1(*  Title:      HOL/HOLCF/Tr.thy
2    Author:     Franz Regensburger
3*)
4
5section \<open>The type of lifted booleans\<close>
6
7theory Tr
8  imports Lift
9begin
10
11subsection \<open>Type definition and constructors\<close>
12
13type_synonym tr = "bool lift"
14
15translations
16  (type) "tr" \<leftharpoondown> (type) "bool lift"
17
18definition TT :: "tr"
19  where "TT = Def True"
20
21definition FF :: "tr"
22  where "FF = Def False"
23
24text \<open>Exhaustion and Elimination for type @{typ tr}\<close>
25
26lemma Exh_tr: "t = \<bottom> \<or> t = TT \<or> t = FF"
27  by (induct t) (auto simp: FF_def TT_def)
28
29lemma trE [case_names bottom TT FF, cases type: tr]:
30  "\<lbrakk>p = \<bottom> \<Longrightarrow> Q; p = TT \<Longrightarrow> Q; p = FF \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q"
31  by (induct p) (auto simp: FF_def TT_def)
32
33lemma tr_induct [case_names bottom TT FF, induct type: tr]:
34  "P \<bottom> \<Longrightarrow> P TT \<Longrightarrow> P FF \<Longrightarrow> P x"
35  by (cases x) simp_all
36
37text \<open>distinctness for type @{typ tr}\<close>
38
39lemma dist_below_tr [simp]:
40  "TT \<notsqsubseteq> \<bottom>" "FF \<notsqsubseteq> \<bottom>" "TT \<notsqsubseteq> FF" "FF \<notsqsubseteq> TT"
41  by (simp_all add: TT_def FF_def)
42
43lemma dist_eq_tr [simp]: "TT \<noteq> \<bottom>" "FF \<noteq> \<bottom>" "TT \<noteq> FF" "\<bottom> \<noteq> TT" "\<bottom> \<noteq> FF" "FF \<noteq> TT"
44  by (simp_all add: TT_def FF_def)
45
46lemma TT_below_iff [simp]: "TT \<sqsubseteq> x \<longleftrightarrow> x = TT"
47  by (induct x) simp_all
48
49lemma FF_below_iff [simp]: "FF \<sqsubseteq> x \<longleftrightarrow> x = FF"
50  by (induct x) simp_all
51
52lemma not_below_TT_iff [simp]: "x \<notsqsubseteq> TT \<longleftrightarrow> x = FF"
53  by (induct x) simp_all
54
55lemma not_below_FF_iff [simp]: "x \<notsqsubseteq> FF \<longleftrightarrow> x = TT"
56  by (induct x) simp_all
57
58
59subsection \<open>Case analysis\<close>
60
61default_sort pcpo
62
63definition tr_case :: "'a \<rightarrow> 'a \<rightarrow> tr \<rightarrow> 'a"
64  where "tr_case = (\<Lambda> t e (Def b). if b then t else e)"
65
66abbreviation cifte_syn :: "[tr, 'c, 'c] \<Rightarrow> 'c"  ("(If (_)/ then (_)/ else (_))" [0, 0, 60] 60)
67  where "If b then e1 else e2 \<equiv> tr_case\<cdot>e1\<cdot>e2\<cdot>b"
68
69translations
70  "\<Lambda> (XCONST TT). t" \<rightleftharpoons> "CONST tr_case\<cdot>t\<cdot>\<bottom>"
71  "\<Lambda> (XCONST FF). t" \<rightleftharpoons> "CONST tr_case\<cdot>\<bottom>\<cdot>t"
72
73lemma ifte_thms [simp]:
74  "If \<bottom> then e1 else e2 = \<bottom>"
75  "If FF then e1 else e2 = e2"
76  "If TT then e1 else e2 = e1"
77  by (simp_all add: tr_case_def TT_def FF_def)
78
79
80subsection \<open>Boolean connectives\<close>
81
82definition trand :: "tr \<rightarrow> tr \<rightarrow> tr"
83  where andalso_def: "trand = (\<Lambda> x y. If x then y else FF)"
84
85abbreviation andalso_syn :: "tr \<Rightarrow> tr \<Rightarrow> tr"  ("_ andalso _" [36,35] 35)
86  where "x andalso y \<equiv> trand\<cdot>x\<cdot>y"
87
88definition tror :: "tr \<rightarrow> tr \<rightarrow> tr"
89  where orelse_def: "tror = (\<Lambda> x y. If x then TT else y)"
90
91abbreviation orelse_syn :: "tr \<Rightarrow> tr \<Rightarrow> tr"  ("_ orelse _"  [31,30] 30)
92  where "x orelse y \<equiv> tror\<cdot>x\<cdot>y"
93
94definition neg :: "tr \<rightarrow> tr"
95  where "neg = flift2 Not"
96
97definition If2 :: "tr \<Rightarrow> 'c \<Rightarrow> 'c \<Rightarrow> 'c"
98  where "If2 Q x y = (If Q then x else y)"
99
100text \<open>tactic for tr-thms with case split\<close>
101
102lemmas tr_defs = andalso_def orelse_def neg_def tr_case_def TT_def FF_def
103
104text \<open>lemmas about andalso, orelse, neg and if\<close>
105
106lemma andalso_thms [simp]:
107  "(TT andalso y) = y"
108  "(FF andalso y) = FF"
109  "(\<bottom> andalso y) = \<bottom>"
110  "(y andalso TT) = y"
111  "(y andalso y) = y"
112      apply (unfold andalso_def, simp_all)
113   apply (cases y, simp_all)
114  apply (cases y, simp_all)
115  done
116
117lemma orelse_thms [simp]:
118  "(TT orelse y) = TT"
119  "(FF orelse y) = y"
120  "(\<bottom> orelse y) = \<bottom>"
121  "(y orelse FF) = y"
122  "(y orelse y) = y"
123      apply (unfold orelse_def, simp_all)
124   apply (cases y, simp_all)
125  apply (cases y, simp_all)
126  done
127
128lemma neg_thms [simp]:
129  "neg\<cdot>TT = FF"
130  "neg\<cdot>FF = TT"
131  "neg\<cdot>\<bottom> = \<bottom>"
132  by (simp_all add: neg_def TT_def FF_def)
133
134text \<open>split-tac for If via If2 because the constant has to be a constant\<close>
135
136lemma split_If2: "P (If2 Q x y) \<longleftrightarrow> ((Q = \<bottom> \<longrightarrow> P \<bottom>) \<and> (Q = TT \<longrightarrow> P x) \<and> (Q = FF \<longrightarrow> P y))"
137  by (cases Q) (simp_all add: If2_def)
138
139(* FIXME unused!? *)
140ML \<open>
141fun split_If_tac ctxt =
142  simp_tac (put_simpset HOL_basic_ss ctxt addsimps [@{thm If2_def} RS sym])
143    THEN' (split_tac ctxt [@{thm split_If2}])
144\<close>
145
146subsection "Rewriting of HOLCF operations to HOL functions"
147
148lemma andalso_or: "t \<noteq> \<bottom> \<Longrightarrow> (t andalso s) = FF \<longleftrightarrow> t = FF \<or> s = FF"
149  by (cases t) simp_all
150
151lemma andalso_and: "t \<noteq> \<bottom> \<Longrightarrow> ((t andalso s) \<noteq> FF) \<longleftrightarrow> t \<noteq> FF \<and> s \<noteq> FF"
152  by (cases t) simp_all
153
154lemma Def_bool1 [simp]: "Def x \<noteq> FF \<longleftrightarrow> x"
155  by (simp add: FF_def)
156
157lemma Def_bool2 [simp]: "Def x = FF \<longleftrightarrow> \<not> x"
158  by (simp add: FF_def)
159
160lemma Def_bool3 [simp]: "Def x = TT \<longleftrightarrow> x"
161  by (simp add: TT_def)
162
163lemma Def_bool4 [simp]: "Def x \<noteq> TT \<longleftrightarrow> \<not> x"
164  by (simp add: TT_def)
165
166lemma If_and_if: "(If Def P then A else B) = (if P then A else B)"
167  by (cases "Def P") (auto simp add: TT_def[symmetric] FF_def[symmetric])
168
169
170subsection \<open>Compactness\<close>
171
172lemma compact_TT: "compact TT"
173  by (rule compact_chfin)
174
175lemma compact_FF: "compact FF"
176  by (rule compact_chfin)
177
178end
179