mach_cpu_states.c revision 10271:7c80b70bb8de
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#include <sys/types.h>
27#include <sys/systm.h>
28#include <sys/archsystm.h>
29#include <sys/t_lock.h>
30#include <sys/uadmin.h>
31#include <sys/panic.h>
32#include <sys/reboot.h>
33#include <sys/autoconf.h>
34#include <sys/machsystm.h>
35#include <sys/promif.h>
36#include <sys/membar.h>
37#include <vm/hat_sfmmu.h>
38#include <sys/cpu_module.h>
39#include <sys/cpu_sgnblk_defs.h>
40#include <sys/intreg.h>
41#include <sys/consdev.h>
42#include <sys/kdi_impl.h>
43#include <sys/traptrace.h>
44#include <sys/hypervisor_api.h>
45#include <sys/vmsystm.h>
46#include <sys/dtrace.h>
47#include <sys/xc_impl.h>
48#include <sys/callb.h>
49#include <sys/mdesc.h>
50#include <sys/mach_descrip.h>
51#include <sys/wdt.h>
52#include <sys/soft_state.h>
53#include <sys/promimpl.h>
54#include <sys/hsvc.h>
55#include <sys/ldoms.h>
56#include <sys/kldc.h>
57
58/*
59 * hvdump_buf_va is a pointer to the currently-configured hvdump_buf.
60 * A value of NULL indicates that this area is not configured.
61 * hvdump_buf_sz is tunable but will be clamped to HVDUMP_SIZE_MAX.
62 */
63
64caddr_t hvdump_buf_va;
65uint64_t hvdump_buf_sz = HVDUMP_SIZE_DEFAULT;
66static uint64_t hvdump_buf_pa;
67
68u_longlong_t panic_tick;
69
70extern u_longlong_t gettick();
71static void reboot_machine(char *);
72static void update_hvdump_buffer(void);
73
74/*
75 * For xt_sync synchronization.
76 */
77extern uint64_t xc_tick_limit;
78extern uint64_t xc_tick_jump_limit;
79extern uint64_t xc_sync_tick_limit;
80
81/*
82 * We keep our own copies, used for cache flushing, because we can be called
83 * before cpu_fiximpl().
84 */
85static int kdi_dcache_size;
86static int kdi_dcache_linesize;
87static int kdi_icache_size;
88static int kdi_icache_linesize;
89
90/*
91 * Assembly support for generic modules in sun4v/ml/mach_xc.s
92 */
93extern void init_mondo_nocheck(xcfunc_t *func, uint64_t arg1, uint64_t arg2);
94extern void kdi_flush_idcache(int, int, int, int);
95extern uint64_t get_cpuaddr(uint64_t, uint64_t);
96
97
98#define	BOOT_CMD_MAX_LEN	256
99#define	BOOT_CMD_BASE		"boot "
100
101/*
102 * In an LDoms system we do not save the user's boot args in NVRAM
103 * as is done on legacy systems.  Instead, we format and send a
104 * 'reboot-command' variable to the variable service.  The contents
105 * of the variable are retrieved by OBP and used verbatim for
106 * the next boot.
107 */
108static void
109store_boot_cmd(char *args, boolean_t add_boot_str)
110{
111	static char	cmd_buf[BOOT_CMD_MAX_LEN];
112	size_t		len = 1;
113	pnode_t		node;
114	size_t		base_len = 0;
115	size_t		args_len;
116	size_t		args_max;
117
118	if (add_boot_str) {
119		(void) strcpy(cmd_buf, BOOT_CMD_BASE);
120
121		base_len = strlen(BOOT_CMD_BASE);
122		len = base_len + 1;
123	}
124
125	if (args != NULL) {
126		args_len = strlen(args);
127		args_max = BOOT_CMD_MAX_LEN - len;
128
129		if (args_len > args_max) {
130			cmn_err(CE_WARN, "Reboot command too long (%ld), "
131			    "truncating command arguments", len + args_len);
132
133			args_len = args_max;
134		}
135
136		len += args_len;
137		(void) strncpy(&cmd_buf[base_len], args, args_len);
138	}
139
140	node = prom_optionsnode();
141	if ((node == OBP_NONODE) || (node == OBP_BADNODE) ||
142	    prom_setprop(node, "reboot-command", cmd_buf, len) == -1)
143		cmn_err(CE_WARN, "Unable to store boot command for "
144		    "use on reboot");
145}
146
147
148/*
149 * Machine dependent code to reboot.
150 *
151 * "bootstr", when non-null, points to a string to be used as the
152 * argument string when rebooting.
153 *
154 * "invoke_cb" is a boolean. It is set to true when mdboot() can safely
155 * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when
156 * we are in a normal shutdown sequence (interrupts are not blocked, the
157 * system is not panic'ing or being suspended).
158 */
159/*ARGSUSED*/
160void
161mdboot(int cmd, int fcn, char *bootstr, boolean_t invoke_cb)
162{
163	extern void pm_cfb_check_and_powerup(void);
164
165	/*
166	 * XXX - rconsvp is set to NULL to ensure that output messages
167	 * are sent to the underlying "hardware" device using the
168	 * monitor's printf routine since we are in the process of
169	 * either rebooting or halting the machine.
170	 */
171	rconsvp = NULL;
172
173	switch (fcn) {
174	case AD_HALT:
175		/*
176		 * LDoms: By storing a no-op command
177		 * in the 'reboot-command' variable we cause OBP
178		 * to ignore the setting of 'auto-boot?' after
179		 * it completes the reset.  This causes the system
180		 * to stop at the ok prompt.
181		 */
182		if (domaining_enabled() && invoke_cb)
183			store_boot_cmd("noop", B_FALSE);
184		break;
185
186	case AD_POWEROFF:
187		break;
188
189	default:
190		if (bootstr == NULL) {
191			switch (fcn) {
192
193			case AD_BOOT:
194				bootstr = "";
195				break;
196
197			case AD_IBOOT:
198				bootstr = "-a";
199				break;
200
201			case AD_SBOOT:
202				bootstr = "-s";
203				break;
204
205			case AD_SIBOOT:
206				bootstr = "-sa";
207				break;
208			default:
209				cmn_err(CE_WARN,
210				    "mdboot: invalid function %d", fcn);
211				bootstr = "";
212				break;
213			}
214		}
215
216		/*
217		 * If LDoms is running, we must save the boot string
218		 * before we enter restricted mode.  This is possible
219		 * only if we are not being called from panic.
220		 */
221		if (domaining_enabled() && invoke_cb)
222			store_boot_cmd(bootstr, B_TRUE);
223	}
224
225	/*
226	 * At a high interrupt level we can't:
227	 *	1) bring up the console
228	 * or
229	 *	2) wait for pending interrupts prior to redistribution
230	 *	   to the current CPU
231	 *
232	 * so we do them now.
233	 */
234	pm_cfb_check_and_powerup();
235
236	/* make sure there are no more changes to the device tree */
237	devtree_freeze();
238
239	if (invoke_cb)
240		(void) callb_execute_class(CB_CL_MDBOOT, NULL);
241
242	/*
243	 * Clear any unresolved UEs from memory.
244	 */
245	page_retire_mdboot();
246
247	/*
248	 * stop other cpus which also raise our priority. since there is only
249	 * one active cpu after this, and our priority will be too high
250	 * for us to be preempted, we're essentially single threaded
251	 * from here on out.
252	 */
253	stop_other_cpus();
254
255	/*
256	 * try and reset leaf devices.  reset_leaves() should only
257	 * be called when there are no other threads that could be
258	 * accessing devices
259	 */
260	reset_leaves();
261
262	watchdog_clear();
263
264	if (fcn == AD_HALT) {
265		mach_set_soft_state(SIS_TRANSITION,
266		    &SOLARIS_SOFT_STATE_HALT_MSG);
267		halt((char *)NULL);
268	} else if (fcn == AD_POWEROFF) {
269		mach_set_soft_state(SIS_TRANSITION,
270		    &SOLARIS_SOFT_STATE_POWER_MSG);
271		power_down(NULL);
272	} else {
273		mach_set_soft_state(SIS_TRANSITION,
274		    &SOLARIS_SOFT_STATE_REBOOT_MSG);
275		reboot_machine(bootstr);
276	}
277	/* MAYBE REACHED */
278}
279
280/* mdpreboot - may be called prior to mdboot while root fs still mounted */
281/*ARGSUSED*/
282void
283mdpreboot(int cmd, int fcn, char *bootstr)
284{
285}
286
287/*
288 * Halt the machine and then reboot with the device
289 * and arguments specified in bootstr.
290 */
291static void
292reboot_machine(char *bootstr)
293{
294	flush_windows();
295	stop_other_cpus();		/* send stop signal to other CPUs */
296	prom_printf("rebooting...\n");
297	/*
298	 * For platforms that use CPU signatures, we
299	 * need to set the signature block to OS and
300	 * the state to exiting for all the processors.
301	 */
302	CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_REBOOT, -1);
303	prom_reboot(bootstr);
304	/*NOTREACHED*/
305}
306
307/*
308 * We use the x-trap mechanism and idle_stop_xcall() to stop the other CPUs.
309 * Once in panic_idle() they raise spl, record their location, and spin.
310 */
311static void
312panic_idle(void)
313{
314	(void) spl7();
315
316	debug_flush_windows();
317	(void) setjmp(&curthread->t_pcb);
318
319	CPU->cpu_m.in_prom = 1;
320	membar_stld();
321
322	for (;;)
323		;
324}
325
326/*
327 * Force the other CPUs to trap into panic_idle(), and then remove them
328 * from the cpu_ready_set so they will no longer receive cross-calls.
329 */
330/*ARGSUSED*/
331void
332panic_stopcpus(cpu_t *cp, kthread_t *t, int spl)
333{
334	cpuset_t cps;
335	int i;
336
337	(void) splzs();
338	CPUSET_ALL_BUT(cps, cp->cpu_id);
339	xt_some(cps, (xcfunc_t *)idle_stop_xcall, (uint64_t)&panic_idle, NULL);
340
341	for (i = 0; i < NCPU; i++) {
342		if (i != cp->cpu_id && CPU_XCALL_READY(i)) {
343			int ntries = 0x10000;
344
345			while (!cpu[i]->cpu_m.in_prom && ntries) {
346				DELAY(50);
347				ntries--;
348			}
349
350			if (!cpu[i]->cpu_m.in_prom)
351				printf("panic: failed to stop cpu%d\n", i);
352
353			cpu[i]->cpu_flags &= ~CPU_READY;
354			cpu[i]->cpu_flags |= CPU_QUIESCED;
355			CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id);
356		}
357	}
358}
359
360/*
361 * Platform callback following each entry to panicsys().  If we've panicked at
362 * level 14, we examine t_panic_trap to see if a fatal trap occurred.  If so,
363 * we disable further %tick_cmpr interrupts.  If not, an explicit call to panic
364 * was made and so we re-enqueue an interrupt request structure to allow
365 * further level 14 interrupts to be processed once we lower PIL.  This allows
366 * us to handle panics from the deadman() CY_HIGH_LEVEL cyclic.
367 */
368void
369panic_enter_hw(int spl)
370{
371	if (!panic_tick) {
372		panic_tick = gettick();
373		if (mach_htraptrace_enable) {
374			uint64_t prev_freeze;
375
376			/*  there are no possible error codes for this hcall */
377			(void) hv_ttrace_freeze((uint64_t)TRAP_TFREEZE_ALL,
378			    &prev_freeze);
379		}
380#ifdef TRAPTRACE
381		TRAPTRACE_FREEZE;
382#endif
383	}
384
385	mach_set_soft_state(SIS_TRANSITION, &SOLARIS_SOFT_STATE_PANIC_MSG);
386
387	if (spl == ipltospl(PIL_14)) {
388		uint_t opstate = disable_vec_intr();
389
390		if (curthread->t_panic_trap != NULL) {
391			tickcmpr_disable();
392			intr_dequeue_req(PIL_14, cbe_level14_inum);
393		} else {
394			if (!tickcmpr_disabled())
395				intr_enqueue_req(PIL_14, cbe_level14_inum);
396			/*
397			 * Clear SOFTINT<14>, SOFTINT<0> (TICK_INT)
398			 * and SOFTINT<16> (STICK_INT) to indicate
399			 * that the current level 14 has been serviced.
400			 */
401			wr_clr_softint((1 << PIL_14) |
402			    TICK_INT_MASK | STICK_INT_MASK);
403		}
404
405		enable_vec_intr(opstate);
406	}
407}
408
409/*
410 * Miscellaneous hardware-specific code to execute after panicstr is set
411 * by the panic code: we also print and record PTL1 panic information here.
412 */
413/*ARGSUSED*/
414void
415panic_quiesce_hw(panic_data_t *pdp)
416{
417	extern uint_t getpstate(void);
418	extern void setpstate(uint_t);
419
420	/*
421	 * Turn off TRAPTRACE and save the current %tick value in panic_tick.
422	 */
423	if (!panic_tick) {
424		panic_tick = gettick();
425		if (mach_htraptrace_enable) {
426			uint64_t prev_freeze;
427
428			/*  there are no possible error codes for this hcall */
429			(void) hv_ttrace_freeze((uint64_t)TRAP_TFREEZE_ALL,
430			    &prev_freeze);
431		}
432#ifdef TRAPTRACE
433		TRAPTRACE_FREEZE;
434#endif
435	}
436	/*
437	 * For Platforms that use CPU signatures, we
438	 * need to set the signature block to OS, the state to
439	 * exiting, and the substate to panic for all the processors.
440	 */
441	CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_PANIC, -1);
442
443	update_hvdump_buffer();
444
445	/*
446	 * Disable further ECC errors from the bus nexus.
447	 */
448	(void) bus_func_invoke(BF_TYPE_ERRDIS);
449
450	/*
451	 * Redirect all interrupts to the current CPU.
452	 */
453	intr_redist_all_cpus_shutdown();
454
455	/*
456	 * This call exists solely to support dumps to network
457	 * devices after sync from OBP.
458	 *
459	 * If we came here via the sync callback, then on some
460	 * platforms, interrupts may have arrived while we were
461	 * stopped in OBP.  OBP will arrange for those interrupts to
462	 * be redelivered if you say "go", but not if you invoke a
463	 * client callback like 'sync'.	 For some dump devices
464	 * (network swap devices), we need interrupts to be
465	 * delivered in order to dump, so we have to call the bus
466	 * nexus driver to reset the interrupt state machines.
467	 */
468	(void) bus_func_invoke(BF_TYPE_RESINTR);
469
470	setpstate(getpstate() | PSTATE_IE);
471}
472
473/*
474 * Platforms that use CPU signatures need to set the signature block to OS and
475 * the state to exiting for all CPUs. PANIC_CONT indicates that we're about to
476 * write the crash dump, which tells the SSP/SMS to begin a timeout routine to
477 * reboot the machine if the dump never completes.
478 */
479/*ARGSUSED*/
480void
481panic_dump_hw(int spl)
482{
483	CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1);
484}
485
486/*
487 * for ptl1_panic
488 */
489void
490ptl1_init_cpu(struct cpu *cpu)
491{
492	ptl1_state_t *pstate = &cpu->cpu_m.ptl1_state;
493
494	/*CONSTCOND*/
495	if (sizeof (struct cpu) + PTL1_SSIZE > CPU_ALLOC_SIZE) {
496		panic("ptl1_init_cpu: not enough space left for ptl1_panic "
497		    "stack, sizeof (struct cpu) = %lu",
498		    (unsigned long)sizeof (struct cpu));
499	}
500
501	pstate->ptl1_stktop = (uintptr_t)cpu + CPU_ALLOC_SIZE;
502	cpu_pa[cpu->cpu_id] = va_to_pa(cpu);
503}
504
505void
506ptl1_panic_handler(ptl1_state_t *pstate)
507{
508	static const char *ptl1_reasons[] = {
509#ifdef	PTL1_PANIC_DEBUG
510		"trap for debug purpose",	/* PTL1_BAD_DEBUG */
511#else
512		"unknown trap",			/* PTL1_BAD_DEBUG */
513#endif
514		"register window trap",		/* PTL1_BAD_WTRAP */
515		"kernel MMU miss",		/* PTL1_BAD_KMISS */
516		"kernel protection fault",	/* PTL1_BAD_KPROT_FAULT */
517		"ISM MMU miss",			/* PTL1_BAD_ISM */
518		"kernel MMU trap",		/* PTL1_BAD_MMUTRAP */
519		"kernel trap handler state",	/* PTL1_BAD_TRAP */
520		"floating point trap",		/* PTL1_BAD_FPTRAP */
521#ifdef	DEBUG
522		"pointer to intr_vec",		/* PTL1_BAD_INTR_VEC */
523#else
524		"unknown trap",			/* PTL1_BAD_INTR_VEC */
525#endif
526#ifdef	TRAPTRACE
527		"TRACE_PTR state",		/* PTL1_BAD_TRACE_PTR */
528#else
529		"unknown trap",			/* PTL1_BAD_TRACE_PTR */
530#endif
531		"stack overflow",		/* PTL1_BAD_STACK */
532		"DTrace flags",			/* PTL1_BAD_DTRACE_FLAGS */
533		"attempt to steal locked ctx",  /* PTL1_BAD_CTX_STEAL */
534		"CPU ECC error loop",		/* PTL1_BAD_ECC */
535		"unexpected error from hypervisor call", /* PTL1_BAD_HCALL */
536		"unexpected global level(%gl)", /* PTL1_BAD_GL */
537		"Watchdog Reset", 		/* PTL1_BAD_WATCHDOG */
538		"unexpected RED mode trap", 	/* PTL1_BAD_RED */
539		"return value EINVAL from hcall: "\
540		    "UNMAP_PERM_ADDR",	/* PTL1_BAD_HCALL_UNMAP_PERM_EINVAL */
541		"return value ENOMAP from hcall: "\
542		    "UNMAP_PERM_ADDR", /* PTL1_BAD_HCALL_UNMAP_PERM_ENOMAP */
543		"error raising a TSB exception", /* PTL1_BAD_RAISE_TSBEXCP */
544		"missing shared TSB"	/* PTL1_NO_SCDTSB8K */
545	};
546
547	uint_t reason = pstate->ptl1_regs.ptl1_gregs[0].ptl1_g1;
548	uint_t tl = pstate->ptl1_regs.ptl1_trap_regs[0].ptl1_tl;
549	struct panic_trap_info ti = { 0 };
550
551	/*
552	 * Use trap_info for a place holder to call panic_savetrap() and
553	 * panic_showtrap() to save and print out ptl1_panic information.
554	 */
555	if (curthread->t_panic_trap == NULL)
556		curthread->t_panic_trap = &ti;
557
558	if (reason < sizeof (ptl1_reasons) / sizeof (ptl1_reasons[0]))
559		panic("bad %s at TL %u", ptl1_reasons[reason], tl);
560	else
561		panic("ptl1_panic reason 0x%x at TL %u", reason, tl);
562}
563
564void
565clear_watchdog_on_exit(void)
566{
567	if (watchdog_enabled && watchdog_activated) {
568		prom_printf("Debugging requested; hardware watchdog "
569		    "suspended.\n");
570		(void) watchdog_suspend();
571	}
572}
573
574/*
575 * Restore the watchdog timer when returning from a debugger
576 * after a panic or L1-A and resume watchdog pat.
577 */
578void
579restore_watchdog_on_entry()
580{
581	watchdog_resume();
582}
583
584int
585kdi_watchdog_disable(void)
586{
587	watchdog_suspend();
588
589	return (0);
590}
591
592void
593kdi_watchdog_restore(void)
594{
595	watchdog_resume();
596}
597
598void
599mach_dump_buffer_init(void)
600{
601	uint64_t  ret, minsize = 0;
602
603	if (hvdump_buf_sz > HVDUMP_SIZE_MAX)
604		hvdump_buf_sz = HVDUMP_SIZE_MAX;
605
606	hvdump_buf_va = contig_mem_alloc_align(hvdump_buf_sz, PAGESIZE);
607	if (hvdump_buf_va == NULL)
608		return;
609
610	hvdump_buf_pa = va_to_pa(hvdump_buf_va);
611
612	ret = hv_dump_buf_update(hvdump_buf_pa, hvdump_buf_sz,
613	    &minsize);
614
615	if (ret != H_EOK) {
616		contig_mem_free(hvdump_buf_va, hvdump_buf_sz);
617		hvdump_buf_va = NULL;
618		cmn_err(CE_NOTE, "!Error in setting up hvstate"
619		    "dump buffer. Error = 0x%lx, size = 0x%lx,"
620		    "buf_pa = 0x%lx", ret, hvdump_buf_sz,
621		    hvdump_buf_pa);
622
623		if (ret == H_EINVAL) {
624			cmn_err(CE_NOTE, "!Buffer size too small."
625			    "Available buffer size = 0x%lx,"
626			    "Minimum buffer size required = 0x%lx",
627			    hvdump_buf_sz, minsize);
628		}
629	}
630}
631
632
633static void
634update_hvdump_buffer(void)
635{
636	uint64_t ret, dummy_val;
637
638	if (hvdump_buf_va == NULL)
639		return;
640
641	ret = hv_dump_buf_update(hvdump_buf_pa, hvdump_buf_sz,
642	    &dummy_val);
643	if (ret != H_EOK) {
644		cmn_err(CE_NOTE, "!Cannot update hvstate dump"
645		    "buffer. Error = 0x%lx", ret);
646	}
647}
648
649
650static int
651getintprop(pnode_t node, char *name, int deflt)
652{
653	int	value;
654
655	switch (prom_getproplen(node, name)) {
656	case 0:
657		value = 1;	/* boolean properties */
658		break;
659
660	case sizeof (int):
661		(void) prom_getprop(node, name, (caddr_t)&value);
662		break;
663
664	default:
665		value = deflt;
666		break;
667	}
668
669	return (value);
670}
671
672/*
673 * Called by setcpudelay
674 */
675void
676cpu_init_tick_freq(void)
677{
678	md_t *mdp;
679	mde_cookie_t rootnode;
680	int		listsz;
681	mde_cookie_t	*listp = NULL;
682	int	num_nodes;
683	uint64_t stick_prop;
684
685	if (broken_md_flag) {
686		sys_tick_freq = cpunodes[CPU->cpu_id].clock_freq;
687		return;
688	}
689
690	if ((mdp = md_get_handle()) == NULL)
691		panic("stick_frequency property not found in MD");
692
693	rootnode = md_root_node(mdp);
694	ASSERT(rootnode != MDE_INVAL_ELEM_COOKIE);
695
696	num_nodes = md_node_count(mdp);
697
698	ASSERT(num_nodes > 0);
699	listsz = num_nodes * sizeof (mde_cookie_t);
700	listp = (mde_cookie_t *)prom_alloc((caddr_t)0, listsz, 0);
701
702	if (listp == NULL)
703		panic("cannot allocate list for MD properties");
704
705	num_nodes = md_scan_dag(mdp, rootnode, md_find_name(mdp, "platform"),
706	    md_find_name(mdp, "fwd"), listp);
707
708	ASSERT(num_nodes == 1);
709
710	if (md_get_prop_val(mdp, *listp, "stick-frequency", &stick_prop) != 0)
711		panic("stick_frequency property not found in MD");
712
713	sys_tick_freq = stick_prop;
714
715	prom_free((caddr_t)listp, listsz);
716	(void) md_fini_handle(mdp);
717}
718
719int shipit(int n, uint64_t cpu_list_ra);
720
721#ifdef DEBUG
722#define	SEND_MONDO_STATS	1
723#endif
724
725#ifdef SEND_MONDO_STATS
726uint32_t x_one_stimes[64];
727uint32_t x_one_ltimes[16];
728uint32_t x_set_stimes[64];
729uint32_t x_set_ltimes[16];
730uint32_t x_set_cpus[NCPU];
731#endif
732
733void
734send_one_mondo(int cpuid)
735{
736	int retries, stat;
737	uint64_t starttick, endtick, tick, lasttick;
738	struct machcpu	*mcpup = &(CPU->cpu_m);
739
740	CPU_STATS_ADDQ(CPU, sys, xcalls, 1);
741	starttick = lasttick = gettick();
742	mcpup->cpu_list[0] = (uint16_t)cpuid;
743	stat = shipit(1, mcpup->cpu_list_ra);
744	endtick = starttick + xc_tick_limit;
745	retries = 0;
746	while (stat != H_EOK) {
747		if (stat != H_EWOULDBLOCK) {
748			if (panic_quiesce)
749				return;
750			if (stat == H_ECPUERROR)
751				cmn_err(CE_PANIC, "send_one_mondo: "
752				    "cpuid: 0x%x has been marked in "
753				    "error", cpuid);
754			else
755				cmn_err(CE_PANIC, "send_one_mondo: "
756				    "unexpected hypervisor error 0x%x "
757				    "while sending a mondo to cpuid: "
758				    "0x%x", stat, cpuid);
759		}
760		tick = gettick();
761		/*
762		 * If there is a big jump between the current tick
763		 * count and lasttick, we have probably hit a break
764		 * point.  Adjust endtick accordingly to avoid panic.
765		 */
766		if (tick > (lasttick + xc_tick_jump_limit))
767			endtick += (tick - lasttick);
768		lasttick = tick;
769		if (tick > endtick) {
770			if (panic_quiesce)
771				return;
772			cmn_err(CE_PANIC, "send mondo timeout "
773			    "(target 0x%x) [retries: 0x%x hvstat: 0x%x]",
774			    cpuid, retries, stat);
775		}
776		drv_usecwait(1);
777		stat = shipit(1, mcpup->cpu_list_ra);
778		retries++;
779	}
780#ifdef SEND_MONDO_STATS
781	{
782		uint64_t n = gettick() - starttick;
783		if (n < 8192)
784			x_one_stimes[n >> 7]++;
785		else if (n < 15*8192)
786			x_one_ltimes[n >> 13]++;
787		else
788			x_one_ltimes[0xf]++;
789	}
790#endif
791}
792
793void
794send_mondo_set(cpuset_t set)
795{
796	uint64_t starttick, endtick, tick, lasttick;
797	uint_t largestid, smallestid;
798	int i, j;
799	int ncpuids = 0;
800	int shipped = 0;
801	int retries = 0;
802	struct machcpu	*mcpup = &(CPU->cpu_m);
803
804	ASSERT(!CPUSET_ISNULL(set));
805	CPUSET_BOUNDS(set, smallestid, largestid);
806	if (smallestid == CPUSET_NOTINSET) {
807		return;
808	}
809
810	starttick = lasttick = gettick();
811	endtick = starttick + xc_tick_limit;
812
813	/*
814	 * Assemble CPU list for HV argument. We already know
815	 * smallestid and largestid are members of set.
816	 */
817	mcpup->cpu_list[ncpuids++] = (uint16_t)smallestid;
818	if (largestid != smallestid) {
819		for (i = smallestid+1; i <= largestid-1; i++) {
820			if (CPU_IN_SET(set, i)) {
821				mcpup->cpu_list[ncpuids++] = (uint16_t)i;
822			}
823		}
824		mcpup->cpu_list[ncpuids++] = (uint16_t)largestid;
825	}
826
827	do {
828		int stat;
829
830		stat = shipit(ncpuids, mcpup->cpu_list_ra);
831		if (stat == H_EOK) {
832			shipped += ncpuids;
833			break;
834		}
835
836		/*
837		 * Either not all CPU mondos were sent, or an
838		 * error occurred. CPUs that were sent mondos
839		 * have their CPU IDs overwritten in cpu_list.
840		 * Reset cpu_list so that it only holds those
841		 * CPU IDs that still need to be sent.
842		 */
843		for (i = 0, j = 0; i < ncpuids; i++) {
844			if (mcpup->cpu_list[i] == HV_SEND_MONDO_ENTRYDONE) {
845				shipped++;
846			} else {
847				mcpup->cpu_list[j++] = mcpup->cpu_list[i];
848			}
849		}
850		ncpuids = j;
851
852		/*
853		 * Now handle possible errors returned
854		 * from hypervisor.
855		 */
856		if (stat == H_ECPUERROR) {
857			int errorcpus;
858
859			if (!panic_quiesce)
860				cmn_err(CE_CONT, "send_mondo_set: cpuid(s) ");
861
862			/*
863			 * Remove any CPUs in the error state from
864			 * cpu_list. At this point cpu_list only
865			 * contains the CPU IDs for mondos not
866			 * succesfully sent.
867			 */
868			for (i = 0, errorcpus = 0; i < ncpuids; i++) {
869				uint64_t state = CPU_STATE_INVALID;
870				uint16_t id = mcpup->cpu_list[i];
871
872				(void) hv_cpu_state(id, &state);
873				if (state == CPU_STATE_ERROR) {
874					if (!panic_quiesce)
875						cmn_err(CE_CONT, "0x%x ", id);
876					errorcpus++;
877				} else if (errorcpus > 0) {
878					mcpup->cpu_list[i - errorcpus] =
879					    mcpup->cpu_list[i];
880				}
881			}
882			ncpuids -= errorcpus;
883
884			if (!panic_quiesce) {
885				if (errorcpus == 0) {
886					cmn_err(CE_CONT, "<none> have been "
887					    "marked in error\n");
888					cmn_err(CE_PANIC, "send_mondo_set: "
889					    "hypervisor returned "
890					    "H_ECPUERROR but no CPU in "
891					    "cpu_list in error state");
892				} else {
893					cmn_err(CE_CONT, "have been marked in "
894					    "error\n");
895					cmn_err(CE_PANIC, "send_mondo_set: "
896					    "CPU(s) in error state");
897				}
898			}
899		} else if (stat != H_EWOULDBLOCK) {
900			if (panic_quiesce)
901				return;
902			/*
903			 * For all other errors, panic.
904			 */
905			cmn_err(CE_CONT, "send_mondo_set: unexpected "
906			    "hypervisor error 0x%x while sending a "
907			    "mondo to cpuid(s):", stat);
908			for (i = 0; i < ncpuids; i++) {
909				cmn_err(CE_CONT, " 0x%x", mcpup->cpu_list[i]);
910			}
911			cmn_err(CE_CONT, "\n");
912			cmn_err(CE_PANIC, "send_mondo_set: unexpected "
913			    "hypervisor error");
914		}
915
916		tick = gettick();
917		/*
918		 * If there is a big jump between the current tick
919		 * count and lasttick, we have probably hit a break
920		 * point.  Adjust endtick accordingly to avoid panic.
921		 */
922		if (tick > (lasttick + xc_tick_jump_limit))
923			endtick += (tick - lasttick);
924		lasttick = tick;
925		if (tick > endtick) {
926			if (panic_quiesce)
927				return;
928			cmn_err(CE_CONT, "send mondo timeout "
929			    "[retries: 0x%x]  cpuids: ", retries);
930			for (i = 0; i < ncpuids; i++)
931				cmn_err(CE_CONT, " 0x%x", mcpup->cpu_list[i]);
932			cmn_err(CE_CONT, "\n");
933			cmn_err(CE_PANIC, "send_mondo_set: timeout");
934		}
935
936		while (gettick() < (tick + sys_clock_mhz))
937			;
938		retries++;
939	} while (ncpuids > 0);
940
941	CPU_STATS_ADDQ(CPU, sys, xcalls, shipped);
942
943#ifdef SEND_MONDO_STATS
944	{
945		uint64_t n = gettick() - starttick;
946		if (n < 8192)
947			x_set_stimes[n >> 7]++;
948		else if (n < 15*8192)
949			x_set_ltimes[n >> 13]++;
950		else
951			x_set_ltimes[0xf]++;
952	}
953	x_set_cpus[shipped]++;
954#endif
955}
956
957void
958syncfpu(void)
959{
960}
961
962void
963sticksync_slave(void)
964{}
965
966void
967sticksync_master(void)
968{}
969
970void
971cpu_init_cache_scrub(void)
972{
973	mach_set_soft_state(SIS_NORMAL, &SOLARIS_SOFT_STATE_RUN_MSG);
974}
975
976int
977dtrace_blksuword32_err(uintptr_t addr, uint32_t *data)
978{
979	int ret, watched;
980
981	watched = watch_disable_addr((void *)addr, 4, S_WRITE);
982	ret = dtrace_blksuword32(addr, data, 0);
983	if (watched)
984		watch_enable_addr((void *)addr, 4, S_WRITE);
985
986	return (ret);
987}
988
989int
990dtrace_blksuword32(uintptr_t addr, uint32_t *data, int tryagain)
991{
992	if (suword32((void *)addr, *data) == -1)
993		return (tryagain ? dtrace_blksuword32_err(addr, data) : -1);
994	dtrace_flush_sec(addr);
995
996	return (0);
997}
998
999/*ARGSUSED*/
1000void
1001cpu_faulted_enter(struct cpu *cp)
1002{
1003}
1004
1005/*ARGSUSED*/
1006void
1007cpu_faulted_exit(struct cpu *cp)
1008{
1009}
1010
1011static int
1012kdi_cpu_ready_iter(int (*cb)(int, void *), void *arg)
1013{
1014	int rc, i;
1015
1016	for (rc = 0, i = 0; i < NCPU; i++) {
1017		if (CPU_IN_SET(cpu_ready_set, i))
1018			rc += cb(i, arg);
1019	}
1020
1021	return (rc);
1022}
1023
1024/*
1025 * Sends a cross-call to a specified processor.  The caller assumes
1026 * responsibility for repetition of cross-calls, as appropriate (MARSA for
1027 * debugging).
1028 */
1029static int
1030kdi_xc_one(int cpuid, void (*func)(uintptr_t, uintptr_t), uintptr_t arg1,
1031    uintptr_t arg2)
1032{
1033	int stat;
1034	struct machcpu	*mcpup;
1035	uint64_t cpuaddr_reg = 0, cpuaddr_scr = 0;
1036
1037	mcpup = &(((cpu_t *)get_cpuaddr(cpuaddr_reg, cpuaddr_scr))->cpu_m);
1038
1039	/*
1040	 * if (idsr_busy())
1041	 *	return (KDI_XC_RES_ERR);
1042	 */
1043
1044	init_mondo_nocheck((xcfunc_t *)func, arg1, arg2);
1045
1046	mcpup->cpu_list[0] = (uint16_t)cpuid;
1047	stat = shipit(1, mcpup->cpu_list_ra);
1048
1049	if (stat == 0)
1050		return (KDI_XC_RES_OK);
1051	else
1052		return (KDI_XC_RES_NACK);
1053}
1054
1055static void
1056kdi_tickwait(clock_t nticks)
1057{
1058	clock_t endtick = gettick() + nticks;
1059
1060	while (gettick() < endtick)
1061		;
1062}
1063
1064static void
1065kdi_cpu_init(int dcache_size, int dcache_linesize, int icache_size,
1066    int icache_linesize)
1067{
1068	kdi_dcache_size = dcache_size;
1069	kdi_dcache_linesize = dcache_linesize;
1070	kdi_icache_size = icache_size;
1071	kdi_icache_linesize = icache_linesize;
1072}
1073
1074/* used directly by kdi_read/write_phys */
1075void
1076kdi_flush_caches(void)
1077{
1078	/* Not required on sun4v architecture. */
1079}
1080
1081/*ARGSUSED*/
1082int
1083kdi_get_stick(uint64_t *stickp)
1084{
1085	return (-1);
1086}
1087
1088void
1089cpu_kdi_init(kdi_t *kdi)
1090{
1091	kdi->kdi_flush_caches = kdi_flush_caches;
1092	kdi->mkdi_cpu_init = kdi_cpu_init;
1093	kdi->mkdi_cpu_ready_iter = kdi_cpu_ready_iter;
1094	kdi->mkdi_xc_one = kdi_xc_one;
1095	kdi->mkdi_tickwait = kdi_tickwait;
1096	kdi->mkdi_get_stick = kdi_get_stick;
1097}
1098
1099uint64_t	soft_state_message_ra[SOLARIS_SOFT_STATE_MSG_CNT];
1100static uint64_t	soft_state_saved_state = (uint64_t)-1;
1101static int	soft_state_initialized = 0;
1102static uint64_t soft_state_sup_minor;		/* Supported minor number */
1103static hsvc_info_t soft_state_hsvc = {
1104			HSVC_REV_1, NULL, HSVC_GROUP_SOFT_STATE, 1, 0, NULL };
1105
1106
1107static void
1108sun4v_system_claim(void)
1109{
1110	watchdog_suspend();
1111	kldc_debug_enter();
1112	/*
1113	 * For "mdb -K", set soft state to debugging
1114	 */
1115	if (soft_state_saved_state == -1) {
1116		mach_get_soft_state(&soft_state_saved_state,
1117		    &SOLARIS_SOFT_STATE_SAVED_MSG);
1118	}
1119	/*
1120	 * check again as the read above may or may not have worked and if
1121	 * it didn't then soft state will still be -1
1122	 */
1123	if (soft_state_saved_state != -1) {
1124		mach_set_soft_state(SIS_TRANSITION,
1125		    &SOLARIS_SOFT_STATE_DEBUG_MSG);
1126	}
1127}
1128
1129static void
1130sun4v_system_release(void)
1131{
1132	watchdog_resume();
1133	/*
1134	 * For "mdb -K", set soft_state state back to original state on exit
1135	 */
1136	if (soft_state_saved_state != -1) {
1137		mach_set_soft_state(soft_state_saved_state,
1138		    &SOLARIS_SOFT_STATE_SAVED_MSG);
1139		soft_state_saved_state = -1;
1140	}
1141}
1142
1143void
1144plat_kdi_init(kdi_t *kdi)
1145{
1146	kdi->pkdi_system_claim = sun4v_system_claim;
1147	kdi->pkdi_system_release = sun4v_system_release;
1148}
1149
1150/*
1151 * Routine to return memory information associated
1152 * with a physical address and syndrome.
1153 */
1154/* ARGSUSED */
1155int
1156cpu_get_mem_info(uint64_t synd, uint64_t afar,
1157    uint64_t *mem_sizep, uint64_t *seg_sizep, uint64_t *bank_sizep,
1158    int *segsp, int *banksp, int *mcidp)
1159{
1160	return (ENOTSUP);
1161}
1162
1163/*
1164 * This routine returns the size of the kernel's FRU name buffer.
1165 */
1166size_t
1167cpu_get_name_bufsize()
1168{
1169	return (UNUM_NAMLEN);
1170}
1171
1172/*
1173 * This routine is a more generic interface to cpu_get_mem_unum(),
1174 * that may be used by other modules (e.g. mm).
1175 */
1176/* ARGSUSED */
1177int
1178cpu_get_mem_name(uint64_t synd, uint64_t *afsr, uint64_t afar,
1179    char *buf, int buflen, int *lenp)
1180{
1181	return (ENOTSUP);
1182}
1183
1184/* ARGSUSED */
1185int
1186cpu_get_mem_sid(char *unum, char *buf, int buflen, int *lenp)
1187{
1188	return (ENOTSUP);
1189}
1190
1191/* ARGSUSED */
1192int
1193cpu_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp)
1194{
1195	return (ENOTSUP);
1196}
1197
1198/*
1199 * xt_sync - wait for previous x-traps to finish
1200 */
1201void
1202xt_sync(cpuset_t cpuset)
1203{
1204	union {
1205		uint8_t volatile byte[NCPU];
1206		uint64_t volatile xword[NCPU / 8];
1207	} cpu_sync;
1208	uint64_t starttick, endtick, tick, lasttick, traptrace_id;
1209	uint_t largestid, smallestid;
1210	int i, j;
1211
1212	kpreempt_disable();
1213	CPUSET_DEL(cpuset, CPU->cpu_id);
1214	CPUSET_AND(cpuset, cpu_ready_set);
1215
1216	CPUSET_BOUNDS(cpuset, smallestid, largestid);
1217	if (smallestid == CPUSET_NOTINSET)
1218		goto out;
1219
1220	/*
1221	 * Sun4v uses a queue for receiving mondos. Successful
1222	 * transmission of a mondo only indicates that the mondo
1223	 * has been written into the queue.
1224	 *
1225	 * We use an array of bytes to let each cpu to signal back
1226	 * to the cross trap sender that the cross trap has been
1227	 * executed. Set the byte to 1 before sending the cross trap
1228	 * and wait until other cpus reset it to 0.
1229	 */
1230	bzero((void *)&cpu_sync, NCPU);
1231	cpu_sync.byte[smallestid] = 1;
1232	if (largestid != smallestid) {
1233		for (i = (smallestid + 1); i <= (largestid - 1); i++)
1234			if (CPU_IN_SET(cpuset, i))
1235				cpu_sync.byte[i] = 1;
1236		cpu_sync.byte[largestid] = 1;
1237	}
1238
1239	/*
1240	 * To help debug xt_sync panic, each mondo is uniquely identified
1241	 * by passing the tick value, traptrace_id as the second mondo
1242	 * argument to xt_some which is logged in CPU's mondo queue,
1243	 * traptrace buffer and the panic message.
1244	 */
1245	traptrace_id = gettick();
1246	xt_some(cpuset, (xcfunc_t *)xt_sync_tl1,
1247	    (uint64_t)cpu_sync.byte, traptrace_id);
1248
1249	starttick = lasttick = gettick();
1250	endtick = starttick + xc_sync_tick_limit;
1251
1252	for (i = (smallestid / 8); i <= (largestid / 8); i++) {
1253		while (cpu_sync.xword[i] != 0) {
1254			tick = gettick();
1255			/*
1256			 * If there is a big jump between the current tick
1257			 * count and lasttick, we have probably hit a break
1258			 * point. Adjust endtick accordingly to avoid panic.
1259			 */
1260			if (tick > (lasttick + xc_tick_jump_limit)) {
1261				endtick += (tick - lasttick);
1262			}
1263			lasttick = tick;
1264			if (tick > endtick) {
1265				if (panic_quiesce)
1266					goto out;
1267				cmn_err(CE_CONT, "Cross trap sync timeout:  "
1268				    "at cpu_sync.xword[%d]: 0x%lx "
1269				    "cpu_sync.byte: 0x%lx "
1270				    "starttick: 0x%lx endtick: 0x%lx "
1271				    "traptrace_id = 0x%lx\n",
1272				    i, cpu_sync.xword[i],
1273				    (uint64_t)cpu_sync.byte,
1274				    starttick, endtick, traptrace_id);
1275				cmn_err(CE_CONT, "CPUIDs:");
1276				for (j = (i * 8); j <= largestid; j++) {
1277					if (cpu_sync.byte[j] != 0)
1278						cmn_err(CE_CONT, " 0x%x", j);
1279				}
1280				cmn_err(CE_PANIC, "xt_sync: timeout");
1281			}
1282		}
1283	}
1284
1285out:
1286	kpreempt_enable();
1287}
1288
1289#define	QFACTOR		200
1290/*
1291 * Recalculate the values of the cross-call timeout variables based
1292 * on the value of the 'inter-cpu-latency' property of the platform node.
1293 * The property sets the number of nanosec to wait for a cross-call
1294 * to be acknowledged.  Other timeout variables are derived from it.
1295 *
1296 * N.B. This implementation is aware of the internals of xc_init()
1297 * and updates many of the same variables.
1298 */
1299void
1300recalc_xc_timeouts(void)
1301{
1302	typedef union {
1303		uint64_t whole;
1304		struct {
1305			uint_t high;
1306			uint_t low;
1307		} half;
1308	} u_number;
1309
1310	/* See x_call.c for descriptions of these extern variables. */
1311	extern uint64_t xc_tick_limit_scale;
1312	extern uint64_t xc_mondo_time_limit;
1313	extern uint64_t xc_func_time_limit;
1314	extern uint64_t xc_scale;
1315	extern uint64_t xc_mondo_multiplier;
1316	extern uint_t   nsec_shift;
1317
1318	/* Temp versions of the target variables */
1319	uint64_t tick_limit;
1320	uint64_t tick_jump_limit;
1321	uint64_t mondo_time_limit;
1322	uint64_t func_time_limit;
1323	uint64_t scale;
1324
1325	uint64_t latency;	/* nanoseconds */
1326	uint64_t maxfreq;
1327	uint64_t tick_limit_save = xc_tick_limit;
1328	uint64_t sync_tick_limit_save = xc_sync_tick_limit;
1329	uint_t   tick_scale;
1330	uint64_t top;
1331	uint64_t bottom;
1332	u_number tk;
1333
1334	md_t *mdp;
1335	int nrnode;
1336	mde_cookie_t *platlist;
1337
1338	/*
1339	 * Look up the 'inter-cpu-latency' (optional) property in the
1340	 * platform node of the MD.  The units are nanoseconds.
1341	 */
1342	if ((mdp = md_get_handle()) == NULL) {
1343		cmn_err(CE_WARN, "recalc_xc_timeouts: "
1344		    "Unable to initialize machine description");
1345		return;
1346	}
1347
1348	nrnode = md_alloc_scan_dag(mdp,
1349	    md_root_node(mdp), "platform", "fwd", &platlist);
1350
1351	ASSERT(nrnode == 1);
1352	if (nrnode < 1) {
1353		cmn_err(CE_WARN, "recalc_xc_timeouts: platform node missing");
1354		goto done;
1355	}
1356	if (md_get_prop_val(mdp, platlist[0],
1357	    "inter-cpu-latency", &latency) == -1)
1358		goto done;
1359
1360	/*
1361	 * clock.h defines an assembly-language macro
1362	 * (NATIVE_TIME_TO_NSEC_SCALE) to convert from %stick
1363	 * units to nanoseconds.  Since the inter-cpu-latency
1364	 * units are nanoseconds and the xc_* variables require
1365	 * %stick units, we need the inverse of that function.
1366	 * The trick is to perform the calculation without
1367	 * floating point, but also without integer truncation
1368	 * or overflow.  To understand the calculation below,
1369	 * please read the discussion of the macro in clock.h.
1370	 * Since this new code will be invoked infrequently,
1371	 * we can afford to implement it in C.
1372	 *
1373	 * tick_scale is the reciprocal of nsec_scale which is
1374	 * calculated at startup in setcpudelay().  The calc
1375	 * of tick_limit parallels that of NATIVE_TIME_TO_NSEC_SCALE
1376	 * except we use tick_scale instead of nsec_scale and
1377	 * C instead of assembler.
1378	 */
1379	tick_scale = (uint_t)(((u_longlong_t)sys_tick_freq
1380	    << (32 - nsec_shift)) / NANOSEC);
1381
1382	tk.whole = latency;
1383	top = ((uint64_t)tk.half.high << 4) * tick_scale;
1384	bottom = (((uint64_t)tk.half.low << 4) * (uint64_t)tick_scale) >> 32;
1385	tick_limit = top + bottom;
1386
1387	/*
1388	 * xc_init() calculated 'maxfreq' by looking at all the cpus,
1389	 * and used it to derive some of the timeout variables that we
1390	 * recalculate below.  We can back into the original value by
1391	 * using the inverse of one of those calculations.
1392	 */
1393	maxfreq = xc_mondo_time_limit / xc_scale;
1394
1395	/*
1396	 * Don't allow the new timeout (xc_tick_limit) to fall below
1397	 * the system tick frequency (stick).  Allowing the timeout
1398	 * to be set more tightly than this empirically determined
1399	 * value may cause panics.
1400	 */
1401	tick_limit = tick_limit < sys_tick_freq ? sys_tick_freq : tick_limit;
1402
1403	tick_jump_limit = tick_limit / 32;
1404	tick_limit *= xc_tick_limit_scale;
1405
1406	/*
1407	 * Recalculate xc_scale since it is used in a callback function
1408	 * (xc_func_timeout_adj) to adjust two of the timeouts dynamically.
1409	 * Make the change in xc_scale proportional to the change in
1410	 * xc_tick_limit.
1411	 */
1412	scale = (xc_scale * tick_limit + sys_tick_freq / 2) / tick_limit_save;
1413	if (scale == 0)
1414		scale = 1;
1415
1416	mondo_time_limit = maxfreq * scale;
1417	func_time_limit = mondo_time_limit * xc_mondo_multiplier;
1418
1419	/*
1420	 * Don't modify the timeouts if nothing has changed.  Else,
1421	 * stuff the variables with the freshly calculated (temp)
1422	 * variables.  This minimizes the window where the set of
1423	 * values could be inconsistent.
1424	 */
1425	if (tick_limit != xc_tick_limit) {
1426		xc_tick_limit = tick_limit;
1427		xc_tick_jump_limit = tick_jump_limit;
1428		xc_scale = scale;
1429		xc_mondo_time_limit = mondo_time_limit;
1430		xc_func_time_limit = func_time_limit;
1431	}
1432
1433done:
1434	/*
1435	 * Increase the timeout limit for xt_sync() cross calls.
1436	 */
1437	xc_sync_tick_limit = xc_tick_limit * (cpu_q_entries / QFACTOR);
1438	xc_sync_tick_limit = xc_sync_tick_limit < xc_tick_limit ?
1439	    xc_tick_limit : xc_sync_tick_limit;
1440
1441	/*
1442	 * Force the new values to be used for future cross calls.
1443	 * This is necessary only when we increase the timeouts.
1444	 */
1445	if ((xc_tick_limit > tick_limit_save) || (xc_sync_tick_limit >
1446	    sync_tick_limit_save)) {
1447		cpuset_t cpuset = cpu_ready_set;
1448		xt_sync(cpuset);
1449	}
1450
1451	if (nrnode > 0)
1452		md_free_scan_dag(mdp, &platlist);
1453	(void) md_fini_handle(mdp);
1454}
1455
1456void
1457mach_soft_state_init(void)
1458{
1459	int		i;
1460	uint64_t	ra;
1461
1462	/*
1463	 * Try to register soft_state api. If it fails, soft_state api has not
1464	 * been implemented in the firmware, so do not bother to setup
1465	 * soft_state in the kernel.
1466	 */
1467	if ((i = hsvc_register(&soft_state_hsvc, &soft_state_sup_minor)) != 0) {
1468		return;
1469	}
1470	for (i = 0; i < SOLARIS_SOFT_STATE_MSG_CNT; i++) {
1471		ASSERT(strlen((const char *)(void *)
1472		    soft_state_message_strings + i) < SSM_SIZE);
1473		if ((ra = va_to_pa(
1474		    (void *)(soft_state_message_strings + i))) == -1ll) {
1475			return;
1476		}
1477		soft_state_message_ra[i] = ra;
1478	}
1479	/*
1480	 * Tell OBP that we are supporting Guest State
1481	 */
1482	prom_sun4v_soft_state_supported();
1483	soft_state_initialized = 1;
1484}
1485
1486void
1487mach_set_soft_state(uint64_t state, uint64_t *string_ra)
1488{
1489	uint64_t	rc;
1490
1491	if (soft_state_initialized && *string_ra) {
1492		rc = hv_soft_state_set(state, *string_ra);
1493		if (rc != H_EOK) {
1494			cmn_err(CE_WARN,
1495			    "hv_soft_state_set returned %ld\n", rc);
1496		}
1497	}
1498}
1499
1500void
1501mach_get_soft_state(uint64_t *state, uint64_t *string_ra)
1502{
1503	uint64_t	rc;
1504
1505	if (soft_state_initialized && *string_ra) {
1506		rc = hv_soft_state_get(*string_ra, state);
1507		if (rc != H_EOK) {
1508			cmn_err(CE_WARN,
1509			    "hv_soft_state_get returned %ld\n", rc);
1510			*state = -1;
1511		}
1512	}
1513}
1514