mach_vm_dep.c revision 1859:b32ad9e8c53a
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
27/*	All Rights Reserved   */
28
29/*
30 * Portions of this source code were derived from Berkeley 4.3 BSD
31 * under license from the Regents of the University of California.
32 */
33
34#pragma ident	"%Z%%M%	%I%	%E% SMI"
35
36/*
37 * UNIX machine dependent virtual memory support.
38 */
39
40#include <sys/vm.h>
41#include <sys/exec.h>
42#include <sys/cmn_err.h>
43#include <sys/cpu_module.h>
44#include <sys/cpu.h>
45#include <sys/elf_SPARC.h>
46#include <sys/archsystm.h>
47#include <vm/hat_sfmmu.h>
48#include <sys/memnode.h>
49#include <sys/mem_cage.h>
50#include <vm/vm_dep.h>
51#include <sys/error.h>
52#include <sys/machsystm.h>
53#include <vm/seg_kmem.h>
54
55uint_t page_colors = 0;
56uint_t page_colors_mask = 0;
57uint_t page_coloring_shift = 0;
58int consistent_coloring;
59
60uint_t mmu_page_sizes = MMU_PAGE_SIZES;
61uint_t max_mmu_page_sizes = MMU_PAGE_SIZES;
62uint_t mmu_hashcnt = MAX_HASHCNT;
63uint_t max_mmu_hashcnt = MAX_HASHCNT;
64size_t mmu_ism_pagesize = DEFAULT_ISM_PAGESIZE;
65
66/*
67 * A bitmask of the page sizes supported by hardware based upon szc.
68 * The base pagesize (p_szc == 0) must always be supported by the hardware.
69 */
70int mmu_exported_pagesize_mask;
71uint_t mmu_exported_page_sizes;
72
73uint_t szc_2_userszc[MMU_PAGE_SIZES];
74uint_t userszc_2_szc[MMU_PAGE_SIZES];
75
76extern uint_t vac_colors_mask;
77extern int vac_shift;
78
79hw_pagesize_t hw_page_array[] = {
80	{MMU_PAGESIZE, MMU_PAGESHIFT, MMU_PAGESIZE >> MMU_PAGESHIFT},
81	{MMU_PAGESIZE64K, MMU_PAGESHIFT64K, MMU_PAGESIZE64K >> MMU_PAGESHIFT},
82	{MMU_PAGESIZE512K, MMU_PAGESHIFT512K,
83	    MMU_PAGESIZE512K >> MMU_PAGESHIFT},
84	{MMU_PAGESIZE4M, MMU_PAGESHIFT4M, MMU_PAGESIZE4M >> MMU_PAGESHIFT},
85	{MMU_PAGESIZE32M, MMU_PAGESHIFT32M, MMU_PAGESIZE32M >> MMU_PAGESHIFT},
86	{MMU_PAGESIZE256M, MMU_PAGESHIFT256M,
87	    MMU_PAGESIZE256M >> MMU_PAGESHIFT},
88	{0, 0, 0}
89};
90
91/*
92 * Enable usage of 64k/4M pages for text and 64k pages for initdata for
93 * all sun4v platforms. These variables can be overwritten by the platmod
94 * or the CPU module. User can also change the setting via /etc/system.
95 */
96
97int	use_text_pgsz64k = 1;
98int	use_text_pgsz4m = 1;
99int	use_initdata_pgsz64k = 1;
100
101/*
102 * disable_text_largepages and disable_initdata_largepages bitmaks reflect
103 * both unconfigured and undesirable page sizes. Current implementation
104 * supports 64K and 4M page sizes for text and only 64K for data. Rest of
105 * the page sizes are not currently supported, hence disabled below. In
106 * future, when support is added for any other page size, it should be
107 * reflected below.
108 *
109 * Note that these bitmask can be set in platform or CPU specific code to
110 * disable page sizes that should not be used. These variables normally
111 * shouldn't be changed via /etc/system.
112 *
113 * These bitmasks are also updated within hat_init to reflect unsupported
114 * page sizes on a sun4v processor per mmu_exported_pagesize_mask global
115 * variable.
116 */
117
118int disable_text_largepages =
119	(1 << TTE512K) | (1 << TTE32M) | (1 << TTE256M) | (1 << TTE2G) |
120	(1 << TTE16G);
121int disable_initdata_largepages =
122	(1 << TTE512K) | (1 << TTE4M) | (1 << TTE32M) | (1 << TTE256M) |
123	(1 << TTE2G) | (1 << TTE16G);
124
125/*
126 * Minimum segment size tunables before 64K or 4M large pages
127 * should be used to map it.
128 */
129size_t text_pgsz64k_minsize = MMU_PAGESIZE64K;
130size_t text_pgsz4m_minsize = MMU_PAGESIZE4M;
131size_t initdata_pgsz64k_minsize = MMU_PAGESIZE64K;
132
133/*
134 * map_addr_proc() is the routine called when the system is to
135 * choose an address for the user.  We will pick an address
136 * range which is just below the current stack limit.  The
137 * algorithm used for cache consistency on machines with virtual
138 * address caches is such that offset 0 in the vnode is always
139 * on a shm_alignment'ed aligned address.  Unfortunately, this
140 * means that vnodes which are demand paged will not be mapped
141 * cache consistently with the executable images.  When the
142 * cache alignment for a given object is inconsistent, the
143 * lower level code must manage the translations so that this
144 * is not seen here (at the cost of efficiency, of course).
145 *
146 * addrp is a value/result parameter.
147 *	On input it is a hint from the user to be used in a completely
148 *	machine dependent fashion.  For MAP_ALIGN, addrp contains the
149 *	minimal alignment.
150 *
151 *	On output it is NULL if no address can be found in the current
152 *	processes address space or else an address that is currently
153 *	not mapped for len bytes with a page of red zone on either side.
154 *	If vacalign is true, then the selected address will obey the alignment
155 *	constraints of a vac machine based on the given off value.
156 */
157/*ARGSUSED3*/
158void
159map_addr_proc(caddr_t *addrp, size_t len, offset_t off, int vacalign,
160    caddr_t userlimit, struct proc *p, uint_t flags)
161{
162	struct as *as = p->p_as;
163	caddr_t addr;
164	caddr_t base;
165	size_t slen;
166	uintptr_t align_amount;
167	int allow_largepage_alignment = 1;
168
169	base = p->p_brkbase;
170	if (userlimit < as->a_userlimit) {
171		/*
172		 * This happens when a program wants to map something in
173		 * a range that's accessible to a program in a smaller
174		 * address space.  For example, a 64-bit program might
175		 * be calling mmap32(2) to guarantee that the returned
176		 * address is below 4Gbytes.
177		 */
178		ASSERT(userlimit > base);
179		slen = userlimit - base;
180	} else {
181		slen = p->p_usrstack - base - (((size_t)rctl_enforced_value(
182		    rctlproc_legacy[RLIMIT_STACK], p->p_rctls, p) + PAGEOFFSET)
183		    & PAGEMASK);
184	}
185	len = (len + PAGEOFFSET) & PAGEMASK;
186
187	/*
188	 * Redzone for each side of the request. This is done to leave
189	 * one page unmapped between segments. This is not required, but
190	 * it's useful for the user because if their program strays across
191	 * a segment boundary, it will catch a fault immediately making
192	 * debugging a little easier.
193	 */
194	len += (2 * PAGESIZE);
195
196	/*
197	 *  If the request is larger than the size of a particular
198	 *  mmu level, then we use that level to map the request.
199	 *  But this requires that both the virtual and the physical
200	 *  addresses be aligned with respect to that level, so we
201	 *  do the virtual bit of nastiness here.
202	 *
203	 *  For 32-bit processes, only those which have specified
204	 *  MAP_ALIGN or an addr will be aligned on a page size > 4MB. Otherwise
205	 *  we can potentially waste up to 256MB of the 4G process address
206	 *  space just for alignment.
207	 *
208	 * XXXQ Should iterate trough hw_page_array here to catch
209	 * all supported pagesizes
210	 */
211	if (p->p_model == DATAMODEL_ILP32 && ((flags & MAP_ALIGN) == 0 ||
212	    ((uintptr_t)*addrp) != 0)) {
213		allow_largepage_alignment = 0;
214	}
215	if ((mmu_page_sizes == max_mmu_page_sizes) &&
216	    allow_largepage_alignment &&
217		(len >= MMU_PAGESIZE256M)) {	/* 256MB mappings */
218		align_amount = MMU_PAGESIZE256M;
219	} else if ((mmu_page_sizes == max_mmu_page_sizes) &&
220	    allow_largepage_alignment &&
221		(len >= MMU_PAGESIZE32M)) {	/* 32MB mappings */
222		align_amount = MMU_PAGESIZE32M;
223	} else if (len >= MMU_PAGESIZE4M) {  /* 4MB mappings */
224		align_amount = MMU_PAGESIZE4M;
225	} else if (len >= MMU_PAGESIZE512K) { /* 512KB mappings */
226		align_amount = MMU_PAGESIZE512K;
227	} else if (len >= MMU_PAGESIZE64K) { /* 64KB mappings */
228		align_amount = MMU_PAGESIZE64K;
229	} else  {
230		/*
231		 * Align virtual addresses on a 64K boundary to ensure
232		 * that ELF shared libraries are mapped with the appropriate
233		 * alignment constraints by the run-time linker.
234		 */
235		align_amount = ELF_SPARC_MAXPGSZ;
236		if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp != 0) &&
237			((uintptr_t)*addrp < align_amount))
238			align_amount = (uintptr_t)*addrp;
239	}
240
241	/*
242	 * 64-bit processes require 1024K alignment of ELF shared libraries.
243	 */
244	if (p->p_model == DATAMODEL_LP64)
245		align_amount = MAX(align_amount, ELF_SPARCV9_MAXPGSZ);
246#ifdef VAC
247	if (vac && vacalign && (align_amount < shm_alignment))
248		align_amount = shm_alignment;
249#endif
250
251	if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp > align_amount)) {
252		align_amount = (uintptr_t)*addrp;
253	}
254	len += align_amount;
255
256	/*
257	 * Look for a large enough hole starting below the stack limit.
258	 * After finding it, use the upper part.  Addition of PAGESIZE is
259	 * for the redzone as described above.
260	 */
261	as_purge(as);
262	if (as_gap(as, len, &base, &slen, AH_HI, NULL) == 0) {
263		caddr_t as_addr;
264
265		addr = base + slen - len + PAGESIZE;
266		as_addr = addr;
267		/*
268		 * Round address DOWN to the alignment amount,
269		 * add the offset, and if this address is less
270		 * than the original address, add alignment amount.
271		 */
272		addr = (caddr_t)((uintptr_t)addr & (~(align_amount - 1l)));
273		addr += (long)(off & (align_amount - 1l));
274		if (addr < as_addr) {
275			addr += align_amount;
276		}
277
278		ASSERT(addr <= (as_addr + align_amount));
279		ASSERT(((uintptr_t)addr & (align_amount - 1l)) ==
280		    ((uintptr_t)(off & (align_amount - 1l))));
281		*addrp = addr;
282
283	} else {
284		*addrp = NULL;	/* no more virtual space */
285	}
286}
287
288/* Auto large page tunables. */
289int auto_lpg_tlb_threshold = 32;
290int auto_lpg_minszc = TTE64K;
291int auto_lpg_maxszc = TTE256M;
292size_t auto_lpg_heap_default = MMU_PAGESIZE64K;
293size_t auto_lpg_stack_default = MMU_PAGESIZE64K;
294size_t auto_lpg_va_default = MMU_PAGESIZE64K;
295size_t auto_lpg_remap_threshold = 0; /* always remap */
296/*
297 * Number of pages in 1 GB.  Don't enable automatic large pages if we have
298 * fewer than this many pages.
299 */
300pgcnt_t auto_lpg_min_physmem = 1 << (30 - MMU_PAGESHIFT);
301
302size_t
303map_pgsz(int maptype, struct proc *p, caddr_t addr, size_t len, int *remap)
304{
305	uint_t	n;
306	size_t	pgsz = 0;
307
308	if (remap)
309		*remap = (len > auto_lpg_remap_threshold);
310
311	switch (maptype) {
312	case MAPPGSZ_ISM:
313		n = hat_preferred_pgsz(p->p_as->a_hat, addr, len, maptype);
314		pgsz = hw_page_array[n].hp_size;
315		break;
316
317	case MAPPGSZ_VA:
318		n = hat_preferred_pgsz(p->p_as->a_hat, addr, len, maptype);
319		pgsz = hw_page_array[n].hp_size;
320		if ((pgsz <= MMU_PAGESIZE) ||
321		    !IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz))
322			pgsz = map_pgszva(p, addr, len);
323		break;
324
325	case MAPPGSZ_STK:
326		pgsz = map_pgszstk(p, addr, len);
327		break;
328
329	case MAPPGSZ_HEAP:
330		pgsz = map_pgszheap(p, addr, len);
331		break;
332	}
333	return (pgsz);
334}
335
336/*
337 * Platform-dependent page scrub call.
338 * We call hypervisor to scrub the page.
339 */
340void
341pagescrub(page_t *pp, uint_t off, uint_t len)
342{
343	uint64_t pa, length;
344
345	pa = (uint64_t)(pp->p_pagenum << MMU_PAGESHIFT + off);
346	length = (uint64_t)len;
347
348	(void) mem_scrub(pa, length);
349}
350
351void
352sync_data_memory(caddr_t va, size_t len)
353{
354	/* Call memory sync function */
355	mem_sync(va, len);
356}
357
358size_t
359mmu_get_kernel_lpsize(size_t lpsize)
360{
361	extern int mmu_exported_pagesize_mask;
362	uint_t tte;
363
364	if (lpsize == 0) {
365		/* no setting for segkmem_lpsize in /etc/system: use default */
366		if (mmu_exported_pagesize_mask & (1 << TTE256M)) {
367			lpsize = MMU_PAGESIZE256M;
368		} else if (mmu_exported_pagesize_mask & (1 << TTE4M)) {
369			lpsize = MMU_PAGESIZE4M;
370		} else if (mmu_exported_pagesize_mask & (1 << TTE64K)) {
371			lpsize = MMU_PAGESIZE64K;
372		} else {
373			lpsize = MMU_PAGESIZE;
374		}
375
376		return (lpsize);
377	}
378
379	for (tte = TTE8K; tte <= TTE256M; tte++) {
380
381		if ((mmu_exported_pagesize_mask & (1 << tte)) == 0)
382			continue;
383
384		if (lpsize == TTEBYTES(tte))
385			return (lpsize);
386	}
387
388	lpsize = TTEBYTES(TTE8K);
389	return (lpsize);
390}
391
392void
393mmu_init_kcontext()
394{
395}
396
397/*ARGSUSED*/
398void
399mmu_init_kernel_pgsz(struct hat *hat)
400{
401}
402
403#define	QUANTUM_SIZE	64
404
405static	vmem_t	*contig_mem_slab_arena;
406static	vmem_t	*contig_mem_arena;
407
408uint_t contig_mem_slab_size = MMU_PAGESIZE4M;
409
410static void *
411contig_mem_span_alloc(vmem_t *vmp, size_t size, int vmflag)
412{
413	page_t *ppl;
414	page_t *rootpp;
415	caddr_t addr = NULL;
416	pgcnt_t npages = btopr(size);
417	page_t **ppa;
418	int pgflags;
419	int i = 0;
420
421
422	/*
423	 * The import request should be at least
424	 * contig_mem_slab_size because that is the
425	 * slab arena's quantum. The size can be
426	 * further restricted since contiguous
427	 * allocations larger than contig_mem_slab_size
428	 * are not supported here.
429	 */
430	ASSERT(size == contig_mem_slab_size);
431
432	if ((addr = vmem_xalloc(vmp, size, size, 0, 0,
433	    NULL, NULL, vmflag)) == NULL) {
434		return (NULL);
435	}
436
437	/* The address should be slab-size aligned. */
438	ASSERT(((uintptr_t)addr & (contig_mem_slab_size - 1)) == 0);
439
440	if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) {
441		vmem_xfree(vmp, addr, size);
442		return (NULL);
443	}
444
445	pgflags = PG_EXCL;
446	if ((vmflag & VM_NOSLEEP) == 0)
447		pgflags |= PG_WAIT;
448	if (vmflag & VM_PANIC)
449		pgflags |= PG_PANIC;
450	if (vmflag & VM_PUSHPAGE)
451		pgflags |= PG_PUSHPAGE;
452
453	ppl = page_create_va_large(&kvp, (u_offset_t)(uintptr_t)addr, size,
454	    pgflags, &kvseg, addr, NULL);
455
456	if (ppl == NULL) {
457		vmem_xfree(vmp, addr, size);
458		page_unresv(npages);
459		return (NULL);
460	}
461
462	rootpp = ppl;
463	ppa = kmem_zalloc(npages * sizeof (page_t *), KM_SLEEP);
464	while (ppl != NULL) {
465		page_t *pp = ppl;
466		ppa[i++] = pp;
467		page_sub(&ppl, pp);
468		ASSERT(page_iolock_assert(pp));
469		page_io_unlock(pp);
470	}
471
472	/*
473	 * Load the locked entry.  It's OK to preload the entry into
474	 * the TSB since we now support large mappings in the kernel TSB.
475	 */
476	hat_memload_array(kas.a_hat, (caddr_t)rootpp->p_offset, size,
477	    ppa, (PROT_ALL & ~PROT_USER) | HAT_NOSYNC, HAT_LOAD_LOCK);
478
479	for (--i; i >= 0; --i) {
480		(void) page_pp_lock(ppa[i], 0, 1);
481		page_unlock(ppa[i]);
482	}
483
484	kmem_free(ppa, npages * sizeof (page_t *));
485	return (addr);
486}
487
488void
489contig_mem_span_free(vmem_t *vmp, void *inaddr, size_t size)
490{
491	page_t *pp;
492	caddr_t addr = inaddr;
493	caddr_t eaddr;
494	pgcnt_t npages = btopr(size);
495	pgcnt_t pgs_left = npages;
496	page_t *rootpp = NULL;
497
498	ASSERT(((uintptr_t)addr & (contig_mem_slab_size - 1)) == 0);
499
500	hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK);
501
502	for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) {
503		pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, SE_EXCL);
504		if (pp == NULL)
505			panic("contig_mem_span_free: page not found");
506
507		ASSERT(PAGE_EXCL(pp));
508		page_pp_unlock(pp, 0, 1);
509
510		if (rootpp == NULL)
511			rootpp = pp;
512		if (--pgs_left == 0) {
513			/*
514			 * similar logic to segspt_free_pages, but we know we
515			 * have one large page.
516			 */
517			page_destroy_pages(rootpp);
518		}
519	}
520	page_unresv(npages);
521
522	if (vmp != NULL)
523		vmem_xfree(vmp, inaddr, size);
524}
525
526static void *
527contig_vmem_xalloc_aligned_wrapper(vmem_t *vmp, size_t size, int vmflag)
528{
529	return (vmem_xalloc(vmp, size, size, 0, 0, NULL, NULL, vmflag));
530}
531
532/*
533 * conting_mem_alloc_align allocates real contiguous memory with the specified
534 * alignment upto contig_mem_slab_size. The alignment must be a power of 2.
535 */
536void *
537contig_mem_alloc_align(size_t size, size_t align)
538{
539	ASSERT(align <= contig_mem_slab_size);
540
541	if ((align & (align - 1)) != 0)
542		return (NULL);
543
544	return (vmem_xalloc(contig_mem_arena, size, align, 0, 0,
545	    NULL, NULL, VM_NOSLEEP));
546}
547
548/*
549 * Allocates size aligned contiguous memory upto contig_mem_slab_size.
550 * Size must be a power of 2.
551 */
552void *
553contig_mem_alloc(size_t size)
554{
555	ASSERT((size & (size - 1)) == 0);
556	return (contig_mem_alloc_align(size, size));
557}
558
559void
560contig_mem_free(void *vaddr, size_t size)
561{
562	vmem_xfree(contig_mem_arena, vaddr, size);
563}
564
565/*
566 * We create a set of stacked vmem arenas to enable us to
567 * allocate large >PAGESIZE chucks of contiguous Real Address space
568 * This is  what the Dynamics TSB support does for TSBs.
569 * The contig_mem_arena import functions are exactly the same as the
570 * TSB kmem_default arena import functions.
571 */
572void
573contig_mem_init(void)
574{
575
576	contig_mem_slab_arena = vmem_create("contig_mem_slab_arena", NULL, 0,
577	    contig_mem_slab_size, contig_vmem_xalloc_aligned_wrapper,
578	    vmem_xfree, heap_arena, 0, VM_SLEEP);
579
580	contig_mem_arena = vmem_create("contig_mem_arena", NULL, 0,
581	    QUANTUM_SIZE, contig_mem_span_alloc, contig_mem_span_free,
582	    contig_mem_slab_arena, 0, VM_SLEEP | VM_BESTFIT);
583
584}
585