1(*  Title:      HOL/HOLCF/ConvexPD.thy
2    Author:     Brian Huffman
3*)
4
5section \<open>Convex powerdomain\<close>
6
7theory ConvexPD
8imports UpperPD LowerPD
9begin
10
11subsection \<open>Basis preorder\<close>
12
13definition
14  convex_le :: "'a pd_basis \<Rightarrow> 'a pd_basis \<Rightarrow> bool" (infix "\<le>\<natural>" 50) where
15  "convex_le = (\<lambda>u v. u \<le>\<sharp> v \<and> u \<le>\<flat> v)"
16
17lemma convex_le_refl [simp]: "t \<le>\<natural> t"
18unfolding convex_le_def by (fast intro: upper_le_refl lower_le_refl)
19
20lemma convex_le_trans: "\<lbrakk>t \<le>\<natural> u; u \<le>\<natural> v\<rbrakk> \<Longrightarrow> t \<le>\<natural> v"
21unfolding convex_le_def by (fast intro: upper_le_trans lower_le_trans)
22
23interpretation convex_le: preorder convex_le
24by (rule preorder.intro, rule convex_le_refl, rule convex_le_trans)
25
26lemma upper_le_minimal [simp]: "PDUnit compact_bot \<le>\<natural> t"
27unfolding convex_le_def Rep_PDUnit by simp
28
29lemma PDUnit_convex_mono: "x \<sqsubseteq> y \<Longrightarrow> PDUnit x \<le>\<natural> PDUnit y"
30unfolding convex_le_def by (fast intro: PDUnit_upper_mono PDUnit_lower_mono)
31
32lemma PDPlus_convex_mono: "\<lbrakk>s \<le>\<natural> t; u \<le>\<natural> v\<rbrakk> \<Longrightarrow> PDPlus s u \<le>\<natural> PDPlus t v"
33unfolding convex_le_def by (fast intro: PDPlus_upper_mono PDPlus_lower_mono)
34
35lemma convex_le_PDUnit_PDUnit_iff [simp]:
36  "(PDUnit a \<le>\<natural> PDUnit b) = (a \<sqsubseteq> b)"
37unfolding convex_le_def upper_le_def lower_le_def Rep_PDUnit by fast
38
39lemma convex_le_PDUnit_lemma1:
40  "(PDUnit a \<le>\<natural> t) = (\<forall>b\<in>Rep_pd_basis t. a \<sqsubseteq> b)"
41unfolding convex_le_def upper_le_def lower_le_def Rep_PDUnit
42using Rep_pd_basis_nonempty [of t, folded ex_in_conv] by fast
43
44lemma convex_le_PDUnit_PDPlus_iff [simp]:
45  "(PDUnit a \<le>\<natural> PDPlus t u) = (PDUnit a \<le>\<natural> t \<and> PDUnit a \<le>\<natural> u)"
46unfolding convex_le_PDUnit_lemma1 Rep_PDPlus by fast
47
48lemma convex_le_PDUnit_lemma2:
49  "(t \<le>\<natural> PDUnit b) = (\<forall>a\<in>Rep_pd_basis t. a \<sqsubseteq> b)"
50unfolding convex_le_def upper_le_def lower_le_def Rep_PDUnit
51using Rep_pd_basis_nonempty [of t, folded ex_in_conv] by fast
52
53lemma convex_le_PDPlus_PDUnit_iff [simp]:
54  "(PDPlus t u \<le>\<natural> PDUnit a) = (t \<le>\<natural> PDUnit a \<and> u \<le>\<natural> PDUnit a)"
55unfolding convex_le_PDUnit_lemma2 Rep_PDPlus by fast
56
57lemma convex_le_PDPlus_lemma:
58  assumes z: "PDPlus t u \<le>\<natural> z"
59  shows "\<exists>v w. z = PDPlus v w \<and> t \<le>\<natural> v \<and> u \<le>\<natural> w"
60proof (intro exI conjI)
61  let ?A = "{b\<in>Rep_pd_basis z. \<exists>a\<in>Rep_pd_basis t. a \<sqsubseteq> b}"
62  let ?B = "{b\<in>Rep_pd_basis z. \<exists>a\<in>Rep_pd_basis u. a \<sqsubseteq> b}"
63  let ?v = "Abs_pd_basis ?A"
64  let ?w = "Abs_pd_basis ?B"
65  have Rep_v: "Rep_pd_basis ?v = ?A"
66    apply (rule Abs_pd_basis_inverse)
67    apply (rule Rep_pd_basis_nonempty [of t, folded ex_in_conv, THEN exE])
68    apply (cut_tac z, simp only: convex_le_def lower_le_def, clarify)
69    apply (drule_tac x=x in bspec, simp add: Rep_PDPlus, erule bexE)
70    apply (simp add: pd_basis_def)
71    apply fast
72    done
73  have Rep_w: "Rep_pd_basis ?w = ?B"
74    apply (rule Abs_pd_basis_inverse)
75    apply (rule Rep_pd_basis_nonempty [of u, folded ex_in_conv, THEN exE])
76    apply (cut_tac z, simp only: convex_le_def lower_le_def, clarify)
77    apply (drule_tac x=x in bspec, simp add: Rep_PDPlus, erule bexE)
78    apply (simp add: pd_basis_def)
79    apply fast
80    done
81  show "z = PDPlus ?v ?w"
82    apply (insert z)
83    apply (simp add: convex_le_def, erule conjE)
84    apply (simp add: Rep_pd_basis_inject [symmetric] Rep_PDPlus)
85    apply (simp add: Rep_v Rep_w)
86    apply (rule equalityI)
87     apply (rule subsetI)
88     apply (simp only: upper_le_def)
89     apply (drule (1) bspec, erule bexE)
90     apply (simp add: Rep_PDPlus)
91     apply fast
92    apply fast
93    done
94  show "t \<le>\<natural> ?v" "u \<le>\<natural> ?w"
95   apply (insert z)
96   apply (simp_all add: convex_le_def upper_le_def lower_le_def Rep_PDPlus Rep_v Rep_w)
97   apply fast+
98   done
99qed
100
101lemma convex_le_induct [induct set: convex_le]:
102  assumes le: "t \<le>\<natural> u"
103  assumes 2: "\<And>t u v. \<lbrakk>P t u; P u v\<rbrakk> \<Longrightarrow> P t v"
104  assumes 3: "\<And>a b. a \<sqsubseteq> b \<Longrightarrow> P (PDUnit a) (PDUnit b)"
105  assumes 4: "\<And>t u v w. \<lbrakk>P t v; P u w\<rbrakk> \<Longrightarrow> P (PDPlus t u) (PDPlus v w)"
106  shows "P t u"
107using le apply (induct t arbitrary: u rule: pd_basis_induct)
108apply (erule rev_mp)
109apply (induct_tac u rule: pd_basis_induct1)
110apply (simp add: 3)
111apply (simp, clarify, rename_tac a b t)
112apply (subgoal_tac "P (PDPlus (PDUnit a) (PDUnit a)) (PDPlus (PDUnit b) t)")
113apply (simp add: PDPlus_absorb)
114apply (erule (1) 4 [OF 3])
115apply (drule convex_le_PDPlus_lemma, clarify)
116apply (simp add: 4)
117done
118
119
120subsection \<open>Type definition\<close>
121
122typedef 'a convex_pd  ("('(_')\<natural>)") =
123  "{S::'a pd_basis set. convex_le.ideal S}"
124by (rule convex_le.ex_ideal)
125
126instantiation convex_pd :: (bifinite) below
127begin
128
129definition
130  "x \<sqsubseteq> y \<longleftrightarrow> Rep_convex_pd x \<subseteq> Rep_convex_pd y"
131
132instance ..
133end
134
135instance convex_pd :: (bifinite) po
136using type_definition_convex_pd below_convex_pd_def
137by (rule convex_le.typedef_ideal_po)
138
139instance convex_pd :: (bifinite) cpo
140using type_definition_convex_pd below_convex_pd_def
141by (rule convex_le.typedef_ideal_cpo)
142
143definition
144  convex_principal :: "'a pd_basis \<Rightarrow> 'a convex_pd" where
145  "convex_principal t = Abs_convex_pd {u. u \<le>\<natural> t}"
146
147interpretation convex_pd:
148  ideal_completion convex_le convex_principal Rep_convex_pd
149using type_definition_convex_pd below_convex_pd_def
150using convex_principal_def pd_basis_countable
151by (rule convex_le.typedef_ideal_completion)
152
153text \<open>Convex powerdomain is pointed\<close>
154
155lemma convex_pd_minimal: "convex_principal (PDUnit compact_bot) \<sqsubseteq> ys"
156by (induct ys rule: convex_pd.principal_induct, simp, simp)
157
158instance convex_pd :: (bifinite) pcpo
159by intro_classes (fast intro: convex_pd_minimal)
160
161lemma inst_convex_pd_pcpo: "\<bottom> = convex_principal (PDUnit compact_bot)"
162by (rule convex_pd_minimal [THEN bottomI, symmetric])
163
164
165subsection \<open>Monadic unit and plus\<close>
166
167definition
168  convex_unit :: "'a \<rightarrow> 'a convex_pd" where
169  "convex_unit = compact_basis.extension (\<lambda>a. convex_principal (PDUnit a))"
170
171definition
172  convex_plus :: "'a convex_pd \<rightarrow> 'a convex_pd \<rightarrow> 'a convex_pd" where
173  "convex_plus = convex_pd.extension (\<lambda>t. convex_pd.extension (\<lambda>u.
174      convex_principal (PDPlus t u)))"
175
176abbreviation
177  convex_add :: "'a convex_pd \<Rightarrow> 'a convex_pd \<Rightarrow> 'a convex_pd"
178    (infixl "\<union>\<natural>" 65) where
179  "xs \<union>\<natural> ys == convex_plus\<cdot>xs\<cdot>ys"
180
181syntax
182  "_convex_pd" :: "args \<Rightarrow> logic" ("{_}\<natural>")
183
184translations
185  "{x,xs}\<natural>" == "{x}\<natural> \<union>\<natural> {xs}\<natural>"
186  "{x}\<natural>" == "CONST convex_unit\<cdot>x"
187
188lemma convex_unit_Rep_compact_basis [simp]:
189  "{Rep_compact_basis a}\<natural> = convex_principal (PDUnit a)"
190unfolding convex_unit_def
191by (simp add: compact_basis.extension_principal PDUnit_convex_mono)
192
193lemma convex_plus_principal [simp]:
194  "convex_principal t \<union>\<natural> convex_principal u = convex_principal (PDPlus t u)"
195unfolding convex_plus_def
196by (simp add: convex_pd.extension_principal
197    convex_pd.extension_mono PDPlus_convex_mono)
198
199interpretation convex_add: semilattice convex_add proof
200  fix xs ys zs :: "'a convex_pd"
201  show "(xs \<union>\<natural> ys) \<union>\<natural> zs = xs \<union>\<natural> (ys \<union>\<natural> zs)"
202    apply (induct xs rule: convex_pd.principal_induct, simp)
203    apply (induct ys rule: convex_pd.principal_induct, simp)
204    apply (induct zs rule: convex_pd.principal_induct, simp)
205    apply (simp add: PDPlus_assoc)
206    done
207  show "xs \<union>\<natural> ys = ys \<union>\<natural> xs"
208    apply (induct xs rule: convex_pd.principal_induct, simp)
209    apply (induct ys rule: convex_pd.principal_induct, simp)
210    apply (simp add: PDPlus_commute)
211    done
212  show "xs \<union>\<natural> xs = xs"
213    apply (induct xs rule: convex_pd.principal_induct, simp)
214    apply (simp add: PDPlus_absorb)
215    done
216qed
217
218lemmas convex_plus_assoc = convex_add.assoc
219lemmas convex_plus_commute = convex_add.commute
220lemmas convex_plus_absorb = convex_add.idem
221lemmas convex_plus_left_commute = convex_add.left_commute
222lemmas convex_plus_left_absorb = convex_add.left_idem
223
224text \<open>Useful for \<open>simp add: convex_plus_ac\<close>\<close>
225lemmas convex_plus_ac =
226  convex_plus_assoc convex_plus_commute convex_plus_left_commute
227
228text \<open>Useful for \<open>simp only: convex_plus_aci\<close>\<close>
229lemmas convex_plus_aci =
230  convex_plus_ac convex_plus_absorb convex_plus_left_absorb
231
232lemma convex_unit_below_plus_iff [simp]:
233  "{x}\<natural> \<sqsubseteq> ys \<union>\<natural> zs \<longleftrightarrow> {x}\<natural> \<sqsubseteq> ys \<and> {x}\<natural> \<sqsubseteq> zs"
234apply (induct x rule: compact_basis.principal_induct, simp)
235apply (induct ys rule: convex_pd.principal_induct, simp)
236apply (induct zs rule: convex_pd.principal_induct, simp)
237apply simp
238done
239
240lemma convex_plus_below_unit_iff [simp]:
241  "xs \<union>\<natural> ys \<sqsubseteq> {z}\<natural> \<longleftrightarrow> xs \<sqsubseteq> {z}\<natural> \<and> ys \<sqsubseteq> {z}\<natural>"
242apply (induct xs rule: convex_pd.principal_induct, simp)
243apply (induct ys rule: convex_pd.principal_induct, simp)
244apply (induct z rule: compact_basis.principal_induct, simp)
245apply simp
246done
247
248lemma convex_unit_below_iff [simp]: "{x}\<natural> \<sqsubseteq> {y}\<natural> \<longleftrightarrow> x \<sqsubseteq> y"
249apply (induct x rule: compact_basis.principal_induct, simp)
250apply (induct y rule: compact_basis.principal_induct, simp)
251apply simp
252done
253
254lemma convex_unit_eq_iff [simp]: "{x}\<natural> = {y}\<natural> \<longleftrightarrow> x = y"
255unfolding po_eq_conv by simp
256
257lemma convex_unit_strict [simp]: "{\<bottom>}\<natural> = \<bottom>"
258using convex_unit_Rep_compact_basis [of compact_bot]
259by (simp add: inst_convex_pd_pcpo)
260
261lemma convex_unit_bottom_iff [simp]: "{x}\<natural> = \<bottom> \<longleftrightarrow> x = \<bottom>"
262unfolding convex_unit_strict [symmetric] by (rule convex_unit_eq_iff)
263
264lemma compact_convex_unit: "compact x \<Longrightarrow> compact {x}\<natural>"
265by (auto dest!: compact_basis.compact_imp_principal)
266
267lemma compact_convex_unit_iff [simp]: "compact {x}\<natural> \<longleftrightarrow> compact x"
268apply (safe elim!: compact_convex_unit)
269apply (simp only: compact_def convex_unit_below_iff [symmetric])
270apply (erule adm_subst [OF cont_Rep_cfun2])
271done
272
273lemma compact_convex_plus [simp]:
274  "\<lbrakk>compact xs; compact ys\<rbrakk> \<Longrightarrow> compact (xs \<union>\<natural> ys)"
275by (auto dest!: convex_pd.compact_imp_principal)
276
277
278subsection \<open>Induction rules\<close>
279
280lemma convex_pd_induct1:
281  assumes P: "adm P"
282  assumes unit: "\<And>x. P {x}\<natural>"
283  assumes insert: "\<And>x ys. \<lbrakk>P {x}\<natural>; P ys\<rbrakk> \<Longrightarrow> P ({x}\<natural> \<union>\<natural> ys)"
284  shows "P (xs::'a convex_pd)"
285apply (induct xs rule: convex_pd.principal_induct, rule P)
286apply (induct_tac a rule: pd_basis_induct1)
287apply (simp only: convex_unit_Rep_compact_basis [symmetric])
288apply (rule unit)
289apply (simp only: convex_unit_Rep_compact_basis [symmetric]
290                  convex_plus_principal [symmetric])
291apply (erule insert [OF unit])
292done
293
294lemma convex_pd_induct
295  [case_names adm convex_unit convex_plus, induct type: convex_pd]:
296  assumes P: "adm P"
297  assumes unit: "\<And>x. P {x}\<natural>"
298  assumes plus: "\<And>xs ys. \<lbrakk>P xs; P ys\<rbrakk> \<Longrightarrow> P (xs \<union>\<natural> ys)"
299  shows "P (xs::'a convex_pd)"
300apply (induct xs rule: convex_pd.principal_induct, rule P)
301apply (induct_tac a rule: pd_basis_induct)
302apply (simp only: convex_unit_Rep_compact_basis [symmetric] unit)
303apply (simp only: convex_plus_principal [symmetric] plus)
304done
305
306
307subsection \<open>Monadic bind\<close>
308
309definition
310  convex_bind_basis ::
311  "'a pd_basis \<Rightarrow> ('a \<rightarrow> 'b convex_pd) \<rightarrow> 'b convex_pd" where
312  "convex_bind_basis = fold_pd
313    (\<lambda>a. \<Lambda> f. f\<cdot>(Rep_compact_basis a))
314    (\<lambda>x y. \<Lambda> f. x\<cdot>f \<union>\<natural> y\<cdot>f)"
315
316lemma ACI_convex_bind:
317  "semilattice (\<lambda>x y. \<Lambda> f. x\<cdot>f \<union>\<natural> y\<cdot>f)"
318apply unfold_locales
319apply (simp add: convex_plus_assoc)
320apply (simp add: convex_plus_commute)
321apply (simp add: eta_cfun)
322done
323
324lemma convex_bind_basis_simps [simp]:
325  "convex_bind_basis (PDUnit a) =
326    (\<Lambda> f. f\<cdot>(Rep_compact_basis a))"
327  "convex_bind_basis (PDPlus t u) =
328    (\<Lambda> f. convex_bind_basis t\<cdot>f \<union>\<natural> convex_bind_basis u\<cdot>f)"
329unfolding convex_bind_basis_def
330apply -
331apply (rule fold_pd_PDUnit [OF ACI_convex_bind])
332apply (rule fold_pd_PDPlus [OF ACI_convex_bind])
333done
334
335lemma convex_bind_basis_mono:
336  "t \<le>\<natural> u \<Longrightarrow> convex_bind_basis t \<sqsubseteq> convex_bind_basis u"
337apply (erule convex_le_induct)
338apply (erule (1) below_trans)
339apply (simp add: monofun_LAM monofun_cfun)
340apply (simp add: monofun_LAM monofun_cfun)
341done
342
343definition
344  convex_bind :: "'a convex_pd \<rightarrow> ('a \<rightarrow> 'b convex_pd) \<rightarrow> 'b convex_pd" where
345  "convex_bind = convex_pd.extension convex_bind_basis"
346
347syntax
348  "_convex_bind" :: "[logic, logic, logic] \<Rightarrow> logic"
349    ("(3\<Union>\<natural>_\<in>_./ _)" [0, 0, 10] 10)
350
351translations
352  "\<Union>\<natural>x\<in>xs. e" == "CONST convex_bind\<cdot>xs\<cdot>(\<Lambda> x. e)"
353
354lemma convex_bind_principal [simp]:
355  "convex_bind\<cdot>(convex_principal t) = convex_bind_basis t"
356unfolding convex_bind_def
357apply (rule convex_pd.extension_principal)
358apply (erule convex_bind_basis_mono)
359done
360
361lemma convex_bind_unit [simp]:
362  "convex_bind\<cdot>{x}\<natural>\<cdot>f = f\<cdot>x"
363by (induct x rule: compact_basis.principal_induct, simp, simp)
364
365lemma convex_bind_plus [simp]:
366  "convex_bind\<cdot>(xs \<union>\<natural> ys)\<cdot>f = convex_bind\<cdot>xs\<cdot>f \<union>\<natural> convex_bind\<cdot>ys\<cdot>f"
367by (induct xs rule: convex_pd.principal_induct, simp,
368    induct ys rule: convex_pd.principal_induct, simp, simp)
369
370lemma convex_bind_strict [simp]: "convex_bind\<cdot>\<bottom>\<cdot>f = f\<cdot>\<bottom>"
371unfolding convex_unit_strict [symmetric] by (rule convex_bind_unit)
372
373lemma convex_bind_bind:
374  "convex_bind\<cdot>(convex_bind\<cdot>xs\<cdot>f)\<cdot>g =
375    convex_bind\<cdot>xs\<cdot>(\<Lambda> x. convex_bind\<cdot>(f\<cdot>x)\<cdot>g)"
376by (induct xs, simp_all)
377
378
379subsection \<open>Map\<close>
380
381definition
382  convex_map :: "('a \<rightarrow> 'b) \<rightarrow> 'a convex_pd \<rightarrow> 'b convex_pd" where
383  "convex_map = (\<Lambda> f xs. convex_bind\<cdot>xs\<cdot>(\<Lambda> x. {f\<cdot>x}\<natural>))"
384
385lemma convex_map_unit [simp]:
386  "convex_map\<cdot>f\<cdot>{x}\<natural> = {f\<cdot>x}\<natural>"
387unfolding convex_map_def by simp
388
389lemma convex_map_plus [simp]:
390  "convex_map\<cdot>f\<cdot>(xs \<union>\<natural> ys) = convex_map\<cdot>f\<cdot>xs \<union>\<natural> convex_map\<cdot>f\<cdot>ys"
391unfolding convex_map_def by simp
392
393lemma convex_map_bottom [simp]: "convex_map\<cdot>f\<cdot>\<bottom> = {f\<cdot>\<bottom>}\<natural>"
394unfolding convex_map_def by simp
395
396lemma convex_map_ident: "convex_map\<cdot>(\<Lambda> x. x)\<cdot>xs = xs"
397by (induct xs rule: convex_pd_induct, simp_all)
398
399lemma convex_map_ID: "convex_map\<cdot>ID = ID"
400by (simp add: cfun_eq_iff ID_def convex_map_ident)
401
402lemma convex_map_map:
403  "convex_map\<cdot>f\<cdot>(convex_map\<cdot>g\<cdot>xs) = convex_map\<cdot>(\<Lambda> x. f\<cdot>(g\<cdot>x))\<cdot>xs"
404by (induct xs rule: convex_pd_induct, simp_all)
405
406lemma convex_bind_map:
407  "convex_bind\<cdot>(convex_map\<cdot>f\<cdot>xs)\<cdot>g = convex_bind\<cdot>xs\<cdot>(\<Lambda> x. g\<cdot>(f\<cdot>x))"
408by (simp add: convex_map_def convex_bind_bind)
409
410lemma convex_map_bind:
411  "convex_map\<cdot>f\<cdot>(convex_bind\<cdot>xs\<cdot>g) = convex_bind\<cdot>xs\<cdot>(\<Lambda> x. convex_map\<cdot>f\<cdot>(g\<cdot>x))"
412by (simp add: convex_map_def convex_bind_bind)
413
414lemma ep_pair_convex_map: "ep_pair e p \<Longrightarrow> ep_pair (convex_map\<cdot>e) (convex_map\<cdot>p)"
415apply standard
416apply (induct_tac x rule: convex_pd_induct, simp_all add: ep_pair.e_inverse)
417apply (induct_tac y rule: convex_pd_induct)
418apply (simp_all add: ep_pair.e_p_below monofun_cfun)
419done
420
421lemma deflation_convex_map: "deflation d \<Longrightarrow> deflation (convex_map\<cdot>d)"
422apply standard
423apply (induct_tac x rule: convex_pd_induct, simp_all add: deflation.idem)
424apply (induct_tac x rule: convex_pd_induct)
425apply (simp_all add: deflation.below monofun_cfun)
426done
427
428(* FIXME: long proof! *)
429lemma finite_deflation_convex_map:
430  assumes "finite_deflation d" shows "finite_deflation (convex_map\<cdot>d)"
431proof (rule finite_deflation_intro)
432  interpret d: finite_deflation d by fact
433  from d.deflation_axioms show "deflation (convex_map\<cdot>d)"
434    by (rule deflation_convex_map)
435  have "finite (range (\<lambda>x. d\<cdot>x))" by (rule d.finite_range)
436  hence "finite (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))"
437    by (rule finite_vimageI, simp add: inj_on_def Rep_compact_basis_inject)
438  hence "finite (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x)))" by simp
439  hence "finite (Rep_pd_basis -` (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))))"
440    by (rule finite_vimageI, simp add: inj_on_def Rep_pd_basis_inject)
441  hence *: "finite (convex_principal ` Rep_pd_basis -` (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))))" by simp
442  hence "finite (range (\<lambda>xs. convex_map\<cdot>d\<cdot>xs))"
443    apply (rule rev_finite_subset)
444    apply clarsimp
445    apply (induct_tac xs rule: convex_pd.principal_induct)
446    apply (simp add: adm_mem_finite *)
447    apply (rename_tac t, induct_tac t rule: pd_basis_induct)
448    apply (simp only: convex_unit_Rep_compact_basis [symmetric] convex_map_unit)
449    apply simp
450    apply (subgoal_tac "\<exists>b. d\<cdot>(Rep_compact_basis a) = Rep_compact_basis b")
451    apply clarsimp
452    apply (rule imageI)
453    apply (rule vimageI2)
454    apply (simp add: Rep_PDUnit)
455    apply (rule range_eqI)
456    apply (erule sym)
457    apply (rule exI)
458    apply (rule Abs_compact_basis_inverse [symmetric])
459    apply (simp add: d.compact)
460    apply (simp only: convex_plus_principal [symmetric] convex_map_plus)
461    apply clarsimp
462    apply (rule imageI)
463    apply (rule vimageI2)
464    apply (simp add: Rep_PDPlus)
465    done
466  thus "finite {xs. convex_map\<cdot>d\<cdot>xs = xs}"
467    by (rule finite_range_imp_finite_fixes)
468qed
469
470subsection \<open>Convex powerdomain is bifinite\<close>
471
472lemma approx_chain_convex_map:
473  assumes "approx_chain a"
474  shows "approx_chain (\<lambda>i. convex_map\<cdot>(a i))"
475  using assms unfolding approx_chain_def
476  by (simp add: lub_APP convex_map_ID finite_deflation_convex_map)
477
478instance convex_pd :: (bifinite) bifinite
479proof
480  show "\<exists>(a::nat \<Rightarrow> 'a convex_pd \<rightarrow> 'a convex_pd). approx_chain a"
481    using bifinite [where 'a='a]
482    by (fast intro!: approx_chain_convex_map)
483qed
484
485subsection \<open>Join\<close>
486
487definition
488  convex_join :: "'a convex_pd convex_pd \<rightarrow> 'a convex_pd" where
489  "convex_join = (\<Lambda> xss. convex_bind\<cdot>xss\<cdot>(\<Lambda> xs. xs))"
490
491lemma convex_join_unit [simp]:
492  "convex_join\<cdot>{xs}\<natural> = xs"
493unfolding convex_join_def by simp
494
495lemma convex_join_plus [simp]:
496  "convex_join\<cdot>(xss \<union>\<natural> yss) = convex_join\<cdot>xss \<union>\<natural> convex_join\<cdot>yss"
497unfolding convex_join_def by simp
498
499lemma convex_join_bottom [simp]: "convex_join\<cdot>\<bottom> = \<bottom>"
500unfolding convex_join_def by simp
501
502lemma convex_join_map_unit:
503  "convex_join\<cdot>(convex_map\<cdot>convex_unit\<cdot>xs) = xs"
504by (induct xs rule: convex_pd_induct, simp_all)
505
506lemma convex_join_map_join:
507  "convex_join\<cdot>(convex_map\<cdot>convex_join\<cdot>xsss) = convex_join\<cdot>(convex_join\<cdot>xsss)"
508by (induct xsss rule: convex_pd_induct, simp_all)
509
510lemma convex_join_map_map:
511  "convex_join\<cdot>(convex_map\<cdot>(convex_map\<cdot>f)\<cdot>xss) =
512   convex_map\<cdot>f\<cdot>(convex_join\<cdot>xss)"
513by (induct xss rule: convex_pd_induct, simp_all)
514
515
516subsection \<open>Conversions to other powerdomains\<close>
517
518text \<open>Convex to upper\<close>
519
520lemma convex_le_imp_upper_le: "t \<le>\<natural> u \<Longrightarrow> t \<le>\<sharp> u"
521unfolding convex_le_def by simp
522
523definition
524  convex_to_upper :: "'a convex_pd \<rightarrow> 'a upper_pd" where
525  "convex_to_upper = convex_pd.extension upper_principal"
526
527lemma convex_to_upper_principal [simp]:
528  "convex_to_upper\<cdot>(convex_principal t) = upper_principal t"
529unfolding convex_to_upper_def
530apply (rule convex_pd.extension_principal)
531apply (rule upper_pd.principal_mono)
532apply (erule convex_le_imp_upper_le)
533done
534
535lemma convex_to_upper_unit [simp]:
536  "convex_to_upper\<cdot>{x}\<natural> = {x}\<sharp>"
537by (induct x rule: compact_basis.principal_induct, simp, simp)
538
539lemma convex_to_upper_plus [simp]:
540  "convex_to_upper\<cdot>(xs \<union>\<natural> ys) = convex_to_upper\<cdot>xs \<union>\<sharp> convex_to_upper\<cdot>ys"
541by (induct xs rule: convex_pd.principal_induct, simp,
542    induct ys rule: convex_pd.principal_induct, simp, simp)
543
544lemma convex_to_upper_bind [simp]:
545  "convex_to_upper\<cdot>(convex_bind\<cdot>xs\<cdot>f) =
546    upper_bind\<cdot>(convex_to_upper\<cdot>xs)\<cdot>(convex_to_upper oo f)"
547by (induct xs rule: convex_pd_induct, simp, simp, simp)
548
549lemma convex_to_upper_map [simp]:
550  "convex_to_upper\<cdot>(convex_map\<cdot>f\<cdot>xs) = upper_map\<cdot>f\<cdot>(convex_to_upper\<cdot>xs)"
551by (simp add: convex_map_def upper_map_def cfcomp_LAM)
552
553lemma convex_to_upper_join [simp]:
554  "convex_to_upper\<cdot>(convex_join\<cdot>xss) =
555    upper_bind\<cdot>(convex_to_upper\<cdot>xss)\<cdot>convex_to_upper"
556by (simp add: convex_join_def upper_join_def cfcomp_LAM eta_cfun)
557
558text \<open>Convex to lower\<close>
559
560lemma convex_le_imp_lower_le: "t \<le>\<natural> u \<Longrightarrow> t \<le>\<flat> u"
561unfolding convex_le_def by simp
562
563definition
564  convex_to_lower :: "'a convex_pd \<rightarrow> 'a lower_pd" where
565  "convex_to_lower = convex_pd.extension lower_principal"
566
567lemma convex_to_lower_principal [simp]:
568  "convex_to_lower\<cdot>(convex_principal t) = lower_principal t"
569unfolding convex_to_lower_def
570apply (rule convex_pd.extension_principal)
571apply (rule lower_pd.principal_mono)
572apply (erule convex_le_imp_lower_le)
573done
574
575lemma convex_to_lower_unit [simp]:
576  "convex_to_lower\<cdot>{x}\<natural> = {x}\<flat>"
577by (induct x rule: compact_basis.principal_induct, simp, simp)
578
579lemma convex_to_lower_plus [simp]:
580  "convex_to_lower\<cdot>(xs \<union>\<natural> ys) = convex_to_lower\<cdot>xs \<union>\<flat> convex_to_lower\<cdot>ys"
581by (induct xs rule: convex_pd.principal_induct, simp,
582    induct ys rule: convex_pd.principal_induct, simp, simp)
583
584lemma convex_to_lower_bind [simp]:
585  "convex_to_lower\<cdot>(convex_bind\<cdot>xs\<cdot>f) =
586    lower_bind\<cdot>(convex_to_lower\<cdot>xs)\<cdot>(convex_to_lower oo f)"
587by (induct xs rule: convex_pd_induct, simp, simp, simp)
588
589lemma convex_to_lower_map [simp]:
590  "convex_to_lower\<cdot>(convex_map\<cdot>f\<cdot>xs) = lower_map\<cdot>f\<cdot>(convex_to_lower\<cdot>xs)"
591by (simp add: convex_map_def lower_map_def cfcomp_LAM)
592
593lemma convex_to_lower_join [simp]:
594  "convex_to_lower\<cdot>(convex_join\<cdot>xss) =
595    lower_bind\<cdot>(convex_to_lower\<cdot>xss)\<cdot>convex_to_lower"
596by (simp add: convex_join_def lower_join_def cfcomp_LAM eta_cfun)
597
598text \<open>Ordering property\<close>
599
600lemma convex_pd_below_iff:
601  "(xs \<sqsubseteq> ys) =
602    (convex_to_upper\<cdot>xs \<sqsubseteq> convex_to_upper\<cdot>ys \<and>
603     convex_to_lower\<cdot>xs \<sqsubseteq> convex_to_lower\<cdot>ys)"
604apply (induct xs rule: convex_pd.principal_induct, simp)
605apply (induct ys rule: convex_pd.principal_induct, simp)
606apply (simp add: convex_le_def)
607done
608
609lemmas convex_plus_below_plus_iff =
610  convex_pd_below_iff [where xs="xs \<union>\<natural> ys" and ys="zs \<union>\<natural> ws"]
611  for xs ys zs ws
612
613lemmas convex_pd_below_simps =
614  convex_unit_below_plus_iff
615  convex_plus_below_unit_iff
616  convex_plus_below_plus_iff
617  convex_unit_below_iff
618  convex_to_upper_unit
619  convex_to_upper_plus
620  convex_to_lower_unit
621  convex_to_lower_plus
622  upper_pd_below_simps
623  lower_pd_below_simps
624
625end
626