and> y < 0"
1615    and con: "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> isCont f x"
1616  shows "f a > f b"
1617proof -
1618  have "(\<lambda>x. -f x) a < (\<lambda>x. -f x) b"
1619  proof (rule DERIV_pos_imp_increasing_open [of a b])
1620    show "\<And>x. \<lbrakk>a < x; x < b\<rbrakk> \<Longrightarrow> \<exists>y. ((\<lambda>x. - f x) has_real_derivative y) (at x) \<and> 0 < y"
1621      using assms
1622      by simp (metis field_differentiable_minus neg_0_less_iff_less)
1623  qed (use assms in auto)
1624  then show ?thesis
1625    by simp
1626qed
1627
1628lemma DERIV_neg_imp_decreasing:
1629  fixes a b :: real
1630    and f :: "real \<Rightarrow> real"
1631  assumes "a < b"
1632    and "\<And>x. \<lbrakk>a \<le> x; x \<le> b\<rbrakk> \<Longrightarrow> \<exists>y. DERIV f x :> y \<and> y < 0"
1633  shows "f a > f b"
1634  by (metis DERIV_neg_imp_decreasing_open [of a b f] assms DERIV_continuous less_imp_le)
1635
1636lemma DERIV_nonpos_imp_nonincreasing:
1637  fixes a b :: real
1638    and f :: "real \<Rightarrow> real"
1639  assumes "a \<le> b"
1640    and "\<And>x. \<lbrakk>a \<le> x; x \<le> b\<rbrakk> \<Longrightarrow> \<exists>y. DERIV f x :> y \<and> y \<le> 0"
1641  shows "f a \<ge> f b"
1642proof -
1643  have "(\<lambda>x. -f x) a \<le> (\<lambda>x. -f x) b"
1644    using DERIV_nonneg_imp_nondecreasing [of a b "\<lambda>x. -f x"] assms DERIV_minus by fastforce
1645  then show ?thesis
1646    by simp
1647qed
1648
1649lemma DERIV_pos_imp_increasing_at_bot:
1650  fixes f :: "real \<Rightarrow> real"
1651  assumes "\<And>x. x \<le> b \<Longrightarrow> (\<exists>y. DERIV f x :> y \<and> y > 0)"
1652    and lim: "(f \<longlongrightarrow> flim) at_bot"
1653  shows "flim < f b"
1654proof -
1655  have "\<exists>N. \<forall>n\<le>N. f n \<le> f (b - 1)"
1656    by (rule_tac x="b - 2" in exI) (force intro: order.strict_implies_order DERIV_pos_imp_increasing assms)
1657  then have "flim \<le> f (b - 1)"
1658     by (auto simp: eventually_at_bot_linorder tendsto_upperbound [OF lim])
1659  also have "\<dots> < f b"
1660    by (force intro: DERIV_pos_imp_increasing [where f=f] assms)
1661  finally show ?thesis .
1662qed
1663
1664lemma DERIV_neg_imp_decreasing_at_top:
1665  fixes f :: "real \<Rightarrow> real"
1666  assumes der: "\<And>x. x \<ge> b \<Longrightarrow> \<exists>y. DERIV f x :> y \<and> y < 0"
1667    and lim: "(f \<longlongrightarrow> flim) at_top"
1668  shows "flim < f b"
1669  apply (rule DERIV_pos_imp_increasing_at_bot [where f = "\<lambda>i. f (-i)" and b = "-b", simplified])
1670   apply (metis DERIV_mirror der le_minus_iff neg_0_less_iff_less)
1671  apply (metis filterlim_at_top_mirror lim)
1672  done
1673
1674text \<open>Derivative of inverse function\<close>
1675
1676lemma DERIV_inverse_function:
1677  fixes f g :: "real \<Rightarrow> real"
1678  assumes der: "DERIV f (g x) :> D"
1679    and neq: "D \<noteq> 0"
1680    and x: "a < x" "x < b"
1681    and inj: "\<And>y. \<lbrakk>a < y; y < b\<rbrakk> \<Longrightarrow> f (g y) = y"
1682    and cont: "isCont g x"
1683  shows "DERIV g x :> inverse D"
1684unfolding has_field_derivative_iff
1685proof (rule LIM_equal2)
1686  show "0 < min (x - a) (b - x)"
1687    using x by arith
1688next
1689  fix y
1690  assume "norm (y - x) < min (x - a) (b - x)"
1691  then have "a < y" and "y < b"
1692    by (simp_all add: abs_less_iff)
1693  then show "(g y - g x) / (y - x) = inverse ((f (g y) - x) / (g y - g x))"
1694    by (simp add: inj)
1695next
1696  have "(\<lambda>z. (f z - f (g x)) / (z - g x)) \<midarrow>g x\<rightarrow> D"
1697    by (rule der [unfolded has_field_derivative_iff])
1698  then have 1: "(\<lambda>z. (f z - x) / (z - g x)) \<midarrow>g x\<rightarrow> D"
1699    using inj x by simp
1700  have 2: "\<exists>d>0. \<forall>y. y \<noteq> x \<and> norm (y - x) < d \<longrightarrow> g y \<noteq> g x"
1701  proof (rule exI, safe)
1702    show "0 < min (x - a) (b - x)"
1703      using x by simp
1704  next
1705    fix y
1706    assume "norm (y - x) < min (x - a) (b - x)"
1707    then have y: "a < y" "y < b"
1708      by (simp_all add: abs_less_iff)
1709    assume "g y = g x"
1710    then have "f (g y) = f (g x)" by simp
1711    then have "y = x" using inj y x by simp
1712    also assume "y \<noteq> x"
1713    finally show False by simp
1714  qed
1715  have "(\<lambda>y. (f (g y) - x) / (g y - g x)) \<midarrow>x\<rightarrow> D"
1716    using cont 1 2 by (rule isCont_LIM_compose2)
1717  then show "(\<lambda>y. inverse ((f (g y) - x) / (g y - g x))) \<midarrow>x\<rightarrow> inverse D"
1718    using neq by (rule tendsto_inverse)
1719qed
1720
1721subsection \<open>Generalized Mean Value Theorem\<close>
1722
1723theorem GMVT:
1724  fixes a b :: real
1725  assumes alb: "a < b"
1726    and fc: "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x"
1727    and fd: "\<forall>x. a < x \<and> x < b \<longrightarrow> f differentiable (at x)"
1728    and gc: "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont g x"
1729    and gd: "\<forall>x. a < x \<and> x < b \<longrightarrow> g differentiable (at x)"
1730  shows "\<exists>g'c f'c c.
1731    DERIV g c :> g'c \<and> DERIV f c :> f'c \<and> a < c \<and> c < b \<and> (f b - f a) * g'c = (g b - g a) * f'c"
1732proof -
1733  let ?h = "\<lambda>x. (f b - f a) * g x - (g b - g a) * f x"
1734  have "\<exists>l z. a < z \<and> z < b \<and> DERIV ?h z :> l \<and> ?h b - ?h a = (b - a) * l"
1735  proof (rule MVT)
1736    from assms show "a < b" by simp
1737    show "\<And>x. \<lbrakk>a \<le> x; x \<le> b\<rbrakk> \<Longrightarrow> isCont ?h x"
1738      using fc gc by simp
1739    show "\<And>x. \<lbrakk>a < x; x < b\<rbrakk> \<Longrightarrow> ?h differentiable (at x)"
1740      using fd gd by simp
1741  qed
1742  then obtain l where l: "\<exists>z. a < z \<and> z < b \<and> DERIV ?h z :> l \<and> ?h b - ?h a = (b - a) * l" ..
1743  then obtain c where c: "a < c \<and> c < b \<and> DERIV ?h c :> l \<and> ?h b - ?h a = (b - a) * l" ..
1744
1745  from c have cint: "a < c \<and> c < b" by auto
1746  with gd have "g differentiable (at c)" by simp
1747  then have "\<exists>D. DERIV g c :> D" by (rule differentiableD)
1748  then obtain g'c where g'c: "DERIV g c :> g'c" ..
1749
1750  from c have "a < c \<and> c < b" by auto
1751  with fd have "f differentiable (at c)" by simp
1752  then have "\<exists>D. DERIV f c :> D" by (rule differentiableD)
1753  then obtain f'c where f'c: "DERIV f c :> f'c" ..
1754
1755  from c have "DERIV ?h c :> l" by auto
1756  moreover have "DERIV ?h c :>  g'c * (f b - f a) - f'c * (g b - g a)"
1757    using g'c f'c by (auto intro!: derivative_eq_intros)
1758  ultimately have leq: "l =  g'c * (f b - f a) - f'c * (g b - g a)" by (rule DERIV_unique)
1759
1760  have "?h b - ?h a = (b - a) * (g'c * (f b - f a) - f'c * (g b - g a))"
1761  proof -
1762    from c have "?h b - ?h a = (b - a) * l" by auto
1763    also from leq have "\<dots> = (b - a) * (g'c * (f b - f a) - f'c * (g b - g a))" by simp
1764    finally show ?thesis by simp
1765  qed
1766  moreover have "?h b - ?h a = 0"
1767  proof -
1768    have "?h b - ?h a =
1769      ((f b)*(g b) - (f a)*(g b) - (g b)*(f b) + (g a)*(f b)) -
1770      ((f b)*(g a) - (f a)*(g a) - (g b)*(f a) + (g a)*(f a))"
1771      by (simp add: algebra_simps)
1772    then show ?thesis  by auto
1773  qed
1774  ultimately have "(b - a) * (g'c * (f b - f a) - f'c * (g b - g a)) = 0" by auto
1775  with alb have "g'c * (f b - f a) - f'c * (g b - g a) = 0" by simp
1776  then have "g'c * (f b - f a) = f'c * (g b - g a)" by simp
1777  then have "(f b - f a) * g'c = (g b - g a) * f'c" by (simp add: ac_simps)
1778  with g'c f'c cint show ?thesis by auto
1779qed
1780
1781lemma GMVT':
1782  fixes f g :: "real \<Rightarrow> real"
1783  assumes "a < b"
1784    and isCont_f: "\<And>z. a \<le> z \<Longrightarrow> z \<le> b \<Longrightarrow> isCont f z"
1785    and isCont_g: "\<And>z. a \<le> z \<Longrightarrow> z \<le> b \<Longrightarrow> isCont g z"
1786    and DERIV_g: "\<And>z. a < z \<Longrightarrow> z < b \<Longrightarrow> DERIV g z :> (g' z)"
1787    and DERIV_f: "\<And>z. a < z \<Longrightarrow> z < b \<Longrightarrow> DERIV f z :> (f' z)"
1788  shows "\<exists>c. a < c \<and> c < b \<and> (f b - f a) * g' c = (g b - g a) * f' c"
1789proof -
1790  have "\<exists>g'c f'c c. DERIV g c :> g'c \<and> DERIV f c :> f'c \<and>
1791      a < c \<and> c < b \<and> (f b - f a) * g'c = (g b - g a) * f'c"
1792    using assms by (intro GMVT) (force simp: real_differentiable_def)+
1793  then obtain c where "a < c" "c < b" "(f b - f a) * g' c = (g b - g a) * f' c"
1794    using DERIV_f DERIV_g by (force dest: DERIV_unique)
1795  then show ?thesis
1796    by auto
1797qed
1798
1799
1800subsection \<open>L'Hopitals rule\<close>
1801
1802lemma isCont_If_ge:
1803  fixes a :: "'a :: linorder_topology"
1804  assumes "continuous (at_left a) g" and f: "(f \<longlongrightarrow> g a) (at_right a)"
1805  shows "isCont (\<lambda>x. if x \<le> a then g x else f x) a" (is "isCont ?gf a")
1806proof -
1807  have g: "(g \<longlongrightarrow> g a) (at_left a)"
1808    using assms continuous_within by blast
1809  show ?thesis
1810    unfolding isCont_def continuous_within
1811  proof (intro filterlim_split_at; simp)
1812    show "(?gf \<longlongrightarrow> g a) (at_left a)"
1813      by (subst filterlim_cong[OF refl refl, where g=g]) (simp_all add: eventually_at_filter less_le g)
1814    show "(?gf \<longlongrightarrow> g a) (at_right a)"
1815      by (subst filterlim_cong[OF refl refl, where g=f]) (simp_all add: eventually_at_filter less_le f)
1816  qed
1817qed
1818
1819lemma lhopital_right_0:
1820  fixes f0 g0 :: "real \<Rightarrow> real"
1821  assumes f_0: "(f0 \<longlongrightarrow> 0) (at_right 0)"
1822    and g_0: "(g0 \<longlongrightarrow> 0) (at_right 0)"
1823    and ev:
1824      "eventually (\<lambda>x. g0 x \<noteq> 0) (at_right 0)"
1825      "eventually (\<lambda>x. g' x \<noteq> 0) (at_right 0)"
1826      "eventually (\<lambda>x. DERIV f0 x :> f' x) (at_right 0)"
1827      "eventually (\<lambda>x. DERIV g0 x :> g' x) (at_right 0)"
1828    and lim: "filterlim (\<lambda> x. (f' x / g' x)) F (at_right 0)"
1829  shows "filterlim (\<lambda> x. f0 x / g0 x) F (at_right 0)"
1830proof -
1831  define f where [abs_def]: "f x = (if x \<le> 0 then 0 else f0 x)" for x
1832  then have "f 0 = 0" by simp
1833
1834  define g where [abs_def]: "g x = (if x \<le> 0 then 0 else g0 x)" for x
1835  then have "g 0 = 0" by simp
1836
1837  have "eventually (\<lambda>x. g0 x \<noteq> 0 \<and> g' x \<noteq> 0 \<and>
1838      DERIV f0 x :> (f' x) \<and> DERIV g0 x :> (g' x)) (at_right 0)"
1839    using ev by eventually_elim auto
1840  then obtain a where [arith]: "0 < a"
1841    and g0_neq_0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> g0 x \<noteq> 0"
1842    and g'_neq_0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> g' x \<noteq> 0"
1843    and f0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> DERIV f0 x :> (f' x)"
1844    and g0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> DERIV g0 x :> (g' x)"
1845    unfolding eventually_at by (auto simp: dist_real_def)
1846
1847  have g_neq_0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> g x \<noteq> 0"
1848    using g0_neq_0 by (simp add: g_def)
1849
1850  have f: "DERIV f x :> (f' x)" if x: "0 < x" "x < a" for x
1851    using that
1852    by (intro DERIV_cong_ev[THEN iffD1, OF _ _ _ f0[OF x]])
1853      (auto simp: f_def eventually_nhds_metric dist_real_def intro!: exI[of _ x])
1854
1855  have g: "DERIV g x :> (g' x)" if x: "0 < x" "x < a" for x
1856    using that
1857    by (intro DERIV_cong_ev[THEN iffD1, OF _ _ _ g0[OF x]])
1858         (auto simp: g_def eventually_nhds_metric dist_real_def intro!: exI[of _ x])
1859
1860  have "isCont f 0"
1861    unfolding f_def by (intro isCont_If_ge f_0 continuous_const)
1862
1863  have "isCont g 0"
1864    unfolding g_def by (intro isCont_If_ge g_0 continuous_const)
1865
1866  have "\<exists>\<zeta>. \<forall>x\<in>{0 <..< a}. 0 < \<zeta> x \<and> \<zeta> x < x \<and> f x / g x = f' (\<zeta> x) / g' (\<zeta> x)"
1867  proof (rule bchoice, rule ballI)
1868    fix x
1869    assume "x \<in> {0 <..< a}"
1870    then have x[arith]: "0 < x" "x < a" by auto
1871    with g'_neq_0 g_neq_0 \<open>g 0 = 0\<close> have g': "\<And>x. 0 < x \<Longrightarrow> x < a  \<Longrightarrow> 0 \<noteq> g' x" "g 0 \<noteq> g x"
1872      by auto
1873    have "\<And>x. 0 \<le> x \<Longrightarrow> x < a \<Longrightarrow> isCont f x"
1874      using \<open>isCont f 0\<close> f by (auto intro: DERIV_isCont simp: le_less)
1875    moreover have "\<And>x. 0 \<le> x \<Longrightarrow> x < a \<Longrightarrow> isCont g x"
1876      using \<open>isCont g 0\<close> g by (auto intro: DERIV_isCont simp: le_less)
1877    ultimately have "\<exists>c. 0 < c \<and> c < x \<and> (f x - f 0) * g' c = (g x - g 0) * f' c"
1878      using f g \<open>x < a\<close> by (intro GMVT') auto
1879    then obtain c where *: "0 < c" "c < x" "(f x - f 0) * g' c = (g x - g 0) * f' c"
1880      by blast
1881    moreover
1882    from * g'(1)[of c] g'(2) have "(f x - f 0)  / (g x - g 0) = f' c / g' c"
1883      by (simp add: field_simps)
1884    ultimately show "\<exists>y. 0 < y \<and> y < x \<and> f x / g x = f' y / g' y"
1885      using \<open>f 0 = 0\<close> \<open>g 0 = 0\<close> by (auto intro!: exI[of _ c])
1886  qed
1887  then obtain \<zeta> where "\<forall>x\<in>{0 <..< a}. 0 < \<zeta> x \<and> \<zeta> x < x \<and> f x / g x = f' (\<zeta> x) / g' (\<zeta> x)" ..
1888  then have \<zeta>: "eventually (\<lambda>x. 0 < \<zeta> x \<and> \<zeta> x < x \<and> f x / g x = f' (\<zeta> x) / g' (\<zeta> x)) (at_right 0)"
1889    unfolding eventually_at by (intro exI[of _ a]) (auto simp: dist_real_def)
1890  moreover
1891  from \<zeta> have "eventually (\<lambda>x. norm (\<zeta> x) \<le> x) (at_right 0)"
1892    by eventually_elim auto
1893  then have "((\<lambda>x. norm (\<zeta> x)) \<longlongrightarrow> 0) (at_right 0)"
1894    by (rule_tac real_tendsto_sandwich[where f="\<lambda>x. 0" and h="\<lambda>x. x"]) auto
1895  then have "(\<zeta> \<longlongrightarrow> 0) (at_right 0)"
1896    by (rule tendsto_norm_zero_cancel)
1897  with \<zeta> have "filterlim \<zeta> (at_right 0) (at_right 0)"
1898    by (auto elim!: eventually_mono simp: filterlim_at)
1899  from this lim have "filterlim (\<lambda>t. f' (\<zeta> t) / g' (\<zeta> t)) F (at_right 0)"
1900    by (rule_tac filterlim_compose[of _ _ _ \<zeta>])
1901  ultimately have "filterlim (\<lambda>t. f t / g t) F (at_right 0)" (is ?P)
1902    by (rule_tac filterlim_cong[THEN iffD1, OF refl refl])
1903       (auto elim: eventually_mono)
1904  also have "?P \<longleftrightarrow> ?thesis"
1905    by (rule filterlim_cong) (auto simp: f_def g_def eventually_at_filter)
1906  finally show ?thesis .
1907qed
1908
1909lemma lhopital_right:
1910  "(f \<longlongrightarrow> 0) (at_right x) \<Longrightarrow> (g \<longlongrightarrow> 0) (at_right x) \<Longrightarrow>
1911    eventually (\<lambda>x. g x \<noteq> 0) (at_right x) \<Longrightarrow>
1912    eventually (\<lambda>x. g' x \<noteq> 0) (at_right x) \<Longrightarrow>
1913    eventually (\<lambda>x. DERIV f x :> f' x) (at_right x) \<Longrightarrow>
1914    eventually (\<lambda>x. DERIV g x :> g' x) (at_right x) \<Longrightarrow>
1915    filterlim (\<lambda> x. (f' x / g' x)) F (at_right x) \<Longrightarrow>
1916  filterlim (\<lambda> x. f x / g x) F (at_right x)"
1917  for x :: real
1918  unfolding eventually_at_right_to_0[of _ x] filterlim_at_right_to_0[of _ _ x] DERIV_shift
1919  by (rule lhopital_right_0)
1920
1921lemma lhopital_left:
1922  "(f \<longlongrightarrow> 0) (at_left x) \<Longrightarrow> (g \<longlongrightarrow> 0) (at_left x) \<Longrightarrow>
1923    eventually (\<lambda>x. g x \<noteq> 0) (at_left x) \<Longrightarrow>
1924    eventually (\<lambda>x. g' x \<noteq> 0) (at_left x) \<Longrightarrow>
1925    eventually (\<lambda>x. DERIV f x :> f' x) (at_left x) \<Longrightarrow>
1926    eventually (\<lambda>x. DERIV g x :> g' x) (at_left x) \<Longrightarrow>
1927    filterlim (\<lambda> x. (f' x / g' x)) F (at_left x) \<Longrightarrow>
1928  filterlim (\<lambda> x. f x / g x) F (at_left x)"
1929  for x :: real
1930  unfolding eventually_at_left_to_right filterlim_at_left_to_right DERIV_mirror
1931  by (rule lhopital_right[where f'="\<lambda>x. - f' (- x)"]) (auto simp: DERIV_mirror)
1932
1933lemma lhopital:
1934  "(f \<longlongrightarrow> 0) (at x) \<Longrightarrow> (g \<longlongrightarrow> 0) (at x) \<Longrightarrow>
1935    eventually (\<lambda>x. g x \<noteq> 0) (at x) \<Longrightarrow>
1936    eventually (\<lambda>x. g' x \<noteq> 0) (at x) \<Longrightarrow>
1937    eventually (\<lambda>x. DERIV f x :> f' x) (at x) \<Longrightarrow>
1938    eventually (\<lambda>x. DERIV g x :> g' x) (at x) \<Longrightarrow>
1939    filterlim (\<lambda> x. (f' x / g' x)) F (at x) \<Longrightarrow>
1940  filterlim (\<lambda> x. f x / g x) F (at x)"
1941  for x :: real
1942  unfolding eventually_at_split filterlim_at_split
1943  by (auto intro!: lhopital_right[of f x g g' f'] lhopital_left[of f x g g' f'])
1944
1945
1946lemma lhopital_right_0_at_top:
1947  fixes f g :: "real \<Rightarrow> real"
1948  assumes g_0: "LIM x at_right 0. g x :> at_top"
1949    and ev:
1950      "eventually (\<lambda>x. g' x \<noteq> 0) (at_right 0)"
1951      "eventually (\<lambda>x. DERIV f x :> f' x) (at_right 0)"
1952      "eventually (\<lambda>x. DERIV g x :> g' x) (at_right 0)"
1953    and lim: "((\<lambda> x. (f' x / g' x)) \<longlongrightarrow> x) (at_right 0)"
1954  shows "((\<lambda> x. f x / g x) \<longlongrightarrow> x) (at_right 0)"
1955  unfolding tendsto_iff
1956proof safe
1957  fix e :: real
1958  assume "0 < e"
1959  with lim[unfolded tendsto_iff, rule_format, of "e / 4"]
1960  have "eventually (\<lambda>t. dist (f' t / g' t) x < e / 4) (at_right 0)"
1961    by simp
1962  from eventually_conj[OF eventually_conj[OF ev(1) ev(2)] eventually_conj[OF ev(3) this]]
1963  obtain a where [arith]: "0 < a"
1964    and g'_neq_0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> g' x \<noteq> 0"
1965    and f0: "\<And>x. 0 < x \<Longrightarrow> x \<le> a \<Longrightarrow> DERIV f x :> (f' x)"
1966    and g0: "\<And>x. 0 < x \<Longrightarrow> x \<le> a \<Longrightarrow> DERIV g x :> (g' x)"
1967    and Df: "\<And>t. 0 < t \<Longrightarrow> t < a \<Longrightarrow> dist (f' t / g' t) x < e / 4"
1968    unfolding eventually_at_le by (auto simp: dist_real_def)
1969
1970  from Df have "eventually (\<lambda>t. t < a) (at_right 0)" "eventually (\<lambda>t::real. 0 < t) (at_right 0)"
1971    unfolding eventually_at by (auto intro!: exI[of _ a] simp: dist_real_def)
1972
1973  moreover
1974  have "eventually (\<lambda>t. 0 < g t) (at_right 0)" "eventually (\<lambda>t. g a < g t) (at_right 0)"
1975    using g_0 by (auto elim: eventually_mono simp: filterlim_at_top_dense)
1976
1977  moreover
1978  have inv_g: "((\<lambda>x. inverse (g x)) \<longlongrightarrow> 0) (at_right 0)"
1979    using tendsto_inverse_0 filterlim_mono[OF g_0 at_top_le_at_infinity order_refl]
1980    by (rule filterlim_compose)
1981  then have "((\<lambda>x. norm (1 - g a * inverse (g x))) \<longlongrightarrow> norm (1 - g a * 0)) (at_right 0)"
1982    by (intro tendsto_intros)
1983  then have "((\<lambda>x. norm (1 - g a / g x)) \<longlongrightarrow> 1) (at_right 0)"
1984    by (simp add: inverse_eq_divide)
1985  from this[unfolded tendsto_iff, rule_format, of 1]
1986  have "eventually (\<lambda>x. norm (1 - g a / g x) < 2) (at_right 0)"
1987    by (auto elim!: eventually_mono simp: dist_real_def)
1988
1989  moreover
1990  from inv_g have "((\<lambda>t. norm ((f a - x * g a) * inverse (g t))) \<longlongrightarrow> norm ((f a - x * g a) * 0))
1991      (at_right 0)"
1992    by (intro tendsto_intros)
1993  then have "((\<lambda>t. norm (f a - x * g a) / norm (g t)) \<longlongrightarrow> 0) (at_right 0)"
1994    by (simp add: inverse_eq_divide)
1995  from this[unfolded tendsto_iff, rule_format, of "e / 2"] \<open>0 < e\<close>
1996  have "eventually (\<lambda>t. norm (f a - x * g a) / norm (g t) < e / 2) (at_right 0)"
1997    by (auto simp: dist_real_def)
1998
1999  ultimately show "eventually (\<lambda>t. dist (f t / g t) x < e) (at_right 0)"
2000  proof eventually_elim
2001    fix t assume t[arith]: "0 < t" "t < a" "g a < g t" "0 < g t"
2002    assume ineq: "norm (1 - g a / g t) < 2" "norm (f a - x * g a) / norm (g t) < e / 2"
2003
2004    have "\<exists>y. t < y \<and> y < a \<and> (g a - g t) * f' y = (f a - f t) * g' y"
2005      using f0 g0 t(1,2) by (intro GMVT') (force intro!: DERIV_isCont)+
2006    then obtain y where [arith]: "t < y" "y < a"
2007      and D_eq0: "(g a - g t) * f' y = (f a - f t) * g' y"
2008      by blast
2009    from D_eq0 have D_eq: "(f t - f a) / (g t - g a) = f' y / g' y"
2010      using \<open>g a < g t\<close> g'_neq_0[of y] by (auto simp add: field_simps)
2011
2012    have *: "f t / g t - x = ((f t - f a) / (g t - g a) - x) * (1 - g a / g t) + (f a - x * g a) / g t"
2013      by (simp add: field_simps)
2014    have "norm (f t / g t - x) \<le>
2015        norm (((f t - f a) / (g t - g a) - x) * (1 - g a / g t)) + norm ((f a - x * g a) / g t)"
2016      unfolding * by (rule norm_triangle_ineq)
2017    also have "\<dots> = dist (f' y / g' y) x * norm (1 - g a / g t) + norm (f a - x * g a) / norm (g t)"
2018      by (simp add: abs_mult D_eq dist_real_def)
2019    also have "\<dots> < (e / 4) * 2 + e / 2"
2020      using ineq Df[of y] \<open>0 < e\<close> by (intro add_le_less_mono mult_mono) auto
2021    finally show "dist (f t / g t) x < e"
2022      by (simp add: dist_real_def)
2023  qed
2024qed
2025
2026lemma lhopital_right_at_top:
2027  "LIM x at_right x. (g::real \<Rightarrow> real) x :> at_top \<Longrightarrow>
2028    eventually (\<lambda>x. g' x \<noteq> 0) (at_right x) \<Longrightarrow>
2029    eventually (\<lambda>x. DERIV f x :> f' x) (at_right x) \<Longrightarrow>
2030    eventually (\<lambda>x. DERIV g x :> g' x) (at_right x) \<Longrightarrow>
2031    ((\<lambda> x. (f' x / g' x)) \<longlongrightarrow> y) (at_right x) \<Longrightarrow>
2032    ((\<lambda> x. f x / g x) \<longlongrightarrow> y) (at_right x)"
2033  unfolding eventually_at_right_to_0[of _ x] filterlim_at_right_to_0[of _ _ x] DERIV_shift
2034  by (rule lhopital_right_0_at_top)
2035
2036lemma lhopital_left_at_top:
2037  "LIM x at_left x. g x :> at_top \<Longrightarrow>
2038    eventually (\<lambda>x. g' x \<noteq> 0) (at_left x) \<Longrightarrow>
2039    eventually (\<lambda>x. DERIV f x :> f' x) (at_left x) \<Longrightarrow>
2040    eventually (\<lambda>x. DERIV g x :> g' x) (at_left x) \<Longrightarrow>
2041    ((\<lambda> x. (f' x / g' x)) \<longlongrightarrow> y) (at_left x) \<Longrightarrow>
2042    ((\<lambda> x. f x / g x) \<longlongrightarrow> y) (at_left x)"
2043  for x :: real
2044  unfolding eventually_at_left_to_right filterlim_at_left_to_right DERIV_mirror
2045  by (rule lhopital_right_at_top[where f'="\<lambda>x. - f' (- x)"]) (auto simp: DERIV_mirror)
2046
2047lemma lhopital_at_top:
2048  "LIM x at x. (g::real \<Rightarrow> real) x :> at_top \<Longrightarrow>
2049    eventually (\<lambda>x. g' x \<noteq> 0) (at x) \<Longrightarrow>
2050    eventually (\<lambda>x. DERIV f x :> f' x) (at x) \<Longrightarrow>
2051    eventually (\<lambda>x. DERIV g x :> g' x) (at x) \<Longrightarrow>
2052    ((\<lambda> x. (f' x / g' x)) \<longlongrightarrow> y) (at x) \<Longrightarrow>
2053    ((\<lambda> x. f x / g x) \<longlongrightarrow> y) (at x)"
2054  unfolding eventually_at_split filterlim_at_split
2055  by (auto intro!: lhopital_right_at_top[of g x g' f f'] lhopital_left_at_top[of g x g' f f'])
2056
2057lemma lhospital_at_top_at_top:
2058  fixes f g :: "real \<Rightarrow> real"
2059  assumes g_0: "LIM x at_top. g x :> at_top"
2060    and g': "eventually (\<lambda>x. g' x \<noteq> 0) at_top"
2061    and Df: "eventually (\<lambda>x. DERIV f x :> f' x) at_top"
2062    and Dg: "eventually (\<lambda>x. DERIV g x :> g' x) at_top"
2063    and lim: "((\<lambda> x. (f' x / g' x)) \<longlongrightarrow> x) at_top"
2064  shows "((\<lambda> x. f x / g x) \<longlongrightarrow> x) at_top"
2065  unfolding filterlim_at_top_to_right
2066proof (rule lhopital_right_0_at_top)
2067  let ?F = "\<lambda>x. f (inverse x)"
2068  let ?G = "\<lambda>x. g (inverse x)"
2069  let ?R = "at_right (0::real)"
2070  let ?D = "\<lambda>f' x. f' (inverse x) * - (inverse x ^ Suc (Suc 0))"
2071  show "LIM x ?R. ?G x :> at_top"
2072    using g_0 unfolding filterlim_at_top_to_right .
2073  show "eventually (\<lambda>x. DERIV ?G x  :> ?D g' x) ?R"
2074    unfolding eventually_at_right_to_top
2075    using Dg eventually_ge_at_top[where c=1]
2076    by eventually_elim (rule derivative_eq_intros DERIV_chain'[where f=inverse] | simp)+
2077  show "eventually (\<lambda>x. DERIV ?F x  :> ?D f' x) ?R"
2078    unfolding eventually_at_right_to_top
2079    using Df eventually_ge_at_top[where c=1]
2080    by eventually_elim (rule derivative_eq_intros DERIV_chain'[where f=inverse] | simp)+
2081  show "eventually (\<lambda>x. ?D g' x \<noteq> 0) ?R"
2082    unfolding eventually_at_right_to_top
2083    using g' eventually_ge_at_top[where c=1]
2084    by eventually_elim auto
2085  show "((\<lambda>x. ?D f' x / ?D g' x) \<longlongrightarrow> x) ?R"
2086    unfolding filterlim_at_right_to_top
2087    apply (intro filterlim_cong[THEN iffD2, OF refl refl _ lim])
2088    using eventually_ge_at_top[where c=1]
2089    by eventually_elim simp
2090qed
2091
2092lemma lhopital_right_at_top_at_top:
2093  fixes f g :: "real \<Rightarrow> real"
2094  assumes f_0: "LIM x at_right a. f x :> at_top"
2095  assumes g_0: "LIM x at_right a. g x :> at_top"
2096    and ev:
2097      "eventually (\<lambda>x. DERIV f x :> f' x) (at_right a)"
2098      "eventually (\<lambda>x. DERIV g x :> g' x) (at_right a)"
2099    and lim: "filterlim (\<lambda> x. (f' x / g' x)) at_top (at_right a)"
2100  shows "filterlim (\<lambda> x. f x / g x) at_top (at_right a)"
2101proof -
2102  from lim have pos: "eventually (\<lambda>x. f' x / g' x > 0) (at_right a)"
2103    unfolding filterlim_at_top_dense by blast
2104  have "((\<lambda>x. g x / f x) \<longlongrightarrow> 0) (at_right a)"
2105  proof (rule lhopital_right_at_top)
2106    from pos show "eventually (\<lambda>x. f' x \<noteq> 0) (at_right a)" by eventually_elim auto
2107    from tendsto_inverse_0_at_top[OF lim]
2108      show "((\<lambda>x. g' x / f' x) \<longlongrightarrow> 0) (at_right a)" by simp
2109  qed fact+
2110  moreover from f_0 g_0 
2111    have "eventually (\<lambda>x. f x > 0) (at_right a)" "eventually (\<lambda>x. g x > 0) (at_right a)"
2112    unfolding filterlim_at_top_dense by blast+
2113  hence "eventually (\<lambda>x. g x / f x > 0) (at_right a)" by eventually_elim simp
2114  ultimately have "filterlim (\<lambda>x. inverse (g x / f x)) at_top (at_right a)"
2115    by (rule filterlim_inverse_at_top)
2116  thus ?thesis by simp
2117qed
2118
2119lemma lhopital_right_at_top_at_bot:
2120  fixes f g :: "real \<Rightarrow> real"
2121  assumes f_0: "LIM x at_right a. f x :> at_top"
2122  assumes g_0: "LIM x at_right a. g x :> at_bot"
2123    and ev:
2124      "eventually (\<lambda>x. DERIV f x :> f' x) (at_right a)"
2125      "eventually (\<lambda>x. DERIV g x :> g' x) (at_right a)"
2126    and lim: "filterlim (\<lambda> x. (f' x / g' x)) at_bot (at_right a)"
2127  shows "filterlim (\<lambda> x. f x / g x) at_bot (at_right a)"
2128proof -
2129  from ev(2) have ev': "eventually (\<lambda>x. DERIV (\<lambda>x. -g x) x :> -g' x) (at_right a)"
2130    by eventually_elim (auto intro: derivative_intros)
2131  have "filterlim (\<lambda>x. f x / (-g x)) at_top (at_right a)"
2132    by (rule lhopital_right_at_top_at_top[where f' = f' and g' = "\<lambda>x. -g' x"])
2133       (insert assms ev', auto simp: filterlim_uminus_at_bot)
2134  hence "filterlim (\<lambda>x. -(f x / g x)) at_top (at_right a)" by simp
2135  thus ?thesis by (simp add: filterlim_uminus_at_bot)
2136qed
2137
2138lemma lhopital_left_at_top_at_top:
2139  fixes f g :: "real \<Rightarrow> real"
2140  assumes f_0: "LIM x at_left a. f x :> at_top"
2141  assumes g_0: "LIM x at_left a. g x :> at_top"
2142    and ev:
2143      "eventually (\<lambda>x. DERIV f x :> f' x) (at_left a)"
2144      "eventually (\<lambda>x. DERIV g x :> g' x) (at_left a)"
2145    and lim: "filterlim (\<lambda> x. (f' x / g' x)) at_top (at_left a)"
2146  shows "filterlim (\<lambda> x. f x / g x) at_top (at_left a)"
2147  by (insert assms, unfold eventually_at_left_to_right filterlim_at_left_to_right DERIV_mirror,
2148      rule lhopital_right_at_top_at_top[where f'="\<lambda>x. - f' (- x)"]) 
2149     (insert assms, auto simp: DERIV_mirror)
2150
2151lemma lhopital_left_at_top_at_bot:
2152  fixes f g :: "real \<Rightarrow> real"
2153  assumes f_0: "LIM x at_left a. f x :> at_top"
2154  assumes g_0: "LIM x at_left a. g x :> at_bot"
2155    and ev:
2156      "eventually (\<lambda>x. DERIV f x :> f' x) (at_left a)"
2157      "eventually (\<lambda>x. DERIV g x :> g' x) (at_left a)"
2158    and lim: "filterlim (\<lambda> x. (f' x / g' x)) at_bot (at_left a)"
2159  shows "filterlim (\<lambda> x. f x / g x) at_bot (at_left a)"
2160  by (insert assms, unfold eventually_at_left_to_right filterlim_at_left_to_right DERIV_mirror,
2161      rule lhopital_right_at_top_at_bot[where f'="\<lambda>x. - f' (- x)"]) 
2162     (insert assms, auto simp: DERIV_mirror)
2163
2164lemma lhopital_at_top_at_top:
2165  fixes f g :: "real \<Rightarrow> real"
2166  assumes f_0: "LIM x at a. f x :> at_top"
2167  assumes g_0: "LIM x at a. g x :> at_top"
2168    and ev:
2169      "eventually (\<lambda>x. DERIV f x :> f' x) (at a)"
2170      "eventually (\<lambda>x. DERIV g x :> g' x) (at a)"
2171    and lim: "filterlim (\<lambda> x. (f' x / g' x)) at_top (at a)"
2172  shows "filterlim (\<lambda> x. f x / g x) at_top (at a)"
2173  using assms unfolding eventually_at_split filterlim_at_split
2174  by (auto intro!: lhopital_right_at_top_at_top[of f a g f' g'] 
2175                   lhopital_left_at_top_at_top[of f a g f' g'])
2176
2177lemma lhopital_at_top_at_bot:
2178  fixes f g :: "real \<Rightarrow> real"
2179  assumes f_0: "LIM x at a. f x :> at_top"
2180  assumes g_0: "LIM x at a. g x :> at_bot"
2181    and ev:
2182      "eventually (\<lambda>x. DERIV f x :> f' x) (at a)"
2183      "eventually (\<lambda>x. DERIV g x :> g' x) (at a)"
2184    and lim: "filterlim (\<lambda> x. (f' x / g' x)) at_bot (at a)"
2185  shows "filterlim (\<lambda> x. f x / g x) at_bot (at a)"
2186  using assms unfolding eventually_at_split filterlim_at_split
2187  by (auto intro!: lhopital_right_at_top_at_bot[of f a g f' g'] 
2188                   lhopital_left_at_top_at_bot[of f a g f' g'])
2189
2190end
2191