1(*  Title:      HOL/HOLCF/Cfun.thy
2    Author:     Franz Regensburger
3    Author:     Brian Huffman
4*)
5
6section \<open>The type of continuous functions\<close>
7
8theory Cfun
9  imports Cpodef Fun_Cpo Product_Cpo
10begin
11
12default_sort cpo
13
14
15subsection \<open>Definition of continuous function type\<close>
16
17definition "cfun = {f::'a \<Rightarrow> 'b. cont f}"
18
19cpodef ('a, 'b) cfun ("(_ \<rightarrow>/ _)" [1, 0] 0) = "cfun :: ('a \<Rightarrow> 'b) set"
20  by (auto simp: cfun_def intro: cont_const adm_cont)
21
22type_notation (ASCII)
23  cfun  (infixr "->" 0)
24
25notation (ASCII)
26  Rep_cfun  ("(_$/_)" [999,1000] 999)
27
28notation
29  Rep_cfun  ("(_\<cdot>/_)" [999,1000] 999)
30
31
32subsection \<open>Syntax for continuous lambda abstraction\<close>
33
34syntax "_cabs" :: "[logic, logic] \<Rightarrow> logic"
35
36parse_translation \<open>
37(* rewrite (_cabs x t) => (Abs_cfun (%x. t)) *)
38  [Syntax_Trans.mk_binder_tr (@{syntax_const "_cabs"}, @{const_syntax Abs_cfun})];
39\<close>
40
41print_translation \<open>
42  [(@{const_syntax Abs_cfun}, fn _ => fn [Abs abs] =>
43      let val (x, t) = Syntax_Trans.atomic_abs_tr' abs
44      in Syntax.const @{syntax_const "_cabs"} $ x $ t end)]
45\<close>  \<comment> \<open>To avoid eta-contraction of body\<close>
46
47text \<open>Syntax for nested abstractions\<close>
48
49syntax (ASCII)
50  "_Lambda" :: "[cargs, logic] \<Rightarrow> logic"  ("(3LAM _./ _)" [1000, 10] 10)
51
52syntax
53  "_Lambda" :: "[cargs, logic] \<Rightarrow> logic" ("(3\<Lambda> _./ _)" [1000, 10] 10)
54
55parse_ast_translation \<open>
56(* rewrite (LAM x y z. t) => (_cabs x (_cabs y (_cabs z t))) *)
57(* cf. Syntax.lambda_ast_tr from src/Pure/Syntax/syn_trans.ML *)
58  let
59    fun Lambda_ast_tr [pats, body] =
60          Ast.fold_ast_p @{syntax_const "_cabs"}
61            (Ast.unfold_ast @{syntax_const "_cargs"} (Ast.strip_positions pats), body)
62      | Lambda_ast_tr asts = raise Ast.AST ("Lambda_ast_tr", asts);
63  in [(@{syntax_const "_Lambda"}, K Lambda_ast_tr)] end;
64\<close>
65
66print_ast_translation \<open>
67(* rewrite (_cabs x (_cabs y (_cabs z t))) => (LAM x y z. t) *)
68(* cf. Syntax.abs_ast_tr' from src/Pure/Syntax/syn_trans.ML *)
69  let
70    fun cabs_ast_tr' asts =
71      (case Ast.unfold_ast_p @{syntax_const "_cabs"}
72          (Ast.Appl (Ast.Constant @{syntax_const "_cabs"} :: asts)) of
73        ([], _) => raise Ast.AST ("cabs_ast_tr'", asts)
74      | (xs, body) => Ast.Appl
75          [Ast.Constant @{syntax_const "_Lambda"},
76           Ast.fold_ast @{syntax_const "_cargs"} xs, body]);
77  in [(@{syntax_const "_cabs"}, K cabs_ast_tr')] end
78\<close>
79
80text \<open>Dummy patterns for continuous abstraction\<close>
81translations
82  "\<Lambda> _. t" \<rightharpoonup> "CONST Abs_cfun (\<lambda>_. t)"
83
84
85subsection \<open>Continuous function space is pointed\<close>
86
87lemma bottom_cfun: "\<bottom> \<in> cfun"
88  by (simp add: cfun_def inst_fun_pcpo)
89
90instance cfun :: (cpo, discrete_cpo) discrete_cpo
91  by intro_classes (simp add: below_cfun_def Rep_cfun_inject)
92
93instance cfun :: (cpo, pcpo) pcpo
94  by (rule typedef_pcpo [OF type_definition_cfun below_cfun_def bottom_cfun])
95
96lemmas Rep_cfun_strict =
97  typedef_Rep_strict [OF type_definition_cfun below_cfun_def bottom_cfun]
98
99lemmas Abs_cfun_strict =
100  typedef_Abs_strict [OF type_definition_cfun below_cfun_def bottom_cfun]
101
102text \<open>function application is strict in its first argument\<close>
103
104lemma Rep_cfun_strict1 [simp]: "\<bottom>\<cdot>x = \<bottom>"
105  by (simp add: Rep_cfun_strict)
106
107lemma LAM_strict [simp]: "(\<Lambda> x. \<bottom>) = \<bottom>"
108  by (simp add: inst_fun_pcpo [symmetric] Abs_cfun_strict)
109
110text \<open>for compatibility with old HOLCF-Version\<close>
111lemma inst_cfun_pcpo: "\<bottom> = (\<Lambda> x. \<bottom>)"
112  by simp
113
114
115subsection \<open>Basic properties of continuous functions\<close>
116
117text \<open>Beta-equality for continuous functions\<close>
118
119lemma Abs_cfun_inverse2: "cont f \<Longrightarrow> Rep_cfun (Abs_cfun f) = f"
120  by (simp add: Abs_cfun_inverse cfun_def)
121
122lemma beta_cfun: "cont f \<Longrightarrow> (\<Lambda> x. f x)\<cdot>u = f u"
123  by (simp add: Abs_cfun_inverse2)
124
125
126subsubsection \<open>Beta-reduction simproc\<close>
127
128text \<open>
129  Given the term @{term "(\<Lambda> x. f x)\<cdot>y"}, the procedure tries to
130  construct the theorem @{term "(\<Lambda> x. f x)\<cdot>y \<equiv> f y"}.  If this
131  theorem cannot be completely solved by the cont2cont rules, then
132  the procedure returns the ordinary conditional \<open>beta_cfun\<close>
133  rule.
134
135  The simproc does not solve any more goals that would be solved by
136  using \<open>beta_cfun\<close> as a simp rule.  The advantage of the
137  simproc is that it can avoid deeply-nested calls to the simplifier
138  that would otherwise be caused by large continuity side conditions.
139
140  Update: The simproc now uses rule \<open>Abs_cfun_inverse2\<close> instead
141  of \<open>beta_cfun\<close>, to avoid problems with eta-contraction.
142\<close>
143
144simproc_setup beta_cfun_proc ("Rep_cfun (Abs_cfun f)") = \<open>
145  fn phi => fn ctxt => fn ct =>
146    let
147      val f = #2 (Thm.dest_comb (#2 (Thm.dest_comb ct)));
148      val [T, U] = Thm.dest_ctyp (Thm.ctyp_of_cterm f);
149      val tr = Thm.instantiate' [SOME T, SOME U] [SOME f] (mk_meta_eq @{thm Abs_cfun_inverse2});
150      val rules = Named_Theorems.get ctxt \<^named_theorems>\<open>cont2cont\<close>;
151      val tac = SOLVED' (REPEAT_ALL_NEW (match_tac ctxt (rev rules)));
152    in SOME (perhaps (SINGLE (tac 1)) tr) end
153\<close>
154
155text \<open>Eta-equality for continuous functions\<close>
156
157lemma eta_cfun: "(\<Lambda> x. f\<cdot>x) = f"
158  by (rule Rep_cfun_inverse)
159
160text \<open>Extensionality for continuous functions\<close>
161
162lemma cfun_eq_iff: "f = g \<longleftrightarrow> (\<forall>x. f\<cdot>x = g\<cdot>x)"
163  by (simp add: Rep_cfun_inject [symmetric] fun_eq_iff)
164
165lemma cfun_eqI: "(\<And>x. f\<cdot>x = g\<cdot>x) \<Longrightarrow> f = g"
166  by (simp add: cfun_eq_iff)
167
168text \<open>Extensionality wrt. ordering for continuous functions\<close>
169
170lemma cfun_below_iff: "f \<sqsubseteq> g \<longleftrightarrow> (\<forall>x. f\<cdot>x \<sqsubseteq> g\<cdot>x)"
171  by (simp add: below_cfun_def fun_below_iff)
172
173lemma cfun_belowI: "(\<And>x. f\<cdot>x \<sqsubseteq> g\<cdot>x) \<Longrightarrow> f \<sqsubseteq> g"
174  by (simp add: cfun_below_iff)
175
176text \<open>Congruence for continuous function application\<close>
177
178lemma cfun_cong: "f = g \<Longrightarrow> x = y \<Longrightarrow> f\<cdot>x = g\<cdot>y"
179  by simp
180
181lemma cfun_fun_cong: "f = g \<Longrightarrow> f\<cdot>x = g\<cdot>x"
182  by simp
183
184lemma cfun_arg_cong: "x = y \<Longrightarrow> f\<cdot>x = f\<cdot>y"
185  by simp
186
187
188subsection \<open>Continuity of application\<close>
189
190lemma cont_Rep_cfun1: "cont (\<lambda>f. f\<cdot>x)"
191  by (rule cont_Rep_cfun [OF cont_id, THEN cont2cont_fun])
192
193lemma cont_Rep_cfun2: "cont (\<lambda>x. f\<cdot>x)"
194  using Rep_cfun [where x = f] by (simp add: cfun_def)
195
196lemmas monofun_Rep_cfun = cont_Rep_cfun [THEN cont2mono]
197
198lemmas monofun_Rep_cfun1 = cont_Rep_cfun1 [THEN cont2mono]
199lemmas monofun_Rep_cfun2 = cont_Rep_cfun2 [THEN cont2mono]
200
201text \<open>contlub, cont properties of @{term Rep_cfun} in each argument\<close>
202
203lemma contlub_cfun_arg: "chain Y \<Longrightarrow> f\<cdot>(\<Squnion>i. Y i) = (\<Squnion>i. f\<cdot>(Y i))"
204  by (rule cont_Rep_cfun2 [THEN cont2contlubE])
205
206lemma contlub_cfun_fun: "chain F \<Longrightarrow> (\<Squnion>i. F i)\<cdot>x = (\<Squnion>i. F i\<cdot>x)"
207  by (rule cont_Rep_cfun1 [THEN cont2contlubE])
208
209text \<open>monotonicity of application\<close>
210
211lemma monofun_cfun_fun: "f \<sqsubseteq> g \<Longrightarrow> f\<cdot>x \<sqsubseteq> g\<cdot>x"
212  by (simp add: cfun_below_iff)
213
214lemma monofun_cfun_arg: "x \<sqsubseteq> y \<Longrightarrow> f\<cdot>x \<sqsubseteq> f\<cdot>y"
215  by (rule monofun_Rep_cfun2 [THEN monofunE])
216
217lemma monofun_cfun: "f \<sqsubseteq> g \<Longrightarrow> x \<sqsubseteq> y \<Longrightarrow> f\<cdot>x \<sqsubseteq> g\<cdot>y"
218  by (rule below_trans [OF monofun_cfun_fun monofun_cfun_arg])
219
220text \<open>ch2ch - rules for the type @{typ "'a \<rightarrow> 'b"}\<close>
221
222lemma chain_monofun: "chain Y \<Longrightarrow> chain (\<lambda>i. f\<cdot>(Y i))"
223  by (erule monofun_Rep_cfun2 [THEN ch2ch_monofun])
224
225lemma ch2ch_Rep_cfunR: "chain Y \<Longrightarrow> chain (\<lambda>i. f\<cdot>(Y i))"
226  by (rule monofun_Rep_cfun2 [THEN ch2ch_monofun])
227
228lemma ch2ch_Rep_cfunL: "chain F \<Longrightarrow> chain (\<lambda>i. (F i)\<cdot>x)"
229  by (rule monofun_Rep_cfun1 [THEN ch2ch_monofun])
230
231lemma ch2ch_Rep_cfun [simp]: "chain F \<Longrightarrow> chain Y \<Longrightarrow> chain (\<lambda>i. (F i)\<cdot>(Y i))"
232  by (simp add: chain_def monofun_cfun)
233
234lemma ch2ch_LAM [simp]:
235  "(\<And>x. chain (\<lambda>i. S i x)) \<Longrightarrow> (\<And>i. cont (\<lambda>x. S i x)) \<Longrightarrow> chain (\<lambda>i. \<Lambda> x. S i x)"
236  by (simp add: chain_def cfun_below_iff)
237
238text \<open>contlub, cont properties of @{term Rep_cfun} in both arguments\<close>
239
240lemma lub_APP: "chain F \<Longrightarrow> chain Y \<Longrightarrow> (\<Squnion>i. F i\<cdot>(Y i)) = (\<Squnion>i. F i)\<cdot>(\<Squnion>i. Y i)"
241  by (simp add: contlub_cfun_fun contlub_cfun_arg diag_lub)
242
243lemma lub_LAM:
244  assumes "\<And>x. chain (\<lambda>i. F i x)"
245    and "\<And>i. cont (\<lambda>x. F i x)"
246  shows "(\<Squnion>i. \<Lambda> x. F i x) = (\<Lambda> x. \<Squnion>i. F i x)"
247  using assms by (simp add: lub_cfun lub_fun ch2ch_lambda)
248
249lemmas lub_distribs = lub_APP lub_LAM
250
251text \<open>strictness\<close>
252
253lemma strictI: "f\<cdot>x = \<bottom> \<Longrightarrow> f\<cdot>\<bottom> = \<bottom>"
254  apply (rule bottomI)
255  apply (erule subst)
256  apply (rule minimal [THEN monofun_cfun_arg])
257  done
258
259text \<open>type @{typ "'a \<rightarrow> 'b"} is chain complete\<close>
260
261lemma lub_cfun: "chain F \<Longrightarrow> (\<Squnion>i. F i) = (\<Lambda> x. \<Squnion>i. F i\<cdot>x)"
262  by (simp add: lub_cfun lub_fun ch2ch_lambda)
263
264
265subsection \<open>Continuity simplification procedure\<close>
266
267text \<open>cont2cont lemma for @{term Rep_cfun}\<close>
268
269lemma cont2cont_APP [simp, cont2cont]:
270  assumes f: "cont (\<lambda>x. f x)"
271  assumes t: "cont (\<lambda>x. t x)"
272  shows "cont (\<lambda>x. (f x)\<cdot>(t x))"
273proof -
274  from cont_Rep_cfun1 f have "cont (\<lambda>x. (f x)\<cdot>y)" for y
275    by (rule cont_compose)
276  with t cont_Rep_cfun2 show "cont (\<lambda>x. (f x)\<cdot>(t x))"
277    by (rule cont_apply)
278qed
279
280text \<open>
281  Two specific lemmas for the combination of LCF and HOL terms.
282  These lemmas are needed in theories that use types like @{typ "'a \<rightarrow> 'b \<Rightarrow> 'c"}.
283\<close>
284
285lemma cont_APP_app [simp]: "cont f \<Longrightarrow> cont g \<Longrightarrow> cont (\<lambda>x. ((f x)\<cdot>(g x)) s)"
286  by (rule cont2cont_APP [THEN cont2cont_fun])
287
288lemma cont_APP_app_app [simp]: "cont f \<Longrightarrow> cont g \<Longrightarrow> cont (\<lambda>x. ((f x)\<cdot>(g x)) s t)"
289  by (rule cont_APP_app [THEN cont2cont_fun])
290
291
292text \<open>cont2mono Lemma for @{term "\<lambda>x. LAM y. c1(x)(y)"}\<close>
293
294lemma cont2mono_LAM:
295  "\<lbrakk>\<And>x. cont (\<lambda>y. f x y); \<And>y. monofun (\<lambda>x. f x y)\<rbrakk>
296    \<Longrightarrow> monofun (\<lambda>x. \<Lambda> y. f x y)"
297  by (simp add: monofun_def cfun_below_iff)
298
299text \<open>cont2cont Lemma for @{term "\<lambda>x. LAM y. f x y"}\<close>
300
301text \<open>
302  Not suitable as a cont2cont rule, because on nested lambdas
303  it causes exponential blow-up in the number of subgoals.
304\<close>
305
306lemma cont2cont_LAM:
307  assumes f1: "\<And>x. cont (\<lambda>y. f x y)"
308  assumes f2: "\<And>y. cont (\<lambda>x. f x y)"
309  shows "cont (\<lambda>x. \<Lambda> y. f x y)"
310proof (rule cont_Abs_cfun)
311  from f1 show "f x \<in> cfun" for x
312    by (simp add: cfun_def)
313  from f2 show "cont f"
314    by (rule cont2cont_lambda)
315qed
316
317text \<open>
318  This version does work as a cont2cont rule, since it
319  has only a single subgoal.
320\<close>
321
322lemma cont2cont_LAM' [simp, cont2cont]:
323  fixes f :: "'a::cpo \<Rightarrow> 'b::cpo \<Rightarrow> 'c::cpo"
324  assumes f: "cont (\<lambda>p. f (fst p) (snd p))"
325  shows "cont (\<lambda>x. \<Lambda> y. f x y)"
326  using assms by (simp add: cont2cont_LAM prod_cont_iff)
327
328lemma cont2cont_LAM_discrete [simp, cont2cont]:
329  "(\<And>y::'a::discrete_cpo. cont (\<lambda>x. f x y)) \<Longrightarrow> cont (\<lambda>x. \<Lambda> y. f x y)"
330  by (simp add: cont2cont_LAM)
331
332
333subsection \<open>Miscellaneous\<close>
334
335text \<open>Monotonicity of @{term Abs_cfun}\<close>
336
337lemma monofun_LAM: "cont f \<Longrightarrow> cont g \<Longrightarrow> (\<And>x. f x \<sqsubseteq> g x) \<Longrightarrow> (\<Lambda> x. f x) \<sqsubseteq> (\<Lambda> x. g x)"
338  by (simp add: cfun_below_iff)
339
340text \<open>some lemmata for functions with flat/chfin domain/range types\<close>
341
342lemma chfin_Rep_cfunR: "chain Y \<Longrightarrow> \<forall>s. \<exists>n. (LUB i. Y i)\<cdot>s = Y n\<cdot>s"
343  for Y :: "nat \<Rightarrow> 'a::cpo \<rightarrow> 'b::chfin"
344  apply (rule allI)
345  apply (subst contlub_cfun_fun)
346   apply assumption
347  apply (fast intro!: lub_eqI chfin lub_finch2 chfin2finch ch2ch_Rep_cfunL)
348  done
349
350lemma adm_chfindom: "adm (\<lambda>(u::'a::cpo \<rightarrow> 'b::chfin). P(u\<cdot>s))"
351  by (rule adm_subst, simp, rule adm_chfin)
352
353
354subsection \<open>Continuous injection-retraction pairs\<close>
355
356text \<open>Continuous retractions are strict.\<close>
357
358lemma retraction_strict: "\<forall>x. f\<cdot>(g\<cdot>x) = x \<Longrightarrow> f\<cdot>\<bottom> = \<bottom>"
359  apply (rule bottomI)
360  apply (drule_tac x="\<bottom>" in spec)
361  apply (erule subst)
362  apply (rule monofun_cfun_arg)
363  apply (rule minimal)
364  done
365
366lemma injection_eq: "\<forall>x. f\<cdot>(g\<cdot>x) = x \<Longrightarrow> (g\<cdot>x = g\<cdot>y) = (x = y)"
367  apply (rule iffI)
368   apply (drule_tac f=f in cfun_arg_cong)
369   apply simp
370  apply simp
371  done
372
373lemma injection_below: "\<forall>x. f\<cdot>(g\<cdot>x) = x \<Longrightarrow> (g\<cdot>x \<sqsubseteq> g\<cdot>y) = (x \<sqsubseteq> y)"
374  apply (rule iffI)
375   apply (drule_tac f=f in monofun_cfun_arg)
376   apply simp
377  apply (erule monofun_cfun_arg)
378  done
379
380lemma injection_defined_rev: "\<forall>x. f\<cdot>(g\<cdot>x) = x \<Longrightarrow> g\<cdot>z = \<bottom> \<Longrightarrow> z = \<bottom>"
381  apply (drule_tac f=f in cfun_arg_cong)
382  apply (simp add: retraction_strict)
383  done
384
385lemma injection_defined: "\<forall>x. f\<cdot>(g\<cdot>x) = x \<Longrightarrow> z \<noteq> \<bottom> \<Longrightarrow> g\<cdot>z \<noteq> \<bottom>"
386  by (erule contrapos_nn, rule injection_defined_rev)
387
388
389text \<open>a result about functions with flat codomain\<close>
390
391lemma flat_eqI: "x \<sqsubseteq> y \<Longrightarrow> x \<noteq> \<bottom> \<Longrightarrow> x = y"
392  for x y :: "'a::flat"
393  by (drule ax_flat) simp
394
395lemma flat_codom: "f\<cdot>x = c \<Longrightarrow> f\<cdot>\<bottom> = \<bottom> \<or> (\<forall>z. f\<cdot>z = c)"
396  for c :: "'b::flat"
397  apply (cases "f\<cdot>x = \<bottom>")
398   apply (rule disjI1)
399   apply (rule bottomI)
400   apply (erule_tac t="\<bottom>" in subst)
401   apply (rule minimal [THEN monofun_cfun_arg])
402  apply clarify
403  apply (rule_tac a = "f\<cdot>\<bottom>" in refl [THEN box_equals])
404   apply (erule minimal [THEN monofun_cfun_arg, THEN flat_eqI])
405  apply (erule minimal [THEN monofun_cfun_arg, THEN flat_eqI])
406  done
407
408
409subsection \<open>Identity and composition\<close>
410
411definition ID :: "'a \<rightarrow> 'a"
412  where "ID = (\<Lambda> x. x)"
413
414definition cfcomp  :: "('b \<rightarrow> 'c) \<rightarrow> ('a \<rightarrow> 'b) \<rightarrow> 'a \<rightarrow> 'c"
415  where oo_def: "cfcomp = (\<Lambda> f g x. f\<cdot>(g\<cdot>x))"
416
417abbreviation cfcomp_syn :: "['b \<rightarrow> 'c, 'a \<rightarrow> 'b] \<Rightarrow> 'a \<rightarrow> 'c"  (infixr "oo" 100)
418  where "f oo g == cfcomp\<cdot>f\<cdot>g"
419
420lemma ID1 [simp]: "ID\<cdot>x = x"
421  by (simp add: ID_def)
422
423lemma cfcomp1: "(f oo g) = (\<Lambda> x. f\<cdot>(g\<cdot>x))"
424  by (simp add: oo_def)
425
426lemma cfcomp2 [simp]: "(f oo g)\<cdot>x = f\<cdot>(g\<cdot>x)"
427  by (simp add: cfcomp1)
428
429lemma cfcomp_LAM: "cont g \<Longrightarrow> f oo (\<Lambda> x. g x) = (\<Lambda> x. f\<cdot>(g x))"
430  by (simp add: cfcomp1)
431
432lemma cfcomp_strict [simp]: "\<bottom> oo f = \<bottom>"
433  by (simp add: cfun_eq_iff)
434
435text \<open>
436  Show that interpretation of (pcpo, \<open>_\<rightarrow>_\<close>) is a category.
437  \<^item> The class of objects is interpretation of syntactical class pcpo.
438  \<^item> The class of arrows  between objects @{typ 'a} and @{typ 'b} is interpret. of @{typ "'a \<rightarrow> 'b"}.
439  \<^item> The identity arrow is interpretation of @{term ID}.
440  \<^item> The composition of f and g is interpretation of \<open>oo\<close>.
441\<close>
442
443lemma ID2 [simp]: "f oo ID = f"
444  by (rule cfun_eqI, simp)
445
446lemma ID3 [simp]: "ID oo f = f"
447  by (rule cfun_eqI) simp
448
449lemma assoc_oo: "f oo (g oo h) = (f oo g) oo h"
450  by (rule cfun_eqI) simp
451
452
453subsection \<open>Strictified functions\<close>
454
455default_sort pcpo
456
457definition seq :: "'a \<rightarrow> 'b \<rightarrow> 'b"
458  where "seq = (\<Lambda> x. if x = \<bottom> then \<bottom> else ID)"
459
460lemma cont2cont_if_bottom [cont2cont, simp]:
461  assumes f: "cont (\<lambda>x. f x)"
462    and g: "cont (\<lambda>x. g x)"
463  shows "cont (\<lambda>x. if f x = \<bottom> then \<bottom> else g x)"
464proof (rule cont_apply [OF f])
465  show "cont (\<lambda>y. if y = \<bottom> then \<bottom> else g x)" for x
466    unfolding cont_def is_lub_def is_ub_def ball_simps
467    by (simp add: lub_eq_bottom_iff)
468  show "cont (\<lambda>x. if y = \<bottom> then \<bottom> else g x)" for y
469    by (simp add: g)
470qed
471
472lemma seq_conv_if: "seq\<cdot>x = (if x = \<bottom> then \<bottom> else ID)"
473  by (simp add: seq_def)
474
475lemma seq_simps [simp]:
476  "seq\<cdot>\<bottom> = \<bottom>"
477  "seq\<cdot>x\<cdot>\<bottom> = \<bottom>"
478  "x \<noteq> \<bottom> \<Longrightarrow> seq\<cdot>x = ID"
479  by (simp_all add: seq_conv_if)
480
481definition strictify  :: "('a \<rightarrow> 'b) \<rightarrow> 'a \<rightarrow> 'b"
482  where "strictify = (\<Lambda> f x. seq\<cdot>x\<cdot>(f\<cdot>x))"
483
484lemma strictify_conv_if: "strictify\<cdot>f\<cdot>x = (if x = \<bottom> then \<bottom> else f\<cdot>x)"
485  by (simp add: strictify_def)
486
487lemma strictify1 [simp]: "strictify\<cdot>f\<cdot>\<bottom> = \<bottom>"
488  by (simp add: strictify_conv_if)
489
490lemma strictify2 [simp]: "x \<noteq> \<bottom> \<Longrightarrow> strictify\<cdot>f\<cdot>x = f\<cdot>x"
491  by (simp add: strictify_conv_if)
492
493
494subsection \<open>Continuity of let-bindings\<close>
495
496lemma cont2cont_Let:
497  assumes f: "cont (\<lambda>x. f x)"
498  assumes g1: "\<And>y. cont (\<lambda>x. g x y)"
499  assumes g2: "\<And>x. cont (\<lambda>y. g x y)"
500  shows "cont (\<lambda>x. let y = f x in g x y)"
501  unfolding Let_def using f g2 g1 by (rule cont_apply)
502
503lemma cont2cont_Let' [simp, cont2cont]:
504  assumes f: "cont (\<lambda>x. f x)"
505  assumes g: "cont (\<lambda>p. g (fst p) (snd p))"
506  shows "cont (\<lambda>x. let y = f x in g x y)"
507  using f
508proof (rule cont2cont_Let)
509  from g show "cont (\<lambda>y. g x y)" for x
510    by (simp add: prod_cont_iff)
511  from g show "cont (\<lambda>x. g x y)" for y
512    by (simp add: prod_cont_iff)
513qed
514
515text \<open>The simple version (suggested by Joachim Breitner) is needed if
516  the type of the defined term is not a cpo.\<close>
517
518lemma cont2cont_Let_simple [simp, cont2cont]:
519  assumes "\<And>y. cont (\<lambda>x. g x y)"
520  shows "cont (\<lambda>x. let y = t in g x y)"
521  unfolding Let_def using assms .
522
523end
524