vdc.c revision 7656:2621e50fdf4a
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27/*
28 * LDoms virtual disk client (vdc) device driver
29 *
30 * This driver runs on a guest logical domain and communicates with the virtual
31 * disk server (vds) driver running on the service domain which is exporting
32 * virtualized "disks" to the guest logical domain.
33 *
34 * The driver can be divided into four sections:
35 *
36 * 1) generic device driver housekeeping
37 *	_init, _fini, attach, detach, ops structures, etc.
38 *
39 * 2) communication channel setup
40 *	Setup the communications link over the LDC channel that vdc uses to
41 *	talk to the vDisk server. Initialise the descriptor ring which
42 *	allows the LDC clients to transfer data via memory mappings.
43 *
44 * 3) Support exported to upper layers (filesystems, etc)
45 *	The upper layers call into vdc via strategy(9E) and DKIO(7I)
46 *	ioctl calls. vdc will copy the data to be written to the descriptor
47 *	ring or maps the buffer to store the data read by the vDisk
48 *	server into the descriptor ring. It then sends a message to the
49 *	vDisk server requesting it to complete the operation.
50 *
51 * 4) Handling responses from vDisk server.
52 *	The vDisk server will ACK some or all of the messages vdc sends to it
53 *	(this is configured during the handshake). Upon receipt of an ACK
54 *	vdc will check the descriptor ring and signal to the upper layer
55 *	code waiting on the IO.
56 */
57
58#include <sys/atomic.h>
59#include <sys/conf.h>
60#include <sys/disp.h>
61#include <sys/ddi.h>
62#include <sys/dkio.h>
63#include <sys/efi_partition.h>
64#include <sys/fcntl.h>
65#include <sys/file.h>
66#include <sys/kstat.h>
67#include <sys/mach_descrip.h>
68#include <sys/modctl.h>
69#include <sys/mdeg.h>
70#include <sys/note.h>
71#include <sys/open.h>
72#include <sys/sdt.h>
73#include <sys/stat.h>
74#include <sys/sunddi.h>
75#include <sys/types.h>
76#include <sys/promif.h>
77#include <sys/var.h>
78#include <sys/vtoc.h>
79#include <sys/archsystm.h>
80#include <sys/sysmacros.h>
81
82#include <sys/cdio.h>
83#include <sys/dktp/fdisk.h>
84#include <sys/dktp/dadkio.h>
85#include <sys/mhd.h>
86#include <sys/scsi/generic/sense.h>
87#include <sys/scsi/impl/uscsi.h>
88#include <sys/scsi/impl/services.h>
89#include <sys/scsi/targets/sddef.h>
90
91#include <sys/ldoms.h>
92#include <sys/ldc.h>
93#include <sys/vio_common.h>
94#include <sys/vio_mailbox.h>
95#include <sys/vio_util.h>
96#include <sys/vdsk_common.h>
97#include <sys/vdsk_mailbox.h>
98#include <sys/vdc.h>
99
100#define	VD_OLDVTOC_LIMIT	0x7fffffff
101
102/*
103 * function prototypes
104 */
105
106/* standard driver functions */
107static int	vdc_open(dev_t *dev, int flag, int otyp, cred_t *cred);
108static int	vdc_close(dev_t dev, int flag, int otyp, cred_t *cred);
109static int	vdc_strategy(struct buf *buf);
110static int	vdc_print(dev_t dev, char *str);
111static int	vdc_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
112static int	vdc_read(dev_t dev, struct uio *uio, cred_t *cred);
113static int	vdc_write(dev_t dev, struct uio *uio, cred_t *cred);
114static int	vdc_ioctl(dev_t dev, int cmd, intptr_t arg, int mode,
115			cred_t *credp, int *rvalp);
116static int	vdc_aread(dev_t dev, struct aio_req *aio, cred_t *cred);
117static int	vdc_awrite(dev_t dev, struct aio_req *aio, cred_t *cred);
118
119static int	vdc_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd,
120			void *arg, void **resultp);
121static int	vdc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
122static int	vdc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
123static int	vdc_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
124		    int mod_flags, char *name, caddr_t valuep, int *lengthp);
125
126/* setup */
127static void	vdc_min(struct buf *bufp);
128static int	vdc_send(vdc_t *vdc, caddr_t pkt, size_t *msglen);
129static int	vdc_do_ldc_init(vdc_t *vdc, vdc_server_t *srvr);
130static int	vdc_start_ldc_connection(vdc_t *vdc);
131static int	vdc_create_device_nodes(vdc_t *vdc);
132static int	vdc_create_device_nodes_efi(vdc_t *vdc);
133static int	vdc_create_device_nodes_vtoc(vdc_t *vdc);
134static void	vdc_create_io_kstats(vdc_t *vdc);
135static void	vdc_create_err_kstats(vdc_t *vdc);
136static void	vdc_set_err_kstats(vdc_t *vdc);
137static int	vdc_get_md_node(dev_info_t *dip, md_t **mdpp,
138		    mde_cookie_t *vd_nodep);
139static int	vdc_init_ports(vdc_t *vdc, md_t *mdp, mde_cookie_t vd_nodep);
140static void	vdc_fini_ports(vdc_t *vdc);
141static void	vdc_switch_server(vdc_t *vdcp);
142static int	vdc_do_ldc_up(vdc_t *vdc);
143static void	vdc_terminate_ldc(vdc_t *vdc, vdc_server_t *srvr);
144static int	vdc_init_descriptor_ring(vdc_t *vdc);
145static void	vdc_destroy_descriptor_ring(vdc_t *vdc);
146static int	vdc_setup_devid(vdc_t *vdc);
147static void	vdc_store_label_efi(vdc_t *, efi_gpt_t *, efi_gpe_t *);
148static void	vdc_store_label_vtoc(vdc_t *, struct dk_geom *,
149		    struct extvtoc *);
150static void	vdc_store_label_unk(vdc_t *vdc);
151static boolean_t vdc_is_opened(vdc_t *vdc);
152static void	vdc_update_size(vdc_t *vdc, size_t, size_t, size_t);
153
154/* handshake with vds */
155static int		vdc_init_ver_negotiation(vdc_t *vdc, vio_ver_t ver);
156static int		vdc_ver_negotiation(vdc_t *vdcp);
157static int		vdc_init_attr_negotiation(vdc_t *vdc);
158static int		vdc_attr_negotiation(vdc_t *vdcp);
159static int		vdc_init_dring_negotiate(vdc_t *vdc);
160static int		vdc_dring_negotiation(vdc_t *vdcp);
161static int		vdc_send_rdx(vdc_t *vdcp);
162static int		vdc_rdx_exchange(vdc_t *vdcp);
163static boolean_t	vdc_is_supported_version(vio_ver_msg_t *ver_msg);
164
165/* processing incoming messages from vDisk server */
166static void	vdc_process_msg_thread(vdc_t *vdc);
167static int	vdc_recv(vdc_t *vdc, vio_msg_t *msgp, size_t *nbytesp);
168
169static uint_t	vdc_handle_cb(uint64_t event, caddr_t arg);
170static int	vdc_process_data_msg(vdc_t *vdc, vio_msg_t *msg);
171static int	vdc_handle_ver_msg(vdc_t *vdc, vio_ver_msg_t *ver_msg);
172static int	vdc_handle_attr_msg(vdc_t *vdc, vd_attr_msg_t *attr_msg);
173static int	vdc_handle_dring_reg_msg(vdc_t *vdc, vio_dring_reg_msg_t *msg);
174static int 	vdc_send_request(vdc_t *vdcp, int operation,
175		    caddr_t addr, size_t nbytes, int slice, diskaddr_t offset,
176		    int cb_type, void *cb_arg, vio_desc_direction_t dir);
177static int	vdc_map_to_shared_dring(vdc_t *vdcp, int idx);
178static int 	vdc_populate_descriptor(vdc_t *vdcp, int operation,
179		    caddr_t addr, size_t nbytes, int slice, diskaddr_t offset,
180		    int cb_type, void *cb_arg, vio_desc_direction_t dir);
181static int 	vdc_do_sync_op(vdc_t *vdcp, int operation, caddr_t addr,
182		    size_t nbytes, int slice, diskaddr_t offset, int cb_type,
183		    void *cb_arg, vio_desc_direction_t dir, boolean_t);
184
185static int	vdc_wait_for_response(vdc_t *vdcp, vio_msg_t *msgp);
186static int	vdc_drain_response(vdc_t *vdcp, struct buf *buf);
187static int	vdc_depopulate_descriptor(vdc_t *vdc, uint_t idx);
188static int	vdc_populate_mem_hdl(vdc_t *vdcp, vdc_local_desc_t *ldep);
189static int	vdc_verify_seq_num(vdc_t *vdc, vio_dring_msg_t *dring_msg);
190
191/* dkio */
192static int	vd_process_ioctl(dev_t dev, int cmd, caddr_t arg, int mode,
193		    int *rvalp);
194static int	vd_process_efi_ioctl(void *vdisk, int cmd, uintptr_t arg);
195static void	vdc_create_fake_geometry(vdc_t *vdc);
196static int	vdc_validate_geometry(vdc_t *vdc);
197static void	vdc_validate(vdc_t *vdc);
198static void	vdc_validate_task(void *arg);
199static int	vdc_null_copy_func(vdc_t *vdc, void *from, void *to,
200		    int mode, int dir);
201static int	vdc_get_wce_convert(vdc_t *vdc, void *from, void *to,
202		    int mode, int dir);
203static int	vdc_set_wce_convert(vdc_t *vdc, void *from, void *to,
204		    int mode, int dir);
205static int	vdc_get_vtoc_convert(vdc_t *vdc, void *from, void *to,
206		    int mode, int dir);
207static int	vdc_set_vtoc_convert(vdc_t *vdc, void *from, void *to,
208		    int mode, int dir);
209static int	vdc_get_extvtoc_convert(vdc_t *vdc, void *from, void *to,
210		    int mode, int dir);
211static int	vdc_set_extvtoc_convert(vdc_t *vdc, void *from, void *to,
212		    int mode, int dir);
213static int	vdc_get_geom_convert(vdc_t *vdc, void *from, void *to,
214		    int mode, int dir);
215static int	vdc_set_geom_convert(vdc_t *vdc, void *from, void *to,
216		    int mode, int dir);
217static int	vdc_get_efi_convert(vdc_t *vdc, void *from, void *to,
218		    int mode, int dir);
219static int	vdc_set_efi_convert(vdc_t *vdc, void *from, void *to,
220		    int mode, int dir);
221
222static void 	vdc_ownership_update(vdc_t *vdc, int ownership_flags);
223static int	vdc_access_set(vdc_t *vdc, uint64_t flags, int mode);
224static vdc_io_t	*vdc_failfast_io_queue(vdc_t *vdc, struct buf *buf);
225static int	vdc_failfast_check_resv(vdc_t *vdc);
226
227/*
228 * Module variables
229 */
230
231/*
232 * Tunable variables to control how long vdc waits before timing out on
233 * various operations
234 */
235static int	vdc_hshake_retries = 3;
236
237static int	vdc_timeout = 0; /* units: seconds */
238static int 	vdc_ldcup_timeout = 1; /* units: seconds */
239
240static uint64_t vdc_hz_min_ldc_delay;
241static uint64_t vdc_min_timeout_ldc = 1 * MILLISEC;
242static uint64_t vdc_hz_max_ldc_delay;
243static uint64_t vdc_max_timeout_ldc = 100 * MILLISEC;
244
245static uint64_t vdc_ldc_read_init_delay = 1 * MILLISEC;
246static uint64_t vdc_ldc_read_max_delay = 100 * MILLISEC;
247
248/* values for dumping - need to run in a tighter loop */
249static uint64_t	vdc_usec_timeout_dump = 100 * MILLISEC;	/* 0.1s units: ns */
250static int	vdc_dump_retries = 100;
251
252static uint16_t	vdc_scsi_timeout = 60;	/* 60s units: seconds  */
253
254static uint64_t vdc_ownership_delay = 6 * MICROSEC; /* 6s units: usec */
255
256/* Count of the number of vdc instances attached */
257static volatile uint32_t	vdc_instance_count = 0;
258
259/* Tunable to log all SCSI errors */
260static boolean_t vdc_scsi_log_error = B_FALSE;
261
262/* Soft state pointer */
263static void	*vdc_state;
264
265/*
266 * Controlling the verbosity of the error/debug messages
267 *
268 * vdc_msglevel - controls level of messages
269 * vdc_matchinst - 64-bit variable where each bit corresponds
270 *                 to the vdc instance the vdc_msglevel applies.
271 */
272int		vdc_msglevel = 0x0;
273uint64_t	vdc_matchinst = 0ull;
274
275/*
276 * Supported vDisk protocol version pairs.
277 *
278 * The first array entry is the latest and preferred version.
279 */
280static const vio_ver_t	vdc_version[] = {{1, 1}};
281
282static struct cb_ops vdc_cb_ops = {
283	vdc_open,	/* cb_open */
284	vdc_close,	/* cb_close */
285	vdc_strategy,	/* cb_strategy */
286	vdc_print,	/* cb_print */
287	vdc_dump,	/* cb_dump */
288	vdc_read,	/* cb_read */
289	vdc_write,	/* cb_write */
290	vdc_ioctl,	/* cb_ioctl */
291	nodev,		/* cb_devmap */
292	nodev,		/* cb_mmap */
293	nodev,		/* cb_segmap */
294	nochpoll,	/* cb_chpoll */
295	vdc_prop_op,	/* cb_prop_op */
296	NULL,		/* cb_str */
297	D_MP | D_64BIT,	/* cb_flag */
298	CB_REV,		/* cb_rev */
299	vdc_aread,	/* cb_aread */
300	vdc_awrite	/* cb_awrite */
301};
302
303static struct dev_ops vdc_ops = {
304	DEVO_REV,	/* devo_rev */
305	0,		/* devo_refcnt */
306	vdc_getinfo,	/* devo_getinfo */
307	nulldev,	/* devo_identify */
308	nulldev,	/* devo_probe */
309	vdc_attach,	/* devo_attach */
310	vdc_detach,	/* devo_detach */
311	nodev,		/* devo_reset */
312	&vdc_cb_ops,	/* devo_cb_ops */
313	NULL,		/* devo_bus_ops */
314	nulldev,	/* devo_power */
315	ddi_quiesce_not_needed,	/* devo_quiesce */
316};
317
318static struct modldrv modldrv = {
319	&mod_driverops,
320	"virtual disk client",
321	&vdc_ops,
322};
323
324static struct modlinkage modlinkage = {
325	MODREV_1,
326	&modldrv,
327	NULL
328};
329
330/* -------------------------------------------------------------------------- */
331
332/*
333 * Device Driver housekeeping and setup
334 */
335
336int
337_init(void)
338{
339	int	status;
340
341	if ((status = ddi_soft_state_init(&vdc_state, sizeof (vdc_t), 1)) != 0)
342		return (status);
343	if ((status = mod_install(&modlinkage)) != 0)
344		ddi_soft_state_fini(&vdc_state);
345	return (status);
346}
347
348int
349_info(struct modinfo *modinfop)
350{
351	return (mod_info(&modlinkage, modinfop));
352}
353
354int
355_fini(void)
356{
357	int	status;
358
359	if ((status = mod_remove(&modlinkage)) != 0)
360		return (status);
361	ddi_soft_state_fini(&vdc_state);
362	return (0);
363}
364
365static int
366vdc_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd,  void *arg, void **resultp)
367{
368	_NOTE(ARGUNUSED(dip))
369
370	int	instance = VDCUNIT((dev_t)arg);
371	vdc_t	*vdc = NULL;
372
373	switch (cmd) {
374	case DDI_INFO_DEVT2DEVINFO:
375		if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
376			*resultp = NULL;
377			return (DDI_FAILURE);
378		}
379		*resultp = vdc->dip;
380		return (DDI_SUCCESS);
381	case DDI_INFO_DEVT2INSTANCE:
382		*resultp = (void *)(uintptr_t)instance;
383		return (DDI_SUCCESS);
384	default:
385		*resultp = NULL;
386		return (DDI_FAILURE);
387	}
388}
389
390static int
391vdc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
392{
393	kt_did_t failfast_tid, ownership_tid;
394	int	instance;
395	int	rv;
396	vdc_server_t *srvr;
397	vdc_t	*vdc = NULL;
398
399	switch (cmd) {
400	case DDI_DETACH:
401		/* the real work happens below */
402		break;
403	case DDI_SUSPEND:
404		/* nothing to do for this non-device */
405		return (DDI_SUCCESS);
406	default:
407		return (DDI_FAILURE);
408	}
409
410	ASSERT(cmd == DDI_DETACH);
411	instance = ddi_get_instance(dip);
412	DMSGX(1, "[%d] Entered\n", instance);
413
414	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
415		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
416		return (DDI_FAILURE);
417	}
418
419	/*
420	 * This function is called when vdc is detached or if it has failed to
421	 * attach. In that case, the attach may have fail before the vdisk type
422	 * has been set so we can't call vdc_is_opened(). However as the attach
423	 * has failed, we know that the vdisk is not opened and we can safely
424	 * detach.
425	 */
426	if (vdc->vdisk_type != VD_DISK_TYPE_UNK && vdc_is_opened(vdc)) {
427		DMSG(vdc, 0, "[%d] Cannot detach: device is open", instance);
428		return (DDI_FAILURE);
429	}
430
431	if (vdc->dkio_flush_pending) {
432		DMSG(vdc, 0,
433		    "[%d] Cannot detach: %d outstanding DKIO flushes\n",
434		    instance, vdc->dkio_flush_pending);
435		return (DDI_FAILURE);
436	}
437
438	if (vdc->validate_pending) {
439		DMSG(vdc, 0,
440		    "[%d] Cannot detach: %d outstanding validate request\n",
441		    instance, vdc->validate_pending);
442		return (DDI_FAILURE);
443	}
444
445	DMSG(vdc, 0, "[%d] proceeding...\n", instance);
446
447	/* If we took ownership, release ownership */
448	mutex_enter(&vdc->ownership_lock);
449	if (vdc->ownership & VDC_OWNERSHIP_GRANTED) {
450		rv = vdc_access_set(vdc, VD_ACCESS_SET_CLEAR, FKIOCTL);
451		if (rv == 0) {
452			vdc_ownership_update(vdc, VDC_OWNERSHIP_NONE);
453		}
454	}
455	mutex_exit(&vdc->ownership_lock);
456
457	/* mark instance as detaching */
458	vdc->lifecycle	= VDC_LC_DETACHING;
459
460	/*
461	 * Try and disable callbacks to prevent another handshake. We have to
462	 * disable callbacks for all servers.
463	 */
464	for (srvr = vdc->server_list; srvr != NULL; srvr = srvr->next) {
465		rv = ldc_set_cb_mode(srvr->ldc_handle, LDC_CB_DISABLE);
466		DMSG(vdc, 0, "callback disabled (ldc=%lu, rv=%d)\n",
467		    srvr->ldc_id, rv);
468	}
469
470	if (vdc->initialized & VDC_THREAD) {
471		mutex_enter(&vdc->read_lock);
472		if ((vdc->read_state == VDC_READ_WAITING) ||
473		    (vdc->read_state == VDC_READ_RESET)) {
474			vdc->read_state = VDC_READ_RESET;
475			cv_signal(&vdc->read_cv);
476		}
477
478		mutex_exit(&vdc->read_lock);
479
480		/* wake up any thread waiting for connection to come online */
481		mutex_enter(&vdc->lock);
482		if (vdc->state == VDC_STATE_INIT_WAITING) {
483			DMSG(vdc, 0,
484			    "[%d] write reset - move to resetting state...\n",
485			    instance);
486			vdc->state = VDC_STATE_RESETTING;
487			cv_signal(&vdc->initwait_cv);
488		}
489		mutex_exit(&vdc->lock);
490
491		/* now wait until state transitions to VDC_STATE_DETACH */
492		thread_join(vdc->msg_proc_thr->t_did);
493		ASSERT(vdc->state == VDC_STATE_DETACH);
494		DMSG(vdc, 0, "[%d] Reset thread exit and join ..\n",
495		    vdc->instance);
496	}
497
498	mutex_enter(&vdc->lock);
499
500	if (vdc->initialized & VDC_DRING)
501		vdc_destroy_descriptor_ring(vdc);
502
503	vdc_fini_ports(vdc);
504
505	if (vdc->failfast_thread) {
506		failfast_tid = vdc->failfast_thread->t_did;
507		vdc->failfast_interval = 0;
508		cv_signal(&vdc->failfast_cv);
509	} else {
510		failfast_tid = 0;
511	}
512
513	if (vdc->ownership & VDC_OWNERSHIP_WANTED) {
514		ownership_tid = vdc->ownership_thread->t_did;
515		vdc->ownership = VDC_OWNERSHIP_NONE;
516		cv_signal(&vdc->ownership_cv);
517	} else {
518		ownership_tid = 0;
519	}
520
521	mutex_exit(&vdc->lock);
522
523	if (failfast_tid != 0)
524		thread_join(failfast_tid);
525
526	if (ownership_tid != 0)
527		thread_join(ownership_tid);
528
529	if (vdc->initialized & VDC_MINOR)
530		ddi_remove_minor_node(dip, NULL);
531
532	if (vdc->io_stats) {
533		kstat_delete(vdc->io_stats);
534		vdc->io_stats = NULL;
535	}
536
537	if (vdc->err_stats) {
538		kstat_delete(vdc->err_stats);
539		vdc->err_stats = NULL;
540	}
541
542	if (vdc->initialized & VDC_LOCKS) {
543		mutex_destroy(&vdc->lock);
544		mutex_destroy(&vdc->read_lock);
545		mutex_destroy(&vdc->ownership_lock);
546		cv_destroy(&vdc->initwait_cv);
547		cv_destroy(&vdc->dring_free_cv);
548		cv_destroy(&vdc->membind_cv);
549		cv_destroy(&vdc->sync_pending_cv);
550		cv_destroy(&vdc->sync_blocked_cv);
551		cv_destroy(&vdc->read_cv);
552		cv_destroy(&vdc->running_cv);
553		cv_destroy(&vdc->ownership_cv);
554		cv_destroy(&vdc->failfast_cv);
555		cv_destroy(&vdc->failfast_io_cv);
556	}
557
558	if (vdc->minfo)
559		kmem_free(vdc->minfo, sizeof (struct dk_minfo));
560
561	if (vdc->cinfo)
562		kmem_free(vdc->cinfo, sizeof (struct dk_cinfo));
563
564	if (vdc->vtoc)
565		kmem_free(vdc->vtoc, sizeof (struct extvtoc));
566
567	if (vdc->geom)
568		kmem_free(vdc->geom, sizeof (struct dk_geom));
569
570	if (vdc->devid) {
571		ddi_devid_unregister(dip);
572		ddi_devid_free(vdc->devid);
573	}
574
575	if (vdc->initialized & VDC_SOFT_STATE)
576		ddi_soft_state_free(vdc_state, instance);
577
578	DMSG(vdc, 0, "[%d] End %p\n", instance, (void *)vdc);
579
580	return (DDI_SUCCESS);
581}
582
583
584static int
585vdc_do_attach(dev_info_t *dip)
586{
587	int		instance;
588	vdc_t		*vdc = NULL;
589	int		status;
590	md_t		*mdp;
591	mde_cookie_t	vd_node;
592
593	ASSERT(dip != NULL);
594
595	instance = ddi_get_instance(dip);
596	if (ddi_soft_state_zalloc(vdc_state, instance) != DDI_SUCCESS) {
597		cmn_err(CE_NOTE, "[%d] Couldn't alloc state structure",
598		    instance);
599		return (DDI_FAILURE);
600	}
601
602	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
603		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
604		return (DDI_FAILURE);
605	}
606
607	/*
608	 * We assign the value to initialized in this case to zero out the
609	 * variable and then set bits in it to indicate what has been done
610	 */
611	vdc->initialized = VDC_SOFT_STATE;
612
613	vdc_hz_min_ldc_delay = drv_usectohz(vdc_min_timeout_ldc);
614	vdc_hz_max_ldc_delay = drv_usectohz(vdc_max_timeout_ldc);
615
616	vdc->dip	= dip;
617	vdc->instance	= instance;
618	vdc->vdisk_type	= VD_DISK_TYPE_UNK;
619	vdc->vdisk_label = VD_DISK_LABEL_UNK;
620	vdc->state	= VDC_STATE_INIT;
621	vdc->lifecycle	= VDC_LC_ATTACHING;
622	vdc->session_id = 0;
623	vdc->block_size = DEV_BSIZE;
624	vdc->max_xfer_sz = maxphys / DEV_BSIZE;
625
626	/*
627	 * We assume, for now, that the vDisk server will export 'read'
628	 * operations to us at a minimum (this is needed because of checks
629	 * in vdc for supported operations early in the handshake process).
630	 * The vDisk server will return ENOTSUP if this is not the case.
631	 * The value will be overwritten during the attribute exchange with
632	 * the bitmask of operations exported by server.
633	 */
634	vdc->operations = VD_OP_MASK_READ;
635
636	vdc->vtoc = NULL;
637	vdc->geom = NULL;
638	vdc->cinfo = NULL;
639	vdc->minfo = NULL;
640
641	mutex_init(&vdc->lock, NULL, MUTEX_DRIVER, NULL);
642	cv_init(&vdc->initwait_cv, NULL, CV_DRIVER, NULL);
643	cv_init(&vdc->dring_free_cv, NULL, CV_DRIVER, NULL);
644	cv_init(&vdc->membind_cv, NULL, CV_DRIVER, NULL);
645	cv_init(&vdc->running_cv, NULL, CV_DRIVER, NULL);
646
647	vdc->threads_pending = 0;
648	vdc->sync_op_pending = B_FALSE;
649	vdc->sync_op_blocked = B_FALSE;
650	cv_init(&vdc->sync_pending_cv, NULL, CV_DRIVER, NULL);
651	cv_init(&vdc->sync_blocked_cv, NULL, CV_DRIVER, NULL);
652
653	mutex_init(&vdc->ownership_lock, NULL, MUTEX_DRIVER, NULL);
654	cv_init(&vdc->ownership_cv, NULL, CV_DRIVER, NULL);
655	cv_init(&vdc->failfast_cv, NULL, CV_DRIVER, NULL);
656	cv_init(&vdc->failfast_io_cv, NULL, CV_DRIVER, NULL);
657
658	/* init blocking msg read functionality */
659	mutex_init(&vdc->read_lock, NULL, MUTEX_DRIVER, NULL);
660	cv_init(&vdc->read_cv, NULL, CV_DRIVER, NULL);
661	vdc->read_state = VDC_READ_IDLE;
662
663	vdc->initialized |= VDC_LOCKS;
664
665	/* get device and port MD node for this disk instance */
666	if (vdc_get_md_node(dip, &mdp, &vd_node) != 0) {
667		cmn_err(CE_NOTE, "[%d] Could not get machine description node",
668		    instance);
669		return (DDI_FAILURE);
670	}
671
672	if (vdc_init_ports(vdc, mdp, vd_node) != 0) {
673		cmn_err(CE_NOTE, "[%d] Error initialising ports", instance);
674		return (DDI_FAILURE);
675	}
676
677	(void) md_fini_handle(mdp);
678
679	/* Create the kstats for saving the I/O statistics used by iostat(1M) */
680	vdc_create_io_kstats(vdc);
681	vdc_create_err_kstats(vdc);
682
683	/* Initialize remaining structures before starting the msg thread */
684	vdc->vdisk_label = VD_DISK_LABEL_UNK;
685	vdc->vtoc = kmem_zalloc(sizeof (struct extvtoc), KM_SLEEP);
686	vdc->geom = kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP);
687	vdc->minfo = kmem_zalloc(sizeof (struct dk_minfo), KM_SLEEP);
688
689	/* initialize the thread responsible for managing state with server */
690	vdc->msg_proc_thr = thread_create(NULL, 0, vdc_process_msg_thread,
691	    vdc, 0, &p0, TS_RUN, minclsyspri);
692	if (vdc->msg_proc_thr == NULL) {
693		cmn_err(CE_NOTE, "[%d] Failed to create msg processing thread",
694		    instance);
695		return (DDI_FAILURE);
696	}
697
698	vdc->initialized |= VDC_THREAD;
699
700	atomic_inc_32(&vdc_instance_count);
701
702	/*
703	 * Check the disk label. This will send requests and do the handshake.
704	 * We don't really care about the disk label now. What we really need is
705	 * the handshake do be done so that we know the type of the disk (slice
706	 * or full disk) and the appropriate device nodes can be created.
707	 */
708
709	mutex_enter(&vdc->lock);
710	(void) vdc_validate_geometry(vdc);
711	mutex_exit(&vdc->lock);
712
713	/*
714	 * Now that we have the device info we can create the device nodes
715	 */
716	status = vdc_create_device_nodes(vdc);
717	if (status) {
718		DMSG(vdc, 0, "[%d] Failed to create device nodes",
719		    instance);
720		goto return_status;
721	}
722
723	/*
724	 * Setup devid
725	 */
726	if (vdc_setup_devid(vdc)) {
727		DMSG(vdc, 0, "[%d] No device id available\n", instance);
728	}
729
730	/*
731	 * Fill in the fields of the error statistics kstat that were not
732	 * available when creating the kstat
733	 */
734	vdc_set_err_kstats(vdc);
735
736	ddi_report_dev(dip);
737	vdc->lifecycle	= VDC_LC_ONLINE;
738	DMSG(vdc, 0, "[%d] Attach tasks successful\n", instance);
739
740return_status:
741	DMSG(vdc, 0, "[%d] Attach completed\n", instance);
742	return (status);
743}
744
745static int
746vdc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
747{
748	int	status;
749
750	switch (cmd) {
751	case DDI_ATTACH:
752		if ((status = vdc_do_attach(dip)) != 0)
753			(void) vdc_detach(dip, DDI_DETACH);
754		return (status);
755	case DDI_RESUME:
756		/* nothing to do for this non-device */
757		return (DDI_SUCCESS);
758	default:
759		return (DDI_FAILURE);
760	}
761}
762
763static int
764vdc_do_ldc_init(vdc_t *vdc, vdc_server_t *srvr)
765{
766	int			status = 0;
767	ldc_status_t		ldc_state;
768	ldc_attr_t		ldc_attr;
769
770	ASSERT(vdc != NULL);
771	ASSERT(srvr != NULL);
772
773	ldc_attr.devclass = LDC_DEV_BLK;
774	ldc_attr.instance = vdc->instance;
775	ldc_attr.mode = LDC_MODE_UNRELIABLE;	/* unreliable transport */
776	ldc_attr.mtu = VD_LDC_MTU;
777
778	if ((srvr->state & VDC_LDC_INIT) == 0) {
779		status = ldc_init(srvr->ldc_id, &ldc_attr,
780		    &srvr->ldc_handle);
781		if (status != 0) {
782			DMSG(vdc, 0, "[%d] ldc_init(chan %ld) returned %d",
783			    vdc->instance, srvr->ldc_id, status);
784			return (status);
785		}
786		srvr->state |= VDC_LDC_INIT;
787	}
788	status = ldc_status(srvr->ldc_handle, &ldc_state);
789	if (status != 0) {
790		DMSG(vdc, 0, "[%d] Cannot discover LDC status [err=%d]",
791		    vdc->instance, status);
792		goto init_exit;
793	}
794	srvr->ldc_state = ldc_state;
795
796	if ((srvr->state & VDC_LDC_CB) == 0) {
797		status = ldc_reg_callback(srvr->ldc_handle, vdc_handle_cb,
798		    (caddr_t)srvr);
799		if (status != 0) {
800			DMSG(vdc, 0, "[%d] LDC callback reg. failed (%d)",
801			    vdc->instance, status);
802			goto init_exit;
803		}
804		srvr->state |= VDC_LDC_CB;
805	}
806
807	/*
808	 * At this stage we have initialised LDC, we will now try and open
809	 * the connection.
810	 */
811	if (srvr->ldc_state == LDC_INIT) {
812		status = ldc_open(srvr->ldc_handle);
813		if (status != 0) {
814			DMSG(vdc, 0, "[%d] ldc_open(chan %ld) returned %d",
815			    vdc->instance, srvr->ldc_id, status);
816			goto init_exit;
817		}
818		srvr->state |= VDC_LDC_OPEN;
819	}
820
821init_exit:
822	if (status) {
823		vdc_terminate_ldc(vdc, srvr);
824	}
825
826	return (status);
827}
828
829static int
830vdc_start_ldc_connection(vdc_t *vdc)
831{
832	int		status = 0;
833
834	ASSERT(vdc != NULL);
835
836	ASSERT(MUTEX_HELD(&vdc->lock));
837
838	status = vdc_do_ldc_up(vdc);
839
840	DMSG(vdc, 0, "[%d] Finished bringing up LDC\n", vdc->instance);
841
842	return (status);
843}
844
845static int
846vdc_stop_ldc_connection(vdc_t *vdcp)
847{
848	int	status;
849
850	ASSERT(vdcp != NULL);
851
852	ASSERT(MUTEX_HELD(&vdcp->lock));
853
854	DMSG(vdcp, 0, ": Resetting connection to vDisk server : state %d\n",
855	    vdcp->state);
856
857	status = ldc_down(vdcp->curr_server->ldc_handle);
858	DMSG(vdcp, 0, "ldc_down() = %d\n", status);
859
860	vdcp->initialized &= ~VDC_HANDSHAKE;
861	DMSG(vdcp, 0, "initialized=%x\n", vdcp->initialized);
862
863	return (status);
864}
865
866static void
867vdc_create_io_kstats(vdc_t *vdc)
868{
869	if (vdc->io_stats != NULL) {
870		DMSG(vdc, 0, "[%d] I/O kstat already exists\n", vdc->instance);
871		return;
872	}
873
874	vdc->io_stats = kstat_create(VDC_DRIVER_NAME, vdc->instance, NULL,
875	    "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
876	if (vdc->io_stats != NULL) {
877		vdc->io_stats->ks_lock = &vdc->lock;
878		kstat_install(vdc->io_stats);
879	} else {
880		cmn_err(CE_NOTE, "[%d] Failed to create kstat: I/O statistics"
881		    " will not be gathered", vdc->instance);
882	}
883}
884
885static void
886vdc_create_err_kstats(vdc_t *vdc)
887{
888	vd_err_stats_t	*stp;
889	char	kstatmodule_err[KSTAT_STRLEN];
890	char	kstatname[KSTAT_STRLEN];
891	int	ndata = (sizeof (vd_err_stats_t) / sizeof (kstat_named_t));
892	int	instance = vdc->instance;
893
894	if (vdc->err_stats != NULL) {
895		DMSG(vdc, 0, "[%d] ERR kstat already exists\n", vdc->instance);
896		return;
897	}
898
899	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
900	    "%serr", VDC_DRIVER_NAME);
901	(void) snprintf(kstatname, sizeof (kstatname),
902	    "%s%d,err", VDC_DRIVER_NAME, instance);
903
904	vdc->err_stats = kstat_create(kstatmodule_err, instance, kstatname,
905	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
906
907	if (vdc->err_stats == NULL) {
908		cmn_err(CE_NOTE, "[%d] Failed to create kstat: Error statistics"
909		    " will not be gathered", instance);
910		return;
911	}
912
913	stp = (vd_err_stats_t *)vdc->err_stats->ks_data;
914	kstat_named_init(&stp->vd_softerrs,	"Soft Errors",
915	    KSTAT_DATA_UINT32);
916	kstat_named_init(&stp->vd_transerrs,	"Transport Errors",
917	    KSTAT_DATA_UINT32);
918	kstat_named_init(&stp->vd_protoerrs,	"Protocol Errors",
919	    KSTAT_DATA_UINT32);
920	kstat_named_init(&stp->vd_vid,		"Vendor",
921	    KSTAT_DATA_CHAR);
922	kstat_named_init(&stp->vd_pid,		"Product",
923	    KSTAT_DATA_CHAR);
924	kstat_named_init(&stp->vd_capacity,	"Size",
925	    KSTAT_DATA_ULONGLONG);
926
927	vdc->err_stats->ks_update  = nulldev;
928
929	kstat_install(vdc->err_stats);
930}
931
932static void
933vdc_set_err_kstats(vdc_t *vdc)
934{
935	vd_err_stats_t  *stp;
936
937	if (vdc->err_stats == NULL)
938		return;
939
940	mutex_enter(&vdc->lock);
941
942	stp = (vd_err_stats_t *)vdc->err_stats->ks_data;
943	ASSERT(stp != NULL);
944
945	stp->vd_capacity.value.ui64 = vdc->vdisk_size * vdc->block_size;
946	(void) strcpy(stp->vd_vid.value.c, "SUN");
947	(void) strcpy(stp->vd_pid.value.c, "VDSK");
948
949	mutex_exit(&vdc->lock);
950}
951
952static int
953vdc_create_device_nodes_efi(vdc_t *vdc)
954{
955	ddi_remove_minor_node(vdc->dip, "h");
956	ddi_remove_minor_node(vdc->dip, "h,raw");
957
958	if (ddi_create_minor_node(vdc->dip, "wd", S_IFBLK,
959	    VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE),
960	    DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
961		cmn_err(CE_NOTE, "[%d] Couldn't add block node 'wd'",
962		    vdc->instance);
963		return (EIO);
964	}
965
966	/* if any device node is created we set this flag */
967	vdc->initialized |= VDC_MINOR;
968
969	if (ddi_create_minor_node(vdc->dip, "wd,raw", S_IFCHR,
970	    VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE),
971	    DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
972		cmn_err(CE_NOTE, "[%d] Couldn't add block node 'wd,raw'",
973		    vdc->instance);
974		return (EIO);
975	}
976
977	return (0);
978}
979
980static int
981vdc_create_device_nodes_vtoc(vdc_t *vdc)
982{
983	ddi_remove_minor_node(vdc->dip, "wd");
984	ddi_remove_minor_node(vdc->dip, "wd,raw");
985
986	if (ddi_create_minor_node(vdc->dip, "h", S_IFBLK,
987	    VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE),
988	    DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
989		cmn_err(CE_NOTE, "[%d] Couldn't add block node 'h'",
990		    vdc->instance);
991		return (EIO);
992	}
993
994	/* if any device node is created we set this flag */
995	vdc->initialized |= VDC_MINOR;
996
997	if (ddi_create_minor_node(vdc->dip, "h,raw", S_IFCHR,
998	    VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE),
999	    DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
1000		cmn_err(CE_NOTE, "[%d] Couldn't add block node 'h,raw'",
1001		    vdc->instance);
1002		return (EIO);
1003	}
1004
1005	return (0);
1006}
1007
1008/*
1009 * Function:
1010 *	vdc_create_device_nodes
1011 *
1012 * Description:
1013 *	This function creates the block and character device nodes under
1014 *	/devices. It is called as part of the attach(9E) of the instance
1015 *	during the handshake with vds after vds has sent the attributes
1016 *	to vdc.
1017 *
1018 *	If the device is of type VD_DISK_TYPE_SLICE then the minor node
1019 *	of 2 is used in keeping with the Solaris convention that slice 2
1020 *	refers to a whole disk. Slices start at 'a'
1021 *
1022 * Parameters:
1023 *	vdc 		- soft state pointer
1024 *
1025 * Return Values
1026 *	0		- Success
1027 *	EIO		- Failed to create node
1028 *	EINVAL		- Unknown type of disk exported
1029 */
1030static int
1031vdc_create_device_nodes(vdc_t *vdc)
1032{
1033	char		name[sizeof ("s,raw")];
1034	dev_info_t	*dip = NULL;
1035	int		instance, status;
1036	int		num_slices = 1;
1037	int		i;
1038
1039	ASSERT(vdc != NULL);
1040
1041	instance = vdc->instance;
1042	dip = vdc->dip;
1043
1044	switch (vdc->vdisk_type) {
1045	case VD_DISK_TYPE_DISK:
1046		num_slices = V_NUMPAR;
1047		break;
1048	case VD_DISK_TYPE_SLICE:
1049		num_slices = 1;
1050		break;
1051	case VD_DISK_TYPE_UNK:
1052	default:
1053		return (EINVAL);
1054	}
1055
1056	/*
1057	 * Minor nodes are different for EFI disks: EFI disks do not have
1058	 * a minor node 'g' for the minor number corresponding to slice
1059	 * VD_EFI_WD_SLICE (slice 7) instead they have a minor node 'wd'
1060	 * representing the whole disk.
1061	 */
1062	for (i = 0; i < num_slices; i++) {
1063
1064		if (i == VD_EFI_WD_SLICE) {
1065			if (vdc->vdisk_label == VD_DISK_LABEL_EFI)
1066				status = vdc_create_device_nodes_efi(vdc);
1067			else
1068				status = vdc_create_device_nodes_vtoc(vdc);
1069			if (status != 0)
1070				return (status);
1071			continue;
1072		}
1073
1074		(void) snprintf(name, sizeof (name), "%c", 'a' + i);
1075		if (ddi_create_minor_node(dip, name, S_IFBLK,
1076		    VD_MAKE_DEV(instance, i), DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
1077			cmn_err(CE_NOTE, "[%d] Couldn't add block node '%s'",
1078			    instance, name);
1079			return (EIO);
1080		}
1081
1082		/* if any device node is created we set this flag */
1083		vdc->initialized |= VDC_MINOR;
1084
1085		(void) snprintf(name, sizeof (name), "%c%s", 'a' + i, ",raw");
1086
1087		if (ddi_create_minor_node(dip, name, S_IFCHR,
1088		    VD_MAKE_DEV(instance, i), DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
1089			cmn_err(CE_NOTE, "[%d] Couldn't add raw node '%s'",
1090			    instance, name);
1091			return (EIO);
1092		}
1093	}
1094
1095	return (0);
1096}
1097
1098/*
1099 * Driver prop_op(9e) entry point function. Return the number of blocks for
1100 * the partition in question or forward the request to the property facilities.
1101 */
1102static int
1103vdc_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
1104    char *name, caddr_t valuep, int *lengthp)
1105{
1106	int instance = ddi_get_instance(dip);
1107	vdc_t *vdc;
1108	uint64_t nblocks;
1109	uint_t blksize;
1110
1111	vdc = ddi_get_soft_state(vdc_state, instance);
1112
1113	if (dev == DDI_DEV_T_ANY || vdc == NULL) {
1114		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
1115		    name, valuep, lengthp));
1116	}
1117
1118	mutex_enter(&vdc->lock);
1119	(void) vdc_validate_geometry(vdc);
1120	if (vdc->vdisk_label == VD_DISK_LABEL_UNK) {
1121		mutex_exit(&vdc->lock);
1122		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
1123		    name, valuep, lengthp));
1124	}
1125	nblocks = vdc->slice[VDCPART(dev)].nblocks;
1126	blksize = vdc->block_size;
1127	mutex_exit(&vdc->lock);
1128
1129	return (ddi_prop_op_nblocks_blksize(dev, dip, prop_op, mod_flags,
1130	    name, valuep, lengthp, nblocks, blksize));
1131}
1132
1133/*
1134 * Function:
1135 *	vdc_is_opened
1136 *
1137 * Description:
1138 *	This function checks if any slice of a given virtual disk is
1139 *	currently opened.
1140 *
1141 * Parameters:
1142 *	vdc 		- soft state pointer
1143 *
1144 * Return Values
1145 *	B_TRUE		- at least one slice is opened.
1146 *	B_FALSE		- no slice is opened.
1147 */
1148static boolean_t
1149vdc_is_opened(vdc_t *vdc)
1150{
1151	int i, nslices;
1152
1153	switch (vdc->vdisk_type) {
1154	case VD_DISK_TYPE_DISK:
1155		nslices = V_NUMPAR;
1156		break;
1157	case VD_DISK_TYPE_SLICE:
1158		nslices = 1;
1159		break;
1160	case VD_DISK_TYPE_UNK:
1161	default:
1162		ASSERT(0);
1163	}
1164
1165	/* check if there's any layered open */
1166	for (i = 0; i < nslices; i++) {
1167		if (vdc->open_lyr[i] > 0)
1168			return (B_TRUE);
1169	}
1170
1171	/* check if there is any other kind of open */
1172	for (i = 0; i < OTYPCNT; i++) {
1173		if (vdc->open[i] != 0)
1174			return (B_TRUE);
1175	}
1176
1177	return (B_FALSE);
1178}
1179
1180static int
1181vdc_mark_opened(vdc_t *vdc, int slice, int flag, int otyp)
1182{
1183	uint8_t slicemask;
1184	int i;
1185
1186	ASSERT(otyp < OTYPCNT);
1187	ASSERT(slice < V_NUMPAR);
1188	ASSERT(MUTEX_HELD(&vdc->lock));
1189
1190	slicemask = 1 << slice;
1191
1192	/* check if slice is already exclusively opened */
1193	if (vdc->open_excl & slicemask)
1194		return (EBUSY);
1195
1196	/* if open exclusive, check if slice is already opened */
1197	if (flag & FEXCL) {
1198		if (vdc->open_lyr[slice] > 0)
1199			return (EBUSY);
1200		for (i = 0; i < OTYPCNT; i++) {
1201			if (vdc->open[i] & slicemask)
1202				return (EBUSY);
1203		}
1204		vdc->open_excl |= slicemask;
1205	}
1206
1207	/* mark slice as opened */
1208	if (otyp == OTYP_LYR) {
1209		vdc->open_lyr[slice]++;
1210	} else {
1211		vdc->open[otyp] |= slicemask;
1212	}
1213
1214	return (0);
1215}
1216
1217static void
1218vdc_mark_closed(vdc_t *vdc, int slice, int flag, int otyp)
1219{
1220	uint8_t slicemask;
1221
1222	ASSERT(otyp < OTYPCNT);
1223	ASSERT(slice < V_NUMPAR);
1224	ASSERT(MUTEX_HELD(&vdc->lock));
1225
1226	slicemask = 1 << slice;
1227
1228	if (otyp == OTYP_LYR) {
1229		ASSERT(vdc->open_lyr[slice] > 0);
1230		vdc->open_lyr[slice]--;
1231	} else {
1232		vdc->open[otyp] &= ~slicemask;
1233	}
1234
1235	if (flag & FEXCL)
1236		vdc->open_excl &= ~slicemask;
1237}
1238
1239static int
1240vdc_open(dev_t *dev, int flag, int otyp, cred_t *cred)
1241{
1242	_NOTE(ARGUNUSED(cred))
1243
1244	int	instance, nodelay;
1245	int	slice, status = 0;
1246	vdc_t	*vdc;
1247
1248	ASSERT(dev != NULL);
1249	instance = VDCUNIT(*dev);
1250
1251	if (otyp >= OTYPCNT)
1252		return (EINVAL);
1253
1254	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
1255		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
1256		return (ENXIO);
1257	}
1258
1259	DMSG(vdc, 0, "minor = %d flag = %x, otyp = %x\n",
1260	    getminor(*dev), flag, otyp);
1261
1262	slice = VDCPART(*dev);
1263
1264	nodelay = flag & (FNDELAY | FNONBLOCK);
1265
1266	if ((flag & FWRITE) && (!nodelay) &&
1267	    !(VD_OP_SUPPORTED(vdc->operations, VD_OP_BWRITE))) {
1268		return (EROFS);
1269	}
1270
1271	mutex_enter(&vdc->lock);
1272
1273	status = vdc_mark_opened(vdc, slice, flag, otyp);
1274
1275	if (status != 0) {
1276		mutex_exit(&vdc->lock);
1277		return (status);
1278	}
1279
1280	if (nodelay) {
1281
1282		/* don't resubmit a validate request if there's already one */
1283		if (vdc->validate_pending > 0) {
1284			mutex_exit(&vdc->lock);
1285			return (0);
1286		}
1287
1288		/* call vdc_validate() asynchronously to avoid blocking */
1289		if (taskq_dispatch(system_taskq, vdc_validate_task,
1290		    (void *)vdc, TQ_NOSLEEP) == NULL) {
1291			vdc_mark_closed(vdc, slice, flag, otyp);
1292			mutex_exit(&vdc->lock);
1293			return (ENXIO);
1294		}
1295
1296		vdc->validate_pending++;
1297		mutex_exit(&vdc->lock);
1298		return (0);
1299	}
1300
1301	mutex_exit(&vdc->lock);
1302
1303	vdc_validate(vdc);
1304
1305	mutex_enter(&vdc->lock);
1306
1307	if (vdc->vdisk_label == VD_DISK_LABEL_UNK ||
1308	    vdc->slice[slice].nblocks == 0) {
1309		vdc_mark_closed(vdc, slice, flag, otyp);
1310		status = EIO;
1311	}
1312
1313	mutex_exit(&vdc->lock);
1314
1315	return (status);
1316}
1317
1318static int
1319vdc_close(dev_t dev, int flag, int otyp, cred_t *cred)
1320{
1321	_NOTE(ARGUNUSED(cred))
1322
1323	int	instance;
1324	int	slice;
1325	int	rv, rval;
1326	vdc_t	*vdc;
1327
1328	instance = VDCUNIT(dev);
1329
1330	if (otyp >= OTYPCNT)
1331		return (EINVAL);
1332
1333	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
1334		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
1335		return (ENXIO);
1336	}
1337
1338	DMSG(vdc, 0, "[%d] flag = %x, otyp = %x\n", instance, flag, otyp);
1339
1340	slice = VDCPART(dev);
1341
1342	/*
1343	 * Attempt to flush the W$ on a close operation. If this is
1344	 * not a supported IOCTL command or the backing device is read-only
1345	 * do not fail the close operation.
1346	 */
1347	rv = vd_process_ioctl(dev, DKIOCFLUSHWRITECACHE, NULL, FKIOCTL, &rval);
1348
1349	if (rv != 0 && rv != ENOTSUP && rv != ENOTTY && rv != EROFS) {
1350		DMSG(vdc, 0, "[%d] flush failed with error %d on close\n",
1351		    instance, rv);
1352		return (EIO);
1353	}
1354
1355	mutex_enter(&vdc->lock);
1356	vdc_mark_closed(vdc, slice, flag, otyp);
1357	mutex_exit(&vdc->lock);
1358
1359	return (0);
1360}
1361
1362static int
1363vdc_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp)
1364{
1365	_NOTE(ARGUNUSED(credp))
1366
1367	return (vd_process_ioctl(dev, cmd, (caddr_t)arg, mode, rvalp));
1368}
1369
1370static int
1371vdc_print(dev_t dev, char *str)
1372{
1373	cmn_err(CE_NOTE, "vdc%d:  %s", VDCUNIT(dev), str);
1374	return (0);
1375}
1376
1377static int
1378vdc_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
1379{
1380	int	rv;
1381	size_t	nbytes = nblk * DEV_BSIZE;
1382	int	instance = VDCUNIT(dev);
1383	vdc_t	*vdc = NULL;
1384
1385	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
1386		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
1387		return (ENXIO);
1388	}
1389
1390	DMSG(vdc, 2, "[%d] dump %ld bytes at block 0x%lx : addr=0x%p\n",
1391	    instance, nbytes, blkno, (void *)addr);
1392	rv = vdc_send_request(vdc, VD_OP_BWRITE, addr, nbytes,
1393	    VDCPART(dev), blkno, CB_STRATEGY, 0, VIO_write_dir);
1394	if (rv) {
1395		DMSG(vdc, 0, "Failed to do a disk dump (err=%d)\n", rv);
1396		return (rv);
1397	}
1398
1399	if (ddi_in_panic())
1400		(void) vdc_drain_response(vdc, NULL);
1401
1402	DMSG(vdc, 0, "[%d] End\n", instance);
1403
1404	return (0);
1405}
1406
1407/* -------------------------------------------------------------------------- */
1408
1409/*
1410 * Disk access routines
1411 *
1412 */
1413
1414/*
1415 * vdc_strategy()
1416 *
1417 * Return Value:
1418 *	0:	As per strategy(9E), the strategy() function must return 0
1419 *		[ bioerror(9f) sets b_flags to the proper error code ]
1420 */
1421static int
1422vdc_strategy(struct buf *buf)
1423{
1424	int	rv = -1;
1425	vdc_t	*vdc = NULL;
1426	int	instance = VDCUNIT(buf->b_edev);
1427	int	op = (buf->b_flags & B_READ) ? VD_OP_BREAD : VD_OP_BWRITE;
1428	int	slice;
1429
1430	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
1431		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
1432		bioerror(buf, ENXIO);
1433		biodone(buf);
1434		return (0);
1435	}
1436
1437	DMSG(vdc, 2, "[%d] %s %ld bytes at block %llx : b_addr=0x%p\n",
1438	    instance, (buf->b_flags & B_READ) ? "Read" : "Write",
1439	    buf->b_bcount, buf->b_lblkno, (void *)buf->b_un.b_addr);
1440
1441	bp_mapin(buf);
1442
1443	if ((long)buf->b_private == VD_SLICE_NONE) {
1444		/* I/O using an absolute disk offset */
1445		slice = VD_SLICE_NONE;
1446	} else {
1447		slice = VDCPART(buf->b_edev);
1448	}
1449
1450	rv = vdc_send_request(vdc, op, (caddr_t)buf->b_un.b_addr,
1451	    buf->b_bcount, slice, buf->b_lblkno,
1452	    CB_STRATEGY, buf, (op == VD_OP_BREAD) ? VIO_read_dir :
1453	    VIO_write_dir);
1454
1455	/*
1456	 * If the request was successfully sent, the strategy call returns and
1457	 * the ACK handler calls the bioxxx functions when the vDisk server is
1458	 * done otherwise we handle the error here.
1459	 */
1460	if (rv) {
1461		DMSG(vdc, 0, "Failed to read/write (err=%d)\n", rv);
1462		bioerror(buf, rv);
1463		biodone(buf);
1464	} else if (ddi_in_panic()) {
1465		(void) vdc_drain_response(vdc, buf);
1466	}
1467
1468	return (0);
1469}
1470
1471/*
1472 * Function:
1473 *	vdc_min
1474 *
1475 * Description:
1476 *	Routine to limit the size of a data transfer. Used in
1477 *	conjunction with physio(9F).
1478 *
1479 * Arguments:
1480 *	bp - pointer to the indicated buf(9S) struct.
1481 *
1482 */
1483static void
1484vdc_min(struct buf *bufp)
1485{
1486	vdc_t	*vdc = NULL;
1487	int	instance = VDCUNIT(bufp->b_edev);
1488
1489	vdc = ddi_get_soft_state(vdc_state, instance);
1490	VERIFY(vdc != NULL);
1491
1492	if (bufp->b_bcount > (vdc->max_xfer_sz * vdc->block_size)) {
1493		bufp->b_bcount = vdc->max_xfer_sz * vdc->block_size;
1494	}
1495}
1496
1497static int
1498vdc_read(dev_t dev, struct uio *uio, cred_t *cred)
1499{
1500	_NOTE(ARGUNUSED(cred))
1501
1502	DMSGX(1, "[%d] Entered", VDCUNIT(dev));
1503	return (physio(vdc_strategy, NULL, dev, B_READ, vdc_min, uio));
1504}
1505
1506static int
1507vdc_write(dev_t dev, struct uio *uio, cred_t *cred)
1508{
1509	_NOTE(ARGUNUSED(cred))
1510
1511	DMSGX(1, "[%d] Entered", VDCUNIT(dev));
1512	return (physio(vdc_strategy, NULL, dev, B_WRITE, vdc_min, uio));
1513}
1514
1515static int
1516vdc_aread(dev_t dev, struct aio_req *aio, cred_t *cred)
1517{
1518	_NOTE(ARGUNUSED(cred))
1519
1520	DMSGX(1, "[%d] Entered", VDCUNIT(dev));
1521	return (aphysio(vdc_strategy, anocancel, dev, B_READ, vdc_min, aio));
1522}
1523
1524static int
1525vdc_awrite(dev_t dev, struct aio_req *aio, cred_t *cred)
1526{
1527	_NOTE(ARGUNUSED(cred))
1528
1529	DMSGX(1, "[%d] Entered", VDCUNIT(dev));
1530	return (aphysio(vdc_strategy, anocancel, dev, B_WRITE, vdc_min, aio));
1531}
1532
1533
1534/* -------------------------------------------------------------------------- */
1535
1536/*
1537 * Handshake support
1538 */
1539
1540
1541/*
1542 * Function:
1543 *	vdc_init_ver_negotiation()
1544 *
1545 * Description:
1546 *
1547 * Arguments:
1548 *	vdc	- soft state pointer for this instance of the device driver.
1549 *
1550 * Return Code:
1551 *	0	- Success
1552 */
1553static int
1554vdc_init_ver_negotiation(vdc_t *vdc, vio_ver_t ver)
1555{
1556	vio_ver_msg_t	pkt;
1557	size_t		msglen = sizeof (pkt);
1558	int		status = -1;
1559
1560	ASSERT(vdc != NULL);
1561	ASSERT(mutex_owned(&vdc->lock));
1562
1563	DMSG(vdc, 0, "[%d] Entered.\n", vdc->instance);
1564
1565	/*
1566	 * set the Session ID to a unique value
1567	 * (the lower 32 bits of the clock tick)
1568	 */
1569	vdc->session_id = ((uint32_t)gettick() & 0xffffffff);
1570	DMSG(vdc, 0, "[%d] Set SID to 0x%lx\n", vdc->instance, vdc->session_id);
1571
1572	pkt.tag.vio_msgtype = VIO_TYPE_CTRL;
1573	pkt.tag.vio_subtype = VIO_SUBTYPE_INFO;
1574	pkt.tag.vio_subtype_env = VIO_VER_INFO;
1575	pkt.tag.vio_sid = vdc->session_id;
1576	pkt.dev_class = VDEV_DISK;
1577	pkt.ver_major = ver.major;
1578	pkt.ver_minor = ver.minor;
1579
1580	status = vdc_send(vdc, (caddr_t)&pkt, &msglen);
1581	DMSG(vdc, 0, "[%d] Ver info sent (status = %d)\n",
1582	    vdc->instance, status);
1583	if ((status != 0) || (msglen != sizeof (vio_ver_msg_t))) {
1584		DMSG(vdc, 0, "[%d] Failed to send Ver negotiation info: "
1585		    "id(%lx) rv(%d) size(%ld)", vdc->instance,
1586		    vdc->curr_server->ldc_handle, status, msglen);
1587		if (msglen != sizeof (vio_ver_msg_t))
1588			status = ENOMSG;
1589	}
1590
1591	return (status);
1592}
1593
1594/*
1595 * Function:
1596 *	vdc_ver_negotiation()
1597 *
1598 * Description:
1599 *
1600 * Arguments:
1601 *	vdcp	- soft state pointer for this instance of the device driver.
1602 *
1603 * Return Code:
1604 *	0	- Success
1605 */
1606static int
1607vdc_ver_negotiation(vdc_t *vdcp)
1608{
1609	vio_msg_t vio_msg;
1610	int status;
1611
1612	if (status = vdc_init_ver_negotiation(vdcp, vdc_version[0]))
1613		return (status);
1614
1615	/* release lock and wait for response */
1616	mutex_exit(&vdcp->lock);
1617	status = vdc_wait_for_response(vdcp, &vio_msg);
1618	mutex_enter(&vdcp->lock);
1619	if (status) {
1620		DMSG(vdcp, 0,
1621		    "[%d] Failed waiting for Ver negotiation response, rv(%d)",
1622		    vdcp->instance, status);
1623		return (status);
1624	}
1625
1626	/* check type and sub_type ... */
1627	if (vio_msg.tag.vio_msgtype != VIO_TYPE_CTRL ||
1628	    vio_msg.tag.vio_subtype == VIO_SUBTYPE_INFO) {
1629		DMSG(vdcp, 0, "[%d] Invalid ver negotiation response\n",
1630		    vdcp->instance);
1631		return (EPROTO);
1632	}
1633
1634	return (vdc_handle_ver_msg(vdcp, (vio_ver_msg_t *)&vio_msg));
1635}
1636
1637/*
1638 * Function:
1639 *	vdc_init_attr_negotiation()
1640 *
1641 * Description:
1642 *
1643 * Arguments:
1644 *	vdc	- soft state pointer for this instance of the device driver.
1645 *
1646 * Return Code:
1647 *	0	- Success
1648 */
1649static int
1650vdc_init_attr_negotiation(vdc_t *vdc)
1651{
1652	vd_attr_msg_t	pkt;
1653	size_t		msglen = sizeof (pkt);
1654	int		status;
1655
1656	ASSERT(vdc != NULL);
1657	ASSERT(mutex_owned(&vdc->lock));
1658
1659	DMSG(vdc, 0, "[%d] entered\n", vdc->instance);
1660
1661	/* fill in tag */
1662	pkt.tag.vio_msgtype = VIO_TYPE_CTRL;
1663	pkt.tag.vio_subtype = VIO_SUBTYPE_INFO;
1664	pkt.tag.vio_subtype_env = VIO_ATTR_INFO;
1665	pkt.tag.vio_sid = vdc->session_id;
1666	/* fill in payload */
1667	pkt.max_xfer_sz = vdc->max_xfer_sz;
1668	pkt.vdisk_block_size = vdc->block_size;
1669	pkt.xfer_mode = VIO_DRING_MODE_V1_0;
1670	pkt.operations = 0;	/* server will set bits of valid operations */
1671	pkt.vdisk_type = 0;	/* server will set to valid device type */
1672	pkt.vdisk_media = 0;	/* server will set to valid media type */
1673	pkt.vdisk_size = 0;	/* server will set to valid size */
1674
1675	status = vdc_send(vdc, (caddr_t)&pkt, &msglen);
1676	DMSG(vdc, 0, "Attr info sent (status = %d)\n", status);
1677
1678	if ((status != 0) || (msglen != sizeof (vd_attr_msg_t))) {
1679		DMSG(vdc, 0, "[%d] Failed to send Attr negotiation info: "
1680		    "id(%lx) rv(%d) size(%ld)", vdc->instance,
1681		    vdc->curr_server->ldc_handle, status, msglen);
1682		if (msglen != sizeof (vd_attr_msg_t))
1683			status = ENOMSG;
1684	}
1685
1686	return (status);
1687}
1688
1689/*
1690 * Function:
1691 *	vdc_attr_negotiation()
1692 *
1693 * Description:
1694 *
1695 * Arguments:
1696 *	vdc	- soft state pointer for this instance of the device driver.
1697 *
1698 * Return Code:
1699 *	0	- Success
1700 */
1701static int
1702vdc_attr_negotiation(vdc_t *vdcp)
1703{
1704	int status;
1705	vio_msg_t vio_msg;
1706
1707	if (status = vdc_init_attr_negotiation(vdcp))
1708		return (status);
1709
1710	/* release lock and wait for response */
1711	mutex_exit(&vdcp->lock);
1712	status = vdc_wait_for_response(vdcp, &vio_msg);
1713	mutex_enter(&vdcp->lock);
1714	if (status) {
1715		DMSG(vdcp, 0,
1716		    "[%d] Failed waiting for Attr negotiation response, rv(%d)",
1717		    vdcp->instance, status);
1718		return (status);
1719	}
1720
1721	/* check type and sub_type ... */
1722	if (vio_msg.tag.vio_msgtype != VIO_TYPE_CTRL ||
1723	    vio_msg.tag.vio_subtype == VIO_SUBTYPE_INFO) {
1724		DMSG(vdcp, 0, "[%d] Invalid attr negotiation response\n",
1725		    vdcp->instance);
1726		return (EPROTO);
1727	}
1728
1729	return (vdc_handle_attr_msg(vdcp, (vd_attr_msg_t *)&vio_msg));
1730}
1731
1732
1733/*
1734 * Function:
1735 *	vdc_init_dring_negotiate()
1736 *
1737 * Description:
1738 *
1739 * Arguments:
1740 *	vdc	- soft state pointer for this instance of the device driver.
1741 *
1742 * Return Code:
1743 *	0	- Success
1744 */
1745static int
1746vdc_init_dring_negotiate(vdc_t *vdc)
1747{
1748	vio_dring_reg_msg_t	pkt;
1749	size_t			msglen = sizeof (pkt);
1750	int			status = -1;
1751	int			retry;
1752	int			nretries = 10;
1753
1754	ASSERT(vdc != NULL);
1755	ASSERT(mutex_owned(&vdc->lock));
1756
1757	for (retry = 0; retry < nretries; retry++) {
1758		status = vdc_init_descriptor_ring(vdc);
1759		if (status != EAGAIN)
1760			break;
1761		drv_usecwait(vdc_min_timeout_ldc);
1762	}
1763
1764	if (status != 0) {
1765		DMSG(vdc, 0, "[%d] Failed to init DRing (status = %d)\n",
1766		    vdc->instance, status);
1767		return (status);
1768	}
1769
1770	DMSG(vdc, 0, "[%d] Init of descriptor ring completed (status = %d)\n",
1771	    vdc->instance, status);
1772
1773	/* fill in tag */
1774	pkt.tag.vio_msgtype = VIO_TYPE_CTRL;
1775	pkt.tag.vio_subtype = VIO_SUBTYPE_INFO;
1776	pkt.tag.vio_subtype_env = VIO_DRING_REG;
1777	pkt.tag.vio_sid = vdc->session_id;
1778	/* fill in payload */
1779	pkt.dring_ident = 0;
1780	pkt.num_descriptors = vdc->dring_len;
1781	pkt.descriptor_size = vdc->dring_entry_size;
1782	pkt.options = (VIO_TX_DRING | VIO_RX_DRING);
1783	pkt.ncookies = vdc->dring_cookie_count;
1784	pkt.cookie[0] = vdc->dring_cookie[0];	/* for now just one cookie */
1785
1786	status = vdc_send(vdc, (caddr_t)&pkt, &msglen);
1787	if (status != 0) {
1788		DMSG(vdc, 0, "[%d] Failed to register DRing (err = %d)",
1789		    vdc->instance, status);
1790	}
1791
1792	return (status);
1793}
1794
1795
1796/*
1797 * Function:
1798 *	vdc_dring_negotiation()
1799 *
1800 * Description:
1801 *
1802 * Arguments:
1803 *	vdc	- soft state pointer for this instance of the device driver.
1804 *
1805 * Return Code:
1806 *	0	- Success
1807 */
1808static int
1809vdc_dring_negotiation(vdc_t *vdcp)
1810{
1811	int status;
1812	vio_msg_t vio_msg;
1813
1814	if (status = vdc_init_dring_negotiate(vdcp))
1815		return (status);
1816
1817	/* release lock and wait for response */
1818	mutex_exit(&vdcp->lock);
1819	status = vdc_wait_for_response(vdcp, &vio_msg);
1820	mutex_enter(&vdcp->lock);
1821	if (status) {
1822		DMSG(vdcp, 0,
1823		    "[%d] Failed waiting for Dring negotiation response,"
1824		    " rv(%d)", vdcp->instance, status);
1825		return (status);
1826	}
1827
1828	/* check type and sub_type ... */
1829	if (vio_msg.tag.vio_msgtype != VIO_TYPE_CTRL ||
1830	    vio_msg.tag.vio_subtype == VIO_SUBTYPE_INFO) {
1831		DMSG(vdcp, 0, "[%d] Invalid Dring negotiation response\n",
1832		    vdcp->instance);
1833		return (EPROTO);
1834	}
1835
1836	return (vdc_handle_dring_reg_msg(vdcp,
1837	    (vio_dring_reg_msg_t *)&vio_msg));
1838}
1839
1840
1841/*
1842 * Function:
1843 *	vdc_send_rdx()
1844 *
1845 * Description:
1846 *
1847 * Arguments:
1848 *	vdc	- soft state pointer for this instance of the device driver.
1849 *
1850 * Return Code:
1851 *	0	- Success
1852 */
1853static int
1854vdc_send_rdx(vdc_t *vdcp)
1855{
1856	vio_msg_t	msg;
1857	size_t		msglen = sizeof (vio_msg_t);
1858	int		status;
1859
1860	/*
1861	 * Send an RDX message to vds to indicate we are ready
1862	 * to send data
1863	 */
1864	msg.tag.vio_msgtype = VIO_TYPE_CTRL;
1865	msg.tag.vio_subtype = VIO_SUBTYPE_INFO;
1866	msg.tag.vio_subtype_env = VIO_RDX;
1867	msg.tag.vio_sid = vdcp->session_id;
1868	status = vdc_send(vdcp, (caddr_t)&msg, &msglen);
1869	if (status != 0) {
1870		DMSG(vdcp, 0, "[%d] Failed to send RDX message (%d)",
1871		    vdcp->instance, status);
1872	}
1873
1874	return (status);
1875}
1876
1877/*
1878 * Function:
1879 *	vdc_handle_rdx()
1880 *
1881 * Description:
1882 *
1883 * Arguments:
1884 *	vdc	- soft state pointer for this instance of the device driver.
1885 *	msgp	- received msg
1886 *
1887 * Return Code:
1888 *	0	- Success
1889 */
1890static int
1891vdc_handle_rdx(vdc_t *vdcp, vio_rdx_msg_t *msgp)
1892{
1893	_NOTE(ARGUNUSED(vdcp))
1894	_NOTE(ARGUNUSED(msgp))
1895
1896	ASSERT(msgp->tag.vio_msgtype == VIO_TYPE_CTRL);
1897	ASSERT(msgp->tag.vio_subtype == VIO_SUBTYPE_ACK);
1898	ASSERT(msgp->tag.vio_subtype_env == VIO_RDX);
1899
1900	DMSG(vdcp, 1, "[%d] Got an RDX msg", vdcp->instance);
1901
1902	return (0);
1903}
1904
1905/*
1906 * Function:
1907 *	vdc_rdx_exchange()
1908 *
1909 * Description:
1910 *
1911 * Arguments:
1912 *	vdc	- soft state pointer for this instance of the device driver.
1913 *
1914 * Return Code:
1915 *	0	- Success
1916 */
1917static int
1918vdc_rdx_exchange(vdc_t *vdcp)
1919{
1920	int status;
1921	vio_msg_t vio_msg;
1922
1923	if (status = vdc_send_rdx(vdcp))
1924		return (status);
1925
1926	/* release lock and wait for response */
1927	mutex_exit(&vdcp->lock);
1928	status = vdc_wait_for_response(vdcp, &vio_msg);
1929	mutex_enter(&vdcp->lock);
1930	if (status) {
1931		DMSG(vdcp, 0, "[%d] Failed waiting for RDX response, rv(%d)",
1932		    vdcp->instance, status);
1933		return (status);
1934	}
1935
1936	/* check type and sub_type ... */
1937	if (vio_msg.tag.vio_msgtype != VIO_TYPE_CTRL ||
1938	    vio_msg.tag.vio_subtype != VIO_SUBTYPE_ACK) {
1939		DMSG(vdcp, 0, "[%d] Invalid RDX response\n", vdcp->instance);
1940		return (EPROTO);
1941	}
1942
1943	return (vdc_handle_rdx(vdcp, (vio_rdx_msg_t *)&vio_msg));
1944}
1945
1946
1947/* -------------------------------------------------------------------------- */
1948
1949/*
1950 * LDC helper routines
1951 */
1952
1953static int
1954vdc_recv(vdc_t *vdc, vio_msg_t *msgp, size_t *nbytesp)
1955{
1956	int		status;
1957	boolean_t	q_has_pkts = B_FALSE;
1958	uint64_t	delay_time;
1959	size_t		len;
1960
1961	mutex_enter(&vdc->read_lock);
1962
1963	if (vdc->read_state == VDC_READ_IDLE)
1964		vdc->read_state = VDC_READ_WAITING;
1965
1966	while (vdc->read_state != VDC_READ_PENDING) {
1967
1968		/* detect if the connection has been reset */
1969		if (vdc->read_state == VDC_READ_RESET) {
1970			status = ECONNRESET;
1971			goto done;
1972		}
1973
1974		cv_wait(&vdc->read_cv, &vdc->read_lock);
1975	}
1976
1977	/*
1978	 * Until we get a blocking ldc read we have to retry
1979	 * until the entire LDC message has arrived before
1980	 * ldc_read() will succeed. Note we also bail out if
1981	 * the channel is reset or goes away.
1982	 */
1983	delay_time = vdc_ldc_read_init_delay;
1984loop:
1985	len = *nbytesp;
1986	status = ldc_read(vdc->curr_server->ldc_handle, (caddr_t)msgp, &len);
1987	switch (status) {
1988	case EAGAIN:
1989		delay_time *= 2;
1990		if (delay_time >= vdc_ldc_read_max_delay)
1991			delay_time = vdc_ldc_read_max_delay;
1992		delay(delay_time);
1993		goto loop;
1994
1995	case 0:
1996		if (len == 0) {
1997			DMSG(vdc, 1, "[%d] ldc_read returned 0 bytes with "
1998			    "no error!\n", vdc->instance);
1999			goto loop;
2000		}
2001
2002		*nbytesp = len;
2003
2004		/*
2005		 * If there are pending messages, leave the
2006		 * read state as pending. Otherwise, set the state
2007		 * back to idle.
2008		 */
2009		status = ldc_chkq(vdc->curr_server->ldc_handle, &q_has_pkts);
2010		if (status == 0 && !q_has_pkts)
2011			vdc->read_state = VDC_READ_IDLE;
2012
2013		break;
2014	default:
2015		DMSG(vdc, 0, "ldc_read returned %d\n", status);
2016		break;
2017	}
2018
2019done:
2020	mutex_exit(&vdc->read_lock);
2021
2022	return (status);
2023}
2024
2025
2026
2027#ifdef DEBUG
2028void
2029vdc_decode_tag(vdc_t *vdcp, vio_msg_t *msg)
2030{
2031	char *ms, *ss, *ses;
2032	switch (msg->tag.vio_msgtype) {
2033#define	Q(_s)	case _s : ms = #_s; break;
2034	Q(VIO_TYPE_CTRL)
2035	Q(VIO_TYPE_DATA)
2036	Q(VIO_TYPE_ERR)
2037#undef Q
2038	default: ms = "unknown"; break;
2039	}
2040
2041	switch (msg->tag.vio_subtype) {
2042#define	Q(_s)	case _s : ss = #_s; break;
2043	Q(VIO_SUBTYPE_INFO)
2044	Q(VIO_SUBTYPE_ACK)
2045	Q(VIO_SUBTYPE_NACK)
2046#undef Q
2047	default: ss = "unknown"; break;
2048	}
2049
2050	switch (msg->tag.vio_subtype_env) {
2051#define	Q(_s)	case _s : ses = #_s; break;
2052	Q(VIO_VER_INFO)
2053	Q(VIO_ATTR_INFO)
2054	Q(VIO_DRING_REG)
2055	Q(VIO_DRING_UNREG)
2056	Q(VIO_RDX)
2057	Q(VIO_PKT_DATA)
2058	Q(VIO_DESC_DATA)
2059	Q(VIO_DRING_DATA)
2060#undef Q
2061	default: ses = "unknown"; break;
2062	}
2063
2064	DMSG(vdcp, 3, "(%x/%x/%x) message : (%s/%s/%s)\n",
2065	    msg->tag.vio_msgtype, msg->tag.vio_subtype,
2066	    msg->tag.vio_subtype_env, ms, ss, ses);
2067}
2068#endif
2069
2070/*
2071 * Function:
2072 *	vdc_send()
2073 *
2074 * Description:
2075 *	The function encapsulates the call to write a message using LDC.
2076 *	If LDC indicates that the call failed due to the queue being full,
2077 *	we retry the ldc_write(), otherwise we return the error returned by LDC.
2078 *
2079 * Arguments:
2080 *	ldc_handle	- LDC handle for the channel this instance of vdc uses
2081 *	pkt		- address of LDC message to be sent
2082 *	msglen		- the size of the message being sent. When the function
2083 *			  returns, this contains the number of bytes written.
2084 *
2085 * Return Code:
2086 *	0		- Success.
2087 *	EINVAL		- pkt or msglen were NULL
2088 *	ECONNRESET	- The connection was not up.
2089 *	EWOULDBLOCK	- LDC queue is full
2090 *	xxx		- other error codes returned by ldc_write
2091 */
2092static int
2093vdc_send(vdc_t *vdc, caddr_t pkt, size_t *msglen)
2094{
2095	size_t	size = 0;
2096	int	status = 0;
2097	clock_t delay_ticks;
2098
2099	ASSERT(vdc != NULL);
2100	ASSERT(mutex_owned(&vdc->lock));
2101	ASSERT(msglen != NULL);
2102	ASSERT(*msglen != 0);
2103
2104#ifdef DEBUG
2105	vdc_decode_tag(vdc, (vio_msg_t *)(uintptr_t)pkt);
2106#endif
2107	/*
2108	 * Wait indefinitely to send if channel
2109	 * is busy, but bail out if we succeed or
2110	 * if the channel closes or is reset.
2111	 */
2112	delay_ticks = vdc_hz_min_ldc_delay;
2113	do {
2114		size = *msglen;
2115		status = ldc_write(vdc->curr_server->ldc_handle, pkt, &size);
2116		if (status == EWOULDBLOCK) {
2117			delay(delay_ticks);
2118			/* geometric backoff */
2119			delay_ticks *= 2;
2120			if (delay_ticks > vdc_hz_max_ldc_delay)
2121				delay_ticks = vdc_hz_max_ldc_delay;
2122		}
2123	} while (status == EWOULDBLOCK);
2124
2125	/* if LDC had serious issues --- reset vdc state */
2126	if (status == EIO || status == ECONNRESET) {
2127		/* LDC had serious issues --- reset vdc state */
2128		mutex_enter(&vdc->read_lock);
2129		if ((vdc->read_state == VDC_READ_WAITING) ||
2130		    (vdc->read_state == VDC_READ_RESET))
2131			cv_signal(&vdc->read_cv);
2132		vdc->read_state = VDC_READ_RESET;
2133		mutex_exit(&vdc->read_lock);
2134
2135		/* wake up any waiters in the reset thread */
2136		if (vdc->state == VDC_STATE_INIT_WAITING) {
2137			DMSG(vdc, 0, "[%d] write reset - "
2138			    "vdc is resetting ..\n", vdc->instance);
2139			vdc->state = VDC_STATE_RESETTING;
2140			cv_signal(&vdc->initwait_cv);
2141		}
2142
2143		return (ECONNRESET);
2144	}
2145
2146	/* return the last size written */
2147	*msglen = size;
2148
2149	return (status);
2150}
2151
2152/*
2153 * Function:
2154 *	vdc_get_md_node
2155 *
2156 * Description:
2157 *	Get the MD, the device node for the given disk instance. The
2158 *	caller is responsible for cleaning up the reference to the
2159 *	returned MD (mdpp) by calling md_fini_handle().
2160 *
2161 * Arguments:
2162 *	dip	- dev info pointer for this instance of the device driver.
2163 *	mdpp	- the returned MD.
2164 *	vd_nodep - the returned device node.
2165 *
2166 * Return Code:
2167 *	0	- Success.
2168 *	ENOENT	- Expected node or property did not exist.
2169 *	ENXIO	- Unexpected error communicating with MD framework
2170 */
2171static int
2172vdc_get_md_node(dev_info_t *dip, md_t **mdpp, mde_cookie_t *vd_nodep)
2173{
2174	int		status = ENOENT;
2175	char		*node_name = NULL;
2176	md_t		*mdp = NULL;
2177	int		num_nodes;
2178	int		num_vdevs;
2179	mde_cookie_t	rootnode;
2180	mde_cookie_t	*listp = NULL;
2181	boolean_t	found_inst = B_FALSE;
2182	int		listsz;
2183	int		idx;
2184	uint64_t	md_inst;
2185	int		obp_inst;
2186	int		instance = ddi_get_instance(dip);
2187
2188	/*
2189	 * Get the OBP instance number for comparison with the MD instance
2190	 *
2191	 * The "cfg-handle" property of a vdc node in an MD contains the MD's
2192	 * notion of "instance", or unique identifier, for that node; OBP
2193	 * stores the value of the "cfg-handle" MD property as the value of
2194	 * the "reg" property on the node in the device tree it builds from
2195	 * the MD and passes to Solaris.  Thus, we look up the devinfo node's
2196	 * "reg" property value to uniquely identify this device instance.
2197	 * If the "reg" property cannot be found, the device tree state is
2198	 * presumably so broken that there is no point in continuing.
2199	 */
2200	if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, OBP_REG)) {
2201		cmn_err(CE_WARN, "'%s' property does not exist", OBP_REG);
2202		return (ENOENT);
2203	}
2204	obp_inst = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
2205	    OBP_REG, -1);
2206	DMSGX(1, "[%d] OBP inst=%d\n", instance, obp_inst);
2207
2208	/*
2209	 * We now walk the MD nodes to find the node for this vdisk.
2210	 */
2211	if ((mdp = md_get_handle()) == NULL) {
2212		cmn_err(CE_WARN, "unable to init machine description");
2213		return (ENXIO);
2214	}
2215
2216	num_nodes = md_node_count(mdp);
2217	ASSERT(num_nodes > 0);
2218
2219	listsz = num_nodes * sizeof (mde_cookie_t);
2220
2221	/* allocate memory for nodes */
2222	listp = kmem_zalloc(listsz, KM_SLEEP);
2223
2224	rootnode = md_root_node(mdp);
2225	ASSERT(rootnode != MDE_INVAL_ELEM_COOKIE);
2226
2227	/*
2228	 * Search for all the virtual devices, we will then check to see which
2229	 * ones are disk nodes.
2230	 */
2231	num_vdevs = md_scan_dag(mdp, rootnode,
2232	    md_find_name(mdp, VDC_MD_VDEV_NAME),
2233	    md_find_name(mdp, "fwd"), listp);
2234
2235	if (num_vdevs <= 0) {
2236		cmn_err(CE_NOTE, "No '%s' node found", VDC_MD_VDEV_NAME);
2237		status = ENOENT;
2238		goto done;
2239	}
2240
2241	DMSGX(1, "[%d] num_vdevs=%d\n", instance, num_vdevs);
2242	for (idx = 0; idx < num_vdevs; idx++) {
2243		status = md_get_prop_str(mdp, listp[idx], "name", &node_name);
2244		if ((status != 0) || (node_name == NULL)) {
2245			cmn_err(CE_NOTE, "Unable to get name of node type '%s'"
2246			    ": err %d", VDC_MD_VDEV_NAME, status);
2247			continue;
2248		}
2249
2250		DMSGX(1, "[%d] Found node '%s'\n", instance, node_name);
2251		if (strcmp(VDC_MD_DISK_NAME, node_name) == 0) {
2252			status = md_get_prop_val(mdp, listp[idx],
2253			    VDC_MD_CFG_HDL, &md_inst);
2254			DMSGX(1, "[%d] vdc inst in MD=%lx\n",
2255			    instance, md_inst);
2256			if ((status == 0) && (md_inst == obp_inst)) {
2257				found_inst = B_TRUE;
2258				break;
2259			}
2260		}
2261	}
2262
2263	if (!found_inst) {
2264		DMSGX(0, "Unable to find correct '%s' node", VDC_MD_DISK_NAME);
2265		status = ENOENT;
2266		goto done;
2267	}
2268	DMSGX(0, "[%d] MD inst=%lx\n", instance, md_inst);
2269
2270	*vd_nodep = listp[idx];
2271	*mdpp = mdp;
2272done:
2273	kmem_free(listp, listsz);
2274	return (status);
2275}
2276
2277/*
2278 * Function:
2279 *	vdc_init_ports
2280 *
2281 * Description:
2282 *	Initialize all the ports for this vdisk instance.
2283 *
2284 * Arguments:
2285 *	vdc	- soft state pointer for this instance of the device driver.
2286 *	mdp	- md pointer
2287 *	vd_nodep - device md node.
2288 *
2289 * Return Code:
2290 *	0	- Success.
2291 *	ENOENT	- Expected node or property did not exist.
2292 */
2293static int
2294vdc_init_ports(vdc_t *vdc, md_t *mdp, mde_cookie_t vd_nodep)
2295{
2296	int		status = 0;
2297	int		idx;
2298	int		num_nodes;
2299	int		num_vports;
2300	int		num_chans;
2301	int		listsz;
2302	mde_cookie_t	vd_port;
2303	mde_cookie_t	*chanp = NULL;
2304	mde_cookie_t	*portp = NULL;
2305	vdc_server_t	*srvr;
2306	vdc_server_t	*prev_srvr = NULL;
2307
2308	/*
2309	 * We now walk the MD nodes to find the port nodes for this vdisk.
2310	 */
2311	num_nodes = md_node_count(mdp);
2312	ASSERT(num_nodes > 0);
2313
2314	listsz = num_nodes * sizeof (mde_cookie_t);
2315
2316	/* allocate memory for nodes */
2317	portp = kmem_zalloc(listsz, KM_SLEEP);
2318	chanp = kmem_zalloc(listsz, KM_SLEEP);
2319
2320	num_vports = md_scan_dag(mdp, vd_nodep,
2321	    md_find_name(mdp, VDC_MD_PORT_NAME),
2322	    md_find_name(mdp, "fwd"), portp);
2323	if (num_vports == 0) {
2324		DMSGX(0, "Found no '%s' node for '%s' port\n",
2325		    VDC_MD_PORT_NAME, VDC_MD_VDEV_NAME);
2326		status = ENOENT;
2327		goto done;
2328	}
2329
2330	DMSGX(1, "Found %d '%s' node(s) for '%s' port\n",
2331	    num_vports, VDC_MD_PORT_NAME, VDC_MD_VDEV_NAME);
2332
2333	vdc->num_servers = 0;
2334	for (idx = 0; idx < num_vports; idx++) {
2335
2336		/* initialize this port */
2337		vd_port = portp[idx];
2338		srvr = kmem_zalloc(sizeof (vdc_server_t), KM_SLEEP);
2339		srvr->vdcp = vdc;
2340
2341		/* get port id */
2342		if (md_get_prop_val(mdp, vd_port, VDC_MD_ID, &srvr->id) != 0) {
2343			cmn_err(CE_NOTE, "vDisk port '%s' property not found",
2344			    VDC_MD_ID);
2345			kmem_free(srvr, sizeof (vdc_server_t));
2346			continue;
2347		}
2348
2349		/* set the connection timeout */
2350		if (md_get_prop_val(mdp, vd_port, VDC_MD_TIMEOUT,
2351		    &srvr->ctimeout) != 0) {
2352			srvr->ctimeout = 0;
2353		}
2354
2355		/* get the ldc id */
2356		num_chans = md_scan_dag(mdp, vd_port,
2357		    md_find_name(mdp, VDC_MD_CHAN_NAME),
2358		    md_find_name(mdp, "fwd"), chanp);
2359
2360		/* expecting at least one channel */
2361		if (num_chans <= 0) {
2362			cmn_err(CE_NOTE, "No '%s' node for '%s' port",
2363			    VDC_MD_CHAN_NAME, VDC_MD_VDEV_NAME);
2364			kmem_free(srvr, sizeof (vdc_server_t));
2365			continue;
2366		} else if (num_chans != 1) {
2367			DMSGX(0, "Expected 1 '%s' node for '%s' port, "
2368			    "found %d\n", VDC_MD_CHAN_NAME, VDC_MD_VDEV_NAME,
2369			    num_chans);
2370		}
2371
2372		/*
2373		 * We use the first channel found (index 0), irrespective of how
2374		 * many are there in total.
2375		 */
2376		if (md_get_prop_val(mdp, chanp[0], VDC_MD_ID,
2377		    &srvr->ldc_id) != 0) {
2378			cmn_err(CE_NOTE, "Channel '%s' property not found",
2379			    VDC_MD_ID);
2380			kmem_free(srvr, sizeof (vdc_server_t));
2381			continue;
2382		}
2383
2384		/*
2385		 * now initialise LDC channel which will be used to
2386		 * communicate with this server
2387		 */
2388		if (vdc_do_ldc_init(vdc, srvr) != 0) {
2389			kmem_free(srvr, sizeof (vdc_server_t));
2390			continue;
2391		}
2392
2393		/* add server to list */
2394		if (prev_srvr)
2395			prev_srvr->next = srvr;
2396		else
2397			vdc->server_list = srvr;
2398
2399		prev_srvr = srvr;
2400
2401		/* inc numbers of servers */
2402		vdc->num_servers++;
2403	}
2404
2405	/*
2406	 * Adjust the max number of handshake retries to match
2407	 * the number of vdisk servers.
2408	 */
2409	if (vdc_hshake_retries < vdc->num_servers)
2410		vdc_hshake_retries = vdc->num_servers;
2411
2412	/* pick first server as current server */
2413	if (vdc->server_list != NULL) {
2414		vdc->curr_server = vdc->server_list;
2415		status = 0;
2416	} else {
2417		status = ENOENT;
2418	}
2419
2420done:
2421	kmem_free(chanp, listsz);
2422	kmem_free(portp, listsz);
2423	return (status);
2424}
2425
2426
2427/*
2428 * Function:
2429 *	vdc_do_ldc_up
2430 *
2431 * Description:
2432 *	Bring the channel for the current server up.
2433 *
2434 * Arguments:
2435 *	vdc	- soft state pointer for this instance of the device driver.
2436 *
2437 * Return Code:
2438 *	0		- Success.
2439 *	EINVAL		- Driver is detaching / LDC error
2440 *	ECONNREFUSED	- Other end is not listening
2441 */
2442static int
2443vdc_do_ldc_up(vdc_t *vdc)
2444{
2445	int		status;
2446	ldc_status_t	ldc_state;
2447
2448	ASSERT(MUTEX_HELD(&vdc->lock));
2449
2450	DMSG(vdc, 0, "[%d] Bringing up channel %lx\n",
2451	    vdc->instance, vdc->curr_server->ldc_id);
2452
2453	if (vdc->lifecycle == VDC_LC_DETACHING)
2454		return (EINVAL);
2455
2456	if ((status = ldc_up(vdc->curr_server->ldc_handle)) != 0) {
2457		switch (status) {
2458		case ECONNREFUSED:	/* listener not ready at other end */
2459			DMSG(vdc, 0, "[%d] ldc_up(%lx,...) return %d\n",
2460			    vdc->instance, vdc->curr_server->ldc_id, status);
2461			status = 0;
2462			break;
2463		default:
2464			DMSG(vdc, 0, "[%d] Failed to bring up LDC: "
2465			    "channel=%ld, err=%d", vdc->instance,
2466			    vdc->curr_server->ldc_id, status);
2467			break;
2468		}
2469	}
2470
2471	if (ldc_status(vdc->curr_server->ldc_handle, &ldc_state) == 0) {
2472		vdc->curr_server->ldc_state = ldc_state;
2473		if (ldc_state == LDC_UP) {
2474			DMSG(vdc, 0, "[%d] LDC channel already up\n",
2475			    vdc->instance);
2476			vdc->seq_num = 1;
2477			vdc->seq_num_reply = 0;
2478		}
2479	}
2480
2481	return (status);
2482}
2483
2484/*
2485 * Function:
2486 *	vdc_terminate_ldc()
2487 *
2488 * Description:
2489 *
2490 * Arguments:
2491 *	vdc	- soft state pointer for this instance of the device driver.
2492 *	srvr	- vdc per-server info structure
2493 *
2494 * Return Code:
2495 *	None
2496 */
2497static void
2498vdc_terminate_ldc(vdc_t *vdc, vdc_server_t *srvr)
2499{
2500	int	instance = ddi_get_instance(vdc->dip);
2501
2502	if (srvr->state & VDC_LDC_OPEN) {
2503		DMSG(vdc, 0, "[%d] ldc_close()\n", instance);
2504		(void) ldc_close(srvr->ldc_handle);
2505	}
2506	if (srvr->state & VDC_LDC_CB) {
2507		DMSG(vdc, 0, "[%d] ldc_unreg_callback()\n", instance);
2508		(void) ldc_unreg_callback(srvr->ldc_handle);
2509	}
2510	if (srvr->state & VDC_LDC_INIT) {
2511		DMSG(vdc, 0, "[%d] ldc_fini()\n", instance);
2512		(void) ldc_fini(srvr->ldc_handle);
2513		srvr->ldc_handle = NULL;
2514	}
2515
2516	srvr->state &= ~(VDC_LDC_INIT | VDC_LDC_CB | VDC_LDC_OPEN);
2517}
2518
2519/*
2520 * Function:
2521 *	vdc_fini_ports()
2522 *
2523 * Description:
2524 *	Finalize all ports by closing the channel associated with each
2525 *	port and also freeing the server structure.
2526 *
2527 * Arguments:
2528 *	vdc	- soft state pointer for this instance of the device driver.
2529 *
2530 * Return Code:
2531 *	None
2532 */
2533static void
2534vdc_fini_ports(vdc_t *vdc)
2535{
2536	int		instance = ddi_get_instance(vdc->dip);
2537	vdc_server_t	*srvr, *prev_srvr;
2538
2539	ASSERT(vdc != NULL);
2540	ASSERT(mutex_owned(&vdc->lock));
2541
2542	DMSG(vdc, 0, "[%d] initialized=%x\n", instance, vdc->initialized);
2543
2544	srvr = vdc->server_list;
2545
2546	while (srvr) {
2547
2548		vdc_terminate_ldc(vdc, srvr);
2549
2550		/* next server */
2551		prev_srvr = srvr;
2552		srvr = srvr->next;
2553
2554		/* free server */
2555		kmem_free(prev_srvr, sizeof (vdc_server_t));
2556	}
2557
2558	vdc->server_list = NULL;
2559}
2560
2561/* -------------------------------------------------------------------------- */
2562
2563/*
2564 * Descriptor Ring helper routines
2565 */
2566
2567/*
2568 * Function:
2569 *	vdc_init_descriptor_ring()
2570 *
2571 * Description:
2572 *
2573 * Arguments:
2574 *	vdc	- soft state pointer for this instance of the device driver.
2575 *
2576 * Return Code:
2577 *	0	- Success
2578 */
2579static int
2580vdc_init_descriptor_ring(vdc_t *vdc)
2581{
2582	vd_dring_entry_t	*dep = NULL;	/* DRing Entry pointer */
2583	int	status = 0;
2584	int	i;
2585
2586	DMSG(vdc, 0, "[%d] initialized=%x\n", vdc->instance, vdc->initialized);
2587
2588	ASSERT(vdc != NULL);
2589	ASSERT(mutex_owned(&vdc->lock));
2590
2591	/* ensure we have enough room to store max sized block */
2592	ASSERT(maxphys <= VD_MAX_BLOCK_SIZE);
2593
2594	if ((vdc->initialized & VDC_DRING_INIT) == 0) {
2595		DMSG(vdc, 0, "[%d] ldc_mem_dring_create\n", vdc->instance);
2596		/*
2597		 * Calculate the maximum block size we can transmit using one
2598		 * Descriptor Ring entry from the attributes returned by the
2599		 * vDisk server. This is subject to a minimum of 'maxphys'
2600		 * as we do not have the capability to split requests over
2601		 * multiple DRing entries.
2602		 */
2603		if ((vdc->max_xfer_sz * vdc->block_size) < maxphys) {
2604			DMSG(vdc, 0, "[%d] using minimum DRing size\n",
2605			    vdc->instance);
2606			vdc->dring_max_cookies = maxphys / PAGESIZE;
2607		} else {
2608			vdc->dring_max_cookies =
2609			    (vdc->max_xfer_sz * vdc->block_size) / PAGESIZE;
2610		}
2611		vdc->dring_entry_size = (sizeof (vd_dring_entry_t) +
2612		    (sizeof (ldc_mem_cookie_t) *
2613		    (vdc->dring_max_cookies - 1)));
2614		vdc->dring_len = VD_DRING_LEN;
2615
2616		status = ldc_mem_dring_create(vdc->dring_len,
2617		    vdc->dring_entry_size, &vdc->dring_hdl);
2618		if ((vdc->dring_hdl == NULL) || (status != 0)) {
2619			DMSG(vdc, 0, "[%d] Descriptor ring creation failed",
2620			    vdc->instance);
2621			return (status);
2622		}
2623		vdc->initialized |= VDC_DRING_INIT;
2624	}
2625
2626	if ((vdc->initialized & VDC_DRING_BOUND) == 0) {
2627		DMSG(vdc, 0, "[%d] ldc_mem_dring_bind\n", vdc->instance);
2628		vdc->dring_cookie =
2629		    kmem_zalloc(sizeof (ldc_mem_cookie_t), KM_SLEEP);
2630
2631		status = ldc_mem_dring_bind(vdc->curr_server->ldc_handle,
2632		    vdc->dring_hdl,
2633		    LDC_SHADOW_MAP|LDC_DIRECT_MAP, LDC_MEM_RW,
2634		    &vdc->dring_cookie[0],
2635		    &vdc->dring_cookie_count);
2636		if (status != 0) {
2637			DMSG(vdc, 0, "[%d] Failed to bind descriptor ring "
2638			    "(%lx) to channel (%lx) status=%d\n",
2639			    vdc->instance, vdc->dring_hdl,
2640			    vdc->curr_server->ldc_handle, status);
2641			return (status);
2642		}
2643		ASSERT(vdc->dring_cookie_count == 1);
2644		vdc->initialized |= VDC_DRING_BOUND;
2645	}
2646
2647	status = ldc_mem_dring_info(vdc->dring_hdl, &vdc->dring_mem_info);
2648	if (status != 0) {
2649		DMSG(vdc, 0,
2650		    "[%d] Failed to get info for descriptor ring (%lx)\n",
2651		    vdc->instance, vdc->dring_hdl);
2652		return (status);
2653	}
2654
2655	if ((vdc->initialized & VDC_DRING_LOCAL) == 0) {
2656		DMSG(vdc, 0, "[%d] local dring\n", vdc->instance);
2657
2658		/* Allocate the local copy of this dring */
2659		vdc->local_dring =
2660		    kmem_zalloc(vdc->dring_len * sizeof (vdc_local_desc_t),
2661		    KM_SLEEP);
2662		vdc->initialized |= VDC_DRING_LOCAL;
2663	}
2664
2665	/*
2666	 * Mark all DRing entries as free and initialize the private
2667	 * descriptor's memory handles. If any entry is initialized,
2668	 * we need to free it later so we set the bit in 'initialized'
2669	 * at the start.
2670	 */
2671	vdc->initialized |= VDC_DRING_ENTRY;
2672	for (i = 0; i < vdc->dring_len; i++) {
2673		dep = VDC_GET_DRING_ENTRY_PTR(vdc, i);
2674		dep->hdr.dstate = VIO_DESC_FREE;
2675
2676		status = ldc_mem_alloc_handle(vdc->curr_server->ldc_handle,
2677		    &vdc->local_dring[i].desc_mhdl);
2678		if (status != 0) {
2679			DMSG(vdc, 0, "![%d] Failed to alloc mem handle for"
2680			    " descriptor %d", vdc->instance, i);
2681			return (status);
2682		}
2683		vdc->local_dring[i].is_free = B_TRUE;
2684		vdc->local_dring[i].dep = dep;
2685	}
2686
2687	/* Initialize the starting index */
2688	vdc->dring_curr_idx = 0;
2689
2690	return (status);
2691}
2692
2693/*
2694 * Function:
2695 *	vdc_destroy_descriptor_ring()
2696 *
2697 * Description:
2698 *
2699 * Arguments:
2700 *	vdc	- soft state pointer for this instance of the device driver.
2701 *
2702 * Return Code:
2703 *	None
2704 */
2705static void
2706vdc_destroy_descriptor_ring(vdc_t *vdc)
2707{
2708	vdc_local_desc_t	*ldep = NULL;	/* Local Dring Entry Pointer */
2709	ldc_mem_handle_t	mhdl = NULL;
2710	ldc_mem_info_t		minfo;
2711	int			status = -1;
2712	int			i;	/* loop */
2713
2714	ASSERT(vdc != NULL);
2715	ASSERT(mutex_owned(&vdc->lock));
2716
2717	DMSG(vdc, 0, "[%d] Entered\n", vdc->instance);
2718
2719	if (vdc->initialized & VDC_DRING_ENTRY) {
2720		DMSG(vdc, 0,
2721		    "[%d] Removing Local DRing entries\n", vdc->instance);
2722		for (i = 0; i < vdc->dring_len; i++) {
2723			ldep = &vdc->local_dring[i];
2724			mhdl = ldep->desc_mhdl;
2725
2726			if (mhdl == NULL)
2727				continue;
2728
2729			if ((status = ldc_mem_info(mhdl, &minfo)) != 0) {
2730				DMSG(vdc, 0,
2731				    "ldc_mem_info returned an error: %d\n",
2732				    status);
2733
2734				/*
2735				 * This must mean that the mem handle
2736				 * is not valid. Clear it out so that
2737				 * no one tries to use it.
2738				 */
2739				ldep->desc_mhdl = NULL;
2740				continue;
2741			}
2742
2743			if (minfo.status == LDC_BOUND) {
2744				(void) ldc_mem_unbind_handle(mhdl);
2745			}
2746
2747			(void) ldc_mem_free_handle(mhdl);
2748
2749			ldep->desc_mhdl = NULL;
2750		}
2751		vdc->initialized &= ~VDC_DRING_ENTRY;
2752	}
2753
2754	if (vdc->initialized & VDC_DRING_LOCAL) {
2755		DMSG(vdc, 0, "[%d] Freeing Local DRing\n", vdc->instance);
2756		kmem_free(vdc->local_dring,
2757		    vdc->dring_len * sizeof (vdc_local_desc_t));
2758		vdc->initialized &= ~VDC_DRING_LOCAL;
2759	}
2760
2761	if (vdc->initialized & VDC_DRING_BOUND) {
2762		DMSG(vdc, 0, "[%d] Unbinding DRing\n", vdc->instance);
2763		status = ldc_mem_dring_unbind(vdc->dring_hdl);
2764		if (status == 0) {
2765			vdc->initialized &= ~VDC_DRING_BOUND;
2766		} else {
2767			DMSG(vdc, 0, "[%d] Error %d unbinding DRing %lx",
2768			    vdc->instance, status, vdc->dring_hdl);
2769		}
2770		kmem_free(vdc->dring_cookie, sizeof (ldc_mem_cookie_t));
2771	}
2772
2773	if (vdc->initialized & VDC_DRING_INIT) {
2774		DMSG(vdc, 0, "[%d] Destroying DRing\n", vdc->instance);
2775		status = ldc_mem_dring_destroy(vdc->dring_hdl);
2776		if (status == 0) {
2777			vdc->dring_hdl = NULL;
2778			bzero(&vdc->dring_mem_info, sizeof (ldc_mem_info_t));
2779			vdc->initialized &= ~VDC_DRING_INIT;
2780		} else {
2781			DMSG(vdc, 0, "[%d] Error %d destroying DRing (%lx)",
2782			    vdc->instance, status, vdc->dring_hdl);
2783		}
2784	}
2785}
2786
2787/*
2788 * Function:
2789 *	vdc_map_to_shared_dring()
2790 *
2791 * Description:
2792 *	Copy contents of the local descriptor to the shared
2793 *	memory descriptor.
2794 *
2795 * Arguments:
2796 *	vdcp	- soft state pointer for this instance of the device driver.
2797 *	idx	- descriptor ring index
2798 *
2799 * Return Code:
2800 *	None
2801 */
2802static int
2803vdc_map_to_shared_dring(vdc_t *vdcp, int idx)
2804{
2805	vdc_local_desc_t	*ldep;
2806	vd_dring_entry_t	*dep;
2807	int			rv;
2808
2809	ldep = &(vdcp->local_dring[idx]);
2810
2811	/* for now leave in the old pop_mem_hdl stuff */
2812	if (ldep->nbytes > 0) {
2813		rv = vdc_populate_mem_hdl(vdcp, ldep);
2814		if (rv) {
2815			DMSG(vdcp, 0, "[%d] Cannot populate mem handle\n",
2816			    vdcp->instance);
2817			return (rv);
2818		}
2819	}
2820
2821	/*
2822	 * fill in the data details into the DRing
2823	 */
2824	dep = ldep->dep;
2825	ASSERT(dep != NULL);
2826
2827	dep->payload.req_id = VDC_GET_NEXT_REQ_ID(vdcp);
2828	dep->payload.operation = ldep->operation;
2829	dep->payload.addr = ldep->offset;
2830	dep->payload.nbytes = ldep->nbytes;
2831	dep->payload.status = (uint32_t)-1;	/* vds will set valid value */
2832	dep->payload.slice = ldep->slice;
2833	dep->hdr.dstate = VIO_DESC_READY;
2834	dep->hdr.ack = 1;		/* request an ACK for every message */
2835
2836	return (0);
2837}
2838
2839/*
2840 * Function:
2841 *	vdc_send_request
2842 *
2843 * Description:
2844 *	This routine writes the data to be transmitted to vds into the
2845 *	descriptor, notifies vds that the ring has been updated and
2846 *	then waits for the request to be processed.
2847 *
2848 * Arguments:
2849 *	vdcp	  - the soft state pointer
2850 *	operation - operation we want vds to perform (VD_OP_XXX)
2851 *	addr	  - address of data buf to be read/written.
2852 *	nbytes	  - number of bytes to read/write
2853 *	slice	  - the disk slice this request is for
2854 *	offset	  - relative disk offset
2855 *	cb_type   - type of call - STRATEGY or SYNC
2856 *	cb_arg	  - parameter to be sent to server (depends on VD_OP_XXX type)
2857 *			. mode for ioctl(9e)
2858 *			. LP64 diskaddr_t (block I/O)
2859 *	dir	  - direction of operation (READ/WRITE/BOTH)
2860 *
2861 * Return Codes:
2862 *	0
2863 *	ENXIO
2864 */
2865static int
2866vdc_send_request(vdc_t *vdcp, int operation, caddr_t addr,
2867    size_t nbytes, int slice, diskaddr_t offset, int cb_type,
2868    void *cb_arg, vio_desc_direction_t dir)
2869{
2870	int	rv = 0;
2871
2872	ASSERT(vdcp != NULL);
2873	ASSERT(slice == VD_SLICE_NONE || slice < V_NUMPAR);
2874
2875	mutex_enter(&vdcp->lock);
2876
2877	/*
2878	 * If this is a block read/write operation we update the I/O statistics
2879	 * to indicate that the request is being put on the waitq to be
2880	 * serviced.
2881	 *
2882	 * We do it here (a common routine for both synchronous and strategy
2883	 * calls) for performance reasons - we are already holding vdc->lock
2884	 * so there is no extra locking overhead. We would have to explicitly
2885	 * grab the 'lock' mutex to update the stats if we were to do this
2886	 * higher up the stack in vdc_strategy() et. al.
2887	 */
2888	if ((operation == VD_OP_BREAD) || (operation == VD_OP_BWRITE)) {
2889		DTRACE_IO1(start, buf_t *, cb_arg);
2890		VD_KSTAT_WAITQ_ENTER(vdcp);
2891	}
2892
2893	do {
2894		while (vdcp->state != VDC_STATE_RUNNING) {
2895
2896			/* return error if detaching */
2897			if (vdcp->state == VDC_STATE_DETACH) {
2898				rv = ENXIO;
2899				goto done;
2900			}
2901
2902			/* fail request if connection timeout is reached */
2903			if (vdcp->ctimeout_reached) {
2904				rv = EIO;
2905				goto done;
2906			}
2907
2908			/*
2909			 * If we are panicking and the disk is not ready then
2910			 * we can't send any request because we can't complete
2911			 * the handshake now.
2912			 */
2913			if (ddi_in_panic()) {
2914				rv = EIO;
2915				goto done;
2916			}
2917
2918			cv_wait(&vdcp->running_cv, &vdcp->lock);
2919		}
2920
2921	} while (vdc_populate_descriptor(vdcp, operation, addr,
2922	    nbytes, slice, offset, cb_type, cb_arg, dir));
2923
2924done:
2925	/*
2926	 * If this is a block read/write we update the I/O statistics kstat
2927	 * to indicate that this request has been placed on the queue for
2928	 * processing (i.e sent to the vDisk server) - iostat(1M) will
2929	 * report the time waiting for the vDisk server under the %b column
2930	 * In the case of an error we simply take it off the wait queue.
2931	 */
2932	if ((operation == VD_OP_BREAD) || (operation == VD_OP_BWRITE)) {
2933		if (rv == 0) {
2934			VD_KSTAT_WAITQ_TO_RUNQ(vdcp);
2935			DTRACE_PROBE1(send, buf_t *, cb_arg);
2936		} else {
2937			VD_UPDATE_ERR_STATS(vdcp, vd_transerrs);
2938			VD_KSTAT_WAITQ_EXIT(vdcp);
2939			DTRACE_IO1(done, buf_t *, cb_arg);
2940		}
2941	}
2942
2943	mutex_exit(&vdcp->lock);
2944
2945	return (rv);
2946}
2947
2948
2949/*
2950 * Function:
2951 *	vdc_populate_descriptor
2952 *
2953 * Description:
2954 *	This routine writes the data to be transmitted to vds into the
2955 *	descriptor, notifies vds that the ring has been updated and
2956 *	then waits for the request to be processed.
2957 *
2958 * Arguments:
2959 *	vdcp	  - the soft state pointer
2960 *	operation - operation we want vds to perform (VD_OP_XXX)
2961 *	addr	  - address of data buf to be read/written.
2962 *	nbytes	  - number of bytes to read/write
2963 *	slice	  - the disk slice this request is for
2964 *	offset	  - relative disk offset
2965 *	cb_type   - type of call - STRATEGY or SYNC
2966 *	cb_arg	  - parameter to be sent to server (depends on VD_OP_XXX type)
2967 *			. mode for ioctl(9e)
2968 *			. LP64 diskaddr_t (block I/O)
2969 *	dir	  - direction of operation (READ/WRITE/BOTH)
2970 *
2971 * Return Codes:
2972 *	0
2973 *	EAGAIN
2974 *	ECONNRESET
2975 *	ENXIO
2976 */
2977static int
2978vdc_populate_descriptor(vdc_t *vdcp, int operation, caddr_t addr,
2979    size_t nbytes, int slice, diskaddr_t offset, int cb_type,
2980    void *cb_arg, vio_desc_direction_t dir)
2981{
2982	vdc_local_desc_t	*local_dep = NULL; /* Local Dring Pointer */
2983	int			idx;		/* Index of DRing entry used */
2984	int			next_idx;
2985	vio_dring_msg_t		dmsg;
2986	size_t			msglen;
2987	int			rv;
2988
2989	ASSERT(MUTEX_HELD(&vdcp->lock));
2990	vdcp->threads_pending++;
2991loop:
2992	DMSG(vdcp, 2, ": dring_curr_idx = %d\n", vdcp->dring_curr_idx);
2993
2994	/* Get next available D-Ring entry */
2995	idx = vdcp->dring_curr_idx;
2996	local_dep = &(vdcp->local_dring[idx]);
2997
2998	if (!local_dep->is_free) {
2999		DMSG(vdcp, 2, "[%d]: dring full - waiting for space\n",
3000		    vdcp->instance);
3001		cv_wait(&vdcp->dring_free_cv, &vdcp->lock);
3002		if (vdcp->state == VDC_STATE_RUNNING ||
3003		    vdcp->state == VDC_STATE_HANDLE_PENDING) {
3004			goto loop;
3005		}
3006		vdcp->threads_pending--;
3007		return (ECONNRESET);
3008	}
3009
3010	next_idx = idx + 1;
3011	if (next_idx >= vdcp->dring_len)
3012		next_idx = 0;
3013	vdcp->dring_curr_idx = next_idx;
3014
3015	ASSERT(local_dep->is_free);
3016
3017	local_dep->operation = operation;
3018	local_dep->addr = addr;
3019	local_dep->nbytes = nbytes;
3020	local_dep->slice = slice;
3021	local_dep->offset = offset;
3022	local_dep->cb_type = cb_type;
3023	local_dep->cb_arg = cb_arg;
3024	local_dep->dir = dir;
3025
3026	local_dep->is_free = B_FALSE;
3027
3028	rv = vdc_map_to_shared_dring(vdcp, idx);
3029	if (rv) {
3030		DMSG(vdcp, 0, "[%d]: cannot bind memory - waiting ..\n",
3031		    vdcp->instance);
3032		/* free the descriptor */
3033		local_dep->is_free = B_TRUE;
3034		vdcp->dring_curr_idx = idx;
3035		cv_wait(&vdcp->membind_cv, &vdcp->lock);
3036		if (vdcp->state == VDC_STATE_RUNNING ||
3037		    vdcp->state == VDC_STATE_HANDLE_PENDING) {
3038			goto loop;
3039		}
3040		vdcp->threads_pending--;
3041		return (ECONNRESET);
3042	}
3043
3044	/*
3045	 * Send a msg with the DRing details to vds
3046	 */
3047	VIO_INIT_DRING_DATA_TAG(dmsg);
3048	VDC_INIT_DRING_DATA_MSG_IDS(dmsg, vdcp);
3049	dmsg.dring_ident = vdcp->dring_ident;
3050	dmsg.start_idx = idx;
3051	dmsg.end_idx = idx;
3052	vdcp->seq_num++;
3053
3054	DTRACE_PROBE2(populate, int, vdcp->instance,
3055	    vdc_local_desc_t *, local_dep);
3056	DMSG(vdcp, 2, "ident=0x%lx, st=%u, end=%u, seq=%ld\n",
3057	    vdcp->dring_ident, dmsg.start_idx, dmsg.end_idx, dmsg.seq_num);
3058
3059	/*
3060	 * note we're still holding the lock here to
3061	 * make sure the message goes out in order !!!...
3062	 */
3063	msglen = sizeof (dmsg);
3064	rv = vdc_send(vdcp, (caddr_t)&dmsg, &msglen);
3065	switch (rv) {
3066	case ECONNRESET:
3067		/*
3068		 * vdc_send initiates the reset on failure.
3069		 * Since the transaction has already been put
3070		 * on the local dring, it will automatically get
3071		 * retried when the channel is reset. Given that,
3072		 * it is ok to just return success even though the
3073		 * send failed.
3074		 */
3075		rv = 0;
3076		break;
3077
3078	case 0: /* EOK */
3079		DMSG(vdcp, 1, "sent via LDC: rv=%d\n", rv);
3080		break;
3081
3082	default:
3083		goto cleanup_and_exit;
3084	}
3085
3086	vdcp->threads_pending--;
3087	return (rv);
3088
3089cleanup_and_exit:
3090	DMSG(vdcp, 0, "unexpected error, rv=%d\n", rv);
3091	return (ENXIO);
3092}
3093
3094/*
3095 * Function:
3096 *	vdc_do_sync_op
3097 *
3098 * Description:
3099 * 	Wrapper around vdc_populate_descriptor that blocks until the
3100 * 	response to the message is available.
3101 *
3102 * Arguments:
3103 *	vdcp	  - the soft state pointer
3104 *	operation - operation we want vds to perform (VD_OP_XXX)
3105 *	addr	  - address of data buf to be read/written.
3106 *	nbytes	  - number of bytes to read/write
3107 *	slice	  - the disk slice this request is for
3108 *	offset	  - relative disk offset
3109 *	cb_type   - type of call - STRATEGY or SYNC
3110 *	cb_arg	  - parameter to be sent to server (depends on VD_OP_XXX type)
3111 *			. mode for ioctl(9e)
3112 *			. LP64 diskaddr_t (block I/O)
3113 *	dir	  - direction of operation (READ/WRITE/BOTH)
3114 *	rconflict - check for reservation conflict in case of failure
3115 *
3116 * rconflict should be set to B_TRUE by most callers. Callers invoking the
3117 * VD_OP_SCSICMD operation can set rconflict to B_FALSE if they check the
3118 * result of a successful operation with vd_scsi_status().
3119 *
3120 * Return Codes:
3121 *	0
3122 *	EAGAIN
3123 *	EFAULT
3124 *	ENXIO
3125 *	EIO
3126 */
3127static int
3128vdc_do_sync_op(vdc_t *vdcp, int operation, caddr_t addr, size_t nbytes,
3129    int slice, diskaddr_t offset, int cb_type, void *cb_arg,
3130    vio_desc_direction_t dir, boolean_t rconflict)
3131{
3132	int status;
3133	vdc_io_t *vio;
3134	boolean_t check_resv_conflict = B_FALSE;
3135
3136	ASSERT(cb_type == CB_SYNC);
3137
3138	/*
3139	 * Grab the lock, if blocked wait until the server
3140	 * response causes us to wake up again.
3141	 */
3142	mutex_enter(&vdcp->lock);
3143	vdcp->sync_op_cnt++;
3144	while (vdcp->sync_op_blocked && vdcp->state != VDC_STATE_DETACH)
3145		cv_wait(&vdcp->sync_blocked_cv, &vdcp->lock);
3146
3147	if (vdcp->state == VDC_STATE_DETACH) {
3148		cv_broadcast(&vdcp->sync_blocked_cv);
3149		vdcp->sync_op_cnt--;
3150		mutex_exit(&vdcp->lock);
3151		return (ENXIO);
3152	}
3153
3154	/* now block anyone other thread entering after us */
3155	vdcp->sync_op_blocked = B_TRUE;
3156	vdcp->sync_op_pending = B_TRUE;
3157	mutex_exit(&vdcp->lock);
3158
3159	status = vdc_send_request(vdcp, operation, addr,
3160	    nbytes, slice, offset, cb_type, cb_arg, dir);
3161
3162	mutex_enter(&vdcp->lock);
3163
3164	if (status != 0) {
3165		vdcp->sync_op_pending = B_FALSE;
3166	} else {
3167		/*
3168		 * block until our transaction completes.
3169		 * Also anyone else waiting also gets to go next.
3170		 */
3171		while (vdcp->sync_op_pending && vdcp->state != VDC_STATE_DETACH)
3172			cv_wait(&vdcp->sync_pending_cv, &vdcp->lock);
3173
3174		DMSG(vdcp, 2, ": operation returned %d\n",
3175		    vdcp->sync_op_status);
3176		if (vdcp->state == VDC_STATE_DETACH) {
3177			vdcp->sync_op_pending = B_FALSE;
3178			status = ENXIO;
3179		} else {
3180			status = vdcp->sync_op_status;
3181			if (status != 0 && vdcp->failfast_interval != 0) {
3182				/*
3183				 * Operation has failed and failfast is enabled.
3184				 * We need to check if the failure is due to a
3185				 * reservation conflict if this was requested.
3186				 */
3187				check_resv_conflict = rconflict;
3188			}
3189
3190		}
3191	}
3192
3193	vdcp->sync_op_status = 0;
3194	vdcp->sync_op_blocked = B_FALSE;
3195	vdcp->sync_op_cnt--;
3196
3197	/* signal the next waiting thread */
3198	cv_signal(&vdcp->sync_blocked_cv);
3199
3200	/*
3201	 * We have to check for reservation conflict after unblocking sync
3202	 * operations because some sync operations will be used to do this
3203	 * check.
3204	 */
3205	if (check_resv_conflict) {
3206		vio = vdc_failfast_io_queue(vdcp, NULL);
3207		while (vio->vio_qtime != 0)
3208			cv_wait(&vdcp->failfast_io_cv, &vdcp->lock);
3209		kmem_free(vio, sizeof (vdc_io_t));
3210	}
3211
3212	mutex_exit(&vdcp->lock);
3213
3214	return (status);
3215}
3216
3217
3218/*
3219 * Function:
3220 *	vdc_drain_response()
3221 *
3222 * Description:
3223 * 	When a guest is panicking, the completion of requests needs to be
3224 * 	handled differently because interrupts are disabled and vdc
3225 * 	will not get messages. We have to poll for the messages instead.
3226 *
3227 *	Note: since we are panicking we don't implement	the io:::done
3228 *	DTrace probe or update the I/O statistics kstats.
3229 *
3230 * Arguments:
3231 *	vdc	- soft state pointer for this instance of the device driver.
3232 *	buf	- if buf is NULL then we drain all responses, otherwise we
3233 *		  poll until we receive a ACK/NACK for the specific I/O
3234 *		  described by buf.
3235 *
3236 * Return Code:
3237 *	0	- Success
3238 */
3239static int
3240vdc_drain_response(vdc_t *vdc, struct buf *buf)
3241{
3242	int 			rv, idx, retries;
3243	size_t			msglen;
3244	vdc_local_desc_t 	*ldep = NULL;	/* Local Dring Entry Pointer */
3245	vio_dring_msg_t		dmsg;
3246	struct buf		*mbuf;
3247
3248	mutex_enter(&vdc->lock);
3249
3250	retries = 0;
3251	for (;;) {
3252		msglen = sizeof (dmsg);
3253		rv = ldc_read(vdc->curr_server->ldc_handle, (caddr_t)&dmsg,
3254		    &msglen);
3255		if (rv) {
3256			rv = EINVAL;
3257			break;
3258		}
3259
3260		/*
3261		 * if there are no packets wait and check again
3262		 */
3263		if ((rv == 0) && (msglen == 0)) {
3264			if (retries++ > vdc_dump_retries) {
3265				rv = EAGAIN;
3266				break;
3267			}
3268
3269			drv_usecwait(vdc_usec_timeout_dump);
3270			continue;
3271		}
3272
3273		/*
3274		 * Ignore all messages that are not ACKs/NACKs to
3275		 * DRing requests.
3276		 */
3277		if ((dmsg.tag.vio_msgtype != VIO_TYPE_DATA) ||
3278		    (dmsg.tag.vio_subtype_env != VIO_DRING_DATA)) {
3279			DMSG(vdc, 0, "discard pkt: type=%d sub=%d env=%d\n",
3280			    dmsg.tag.vio_msgtype,
3281			    dmsg.tag.vio_subtype,
3282			    dmsg.tag.vio_subtype_env);
3283			continue;
3284		}
3285
3286		/*
3287		 * set the appropriate return value for the current request.
3288		 */
3289		switch (dmsg.tag.vio_subtype) {
3290		case VIO_SUBTYPE_ACK:
3291			rv = 0;
3292			break;
3293		case VIO_SUBTYPE_NACK:
3294			rv = EAGAIN;
3295			break;
3296		default:
3297			continue;
3298		}
3299
3300		idx = dmsg.start_idx;
3301		if (idx >= vdc->dring_len) {
3302			DMSG(vdc, 0, "[%d] Bogus ack data : start %d\n",
3303			    vdc->instance, idx);
3304			continue;
3305		}
3306		ldep = &vdc->local_dring[idx];
3307		if (ldep->dep->hdr.dstate != VIO_DESC_DONE) {
3308			DMSG(vdc, 0, "[%d] Entry @ %d - state !DONE %d\n",
3309			    vdc->instance, idx, ldep->dep->hdr.dstate);
3310			continue;
3311		}
3312
3313		if (buf != NULL && ldep->cb_type == CB_STRATEGY) {
3314			mbuf = ldep->cb_arg;
3315			mbuf->b_resid = mbuf->b_bcount -
3316			    ldep->dep->payload.nbytes;
3317			bioerror(mbuf, (rv == EAGAIN)? EIO:
3318			    ldep->dep->payload.status);
3319			biodone(mbuf);
3320		} else {
3321			mbuf = NULL;
3322		}
3323
3324		DMSG(vdc, 1, "[%d] Depopulating idx=%d state=%d\n",
3325		    vdc->instance, idx, ldep->dep->hdr.dstate);
3326
3327		rv = vdc_depopulate_descriptor(vdc, idx);
3328		if (rv) {
3329			DMSG(vdc, 0,
3330			    "[%d] Entry @ %d - depopulate failed ..\n",
3331			    vdc->instance, idx);
3332		}
3333
3334		/* we have received an ACK/NACK for the specified buffer */
3335		if (buf != NULL && buf == mbuf) {
3336			rv = 0;
3337			break;
3338		}
3339
3340		/* if this is the last descriptor - break out of loop */
3341		if ((idx + 1) % vdc->dring_len == vdc->dring_curr_idx) {
3342			if (buf != NULL) {
3343				/*
3344				 * We never got a response for the specified
3345				 * buffer so we fail the I/O.
3346				 */
3347				bioerror(buf, EIO);
3348				biodone(buf);
3349			}
3350			break;
3351		}
3352	}
3353
3354	mutex_exit(&vdc->lock);
3355	DMSG(vdc, 0, "End idx=%d\n", idx);
3356
3357	return (rv);
3358}
3359
3360
3361/*
3362 * Function:
3363 *	vdc_depopulate_descriptor()
3364 *
3365 * Description:
3366 *
3367 * Arguments:
3368 *	vdc	- soft state pointer for this instance of the device driver.
3369 *	idx	- Index of the Descriptor Ring entry being modified
3370 *
3371 * Return Code:
3372 *	0	- Success
3373 */
3374static int
3375vdc_depopulate_descriptor(vdc_t *vdc, uint_t idx)
3376{
3377	vd_dring_entry_t *dep = NULL;		/* Dring Entry Pointer */
3378	vdc_local_desc_t *ldep = NULL;		/* Local Dring Entry Pointer */
3379	int		status = ENXIO;
3380	int		rv = 0;
3381
3382	ASSERT(vdc != NULL);
3383	ASSERT(idx < vdc->dring_len);
3384	ldep = &vdc->local_dring[idx];
3385	ASSERT(ldep != NULL);
3386	ASSERT(MUTEX_HELD(&vdc->lock));
3387
3388	DTRACE_PROBE2(depopulate, int, vdc->instance, vdc_local_desc_t *, ldep);
3389	DMSG(vdc, 2, ": idx = %d\n", idx);
3390
3391	dep = ldep->dep;
3392	ASSERT(dep != NULL);
3393	ASSERT((dep->hdr.dstate == VIO_DESC_DONE) ||
3394	    (dep->payload.status == ECANCELED));
3395
3396	VDC_MARK_DRING_ENTRY_FREE(vdc, idx);
3397
3398	ldep->is_free = B_TRUE;
3399	status = dep->payload.status;
3400	DMSG(vdc, 2, ": is_free = %d : status = %d\n", ldep->is_free, status);
3401
3402	/*
3403	 * If no buffers were used to transfer information to the server when
3404	 * populating the descriptor then no memory handles need to be unbound
3405	 * and we can return now.
3406	 */
3407	if (ldep->nbytes == 0) {
3408		cv_signal(&vdc->dring_free_cv);
3409		return (status);
3410	}
3411
3412	/*
3413	 * If the upper layer passed in a misaligned address we copied the
3414	 * data into an aligned buffer before sending it to LDC - we now
3415	 * copy it back to the original buffer.
3416	 */
3417	if (ldep->align_addr) {
3418		ASSERT(ldep->addr != NULL);
3419
3420		if (dep->payload.nbytes > 0)
3421			bcopy(ldep->align_addr, ldep->addr,
3422			    dep->payload.nbytes);
3423		kmem_free(ldep->align_addr,
3424		    sizeof (caddr_t) * P2ROUNDUP(ldep->nbytes, 8));
3425		ldep->align_addr = NULL;
3426	}
3427
3428	rv = ldc_mem_unbind_handle(ldep->desc_mhdl);
3429	if (rv != 0) {
3430		DMSG(vdc, 0, "?[%d] unbind mhdl 0x%lx @ idx %d failed (%d)",
3431		    vdc->instance, ldep->desc_mhdl, idx, rv);
3432		/*
3433		 * The error returned by the vDisk server is more informative
3434		 * and thus has a higher priority but if it isn't set we ensure
3435		 * that this function returns an error.
3436		 */
3437		if (status == 0)
3438			status = EINVAL;
3439	}
3440
3441	cv_signal(&vdc->membind_cv);
3442	cv_signal(&vdc->dring_free_cv);
3443
3444	return (status);
3445}
3446
3447/*
3448 * Function:
3449 *	vdc_populate_mem_hdl()
3450 *
3451 * Description:
3452 *
3453 * Arguments:
3454 *	vdc	- soft state pointer for this instance of the device driver.
3455 *	idx	- Index of the Descriptor Ring entry being modified
3456 *	addr	- virtual address being mapped in
3457 *	nybtes	- number of bytes in 'addr'
3458 *	operation - the vDisk operation being performed (VD_OP_xxx)
3459 *
3460 * Return Code:
3461 *	0	- Success
3462 */
3463static int
3464vdc_populate_mem_hdl(vdc_t *vdcp, vdc_local_desc_t *ldep)
3465{
3466	vd_dring_entry_t	*dep = NULL;
3467	ldc_mem_handle_t	mhdl;
3468	caddr_t			vaddr;
3469	size_t			nbytes;
3470	uint8_t			perm = LDC_MEM_RW;
3471	uint8_t			maptype;
3472	int			rv = 0;
3473	int			i;
3474
3475	ASSERT(vdcp != NULL);
3476
3477	dep = ldep->dep;
3478	mhdl = ldep->desc_mhdl;
3479
3480	switch (ldep->dir) {
3481	case VIO_read_dir:
3482		perm = LDC_MEM_W;
3483		break;
3484
3485	case VIO_write_dir:
3486		perm = LDC_MEM_R;
3487		break;
3488
3489	case VIO_both_dir:
3490		perm = LDC_MEM_RW;
3491		break;
3492
3493	default:
3494		ASSERT(0);	/* catch bad programming in vdc */
3495	}
3496
3497	/*
3498	 * LDC expects any addresses passed in to be 8-byte aligned. We need
3499	 * to copy the contents of any misaligned buffers to a newly allocated
3500	 * buffer and bind it instead (and copy the the contents back to the
3501	 * original buffer passed in when depopulating the descriptor)
3502	 */
3503	vaddr = ldep->addr;
3504	nbytes = ldep->nbytes;
3505	if (((uint64_t)vaddr & 0x7) != 0) {
3506		ASSERT(ldep->align_addr == NULL);
3507		ldep->align_addr =
3508		    kmem_alloc(sizeof (caddr_t) *
3509		    P2ROUNDUP(nbytes, 8), KM_SLEEP);
3510		DMSG(vdcp, 0, "[%d] Misaligned address %p reallocating "
3511		    "(buf=%p nb=%ld op=%d)\n",
3512		    vdcp->instance, (void *)vaddr, (void *)ldep->align_addr,
3513		    nbytes, ldep->operation);
3514		if (perm != LDC_MEM_W)
3515			bcopy(vaddr, ldep->align_addr, nbytes);
3516		vaddr = ldep->align_addr;
3517	}
3518
3519	maptype = LDC_IO_MAP|LDC_SHADOW_MAP|LDC_DIRECT_MAP;
3520	rv = ldc_mem_bind_handle(mhdl, vaddr, P2ROUNDUP(nbytes, 8),
3521	    maptype, perm, &dep->payload.cookie[0], &dep->payload.ncookies);
3522	DMSG(vdcp, 2, "[%d] bound mem handle; ncookies=%d\n",
3523	    vdcp->instance, dep->payload.ncookies);
3524	if (rv != 0) {
3525		DMSG(vdcp, 0, "[%d] Failed to bind LDC memory handle "
3526		    "(mhdl=%p, buf=%p, err=%d)\n",
3527		    vdcp->instance, (void *)mhdl, (void *)vaddr, rv);
3528		if (ldep->align_addr) {
3529			kmem_free(ldep->align_addr,
3530			    sizeof (caddr_t) * P2ROUNDUP(nbytes, 8));
3531			ldep->align_addr = NULL;
3532		}
3533		return (EAGAIN);
3534	}
3535
3536	/*
3537	 * Get the other cookies (if any).
3538	 */
3539	for (i = 1; i < dep->payload.ncookies; i++) {
3540		rv = ldc_mem_nextcookie(mhdl, &dep->payload.cookie[i]);
3541		if (rv != 0) {
3542			(void) ldc_mem_unbind_handle(mhdl);
3543			DMSG(vdcp, 0, "?[%d] Failed to get next cookie "
3544			    "(mhdl=%lx cnum=%d), err=%d",
3545			    vdcp->instance, mhdl, i, rv);
3546			if (ldep->align_addr) {
3547				kmem_free(ldep->align_addr,
3548				    sizeof (caddr_t) * ldep->nbytes);
3549				ldep->align_addr = NULL;
3550			}
3551			return (EAGAIN);
3552		}
3553	}
3554
3555	return (rv);
3556}
3557
3558/*
3559 * Interrupt handlers for messages from LDC
3560 */
3561
3562/*
3563 * Function:
3564 *	vdc_handle_cb()
3565 *
3566 * Description:
3567 *
3568 * Arguments:
3569 *	event	- Type of event (LDC_EVT_xxx) that triggered the callback
3570 *	arg	- soft state pointer for this instance of the device driver.
3571 *
3572 * Return Code:
3573 *	0	- Success
3574 */
3575static uint_t
3576vdc_handle_cb(uint64_t event, caddr_t arg)
3577{
3578	ldc_status_t	ldc_state;
3579	int		rv = 0;
3580	vdc_server_t	*srvr = (vdc_server_t *)(void *)arg;
3581	vdc_t		*vdc = srvr->vdcp;
3582
3583	ASSERT(vdc != NULL);
3584
3585	DMSG(vdc, 1, "evt=%lx seqID=%ld\n", event, vdc->seq_num);
3586
3587	/* If callback is not for the current server, ignore it */
3588	mutex_enter(&vdc->lock);
3589
3590	if (vdc->curr_server != srvr) {
3591		DMSG(vdc, 0, "[%d] Ignoring event 0x%lx for port@%ld\n",
3592		    vdc->instance, event, srvr->id);
3593		mutex_exit(&vdc->lock);
3594		return (LDC_SUCCESS);
3595	}
3596
3597	/*
3598	 * Depending on the type of event that triggered this callback,
3599	 * we modify the handshake state or read the data.
3600	 *
3601	 * NOTE: not done as a switch() as event could be triggered by
3602	 * a state change and a read request. Also the ordering	of the
3603	 * check for the event types is deliberate.
3604	 */
3605	if (event & LDC_EVT_UP) {
3606		DMSG(vdc, 0, "[%d] Received LDC_EVT_UP\n", vdc->instance);
3607
3608		/* get LDC state */
3609		rv = ldc_status(srvr->ldc_handle, &ldc_state);
3610		if (rv != 0) {
3611			DMSG(vdc, 0, "[%d] Couldn't get LDC status %d",
3612			    vdc->instance, rv);
3613			mutex_exit(&vdc->lock);
3614			return (LDC_SUCCESS);
3615		}
3616		if (srvr->ldc_state != LDC_UP &&
3617		    ldc_state == LDC_UP) {
3618			/*
3619			 * Reset the transaction sequence numbers when
3620			 * LDC comes up. We then kick off the handshake
3621			 * negotiation with the vDisk server.
3622			 */
3623			vdc->seq_num = 1;
3624			vdc->seq_num_reply = 0;
3625			srvr->ldc_state = ldc_state;
3626			cv_signal(&vdc->initwait_cv);
3627		}
3628	}
3629
3630	if (event & LDC_EVT_READ) {
3631		DMSG(vdc, 1, "[%d] Received LDC_EVT_READ\n", vdc->instance);
3632		mutex_enter(&vdc->read_lock);
3633		cv_signal(&vdc->read_cv);
3634		vdc->read_state = VDC_READ_PENDING;
3635		mutex_exit(&vdc->read_lock);
3636		mutex_exit(&vdc->lock);
3637
3638		/* that's all we have to do - no need to handle DOWN/RESET */
3639		return (LDC_SUCCESS);
3640	}
3641
3642	if (event & (LDC_EVT_RESET|LDC_EVT_DOWN)) {
3643
3644		DMSG(vdc, 0, "[%d] Received LDC RESET event\n", vdc->instance);
3645
3646		/*
3647		 * Need to wake up any readers so they will
3648		 * detect that a reset has occurred.
3649		 */
3650		mutex_enter(&vdc->read_lock);
3651		if ((vdc->read_state == VDC_READ_WAITING) ||
3652		    (vdc->read_state == VDC_READ_RESET))
3653			cv_signal(&vdc->read_cv);
3654		vdc->read_state = VDC_READ_RESET;
3655		mutex_exit(&vdc->read_lock);
3656
3657		/* wake up any threads waiting for connection to come up */
3658		if (vdc->state == VDC_STATE_INIT_WAITING) {
3659			vdc->state = VDC_STATE_RESETTING;
3660			cv_signal(&vdc->initwait_cv);
3661		}
3662
3663	}
3664
3665	mutex_exit(&vdc->lock);
3666
3667	if (event & ~(LDC_EVT_UP | LDC_EVT_RESET | LDC_EVT_DOWN | LDC_EVT_READ))
3668		DMSG(vdc, 0, "![%d] Unexpected LDC event (%lx) received",
3669		    vdc->instance, event);
3670
3671	return (LDC_SUCCESS);
3672}
3673
3674/*
3675 * Function:
3676 *	vdc_wait_for_response()
3677 *
3678 * Description:
3679 *	Block waiting for a response from the server. If there is
3680 *	no data the thread block on the read_cv that is signalled
3681 *	by the callback when an EVT_READ occurs.
3682 *
3683 * Arguments:
3684 *	vdcp	- soft state pointer for this instance of the device driver.
3685 *
3686 * Return Code:
3687 *	0	- Success
3688 */
3689static int
3690vdc_wait_for_response(vdc_t *vdcp, vio_msg_t *msgp)
3691{
3692	size_t		nbytes = sizeof (*msgp);
3693	int		status;
3694
3695	ASSERT(vdcp != NULL);
3696
3697	DMSG(vdcp, 1, "[%d] Entered\n", vdcp->instance);
3698
3699	status = vdc_recv(vdcp, msgp, &nbytes);
3700	DMSG(vdcp, 3, "vdc_read() done.. status=0x%x size=0x%x\n",
3701	    status, (int)nbytes);
3702	if (status) {
3703		DMSG(vdcp, 0, "?[%d] Error %d reading LDC msg\n",
3704		    vdcp->instance, status);
3705		return (status);
3706	}
3707
3708	if (nbytes < sizeof (vio_msg_tag_t)) {
3709		DMSG(vdcp, 0, "?[%d] Expect %lu bytes; recv'd %lu\n",
3710		    vdcp->instance, sizeof (vio_msg_tag_t), nbytes);
3711		return (ENOMSG);
3712	}
3713
3714	DMSG(vdcp, 2, "[%d] (%x/%x/%x)\n", vdcp->instance,
3715	    msgp->tag.vio_msgtype,
3716	    msgp->tag.vio_subtype,
3717	    msgp->tag.vio_subtype_env);
3718
3719	/*
3720	 * Verify the Session ID of the message
3721	 *
3722	 * Every message after the Version has been negotiated should
3723	 * have the correct session ID set.
3724	 */
3725	if ((msgp->tag.vio_sid != vdcp->session_id) &&
3726	    (msgp->tag.vio_subtype_env != VIO_VER_INFO)) {
3727		DMSG(vdcp, 0, "[%d] Invalid SID: received 0x%x, "
3728		    "expected 0x%lx [seq num %lx @ %d]",
3729		    vdcp->instance, msgp->tag.vio_sid,
3730		    vdcp->session_id,
3731		    ((vio_dring_msg_t *)msgp)->seq_num,
3732		    ((vio_dring_msg_t *)msgp)->start_idx);
3733		return (ENOMSG);
3734	}
3735	return (0);
3736}
3737
3738
3739/*
3740 * Function:
3741 *	vdc_resubmit_backup_dring()
3742 *
3743 * Description:
3744 *	Resubmit each descriptor in the backed up dring to
3745 * 	vDisk server. The Dring was backed up during connection
3746 *	reset.
3747 *
3748 * Arguments:
3749 *	vdcp	- soft state pointer for this instance of the device driver.
3750 *
3751 * Return Code:
3752 *	0	- Success
3753 */
3754static int
3755vdc_resubmit_backup_dring(vdc_t *vdcp)
3756{
3757	int		processed = 0;
3758	int		count;
3759	int		b_idx;
3760	int		rv = 0;
3761	int		dring_size;
3762	int		op;
3763	vio_msg_t	vio_msg;
3764	vdc_local_desc_t	*curr_ldep;
3765
3766	ASSERT(MUTEX_NOT_HELD(&vdcp->lock));
3767	ASSERT(vdcp->state == VDC_STATE_HANDLE_PENDING);
3768
3769	if (vdcp->local_dring_backup == NULL) {
3770		/* the pending requests have already been processed */
3771		return (0);
3772	}
3773
3774	DMSG(vdcp, 1, "restoring pending dring entries (len=%d, tail=%d)\n",
3775	    vdcp->local_dring_backup_len, vdcp->local_dring_backup_tail);
3776
3777	/*
3778	 * Walk the backup copy of the local descriptor ring and
3779	 * resubmit all the outstanding transactions.
3780	 */
3781	b_idx = vdcp->local_dring_backup_tail;
3782	for (count = 0; count < vdcp->local_dring_backup_len; count++) {
3783
3784		curr_ldep = &(vdcp->local_dring_backup[b_idx]);
3785
3786		/* only resubmit outstanding transactions */
3787		if (!curr_ldep->is_free) {
3788			/*
3789			 * If we are retrying a block read/write operation we
3790			 * need to update the I/O statistics to indicate that
3791			 * the request is being put back on the waitq to be
3792			 * serviced (it will have been taken off after the
3793			 * error was reported).
3794			 */
3795			mutex_enter(&vdcp->lock);
3796			op = curr_ldep->operation;
3797			if ((op == VD_OP_BREAD) || (op == VD_OP_BWRITE)) {
3798				DTRACE_IO1(start, buf_t *, curr_ldep->cb_arg);
3799				VD_KSTAT_WAITQ_ENTER(vdcp);
3800			}
3801
3802			DMSG(vdcp, 1, "resubmitting entry idx=%x\n", b_idx);
3803			rv = vdc_populate_descriptor(vdcp, op,
3804			    curr_ldep->addr, curr_ldep->nbytes,
3805			    curr_ldep->slice, curr_ldep->offset,
3806			    curr_ldep->cb_type, curr_ldep->cb_arg,
3807			    curr_ldep->dir);
3808
3809			if (rv) {
3810				if (op == VD_OP_BREAD || op == VD_OP_BWRITE) {
3811					VD_UPDATE_ERR_STATS(vdcp, vd_transerrs);
3812					VD_KSTAT_WAITQ_EXIT(vdcp);
3813					DTRACE_IO1(done, buf_t *,
3814					    curr_ldep->cb_arg);
3815				}
3816				DMSG(vdcp, 1, "[%d] cannot resubmit entry %d\n",
3817				    vdcp->instance, b_idx);
3818				mutex_exit(&vdcp->lock);
3819				goto done;
3820			}
3821
3822			/*
3823			 * If this is a block read/write we update the I/O
3824			 * statistics kstat to indicate that the request
3825			 * has been sent back to the vDisk server and should
3826			 * now be put on the run queue.
3827			 */
3828			if ((op == VD_OP_BREAD) || (op == VD_OP_BWRITE)) {
3829				DTRACE_PROBE1(send, buf_t *, curr_ldep->cb_arg);
3830				VD_KSTAT_WAITQ_TO_RUNQ(vdcp);
3831			}
3832			mutex_exit(&vdcp->lock);
3833
3834			/* Wait for the response message. */
3835			DMSG(vdcp, 1, "waiting for response to idx=%x\n",
3836			    b_idx);
3837			rv = vdc_wait_for_response(vdcp, &vio_msg);
3838			if (rv) {
3839				/*
3840				 * If this is a block read/write we update
3841				 * the I/O statistics kstat to take it
3842				 * off the run queue.
3843				 */
3844				mutex_enter(&vdcp->lock);
3845				if (op == VD_OP_BREAD || op == VD_OP_BWRITE) {
3846					VD_UPDATE_ERR_STATS(vdcp, vd_transerrs);
3847					VD_KSTAT_RUNQ_EXIT(vdcp);
3848					DTRACE_IO1(done, buf_t *,
3849					    curr_ldep->cb_arg);
3850				}
3851				DMSG(vdcp, 1, "[%d] wait_for_response "
3852				    "returned err=%d\n", vdcp->instance,
3853				    rv);
3854				mutex_exit(&vdcp->lock);
3855				goto done;
3856			}
3857
3858			DMSG(vdcp, 1, "processing msg for idx=%x\n", b_idx);
3859			rv = vdc_process_data_msg(vdcp, &vio_msg);
3860			if (rv) {
3861				DMSG(vdcp, 1, "[%d] process_data_msg "
3862				    "returned err=%d\n", vdcp->instance,
3863				    rv);
3864				goto done;
3865			}
3866			/*
3867			 * Mark this entry as free so that we will not resubmit
3868			 * this "done" request again, if we were to use the same
3869			 * backup_dring again in future. This could happen when
3870			 * a reset happens while processing the backup_dring.
3871			 */
3872			curr_ldep->is_free = B_TRUE;
3873			processed++;
3874		}
3875
3876		/* get the next element to submit */
3877		if (++b_idx >= vdcp->local_dring_backup_len)
3878			b_idx = 0;
3879	}
3880
3881	/* all done - now clear up pending dring copy */
3882	dring_size = vdcp->local_dring_backup_len *
3883	    sizeof (vdcp->local_dring_backup[0]);
3884
3885	(void) kmem_free(vdcp->local_dring_backup, dring_size);
3886
3887	vdcp->local_dring_backup = NULL;
3888
3889done:
3890	DTRACE_PROBE2(processed, int, processed, vdc_t *, vdcp);
3891
3892	return (rv);
3893}
3894
3895/*
3896 * Function:
3897 *	vdc_cancel_backup_dring
3898 *
3899 * Description:
3900 *	Cancel each descriptor in the backed up dring to vDisk server.
3901 *	The Dring was backed up during connection reset.
3902 *
3903 * Arguments:
3904 *	vdcp	- soft state pointer for this instance of the device driver.
3905 *
3906 * Return Code:
3907 *	None
3908 */
3909void
3910vdc_cancel_backup_dring(vdc_t *vdcp)
3911{
3912	vdc_local_desc_t *ldep;
3913	struct buf 	*bufp;
3914	int		count;
3915	int		b_idx;
3916	int		dring_size;
3917	int		cancelled = 0;
3918
3919	ASSERT(MUTEX_HELD(&vdcp->lock));
3920	ASSERT(vdcp->state == VDC_STATE_INIT ||
3921	    vdcp->state == VDC_STATE_INIT_WAITING ||
3922	    vdcp->state == VDC_STATE_NEGOTIATE ||
3923	    vdcp->state == VDC_STATE_RESETTING);
3924
3925	if (vdcp->local_dring_backup == NULL) {
3926		/* the pending requests have already been processed */
3927		return;
3928	}
3929
3930	DMSG(vdcp, 1, "cancelling pending dring entries (len=%d, tail=%d)\n",
3931	    vdcp->local_dring_backup_len, vdcp->local_dring_backup_tail);
3932
3933	/*
3934	 * Walk the backup copy of the local descriptor ring and
3935	 * cancel all the outstanding transactions.
3936	 */
3937	b_idx = vdcp->local_dring_backup_tail;
3938	for (count = 0; count < vdcp->local_dring_backup_len; count++) {
3939
3940		ldep = &(vdcp->local_dring_backup[b_idx]);
3941
3942		/* only cancel outstanding transactions */
3943		if (!ldep->is_free) {
3944
3945			DMSG(vdcp, 1, "cancelling entry idx=%x\n", b_idx);
3946			cancelled++;
3947
3948			/*
3949			 * All requests have already been cleared from the
3950			 * local descriptor ring and the LDC channel has been
3951			 * reset so we will never get any reply for these
3952			 * requests. Now we just have to notify threads waiting
3953			 * for replies that the request has failed.
3954			 */
3955			switch (ldep->cb_type) {
3956			case CB_SYNC:
3957				ASSERT(vdcp->sync_op_pending);
3958				vdcp->sync_op_status = EIO;
3959				vdcp->sync_op_pending = B_FALSE;
3960				cv_signal(&vdcp->sync_pending_cv);
3961				break;
3962
3963			case CB_STRATEGY:
3964				bufp = ldep->cb_arg;
3965				ASSERT(bufp != NULL);
3966				bufp->b_resid = bufp->b_bcount;
3967				VD_UPDATE_ERR_STATS(vdcp, vd_softerrs);
3968				VD_KSTAT_RUNQ_EXIT(vdcp);
3969				DTRACE_IO1(done, buf_t *, bufp);
3970				bioerror(bufp, EIO);
3971				biodone(bufp);
3972				break;
3973
3974			default:
3975				ASSERT(0);
3976			}
3977
3978		}
3979
3980		/* get the next element to cancel */
3981		if (++b_idx >= vdcp->local_dring_backup_len)
3982			b_idx = 0;
3983	}
3984
3985	/* all done - now clear up pending dring copy */
3986	dring_size = vdcp->local_dring_backup_len *
3987	    sizeof (vdcp->local_dring_backup[0]);
3988
3989	(void) kmem_free(vdcp->local_dring_backup, dring_size);
3990
3991	vdcp->local_dring_backup = NULL;
3992
3993	DTRACE_PROBE2(cancelled, int, cancelled, vdc_t *, vdcp);
3994}
3995
3996/*
3997 * Function:
3998 *	vdc_connection_timeout
3999 *
4000 * Description:
4001 *	This function is invoked if the timeout set to establish the connection
4002 *	with vds expires. This will happen if we spend too much time in the
4003 *	VDC_STATE_INIT_WAITING or VDC_STATE_NEGOTIATE states. Then we will
4004 *	cancel any pending request and mark them as failed.
4005 *
4006 *	If the timeout does not expire, it will be cancelled when we reach the
4007 *	VDC_STATE_HANDLE_PENDING or VDC_STATE_RESETTING state. This function can
4008 *	be invoked while we are in the VDC_STATE_HANDLE_PENDING or
4009 *	VDC_STATE_RESETTING state in which case we do nothing because the
4010 *	timeout is being cancelled.
4011 *
4012 * Arguments:
4013 *	arg	- argument of the timeout function actually a soft state
4014 *		  pointer for the instance of the device driver.
4015 *
4016 * Return Code:
4017 *	None
4018 */
4019void
4020vdc_connection_timeout(void *arg)
4021{
4022	vdc_t 		*vdcp = (vdc_t *)arg;
4023
4024	mutex_enter(&vdcp->lock);
4025
4026	if (vdcp->state == VDC_STATE_HANDLE_PENDING ||
4027	    vdcp->state == VDC_STATE_DETACH) {
4028		/*
4029		 * The connection has just been re-established or
4030		 * we are detaching.
4031		 */
4032		vdcp->ctimeout_reached = B_FALSE;
4033		mutex_exit(&vdcp->lock);
4034		return;
4035	}
4036
4037	vdcp->ctimeout_reached = B_TRUE;
4038
4039	/* notify requests waiting for sending */
4040	cv_broadcast(&vdcp->running_cv);
4041
4042	/* cancel requests waiting for a result */
4043	vdc_cancel_backup_dring(vdcp);
4044
4045	mutex_exit(&vdcp->lock);
4046
4047	cmn_err(CE_NOTE, "[%d] connection to service domain timeout",
4048	    vdcp->instance);
4049}
4050
4051/*
4052 * Function:
4053 *	vdc_backup_local_dring()
4054 *
4055 * Description:
4056 *	Backup the current dring in the event of a reset. The Dring
4057 *	transactions will be resubmitted to the server when the
4058 *	connection is restored.
4059 *
4060 * Arguments:
4061 *	vdcp	- soft state pointer for this instance of the device driver.
4062 *
4063 * Return Code:
4064 *	NONE
4065 */
4066static void
4067vdc_backup_local_dring(vdc_t *vdcp)
4068{
4069	int dring_size;
4070
4071	ASSERT(MUTEX_HELD(&vdcp->lock));
4072	ASSERT(vdcp->state == VDC_STATE_RESETTING);
4073
4074	/*
4075	 * If the backup dring is stil around, it means
4076	 * that the last restore did not complete. However,
4077	 * since we never got back into the running state,
4078	 * the backup copy we have is still valid.
4079	 */
4080	if (vdcp->local_dring_backup != NULL) {
4081		DMSG(vdcp, 1, "reusing local descriptor ring backup "
4082		    "(len=%d, tail=%d)\n", vdcp->local_dring_backup_len,
4083		    vdcp->local_dring_backup_tail);
4084		return;
4085	}
4086
4087	/*
4088	 * The backup dring can be NULL and the local dring may not be
4089	 * initialized. This can happen if we had a reset while establishing
4090	 * a new connection but after the connection has timed out. In that
4091	 * case the backup dring is NULL because the requests have been
4092	 * cancelled and the request occured before the local dring is
4093	 * initialized.
4094	 */
4095	if (!(vdcp->initialized & VDC_DRING_LOCAL))
4096		return;
4097
4098	DMSG(vdcp, 1, "backing up the local descriptor ring (len=%d, "
4099	    "tail=%d)\n", vdcp->dring_len, vdcp->dring_curr_idx);
4100
4101	dring_size = vdcp->dring_len * sizeof (vdcp->local_dring[0]);
4102
4103	vdcp->local_dring_backup = kmem_alloc(dring_size, KM_SLEEP);
4104	bcopy(vdcp->local_dring, vdcp->local_dring_backup, dring_size);
4105
4106	vdcp->local_dring_backup_tail = vdcp->dring_curr_idx;
4107	vdcp->local_dring_backup_len = vdcp->dring_len;
4108}
4109
4110static void
4111vdc_switch_server(vdc_t *vdcp)
4112{
4113	int		rv;
4114	vdc_server_t 	*curr_server, *new_server;
4115
4116	ASSERT(MUTEX_HELD(&vdcp->lock));
4117
4118	/* if there is only one server return back */
4119	if (vdcp->num_servers == 1) {
4120		return;
4121	}
4122
4123	/* Get current and next server */
4124	curr_server = vdcp->curr_server;
4125	new_server =
4126	    (curr_server->next) ? curr_server->next : vdcp->server_list;
4127	ASSERT(curr_server != new_server);
4128
4129	/* bring current server's channel down */
4130	rv = ldc_down(curr_server->ldc_handle);
4131	if (rv) {
4132		DMSG(vdcp, 0, "[%d] Cannot bring channel down, port %ld\n",
4133		    vdcp->instance, curr_server->id);
4134		return;
4135	}
4136
4137	/* switch the server */
4138	vdcp->curr_server = new_server;
4139
4140	DMSG(vdcp, 0, "[%d] Switched to next vdisk server, port@%ld, ldc@%ld\n",
4141	    vdcp->instance, vdcp->curr_server->id, vdcp->curr_server->ldc_id);
4142}
4143
4144/* -------------------------------------------------------------------------- */
4145
4146/*
4147 * The following functions process the incoming messages from vds
4148 */
4149
4150/*
4151 * Function:
4152 *      vdc_process_msg_thread()
4153 *
4154 * Description:
4155 *
4156 *	Main VDC message processing thread. Each vDisk instance
4157 * 	consists of a copy of this thread. This thread triggers
4158 * 	all the handshakes and data exchange with the server. It
4159 * 	also handles all channel resets
4160 *
4161 * Arguments:
4162 *      vdc     - soft state pointer for this instance of the device driver.
4163 *
4164 * Return Code:
4165 *      None
4166 */
4167static void
4168vdc_process_msg_thread(vdc_t *vdcp)
4169{
4170	int		status;
4171	int		ctimeout;
4172	timeout_id_t	tmid = 0;
4173	clock_t		ldcup_timeout = 0;
4174
4175	mutex_enter(&vdcp->lock);
4176
4177	for (;;) {
4178
4179#define	Q(_s)	(vdcp->state == _s) ? #_s :
4180		DMSG(vdcp, 3, "state = %d (%s)\n", vdcp->state,
4181		    Q(VDC_STATE_INIT)
4182		    Q(VDC_STATE_INIT_WAITING)
4183		    Q(VDC_STATE_NEGOTIATE)
4184		    Q(VDC_STATE_HANDLE_PENDING)
4185		    Q(VDC_STATE_RUNNING)
4186		    Q(VDC_STATE_RESETTING)
4187		    Q(VDC_STATE_DETACH)
4188		    "UNKNOWN");
4189
4190		switch (vdcp->state) {
4191		case VDC_STATE_INIT:
4192
4193			/*
4194			 * If requested, start a timeout to check if the
4195			 * connection with vds is established in the
4196			 * specified delay. If the timeout expires, we
4197			 * will cancel any pending request.
4198			 *
4199			 * If some reset have occurred while establishing
4200			 * the connection, we already have a timeout armed
4201			 * and in that case we don't need to arm a new one.
4202			 *
4203			 * The same rule applies when there are multiple vds'.
4204			 * If either a connection cannot be established or
4205			 * the handshake times out, the connection thread will
4206			 * try another server. The 'ctimeout' will report
4207			 * back an error after it expires irrespective of
4208			 * whether the vdisk is trying to connect to just
4209			 * one or multiple servers.
4210			 */
4211			ctimeout = (vdc_timeout != 0)?
4212			    vdc_timeout : vdcp->curr_server->ctimeout;
4213
4214			if (ctimeout != 0 && tmid == 0) {
4215				tmid = timeout(vdc_connection_timeout, vdcp,
4216				    ctimeout * drv_usectohz(MICROSEC));
4217			}
4218
4219			/* Check if we are re-initializing repeatedly */
4220			if (vdcp->hshake_cnt > vdc_hshake_retries &&
4221			    vdcp->lifecycle != VDC_LC_ONLINE) {
4222
4223				DMSG(vdcp, 0, "[%d] too many handshakes,cnt=%d",
4224				    vdcp->instance, vdcp->hshake_cnt);
4225				cmn_err(CE_NOTE, "[%d] disk access failed.\n",
4226				    vdcp->instance);
4227				vdcp->state = VDC_STATE_DETACH;
4228				break;
4229			}
4230
4231			/* Switch to STATE_DETACH if drv is detaching */
4232			if (vdcp->lifecycle == VDC_LC_DETACHING) {
4233				vdcp->state = VDC_STATE_DETACH;
4234				break;
4235			}
4236
4237			/* Switch server */
4238			if (vdcp->hshake_cnt > 0)
4239				vdc_switch_server(vdcp);
4240			vdcp->hshake_cnt++;
4241
4242			/* Bring up connection with vds via LDC */
4243			status = vdc_start_ldc_connection(vdcp);
4244			if (status != EINVAL) {
4245				vdcp->state = VDC_STATE_INIT_WAITING;
4246			}
4247			break;
4248
4249		case VDC_STATE_INIT_WAITING:
4250
4251			/* if channel is UP, start negotiation */
4252			if (vdcp->curr_server->ldc_state == LDC_UP) {
4253				vdcp->state = VDC_STATE_NEGOTIATE;
4254				break;
4255			}
4256
4257			/* check if only one server exists */
4258			if (vdcp->num_servers == 1) {
4259				cv_wait(&vdcp->initwait_cv, &vdcp->lock);
4260			} else {
4261				/*
4262				 * wait for LDC_UP, if it times out, switch
4263				 * to another server.
4264				 */
4265				ldcup_timeout = ddi_get_lbolt() +
4266				    (vdc_ldcup_timeout *
4267				    drv_usectohz(MICROSEC));
4268				status = cv_timedwait(&vdcp->initwait_cv,
4269				    &vdcp->lock, ldcup_timeout);
4270				if (status == -1 &&
4271				    vdcp->state == VDC_STATE_INIT_WAITING &&
4272				    vdcp->curr_server->ldc_state != LDC_UP) {
4273					/* timed out & still waiting */
4274					vdcp->state = VDC_STATE_INIT;
4275					break;
4276				}
4277			}
4278
4279			if (vdcp->state != VDC_STATE_INIT_WAITING) {
4280				DMSG(vdcp, 0,
4281				    "state moved to %d out from under us...\n",
4282				    vdcp->state);
4283			}
4284			break;
4285
4286		case VDC_STATE_NEGOTIATE:
4287			switch (status = vdc_ver_negotiation(vdcp)) {
4288			case 0:
4289				break;
4290			default:
4291				DMSG(vdcp, 0, "ver negotiate failed (%d)..\n",
4292				    status);
4293				goto reset;
4294			}
4295
4296			switch (status = vdc_attr_negotiation(vdcp)) {
4297			case 0:
4298				break;
4299			default:
4300				DMSG(vdcp, 0, "attr negotiate failed (%d)..\n",
4301				    status);
4302				goto reset;
4303			}
4304
4305			switch (status = vdc_dring_negotiation(vdcp)) {
4306			case 0:
4307				break;
4308			default:
4309				DMSG(vdcp, 0, "dring negotiate failed (%d)..\n",
4310				    status);
4311				goto reset;
4312			}
4313
4314			switch (status = vdc_rdx_exchange(vdcp)) {
4315			case 0:
4316				vdcp->state = VDC_STATE_HANDLE_PENDING;
4317				goto done;
4318			default:
4319				DMSG(vdcp, 0, "RDX xchg failed ..(%d)\n",
4320				    status);
4321				goto reset;
4322			}
4323reset:
4324			DMSG(vdcp, 0, "negotiation failed: resetting (%d)\n",
4325			    status);
4326			vdcp->state = VDC_STATE_RESETTING;
4327			vdcp->self_reset = B_TRUE;
4328done:
4329			DMSG(vdcp, 0, "negotiation complete (state=0x%x)...\n",
4330			    vdcp->state);
4331			break;
4332
4333		case VDC_STATE_HANDLE_PENDING:
4334
4335			if (vdcp->ctimeout_reached) {
4336				/*
4337				 * The connection timeout had been reached so
4338				 * pending requests have been cancelled. Now
4339				 * that the connection is back we can reset
4340				 * the timeout.
4341				 */
4342				ASSERT(vdcp->local_dring_backup == NULL);
4343				ASSERT(tmid != 0);
4344				tmid = 0;
4345				vdcp->ctimeout_reached = B_FALSE;
4346				vdcp->state = VDC_STATE_RUNNING;
4347				DMSG(vdcp, 0, "[%d] connection to service "
4348				    "domain is up", vdcp->instance);
4349				break;
4350			}
4351
4352			mutex_exit(&vdcp->lock);
4353			if (tmid != 0) {
4354				(void) untimeout(tmid);
4355				tmid = 0;
4356			}
4357			status = vdc_resubmit_backup_dring(vdcp);
4358			mutex_enter(&vdcp->lock);
4359
4360			if (status)
4361				vdcp->state = VDC_STATE_RESETTING;
4362			else
4363				vdcp->state = VDC_STATE_RUNNING;
4364
4365			break;
4366
4367		/* enter running state */
4368		case VDC_STATE_RUNNING:
4369			/*
4370			 * Signal anyone waiting for the connection
4371			 * to come on line.
4372			 */
4373			vdcp->hshake_cnt = 0;
4374			cv_broadcast(&vdcp->running_cv);
4375
4376			/* failfast has to been checked after reset */
4377			cv_signal(&vdcp->failfast_cv);
4378
4379			/* ownership is lost during reset */
4380			if (vdcp->ownership & VDC_OWNERSHIP_WANTED)
4381				vdcp->ownership |= VDC_OWNERSHIP_RESET;
4382			cv_signal(&vdcp->ownership_cv);
4383
4384			cmn_err(CE_CONT, "?vdisk@%d is online using "
4385			    "ldc@%ld,%ld\n", vdcp->instance,
4386			    vdcp->curr_server->ldc_id, vdcp->curr_server->id);
4387
4388			mutex_exit(&vdcp->lock);
4389
4390			for (;;) {
4391				vio_msg_t msg;
4392				status = vdc_wait_for_response(vdcp, &msg);
4393				if (status) break;
4394
4395				DMSG(vdcp, 1, "[%d] new pkt(s) available\n",
4396				    vdcp->instance);
4397				status = vdc_process_data_msg(vdcp, &msg);
4398				if (status) {
4399					DMSG(vdcp, 1, "[%d] process_data_msg "
4400					    "returned err=%d\n", vdcp->instance,
4401					    status);
4402					break;
4403				}
4404
4405			}
4406
4407			mutex_enter(&vdcp->lock);
4408
4409			cmn_err(CE_CONT, "?vdisk@%d is offline\n",
4410			    vdcp->instance);
4411
4412			vdcp->state = VDC_STATE_RESETTING;
4413			vdcp->self_reset = B_TRUE;
4414			break;
4415
4416		case VDC_STATE_RESETTING:
4417			/*
4418			 * When we reach this state, we either come from the
4419			 * VDC_STATE_RUNNING state and we can have pending
4420			 * request but no timeout is armed; or we come from
4421			 * the VDC_STATE_INIT_WAITING, VDC_NEGOTIATE or
4422			 * VDC_HANDLE_PENDING state and there is no pending
4423			 * request or pending requests have already been copied
4424			 * into the backup dring. So we can safely keep the
4425			 * connection timeout armed while we are in this state.
4426			 */
4427
4428			DMSG(vdcp, 0, "Initiating channel reset "
4429			    "(pending = %d)\n", (int)vdcp->threads_pending);
4430
4431			if (vdcp->self_reset) {
4432				DMSG(vdcp, 0,
4433				    "[%d] calling stop_ldc_connection.\n",
4434				    vdcp->instance);
4435				status = vdc_stop_ldc_connection(vdcp);
4436				vdcp->self_reset = B_FALSE;
4437			}
4438
4439			/*
4440			 * Wait for all threads currently waiting
4441			 * for a free dring entry to use.
4442			 */
4443			while (vdcp->threads_pending) {
4444				cv_broadcast(&vdcp->membind_cv);
4445				cv_broadcast(&vdcp->dring_free_cv);
4446				mutex_exit(&vdcp->lock);
4447				/* give the waiters enough time to wake up */
4448				delay(vdc_hz_min_ldc_delay);
4449				mutex_enter(&vdcp->lock);
4450			}
4451
4452			ASSERT(vdcp->threads_pending == 0);
4453
4454			/* Sanity check that no thread is receiving */
4455			ASSERT(vdcp->read_state != VDC_READ_WAITING);
4456
4457			vdcp->read_state = VDC_READ_IDLE;
4458
4459			vdc_backup_local_dring(vdcp);
4460
4461			/* cleanup the old d-ring */
4462			vdc_destroy_descriptor_ring(vdcp);
4463
4464			/* go and start again */
4465			vdcp->state = VDC_STATE_INIT;
4466
4467			break;
4468
4469		case VDC_STATE_DETACH:
4470			DMSG(vdcp, 0, "[%d] Reset thread exit cleanup ..\n",
4471			    vdcp->instance);
4472
4473			/* cancel any pending timeout */
4474			mutex_exit(&vdcp->lock);
4475			if (tmid != 0) {
4476				(void) untimeout(tmid);
4477				tmid = 0;
4478			}
4479			mutex_enter(&vdcp->lock);
4480
4481			/*
4482			 * Signal anyone waiting for connection
4483			 * to come online
4484			 */
4485			cv_broadcast(&vdcp->running_cv);
4486
4487			while (vdcp->sync_op_pending) {
4488				cv_signal(&vdcp->sync_pending_cv);
4489				cv_signal(&vdcp->sync_blocked_cv);
4490				mutex_exit(&vdcp->lock);
4491				/* give the waiters enough time to wake up */
4492				delay(vdc_hz_min_ldc_delay);
4493				mutex_enter(&vdcp->lock);
4494			}
4495
4496			mutex_exit(&vdcp->lock);
4497
4498			DMSG(vdcp, 0, "[%d] Msg processing thread exiting ..\n",
4499			    vdcp->instance);
4500			thread_exit();
4501			break;
4502		}
4503	}
4504}
4505
4506
4507/*
4508 * Function:
4509 *	vdc_process_data_msg()
4510 *
4511 * Description:
4512 *	This function is called by the message processing thread each time
4513 *	a message with a msgtype of VIO_TYPE_DATA is received. It will either
4514 *	be an ACK or NACK from vds[1] which vdc handles as follows.
4515 *		ACK	- wake up the waiting thread
4516 *		NACK	- resend any messages necessary
4517 *
4518 *	[1] Although the message format allows it, vds should not send a
4519 *	    VIO_SUBTYPE_INFO message to vdc asking it to read data; if for
4520 *	    some bizarre reason it does, vdc will reset the connection.
4521 *
4522 * Arguments:
4523 *	vdc	- soft state pointer for this instance of the device driver.
4524 *	msg	- the LDC message sent by vds
4525 *
4526 * Return Code:
4527 *	0	- Success.
4528 *	> 0	- error value returned by LDC
4529 */
4530static int
4531vdc_process_data_msg(vdc_t *vdcp, vio_msg_t *msg)
4532{
4533	int			status = 0;
4534	vio_dring_msg_t		*dring_msg;
4535	vdc_local_desc_t	*ldep = NULL;
4536	int			start, end;
4537	int			idx;
4538	int			op;
4539
4540	dring_msg = (vio_dring_msg_t *)msg;
4541
4542	ASSERT(msg->tag.vio_msgtype == VIO_TYPE_DATA);
4543	ASSERT(vdcp != NULL);
4544
4545	mutex_enter(&vdcp->lock);
4546
4547	/*
4548	 * Check to see if the message has bogus data
4549	 */
4550	idx = start = dring_msg->start_idx;
4551	end = dring_msg->end_idx;
4552	if ((start >= vdcp->dring_len) ||
4553	    (end >= vdcp->dring_len) || (end < -1)) {
4554		/*
4555		 * Update the I/O statistics to indicate that an error ocurred.
4556		 * No need to update the wait/run queues as no specific read or
4557		 * write request is being completed in response to this 'msg'.
4558		 */
4559		VD_UPDATE_ERR_STATS(vdcp, vd_softerrs);
4560		DMSG(vdcp, 0, "[%d] Bogus ACK data : start %d, end %d\n",
4561		    vdcp->instance, start, end);
4562		mutex_exit(&vdcp->lock);
4563		return (EINVAL);
4564	}
4565
4566	/*
4567	 * Verify that the sequence number is what vdc expects.
4568	 */
4569	switch (vdc_verify_seq_num(vdcp, dring_msg)) {
4570	case VDC_SEQ_NUM_TODO:
4571		break;	/* keep processing this message */
4572	case VDC_SEQ_NUM_SKIP:
4573		mutex_exit(&vdcp->lock);
4574		return (0);
4575	case VDC_SEQ_NUM_INVALID:
4576		/*
4577		 * Update the I/O statistics to indicate that an error ocurred.
4578		 * No need to update the wait/run queues as no specific read or
4579		 * write request is being completed in response to this 'msg'.
4580		 */
4581		VD_UPDATE_ERR_STATS(vdcp, vd_softerrs);
4582		DMSG(vdcp, 0, "[%d] invalid seqno\n", vdcp->instance);
4583		mutex_exit(&vdcp->lock);
4584		return (ENXIO);
4585	}
4586
4587	if (msg->tag.vio_subtype == VIO_SUBTYPE_NACK) {
4588		/*
4589		 * Update the I/O statistics to indicate that an error ocurred.
4590		 *
4591		 * We need to update the run queue if a read or write request
4592		 * is being NACKed - otherwise there will appear to be an
4593		 * indefinite outstanding request and statistics reported by
4594		 * iostat(1M) will be incorrect. The transaction will be
4595		 * resubmitted from the backup DRing following the reset
4596		 * and the wait/run queues will be entered again.
4597		 */
4598		ldep = &vdcp->local_dring[idx];
4599		op = ldep->operation;
4600		if ((op == VD_OP_BREAD) || (op == VD_OP_BWRITE)) {
4601			DTRACE_IO1(done, buf_t *, ldep->cb_arg);
4602			VD_KSTAT_RUNQ_EXIT(vdcp);
4603		}
4604		VD_UPDATE_ERR_STATS(vdcp, vd_softerrs);
4605		VDC_DUMP_DRING_MSG(dring_msg);
4606		DMSG(vdcp, 0, "[%d] DATA NACK\n", vdcp->instance);
4607		mutex_exit(&vdcp->lock);
4608		return (EIO);
4609
4610	} else if (msg->tag.vio_subtype == VIO_SUBTYPE_INFO) {
4611		/*
4612		 * Update the I/O statistics to indicate that an error occurred.
4613		 * No need to update the wait/run queues as no specific read or
4614		 * write request is being completed in response to this 'msg'.
4615		 */
4616		VD_UPDATE_ERR_STATS(vdcp, vd_protoerrs);
4617		mutex_exit(&vdcp->lock);
4618		return (EPROTO);
4619	}
4620
4621	DMSG(vdcp, 1, ": start %d end %d\n", start, end);
4622	ASSERT(start == end);
4623
4624	ldep = &vdcp->local_dring[idx];
4625
4626	DMSG(vdcp, 1, ": state 0x%x - cb_type 0x%x\n",
4627	    ldep->dep->hdr.dstate, ldep->cb_type);
4628
4629	if (ldep->dep->hdr.dstate == VIO_DESC_DONE) {
4630		struct buf *bufp;
4631
4632		switch (ldep->cb_type) {
4633		case CB_SYNC:
4634			ASSERT(vdcp->sync_op_pending);
4635
4636			status = vdc_depopulate_descriptor(vdcp, idx);
4637			vdcp->sync_op_status = status;
4638			vdcp->sync_op_pending = B_FALSE;
4639			cv_signal(&vdcp->sync_pending_cv);
4640			break;
4641
4642		case CB_STRATEGY:
4643			bufp = ldep->cb_arg;
4644			ASSERT(bufp != NULL);
4645			bufp->b_resid =
4646			    bufp->b_bcount - ldep->dep->payload.nbytes;
4647			status = ldep->dep->payload.status; /* Future:ntoh */
4648			if (status != 0) {
4649				DMSG(vdcp, 1, "strategy status=%d\n", status);
4650				VD_UPDATE_ERR_STATS(vdcp, vd_softerrs);
4651				bioerror(bufp, status);
4652			}
4653
4654			(void) vdc_depopulate_descriptor(vdcp, idx);
4655
4656			DMSG(vdcp, 1,
4657			    "strategy complete req=%ld bytes resp=%ld bytes\n",
4658			    bufp->b_bcount, ldep->dep->payload.nbytes);
4659
4660			if (status != 0 && vdcp->failfast_interval != 0) {
4661				/*
4662				 * The I/O has failed and failfast is enabled.
4663				 * We need the failfast thread to check if the
4664				 * failure is due to a reservation conflict.
4665				 */
4666				(void) vdc_failfast_io_queue(vdcp, bufp);
4667			} else {
4668				if (status == 0) {
4669					op = (bufp->b_flags & B_READ) ?
4670					    VD_OP_BREAD : VD_OP_BWRITE;
4671					VD_UPDATE_IO_STATS(vdcp, op,
4672					    ldep->dep->payload.nbytes);
4673				}
4674				VD_KSTAT_RUNQ_EXIT(vdcp);
4675				DTRACE_IO1(done, buf_t *, bufp);
4676				biodone(bufp);
4677			}
4678			break;
4679
4680		default:
4681			ASSERT(0);
4682		}
4683	}
4684
4685	/* let the arrival signal propogate */
4686	mutex_exit(&vdcp->lock);
4687
4688	/* probe gives the count of how many entries were processed */
4689	DTRACE_PROBE2(processed, int, 1, vdc_t *, vdcp);
4690
4691	return (0);
4692}
4693
4694
4695/*
4696 * Function:
4697 *	vdc_handle_ver_msg()
4698 *
4699 * Description:
4700 *
4701 * Arguments:
4702 *	vdc	- soft state pointer for this instance of the device driver.
4703 *	ver_msg	- LDC message sent by vDisk server
4704 *
4705 * Return Code:
4706 *	0	- Success
4707 */
4708static int
4709vdc_handle_ver_msg(vdc_t *vdc, vio_ver_msg_t *ver_msg)
4710{
4711	int status = 0;
4712
4713	ASSERT(vdc != NULL);
4714	ASSERT(mutex_owned(&vdc->lock));
4715
4716	if (ver_msg->tag.vio_subtype_env != VIO_VER_INFO) {
4717		return (EPROTO);
4718	}
4719
4720	if (ver_msg->dev_class != VDEV_DISK_SERVER) {
4721		return (EINVAL);
4722	}
4723
4724	switch (ver_msg->tag.vio_subtype) {
4725	case VIO_SUBTYPE_ACK:
4726		/*
4727		 * We check to see if the version returned is indeed supported
4728		 * (The server may have also adjusted the minor number downwards
4729		 * and if so 'ver_msg' will contain the actual version agreed)
4730		 */
4731		if (vdc_is_supported_version(ver_msg)) {
4732			vdc->ver.major = ver_msg->ver_major;
4733			vdc->ver.minor = ver_msg->ver_minor;
4734			ASSERT(vdc->ver.major > 0);
4735		} else {
4736			status = EPROTO;
4737		}
4738		break;
4739
4740	case VIO_SUBTYPE_NACK:
4741		/*
4742		 * call vdc_is_supported_version() which will return the next
4743		 * supported version (if any) in 'ver_msg'
4744		 */
4745		(void) vdc_is_supported_version(ver_msg);
4746		if (ver_msg->ver_major > 0) {
4747			size_t len = sizeof (*ver_msg);
4748
4749			ASSERT(vdc->ver.major > 0);
4750
4751			/* reset the necessary fields and resend */
4752			ver_msg->tag.vio_subtype = VIO_SUBTYPE_INFO;
4753			ver_msg->dev_class = VDEV_DISK;
4754
4755			status = vdc_send(vdc, (caddr_t)ver_msg, &len);
4756			DMSG(vdc, 0, "[%d] Resend VER info (LDC status = %d)\n",
4757			    vdc->instance, status);
4758			if (len != sizeof (*ver_msg))
4759				status = EBADMSG;
4760		} else {
4761			DMSG(vdc, 0, "[%d] No common version with vDisk server",
4762			    vdc->instance);
4763			status = ENOTSUP;
4764		}
4765
4766		break;
4767	case VIO_SUBTYPE_INFO:
4768		/*
4769		 * Handle the case where vds starts handshake
4770		 * (for now only vdc is the instigator)
4771		 */
4772		status = ENOTSUP;
4773		break;
4774
4775	default:
4776		status = EINVAL;
4777		break;
4778	}
4779
4780	return (status);
4781}
4782
4783/*
4784 * Function:
4785 *	vdc_handle_attr_msg()
4786 *
4787 * Description:
4788 *
4789 * Arguments:
4790 *	vdc	- soft state pointer for this instance of the device driver.
4791 *	attr_msg	- LDC message sent by vDisk server
4792 *
4793 * Return Code:
4794 *	0	- Success
4795 */
4796static int
4797vdc_handle_attr_msg(vdc_t *vdc, vd_attr_msg_t *attr_msg)
4798{
4799	int status = 0;
4800
4801	ASSERT(vdc != NULL);
4802	ASSERT(mutex_owned(&vdc->lock));
4803
4804	if (attr_msg->tag.vio_subtype_env != VIO_ATTR_INFO) {
4805		return (EPROTO);
4806	}
4807
4808	switch (attr_msg->tag.vio_subtype) {
4809	case VIO_SUBTYPE_ACK:
4810		/*
4811		 * We now verify the attributes sent by vds.
4812		 */
4813		if (attr_msg->vdisk_size == 0) {
4814			DMSG(vdc, 0, "[%d] Invalid disk size from vds",
4815			    vdc->instance);
4816			status = EINVAL;
4817			break;
4818		}
4819
4820		if (attr_msg->max_xfer_sz == 0) {
4821			DMSG(vdc, 0, "[%d] Invalid transfer size from vds",
4822			    vdc->instance);
4823			status = EINVAL;
4824			break;
4825		}
4826
4827		if (attr_msg->vdisk_size == VD_SIZE_UNKNOWN) {
4828			DMSG(vdc, 0, "[%d] Unknown disk size from vds",
4829			    vdc->instance);
4830			attr_msg->vdisk_size = 0;
4831		}
4832		/* update disk, block and transfer sizes */
4833		vdc_update_size(vdc, attr_msg->vdisk_size,
4834		    attr_msg->vdisk_block_size, attr_msg->max_xfer_sz);
4835		vdc->vdisk_type = attr_msg->vdisk_type;
4836		vdc->operations = attr_msg->operations;
4837		if (vio_ver_is_supported(vdc->ver, 1, 1))
4838			vdc->vdisk_media = attr_msg->vdisk_media;
4839		else
4840			vdc->vdisk_media = 0;
4841
4842		DMSG(vdc, 0, "[%d] max_xfer_sz: sent %lx acked %lx\n",
4843		    vdc->instance, vdc->max_xfer_sz, attr_msg->max_xfer_sz);
4844		DMSG(vdc, 0, "[%d] vdisk_block_size: sent %lx acked %x\n",
4845		    vdc->instance, vdc->block_size,
4846		    attr_msg->vdisk_block_size);
4847
4848		if ((attr_msg->xfer_mode != VIO_DRING_MODE_V1_0) ||
4849		    (attr_msg->vdisk_size > INT64_MAX) ||
4850		    (attr_msg->operations == 0) ||
4851		    (attr_msg->vdisk_type > VD_DISK_TYPE_DISK)) {
4852			DMSG(vdc, 0, "[%d] Invalid attributes from vds",
4853			    vdc->instance);
4854			status = EINVAL;
4855			break;
4856		}
4857
4858		/*
4859		 * Now that we have received all attributes we can create a
4860		 * fake geometry for the disk.
4861		 */
4862		vdc_create_fake_geometry(vdc);
4863		break;
4864
4865	case VIO_SUBTYPE_NACK:
4866		/*
4867		 * vds could not handle the attributes we sent so we
4868		 * stop negotiating.
4869		 */
4870		status = EPROTO;
4871		break;
4872
4873	case VIO_SUBTYPE_INFO:
4874		/*
4875		 * Handle the case where vds starts the handshake
4876		 * (for now; vdc is the only supported instigatior)
4877		 */
4878		status = ENOTSUP;
4879		break;
4880
4881	default:
4882		status = ENOTSUP;
4883		break;
4884	}
4885
4886	return (status);
4887}
4888
4889/*
4890 * Function:
4891 *	vdc_handle_dring_reg_msg()
4892 *
4893 * Description:
4894 *
4895 * Arguments:
4896 *	vdc		- soft state pointer for this instance of the driver.
4897 *	dring_msg	- LDC message sent by vDisk server
4898 *
4899 * Return Code:
4900 *	0	- Success
4901 */
4902static int
4903vdc_handle_dring_reg_msg(vdc_t *vdc, vio_dring_reg_msg_t *dring_msg)
4904{
4905	int		status = 0;
4906
4907	ASSERT(vdc != NULL);
4908	ASSERT(mutex_owned(&vdc->lock));
4909
4910	if (dring_msg->tag.vio_subtype_env != VIO_DRING_REG) {
4911		return (EPROTO);
4912	}
4913
4914	switch (dring_msg->tag.vio_subtype) {
4915	case VIO_SUBTYPE_ACK:
4916		/* save the received dring_ident */
4917		vdc->dring_ident = dring_msg->dring_ident;
4918		DMSG(vdc, 0, "[%d] Received dring ident=0x%lx\n",
4919		    vdc->instance, vdc->dring_ident);
4920		break;
4921
4922	case VIO_SUBTYPE_NACK:
4923		/*
4924		 * vds could not handle the DRing info we sent so we
4925		 * stop negotiating.
4926		 */
4927		DMSG(vdc, 0, "[%d] server could not register DRing\n",
4928		    vdc->instance);
4929		status = EPROTO;
4930		break;
4931
4932	case VIO_SUBTYPE_INFO:
4933		/*
4934		 * Handle the case where vds starts handshake
4935		 * (for now only vdc is the instigatior)
4936		 */
4937		status = ENOTSUP;
4938		break;
4939	default:
4940		status = ENOTSUP;
4941	}
4942
4943	return (status);
4944}
4945
4946/*
4947 * Function:
4948 *	vdc_verify_seq_num()
4949 *
4950 * Description:
4951 *	This functions verifies that the sequence number sent back by the vDisk
4952 *	server with the latest message is what is expected (i.e. it is greater
4953 *	than the last seq num sent by the vDisk server and less than or equal
4954 *	to the last seq num generated by vdc).
4955 *
4956 *	It then checks the request ID to see if any requests need processing
4957 *	in the DRing.
4958 *
4959 * Arguments:
4960 *	vdc		- soft state pointer for this instance of the driver.
4961 *	dring_msg	- pointer to the LDC message sent by vds
4962 *
4963 * Return Code:
4964 *	VDC_SEQ_NUM_TODO	- Message needs to be processed
4965 *	VDC_SEQ_NUM_SKIP	- Message has already been processed
4966 *	VDC_SEQ_NUM_INVALID	- The seq numbers are so out of sync,
4967 *				  vdc cannot deal with them
4968 */
4969static int
4970vdc_verify_seq_num(vdc_t *vdc, vio_dring_msg_t *dring_msg)
4971{
4972	ASSERT(vdc != NULL);
4973	ASSERT(dring_msg != NULL);
4974	ASSERT(mutex_owned(&vdc->lock));
4975
4976	/*
4977	 * Check to see if the messages were responded to in the correct
4978	 * order by vds.
4979	 */
4980	if ((dring_msg->seq_num <= vdc->seq_num_reply) ||
4981	    (dring_msg->seq_num > vdc->seq_num)) {
4982		DMSG(vdc, 0, "?[%d] Bogus sequence_number %lu: "
4983		    "%lu > expected <= %lu (last proc req %lu sent %lu)\n",
4984		    vdc->instance, dring_msg->seq_num,
4985		    vdc->seq_num_reply, vdc->seq_num,
4986		    vdc->req_id_proc, vdc->req_id);
4987		return (VDC_SEQ_NUM_INVALID);
4988	}
4989	vdc->seq_num_reply = dring_msg->seq_num;
4990
4991	if (vdc->req_id_proc < vdc->req_id)
4992		return (VDC_SEQ_NUM_TODO);
4993	else
4994		return (VDC_SEQ_NUM_SKIP);
4995}
4996
4997
4998/*
4999 * Function:
5000 *	vdc_is_supported_version()
5001 *
5002 * Description:
5003 *	This routine checks if the major/minor version numbers specified in
5004 *	'ver_msg' are supported. If not it finds the next version that is
5005 *	in the supported version list 'vdc_version[]' and sets the fields in
5006 *	'ver_msg' to those values
5007 *
5008 * Arguments:
5009 *	ver_msg	- LDC message sent by vDisk server
5010 *
5011 * Return Code:
5012 *	B_TRUE	- Success
5013 *	B_FALSE	- Version not supported
5014 */
5015static boolean_t
5016vdc_is_supported_version(vio_ver_msg_t *ver_msg)
5017{
5018	int vdc_num_versions = sizeof (vdc_version) / sizeof (vdc_version[0]);
5019
5020	for (int i = 0; i < vdc_num_versions; i++) {
5021		ASSERT(vdc_version[i].major > 0);
5022		ASSERT((i == 0) ||
5023		    (vdc_version[i].major < vdc_version[i-1].major));
5024
5025		/*
5026		 * If the major versions match, adjust the minor version, if
5027		 * necessary, down to the highest value supported by this
5028		 * client. The server should support all minor versions lower
5029		 * than the value it sent
5030		 */
5031		if (ver_msg->ver_major == vdc_version[i].major) {
5032			if (ver_msg->ver_minor > vdc_version[i].minor) {
5033				DMSGX(0,
5034				    "Adjusting minor version from %u to %u",
5035				    ver_msg->ver_minor, vdc_version[i].minor);
5036				ver_msg->ver_minor = vdc_version[i].minor;
5037			}
5038			return (B_TRUE);
5039		}
5040
5041		/*
5042		 * If the message contains a higher major version number, set
5043		 * the message's major/minor versions to the current values
5044		 * and return false, so this message will get resent with
5045		 * these values, and the server will potentially try again
5046		 * with the same or a lower version
5047		 */
5048		if (ver_msg->ver_major > vdc_version[i].major) {
5049			ver_msg->ver_major = vdc_version[i].major;
5050			ver_msg->ver_minor = vdc_version[i].minor;
5051			DMSGX(0, "Suggesting major/minor (0x%x/0x%x)\n",
5052			    ver_msg->ver_major, ver_msg->ver_minor);
5053
5054			return (B_FALSE);
5055		}
5056
5057		/*
5058		 * Otherwise, the message's major version is less than the
5059		 * current major version, so continue the loop to the next
5060		 * (lower) supported version
5061		 */
5062	}
5063
5064	/*
5065	 * No common version was found; "ground" the version pair in the
5066	 * message to terminate negotiation
5067	 */
5068	ver_msg->ver_major = 0;
5069	ver_msg->ver_minor = 0;
5070
5071	return (B_FALSE);
5072}
5073/* -------------------------------------------------------------------------- */
5074
5075/*
5076 * DKIO(7) support
5077 */
5078
5079typedef struct vdc_dk_arg {
5080	struct dk_callback	dkc;
5081	int			mode;
5082	dev_t			dev;
5083	vdc_t			*vdc;
5084} vdc_dk_arg_t;
5085
5086/*
5087 * Function:
5088 * 	vdc_dkio_flush_cb()
5089 *
5090 * Description:
5091 *	This routine is a callback for DKIOCFLUSHWRITECACHE which can be called
5092 *	by kernel code.
5093 *
5094 * Arguments:
5095 *	arg	- a pointer to a vdc_dk_arg_t structure.
5096 */
5097void
5098vdc_dkio_flush_cb(void *arg)
5099{
5100	struct vdc_dk_arg	*dk_arg = (struct vdc_dk_arg *)arg;
5101	struct dk_callback	*dkc = NULL;
5102	vdc_t			*vdc = NULL;
5103	int			rv;
5104
5105	if (dk_arg == NULL) {
5106		cmn_err(CE_NOTE, "?[Unk] DKIOCFLUSHWRITECACHE arg is NULL\n");
5107		return;
5108	}
5109	dkc = &dk_arg->dkc;
5110	vdc = dk_arg->vdc;
5111	ASSERT(vdc != NULL);
5112
5113	rv = vdc_do_sync_op(vdc, VD_OP_FLUSH, NULL, 0,
5114	    VDCPART(dk_arg->dev), 0, CB_SYNC, 0, VIO_both_dir, B_TRUE);
5115	if (rv != 0) {
5116		DMSG(vdc, 0, "[%d] DKIOCFLUSHWRITECACHE failed %d : model %x\n",
5117		    vdc->instance, rv,
5118		    ddi_model_convert_from(dk_arg->mode & FMODELS));
5119	}
5120
5121	/*
5122	 * Trigger the call back to notify the caller the the ioctl call has
5123	 * been completed.
5124	 */
5125	if ((dk_arg->mode & FKIOCTL) &&
5126	    (dkc != NULL) &&
5127	    (dkc->dkc_callback != NULL)) {
5128		ASSERT(dkc->dkc_cookie != NULL);
5129		(*dkc->dkc_callback)(dkc->dkc_cookie, rv);
5130	}
5131
5132	/* Indicate that one less DKIO write flush is outstanding */
5133	mutex_enter(&vdc->lock);
5134	vdc->dkio_flush_pending--;
5135	ASSERT(vdc->dkio_flush_pending >= 0);
5136	mutex_exit(&vdc->lock);
5137
5138	/* free the mem that was allocated when the callback was dispatched */
5139	kmem_free(arg, sizeof (vdc_dk_arg_t));
5140}
5141
5142/*
5143 * Function:
5144 * 	vdc_dkio_gapart()
5145 *
5146 * Description:
5147 *	This function implements the DKIOCGAPART ioctl.
5148 *
5149 * Arguments:
5150 *	vdc	- soft state pointer
5151 *	arg	- a pointer to a dk_map[NDKMAP] or dk_map32[NDKMAP] structure
5152 *	flag	- ioctl flags
5153 */
5154static int
5155vdc_dkio_gapart(vdc_t *vdc, caddr_t arg, int flag)
5156{
5157	struct dk_geom *geom;
5158	struct extvtoc *vtoc;
5159	union {
5160		struct dk_map map[NDKMAP];
5161		struct dk_map32 map32[NDKMAP];
5162	} data;
5163	int i, rv, size;
5164
5165	mutex_enter(&vdc->lock);
5166
5167	if ((rv = vdc_validate_geometry(vdc)) != 0) {
5168		mutex_exit(&vdc->lock);
5169		return (rv);
5170	}
5171
5172	if (vdc->vdisk_size > VD_OLDVTOC_LIMIT) {
5173		mutex_exit(&vdc->lock);
5174		return (EOVERFLOW);
5175	}
5176
5177	vtoc = vdc->vtoc;
5178	geom = vdc->geom;
5179
5180	if (ddi_model_convert_from(flag & FMODELS) == DDI_MODEL_ILP32) {
5181
5182		for (i = 0; i < vtoc->v_nparts; i++) {
5183			data.map32[i].dkl_cylno = vtoc->v_part[i].p_start /
5184			    (geom->dkg_nhead * geom->dkg_nsect);
5185			data.map32[i].dkl_nblk = vtoc->v_part[i].p_size;
5186		}
5187		size = NDKMAP * sizeof (struct dk_map32);
5188
5189	} else {
5190
5191		for (i = 0; i < vtoc->v_nparts; i++) {
5192			data.map[i].dkl_cylno = vtoc->v_part[i].p_start /
5193			    (geom->dkg_nhead * geom->dkg_nsect);
5194			data.map[i].dkl_nblk = vtoc->v_part[i].p_size;
5195		}
5196		size = NDKMAP * sizeof (struct dk_map);
5197
5198	}
5199
5200	mutex_exit(&vdc->lock);
5201
5202	if (ddi_copyout(&data, arg, size, flag) != 0)
5203		return (EFAULT);
5204
5205	return (0);
5206}
5207
5208/*
5209 * Function:
5210 * 	vdc_dkio_partition()
5211 *
5212 * Description:
5213 *	This function implements the DKIOCPARTITION ioctl.
5214 *
5215 * Arguments:
5216 *	vdc	- soft state pointer
5217 *	arg	- a pointer to a struct partition64 structure
5218 *	flag	- ioctl flags
5219 */
5220static int
5221vdc_dkio_partition(vdc_t *vdc, caddr_t arg, int flag)
5222{
5223	struct partition64 p64;
5224	efi_gpt_t *gpt;
5225	efi_gpe_t *gpe;
5226	vd_efi_dev_t edev;
5227	uint_t partno;
5228	int rv;
5229
5230	if (ddi_copyin(arg, &p64, sizeof (struct partition64), flag)) {
5231		return (EFAULT);
5232	}
5233
5234	VD_EFI_DEV_SET(edev, vdc, vd_process_efi_ioctl);
5235
5236	if ((rv = vd_efi_alloc_and_read(&edev, &gpt, &gpe)) != 0) {
5237		return (rv);
5238	}
5239
5240	partno = p64.p_partno;
5241
5242	if (partno >= gpt->efi_gpt_NumberOfPartitionEntries) {
5243		vd_efi_free(&edev, gpt, gpe);
5244		return (ESRCH);
5245	}
5246
5247	bcopy(&gpe[partno].efi_gpe_PartitionTypeGUID, &p64.p_type,
5248	    sizeof (struct uuid));
5249	p64.p_start = gpe[partno].efi_gpe_StartingLBA;
5250	p64.p_size = gpe[partno].efi_gpe_EndingLBA - p64.p_start + 1;
5251
5252	if (ddi_copyout(&p64, arg, sizeof (struct partition64), flag)) {
5253		vd_efi_free(&edev, gpt, gpe);
5254		return (EFAULT);
5255	}
5256
5257	vd_efi_free(&edev, gpt, gpe);
5258	return (0);
5259}
5260
5261/*
5262 * Function:
5263 * 	vdc_dioctl_rwcmd()
5264 *
5265 * Description:
5266 *	This function implements the DIOCTL_RWCMD ioctl. This ioctl is used
5267 *	for DKC_DIRECT disks to read or write at an absolute disk offset.
5268 *
5269 * Arguments:
5270 *	dev	- device
5271 *	arg	- a pointer to a dadkio_rwcmd or dadkio_rwcmd32 structure
5272 *	flag	- ioctl flags
5273 */
5274static int
5275vdc_dioctl_rwcmd(dev_t dev, caddr_t arg, int flag)
5276{
5277	struct dadkio_rwcmd32 rwcmd32;
5278	struct dadkio_rwcmd rwcmd;
5279	struct iovec aiov;
5280	struct uio auio;
5281	int rw, status;
5282	struct buf *buf;
5283
5284	if (ddi_model_convert_from(flag & FMODELS) == DDI_MODEL_ILP32) {
5285		if (ddi_copyin((caddr_t)arg, (caddr_t)&rwcmd32,
5286		    sizeof (struct dadkio_rwcmd32), flag)) {
5287			return (EFAULT);
5288		}
5289		rwcmd.cmd = rwcmd32.cmd;
5290		rwcmd.flags = rwcmd32.flags;
5291		rwcmd.blkaddr = (daddr_t)rwcmd32.blkaddr;
5292		rwcmd.buflen = rwcmd32.buflen;
5293		rwcmd.bufaddr = (caddr_t)(uintptr_t)rwcmd32.bufaddr;
5294	} else {
5295		if (ddi_copyin((caddr_t)arg, (caddr_t)&rwcmd,
5296		    sizeof (struct dadkio_rwcmd), flag)) {
5297			return (EFAULT);
5298		}
5299	}
5300
5301	switch (rwcmd.cmd) {
5302	case DADKIO_RWCMD_READ:
5303		rw = B_READ;
5304		break;
5305	case DADKIO_RWCMD_WRITE:
5306		rw = B_WRITE;
5307		break;
5308	default:
5309		return (EINVAL);
5310	}
5311
5312	bzero((caddr_t)&aiov, sizeof (struct iovec));
5313	aiov.iov_base   = rwcmd.bufaddr;
5314	aiov.iov_len    = rwcmd.buflen;
5315
5316	bzero((caddr_t)&auio, sizeof (struct uio));
5317	auio.uio_iov    = &aiov;
5318	auio.uio_iovcnt = 1;
5319	auio.uio_loffset = rwcmd.blkaddr * DEV_BSIZE;
5320	auio.uio_resid  = rwcmd.buflen;
5321	auio.uio_segflg = flag & FKIOCTL ? UIO_SYSSPACE : UIO_USERSPACE;
5322
5323	buf = kmem_alloc(sizeof (buf_t), KM_SLEEP);
5324	bioinit(buf);
5325	/*
5326	 * We use the private field of buf to specify that this is an
5327	 * I/O using an absolute offset.
5328	 */
5329	buf->b_private = (void *)VD_SLICE_NONE;
5330
5331	status = physio(vdc_strategy, buf, dev, rw, vdc_min, &auio);
5332
5333	biofini(buf);
5334	kmem_free(buf, sizeof (buf_t));
5335
5336	return (status);
5337}
5338
5339/*
5340 * Allocate a buffer for a VD_OP_SCSICMD operation. The size of the allocated
5341 * buffer is returned in alloc_len.
5342 */
5343static vd_scsi_t *
5344vdc_scsi_alloc(int cdb_len, int sense_len, int datain_len, int dataout_len,
5345    int *alloc_len)
5346{
5347	vd_scsi_t *vd_scsi;
5348	int vd_scsi_len = VD_SCSI_SIZE;
5349
5350	vd_scsi_len += P2ROUNDUP(cdb_len, sizeof (uint64_t));
5351	vd_scsi_len += P2ROUNDUP(sense_len, sizeof (uint64_t));
5352	vd_scsi_len += P2ROUNDUP(datain_len, sizeof (uint64_t));
5353	vd_scsi_len += P2ROUNDUP(dataout_len, sizeof (uint64_t));
5354
5355	ASSERT(vd_scsi_len % sizeof (uint64_t) == 0);
5356
5357	vd_scsi = kmem_zalloc(vd_scsi_len, KM_SLEEP);
5358
5359	vd_scsi->cdb_len = cdb_len;
5360	vd_scsi->sense_len = sense_len;
5361	vd_scsi->datain_len = datain_len;
5362	vd_scsi->dataout_len = dataout_len;
5363
5364	*alloc_len = vd_scsi_len;
5365
5366	return (vd_scsi);
5367}
5368
5369/*
5370 * Convert the status of a SCSI command to a Solaris return code.
5371 *
5372 * Arguments:
5373 *	vd_scsi		- The SCSI operation buffer.
5374 *	log_error	- indicate if an error message should be logged.
5375 *
5376 * Note that our SCSI error messages are rather primitive for the moment
5377 * and could be improved by decoding some data like the SCSI command and
5378 * the sense key.
5379 *
5380 * Return value:
5381 *	0		- Status is good.
5382 *	EACCES		- Status reports a reservation conflict.
5383 *	ENOTSUP		- Status reports a check condition and sense key
5384 *			  reports an illegal request.
5385 *	EIO		- Any other status.
5386 */
5387static int
5388vdc_scsi_status(vdc_t *vdc, vd_scsi_t *vd_scsi, boolean_t log_error)
5389{
5390	int rv;
5391	char path_str[MAXPATHLEN];
5392	char panic_str[VDC_RESV_CONFLICT_FMT_LEN + MAXPATHLEN];
5393	union scsi_cdb *cdb;
5394	struct scsi_extended_sense *sense;
5395
5396	if (vd_scsi->cmd_status == STATUS_GOOD)
5397		/* no error */
5398		return (0);
5399
5400	/* when the tunable vdc_scsi_log_error is true we log all errors */
5401	if (vdc_scsi_log_error)
5402		log_error = B_TRUE;
5403
5404	if (log_error) {
5405		cmn_err(CE_WARN, "%s (vdc%d):\tError for Command: 0x%x)\n",
5406		    ddi_pathname(vdc->dip, path_str), vdc->instance,
5407		    GETCMD(VD_SCSI_DATA_CDB(vd_scsi)));
5408	}
5409
5410	/* default returned value */
5411	rv = EIO;
5412
5413	switch (vd_scsi->cmd_status) {
5414
5415	case STATUS_CHECK:
5416	case STATUS_TERMINATED:
5417		if (log_error)
5418			cmn_err(CE_CONT, "\tCheck Condition Error\n");
5419
5420		/* check sense buffer */
5421		if (vd_scsi->sense_len == 0 ||
5422		    vd_scsi->sense_status != STATUS_GOOD) {
5423			if (log_error)
5424				cmn_err(CE_CONT, "\tNo Sense Data Available\n");
5425			break;
5426		}
5427
5428		sense = VD_SCSI_DATA_SENSE(vd_scsi);
5429
5430		if (log_error) {
5431			cmn_err(CE_CONT, "\tSense Key:  0x%x\n"
5432			    "\tASC: 0x%x, ASCQ: 0x%x\n",
5433			    scsi_sense_key((uint8_t *)sense),
5434			    scsi_sense_asc((uint8_t *)sense),
5435			    scsi_sense_ascq((uint8_t *)sense));
5436		}
5437
5438		if (scsi_sense_key((uint8_t *)sense) == KEY_ILLEGAL_REQUEST)
5439			rv = ENOTSUP;
5440		break;
5441
5442	case STATUS_BUSY:
5443		if (log_error)
5444			cmn_err(CE_NOTE, "\tDevice Busy\n");
5445		break;
5446
5447	case STATUS_RESERVATION_CONFLICT:
5448		/*
5449		 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then
5450		 * reservation conflict could be due to various reasons like
5451		 * incorrect keys, not registered or not reserved etc. So,
5452		 * we should not panic in that case.
5453		 */
5454		cdb = VD_SCSI_DATA_CDB(vd_scsi);
5455		if (vdc->failfast_interval != 0 &&
5456		    cdb->scc_cmd != SCMD_PERSISTENT_RESERVE_IN &&
5457		    cdb->scc_cmd != SCMD_PERSISTENT_RESERVE_OUT) {
5458			/* failfast is enabled so we have to panic */
5459			(void) snprintf(panic_str, sizeof (panic_str),
5460			    VDC_RESV_CONFLICT_FMT_STR "%s",
5461			    ddi_pathname(vdc->dip, path_str));
5462			panic(panic_str);
5463		}
5464		if (log_error)
5465			cmn_err(CE_NOTE, "\tReservation Conflict\n");
5466		rv = EACCES;
5467		break;
5468
5469	case STATUS_QFULL:
5470		if (log_error)
5471			cmn_err(CE_NOTE, "\tQueue Full\n");
5472		break;
5473
5474	case STATUS_MET:
5475	case STATUS_INTERMEDIATE:
5476	case STATUS_SCSI2:
5477	case STATUS_INTERMEDIATE_MET:
5478	case STATUS_ACA_ACTIVE:
5479		if (log_error)
5480			cmn_err(CE_CONT,
5481			    "\tUnexpected SCSI status received: 0x%x\n",
5482			    vd_scsi->cmd_status);
5483		break;
5484
5485	default:
5486		if (log_error)
5487			cmn_err(CE_CONT,
5488			    "\tInvalid SCSI status received: 0x%x\n",
5489			    vd_scsi->cmd_status);
5490		break;
5491	}
5492
5493	return (rv);
5494}
5495
5496/*
5497 * Implemented the USCSICMD uscsi(7I) ioctl. This ioctl is converted to
5498 * a VD_OP_SCSICMD operation which is sent to the vdisk server. If a SCSI
5499 * reset is requested (i.e. a flag USCSI_RESET* is set) then the ioctl is
5500 * converted to a VD_OP_RESET operation.
5501 */
5502static int
5503vdc_uscsi_cmd(vdc_t *vdc, caddr_t arg, int mode)
5504{
5505	struct uscsi_cmd 	uscsi;
5506	struct uscsi_cmd32	uscsi32;
5507	vd_scsi_t 		*vd_scsi;
5508	int 			vd_scsi_len;
5509	union scsi_cdb		*cdb;
5510	struct scsi_extended_sense *sense;
5511	char 			*datain, *dataout;
5512	size_t			cdb_len, datain_len, dataout_len, sense_len;
5513	int 			rv;
5514
5515	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
5516		if (ddi_copyin(arg, &uscsi32, sizeof (struct uscsi_cmd32),
5517		    mode) != 0)
5518			return (EFAULT);
5519		uscsi_cmd32touscsi_cmd((&uscsi32), (&uscsi));
5520	} else {
5521		if (ddi_copyin(arg, &uscsi, sizeof (struct uscsi_cmd),
5522		    mode) != 0)
5523			return (EFAULT);
5524	}
5525
5526	/* a uscsi reset is converted to a VD_OP_RESET operation */
5527	if (uscsi.uscsi_flags & (USCSI_RESET | USCSI_RESET_LUN |
5528	    USCSI_RESET_ALL)) {
5529		rv = vdc_do_sync_op(vdc, VD_OP_RESET, NULL, 0, 0, 0, CB_SYNC,
5530		    (void *)(uint64_t)mode, VIO_both_dir, B_TRUE);
5531		return (rv);
5532	}
5533
5534	/* cdb buffer length */
5535	cdb_len = uscsi.uscsi_cdblen;
5536
5537	/* data in and out buffers length */
5538	if (uscsi.uscsi_flags & USCSI_READ) {
5539		datain_len = uscsi.uscsi_buflen;
5540		dataout_len = 0;
5541	} else {
5542		datain_len = 0;
5543		dataout_len = uscsi.uscsi_buflen;
5544	}
5545
5546	/* sense buffer length */
5547	if (uscsi.uscsi_flags & USCSI_RQENABLE)
5548		sense_len = uscsi.uscsi_rqlen;
5549	else
5550		sense_len = 0;
5551
5552	/* allocate buffer for the VD_SCSICMD_OP operation */
5553	vd_scsi = vdc_scsi_alloc(cdb_len, sense_len, datain_len, dataout_len,
5554	    &vd_scsi_len);
5555
5556	/*
5557	 * The documentation of USCSI_ISOLATE and USCSI_DIAGNOSE is very vague,
5558	 * but basically they prevent a SCSI command from being retried in case
5559	 * of an error.
5560	 */
5561	if ((uscsi.uscsi_flags & USCSI_ISOLATE) ||
5562	    (uscsi.uscsi_flags & USCSI_DIAGNOSE))
5563		vd_scsi->options |= VD_SCSI_OPT_NORETRY;
5564
5565	/* set task attribute */
5566	if (uscsi.uscsi_flags & USCSI_NOTAG) {
5567		vd_scsi->task_attribute = 0;
5568	} else {
5569		if (uscsi.uscsi_flags & USCSI_HEAD)
5570			vd_scsi->task_attribute = VD_SCSI_TASK_ACA;
5571		else if (uscsi.uscsi_flags & USCSI_HTAG)
5572			vd_scsi->task_attribute = VD_SCSI_TASK_HQUEUE;
5573		else if (uscsi.uscsi_flags & USCSI_OTAG)
5574			vd_scsi->task_attribute = VD_SCSI_TASK_ORDERED;
5575		else
5576			vd_scsi->task_attribute = 0;
5577	}
5578
5579	/* set timeout */
5580	vd_scsi->timeout = uscsi.uscsi_timeout;
5581
5582	/* copy-in cdb data */
5583	cdb = VD_SCSI_DATA_CDB(vd_scsi);
5584	if (ddi_copyin(uscsi.uscsi_cdb, cdb, cdb_len, mode) != 0) {
5585		rv = EFAULT;
5586		goto done;
5587	}
5588
5589	/* keep a pointer to the sense buffer */
5590	sense = VD_SCSI_DATA_SENSE(vd_scsi);
5591
5592	/* keep a pointer to the data-in buffer */
5593	datain = (char *)VD_SCSI_DATA_IN(vd_scsi);
5594
5595	/* copy-in request data to the data-out buffer */
5596	dataout = (char *)VD_SCSI_DATA_OUT(vd_scsi);
5597	if (!(uscsi.uscsi_flags & USCSI_READ)) {
5598		if (ddi_copyin(uscsi.uscsi_bufaddr, dataout, dataout_len,
5599		    mode)) {
5600			rv = EFAULT;
5601			goto done;
5602		}
5603	}
5604
5605	/* submit the request */
5606	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
5607	    0, 0, CB_SYNC, (void *)(uint64_t)mode, VIO_both_dir, B_FALSE);
5608
5609	if (rv != 0)
5610		goto done;
5611
5612	/* update scsi status */
5613	uscsi.uscsi_status = vd_scsi->cmd_status;
5614
5615	/* update sense data */
5616	if ((uscsi.uscsi_flags & USCSI_RQENABLE) &&
5617	    (uscsi.uscsi_status == STATUS_CHECK ||
5618	    uscsi.uscsi_status == STATUS_TERMINATED)) {
5619
5620		uscsi.uscsi_rqstatus = vd_scsi->sense_status;
5621
5622		if (uscsi.uscsi_rqstatus == STATUS_GOOD) {
5623			uscsi.uscsi_rqresid = uscsi.uscsi_rqlen -
5624			    vd_scsi->sense_len;
5625			if (ddi_copyout(sense, uscsi.uscsi_rqbuf,
5626			    vd_scsi->sense_len, mode) != 0) {
5627				rv = EFAULT;
5628				goto done;
5629			}
5630		}
5631	}
5632
5633	/* update request data */
5634	if (uscsi.uscsi_status == STATUS_GOOD) {
5635		if (uscsi.uscsi_flags & USCSI_READ) {
5636			uscsi.uscsi_resid = uscsi.uscsi_buflen -
5637			    vd_scsi->datain_len;
5638			if (ddi_copyout(datain, uscsi.uscsi_bufaddr,
5639			    vd_scsi->datain_len, mode) != 0) {
5640				rv = EFAULT;
5641				goto done;
5642			}
5643		} else {
5644			uscsi.uscsi_resid = uscsi.uscsi_buflen -
5645			    vd_scsi->dataout_len;
5646		}
5647	}
5648
5649	/* copy-out result */
5650	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
5651		uscsi_cmdtouscsi_cmd32((&uscsi), (&uscsi32));
5652		if (ddi_copyout(&uscsi32, arg, sizeof (struct uscsi_cmd32),
5653		    mode) != 0) {
5654			rv = EFAULT;
5655			goto done;
5656		}
5657	} else {
5658		if (ddi_copyout(&uscsi, arg, sizeof (struct uscsi_cmd),
5659		    mode) != 0) {
5660			rv = EFAULT;
5661			goto done;
5662		}
5663	}
5664
5665	/* get the return code from the SCSI command status */
5666	rv = vdc_scsi_status(vdc, vd_scsi,
5667	    !(uscsi.uscsi_flags & USCSI_SILENT));
5668
5669done:
5670	kmem_free(vd_scsi, vd_scsi_len);
5671	return (rv);
5672}
5673
5674/*
5675 * Create a VD_OP_SCSICMD buffer for a SCSI PERSISTENT IN command.
5676 *
5677 * Arguments:
5678 *	cmd		- SCSI PERSISTENT IN command
5679 *	len		- length of the SCSI input buffer
5680 *	vd_scsi_len	- return the length of the allocated buffer
5681 *
5682 * Returned Value:
5683 *	a pointer to the allocated VD_OP_SCSICMD buffer.
5684 */
5685static vd_scsi_t *
5686vdc_scsi_alloc_persistent_in(uchar_t cmd, int len, int *vd_scsi_len)
5687{
5688	int cdb_len, sense_len, datain_len, dataout_len;
5689	vd_scsi_t *vd_scsi;
5690	union scsi_cdb *cdb;
5691
5692	cdb_len = CDB_GROUP1;
5693	sense_len = sizeof (struct scsi_extended_sense);
5694	datain_len = len;
5695	dataout_len = 0;
5696
5697	vd_scsi = vdc_scsi_alloc(cdb_len, sense_len, datain_len, dataout_len,
5698	    vd_scsi_len);
5699
5700	cdb = VD_SCSI_DATA_CDB(vd_scsi);
5701
5702	/* set cdb */
5703	cdb->scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
5704	cdb->cdb_opaque[1] = cmd;
5705	FORMG1COUNT(cdb, datain_len);
5706
5707	vd_scsi->timeout = vdc_scsi_timeout;
5708
5709	return (vd_scsi);
5710}
5711
5712/*
5713 * Create a VD_OP_SCSICMD buffer for a SCSI PERSISTENT OUT command.
5714 *
5715 * Arguments:
5716 *	cmd		- SCSI PERSISTENT OUT command
5717 *	len		- length of the SCSI output buffer
5718 *	vd_scsi_len	- return the length of the allocated buffer
5719 *
5720 * Returned Code:
5721 *	a pointer to the allocated VD_OP_SCSICMD buffer.
5722 */
5723static vd_scsi_t *
5724vdc_scsi_alloc_persistent_out(uchar_t cmd, int len, int *vd_scsi_len)
5725{
5726	int cdb_len, sense_len, datain_len, dataout_len;
5727	vd_scsi_t *vd_scsi;
5728	union scsi_cdb *cdb;
5729
5730	cdb_len = CDB_GROUP1;
5731	sense_len = sizeof (struct scsi_extended_sense);
5732	datain_len = 0;
5733	dataout_len = len;
5734
5735	vd_scsi = vdc_scsi_alloc(cdb_len, sense_len, datain_len, dataout_len,
5736	    vd_scsi_len);
5737
5738	cdb = VD_SCSI_DATA_CDB(vd_scsi);
5739
5740	/* set cdb */
5741	cdb->scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
5742	cdb->cdb_opaque[1] = cmd;
5743	FORMG1COUNT(cdb, dataout_len);
5744
5745	vd_scsi->timeout = vdc_scsi_timeout;
5746
5747	return (vd_scsi);
5748}
5749
5750/*
5751 * Implement the MHIOCGRP_INKEYS mhd(7i) ioctl. The ioctl is converted
5752 * to a SCSI PERSISTENT IN READ KEYS command which is sent to the vdisk
5753 * server with a VD_OP_SCSICMD operation.
5754 */
5755static int
5756vdc_mhd_inkeys(vdc_t *vdc, caddr_t arg, int mode)
5757{
5758	vd_scsi_t *vd_scsi;
5759	mhioc_inkeys_t inkeys;
5760	mhioc_key_list_t klist;
5761	struct mhioc_inkeys32 inkeys32;
5762	struct mhioc_key_list32 klist32;
5763	sd_prin_readkeys_t *scsi_keys;
5764	void *user_keys;
5765	int vd_scsi_len;
5766	int listsize, listlen, rv;
5767
5768	/* copyin arguments */
5769	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
5770		rv = ddi_copyin(arg, &inkeys32, sizeof (inkeys32), mode);
5771		if (rv != 0)
5772			return (EFAULT);
5773
5774		rv = ddi_copyin((caddr_t)(uintptr_t)inkeys32.li, &klist32,
5775		    sizeof (klist32), mode);
5776		if (rv != 0)
5777			return (EFAULT);
5778
5779		listsize = klist32.listsize;
5780	} else {
5781		rv = ddi_copyin(arg, &inkeys, sizeof (inkeys), mode);
5782		if (rv != 0)
5783			return (EFAULT);
5784
5785		rv = ddi_copyin(inkeys.li, &klist, sizeof (klist), mode);
5786		if (rv != 0)
5787			return (EFAULT);
5788
5789		listsize = klist.listsize;
5790	}
5791
5792	/* build SCSI VD_OP request */
5793	vd_scsi = vdc_scsi_alloc_persistent_in(SD_READ_KEYS,
5794	    sizeof (sd_prin_readkeys_t) - sizeof (caddr_t) +
5795	    (sizeof (mhioc_resv_key_t) * listsize), &vd_scsi_len);
5796
5797	scsi_keys = (sd_prin_readkeys_t *)VD_SCSI_DATA_IN(vd_scsi);
5798
5799	/* submit the request */
5800	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
5801	    0, 0, CB_SYNC, (void *)(uint64_t)mode, VIO_both_dir, B_FALSE);
5802
5803	if (rv != 0)
5804		goto done;
5805
5806	listlen = scsi_keys->len / MHIOC_RESV_KEY_SIZE;
5807
5808	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
5809		inkeys32.generation = scsi_keys->generation;
5810		rv = ddi_copyout(&inkeys32, arg, sizeof (inkeys32), mode);
5811		if (rv != 0) {
5812			rv = EFAULT;
5813			goto done;
5814		}
5815
5816		klist32.listlen = listlen;
5817		rv = ddi_copyout(&klist32, (caddr_t)(uintptr_t)inkeys32.li,
5818		    sizeof (klist32), mode);
5819		if (rv != 0) {
5820			rv = EFAULT;
5821			goto done;
5822		}
5823
5824		user_keys = (caddr_t)(uintptr_t)klist32.list;
5825	} else {
5826		inkeys.generation = scsi_keys->generation;
5827		rv = ddi_copyout(&inkeys, arg, sizeof (inkeys), mode);
5828		if (rv != 0) {
5829			rv = EFAULT;
5830			goto done;
5831		}
5832
5833		klist.listlen = listlen;
5834		rv = ddi_copyout(&klist, inkeys.li, sizeof (klist), mode);
5835		if (rv != 0) {
5836			rv = EFAULT;
5837			goto done;
5838		}
5839
5840		user_keys = klist.list;
5841	}
5842
5843	/* copy out keys */
5844	if (listlen > 0 && listsize > 0) {
5845		if (listsize < listlen)
5846			listlen = listsize;
5847		rv = ddi_copyout(&scsi_keys->keylist, user_keys,
5848		    listlen * MHIOC_RESV_KEY_SIZE, mode);
5849		if (rv != 0)
5850			rv = EFAULT;
5851	}
5852
5853	if (rv == 0)
5854		rv = vdc_scsi_status(vdc, vd_scsi, B_FALSE);
5855
5856done:
5857	kmem_free(vd_scsi, vd_scsi_len);
5858
5859	return (rv);
5860}
5861
5862/*
5863 * Implement the MHIOCGRP_INRESV mhd(7i) ioctl. The ioctl is converted
5864 * to a SCSI PERSISTENT IN READ RESERVATION command which is sent to
5865 * the vdisk server with a VD_OP_SCSICMD operation.
5866 */
5867static int
5868vdc_mhd_inresv(vdc_t *vdc, caddr_t arg, int mode)
5869{
5870	vd_scsi_t *vd_scsi;
5871	mhioc_inresvs_t inresv;
5872	mhioc_resv_desc_list_t rlist;
5873	struct mhioc_inresvs32 inresv32;
5874	struct mhioc_resv_desc_list32 rlist32;
5875	mhioc_resv_desc_t mhd_resv;
5876	sd_prin_readresv_t *scsi_resv;
5877	sd_readresv_desc_t *resv;
5878	mhioc_resv_desc_t *user_resv;
5879	int vd_scsi_len;
5880	int listsize, listlen, i, rv;
5881
5882	/* copyin arguments */
5883	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
5884		rv = ddi_copyin(arg, &inresv32, sizeof (inresv32), mode);
5885		if (rv != 0)
5886			return (EFAULT);
5887
5888		rv = ddi_copyin((caddr_t)(uintptr_t)inresv32.li, &rlist32,
5889		    sizeof (rlist32), mode);
5890		if (rv != 0)
5891			return (EFAULT);
5892
5893		listsize = rlist32.listsize;
5894	} else {
5895		rv = ddi_copyin(arg, &inresv, sizeof (inresv), mode);
5896		if (rv != 0)
5897			return (EFAULT);
5898
5899		rv = ddi_copyin(inresv.li, &rlist, sizeof (rlist), mode);
5900		if (rv != 0)
5901			return (EFAULT);
5902
5903		listsize = rlist.listsize;
5904	}
5905
5906	/* build SCSI VD_OP request */
5907	vd_scsi = vdc_scsi_alloc_persistent_in(SD_READ_RESV,
5908	    sizeof (sd_prin_readresv_t) - sizeof (caddr_t) +
5909	    (SCSI3_RESV_DESC_LEN * listsize), &vd_scsi_len);
5910
5911	scsi_resv = (sd_prin_readresv_t *)VD_SCSI_DATA_IN(vd_scsi);
5912
5913	/* submit the request */
5914	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
5915	    0, 0, CB_SYNC, (void *)(uint64_t)mode, VIO_both_dir, B_FALSE);
5916
5917	if (rv != 0)
5918		goto done;
5919
5920	listlen = scsi_resv->len / SCSI3_RESV_DESC_LEN;
5921
5922	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
5923		inresv32.generation = scsi_resv->generation;
5924		rv = ddi_copyout(&inresv32, arg, sizeof (inresv32), mode);
5925		if (rv != 0) {
5926			rv = EFAULT;
5927			goto done;
5928		}
5929
5930		rlist32.listlen = listlen;
5931		rv = ddi_copyout(&rlist32, (caddr_t)(uintptr_t)inresv32.li,
5932		    sizeof (rlist32), mode);
5933		if (rv != 0) {
5934			rv = EFAULT;
5935			goto done;
5936		}
5937
5938		user_resv = (mhioc_resv_desc_t *)(uintptr_t)rlist32.list;
5939	} else {
5940		inresv.generation = scsi_resv->generation;
5941		rv = ddi_copyout(&inresv, arg, sizeof (inresv), mode);
5942		if (rv != 0) {
5943			rv = EFAULT;
5944			goto done;
5945		}
5946
5947		rlist.listlen = listlen;
5948		rv = ddi_copyout(&rlist, inresv.li, sizeof (rlist), mode);
5949		if (rv != 0) {
5950			rv = EFAULT;
5951			goto done;
5952		}
5953
5954		user_resv = rlist.list;
5955	}
5956
5957	/* copy out reservations */
5958	if (listsize > 0 && listlen > 0) {
5959		if (listsize < listlen)
5960			listlen = listsize;
5961		resv = (sd_readresv_desc_t *)&scsi_resv->readresv_desc;
5962
5963		for (i = 0; i < listlen; i++) {
5964			mhd_resv.type = resv->type;
5965			mhd_resv.scope = resv->scope;
5966			mhd_resv.scope_specific_addr =
5967			    BE_32(resv->scope_specific_addr);
5968			bcopy(&resv->resvkey, &mhd_resv.key,
5969			    MHIOC_RESV_KEY_SIZE);
5970
5971			rv = ddi_copyout(&mhd_resv, user_resv,
5972			    sizeof (mhd_resv), mode);
5973			if (rv != 0) {
5974				rv = EFAULT;
5975				goto done;
5976			}
5977			resv++;
5978			user_resv++;
5979		}
5980	}
5981
5982	if (rv == 0)
5983		rv = vdc_scsi_status(vdc, vd_scsi, B_FALSE);
5984
5985done:
5986	kmem_free(vd_scsi, vd_scsi_len);
5987	return (rv);
5988}
5989
5990/*
5991 * Implement the MHIOCGRP_REGISTER mhd(7i) ioctl. The ioctl is converted
5992 * to a SCSI PERSISTENT OUT REGISTER command which is sent to the vdisk
5993 * server with a VD_OP_SCSICMD operation.
5994 */
5995static int
5996vdc_mhd_register(vdc_t *vdc, caddr_t arg, int mode)
5997{
5998	vd_scsi_t *vd_scsi;
5999	sd_prout_t *scsi_prout;
6000	mhioc_register_t mhd_reg;
6001	int vd_scsi_len, rv;
6002
6003	/* copyin arguments */
6004	rv = ddi_copyin(arg, &mhd_reg, sizeof (mhd_reg), mode);
6005	if (rv != 0)
6006		return (EFAULT);
6007
6008	/* build SCSI VD_OP request */
6009	vd_scsi = vdc_scsi_alloc_persistent_out(SD_SCSI3_REGISTER,
6010	    sizeof (sd_prout_t), &vd_scsi_len);
6011
6012	/* set parameters */
6013	scsi_prout = (sd_prout_t *)VD_SCSI_DATA_OUT(vd_scsi);
6014	bcopy(mhd_reg.oldkey.key, scsi_prout->res_key, MHIOC_RESV_KEY_SIZE);
6015	bcopy(mhd_reg.newkey.key, scsi_prout->service_key, MHIOC_RESV_KEY_SIZE);
6016	scsi_prout->aptpl = (uchar_t)mhd_reg.aptpl;
6017
6018	/* submit the request */
6019	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
6020	    0, 0, CB_SYNC, (void *)(uint64_t)mode, VIO_both_dir, B_FALSE);
6021
6022	if (rv == 0)
6023		rv = vdc_scsi_status(vdc, vd_scsi, B_FALSE);
6024
6025	kmem_free(vd_scsi, vd_scsi_len);
6026	return (rv);
6027}
6028
6029/*
6030 * Implement the MHIOCGRP_RESERVE mhd(7i) ioctl. The ioctl is converted
6031 * to a SCSI PERSISTENT OUT RESERVE command which is sent to the vdisk
6032 * server with a VD_OP_SCSICMD operation.
6033 */
6034static int
6035vdc_mhd_reserve(vdc_t *vdc, caddr_t arg, int mode)
6036{
6037	union scsi_cdb *cdb;
6038	vd_scsi_t *vd_scsi;
6039	sd_prout_t *scsi_prout;
6040	mhioc_resv_desc_t mhd_resv;
6041	int vd_scsi_len, rv;
6042
6043	/* copyin arguments */
6044	rv = ddi_copyin(arg, &mhd_resv, sizeof (mhd_resv), mode);
6045	if (rv != 0)
6046		return (EFAULT);
6047
6048	/* build SCSI VD_OP request */
6049	vd_scsi = vdc_scsi_alloc_persistent_out(SD_SCSI3_RESERVE,
6050	    sizeof (sd_prout_t), &vd_scsi_len);
6051
6052	/* set parameters */
6053	cdb = VD_SCSI_DATA_CDB(vd_scsi);
6054	scsi_prout = (sd_prout_t *)VD_SCSI_DATA_OUT(vd_scsi);
6055	bcopy(mhd_resv.key.key, scsi_prout->res_key, MHIOC_RESV_KEY_SIZE);
6056	scsi_prout->scope_address = mhd_resv.scope_specific_addr;
6057	cdb->cdb_opaque[2] = mhd_resv.type;
6058
6059	/* submit the request */
6060	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
6061	    0, 0, CB_SYNC, (void *)(uint64_t)mode, VIO_both_dir, B_FALSE);
6062
6063	if (rv == 0)
6064		rv = vdc_scsi_status(vdc, vd_scsi, B_FALSE);
6065
6066	kmem_free(vd_scsi, vd_scsi_len);
6067	return (rv);
6068}
6069
6070/*
6071 * Implement the MHIOCGRP_PREEMPTANDABORT mhd(7i) ioctl. The ioctl is
6072 * converted to a SCSI PERSISTENT OUT PREEMPT AND ABORT command which
6073 * is sent to the vdisk server with a VD_OP_SCSICMD operation.
6074 */
6075static int
6076vdc_mhd_preemptabort(vdc_t *vdc, caddr_t arg, int mode)
6077{
6078	union scsi_cdb *cdb;
6079	vd_scsi_t *vd_scsi;
6080	sd_prout_t *scsi_prout;
6081	mhioc_preemptandabort_t mhd_preempt;
6082	int vd_scsi_len, rv;
6083
6084	/* copyin arguments */
6085	rv = ddi_copyin(arg, &mhd_preempt, sizeof (mhd_preempt), mode);
6086	if (rv != 0)
6087		return (EFAULT);
6088
6089	/* build SCSI VD_OP request */
6090	vd_scsi = vdc_scsi_alloc_persistent_out(SD_SCSI3_PREEMPTANDABORT,
6091	    sizeof (sd_prout_t), &vd_scsi_len);
6092
6093	/* set parameters */
6094	vd_scsi->task_attribute = VD_SCSI_TASK_ACA;
6095	cdb = VD_SCSI_DATA_CDB(vd_scsi);
6096	scsi_prout = (sd_prout_t *)VD_SCSI_DATA_OUT(vd_scsi);
6097	bcopy(mhd_preempt.resvdesc.key.key, scsi_prout->res_key,
6098	    MHIOC_RESV_KEY_SIZE);
6099	bcopy(mhd_preempt.victim_key.key, scsi_prout->service_key,
6100	    MHIOC_RESV_KEY_SIZE);
6101	scsi_prout->scope_address = mhd_preempt.resvdesc.scope_specific_addr;
6102	cdb->cdb_opaque[2] = mhd_preempt.resvdesc.type;
6103
6104	/* submit the request */
6105	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
6106	    0, 0, CB_SYNC, (void *)(uint64_t)mode, VIO_both_dir, B_FALSE);
6107
6108	if (rv == 0)
6109		rv = vdc_scsi_status(vdc, vd_scsi, B_FALSE);
6110
6111	kmem_free(vd_scsi, vd_scsi_len);
6112	return (rv);
6113}
6114
6115/*
6116 * Implement the MHIOCGRP_REGISTERANDIGNOREKEY mhd(7i) ioctl. The ioctl
6117 * is converted to a SCSI PERSISTENT OUT REGISTER AND IGNORE EXISTING KEY
6118 * command which is sent to the vdisk server with a VD_OP_SCSICMD operation.
6119 */
6120static int
6121vdc_mhd_registerignore(vdc_t *vdc, caddr_t arg, int mode)
6122{
6123	vd_scsi_t *vd_scsi;
6124	sd_prout_t *scsi_prout;
6125	mhioc_registerandignorekey_t mhd_regi;
6126	int vd_scsi_len, rv;
6127
6128	/* copyin arguments */
6129	rv = ddi_copyin(arg, &mhd_regi, sizeof (mhd_regi), mode);
6130	if (rv != 0)
6131		return (EFAULT);
6132
6133	/* build SCSI VD_OP request */
6134	vd_scsi = vdc_scsi_alloc_persistent_out(SD_SCSI3_REGISTERANDIGNOREKEY,
6135	    sizeof (sd_prout_t), &vd_scsi_len);
6136
6137	/* set parameters */
6138	scsi_prout = (sd_prout_t *)VD_SCSI_DATA_OUT(vd_scsi);
6139	bcopy(mhd_regi.newkey.key, scsi_prout->service_key,
6140	    MHIOC_RESV_KEY_SIZE);
6141	scsi_prout->aptpl = (uchar_t)mhd_regi.aptpl;
6142
6143	/* submit the request */
6144	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
6145	    0, 0, CB_SYNC, (void *)(uint64_t)mode, VIO_both_dir, B_FALSE);
6146
6147	if (rv == 0)
6148		rv = vdc_scsi_status(vdc, vd_scsi, B_FALSE);
6149
6150	kmem_free(vd_scsi, vd_scsi_len);
6151	return (rv);
6152}
6153
6154/*
6155 * This function is used by the failfast mechanism to send a SCSI command
6156 * to check for reservation conflict.
6157 */
6158static int
6159vdc_failfast_scsi_cmd(vdc_t *vdc, uchar_t scmd)
6160{
6161	int cdb_len, sense_len, vd_scsi_len;
6162	vd_scsi_t *vd_scsi;
6163	union scsi_cdb *cdb;
6164	int rv;
6165
6166	ASSERT(scmd == SCMD_TEST_UNIT_READY || scmd == SCMD_WRITE_G1);
6167
6168	if (scmd == SCMD_WRITE_G1)
6169		cdb_len = CDB_GROUP1;
6170	else
6171		cdb_len = CDB_GROUP0;
6172
6173	sense_len = sizeof (struct scsi_extended_sense);
6174
6175	vd_scsi = vdc_scsi_alloc(cdb_len, sense_len, 0, 0, &vd_scsi_len);
6176
6177	/* set cdb */
6178	cdb = VD_SCSI_DATA_CDB(vd_scsi);
6179	cdb->scc_cmd = scmd;
6180
6181	vd_scsi->timeout = vdc_scsi_timeout;
6182
6183	/*
6184	 * Submit the request. The last argument has to be B_FALSE so that
6185	 * vdc_do_sync_op does not loop checking for reservation conflict if
6186	 * the operation returns an error.
6187	 */
6188	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
6189	    0, 0, CB_SYNC, (void *)(uint64_t)FKIOCTL, VIO_both_dir, B_FALSE);
6190
6191	if (rv == 0)
6192		(void) vdc_scsi_status(vdc, vd_scsi, B_FALSE);
6193
6194	kmem_free(vd_scsi, vd_scsi_len);
6195	return (rv);
6196}
6197
6198/*
6199 * This function is used by the failfast mechanism to check for reservation
6200 * conflict. It sends some SCSI commands which will fail with a reservation
6201 * conflict error if the system does not have access to the disk and this
6202 * will panic the system.
6203 *
6204 * Returned Code:
6205 *	0	- disk is accessible without reservation conflict error
6206 *	!= 0	- unable to check if disk is accessible
6207 */
6208int
6209vdc_failfast_check_resv(vdc_t *vdc)
6210{
6211	int failure = 0;
6212
6213	/*
6214	 * Send a TEST UNIT READY command. The command will panic
6215	 * the system if it fails with a reservation conflict.
6216	 */
6217	if (vdc_failfast_scsi_cmd(vdc, SCMD_TEST_UNIT_READY) != 0)
6218		failure++;
6219
6220	/*
6221	 * With SPC-3 compliant devices TEST UNIT READY will succeed on
6222	 * a reserved device, so we also do a WRITE(10) of zero byte in
6223	 * order to provoke a Reservation Conflict status on those newer
6224	 * devices.
6225	 */
6226	if (vdc_failfast_scsi_cmd(vdc, SCMD_WRITE_G1) != 0)
6227		failure++;
6228
6229	return (failure);
6230}
6231
6232/*
6233 * Add a pending I/O to the failfast I/O queue. An I/O is added to this
6234 * queue when it has failed and failfast is enabled. Then we have to check
6235 * if it has failed because of a reservation conflict in which case we have
6236 * to panic the system.
6237 *
6238 * Async I/O should be queued with their block I/O data transfer structure
6239 * (buf). Sync I/O should be queued with buf = NULL.
6240 */
6241static vdc_io_t *
6242vdc_failfast_io_queue(vdc_t *vdc, struct buf *buf)
6243{
6244	vdc_io_t *vio;
6245
6246	ASSERT(MUTEX_HELD(&vdc->lock));
6247
6248	vio = kmem_alloc(sizeof (vdc_io_t), KM_SLEEP);
6249	vio->vio_next = vdc->failfast_io_queue;
6250	vio->vio_buf = buf;
6251	vio->vio_qtime = ddi_get_lbolt();
6252
6253	vdc->failfast_io_queue = vio;
6254
6255	/* notify the failfast thread that a new I/O is queued */
6256	cv_signal(&vdc->failfast_cv);
6257
6258	return (vio);
6259}
6260
6261/*
6262 * Remove and complete I/O in the failfast I/O queue which have been
6263 * added after the indicated deadline. A deadline of 0 means that all
6264 * I/O have to be unqueued and marked as completed.
6265 */
6266static void
6267vdc_failfast_io_unqueue(vdc_t *vdc, clock_t deadline)
6268{
6269	vdc_io_t *vio, *vio_tmp;
6270
6271	ASSERT(MUTEX_HELD(&vdc->lock));
6272
6273	vio_tmp = NULL;
6274	vio = vdc->failfast_io_queue;
6275
6276	if (deadline != 0) {
6277		/*
6278		 * Skip any io queued after the deadline. The failfast
6279		 * I/O queue is ordered starting with the last I/O added
6280		 * to the queue.
6281		 */
6282		while (vio != NULL && vio->vio_qtime > deadline) {
6283			vio_tmp = vio;
6284			vio = vio->vio_next;
6285		}
6286	}
6287
6288	if (vio == NULL)
6289		/* nothing to unqueue */
6290		return;
6291
6292	/* update the queue */
6293	if (vio_tmp == NULL)
6294		vdc->failfast_io_queue = NULL;
6295	else
6296		vio_tmp->vio_next = NULL;
6297
6298	/*
6299	 * Complete unqueued I/O. Async I/O have a block I/O data transfer
6300	 * structure (buf) and they are completed by calling biodone(). Sync
6301	 * I/O do not have a buf and they are completed by setting the
6302	 * vio_qtime to zero and signaling failfast_io_cv. In that case, the
6303	 * thread waiting for the I/O to complete is responsible for freeing
6304	 * the vio structure.
6305	 */
6306	while (vio != NULL) {
6307		vio_tmp = vio->vio_next;
6308		if (vio->vio_buf != NULL) {
6309			VD_KSTAT_RUNQ_EXIT(vdc);
6310			DTRACE_IO1(done, buf_t *, vio->vio_buf);
6311			biodone(vio->vio_buf);
6312			kmem_free(vio, sizeof (vdc_io_t));
6313		} else {
6314			vio->vio_qtime = 0;
6315		}
6316		vio = vio_tmp;
6317	}
6318
6319	cv_broadcast(&vdc->failfast_io_cv);
6320}
6321
6322/*
6323 * Failfast Thread.
6324 *
6325 * While failfast is enabled, the failfast thread sends a TEST UNIT READY
6326 * and a zero size WRITE(10) SCSI commands on a regular basis to check that
6327 * we still have access to the disk. If a command fails with a RESERVATION
6328 * CONFLICT error then the system will immediatly panic.
6329 *
6330 * The failfast thread is also woken up when an I/O has failed. It then check
6331 * the access to the disk to ensure that the I/O failure was not due to a
6332 * reservation conflict.
6333 *
6334 * There is one failfast thread for each virtual disk for which failfast is
6335 * enabled. We could have only one thread sending requests for all disks but
6336 * this would need vdc to send asynchronous requests and to have callbacks to
6337 * process replies.
6338 */
6339static void
6340vdc_failfast_thread(void *arg)
6341{
6342	int status;
6343	vdc_t *vdc = (vdc_t *)arg;
6344	clock_t timeout, starttime;
6345
6346	mutex_enter(&vdc->lock);
6347
6348	while (vdc->failfast_interval != 0) {
6349
6350		starttime = ddi_get_lbolt();
6351
6352		mutex_exit(&vdc->lock);
6353
6354		/* check for reservation conflict */
6355		status = vdc_failfast_check_resv(vdc);
6356
6357		mutex_enter(&vdc->lock);
6358		/*
6359		 * We have dropped the lock to send the SCSI command so we have
6360		 * to check that failfast is still enabled.
6361		 */
6362		if (vdc->failfast_interval == 0)
6363			break;
6364
6365		/*
6366		 * If we have successfully check the disk access and there was
6367		 * no reservation conflict then we can complete any I/O queued
6368		 * before the last check.
6369		 */
6370		if (status == 0)
6371			vdc_failfast_io_unqueue(vdc, starttime);
6372
6373		/* proceed again if some I/O are still in the queue */
6374		if (vdc->failfast_io_queue != NULL)
6375			continue;
6376
6377		timeout = ddi_get_lbolt() +
6378		    drv_usectohz(vdc->failfast_interval);
6379		(void) cv_timedwait(&vdc->failfast_cv, &vdc->lock, timeout);
6380	}
6381
6382	/*
6383	 * Failfast is being stop so we can complete any queued I/O.
6384	 */
6385	vdc_failfast_io_unqueue(vdc, 0);
6386	vdc->failfast_thread = NULL;
6387	mutex_exit(&vdc->lock);
6388	thread_exit();
6389}
6390
6391/*
6392 * Implement the MHIOCENFAILFAST mhd(7i) ioctl.
6393 */
6394static int
6395vdc_failfast(vdc_t *vdc, caddr_t arg, int mode)
6396{
6397	unsigned int mh_time;
6398
6399	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), mode))
6400		return (EFAULT);
6401
6402	mutex_enter(&vdc->lock);
6403	if (mh_time != 0 && vdc->failfast_thread == NULL) {
6404		vdc->failfast_thread = thread_create(NULL, 0,
6405		    vdc_failfast_thread, vdc, 0, &p0, TS_RUN,
6406		    v.v_maxsyspri - 2);
6407	}
6408
6409	vdc->failfast_interval = mh_time * 1000;
6410	cv_signal(&vdc->failfast_cv);
6411	mutex_exit(&vdc->lock);
6412
6413	return (0);
6414}
6415
6416/*
6417 * Implement the MHIOCTKOWN and MHIOCRELEASE mhd(7i) ioctls. These ioctls are
6418 * converted to VD_OP_SET_ACCESS operations.
6419 */
6420static int
6421vdc_access_set(vdc_t *vdc, uint64_t flags, int mode)
6422{
6423	int rv;
6424
6425	/* submit owership command request */
6426	rv = vdc_do_sync_op(vdc, VD_OP_SET_ACCESS, (caddr_t)&flags,
6427	    sizeof (uint64_t), 0, 0, CB_SYNC, (void *)(uint64_t)mode,
6428	    VIO_both_dir, B_TRUE);
6429
6430	return (rv);
6431}
6432
6433/*
6434 * Implement the MHIOCSTATUS mhd(7i) ioctl. This ioctl is converted to a
6435 * VD_OP_GET_ACCESS operation.
6436 */
6437static int
6438vdc_access_get(vdc_t *vdc, uint64_t *status, int mode)
6439{
6440	int rv;
6441
6442	/* submit owership command request */
6443	rv = vdc_do_sync_op(vdc, VD_OP_GET_ACCESS, (caddr_t)status,
6444	    sizeof (uint64_t), 0, 0, CB_SYNC, (void *)(uint64_t)mode,
6445	    VIO_both_dir, B_TRUE);
6446
6447	return (rv);
6448}
6449
6450/*
6451 * Disk Ownership Thread.
6452 *
6453 * When we have taken the ownership of a disk, this thread waits to be
6454 * notified when the LDC channel is reset so that it can recover the
6455 * ownership.
6456 *
6457 * Note that the thread handling the LDC reset (vdc_process_msg_thread())
6458 * can not be used to do the ownership recovery because it has to be
6459 * running to handle the reply message to the ownership operation.
6460 */
6461static void
6462vdc_ownership_thread(void *arg)
6463{
6464	vdc_t *vdc = (vdc_t *)arg;
6465	clock_t timeout;
6466	uint64_t status;
6467
6468	mutex_enter(&vdc->ownership_lock);
6469	mutex_enter(&vdc->lock);
6470
6471	while (vdc->ownership & VDC_OWNERSHIP_WANTED) {
6472
6473		if ((vdc->ownership & VDC_OWNERSHIP_RESET) ||
6474		    !(vdc->ownership & VDC_OWNERSHIP_GRANTED)) {
6475			/*
6476			 * There was a reset so the ownership has been lost,
6477			 * try to recover. We do this without using the preempt
6478			 * option so that we don't steal the ownership from
6479			 * someone who has preempted us.
6480			 */
6481			DMSG(vdc, 0, "[%d] Ownership lost, recovering",
6482			    vdc->instance);
6483
6484			vdc->ownership &= ~(VDC_OWNERSHIP_RESET |
6485			    VDC_OWNERSHIP_GRANTED);
6486
6487			mutex_exit(&vdc->lock);
6488
6489			status = vdc_access_set(vdc, VD_ACCESS_SET_EXCLUSIVE |
6490			    VD_ACCESS_SET_PRESERVE, FKIOCTL);
6491
6492			mutex_enter(&vdc->lock);
6493
6494			if (status == 0) {
6495				DMSG(vdc, 0, "[%d] Ownership recovered",
6496				    vdc->instance);
6497				vdc->ownership |= VDC_OWNERSHIP_GRANTED;
6498			} else {
6499				DMSG(vdc, 0, "[%d] Fail to recover ownership",
6500				    vdc->instance);
6501			}
6502
6503		}
6504
6505		/*
6506		 * If we have the ownership then we just wait for an event
6507		 * to happen (LDC reset), otherwise we will retry to recover
6508		 * after a delay.
6509		 */
6510		if (vdc->ownership & VDC_OWNERSHIP_GRANTED)
6511			timeout = 0;
6512		else
6513			timeout = ddi_get_lbolt() +
6514			    drv_usectohz(vdc_ownership_delay);
6515
6516		/* Release the ownership_lock and wait on the vdc lock */
6517		mutex_exit(&vdc->ownership_lock);
6518
6519		if (timeout == 0)
6520			(void) cv_wait(&vdc->ownership_cv, &vdc->lock);
6521		else
6522			(void) cv_timedwait(&vdc->ownership_cv,
6523			    &vdc->lock, timeout);
6524
6525		mutex_exit(&vdc->lock);
6526
6527		mutex_enter(&vdc->ownership_lock);
6528		mutex_enter(&vdc->lock);
6529	}
6530
6531	vdc->ownership_thread = NULL;
6532	mutex_exit(&vdc->lock);
6533	mutex_exit(&vdc->ownership_lock);
6534
6535	thread_exit();
6536}
6537
6538static void
6539vdc_ownership_update(vdc_t *vdc, int ownership_flags)
6540{
6541	ASSERT(MUTEX_HELD(&vdc->ownership_lock));
6542
6543	mutex_enter(&vdc->lock);
6544	vdc->ownership = ownership_flags;
6545	if ((vdc->ownership & VDC_OWNERSHIP_WANTED) &&
6546	    vdc->ownership_thread == NULL) {
6547		/* start ownership thread */
6548		vdc->ownership_thread = thread_create(NULL, 0,
6549		    vdc_ownership_thread, vdc, 0, &p0, TS_RUN,
6550		    v.v_maxsyspri - 2);
6551	} else {
6552		/* notify the ownership thread */
6553		cv_signal(&vdc->ownership_cv);
6554	}
6555	mutex_exit(&vdc->lock);
6556}
6557
6558/*
6559 * Get the size and the block size of a virtual disk from the vdisk server.
6560 */
6561static int
6562vdc_get_capacity(vdc_t *vdc, size_t *dsk_size, size_t *blk_size)
6563{
6564	int rv = 0;
6565	size_t alloc_len;
6566	vd_capacity_t *vd_cap;
6567
6568	ASSERT(MUTEX_NOT_HELD(&vdc->lock));
6569
6570	alloc_len = P2ROUNDUP(sizeof (vd_capacity_t), sizeof (uint64_t));
6571
6572	vd_cap = kmem_zalloc(alloc_len, KM_SLEEP);
6573
6574	rv = vdc_do_sync_op(vdc, VD_OP_GET_CAPACITY, (caddr_t)vd_cap, alloc_len,
6575	    0, 0, CB_SYNC, (void *)(uint64_t)FKIOCTL, VIO_both_dir, B_TRUE);
6576
6577	*dsk_size = vd_cap->vdisk_size;
6578	*blk_size = vd_cap->vdisk_block_size;
6579
6580	kmem_free(vd_cap, alloc_len);
6581	return (rv);
6582}
6583
6584/*
6585 * Check the disk capacity. Disk size information is updated if size has
6586 * changed.
6587 *
6588 * Return 0 if the disk capacity is available, or non-zero if it is not.
6589 */
6590static int
6591vdc_check_capacity(vdc_t *vdc)
6592{
6593	size_t dsk_size, blk_size;
6594	int rv;
6595
6596	if ((rv = vdc_get_capacity(vdc, &dsk_size, &blk_size)) != 0)
6597		return (rv);
6598
6599	if (dsk_size == VD_SIZE_UNKNOWN || dsk_size == 0)
6600		return (EINVAL);
6601
6602	mutex_enter(&vdc->lock);
6603	vdc_update_size(vdc, dsk_size, blk_size, vdc->max_xfer_sz);
6604	mutex_exit(&vdc->lock);
6605
6606	return (0);
6607}
6608
6609/*
6610 * This structure is used in the DKIO(7I) array below.
6611 */
6612typedef struct vdc_dk_ioctl {
6613	uint8_t		op;		/* VD_OP_XXX value */
6614	int		cmd;		/* Solaris ioctl operation number */
6615	size_t		nbytes;		/* size of structure to be copied */
6616
6617	/* function to convert between vDisk and Solaris structure formats */
6618	int	(*convert)(vdc_t *vdc, void *vd_buf, void *ioctl_arg,
6619	    int mode, int dir);
6620} vdc_dk_ioctl_t;
6621
6622/*
6623 * Subset of DKIO(7I) operations currently supported
6624 */
6625static vdc_dk_ioctl_t	dk_ioctl[] = {
6626	{VD_OP_FLUSH,		DKIOCFLUSHWRITECACHE,	0,
6627		vdc_null_copy_func},
6628	{VD_OP_GET_WCE,		DKIOCGETWCE,		sizeof (int),
6629		vdc_get_wce_convert},
6630	{VD_OP_SET_WCE,		DKIOCSETWCE,		sizeof (int),
6631		vdc_set_wce_convert},
6632	{VD_OP_GET_VTOC,	DKIOCGVTOC,		sizeof (vd_vtoc_t),
6633		vdc_get_vtoc_convert},
6634	{VD_OP_SET_VTOC,	DKIOCSVTOC,		sizeof (vd_vtoc_t),
6635		vdc_set_vtoc_convert},
6636	{VD_OP_GET_VTOC,	DKIOCGEXTVTOC,		sizeof (vd_vtoc_t),
6637		vdc_get_extvtoc_convert},
6638	{VD_OP_SET_VTOC,	DKIOCSEXTVTOC,		sizeof (vd_vtoc_t),
6639		vdc_set_extvtoc_convert},
6640	{VD_OP_GET_DISKGEOM,	DKIOCGGEOM,		sizeof (vd_geom_t),
6641		vdc_get_geom_convert},
6642	{VD_OP_GET_DISKGEOM,	DKIOCG_PHYGEOM,		sizeof (vd_geom_t),
6643		vdc_get_geom_convert},
6644	{VD_OP_GET_DISKGEOM, 	DKIOCG_VIRTGEOM,	sizeof (vd_geom_t),
6645		vdc_get_geom_convert},
6646	{VD_OP_SET_DISKGEOM,	DKIOCSGEOM,		sizeof (vd_geom_t),
6647		vdc_set_geom_convert},
6648	{VD_OP_GET_EFI,		DKIOCGETEFI,		0,
6649		vdc_get_efi_convert},
6650	{VD_OP_SET_EFI,		DKIOCSETEFI,		0,
6651		vdc_set_efi_convert},
6652
6653	/* DIOCTL_RWCMD is converted to a read or a write */
6654	{0, DIOCTL_RWCMD,  sizeof (struct dadkio_rwcmd), NULL},
6655
6656	/* mhd(7I) non-shared multihost disks ioctls */
6657	{0, MHIOCTKOWN,				0, vdc_null_copy_func},
6658	{0, MHIOCRELEASE,			0, vdc_null_copy_func},
6659	{0, MHIOCSTATUS,			0, vdc_null_copy_func},
6660	{0, MHIOCQRESERVE,			0, vdc_null_copy_func},
6661
6662	/* mhd(7I) shared multihost disks ioctls */
6663	{0, MHIOCGRP_INKEYS,			0, vdc_null_copy_func},
6664	{0, MHIOCGRP_INRESV,			0, vdc_null_copy_func},
6665	{0, MHIOCGRP_REGISTER,			0, vdc_null_copy_func},
6666	{0, MHIOCGRP_RESERVE, 			0, vdc_null_copy_func},
6667	{0, MHIOCGRP_PREEMPTANDABORT,		0, vdc_null_copy_func},
6668	{0, MHIOCGRP_REGISTERANDIGNOREKEY,	0, vdc_null_copy_func},
6669
6670	/* mhd(7I) failfast ioctl */
6671	{0, MHIOCENFAILFAST,			0, vdc_null_copy_func},
6672
6673	/*
6674	 * These particular ioctls are not sent to the server - vdc fakes up
6675	 * the necessary info.
6676	 */
6677	{0, DKIOCINFO, sizeof (struct dk_cinfo), vdc_null_copy_func},
6678	{0, DKIOCGMEDIAINFO, sizeof (struct dk_minfo), vdc_null_copy_func},
6679	{0, USCSICMD,	sizeof (struct uscsi_cmd), vdc_null_copy_func},
6680	{0, DKIOCPARTITION, 0, vdc_null_copy_func },
6681	{0, DKIOCGAPART, 0, vdc_null_copy_func },
6682	{0, DKIOCREMOVABLE, 0, vdc_null_copy_func},
6683	{0, CDROMREADOFFSET, 0, vdc_null_copy_func}
6684};
6685
6686/*
6687 * This function handles ioctl requests from the vd_efi_alloc_and_read()
6688 * function and forward them to the vdisk.
6689 */
6690static int
6691vd_process_efi_ioctl(void *vdisk, int cmd, uintptr_t arg)
6692{
6693	vdc_t *vdc = (vdc_t *)vdisk;
6694	dev_t dev;
6695	int rval;
6696
6697	dev = makedevice(ddi_driver_major(vdc->dip),
6698	    VD_MAKE_DEV(vdc->instance, 0));
6699
6700	return (vd_process_ioctl(dev, cmd, (caddr_t)arg, FKIOCTL, &rval));
6701}
6702
6703/*
6704 * Function:
6705 *	vd_process_ioctl()
6706 *
6707 * Description:
6708 *	This routine processes disk specific ioctl calls
6709 *
6710 * Arguments:
6711 *	dev	- the device number
6712 *	cmd	- the operation [dkio(7I)] to be processed
6713 *	arg	- pointer to user provided structure
6714 *		  (contains data to be set or reference parameter for get)
6715 *	mode	- bit flag, indicating open settings, 32/64 bit type, etc
6716 *	rvalp	- pointer to return value for calling process.
6717 *
6718 * Return Code:
6719 *	0
6720 *	EFAULT
6721 *	ENXIO
6722 *	EIO
6723 *	ENOTSUP
6724 */
6725static int
6726vd_process_ioctl(dev_t dev, int cmd, caddr_t arg, int mode, int *rvalp)
6727{
6728	int		instance = VDCUNIT(dev);
6729	vdc_t		*vdc = NULL;
6730	int		rv = -1;
6731	int		idx = 0;		/* index into dk_ioctl[] */
6732	size_t		len = 0;		/* #bytes to send to vds */
6733	size_t		alloc_len = 0;		/* #bytes to allocate mem for */
6734	caddr_t		mem_p = NULL;
6735	size_t		nioctls = (sizeof (dk_ioctl)) / (sizeof (dk_ioctl[0]));
6736	vdc_dk_ioctl_t	*iop;
6737
6738	vdc = ddi_get_soft_state(vdc_state, instance);
6739	if (vdc == NULL) {
6740		cmn_err(CE_NOTE, "![%d] Could not get soft state structure",
6741		    instance);
6742		return (ENXIO);
6743	}
6744
6745	DMSG(vdc, 0, "[%d] Processing ioctl(%x) for dev %lx : model %x\n",
6746	    instance, cmd, dev, ddi_model_convert_from(mode & FMODELS));
6747
6748	if (rvalp != NULL) {
6749		/* the return value of the ioctl is 0 by default */
6750		*rvalp = 0;
6751	}
6752
6753	/*
6754	 * Validate the ioctl operation to be performed.
6755	 *
6756	 * If we have looped through the array without finding a match then we
6757	 * don't support this ioctl.
6758	 */
6759	for (idx = 0; idx < nioctls; idx++) {
6760		if (cmd == dk_ioctl[idx].cmd)
6761			break;
6762	}
6763
6764	if (idx >= nioctls) {
6765		DMSG(vdc, 0, "[%d] Unsupported ioctl (0x%x)\n",
6766		    vdc->instance, cmd);
6767		return (ENOTSUP);
6768	}
6769
6770	iop = &(dk_ioctl[idx]);
6771
6772	if (cmd == DKIOCGETEFI || cmd == DKIOCSETEFI) {
6773		/* size is not fixed for EFI ioctls, it depends on ioctl arg */
6774		dk_efi_t	dk_efi;
6775
6776		rv = ddi_copyin(arg, &dk_efi, sizeof (dk_efi_t), mode);
6777		if (rv != 0)
6778			return (EFAULT);
6779
6780		len = sizeof (vd_efi_t) - 1 + dk_efi.dki_length;
6781	} else {
6782		len = iop->nbytes;
6783	}
6784
6785	/* check if the ioctl is applicable */
6786	switch (cmd) {
6787	case CDROMREADOFFSET:
6788	case DKIOCREMOVABLE:
6789		return (ENOTTY);
6790
6791	case USCSICMD:
6792	case MHIOCTKOWN:
6793	case MHIOCSTATUS:
6794	case MHIOCQRESERVE:
6795	case MHIOCRELEASE:
6796	case MHIOCGRP_INKEYS:
6797	case MHIOCGRP_INRESV:
6798	case MHIOCGRP_REGISTER:
6799	case MHIOCGRP_RESERVE:
6800	case MHIOCGRP_PREEMPTANDABORT:
6801	case MHIOCGRP_REGISTERANDIGNOREKEY:
6802	case MHIOCENFAILFAST:
6803		if (vdc->cinfo == NULL)
6804			return (ENXIO);
6805		if (vdc->cinfo->dki_ctype != DKC_SCSI_CCS)
6806			return (ENOTTY);
6807		break;
6808
6809	case DIOCTL_RWCMD:
6810		if (vdc->cinfo == NULL)
6811			return (ENXIO);
6812		if (vdc->cinfo->dki_ctype != DKC_DIRECT)
6813			return (ENOTTY);
6814		break;
6815
6816	case DKIOCINFO:
6817		if (vdc->cinfo == NULL)
6818			return (ENXIO);
6819		break;
6820
6821	case DKIOCGMEDIAINFO:
6822		if (vdc->minfo == NULL)
6823			return (ENXIO);
6824		if (vdc_check_capacity(vdc) != 0)
6825			/* disk capacity is not available */
6826			return (EIO);
6827		break;
6828	}
6829
6830	/*
6831	 * Deal with ioctls which require a processing different than
6832	 * converting ioctl arguments and sending a corresponding
6833	 * VD operation.
6834	 */
6835	switch (cmd) {
6836
6837	case USCSICMD:
6838	{
6839		return (vdc_uscsi_cmd(vdc, arg, mode));
6840	}
6841
6842	case MHIOCTKOWN:
6843	{
6844		mutex_enter(&vdc->ownership_lock);
6845		/*
6846		 * We have to set VDC_OWNERSHIP_WANTED now so that the ownership
6847		 * can be flagged with VDC_OWNERSHIP_RESET if the LDC is reset
6848		 * while we are processing the ioctl.
6849		 */
6850		vdc_ownership_update(vdc, VDC_OWNERSHIP_WANTED);
6851
6852		rv = vdc_access_set(vdc, VD_ACCESS_SET_EXCLUSIVE |
6853		    VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE, mode);
6854		if (rv == 0) {
6855			vdc_ownership_update(vdc, VDC_OWNERSHIP_WANTED |
6856			    VDC_OWNERSHIP_GRANTED);
6857		} else {
6858			vdc_ownership_update(vdc, VDC_OWNERSHIP_NONE);
6859		}
6860		mutex_exit(&vdc->ownership_lock);
6861		return (rv);
6862	}
6863
6864	case MHIOCRELEASE:
6865	{
6866		mutex_enter(&vdc->ownership_lock);
6867		rv = vdc_access_set(vdc, VD_ACCESS_SET_CLEAR, mode);
6868		if (rv == 0) {
6869			vdc_ownership_update(vdc, VDC_OWNERSHIP_NONE);
6870		}
6871		mutex_exit(&vdc->ownership_lock);
6872		return (rv);
6873	}
6874
6875	case MHIOCSTATUS:
6876	{
6877		uint64_t status;
6878
6879		rv = vdc_access_get(vdc, &status, mode);
6880		if (rv == 0 && rvalp != NULL)
6881			*rvalp = (status & VD_ACCESS_ALLOWED)? 0 : 1;
6882		return (rv);
6883	}
6884
6885	case MHIOCQRESERVE:
6886	{
6887		rv = vdc_access_set(vdc, VD_ACCESS_SET_EXCLUSIVE, mode);
6888		return (rv);
6889	}
6890
6891	case MHIOCGRP_INKEYS:
6892	{
6893		return (vdc_mhd_inkeys(vdc, arg, mode));
6894	}
6895
6896	case MHIOCGRP_INRESV:
6897	{
6898		return (vdc_mhd_inresv(vdc, arg, mode));
6899	}
6900
6901	case MHIOCGRP_REGISTER:
6902	{
6903		return (vdc_mhd_register(vdc, arg, mode));
6904	}
6905
6906	case MHIOCGRP_RESERVE:
6907	{
6908		return (vdc_mhd_reserve(vdc, arg, mode));
6909	}
6910
6911	case MHIOCGRP_PREEMPTANDABORT:
6912	{
6913		return (vdc_mhd_preemptabort(vdc, arg, mode));
6914	}
6915
6916	case MHIOCGRP_REGISTERANDIGNOREKEY:
6917	{
6918		return (vdc_mhd_registerignore(vdc, arg, mode));
6919	}
6920
6921	case MHIOCENFAILFAST:
6922	{
6923		rv = vdc_failfast(vdc, arg, mode);
6924		return (rv);
6925	}
6926
6927	case DIOCTL_RWCMD:
6928	{
6929		return (vdc_dioctl_rwcmd(dev, arg, mode));
6930	}
6931
6932	case DKIOCGAPART:
6933	{
6934		return (vdc_dkio_gapart(vdc, arg, mode));
6935	}
6936
6937	case DKIOCPARTITION:
6938	{
6939		return (vdc_dkio_partition(vdc, arg, mode));
6940	}
6941
6942	case DKIOCINFO:
6943	{
6944		struct dk_cinfo	cinfo;
6945
6946		bcopy(vdc->cinfo, &cinfo, sizeof (struct dk_cinfo));
6947		cinfo.dki_partition = VDCPART(dev);
6948
6949		rv = ddi_copyout(&cinfo, (void *)arg,
6950		    sizeof (struct dk_cinfo), mode);
6951		if (rv != 0)
6952			return (EFAULT);
6953
6954		return (0);
6955	}
6956
6957	case DKIOCGMEDIAINFO:
6958	{
6959		ASSERT(vdc->vdisk_size != 0);
6960		ASSERT(vdc->minfo->dki_capacity != 0);
6961		rv = ddi_copyout(vdc->minfo, (void *)arg,
6962		    sizeof (struct dk_minfo), mode);
6963		if (rv != 0)
6964			return (EFAULT);
6965
6966		return (0);
6967	}
6968
6969	case DKIOCFLUSHWRITECACHE:
6970		{
6971			struct dk_callback *dkc =
6972			    (struct dk_callback *)(uintptr_t)arg;
6973			vdc_dk_arg_t	*dkarg = NULL;
6974
6975			DMSG(vdc, 1, "[%d] Flush W$: mode %x\n",
6976			    instance, mode);
6977
6978			/*
6979			 * If arg is NULL, then there is no callback function
6980			 * registered and the call operates synchronously; we
6981			 * break and continue with the rest of the function and
6982			 * wait for vds to return (i.e. after the request to
6983			 * vds returns successfully, all writes completed prior
6984			 * to the ioctl will have been flushed from the disk
6985			 * write cache to persistent media.
6986			 *
6987			 * If a callback function is registered, we dispatch
6988			 * the request on a task queue and return immediately.
6989			 * The callback will deal with informing the calling
6990			 * thread that the flush request is completed.
6991			 */
6992			if (dkc == NULL)
6993				break;
6994
6995			/*
6996			 * the asynchronous callback is only supported if
6997			 * invoked from within the kernel
6998			 */
6999			if ((mode & FKIOCTL) == 0)
7000				return (ENOTSUP);
7001
7002			dkarg = kmem_zalloc(sizeof (vdc_dk_arg_t), KM_SLEEP);
7003
7004			dkarg->mode = mode;
7005			dkarg->dev = dev;
7006			bcopy(dkc, &dkarg->dkc, sizeof (*dkc));
7007
7008			mutex_enter(&vdc->lock);
7009			vdc->dkio_flush_pending++;
7010			dkarg->vdc = vdc;
7011			mutex_exit(&vdc->lock);
7012
7013			/* put the request on a task queue */
7014			rv = taskq_dispatch(system_taskq, vdc_dkio_flush_cb,
7015			    (void *)dkarg, DDI_SLEEP);
7016			if (rv == NULL) {
7017				/* clean up if dispatch fails */
7018				mutex_enter(&vdc->lock);
7019				vdc->dkio_flush_pending--;
7020				mutex_exit(&vdc->lock);
7021				kmem_free(dkarg, sizeof (vdc_dk_arg_t));
7022			}
7023
7024			return (rv == NULL ? ENOMEM : 0);
7025		}
7026	}
7027
7028	/* catch programming error in vdc - should be a VD_OP_XXX ioctl */
7029	ASSERT(iop->op != 0);
7030
7031	/* check if the vDisk server handles the operation for this vDisk */
7032	if (VD_OP_SUPPORTED(vdc->operations, iop->op) == B_FALSE) {
7033		DMSG(vdc, 0, "[%d] Unsupported VD_OP operation (0x%x)\n",
7034		    vdc->instance, iop->op);
7035		return (ENOTSUP);
7036	}
7037
7038	/* LDC requires that the memory being mapped is 8-byte aligned */
7039	alloc_len = P2ROUNDUP(len, sizeof (uint64_t));
7040	DMSG(vdc, 1, "[%d] struct size %ld alloc %ld\n",
7041	    instance, len, alloc_len);
7042
7043	if (alloc_len > 0)
7044		mem_p = kmem_zalloc(alloc_len, KM_SLEEP);
7045
7046	/*
7047	 * Call the conversion function for this ioctl which, if necessary,
7048	 * converts from the Solaris format to the format ARC'ed
7049	 * as part of the vDisk protocol (FWARC 2006/195)
7050	 */
7051	ASSERT(iop->convert != NULL);
7052	rv = (iop->convert)(vdc, arg, mem_p, mode, VD_COPYIN);
7053	if (rv != 0) {
7054		DMSG(vdc, 0, "[%d] convert func returned %d for ioctl 0x%x\n",
7055		    instance, rv, cmd);
7056		if (mem_p != NULL)
7057			kmem_free(mem_p, alloc_len);
7058		return (rv);
7059	}
7060
7061	/*
7062	 * send request to vds to service the ioctl.
7063	 */
7064	rv = vdc_do_sync_op(vdc, iop->op, mem_p, alloc_len,
7065	    VDCPART(dev), 0, CB_SYNC, (void *)(uint64_t)mode,
7066	    VIO_both_dir, B_TRUE);
7067
7068	if (rv != 0) {
7069		/*
7070		 * This is not necessarily an error. The ioctl could
7071		 * be returning a value such as ENOTTY to indicate
7072		 * that the ioctl is not applicable.
7073		 */
7074		DMSG(vdc, 0, "[%d] vds returned %d for ioctl 0x%x\n",
7075		    instance, rv, cmd);
7076		if (mem_p != NULL)
7077			kmem_free(mem_p, alloc_len);
7078
7079		return (rv);
7080	}
7081
7082	/*
7083	 * Call the conversion function (if it exists) for this ioctl
7084	 * which converts from the format ARC'ed as part of the vDisk
7085	 * protocol (FWARC 2006/195) back to a format understood by
7086	 * the rest of Solaris.
7087	 */
7088	rv = (iop->convert)(vdc, mem_p, arg, mode, VD_COPYOUT);
7089	if (rv != 0) {
7090		DMSG(vdc, 0, "[%d] convert func returned %d for ioctl 0x%x\n",
7091		    instance, rv, cmd);
7092		if (mem_p != NULL)
7093			kmem_free(mem_p, alloc_len);
7094		return (rv);
7095	}
7096
7097	if (mem_p != NULL)
7098		kmem_free(mem_p, alloc_len);
7099
7100	return (rv);
7101}
7102
7103/*
7104 * Function:
7105 *
7106 * Description:
7107 *	This is an empty conversion function used by ioctl calls which
7108 *	do not need to convert the data being passed in/out to userland
7109 */
7110static int
7111vdc_null_copy_func(vdc_t *vdc, void *from, void *to, int mode, int dir)
7112{
7113	_NOTE(ARGUNUSED(vdc))
7114	_NOTE(ARGUNUSED(from))
7115	_NOTE(ARGUNUSED(to))
7116	_NOTE(ARGUNUSED(mode))
7117	_NOTE(ARGUNUSED(dir))
7118
7119	return (0);
7120}
7121
7122static int
7123vdc_get_wce_convert(vdc_t *vdc, void *from, void *to,
7124    int mode, int dir)
7125{
7126	_NOTE(ARGUNUSED(vdc))
7127
7128	if (dir == VD_COPYIN)
7129		return (0);		/* nothing to do */
7130
7131	if (ddi_copyout(from, to, sizeof (int), mode) != 0)
7132		return (EFAULT);
7133
7134	return (0);
7135}
7136
7137static int
7138vdc_set_wce_convert(vdc_t *vdc, void *from, void *to,
7139    int mode, int dir)
7140{
7141	_NOTE(ARGUNUSED(vdc))
7142
7143	if (dir == VD_COPYOUT)
7144		return (0);		/* nothing to do */
7145
7146	if (ddi_copyin(from, to, sizeof (int), mode) != 0)
7147		return (EFAULT);
7148
7149	return (0);
7150}
7151
7152/*
7153 * Function:
7154 *	vdc_get_vtoc_convert()
7155 *
7156 * Description:
7157 *	This routine performs the necessary convertions from the DKIOCGVTOC
7158 *	Solaris structure to the format defined in FWARC 2006/195.
7159 *
7160 *	In the struct vtoc definition, the timestamp field is marked as not
7161 *	supported so it is not part of vDisk protocol (FWARC 2006/195).
7162 *	However SVM uses that field to check it can write into the VTOC,
7163 *	so we fake up the info of that field.
7164 *
7165 * Arguments:
7166 *	vdc	- the vDisk client
7167 *	from	- the buffer containing the data to be copied from
7168 *	to	- the buffer to be copied to
7169 *	mode	- flags passed to ioctl() call
7170 *	dir	- the "direction" of the copy - VD_COPYIN or VD_COPYOUT
7171 *
7172 * Return Code:
7173 *	0	- Success
7174 *	ENXIO	- incorrect buffer passed in.
7175 *	EFAULT	- ddi_copyout routine encountered an error.
7176 */
7177static int
7178vdc_get_vtoc_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
7179{
7180	int		i;
7181	struct vtoc	vtoc;
7182	struct vtoc32	vtoc32;
7183	struct extvtoc	evtoc;
7184	int		rv;
7185
7186	if (dir != VD_COPYOUT)
7187		return (0);	/* nothing to do */
7188
7189	if ((from == NULL) || (to == NULL))
7190		return (ENXIO);
7191
7192	if (vdc->vdisk_size > VD_OLDVTOC_LIMIT)
7193		return (EOVERFLOW);
7194
7195	VD_VTOC2VTOC((vd_vtoc_t *)from, &evtoc);
7196
7197	/* fake the VTOC timestamp field */
7198	for (i = 0; i < V_NUMPAR; i++) {
7199		evtoc.timestamp[i] = vdc->vtoc->timestamp[i];
7200	}
7201
7202	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
7203		/* LINTED E_ASSIGN_NARROW_CONV */
7204		extvtoctovtoc32(evtoc, vtoc32);
7205		rv = ddi_copyout(&vtoc32, to, sizeof (vtoc32), mode);
7206		if (rv != 0)
7207			rv = EFAULT;
7208	} else {
7209		extvtoctovtoc(evtoc, vtoc);
7210		rv = ddi_copyout(&vtoc, to, sizeof (vtoc), mode);
7211		if (rv != 0)
7212			rv = EFAULT;
7213	}
7214
7215	return (rv);
7216}
7217
7218/*
7219 * Function:
7220 *	vdc_set_vtoc_convert()
7221 *
7222 * Description:
7223 *	This routine performs the necessary convertions from the DKIOCSVTOC
7224 *	Solaris structure to the format defined in FWARC 2006/195.
7225 *
7226 * Arguments:
7227 *	vdc	- the vDisk client
7228 *	from	- Buffer with data
7229 *	to	- Buffer where data is to be copied to
7230 *	mode	- flags passed to ioctl
7231 *	dir	- direction of copy (in or out)
7232 *
7233 * Return Code:
7234 *	0	- Success
7235 *	ENXIO	- Invalid buffer passed in
7236 *	EFAULT	- ddi_copyin of data failed
7237 */
7238static int
7239vdc_set_vtoc_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
7240{
7241	void		*uvtoc;
7242	struct vtoc	vtoc;
7243	struct vtoc32	vtoc32;
7244	struct extvtoc	evtoc;
7245	int		i, rv;
7246
7247	if ((from == NULL) || (to == NULL))
7248		return (ENXIO);
7249
7250	if (vdc->vdisk_size > VD_OLDVTOC_LIMIT)
7251		return (EOVERFLOW);
7252
7253	uvtoc = (dir == VD_COPYIN)? from : to;
7254
7255	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
7256		rv = ddi_copyin(uvtoc, &vtoc32, sizeof (vtoc32), mode);
7257		if (rv != 0)
7258			return (EFAULT);
7259		vtoc32toextvtoc(vtoc32, evtoc);
7260	} else {
7261		rv = ddi_copyin(uvtoc, &vtoc, sizeof (vtoc), mode);
7262		if (rv != 0)
7263			return (EFAULT);
7264		vtoctoextvtoc(vtoc, evtoc);
7265	}
7266
7267	if (dir == VD_COPYOUT) {
7268		/*
7269		 * The disk label may have changed. Revalidate the disk
7270		 * geometry. This will also update the device nodes.
7271		 */
7272		vdc_validate(vdc);
7273
7274		/*
7275		 * We also need to keep track of the timestamp fields.
7276		 */
7277		for (i = 0; i < V_NUMPAR; i++) {
7278			vdc->vtoc->timestamp[i] = evtoc.timestamp[i];
7279		}
7280
7281	} else {
7282		VTOC2VD_VTOC(&evtoc, (vd_vtoc_t *)to);
7283	}
7284
7285	return (0);
7286}
7287
7288static int
7289vdc_get_extvtoc_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
7290{
7291	int		i, rv;
7292	struct extvtoc	evtoc;
7293
7294	if (dir != VD_COPYOUT)
7295		return (0);	/* nothing to do */
7296
7297	if ((from == NULL) || (to == NULL))
7298		return (ENXIO);
7299
7300	VD_VTOC2VTOC((vd_vtoc_t *)from, &evtoc);
7301
7302	/* fake the VTOC timestamp field */
7303	for (i = 0; i < V_NUMPAR; i++) {
7304		evtoc.timestamp[i] = vdc->vtoc->timestamp[i];
7305	}
7306
7307	rv = ddi_copyout(&evtoc, to, sizeof (struct extvtoc), mode);
7308	if (rv != 0)
7309		rv = EFAULT;
7310
7311	return (rv);
7312}
7313
7314static int
7315vdc_set_extvtoc_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
7316{
7317	void		*uvtoc;
7318	struct extvtoc	evtoc;
7319	int		i, rv;
7320
7321	if ((from == NULL) || (to == NULL))
7322		return (ENXIO);
7323
7324	uvtoc = (dir == VD_COPYIN)? from : to;
7325
7326	rv = ddi_copyin(uvtoc, &evtoc, sizeof (struct extvtoc), mode);
7327	if (rv != 0)
7328		return (EFAULT);
7329
7330	if (dir == VD_COPYOUT) {
7331		/*
7332		 * The disk label may have changed. Revalidate the disk
7333		 * geometry. This will also update the device nodes.
7334		 */
7335		vdc_validate(vdc);
7336
7337		/*
7338		 * We also need to keep track of the timestamp fields.
7339		 */
7340		for (i = 0; i < V_NUMPAR; i++) {
7341			vdc->vtoc->timestamp[i] = evtoc.timestamp[i];
7342		}
7343
7344	} else {
7345		VTOC2VD_VTOC(&evtoc, (vd_vtoc_t *)to);
7346	}
7347
7348	return (0);
7349}
7350
7351/*
7352 * Function:
7353 *	vdc_get_geom_convert()
7354 *
7355 * Description:
7356 *	This routine performs the necessary convertions from the DKIOCGGEOM,
7357 *	DKIOCG_PHYSGEOM and DKIOG_VIRTGEOM Solaris structures to the format
7358 *	defined in FWARC 2006/195
7359 *
7360 * Arguments:
7361 *	vdc	- the vDisk client
7362 *	from	- Buffer with data
7363 *	to	- Buffer where data is to be copied to
7364 *	mode	- flags passed to ioctl
7365 *	dir	- direction of copy (in or out)
7366 *
7367 * Return Code:
7368 *	0	- Success
7369 *	ENXIO	- Invalid buffer passed in
7370 *	EFAULT	- ddi_copyout of data failed
7371 */
7372static int
7373vdc_get_geom_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
7374{
7375	_NOTE(ARGUNUSED(vdc))
7376
7377	struct dk_geom	geom;
7378	int	copy_len = sizeof (struct dk_geom);
7379	int	rv = 0;
7380
7381	if (dir != VD_COPYOUT)
7382		return (0);	/* nothing to do */
7383
7384	if ((from == NULL) || (to == NULL))
7385		return (ENXIO);
7386
7387	VD_GEOM2DK_GEOM((vd_geom_t *)from, &geom);
7388	rv = ddi_copyout(&geom, to, copy_len, mode);
7389	if (rv != 0)
7390		rv = EFAULT;
7391
7392	return (rv);
7393}
7394
7395/*
7396 * Function:
7397 *	vdc_set_geom_convert()
7398 *
7399 * Description:
7400 *	This routine performs the necessary convertions from the DKIOCSGEOM
7401 *	Solaris structure to the format defined in FWARC 2006/195.
7402 *
7403 * Arguments:
7404 *	vdc	- the vDisk client
7405 *	from	- Buffer with data
7406 *	to	- Buffer where data is to be copied to
7407 *	mode	- flags passed to ioctl
7408 *	dir	- direction of copy (in or out)
7409 *
7410 * Return Code:
7411 *	0	- Success
7412 *	ENXIO	- Invalid buffer passed in
7413 *	EFAULT	- ddi_copyin of data failed
7414 */
7415static int
7416vdc_set_geom_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
7417{
7418	_NOTE(ARGUNUSED(vdc))
7419
7420	vd_geom_t	vdgeom;
7421	void		*tmp_mem = NULL;
7422	int		copy_len = sizeof (struct dk_geom);
7423	int		rv = 0;
7424
7425	if (dir != VD_COPYIN)
7426		return (0);	/* nothing to do */
7427
7428	if ((from == NULL) || (to == NULL))
7429		return (ENXIO);
7430
7431	tmp_mem = kmem_alloc(copy_len, KM_SLEEP);
7432
7433	rv = ddi_copyin(from, tmp_mem, copy_len, mode);
7434	if (rv != 0) {
7435		kmem_free(tmp_mem, copy_len);
7436		return (EFAULT);
7437	}
7438	DK_GEOM2VD_GEOM((struct dk_geom *)tmp_mem, &vdgeom);
7439	bcopy(&vdgeom, to, sizeof (vdgeom));
7440	kmem_free(tmp_mem, copy_len);
7441
7442	return (0);
7443}
7444
7445static int
7446vdc_get_efi_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
7447{
7448	_NOTE(ARGUNUSED(vdc))
7449
7450	vd_efi_t	*vd_efi;
7451	dk_efi_t	dk_efi;
7452	int		rv = 0;
7453	void		*uaddr;
7454
7455	if ((from == NULL) || (to == NULL))
7456		return (ENXIO);
7457
7458	if (dir == VD_COPYIN) {
7459
7460		vd_efi = (vd_efi_t *)to;
7461
7462		rv = ddi_copyin(from, &dk_efi, sizeof (dk_efi_t), mode);
7463		if (rv != 0)
7464			return (EFAULT);
7465
7466		vd_efi->lba = dk_efi.dki_lba;
7467		vd_efi->length = dk_efi.dki_length;
7468		bzero(vd_efi->data, vd_efi->length);
7469
7470	} else {
7471
7472		rv = ddi_copyin(to, &dk_efi, sizeof (dk_efi_t), mode);
7473		if (rv != 0)
7474			return (EFAULT);
7475
7476		uaddr = dk_efi.dki_data;
7477
7478		dk_efi.dki_data = kmem_alloc(dk_efi.dki_length, KM_SLEEP);
7479
7480		VD_EFI2DK_EFI((vd_efi_t *)from, &dk_efi);
7481
7482		rv = ddi_copyout(dk_efi.dki_data, uaddr, dk_efi.dki_length,
7483		    mode);
7484		if (rv != 0)
7485			return (EFAULT);
7486
7487		kmem_free(dk_efi.dki_data, dk_efi.dki_length);
7488	}
7489
7490	return (0);
7491}
7492
7493static int
7494vdc_set_efi_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
7495{
7496	_NOTE(ARGUNUSED(vdc))
7497
7498	dk_efi_t	dk_efi;
7499	void		*uaddr;
7500
7501	if (dir == VD_COPYOUT) {
7502		/*
7503		 * The disk label may have changed. Revalidate the disk
7504		 * geometry. This will also update the device nodes.
7505		 */
7506		vdc_validate(vdc);
7507		return (0);
7508	}
7509
7510	if ((from == NULL) || (to == NULL))
7511		return (ENXIO);
7512
7513	if (ddi_copyin(from, &dk_efi, sizeof (dk_efi_t), mode) != 0)
7514		return (EFAULT);
7515
7516	uaddr = dk_efi.dki_data;
7517
7518	dk_efi.dki_data = kmem_alloc(dk_efi.dki_length, KM_SLEEP);
7519
7520	if (ddi_copyin(uaddr, dk_efi.dki_data, dk_efi.dki_length, mode) != 0)
7521		return (EFAULT);
7522
7523	DK_EFI2VD_EFI(&dk_efi, (vd_efi_t *)to);
7524
7525	kmem_free(dk_efi.dki_data, dk_efi.dki_length);
7526
7527	return (0);
7528}
7529
7530
7531/* -------------------------------------------------------------------------- */
7532
7533/*
7534 * Function:
7535 *	vdc_create_fake_geometry()
7536 *
7537 * Description:
7538 *	This routine fakes up the disk info needed for some DKIO ioctls such
7539 *	as DKIOCINFO and DKIOCGMEDIAINFO [just like lofi(7D) and ramdisk(7D) do]
7540 *
7541 *	Note: This function must not be called until the vDisk attributes have
7542 *	been exchanged as part of the handshake with the vDisk server.
7543 *
7544 * Arguments:
7545 *	vdc	- soft state pointer for this instance of the device driver.
7546 *
7547 * Return Code:
7548 *	none.
7549 */
7550static void
7551vdc_create_fake_geometry(vdc_t *vdc)
7552{
7553	ASSERT(vdc != NULL);
7554	ASSERT(vdc->max_xfer_sz != 0);
7555
7556	/*
7557	 * DKIOCINFO support
7558	 */
7559	if (vdc->cinfo == NULL)
7560		vdc->cinfo = kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
7561
7562	(void) strcpy(vdc->cinfo->dki_cname, VDC_DRIVER_NAME);
7563	(void) strcpy(vdc->cinfo->dki_dname, VDC_DRIVER_NAME);
7564	/* max_xfer_sz is #blocks so we don't need to divide by DEV_BSIZE */
7565	vdc->cinfo->dki_maxtransfer = vdc->max_xfer_sz;
7566
7567	/*
7568	 * We set the controller type to DKC_SCSI_CCS only if the VD_OP_SCSICMD
7569	 * operation is supported, otherwise the controller type is DKC_DIRECT.
7570	 * Version 1.0 does not support the VD_OP_SCSICMD operation, so the
7571	 * controller type is always DKC_DIRECT in that case.
7572	 *
7573	 * If the virtual disk is backed by a physical CD/DVD device or
7574	 * an ISO image, modify the controller type to indicate this
7575	 */
7576	switch (vdc->vdisk_media) {
7577	case VD_MEDIA_CD:
7578	case VD_MEDIA_DVD:
7579		vdc->cinfo->dki_ctype = DKC_CDROM;
7580		break;
7581	case VD_MEDIA_FIXED:
7582		if (VD_OP_SUPPORTED(vdc->operations, VD_OP_SCSICMD))
7583			vdc->cinfo->dki_ctype = DKC_SCSI_CCS;
7584		else
7585			vdc->cinfo->dki_ctype = DKC_DIRECT;
7586		break;
7587	default:
7588		/* in the case of v1.0 we default to a fixed disk */
7589		vdc->cinfo->dki_ctype = DKC_DIRECT;
7590		break;
7591	}
7592	vdc->cinfo->dki_flags = DKI_FMTVOL;
7593	vdc->cinfo->dki_cnum = 0;
7594	vdc->cinfo->dki_addr = 0;
7595	vdc->cinfo->dki_space = 0;
7596	vdc->cinfo->dki_prio = 0;
7597	vdc->cinfo->dki_vec = 0;
7598	vdc->cinfo->dki_unit = vdc->instance;
7599	vdc->cinfo->dki_slave = 0;
7600	/*
7601	 * The partition number will be created on the fly depending on the
7602	 * actual slice (i.e. minor node) that is used to request the data.
7603	 */
7604	vdc->cinfo->dki_partition = 0;
7605
7606	/*
7607	 * DKIOCGMEDIAINFO support
7608	 */
7609	if (vdc->minfo == NULL)
7610		vdc->minfo = kmem_zalloc(sizeof (struct dk_minfo), KM_SLEEP);
7611
7612	if (vio_ver_is_supported(vdc->ver, 1, 1)) {
7613		vdc->minfo->dki_media_type =
7614		    VD_MEDIATYPE2DK_MEDIATYPE(vdc->vdisk_media);
7615	} else {
7616		vdc->minfo->dki_media_type = DK_FIXED_DISK;
7617	}
7618
7619	vdc->minfo->dki_capacity = vdc->vdisk_size;
7620	vdc->minfo->dki_lbsize = vdc->block_size;
7621}
7622
7623static ushort_t
7624vdc_lbl2cksum(struct dk_label *label)
7625{
7626	int	count;
7627	ushort_t sum, *sp;
7628
7629	count =	(sizeof (struct dk_label)) / (sizeof (short)) - 1;
7630	sp = (ushort_t *)label;
7631	sum = 0;
7632	while (count--) {
7633		sum ^= *sp++;
7634	}
7635
7636	return (sum);
7637}
7638
7639static void
7640vdc_update_size(vdc_t *vdc, size_t dsk_size, size_t blk_size, size_t xfr_size)
7641{
7642	vd_err_stats_t  *stp;
7643
7644	ASSERT(MUTEX_HELD(&vdc->lock));
7645	ASSERT(xfr_size != 0);
7646
7647	/*
7648	 * If the disk size is unknown or sizes are unchanged then don't
7649	 * update anything.
7650	 */
7651	if (dsk_size == VD_SIZE_UNKNOWN || dsk_size == 0 ||
7652	    (blk_size == vdc->block_size && dsk_size == vdc->vdisk_size &&
7653	    xfr_size == vdc->max_xfer_sz))
7654		return;
7655
7656	/*
7657	 * We don't know at compile time what the vDisk server will think
7658	 * are good values but we apply a large (arbitrary) upper bound to
7659	 * prevent memory exhaustion in vdc if it was allocating a DRing
7660	 * based of huge values sent by the server. We probably will never
7661	 * exceed this except if the message was garbage.
7662	 */
7663	if ((xfr_size * blk_size) > (PAGESIZE * DEV_BSIZE)) {
7664		DMSG(vdc, 0, "[%d] vds block transfer size too big;"
7665		    " using max supported by vdc", vdc->instance);
7666		xfr_size = maxphys / DEV_BSIZE;
7667		dsk_size = (dsk_size * blk_size) / DEV_BSIZE;
7668		blk_size = DEV_BSIZE;
7669	}
7670
7671	vdc->max_xfer_sz = xfr_size;
7672	vdc->block_size = blk_size;
7673	vdc->vdisk_size = dsk_size;
7674
7675	stp = (vd_err_stats_t *)vdc->err_stats->ks_data;
7676	stp->vd_capacity.value.ui64 = dsk_size * blk_size;
7677
7678	vdc->minfo->dki_capacity = dsk_size;
7679	vdc->minfo->dki_lbsize = (uint_t)blk_size;
7680}
7681
7682/*
7683 * Function:
7684 *	vdc_validate_geometry
7685 *
7686 * Description:
7687 *	This routine discovers the label and geometry of the disk. It stores
7688 *	the disk label and related information in the vdc structure. If it
7689 *	fails to validate the geometry or to discover the disk label then
7690 *	the label is marked as unknown (VD_DISK_LABEL_UNK).
7691 *
7692 * Arguments:
7693 *	vdc	- soft state pointer for this instance of the device driver.
7694 *
7695 * Return Code:
7696 *	0	- success.
7697 *	EINVAL	- unknown disk label.
7698 *	ENOTSUP	- geometry not applicable (EFI label).
7699 *	EIO	- error accessing the disk.
7700 */
7701static int
7702vdc_validate_geometry(vdc_t *vdc)
7703{
7704	buf_t	*buf;	/* BREAD requests need to be in a buf_t structure */
7705	dev_t	dev;
7706	int	rv, rval;
7707	struct dk_label label;
7708	struct dk_geom geom;
7709	struct extvtoc vtoc;
7710	efi_gpt_t *gpt;
7711	efi_gpe_t *gpe;
7712	vd_efi_dev_t edev;
7713
7714	ASSERT(vdc != NULL);
7715	ASSERT(vdc->vtoc != NULL && vdc->geom != NULL);
7716	ASSERT(MUTEX_HELD(&vdc->lock));
7717
7718	mutex_exit(&vdc->lock);
7719	/*
7720	 * Check the disk capacity in case it has changed. If that fails then
7721	 * we proceed and we will be using the disk size we currently have.
7722	 */
7723	(void) vdc_check_capacity(vdc);
7724	dev = makedevice(ddi_driver_major(vdc->dip),
7725	    VD_MAKE_DEV(vdc->instance, 0));
7726
7727	rv = vd_process_ioctl(dev, DKIOCGGEOM, (caddr_t)&geom, FKIOCTL, &rval);
7728	if (rv == 0)
7729		rv = vd_process_ioctl(dev, DKIOCGEXTVTOC, (caddr_t)&vtoc,
7730		    FKIOCTL, &rval);
7731
7732	if (rv == ENOTSUP) {
7733		/*
7734		 * If the device does not support VTOC then we try
7735		 * to read an EFI label.
7736		 *
7737		 * We need to know the block size and the disk size to
7738		 * be able to read an EFI label.
7739		 */
7740		if (vdc->vdisk_size == 0) {
7741			mutex_enter(&vdc->lock);
7742			vdc_store_label_unk(vdc);
7743			return (EIO);
7744		}
7745
7746		VD_EFI_DEV_SET(edev, vdc, vd_process_efi_ioctl);
7747
7748		rv = vd_efi_alloc_and_read(&edev, &gpt, &gpe);
7749
7750		if (rv) {
7751			DMSG(vdc, 0, "[%d] Failed to get EFI (err=%d)",
7752			    vdc->instance, rv);
7753			mutex_enter(&vdc->lock);
7754			vdc_store_label_unk(vdc);
7755			return (EIO);
7756		}
7757
7758		mutex_enter(&vdc->lock);
7759		vdc_store_label_efi(vdc, gpt, gpe);
7760		vd_efi_free(&edev, gpt, gpe);
7761		return (ENOTSUP);
7762	}
7763
7764	if (rv != 0) {
7765		DMSG(vdc, 0, "[%d] Failed to get VTOC (err=%d)",
7766		    vdc->instance, rv);
7767		mutex_enter(&vdc->lock);
7768		vdc_store_label_unk(vdc);
7769		if (rv != EINVAL)
7770			rv = EIO;
7771		return (rv);
7772	}
7773
7774	/* check that geometry and vtoc are valid */
7775	if (geom.dkg_nhead == 0 || geom.dkg_nsect == 0 ||
7776	    vtoc.v_sanity != VTOC_SANE) {
7777		mutex_enter(&vdc->lock);
7778		vdc_store_label_unk(vdc);
7779		return (EINVAL);
7780	}
7781
7782	/*
7783	 * We have a disk and a valid VTOC. However this does not mean
7784	 * that the disk currently have a VTOC label. The returned VTOC may
7785	 * be a default VTOC to be used for configuring the disk (this is
7786	 * what is done for disk image). So we read the label from the
7787	 * beginning of the disk to ensure we really have a VTOC label.
7788	 *
7789	 * FUTURE: This could be the default way for reading the VTOC
7790	 * from the disk as opposed to sending the VD_OP_GET_VTOC
7791	 * to the server. This will be the default if vdc is implemented
7792	 * ontop of cmlb.
7793	 */
7794
7795	/*
7796	 * Single slice disk does not support read using an absolute disk
7797	 * offset so we just rely on the DKIOCGVTOC ioctl in that case.
7798	 */
7799	if (vdc->vdisk_type == VD_DISK_TYPE_SLICE) {
7800		mutex_enter(&vdc->lock);
7801		if (vtoc.v_nparts != 1) {
7802			vdc_store_label_unk(vdc);
7803			return (EINVAL);
7804		}
7805		vdc_store_label_vtoc(vdc, &geom, &vtoc);
7806		return (0);
7807	}
7808
7809	if (vtoc.v_nparts != V_NUMPAR) {
7810		mutex_enter(&vdc->lock);
7811		vdc_store_label_unk(vdc);
7812		return (EINVAL);
7813	}
7814
7815	/*
7816	 * Read disk label from start of disk
7817	 */
7818	buf = kmem_alloc(sizeof (buf_t), KM_SLEEP);
7819	bioinit(buf);
7820	buf->b_un.b_addr = (caddr_t)&label;
7821	buf->b_bcount = DK_LABEL_SIZE;
7822	buf->b_flags = B_BUSY | B_READ;
7823	buf->b_dev = cmpdev(dev);
7824	rv = vdc_send_request(vdc, VD_OP_BREAD, (caddr_t)&label,
7825	    DK_LABEL_SIZE, VD_SLICE_NONE, 0, CB_STRATEGY, buf, VIO_read_dir);
7826	if (rv) {
7827		DMSG(vdc, 1, "[%d] Failed to read disk block 0\n",
7828		    vdc->instance);
7829	} else {
7830		rv = biowait(buf);
7831		biofini(buf);
7832	}
7833	kmem_free(buf, sizeof (buf_t));
7834
7835	if (rv != 0 || label.dkl_magic != DKL_MAGIC ||
7836	    label.dkl_cksum != vdc_lbl2cksum(&label)) {
7837		DMSG(vdc, 1, "[%d] Got VTOC with invalid label\n",
7838		    vdc->instance);
7839		mutex_enter(&vdc->lock);
7840		vdc_store_label_unk(vdc);
7841		return (EINVAL);
7842	}
7843
7844	mutex_enter(&vdc->lock);
7845	vdc_store_label_vtoc(vdc, &geom, &vtoc);
7846	return (0);
7847}
7848
7849/*
7850 * Function:
7851 *	vdc_validate
7852 *
7853 * Description:
7854 *	This routine discovers the label of the disk and create the
7855 *	appropriate device nodes if the label has changed.
7856 *
7857 * Arguments:
7858 *	vdc	- soft state pointer for this instance of the device driver.
7859 *
7860 * Return Code:
7861 *	none.
7862 */
7863static void
7864vdc_validate(vdc_t *vdc)
7865{
7866	vd_disk_label_t old_label;
7867	vd_slice_t old_slice[V_NUMPAR];
7868	int rv;
7869
7870	ASSERT(!MUTEX_HELD(&vdc->lock));
7871
7872	mutex_enter(&vdc->lock);
7873
7874	/* save the current label and vtoc */
7875	old_label = vdc->vdisk_label;
7876	bcopy(vdc->slice, &old_slice, sizeof (vd_slice_t) * V_NUMPAR);
7877
7878	/* check the geometry */
7879	(void) vdc_validate_geometry(vdc);
7880
7881	/* if the disk label has changed, update device nodes */
7882	if (vdc->vdisk_label != old_label) {
7883
7884		if (vdc->vdisk_label == VD_DISK_LABEL_EFI)
7885			rv = vdc_create_device_nodes_efi(vdc);
7886		else
7887			rv = vdc_create_device_nodes_vtoc(vdc);
7888
7889		if (rv != 0) {
7890			DMSG(vdc, 0, "![%d] Failed to update device nodes",
7891			    vdc->instance);
7892		}
7893	}
7894
7895	mutex_exit(&vdc->lock);
7896}
7897
7898static void
7899vdc_validate_task(void *arg)
7900{
7901	vdc_t *vdc = (vdc_t *)arg;
7902
7903	vdc_validate(vdc);
7904
7905	mutex_enter(&vdc->lock);
7906	ASSERT(vdc->validate_pending > 0);
7907	vdc->validate_pending--;
7908	mutex_exit(&vdc->lock);
7909}
7910
7911/*
7912 * Function:
7913 *	vdc_setup_devid()
7914 *
7915 * Description:
7916 *	This routine discovers the devid of a vDisk. It requests the devid of
7917 *	the underlying device from the vDisk server, builds an encapsulated
7918 *	devid based on the retrieved devid and registers that new devid to
7919 *	the vDisk.
7920 *
7921 * Arguments:
7922 *	vdc	- soft state pointer for this instance of the device driver.
7923 *
7924 * Return Code:
7925 *	0	- A devid was succesfully registered for the vDisk
7926 */
7927static int
7928vdc_setup_devid(vdc_t *vdc)
7929{
7930	int rv;
7931	vd_devid_t *vd_devid;
7932	size_t bufsize, bufid_len;
7933
7934	/*
7935	 * At first sight, we don't know the size of the devid that the
7936	 * server will return but this size will be encoded into the
7937	 * reply. So we do a first request using a default size then we
7938	 * check if this size was large enough. If not then we do a second
7939	 * request with the correct size returned by the server. Note that
7940	 * ldc requires size to be 8-byte aligned.
7941	 */
7942	bufsize = P2ROUNDUP(VD_DEVID_SIZE(VD_DEVID_DEFAULT_LEN),
7943	    sizeof (uint64_t));
7944	vd_devid = kmem_zalloc(bufsize, KM_SLEEP);
7945	bufid_len = bufsize - sizeof (vd_efi_t) - 1;
7946
7947	rv = vdc_do_sync_op(vdc, VD_OP_GET_DEVID, (caddr_t)vd_devid,
7948	    bufsize, 0, 0, CB_SYNC, 0, VIO_both_dir, B_TRUE);
7949
7950	DMSG(vdc, 2, "sync_op returned %d\n", rv);
7951
7952	if (rv) {
7953		kmem_free(vd_devid, bufsize);
7954		return (rv);
7955	}
7956
7957	if (vd_devid->length > bufid_len) {
7958		/*
7959		 * The returned devid is larger than the buffer used. Try again
7960		 * with a buffer with the right size.
7961		 */
7962		kmem_free(vd_devid, bufsize);
7963		bufsize = P2ROUNDUP(VD_DEVID_SIZE(vd_devid->length),
7964		    sizeof (uint64_t));
7965		vd_devid = kmem_zalloc(bufsize, KM_SLEEP);
7966		bufid_len = bufsize - sizeof (vd_efi_t) - 1;
7967
7968		rv = vdc_do_sync_op(vdc, VD_OP_GET_DEVID,
7969		    (caddr_t)vd_devid, bufsize, 0, 0, CB_SYNC, 0,
7970		    VIO_both_dir, B_TRUE);
7971
7972		if (rv) {
7973			kmem_free(vd_devid, bufsize);
7974			return (rv);
7975		}
7976	}
7977
7978	/*
7979	 * The virtual disk should have the same device id as the one associated
7980	 * with the physical disk it is mapped on, otherwise sharing a disk
7981	 * between a LDom and a non-LDom may not work (for example for a shared
7982	 * SVM disk set).
7983	 *
7984	 * The DDI framework does not allow creating a device id with any
7985	 * type so we first create a device id of type DEVID_ENCAP and then
7986	 * we restore the orignal type of the physical device.
7987	 */
7988
7989	DMSG(vdc, 2, ": devid length = %d\n", vd_devid->length);
7990
7991	/* build an encapsulated devid based on the returned devid */
7992	if (ddi_devid_init(vdc->dip, DEVID_ENCAP, vd_devid->length,
7993	    vd_devid->id, &vdc->devid) != DDI_SUCCESS) {
7994		DMSG(vdc, 1, "[%d] Fail to created devid\n", vdc->instance);
7995		kmem_free(vd_devid, bufsize);
7996		return (1);
7997	}
7998
7999	DEVID_FORMTYPE((impl_devid_t *)vdc->devid, vd_devid->type);
8000
8001	ASSERT(ddi_devid_valid(vdc->devid) == DDI_SUCCESS);
8002
8003	kmem_free(vd_devid, bufsize);
8004
8005	if (ddi_devid_register(vdc->dip, vdc->devid) != DDI_SUCCESS) {
8006		DMSG(vdc, 1, "[%d] Fail to register devid\n", vdc->instance);
8007		return (1);
8008	}
8009
8010	return (0);
8011}
8012
8013static void
8014vdc_store_label_efi(vdc_t *vdc, efi_gpt_t *gpt, efi_gpe_t *gpe)
8015{
8016	int i, nparts;
8017
8018	ASSERT(MUTEX_HELD(&vdc->lock));
8019
8020	vdc->vdisk_label = VD_DISK_LABEL_EFI;
8021	bzero(vdc->vtoc, sizeof (struct extvtoc));
8022	bzero(vdc->geom, sizeof (struct dk_geom));
8023	bzero(vdc->slice, sizeof (vd_slice_t) * V_NUMPAR);
8024
8025	nparts = gpt->efi_gpt_NumberOfPartitionEntries;
8026
8027	for (i = 0; i < nparts && i < VD_EFI_WD_SLICE; i++) {
8028
8029		if (gpe[i].efi_gpe_StartingLBA == 0 ||
8030		    gpe[i].efi_gpe_EndingLBA == 0) {
8031			continue;
8032		}
8033
8034		vdc->slice[i].start = gpe[i].efi_gpe_StartingLBA;
8035		vdc->slice[i].nblocks = gpe[i].efi_gpe_EndingLBA -
8036		    gpe[i].efi_gpe_StartingLBA + 1;
8037	}
8038
8039	ASSERT(vdc->vdisk_size != 0);
8040	vdc->slice[VD_EFI_WD_SLICE].start = 0;
8041	vdc->slice[VD_EFI_WD_SLICE].nblocks = vdc->vdisk_size;
8042
8043}
8044
8045static void
8046vdc_store_label_vtoc(vdc_t *vdc, struct dk_geom *geom, struct extvtoc *vtoc)
8047{
8048	int i;
8049
8050	ASSERT(MUTEX_HELD(&vdc->lock));
8051	ASSERT(vdc->block_size == vtoc->v_sectorsz);
8052
8053	vdc->vdisk_label = VD_DISK_LABEL_VTOC;
8054	bcopy(vtoc, vdc->vtoc, sizeof (struct extvtoc));
8055	bcopy(geom, vdc->geom, sizeof (struct dk_geom));
8056	bzero(vdc->slice, sizeof (vd_slice_t) * V_NUMPAR);
8057
8058	for (i = 0; i < vtoc->v_nparts; i++) {
8059		vdc->slice[i].start = vtoc->v_part[i].p_start;
8060		vdc->slice[i].nblocks = vtoc->v_part[i].p_size;
8061	}
8062}
8063
8064static void
8065vdc_store_label_unk(vdc_t *vdc)
8066{
8067	ASSERT(MUTEX_HELD(&vdc->lock));
8068
8069	vdc->vdisk_label = VD_DISK_LABEL_UNK;
8070	bzero(vdc->vtoc, sizeof (struct extvtoc));
8071	bzero(vdc->geom, sizeof (struct dk_geom));
8072	bzero(vdc->slice, sizeof (vd_slice_t) * V_NUMPAR);
8073}
8074