1(*  Title:       HOL/Complex.thy
2    Author:      Jacques D. Fleuriot, 2001 University of Edinburgh
3    Author:      Lawrence C Paulson, 2003/4
4*)
5
6section \<open>Complex Numbers: Rectangular and Polar Representations\<close>
7
8theory Complex
9imports Transcendental
10begin
11
12text \<open>
13  We use the \<^theory_text>\<open>codatatype\<close> command to define the type of complex numbers. This
14  allows us to use \<^theory_text>\<open>primcorec\<close> to define complex functions by defining their
15  real and imaginary result separately.
16\<close>
17
18codatatype complex = Complex (Re: real) (Im: real)
19
20lemma complex_surj: "Complex (Re z) (Im z) = z"
21  by (rule complex.collapse)
22
23lemma complex_eqI [intro?]: "Re x = Re y \<Longrightarrow> Im x = Im y \<Longrightarrow> x = y"
24  by (rule complex.expand) simp
25
26lemma complex_eq_iff: "x = y \<longleftrightarrow> Re x = Re y \<and> Im x = Im y"
27  by (auto intro: complex.expand)
28
29
30subsection \<open>Addition and Subtraction\<close>
31
32instantiation complex :: ab_group_add
33begin
34
35primcorec zero_complex
36  where
37    "Re 0 = 0"
38  | "Im 0 = 0"
39
40primcorec plus_complex
41  where
42    "Re (x + y) = Re x + Re y"
43  | "Im (x + y) = Im x + Im y"
44
45primcorec uminus_complex
46  where
47    "Re (- x) = - Re x"
48  | "Im (- x) = - Im x"
49
50primcorec minus_complex
51  where
52    "Re (x - y) = Re x - Re y"
53  | "Im (x - y) = Im x - Im y"
54
55instance
56  by standard (simp_all add: complex_eq_iff)
57
58end
59
60
61subsection \<open>Multiplication and Division\<close>
62
63instantiation complex :: field
64begin
65
66primcorec one_complex
67  where
68    "Re 1 = 1"
69  | "Im 1 = 0"
70
71primcorec times_complex
72  where
73    "Re (x * y) = Re x * Re y - Im x * Im y"
74  | "Im (x * y) = Re x * Im y + Im x * Re y"
75
76primcorec inverse_complex
77  where
78    "Re (inverse x) = Re x / ((Re x)\<^sup>2 + (Im x)\<^sup>2)"
79  | "Im (inverse x) = - Im x / ((Re x)\<^sup>2 + (Im x)\<^sup>2)"
80
81definition "x div y = x * inverse y" for x y :: complex
82
83instance
84  by standard
85     (simp_all add: complex_eq_iff divide_complex_def
86      distrib_left distrib_right right_diff_distrib left_diff_distrib
87      power2_eq_square add_divide_distrib [symmetric])
88
89end
90
91lemma Re_divide: "Re (x / y) = (Re x * Re y + Im x * Im y) / ((Re y)\<^sup>2 + (Im y)\<^sup>2)"
92  by (simp add: divide_complex_def add_divide_distrib)
93
94lemma Im_divide: "Im (x / y) = (Im x * Re y - Re x * Im y) / ((Re y)\<^sup>2 + (Im y)\<^sup>2)"
95  unfolding divide_complex_def times_complex.sel inverse_complex.sel
96  by (simp add: divide_simps)
97
98lemma Complex_divide:
99    "(x / y) = Complex ((Re x * Re y + Im x * Im y) / ((Re y)\<^sup>2 + (Im y)\<^sup>2))
100                       ((Im x * Re y - Re x * Im y) / ((Re y)\<^sup>2 + (Im y)\<^sup>2))"
101  by (metis Im_divide Re_divide complex_surj)
102
103lemma Re_power2: "Re (x ^ 2) = (Re x)^2 - (Im x)^2"
104  by (simp add: power2_eq_square)
105
106lemma Im_power2: "Im (x ^ 2) = 2 * Re x * Im x"
107  by (simp add: power2_eq_square)
108
109lemma Re_power_real [simp]: "Im x = 0 \<Longrightarrow> Re (x ^ n) = Re x ^ n "
110  by (induct n) simp_all
111
112lemma Im_power_real [simp]: "Im x = 0 \<Longrightarrow> Im (x ^ n) = 0"
113  by (induct n) simp_all
114
115
116subsection \<open>Scalar Multiplication\<close>
117
118instantiation complex :: real_field
119begin
120
121primcorec scaleR_complex
122  where
123    "Re (scaleR r x) = r * Re x"
124  | "Im (scaleR r x) = r * Im x"
125
126instance
127proof
128  fix a b :: real and x y :: complex
129  show "scaleR a (x + y) = scaleR a x + scaleR a y"
130    by (simp add: complex_eq_iff distrib_left)
131  show "scaleR (a + b) x = scaleR a x + scaleR b x"
132    by (simp add: complex_eq_iff distrib_right)
133  show "scaleR a (scaleR b x) = scaleR (a * b) x"
134    by (simp add: complex_eq_iff mult.assoc)
135  show "scaleR 1 x = x"
136    by (simp add: complex_eq_iff)
137  show "scaleR a x * y = scaleR a (x * y)"
138    by (simp add: complex_eq_iff algebra_simps)
139  show "x * scaleR a y = scaleR a (x * y)"
140    by (simp add: complex_eq_iff algebra_simps)
141qed
142
143end
144
145
146subsection \<open>Numerals, Arithmetic, and Embedding from R\<close>
147
148abbreviation complex_of_real :: "real \<Rightarrow> complex"
149  where "complex_of_real \<equiv> of_real"
150
151declare [[coercion "of_real :: real \<Rightarrow> complex"]]
152declare [[coercion "of_rat :: rat \<Rightarrow> complex"]]
153declare [[coercion "of_int :: int \<Rightarrow> complex"]]
154declare [[coercion "of_nat :: nat \<Rightarrow> complex"]]
155
156lemma complex_Re_of_nat [simp]: "Re (of_nat n) = of_nat n"
157  by (induct n) simp_all
158
159lemma complex_Im_of_nat [simp]: "Im (of_nat n) = 0"
160  by (induct n) simp_all
161
162lemma complex_Re_of_int [simp]: "Re (of_int z) = of_int z"
163  by (cases z rule: int_diff_cases) simp
164
165lemma complex_Im_of_int [simp]: "Im (of_int z) = 0"
166  by (cases z rule: int_diff_cases) simp
167
168lemma complex_Re_numeral [simp]: "Re (numeral v) = numeral v"
169  using complex_Re_of_int [of "numeral v"] by simp
170
171lemma complex_Im_numeral [simp]: "Im (numeral v) = 0"
172  using complex_Im_of_int [of "numeral v"] by simp
173
174lemma Re_complex_of_real [simp]: "Re (complex_of_real z) = z"
175  by (simp add: of_real_def)
176
177lemma Im_complex_of_real [simp]: "Im (complex_of_real z) = 0"
178  by (simp add: of_real_def)
179
180lemma Re_divide_numeral [simp]: "Re (z / numeral w) = Re z / numeral w"
181  by (simp add: Re_divide sqr_conv_mult)
182
183lemma Im_divide_numeral [simp]: "Im (z / numeral w) = Im z / numeral w"
184  by (simp add: Im_divide sqr_conv_mult)
185
186lemma Re_divide_of_nat [simp]: "Re (z / of_nat n) = Re z / of_nat n"
187  by (cases n) (simp_all add: Re_divide divide_simps power2_eq_square del: of_nat_Suc)
188
189lemma Im_divide_of_nat [simp]: "Im (z / of_nat n) = Im z / of_nat n"
190  by (cases n) (simp_all add: Im_divide divide_simps power2_eq_square del: of_nat_Suc)
191
192lemma of_real_Re [simp]: "z \<in> \<real> \<Longrightarrow> of_real (Re z) = z"
193  by (auto simp: Reals_def)
194
195lemma complex_Re_fact [simp]: "Re (fact n) = fact n"
196proof -
197  have "(fact n :: complex) = of_real (fact n)"
198    by simp
199  also have "Re \<dots> = fact n"
200    by (subst Re_complex_of_real) simp_all
201  finally show ?thesis .
202qed
203
204lemma complex_Im_fact [simp]: "Im (fact n) = 0"
205  by (subst of_nat_fact [symmetric]) (simp only: complex_Im_of_nat)
206
207lemma Re_prod_Reals: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> \<real>) \<Longrightarrow> Re (prod f A) = prod (\<lambda>x. Re (f x)) A"
208proof (induction A rule: infinite_finite_induct)
209  case (insert x A)
210  hence "Re (prod f (insert x A)) = Re (f x) * Re (prod f A) - Im (f x) * Im (prod f A)"
211    by simp
212  also from insert.prems have "f x \<in> \<real>" by simp
213  hence "Im (f x) = 0" by (auto elim!: Reals_cases)
214  also have "Re (prod f A) = (\<Prod>x\<in>A. Re (f x))"
215    by (intro insert.IH insert.prems) auto
216  finally show ?case using insert.hyps by simp
217qed auto
218
219
220subsection \<open>The Complex Number $i$\<close>
221
222primcorec imaginary_unit :: complex  ("\<i>")
223  where
224    "Re \<i> = 0"
225  | "Im \<i> = 1"
226
227lemma Complex_eq: "Complex a b = a + \<i> * b"
228  by (simp add: complex_eq_iff)
229
230lemma complex_eq: "a = Re a + \<i> * Im a"
231  by (simp add: complex_eq_iff)
232
233lemma fun_complex_eq: "f = (\<lambda>x. Re (f x) + \<i> * Im (f x))"
234  by (simp add: fun_eq_iff complex_eq)
235
236lemma i_squared [simp]: "\<i> * \<i> = -1"
237  by (simp add: complex_eq_iff)
238
239lemma power2_i [simp]: "\<i>\<^sup>2 = -1"
240  by (simp add: power2_eq_square)
241
242lemma inverse_i [simp]: "inverse \<i> = - \<i>"
243  by (rule inverse_unique) simp
244
245lemma divide_i [simp]: "x / \<i> = - \<i> * x"
246  by (simp add: divide_complex_def)
247
248lemma complex_i_mult_minus [simp]: "\<i> * (\<i> * x) = - x"
249  by (simp add: mult.assoc [symmetric])
250
251lemma complex_i_not_zero [simp]: "\<i> \<noteq> 0"
252  by (simp add: complex_eq_iff)
253
254lemma complex_i_not_one [simp]: "\<i> \<noteq> 1"
255  by (simp add: complex_eq_iff)
256
257lemma complex_i_not_numeral [simp]: "\<i> \<noteq> numeral w"
258  by (simp add: complex_eq_iff)
259
260lemma complex_i_not_neg_numeral [simp]: "\<i> \<noteq> - numeral w"
261  by (simp add: complex_eq_iff)
262
263lemma complex_split_polar: "\<exists>r a. z = complex_of_real r * (cos a + \<i> * sin a)"
264  by (simp add: complex_eq_iff polar_Ex)
265
266lemma i_even_power [simp]: "\<i> ^ (n * 2) = (-1) ^ n"
267  by (metis mult.commute power2_i power_mult)
268
269lemma Re_i_times [simp]: "Re (\<i> * z) = - Im z"
270  by simp
271
272lemma Im_i_times [simp]: "Im (\<i> * z) = Re z"
273  by simp
274
275lemma i_times_eq_iff: "\<i> * w = z \<longleftrightarrow> w = - (\<i> * z)"
276  by auto
277
278lemma divide_numeral_i [simp]: "z / (numeral n * \<i>) = - (\<i> * z) / numeral n"
279  by (metis divide_divide_eq_left divide_i mult.commute mult_minus_right)
280
281lemma imaginary_eq_real_iff [simp]:
282  assumes "y \<in> Reals" "x \<in> Reals"
283  shows "\<i> * y = x \<longleftrightarrow> x=0 \<and> y=0"
284    using assms
285    unfolding Reals_def
286    apply clarify
287      apply (rule iffI)
288    apply (metis Im_complex_of_real Im_i_times Re_complex_of_real mult_eq_0_iff of_real_0)
289    by simp
290
291lemma real_eq_imaginary_iff [simp]:
292  assumes "y \<in> Reals" "x \<in> Reals"
293  shows "x = \<i> * y  \<longleftrightarrow> x=0 \<and> y=0"
294    using assms imaginary_eq_real_iff by fastforce
295
296subsection \<open>Vector Norm\<close>
297
298instantiation complex :: real_normed_field
299begin
300
301definition "norm z = sqrt ((Re z)\<^sup>2 + (Im z)\<^sup>2)"
302
303abbreviation cmod :: "complex \<Rightarrow> real"
304  where "cmod \<equiv> norm"
305
306definition complex_sgn_def: "sgn x = x /\<^sub>R cmod x"
307
308definition dist_complex_def: "dist x y = cmod (x - y)"
309
310definition uniformity_complex_def [code del]:
311  "(uniformity :: (complex \<times> complex) filter) = (INF e:{0 <..}. principal {(x, y). dist x y < e})"
312
313definition open_complex_def [code del]:
314  "open (U :: complex set) \<longleftrightarrow> (\<forall>x\<in>U. eventually (\<lambda>(x', y). x' = x \<longrightarrow> y \<in> U) uniformity)"
315
316instance
317proof
318  fix r :: real and x y :: complex and S :: "complex set"
319  show "(norm x = 0) = (x = 0)"
320    by (simp add: norm_complex_def complex_eq_iff)
321  show "norm (x + y) \<le> norm x + norm y"
322    by (simp add: norm_complex_def complex_eq_iff real_sqrt_sum_squares_triangle_ineq)
323  show "norm (scaleR r x) = \<bar>r\<bar> * norm x"
324    by (simp add: norm_complex_def complex_eq_iff power_mult_distrib distrib_left [symmetric]
325        real_sqrt_mult)
326  show "norm (x * y) = norm x * norm y"
327    by (simp add: norm_complex_def complex_eq_iff real_sqrt_mult [symmetric]
328        power2_eq_square algebra_simps)
329qed (rule complex_sgn_def dist_complex_def open_complex_def uniformity_complex_def)+
330
331end
332
333declare uniformity_Abort[where 'a = complex, code]
334
335lemma norm_ii [simp]: "norm \<i> = 1"
336  by (simp add: norm_complex_def)
337
338lemma cmod_unit_one: "cmod (cos a + \<i> * sin a) = 1"
339  by (simp add: norm_complex_def)
340
341lemma cmod_complex_polar: "cmod (r * (cos a + \<i> * sin a)) = \<bar>r\<bar>"
342  by (simp add: norm_mult cmod_unit_one)
343
344lemma complex_Re_le_cmod: "Re x \<le> cmod x"
345  unfolding norm_complex_def by (rule real_sqrt_sum_squares_ge1)
346
347lemma complex_mod_minus_le_complex_mod: "- cmod x \<le> cmod x"
348  by (rule order_trans [OF _ norm_ge_zero]) simp
349
350lemma complex_mod_triangle_ineq2: "cmod (b + a) - cmod b \<le> cmod a"
351  by (rule ord_le_eq_trans [OF norm_triangle_ineq2]) simp
352
353lemma abs_Re_le_cmod: "\<bar>Re x\<bar> \<le> cmod x"
354  by (simp add: norm_complex_def)
355
356lemma abs_Im_le_cmod: "\<bar>Im x\<bar> \<le> cmod x"
357  by (simp add: norm_complex_def)
358
359lemma cmod_le: "cmod z \<le> \<bar>Re z\<bar> + \<bar>Im z\<bar>"
360  apply (subst complex_eq)
361  apply (rule order_trans)
362   apply (rule norm_triangle_ineq)
363  apply (simp add: norm_mult)
364  done
365
366lemma cmod_eq_Re: "Im z = 0 \<Longrightarrow> cmod z = \<bar>Re z\<bar>"
367  by (simp add: norm_complex_def)
368
369lemma cmod_eq_Im: "Re z = 0 \<Longrightarrow> cmod z = \<bar>Im z\<bar>"
370  by (simp add: norm_complex_def)
371
372lemma cmod_power2: "(cmod z)\<^sup>2 = (Re z)\<^sup>2 + (Im z)\<^sup>2"
373  by (simp add: norm_complex_def)
374
375lemma cmod_plus_Re_le_0_iff: "cmod z + Re z \<le> 0 \<longleftrightarrow> Re z = - cmod z"
376  using abs_Re_le_cmod[of z] by auto
377
378lemma cmod_Re_le_iff: "Im x = Im y \<Longrightarrow> cmod x \<le> cmod y \<longleftrightarrow> \<bar>Re x\<bar> \<le> \<bar>Re y\<bar>"
379  by (metis add.commute add_le_cancel_left norm_complex_def real_sqrt_abs real_sqrt_le_iff)
380
381lemma cmod_Im_le_iff: "Re x = Re y \<Longrightarrow> cmod x \<le> cmod y \<longleftrightarrow> \<bar>Im x\<bar> \<le> \<bar>Im y\<bar>"
382  by (metis add_le_cancel_left norm_complex_def real_sqrt_abs real_sqrt_le_iff)
383
384lemma Im_eq_0: "\<bar>Re z\<bar> = cmod z \<Longrightarrow> Im z = 0"
385  by (subst (asm) power_eq_iff_eq_base[symmetric, where n=2]) (auto simp add: norm_complex_def)
386
387lemma abs_sqrt_wlog: "(\<And>x. x \<ge> 0 \<Longrightarrow> P x (x\<^sup>2)) \<Longrightarrow> P \<bar>x\<bar> (x\<^sup>2)"
388  for x::"'a::linordered_idom"
389  by (metis abs_ge_zero power2_abs)
390
391lemma complex_abs_le_norm: "\<bar>Re z\<bar> + \<bar>Im z\<bar> \<le> sqrt 2 * norm z"
392  unfolding norm_complex_def
393  apply (rule abs_sqrt_wlog [where x="Re z"])
394  apply (rule abs_sqrt_wlog [where x="Im z"])
395  apply (rule power2_le_imp_le)
396   apply (simp_all add: power2_sum add.commute sum_squares_bound real_sqrt_mult [symmetric])
397  done
398
399lemma complex_unit_circle: "z \<noteq> 0 \<Longrightarrow> (Re z / cmod z)\<^sup>2 + (Im z / cmod z)\<^sup>2 = 1"
400  by (simp add: norm_complex_def divide_simps complex_eq_iff)
401
402
403text \<open>Properties of complex signum.\<close>
404
405lemma sgn_eq: "sgn z = z / complex_of_real (cmod z)"
406  by (simp add: sgn_div_norm divide_inverse scaleR_conv_of_real mult.commute)
407
408lemma Re_sgn [simp]: "Re(sgn z) = Re(z)/cmod z"
409  by (simp add: complex_sgn_def divide_inverse)
410
411lemma Im_sgn [simp]: "Im(sgn z) = Im(z)/cmod z"
412  by (simp add: complex_sgn_def divide_inverse)
413
414
415subsection \<open>Absolute value\<close>
416
417instantiation complex :: field_abs_sgn
418begin
419
420definition abs_complex :: "complex \<Rightarrow> complex"
421  where "abs_complex = of_real \<circ> norm"
422
423instance
424  apply standard
425         apply (auto simp add: abs_complex_def complex_sgn_def norm_mult)
426  apply (auto simp add: scaleR_conv_of_real field_simps)
427  done
428
429end
430
431
432subsection \<open>Completeness of the Complexes\<close>
433
434lemma bounded_linear_Re: "bounded_linear Re"
435  by (rule bounded_linear_intro [where K=1]) (simp_all add: norm_complex_def)
436
437lemma bounded_linear_Im: "bounded_linear Im"
438  by (rule bounded_linear_intro [where K=1]) (simp_all add: norm_complex_def)
439
440lemmas Cauchy_Re = bounded_linear.Cauchy [OF bounded_linear_Re]
441lemmas Cauchy_Im = bounded_linear.Cauchy [OF bounded_linear_Im]
442lemmas tendsto_Re [tendsto_intros] = bounded_linear.tendsto [OF bounded_linear_Re]
443lemmas tendsto_Im [tendsto_intros] = bounded_linear.tendsto [OF bounded_linear_Im]
444lemmas isCont_Re [simp] = bounded_linear.isCont [OF bounded_linear_Re]
445lemmas isCont_Im [simp] = bounded_linear.isCont [OF bounded_linear_Im]
446lemmas continuous_Re [simp] = bounded_linear.continuous [OF bounded_linear_Re]
447lemmas continuous_Im [simp] = bounded_linear.continuous [OF bounded_linear_Im]
448lemmas continuous_on_Re [continuous_intros] = bounded_linear.continuous_on[OF bounded_linear_Re]
449lemmas continuous_on_Im [continuous_intros] = bounded_linear.continuous_on[OF bounded_linear_Im]
450lemmas has_derivative_Re [derivative_intros] = bounded_linear.has_derivative[OF bounded_linear_Re]
451lemmas has_derivative_Im [derivative_intros] = bounded_linear.has_derivative[OF bounded_linear_Im]
452lemmas sums_Re = bounded_linear.sums [OF bounded_linear_Re]
453lemmas sums_Im = bounded_linear.sums [OF bounded_linear_Im]
454
455lemma tendsto_Complex [tendsto_intros]:
456  "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> ((\<lambda>x. Complex (f x) (g x)) \<longlongrightarrow> Complex a b) F"
457  unfolding Complex_eq by (auto intro!: tendsto_intros)
458
459lemma tendsto_complex_iff:
460  "(f \<longlongrightarrow> x) F \<longleftrightarrow> (((\<lambda>x. Re (f x)) \<longlongrightarrow> Re x) F \<and> ((\<lambda>x. Im (f x)) \<longlongrightarrow> Im x) F)"
461proof safe
462  assume "((\<lambda>x. Re (f x)) \<longlongrightarrow> Re x) F" "((\<lambda>x. Im (f x)) \<longlongrightarrow> Im x) F"
463  from tendsto_Complex[OF this] show "(f \<longlongrightarrow> x) F"
464    unfolding complex.collapse .
465qed (auto intro: tendsto_intros)
466
467lemma continuous_complex_iff:
468  "continuous F f \<longleftrightarrow> continuous F (\<lambda>x. Re (f x)) \<and> continuous F (\<lambda>x. Im (f x))"
469  by (simp only: continuous_def tendsto_complex_iff)
470
471lemma continuous_on_of_real_o_iff [simp]:
472     "continuous_on S (\<lambda>x. complex_of_real (g x)) = continuous_on S g"
473  using continuous_on_Re continuous_on_of_real  by fastforce
474
475lemma continuous_on_of_real_id [simp]:
476     "continuous_on S (of_real :: real \<Rightarrow> 'a::real_normed_algebra_1)"
477  by (rule continuous_on_of_real [OF continuous_on_id])
478
479lemma has_vector_derivative_complex_iff: "(f has_vector_derivative x) F \<longleftrightarrow>
480    ((\<lambda>x. Re (f x)) has_field_derivative (Re x)) F \<and>
481    ((\<lambda>x. Im (f x)) has_field_derivative (Im x)) F"
482  by (simp add: has_vector_derivative_def has_field_derivative_def has_derivative_def
483      tendsto_complex_iff field_simps bounded_linear_scaleR_left bounded_linear_mult_right)
484
485lemma has_field_derivative_Re[derivative_intros]:
486  "(f has_vector_derivative D) F \<Longrightarrow> ((\<lambda>x. Re (f x)) has_field_derivative (Re D)) F"
487  unfolding has_vector_derivative_complex_iff by safe
488
489lemma has_field_derivative_Im[derivative_intros]:
490  "(f has_vector_derivative D) F \<Longrightarrow> ((\<lambda>x. Im (f x)) has_field_derivative (Im D)) F"
491  unfolding has_vector_derivative_complex_iff by safe
492
493instance complex :: banach
494proof
495  fix X :: "nat \<Rightarrow> complex"
496  assume X: "Cauchy X"
497  then have "(\<lambda>n. Complex (Re (X n)) (Im (X n))) \<longlonglongrightarrow>
498    Complex (lim (\<lambda>n. Re (X n))) (lim (\<lambda>n. Im (X n)))"
499    by (intro tendsto_Complex convergent_LIMSEQ_iff[THEN iffD1]
500        Cauchy_convergent_iff[THEN iffD1] Cauchy_Re Cauchy_Im)
501  then show "convergent X"
502    unfolding complex.collapse by (rule convergentI)
503qed
504
505declare DERIV_power[where 'a=complex, unfolded of_nat_def[symmetric], derivative_intros]
506
507
508subsection \<open>Complex Conjugation\<close>
509
510primcorec cnj :: "complex \<Rightarrow> complex"
511  where
512    "Re (cnj z) = Re z"
513  | "Im (cnj z) = - Im z"
514
515lemma complex_cnj_cancel_iff [simp]: "cnj x = cnj y \<longleftrightarrow> x = y"
516  by (simp add: complex_eq_iff)
517
518lemma complex_cnj_cnj [simp]: "cnj (cnj z) = z"
519  by (simp add: complex_eq_iff)
520
521lemma complex_cnj_zero [simp]: "cnj 0 = 0"
522  by (simp add: complex_eq_iff)
523
524lemma complex_cnj_zero_iff [iff]: "cnj z = 0 \<longleftrightarrow> z = 0"
525  by (simp add: complex_eq_iff)
526
527lemma complex_cnj_one_iff [simp]: "cnj z = 1 \<longleftrightarrow> z = 1"
528  by (simp add: complex_eq_iff)
529
530lemma complex_cnj_add [simp]: "cnj (x + y) = cnj x + cnj y"
531  by (simp add: complex_eq_iff)
532
533lemma cnj_sum [simp]: "cnj (sum f s) = (\<Sum>x\<in>s. cnj (f x))"
534  by (induct s rule: infinite_finite_induct) auto
535
536lemma complex_cnj_diff [simp]: "cnj (x - y) = cnj x - cnj y"
537  by (simp add: complex_eq_iff)
538
539lemma complex_cnj_minus [simp]: "cnj (- x) = - cnj x"
540  by (simp add: complex_eq_iff)
541
542lemma complex_cnj_one [simp]: "cnj 1 = 1"
543  by (simp add: complex_eq_iff)
544
545lemma complex_cnj_mult [simp]: "cnj (x * y) = cnj x * cnj y"
546  by (simp add: complex_eq_iff)
547
548lemma cnj_prod [simp]: "cnj (prod f s) = (\<Prod>x\<in>s. cnj (f x))"
549  by (induct s rule: infinite_finite_induct) auto
550
551lemma complex_cnj_inverse [simp]: "cnj (inverse x) = inverse (cnj x)"
552  by (simp add: complex_eq_iff)
553
554lemma complex_cnj_divide [simp]: "cnj (x / y) = cnj x / cnj y"
555  by (simp add: divide_complex_def)
556
557lemma complex_cnj_power [simp]: "cnj (x ^ n) = cnj x ^ n"
558  by (induct n) simp_all
559
560lemma complex_cnj_of_nat [simp]: "cnj (of_nat n) = of_nat n"
561  by (simp add: complex_eq_iff)
562
563lemma complex_cnj_of_int [simp]: "cnj (of_int z) = of_int z"
564  by (simp add: complex_eq_iff)
565
566lemma complex_cnj_numeral [simp]: "cnj (numeral w) = numeral w"
567  by (simp add: complex_eq_iff)
568
569lemma complex_cnj_neg_numeral [simp]: "cnj (- numeral w) = - numeral w"
570  by (simp add: complex_eq_iff)
571
572lemma complex_cnj_scaleR [simp]: "cnj (scaleR r x) = scaleR r (cnj x)"
573  by (simp add: complex_eq_iff)
574
575lemma complex_mod_cnj [simp]: "cmod (cnj z) = cmod z"
576  by (simp add: norm_complex_def)
577
578lemma complex_cnj_complex_of_real [simp]: "cnj (of_real x) = of_real x"
579  by (simp add: complex_eq_iff)
580
581lemma complex_cnj_i [simp]: "cnj \<i> = - \<i>"
582  by (simp add: complex_eq_iff)
583
584lemma complex_add_cnj: "z + cnj z = complex_of_real (2 * Re z)"
585  by (simp add: complex_eq_iff)
586
587lemma complex_diff_cnj: "z - cnj z = complex_of_real (2 * Im z) * \<i>"
588  by (simp add: complex_eq_iff)
589
590lemma complex_mult_cnj: "z * cnj z = complex_of_real ((Re z)\<^sup>2 + (Im z)\<^sup>2)"
591  by (simp add: complex_eq_iff power2_eq_square)
592
593lemma cnj_add_mult_eq_Re: "z * cnj w + cnj z * w = 2 * Re (z * cnj w)"
594  by (rule complex_eqI) auto
595
596lemma complex_mod_mult_cnj: "cmod (z * cnj z) = (cmod z)\<^sup>2"
597  by (simp add: norm_mult power2_eq_square)
598
599lemma complex_mod_sqrt_Re_mult_cnj: "cmod z = sqrt (Re (z * cnj z))"
600  by (simp add: norm_complex_def power2_eq_square)
601
602lemma complex_In_mult_cnj_zero [simp]: "Im (z * cnj z) = 0"
603  by simp
604
605lemma complex_cnj_fact [simp]: "cnj (fact n) = fact n"
606  by (subst of_nat_fact [symmetric], subst complex_cnj_of_nat) simp
607
608lemma complex_cnj_pochhammer [simp]: "cnj (pochhammer z n) = pochhammer (cnj z) n"
609  by (induct n arbitrary: z) (simp_all add: pochhammer_rec)
610
611lemma bounded_linear_cnj: "bounded_linear cnj"
612  using complex_cnj_add complex_cnj_scaleR by (rule bounded_linear_intro [where K=1]) simp
613
614lemmas tendsto_cnj [tendsto_intros] = bounded_linear.tendsto [OF bounded_linear_cnj]
615  and isCont_cnj [simp] = bounded_linear.isCont [OF bounded_linear_cnj]
616  and continuous_cnj [simp, continuous_intros] = bounded_linear.continuous [OF bounded_linear_cnj]
617  and continuous_on_cnj [simp, continuous_intros] = bounded_linear.continuous_on [OF bounded_linear_cnj]
618  and has_derivative_cnj [simp, derivative_intros] = bounded_linear.has_derivative [OF bounded_linear_cnj]
619
620lemma lim_cnj: "((\<lambda>x. cnj(f x)) \<longlongrightarrow> cnj l) F \<longleftrightarrow> (f \<longlongrightarrow> l) F"
621  by (simp add: tendsto_iff dist_complex_def complex_cnj_diff [symmetric] del: complex_cnj_diff)
622
623lemma sums_cnj: "((\<lambda>x. cnj(f x)) sums cnj l) \<longleftrightarrow> (f sums l)"
624  by (simp add: sums_def lim_cnj cnj_sum [symmetric] del: cnj_sum)
625
626
627subsection \<open>Basic Lemmas\<close>
628
629lemma complex_eq_0: "z=0 \<longleftrightarrow> (Re z)\<^sup>2 + (Im z)\<^sup>2 = 0"
630  by (metis zero_complex.sel complex_eqI sum_power2_eq_zero_iff)
631
632lemma complex_neq_0: "z\<noteq>0 \<longleftrightarrow> (Re z)\<^sup>2 + (Im z)\<^sup>2 > 0"
633  by (metis complex_eq_0 less_numeral_extra(3) sum_power2_gt_zero_iff)
634
635lemma complex_norm_square: "of_real ((norm z)\<^sup>2) = z * cnj z"
636  by (cases z)
637    (auto simp: complex_eq_iff norm_complex_def power2_eq_square[symmetric] of_real_power[symmetric]
638      simp del: of_real_power)
639
640lemma complex_div_cnj: "a / b = (a * cnj b) / (norm b)\<^sup>2"
641  using complex_norm_square by auto
642
643lemma Re_complex_div_eq_0: "Re (a / b) = 0 \<longleftrightarrow> Re (a * cnj b) = 0"
644  by (auto simp add: Re_divide)
645
646lemma Im_complex_div_eq_0: "Im (a / b) = 0 \<longleftrightarrow> Im (a * cnj b) = 0"
647  by (auto simp add: Im_divide)
648
649lemma complex_div_gt_0: "(Re (a / b) > 0 \<longleftrightarrow> Re (a * cnj b) > 0) \<and> (Im (a / b) > 0 \<longleftrightarrow> Im (a * cnj b) > 0)"
650proof (cases "b = 0")
651  case True
652  then show ?thesis by auto
653next
654  case False
655  then have "0 < (Re b)\<^sup>2 + (Im b)\<^sup>2"
656    by (simp add: complex_eq_iff sum_power2_gt_zero_iff)
657  then show ?thesis
658    by (simp add: Re_divide Im_divide zero_less_divide_iff)
659qed
660
661lemma Re_complex_div_gt_0: "Re (a / b) > 0 \<longleftrightarrow> Re (a * cnj b) > 0"
662  and Im_complex_div_gt_0: "Im (a / b) > 0 \<longleftrightarrow> Im (a * cnj b) > 0"
663  using complex_div_gt_0 by auto
664
665lemma Re_complex_div_ge_0: "Re (a / b) \<ge> 0 \<longleftrightarrow> Re (a * cnj b) \<ge> 0"
666  by (metis le_less Re_complex_div_eq_0 Re_complex_div_gt_0)
667
668lemma Im_complex_div_ge_0: "Im (a / b) \<ge> 0 \<longleftrightarrow> Im (a * cnj b) \<ge> 0"
669  by (metis Im_complex_div_eq_0 Im_complex_div_gt_0 le_less)
670
671lemma Re_complex_div_lt_0: "Re (a / b) < 0 \<longleftrightarrow> Re (a * cnj b) < 0"
672  by (metis less_asym neq_iff Re_complex_div_eq_0 Re_complex_div_gt_0)
673
674lemma Im_complex_div_lt_0: "Im (a / b) < 0 \<longleftrightarrow> Im (a * cnj b) < 0"
675  by (metis Im_complex_div_eq_0 Im_complex_div_gt_0 less_asym neq_iff)
676
677lemma Re_complex_div_le_0: "Re (a / b) \<le> 0 \<longleftrightarrow> Re (a * cnj b) \<le> 0"
678  by (metis not_le Re_complex_div_gt_0)
679
680lemma Im_complex_div_le_0: "Im (a / b) \<le> 0 \<longleftrightarrow> Im (a * cnj b) \<le> 0"
681  by (metis Im_complex_div_gt_0 not_le)
682
683lemma Re_divide_of_real [simp]: "Re (z / of_real r) = Re z / r"
684  by (simp add: Re_divide power2_eq_square)
685
686lemma Im_divide_of_real [simp]: "Im (z / of_real r) = Im z / r"
687  by (simp add: Im_divide power2_eq_square)
688
689lemma Re_divide_Reals [simp]: "r \<in> \<real> \<Longrightarrow> Re (z / r) = Re z / Re r"
690  by (metis Re_divide_of_real of_real_Re)
691
692lemma Im_divide_Reals [simp]: "r \<in> \<real> \<Longrightarrow> Im (z / r) = Im z / Re r"
693  by (metis Im_divide_of_real of_real_Re)
694
695lemma Re_sum[simp]: "Re (sum f s) = (\<Sum>x\<in>s. Re (f x))"
696  by (induct s rule: infinite_finite_induct) auto
697
698lemma Im_sum[simp]: "Im (sum f s) = (\<Sum>x\<in>s. Im(f x))"
699  by (induct s rule: infinite_finite_induct) auto
700
701lemma sums_complex_iff: "f sums x \<longleftrightarrow> ((\<lambda>x. Re (f x)) sums Re x) \<and> ((\<lambda>x. Im (f x)) sums Im x)"
702  unfolding sums_def tendsto_complex_iff Im_sum Re_sum ..
703
704lemma summable_complex_iff: "summable f \<longleftrightarrow> summable (\<lambda>x. Re (f x)) \<and>  summable (\<lambda>x. Im (f x))"
705  unfolding summable_def sums_complex_iff[abs_def] by (metis complex.sel)
706
707lemma summable_complex_of_real [simp]: "summable (\<lambda>n. complex_of_real (f n)) \<longleftrightarrow> summable f"
708  unfolding summable_complex_iff by simp
709
710lemma summable_Re: "summable f \<Longrightarrow> summable (\<lambda>x. Re (f x))"
711  unfolding summable_complex_iff by blast
712
713lemma summable_Im: "summable f \<Longrightarrow> summable (\<lambda>x. Im (f x))"
714  unfolding summable_complex_iff by blast
715
716lemma complex_is_Nat_iff: "z \<in> \<nat> \<longleftrightarrow> Im z = 0 \<and> (\<exists>i. Re z = of_nat i)"
717  by (auto simp: Nats_def complex_eq_iff)
718
719lemma complex_is_Int_iff: "z \<in> \<int> \<longleftrightarrow> Im z = 0 \<and> (\<exists>i. Re z = of_int i)"
720  by (auto simp: Ints_def complex_eq_iff)
721
722lemma complex_is_Real_iff: "z \<in> \<real> \<longleftrightarrow> Im z = 0"
723  by (auto simp: Reals_def complex_eq_iff)
724
725lemma Reals_cnj_iff: "z \<in> \<real> \<longleftrightarrow> cnj z = z"
726  by (auto simp: complex_is_Real_iff complex_eq_iff)
727
728lemma in_Reals_norm: "z \<in> \<real> \<Longrightarrow> norm z = \<bar>Re z\<bar>"
729  by (simp add: complex_is_Real_iff norm_complex_def)
730
731lemma Re_Reals_divide: "r \<in> \<real> \<Longrightarrow> Re (r / z) = Re r * Re z / (norm z)\<^sup>2"
732  by (simp add: Re_divide complex_is_Real_iff cmod_power2)
733
734lemma Im_Reals_divide: "r \<in> \<real> \<Longrightarrow> Im (r / z) = -Re r * Im z / (norm z)\<^sup>2"
735  by (simp add: Im_divide complex_is_Real_iff cmod_power2)
736
737lemma series_comparison_complex:
738  fixes f:: "nat \<Rightarrow> 'a::banach"
739  assumes sg: "summable g"
740    and "\<And>n. g n \<in> \<real>" "\<And>n. Re (g n) \<ge> 0"
741    and fg: "\<And>n. n \<ge> N \<Longrightarrow> norm(f n) \<le> norm(g n)"
742  shows "summable f"
743proof -
744  have g: "\<And>n. cmod (g n) = Re (g n)"
745    using assms by (metis abs_of_nonneg in_Reals_norm)
746  show ?thesis
747    apply (rule summable_comparison_test' [where g = "\<lambda>n. norm (g n)" and N=N])
748    using sg
749     apply (auto simp: summable_def)
750     apply (rule_tac x = "Re s" in exI)
751     apply (auto simp: g sums_Re)
752    apply (metis fg g)
753    done
754qed
755
756
757subsection \<open>Polar Form for Complex Numbers\<close>
758
759lemma complex_unimodular_polar:
760  assumes "norm z = 1"
761  obtains t where "0 \<le> t" "t < 2 * pi" "z = Complex (cos t) (sin t)"
762  by (metis cmod_power2 one_power2 complex_surj sincos_total_2pi [of "Re z" "Im z"] assms)
763
764
765subsubsection \<open>$\cos \theta + i \sin \theta$\<close>
766
767primcorec cis :: "real \<Rightarrow> complex"
768  where
769    "Re (cis a) = cos a"
770  | "Im (cis a) = sin a"
771
772lemma cis_zero [simp]: "cis 0 = 1"
773  by (simp add: complex_eq_iff)
774
775lemma norm_cis [simp]: "norm (cis a) = 1"
776  by (simp add: norm_complex_def)
777
778lemma sgn_cis [simp]: "sgn (cis a) = cis a"
779  by (simp add: sgn_div_norm)
780
781lemma cis_neq_zero [simp]: "cis a \<noteq> 0"
782  by (metis norm_cis norm_zero zero_neq_one)
783
784lemma cis_mult: "cis a * cis b = cis (a + b)"
785  by (simp add: complex_eq_iff cos_add sin_add)
786
787lemma DeMoivre: "(cis a) ^ n = cis (real n * a)"
788  by (induct n) (simp_all add: algebra_simps cis_mult)
789
790lemma cis_inverse [simp]: "inverse (cis a) = cis (- a)"
791  by (simp add: complex_eq_iff)
792
793lemma cis_divide: "cis a / cis b = cis (a - b)"
794  by (simp add: divide_complex_def cis_mult)
795
796lemma cos_n_Re_cis_pow_n: "cos (real n * a) = Re (cis a ^ n)"
797  by (auto simp add: DeMoivre)
798
799lemma sin_n_Im_cis_pow_n: "sin (real n * a) = Im (cis a ^ n)"
800  by (auto simp add: DeMoivre)
801
802lemma cis_pi [simp]: "cis pi = -1"
803  by (simp add: complex_eq_iff)
804
805
806subsubsection \<open>$r(\cos \theta + i \sin \theta)$\<close>
807
808definition rcis :: "real \<Rightarrow> real \<Rightarrow> complex"
809  where "rcis r a = complex_of_real r * cis a"
810
811lemma Re_rcis [simp]: "Re(rcis r a) = r * cos a"
812  by (simp add: rcis_def)
813
814lemma Im_rcis [simp]: "Im(rcis r a) = r * sin a"
815  by (simp add: rcis_def)
816
817lemma rcis_Ex: "\<exists>r a. z = rcis r a"
818  by (simp add: complex_eq_iff polar_Ex)
819
820lemma complex_mod_rcis [simp]: "cmod (rcis r a) = \<bar>r\<bar>"
821  by (simp add: rcis_def norm_mult)
822
823lemma cis_rcis_eq: "cis a = rcis 1 a"
824  by (simp add: rcis_def)
825
826lemma rcis_mult: "rcis r1 a * rcis r2 b = rcis (r1 * r2) (a + b)"
827  by (simp add: rcis_def cis_mult)
828
829lemma rcis_zero_mod [simp]: "rcis 0 a = 0"
830  by (simp add: rcis_def)
831
832lemma rcis_zero_arg [simp]: "rcis r 0 = complex_of_real r"
833  by (simp add: rcis_def)
834
835lemma rcis_eq_zero_iff [simp]: "rcis r a = 0 \<longleftrightarrow> r = 0"
836  by (simp add: rcis_def)
837
838lemma DeMoivre2: "(rcis r a) ^ n = rcis (r ^ n) (real n * a)"
839  by (simp add: rcis_def power_mult_distrib DeMoivre)
840
841lemma rcis_inverse: "inverse(rcis r a) = rcis (1 / r) (- a)"
842  by (simp add: divide_inverse rcis_def)
843
844lemma rcis_divide: "rcis r1 a / rcis r2 b = rcis (r1 / r2) (a - b)"
845  by (simp add: rcis_def cis_divide [symmetric])
846
847
848subsubsection \<open>Complex exponential\<close>
849
850lemma cis_conv_exp: "cis b = exp (\<i> * b)"
851proof -
852  have "(\<i> * complex_of_real b) ^ n /\<^sub>R fact n =
853      of_real (cos_coeff n * b^n) + \<i> * of_real (sin_coeff n * b^n)"
854    for n :: nat
855  proof -
856    have "\<i> ^ n = fact n *\<^sub>R (cos_coeff n + \<i> * sin_coeff n)"
857      by (induct n)
858        (simp_all add: sin_coeff_Suc cos_coeff_Suc complex_eq_iff Re_divide Im_divide field_simps
859          power2_eq_square add_nonneg_eq_0_iff)
860    then show ?thesis
861      by (simp add: field_simps)
862  qed
863  then show ?thesis
864    using sin_converges [of b] cos_converges [of b]
865    by (auto simp add: Complex_eq cis.ctr exp_def simp del: of_real_mult
866        intro!: sums_unique sums_add sums_mult sums_of_real)
867qed
868
869lemma exp_eq_polar: "exp z = exp (Re z) * cis (Im z)"
870  unfolding cis_conv_exp exp_of_real [symmetric] mult_exp_exp
871  by (cases z) (simp add: Complex_eq)
872
873lemma Re_exp: "Re (exp z) = exp (Re z) * cos (Im z)"
874  unfolding exp_eq_polar by simp
875
876lemma Im_exp: "Im (exp z) = exp (Re z) * sin (Im z)"
877  unfolding exp_eq_polar by simp
878
879lemma norm_cos_sin [simp]: "norm (Complex (cos t) (sin t)) = 1"
880  by (simp add: norm_complex_def)
881
882lemma norm_exp_eq_Re [simp]: "norm (exp z) = exp (Re z)"
883  by (simp add: cis.code cmod_complex_polar exp_eq_polar Complex_eq)
884
885lemma complex_exp_exists: "\<exists>a r. z = complex_of_real r * exp a"
886  apply (insert rcis_Ex [of z])
887  apply (auto simp add: exp_eq_polar rcis_def mult.assoc [symmetric])
888  apply (rule_tac x = "\<i> * complex_of_real a" in exI)
889  apply auto
890  done
891
892lemma exp_pi_i [simp]: "exp (of_real pi * \<i>) = -1"
893  by (metis cis_conv_exp cis_pi mult.commute)
894
895lemma exp_pi_i' [simp]: "exp (\<i> * of_real pi) = -1"
896  using cis_conv_exp cis_pi by auto
897
898lemma exp_two_pi_i [simp]: "exp (2 * of_real pi * \<i>) = 1"
899  by (simp add: exp_eq_polar complex_eq_iff)
900
901lemma exp_two_pi_i' [simp]: "exp (\<i> * (of_real pi * 2)) = 1"
902  by (metis exp_two_pi_i mult.commute)
903
904
905subsubsection \<open>Complex argument\<close>
906
907definition arg :: "complex \<Rightarrow> real"
908  where "arg z = (if z = 0 then 0 else (SOME a. sgn z = cis a \<and> - pi < a \<and> a \<le> pi))"
909
910lemma arg_zero: "arg 0 = 0"
911  by (simp add: arg_def)
912
913lemma arg_unique:
914  assumes "sgn z = cis x" and "-pi < x" and "x \<le> pi"
915  shows "arg z = x"
916proof -
917  from assms have "z \<noteq> 0" by auto
918  have "(SOME a. sgn z = cis a \<and> -pi < a \<and> a \<le> pi) = x"
919  proof
920    fix a
921    define d where "d = a - x"
922    assume a: "sgn z = cis a \<and> - pi < a \<and> a \<le> pi"
923    from a assms have "- (2*pi) < d \<and> d < 2*pi"
924      unfolding d_def by simp
925    moreover
926    from a assms have "cos a = cos x" and "sin a = sin x"
927      by (simp_all add: complex_eq_iff)
928    then have cos: "cos d = 1"
929      by (simp add: d_def cos_diff)
930    moreover from cos have "sin d = 0"
931      by (rule cos_one_sin_zero)
932    ultimately have "d = 0"
933      by (auto simp: sin_zero_iff elim!: evenE dest!: less_2_cases)
934    then show "a = x"
935      by (simp add: d_def)
936  qed (simp add: assms del: Re_sgn Im_sgn)
937  with \<open>z \<noteq> 0\<close> show "arg z = x"
938    by (simp add: arg_def)
939qed
940
941lemma arg_correct:
942  assumes "z \<noteq> 0"
943  shows "sgn z = cis (arg z) \<and> -pi < arg z \<and> arg z \<le> pi"
944proof (simp add: arg_def assms, rule someI_ex)
945  obtain r a where z: "z = rcis r a"
946    using rcis_Ex by fast
947  with assms have "r \<noteq> 0" by auto
948  define b where "b = (if 0 < r then a else a + pi)"
949  have b: "sgn z = cis b"
950    using \<open>r \<noteq> 0\<close> by (simp add: z b_def rcis_def of_real_def sgn_scaleR sgn_if complex_eq_iff)
951  have cis_2pi_nat: "cis (2 * pi * real_of_nat n) = 1" for n
952    by (induct n) (simp_all add: distrib_left cis_mult [symmetric] complex_eq_iff)
953  have cis_2pi_int: "cis (2 * pi * real_of_int x) = 1" for x
954    by (cases x rule: int_diff_cases)
955      (simp add: right_diff_distrib cis_divide [symmetric] cis_2pi_nat)
956  define c where "c = b - 2 * pi * of_int \<lceil>(b - pi) / (2 * pi)\<rceil>"
957  have "sgn z = cis c"
958    by (simp add: b c_def cis_divide [symmetric] cis_2pi_int)
959  moreover have "- pi < c \<and> c \<le> pi"
960    using ceiling_correct [of "(b - pi) / (2*pi)"]
961    by (simp add: c_def less_divide_eq divide_le_eq algebra_simps del: le_of_int_ceiling)
962  ultimately show "\<exists>a. sgn z = cis a \<and> -pi < a \<and> a \<le> pi"
963    by fast
964qed
965
966lemma arg_bounded: "- pi < arg z \<and> arg z \<le> pi"
967  by (cases "z = 0") (simp_all add: arg_zero arg_correct)
968
969lemma cis_arg: "z \<noteq> 0 \<Longrightarrow> cis (arg z) = sgn z"
970  by (simp add: arg_correct)
971
972lemma rcis_cmod_arg: "rcis (cmod z) (arg z) = z"
973  by (cases "z = 0") (simp_all add: rcis_def cis_arg sgn_div_norm of_real_def)
974
975lemma cos_arg_i_mult_zero [simp]: "y \<noteq> 0 \<Longrightarrow> Re y = 0 \<Longrightarrow> cos (arg y) = 0"
976  using cis_arg [of y] by (simp add: complex_eq_iff)
977
978subsection \<open>Complex n-th roots\<close>
979
980lemma bij_betw_roots_unity:
981  assumes "n > 0"
982  shows   "bij_betw (\<lambda>k. cis (2 * pi * real k / real n)) {..<n} {z. z ^ n = 1}"
983    (is "bij_betw ?f _ _")
984  unfolding bij_betw_def
985proof (intro conjI)
986  show inj: "inj_on ?f {..<n}" unfolding inj_on_def
987  proof (safe, goal_cases)
988    case (1 k l)
989    hence kl: "k < n" "l < n" by simp_all
990    from 1 have "1 = ?f k / ?f l" by simp
991    also have "\<dots> = cis (2*pi*(real k - real l)/n)"
992      using assms by (simp add: field_simps cis_divide)
993    finally have "cos (2*pi*(real k - real l) / n) = 1"
994      by (simp add: complex_eq_iff)
995    then obtain m :: int where "2 * pi * (real k - real l) / real n = real_of_int m * 2 * pi"
996      by (subst (asm) cos_one_2pi_int) blast
997    hence "real_of_int (int k - int l) = real_of_int (m * int n)"
998      unfolding of_int_diff of_int_mult using assms by (simp add: divide_simps)
999    also note of_int_eq_iff
1000    finally have *: "abs m * n = abs (int k - int l)" by (simp add: abs_mult)
1001    also have "\<dots> < int n" using kl by linarith
1002    finally have "m = 0" using assms by simp
1003    with * show "k = l" by simp
1004  qed
1005
1006  have subset: "?f ` {..<n} \<subseteq> {z. z ^ n = 1}"
1007  proof safe
1008    fix k :: nat
1009    have "cis (2 * pi * real k / real n) ^ n = cis (2 * pi) ^ k"
1010      using assms by (simp add: DeMoivre mult_ac)
1011    also have "cis (2 * pi) = 1" by (simp add: complex_eq_iff)
1012    finally show "?f k ^ n = 1" by simp
1013  qed
1014
1015  have "n = card {..<n}" by simp
1016  also from assms and subset have "\<dots> \<le> card {z::complex. z ^ n = 1}"
1017    by (intro card_inj_on_le[OF inj]) (auto simp: finite_roots_unity)
1018  finally have card: "card {z::complex. z ^ n = 1} = n"
1019    using assms by (intro antisym card_roots_unity) auto
1020
1021  have "card (?f ` {..<n}) = card {z::complex. z ^ n = 1}"
1022    using card inj by (subst card_image) auto
1023  with subset and assms show "?f ` {..<n} = {z::complex. z ^ n = 1}"
1024    by (intro card_subset_eq finite_roots_unity) auto
1025qed
1026
1027lemma card_roots_unity_eq:
1028  assumes "n > 0"
1029  shows   "card {z::complex. z ^ n = 1} = n"
1030  using bij_betw_same_card [OF bij_betw_roots_unity [OF assms]] by simp
1031
1032lemma bij_betw_nth_root_unity:
1033  fixes c :: complex and n :: nat
1034  assumes c: "c \<noteq> 0" and n: "n > 0"
1035  defines "c' \<equiv> root n (norm c) * cis (arg c / n)"
1036  shows "bij_betw (\<lambda>z. c' * z) {z. z ^ n = 1} {z. z ^ n = c}"
1037proof -
1038  have "c' ^ n = of_real (root n (norm c) ^ n) * cis (arg c)"
1039    unfolding of_real_power using n by (simp add: c'_def power_mult_distrib DeMoivre)
1040  also from n have "root n (norm c) ^ n = norm c" by simp
1041  also from c have "of_real \<dots> * cis (arg c) = c" by (simp add: cis_arg Complex.sgn_eq)
1042  finally have [simp]: "c' ^ n = c" .
1043
1044  show ?thesis unfolding bij_betw_def inj_on_def
1045  proof safe
1046    fix z :: complex assume "z ^ n = 1"
1047    hence "(c' * z) ^ n = c' ^ n" by (simp add: power_mult_distrib)
1048    also have "c' ^ n = of_real (root n (norm c) ^ n) * cis (arg c)"
1049      unfolding of_real_power using n by (simp add: c'_def power_mult_distrib DeMoivre)
1050    also from n have "root n (norm c) ^ n = norm c" by simp
1051    also from c have "\<dots> * cis (arg c) = c" by (simp add: cis_arg Complex.sgn_eq)
1052    finally show "(c' * z) ^ n = c" .
1053  next
1054    fix z assume z: "c = z ^ n"
1055    define z' where "z' = z / c'"
1056    from c and n have "c' \<noteq> 0" by (auto simp: c'_def)
1057    with n c have "z = c' * z'" and "z' ^ n = 1"
1058      by (auto simp: z'_def power_divide z)
1059    thus "z \<in> (\<lambda>z. c' * z) ` {z. z ^ n = 1}" by blast
1060  qed (insert c n, auto simp: c'_def)
1061qed
1062
1063lemma finite_nth_roots [intro]:
1064  assumes "n > 0"
1065  shows   "finite {z::complex. z ^ n = c}"
1066proof (cases "c = 0")
1067  case True
1068  with assms have "{z::complex. z ^ n = c} = {0}" by auto
1069  thus ?thesis by simp
1070next
1071  case False
1072  from assms have "finite {z::complex. z ^ n = 1}" by (intro finite_roots_unity) simp_all
1073  also have "?this \<longleftrightarrow> ?thesis"
1074    by (rule bij_betw_finite, rule bij_betw_nth_root_unity) fact+
1075  finally show ?thesis .
1076qed
1077
1078lemma card_nth_roots:
1079  assumes "c \<noteq> 0" "n > 0"
1080  shows   "card {z::complex. z ^ n = c} = n"
1081proof -
1082  have "card {z. z ^ n = c} = card {z::complex. z ^ n = 1}"
1083    by (rule sym, rule bij_betw_same_card, rule bij_betw_nth_root_unity) fact+
1084  also have "\<dots> = n" by (rule card_roots_unity_eq) fact+
1085  finally show ?thesis .
1086qed
1087
1088lemma sum_roots_unity:
1089  assumes "n > 1"
1090  shows   "\<Sum>{z::complex. z ^ n = 1} = 0"
1091proof -
1092  define \<omega> where "\<omega> = cis (2 * pi / real n)"
1093  have [simp]: "\<omega> \<noteq> 1"
1094  proof
1095    assume "\<omega> = 1"
1096    with assms obtain k :: int where "2 * pi / real n = 2 * pi * of_int k"
1097      by (auto simp: \<omega>_def complex_eq_iff cos_one_2pi_int)
1098    with assms have "real n * of_int k = 1" by (simp add: field_simps)
1099    also have "real n * of_int k = of_int (int n * k)" by simp
1100    also have "1 = (of_int 1 :: real)" by simp
1101    also note of_int_eq_iff
1102    finally show False using assms by (auto simp: zmult_eq_1_iff)
1103  qed
1104
1105  have "(\<Sum>z | z ^ n = 1. z :: complex) = (\<Sum>k<n. cis (2 * pi * real k / real n))"
1106    using assms by (intro sum.reindex_bij_betw [symmetric] bij_betw_roots_unity) auto
1107  also have "\<dots> = (\<Sum>k<n. \<omega> ^ k)"
1108    by (intro sum.cong refl) (auto simp: \<omega>_def DeMoivre mult_ac)
1109  also have "\<dots> = (\<omega> ^ n - 1) / (\<omega> - 1)"
1110    by (subst geometric_sum) auto
1111  also have "\<omega> ^ n - 1 = cis (2 * pi) - 1" using assms by (auto simp: \<omega>_def DeMoivre)
1112  also have "\<dots> = 0" by (simp add: complex_eq_iff)
1113  finally show ?thesis by simp
1114qed
1115
1116lemma sum_nth_roots:
1117  assumes "n > 1"
1118  shows   "\<Sum>{z::complex. z ^ n = c} = 0"
1119proof (cases "c = 0")
1120  case True
1121  with assms have "{z::complex. z ^ n = c} = {0}" by auto
1122  also have "\<Sum>\<dots> = 0" by simp
1123  finally show ?thesis .
1124next
1125  case False
1126  define c' where "c' = root n (norm c) * cis (arg c / n)"
1127  from False and assms have "(\<Sum>{z. z ^ n = c}) = (\<Sum>z | z ^ n = 1. c' * z)"
1128    by (subst sum.reindex_bij_betw [OF bij_betw_nth_root_unity, symmetric])
1129       (auto simp: sum_distrib_left finite_roots_unity c'_def)
1130  also from assms have "\<dots> = 0"
1131    by (simp add: sum_distrib_left [symmetric] sum_roots_unity)
1132  finally show ?thesis .
1133qed
1134
1135subsection \<open>Square root of complex numbers\<close>
1136
1137primcorec csqrt :: "complex \<Rightarrow> complex"
1138  where
1139    "Re (csqrt z) = sqrt ((cmod z + Re z) / 2)"
1140  | "Im (csqrt z) = (if Im z = 0 then 1 else sgn (Im z)) * sqrt ((cmod z - Re z) / 2)"
1141
1142lemma csqrt_of_real_nonneg [simp]: "Im x = 0 \<Longrightarrow> Re x \<ge> 0 \<Longrightarrow> csqrt x = sqrt (Re x)"
1143  by (simp add: complex_eq_iff norm_complex_def)
1144
1145lemma csqrt_of_real_nonpos [simp]: "Im x = 0 \<Longrightarrow> Re x \<le> 0 \<Longrightarrow> csqrt x = \<i> * sqrt \<bar>Re x\<bar>"
1146  by (simp add: complex_eq_iff norm_complex_def)
1147
1148lemma of_real_sqrt: "x \<ge> 0 \<Longrightarrow> of_real (sqrt x) = csqrt (of_real x)"
1149  by (simp add: complex_eq_iff norm_complex_def)
1150
1151lemma csqrt_0 [simp]: "csqrt 0 = 0"
1152  by simp
1153
1154lemma csqrt_1 [simp]: "csqrt 1 = 1"
1155  by simp
1156
1157lemma csqrt_ii [simp]: "csqrt \<i> = (1 + \<i>) / sqrt 2"
1158  by (simp add: complex_eq_iff Re_divide Im_divide real_sqrt_divide real_div_sqrt)
1159
1160lemma power2_csqrt[simp,algebra]: "(csqrt z)\<^sup>2 = z"
1161proof (cases "Im z = 0")
1162  case True
1163  then show ?thesis
1164    using real_sqrt_pow2[of "Re z"] real_sqrt_pow2[of "- Re z"]
1165    by (cases "0::real" "Re z" rule: linorder_cases)
1166      (simp_all add: complex_eq_iff Re_power2 Im_power2 power2_eq_square cmod_eq_Re)
1167next
1168  case False
1169  moreover have "cmod z * cmod z - Re z * Re z = Im z * Im z"
1170    by (simp add: norm_complex_def power2_eq_square)
1171  moreover have "\<bar>Re z\<bar> \<le> cmod z"
1172    by (simp add: norm_complex_def)
1173  ultimately show ?thesis
1174    by (simp add: Re_power2 Im_power2 complex_eq_iff real_sgn_eq
1175        field_simps real_sqrt_mult[symmetric] real_sqrt_divide)
1176qed
1177
1178lemma csqrt_eq_0 [simp]: "csqrt z = 0 \<longleftrightarrow> z = 0"
1179  by auto (metis power2_csqrt power_eq_0_iff)
1180
1181lemma csqrt_eq_1 [simp]: "csqrt z = 1 \<longleftrightarrow> z = 1"
1182  by auto (metis power2_csqrt power2_eq_1_iff)
1183
1184lemma csqrt_principal: "0 < Re (csqrt z) \<or> Re (csqrt z) = 0 \<and> 0 \<le> Im (csqrt z)"
1185  by (auto simp add: not_less cmod_plus_Re_le_0_iff Im_eq_0)
1186
1187lemma Re_csqrt: "0 \<le> Re (csqrt z)"
1188  by (metis csqrt_principal le_less)
1189
1190lemma csqrt_square:
1191  assumes "0 < Re b \<or> (Re b = 0 \<and> 0 \<le> Im b)"
1192  shows "csqrt (b^2) = b"
1193proof -
1194  have "csqrt (b^2) = b \<or> csqrt (b^2) = - b"
1195    by (simp add: power2_eq_iff[symmetric])
1196  moreover have "csqrt (b^2) \<noteq> -b \<or> b = 0"
1197    using csqrt_principal[of "b ^ 2"] assms
1198    by (intro disjCI notI) (auto simp: complex_eq_iff)
1199  ultimately show ?thesis
1200    by auto
1201qed
1202
1203lemma csqrt_unique: "w\<^sup>2 = z \<Longrightarrow> 0 < Re w \<or> Re w = 0 \<and> 0 \<le> Im w \<Longrightarrow> csqrt z = w"
1204  by (auto simp: csqrt_square)
1205
1206lemma csqrt_minus [simp]:
1207  assumes "Im x < 0 \<or> (Im x = 0 \<and> 0 \<le> Re x)"
1208  shows "csqrt (- x) = \<i> * csqrt x"
1209proof -
1210  have "csqrt ((\<i> * csqrt x)^2) = \<i> * csqrt x"
1211  proof (rule csqrt_square)
1212    have "Im (csqrt x) \<le> 0"
1213      using assms by (auto simp add: cmod_eq_Re mult_le_0_iff field_simps complex_Re_le_cmod)
1214    then show "0 < Re (\<i> * csqrt x) \<or> Re (\<i> * csqrt x) = 0 \<and> 0 \<le> Im (\<i> * csqrt x)"
1215      by (auto simp add: Re_csqrt simp del: csqrt.simps)
1216  qed
1217  also have "(\<i> * csqrt x)^2 = - x"
1218    by (simp add: power_mult_distrib)
1219  finally show ?thesis .
1220qed
1221
1222
1223text \<open>Legacy theorem names\<close>
1224
1225lemmas cmod_def = norm_complex_def
1226
1227lemma legacy_Complex_simps:
1228  shows Complex_eq_0: "Complex a b = 0 \<longleftrightarrow> a = 0 \<and> b = 0"
1229    and complex_add: "Complex a b + Complex c d = Complex (a + c) (b + d)"
1230    and complex_minus: "- (Complex a b) = Complex (- a) (- b)"
1231    and complex_diff: "Complex a b - Complex c d = Complex (a - c) (b - d)"
1232    and Complex_eq_1: "Complex a b = 1 \<longleftrightarrow> a = 1 \<and> b = 0"
1233    and Complex_eq_neg_1: "Complex a b = - 1 \<longleftrightarrow> a = - 1 \<and> b = 0"
1234    and complex_mult: "Complex a b * Complex c d = Complex (a * c - b * d) (a * d + b * c)"
1235    and complex_inverse: "inverse (Complex a b) = Complex (a / (a\<^sup>2 + b\<^sup>2)) (- b / (a\<^sup>2 + b\<^sup>2))"
1236    and Complex_eq_numeral: "Complex a b = numeral w \<longleftrightarrow> a = numeral w \<and> b = 0"
1237    and Complex_eq_neg_numeral: "Complex a b = - numeral w \<longleftrightarrow> a = - numeral w \<and> b = 0"
1238    and complex_scaleR: "scaleR r (Complex a b) = Complex (r * a) (r * b)"
1239    and Complex_eq_i: "Complex x y = \<i> \<longleftrightarrow> x = 0 \<and> y = 1"
1240    and i_mult_Complex: "\<i> * Complex a b = Complex (- b) a"
1241    and Complex_mult_i: "Complex a b * \<i> = Complex (- b) a"
1242    and i_complex_of_real: "\<i> * complex_of_real r = Complex 0 r"
1243    and complex_of_real_i: "complex_of_real r * \<i> = Complex 0 r"
1244    and Complex_add_complex_of_real: "Complex x y + complex_of_real r = Complex (x+r) y"
1245    and complex_of_real_add_Complex: "complex_of_real r + Complex x y = Complex (r+x) y"
1246    and Complex_mult_complex_of_real: "Complex x y * complex_of_real r = Complex (x*r) (y*r)"
1247    and complex_of_real_mult_Complex: "complex_of_real r * Complex x y = Complex (r*x) (r*y)"
1248    and complex_eq_cancel_iff2: "(Complex x y = complex_of_real xa) = (x = xa \<and> y = 0)"
1249    and complex_cnj: "cnj (Complex a b) = Complex a (- b)"
1250    and Complex_sum': "sum (\<lambda>x. Complex (f x) 0) s = Complex (sum f s) 0"
1251    and Complex_sum: "Complex (sum f s) 0 = sum (\<lambda>x. Complex (f x) 0) s"
1252    and complex_of_real_def: "complex_of_real r = Complex r 0"
1253    and complex_norm: "cmod (Complex x y) = sqrt (x\<^sup>2 + y\<^sup>2)"
1254  by (simp_all add: norm_complex_def field_simps complex_eq_iff Re_divide Im_divide)
1255
1256lemma Complex_in_Reals: "Complex x 0 \<in> \<real>"
1257  by (metis Reals_of_real complex_of_real_def)
1258
1259end
1260