startup.c revision 11173:87f3734e64df
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27#include <sys/machsystm.h>
28#include <sys/archsystm.h>
29#include <sys/vm.h>
30#include <sys/cpu.h>
31#include <sys/atomic.h>
32#include <sys/reboot.h>
33#include <sys/kdi.h>
34#include <sys/bootconf.h>
35#include <sys/memlist_plat.h>
36#include <sys/memlist_impl.h>
37#include <sys/prom_plat.h>
38#include <sys/prom_isa.h>
39#include <sys/autoconf.h>
40#include <sys/intreg.h>
41#include <sys/ivintr.h>
42#include <sys/fpu/fpusystm.h>
43#include <sys/iommutsb.h>
44#include <vm/vm_dep.h>
45#include <vm/seg_dev.h>
46#include <vm/seg_kmem.h>
47#include <vm/seg_kpm.h>
48#include <vm/seg_map.h>
49#include <vm/seg_kp.h>
50#include <sys/sysconf.h>
51#include <vm/hat_sfmmu.h>
52#include <sys/kobj.h>
53#include <sys/sun4asi.h>
54#include <sys/clconf.h>
55#include <sys/platform_module.h>
56#include <sys/panic.h>
57#include <sys/cpu_sgnblk_defs.h>
58#include <sys/clock.h>
59#include <sys/cmn_err.h>
60#include <sys/promif.h>
61#include <sys/prom_debug.h>
62#include <sys/traptrace.h>
63#include <sys/memnode.h>
64#include <sys/mem_cage.h>
65#include <sys/mmu.h>
66
67extern void setup_trap_table(void);
68extern int cpu_intrq_setup(struct cpu *);
69extern void cpu_intrq_register(struct cpu *);
70extern void contig_mem_init(void);
71extern caddr_t contig_mem_prealloc(caddr_t, pgcnt_t);
72extern void mach_dump_buffer_init(void);
73extern void mach_descrip_init(void);
74extern void mach_descrip_startup_fini(void);
75extern void mach_memscrub(void);
76extern void mach_fpras(void);
77extern void mach_cpu_halt_idle(void);
78extern void mach_hw_copy_limit(void);
79extern void load_mach_drivers(void);
80extern void load_tod_module(void);
81#pragma weak load_tod_module
82
83extern int ndata_alloc_mmfsa(struct memlist *ndata);
84#pragma weak ndata_alloc_mmfsa
85
86extern void cif_init(void);
87#pragma weak cif_init
88
89extern void parse_idprom(void);
90extern void add_vx_handler(char *, int, void (*)(cell_t *));
91extern void mem_config_init(void);
92extern void memseg_remap_init(void);
93
94extern void mach_kpm_init(void);
95extern void pcf_init();
96extern int size_pse_array(pgcnt_t, int);
97extern void pg_init();
98
99/*
100 * External Data:
101 */
102extern int vac_size;	/* cache size in bytes */
103extern uint_t vac_mask;	/* VAC alignment consistency mask */
104extern uint_t vac_colors;
105
106/*
107 * Global Data Definitions:
108 */
109
110/*
111 * XXX - Don't port this to new architectures
112 * A 3rd party volume manager driver (vxdm) depends on the symbol romp.
113 * 'romp' has no use with a prom with an IEEE 1275 client interface.
114 * The driver doesn't use the value, but it depends on the symbol.
115 */
116void *romp;		/* veritas driver won't load without romp 4154976 */
117/*
118 * Declare these as initialized data so we can patch them.
119 */
120pgcnt_t physmem = 0;	/* memory size in pages, patch if you want less */
121pgcnt_t segkpsize =
122    btop(SEGKPDEFSIZE);	/* size of segkp segment in pages */
123uint_t segmap_percent = 6; /* Size of segmap segment */
124
125int use_cache = 1;		/* cache not reliable (605 bugs) with MP */
126int vac_copyback = 1;
127char *cache_mode = NULL;
128int use_mix = 1;
129int prom_debug = 0;
130
131caddr_t boot_tba;		/* %tba at boot - used by kmdb */
132uint_t	tba_taken_over = 0;
133
134caddr_t s_text;			/* start of kernel text segment */
135caddr_t e_text;			/* end of kernel text segment */
136caddr_t s_data;			/* start of kernel data segment */
137caddr_t e_data;			/* end of kernel data segment */
138
139caddr_t modtext;		/* beginning of module text */
140size_t	modtext_sz;		/* size of module text */
141caddr_t moddata;		/* beginning of module data reserve */
142caddr_t e_moddata;		/* end of module data reserve */
143
144/*
145 * End of first block of contiguous kernel in 32-bit virtual address space
146 */
147caddr_t		econtig32;	/* end of first blk of contiguous kernel */
148
149caddr_t		ncbase;		/* beginning of non-cached segment */
150caddr_t		ncend;		/* end of non-cached segment */
151
152size_t	ndata_remain_sz;	/* bytes from end of data to 4MB boundary */
153caddr_t	nalloc_base;		/* beginning of nucleus allocation */
154caddr_t nalloc_end;		/* end of nucleus allocatable memory */
155caddr_t valloc_base;		/* beginning of kvalloc segment	*/
156
157caddr_t kmem64_base;		/* base of kernel mem segment in 64-bit space */
158caddr_t kmem64_end;		/* end of kernel mem segment in 64-bit space */
159size_t	kmem64_sz;		/* bytes in kernel mem segment, 64-bit space */
160caddr_t kmem64_aligned_end;	/* end of large page, overmaps 64-bit space */
161int	kmem64_szc;		/* page size code */
162uint64_t kmem64_pabase = (uint64_t)-1;	/* physical address of kmem64_base */
163
164uintptr_t shm_alignment;	/* VAC address consistency modulus */
165struct memlist *phys_install;	/* Total installed physical memory */
166struct memlist *phys_avail;	/* Available (unreserved) physical memory */
167struct memlist *virt_avail;	/* Available (unmapped?) virtual memory */
168struct memlist *nopp_list;	/* pages with no backing page structs */
169struct memlist ndata;		/* memlist of nucleus allocatable memory */
170int memexp_flag;		/* memory expansion card flag */
171uint64_t ecache_flushaddr;	/* physical address used for flushing E$ */
172pgcnt_t obp_pages;		/* Physical pages used by OBP */
173
174/*
175 * VM data structures
176 */
177long page_hashsz;		/* Size of page hash table (power of two) */
178struct page *pp_base;		/* Base of system page struct array */
179size_t pp_sz;			/* Size in bytes of page struct array */
180struct page **page_hash;	/* Page hash table */
181pad_mutex_t *pse_mutex;		/* Locks protecting pp->p_selock */
182size_t pse_table_size;		/* Number of mutexes in pse_mutex[] */
183int pse_shift;			/* log2(pse_table_size) */
184struct seg ktextseg;		/* Segment used for kernel executable image */
185struct seg kvalloc;		/* Segment used for "valloc" mapping */
186struct seg kpseg;		/* Segment used for pageable kernel virt mem */
187struct seg ktexthole;		/* Segment used for nucleus text hole */
188struct seg kmapseg;		/* Segment used for generic kernel mappings */
189struct seg kpmseg;		/* Segment used for physical mapping */
190struct seg kdebugseg;		/* Segment used for the kernel debugger */
191
192void *kpm_pp_base;		/* Base of system kpm_page array */
193size_t	kpm_pp_sz;		/* Size of system kpm_page array */
194pgcnt_t	kpm_npages;		/* How many kpm pages are managed */
195
196struct seg *segkp = &kpseg;	/* Pageable kernel virtual memory segment */
197struct seg *segkmap = &kmapseg;	/* Kernel generic mapping segment */
198struct seg *segkpm = &kpmseg;	/* 64bit kernel physical mapping segment */
199
200int segzio_fromheap = 0;	/* zio allocations occur from heap */
201caddr_t segzio_base;		/* Base address of segzio */
202pgcnt_t segziosize = 0;		/* size of zio segment in pages */
203
204/*
205 * A static DR page_t VA map is reserved that can map the page structures
206 * for a domain's entire RA space. The pages that backs this space are
207 * dynamically allocated and need not be physically contiguous.  The DR
208 * map size is derived from KPM size.
209 */
210int ppvm_enable = 0;		/* Static virtual map for page structs */
211page_t *ppvm_base;		/* Base of page struct map */
212pgcnt_t ppvm_size = 0;		/* Size of page struct map */
213
214/*
215 * debugger pages (if allocated)
216 */
217struct vnode kdebugvp;
218
219/*
220 * VA range available to the debugger
221 */
222const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE;
223const size_t kdi_segdebugsize = SEGDEBUGSIZE;
224
225/*
226 * Segment for relocated kernel structures in 64-bit large RAM kernels
227 */
228struct seg kmem64;
229
230struct memseg *memseg_free;
231
232struct vnode unused_pages_vp;
233
234/*
235 * VM data structures allocated early during boot.
236 */
237size_t pagehash_sz;
238uint64_t memlist_sz;
239
240char tbr_wr_addr_inited = 0;
241
242caddr_t	mpo_heap32_buf = NULL;
243size_t	mpo_heap32_bufsz = 0;
244
245/*
246 * Static Routines:
247 */
248static int ndata_alloc_memseg(struct memlist *, size_t);
249static void memlist_new(uint64_t, uint64_t, struct memlist **);
250static void memlist_add(uint64_t, uint64_t,
251	struct memlist **, struct memlist **);
252static void kphysm_init(void);
253static void kvm_init(void);
254static void install_kmem64_tte(void);
255
256static void startup_init(void);
257static void startup_memlist(void);
258static void startup_modules(void);
259static void startup_bop_gone(void);
260static void startup_vm(void);
261static void startup_end(void);
262static void setup_cage_params(void);
263static void startup_create_io_node(void);
264
265static pgcnt_t npages;
266static struct memlist *memlist;
267void *memlist_end;
268
269static pgcnt_t bop_alloc_pages;
270static caddr_t hblk_base;
271uint_t hblk_alloc_dynamic = 0;
272uint_t hblk1_min = H1MIN;
273
274
275/*
276 * Hooks for unsupported platforms and down-rev firmware
277 */
278int iam_positron(void);
279#pragma weak iam_positron
280static void do_prom_version_check(void);
281
282/*
283 * After receiving a thermal interrupt, this is the number of seconds
284 * to delay before shutting off the system, assuming
285 * shutdown fails.  Use /etc/system to change the delay if this isn't
286 * large enough.
287 */
288int thermal_powerdown_delay = 1200;
289
290/*
291 * Used to hold off page relocations into the cage until OBP has completed
292 * its boot-time handoff of its resources to the kernel.
293 */
294int page_relocate_ready = 0;
295
296/*
297 * Indicate if kmem64 allocation was done in small chunks
298 */
299int kmem64_smchunks = 0;
300
301/*
302 * Enable some debugging messages concerning memory usage...
303 */
304#ifdef  DEBUGGING_MEM
305static int debugging_mem;
306static void
307printmemlist(char *title, struct memlist *list)
308{
309	if (!debugging_mem)
310		return;
311
312	printf("%s\n", title);
313
314	while (list) {
315		prom_printf("\taddr = 0x%x %8x, size = 0x%x %8x\n",
316		    (uint32_t)(list->address >> 32), (uint32_t)list->address,
317		    (uint32_t)(list->size >> 32), (uint32_t)(list->size));
318		list = list->next;
319	}
320}
321
322void
323printmemseg(struct memseg *memseg)
324{
325	if (!debugging_mem)
326		return;
327
328	printf("memseg\n");
329
330	while (memseg) {
331		prom_printf("\tpage = 0x%p, epage = 0x%p, "
332		    "pfn = 0x%x, epfn = 0x%x\n",
333		    memseg->pages, memseg->epages,
334		    memseg->pages_base, memseg->pages_end);
335		memseg = memseg->next;
336	}
337}
338
339#define	debug_pause(str)	halt((str))
340#define	MPRINTF(str)		if (debugging_mem) prom_printf((str))
341#define	MPRINTF1(str, a)	if (debugging_mem) prom_printf((str), (a))
342#define	MPRINTF2(str, a, b)	if (debugging_mem) prom_printf((str), (a), (b))
343#define	MPRINTF3(str, a, b, c) \
344	if (debugging_mem) prom_printf((str), (a), (b), (c))
345#else	/* DEBUGGING_MEM */
346#define	MPRINTF(str)
347#define	MPRINTF1(str, a)
348#define	MPRINTF2(str, a, b)
349#define	MPRINTF3(str, a, b, c)
350#endif	/* DEBUGGING_MEM */
351
352
353/*
354 *
355 *                    Kernel's Virtual Memory Layout.
356 *                       /-----------------------\
357 * 0xFFFFFFFF.FFFFFFFF  -|                       |-
358 *                       |   OBP's virtual page  |
359 *                       |        tables         |
360 * 0xFFFFFFFC.00000000  -|-----------------------|-
361 *                       :                       :
362 *                       :                       :
363 *                      -|-----------------------|-
364 *                       |       segzio          | (base and size vary)
365 * 0xFFFFFE00.00000000  -|-----------------------|-
366 *                       |                       |  Ultrasparc I/II support
367 *                       |    segkpm segment     |  up to 2TB of physical
368 *                       | (64-bit kernel ONLY)  |  memory, VAC has 2 colors
369 *                       |                       |
370 * 0xFFFFFA00.00000000  -|-----------------------|- 2TB segkpm alignment
371 *                       :                       :
372 *                       :                       :
373 * 0xFFFFF810.00000000  -|-----------------------|- hole_end
374 *                       |                       |      ^
375 *                       |  UltraSPARC I/II call |      |
376 *                       | bug requires an extra |      |
377 *                       | 4 GB of space between |      |
378 *                       |   hole and used RAM   |	|
379 *                       |                       |      |
380 * 0xFFFFF800.00000000  -|-----------------------|-     |
381 *                       |                       |      |
382 *                       | Virtual Address Hole  |   UltraSPARC
383 *                       |  on UltraSPARC I/II   |  I/II * ONLY *
384 *                       |                       |      |
385 * 0x00000800.00000000  -|-----------------------|-     |
386 *                       |                       |      |
387 *                       |  UltraSPARC I/II call |      |
388 *                       | bug requires an extra |      |
389 *                       | 4 GB of space between |      |
390 *                       |   hole and used RAM   |      |
391 *                       |                       |      v
392 * 0x000007FF.00000000  -|-----------------------|- hole_start -----
393 *                       :                       :		   ^
394 *                       :                       :		   |
395 *                       |-----------------------|                 |
396 *                       |                       |                 |
397 *                       |  ecache flush area    |                 |
398 *                       |  (twice largest e$)   |                 |
399 *                       |                       |                 |
400 * 0x00000XXX.XXX00000  -|-----------------------|- kmem64_	   |
401 *                       | overmapped area       |   alignend_end  |
402 *                       | (kmem64_alignsize     |		   |
403 *                       |  boundary)            |		   |
404 * 0x00000XXX.XXXXXXXX  -|-----------------------|- kmem64_end	   |
405 *                       |                       |		   |
406 *                       |   64-bit kernel ONLY  |		   |
407 *                       |                       |		   |
408 *                       |    kmem64 segment     |		   |
409 *                       |                       |		   |
410 *                       | (Relocated extra HME  |	     Approximately
411 *                       |   block allocations,  |	    1 TB of virtual
412 *                       |   memnode freelists,  |	     address space
413 *                       |    HME hash buckets,  |		   |
414 *                       | mml_table, kpmp_table,|		   |
415 *                       |  page_t array and     |		   |
416 *                       |  hashblock pool to    |		   |
417 *                       |   avoid hard-coded    |		   |
418 *                       |     32-bit vaddr      |		   |
419 *                       |     limitations)      |		   |
420 *                       |                       |		   v
421 * 0x00000700.00000000  -|-----------------------|- SYSLIMIT (kmem64_base)
422 *                       |                       |
423 *                       |  segkmem segment      | (SYSLIMIT - SYSBASE = 4TB)
424 *                       |                       |
425 * 0x00000300.00000000  -|-----------------------|- SYSBASE
426 *                       :                       :
427 *                       :                       :
428 *                      -|-----------------------|-
429 *                       |                       |
430 *                       |  segmap segment       |   SEGMAPSIZE (1/8th physmem,
431 *                       |                       |               256G MAX)
432 * 0x000002a7.50000000  -|-----------------------|- SEGMAPBASE
433 *                       :                       :
434 *                       :                       :
435 *                      -|-----------------------|-
436 *                       |                       |
437 *                       |       segkp           |    SEGKPSIZE (2GB)
438 *                       |                       |
439 *                       |                       |
440 * 0x000002a1.00000000  -|-----------------------|- SEGKPBASE
441 *                       |                       |
442 * 0x000002a0.00000000  -|-----------------------|- MEMSCRUBBASE
443 *                       |                       |       (SEGKPBASE - 0x400000)
444 * 0x0000029F.FFE00000  -|-----------------------|- ARGSBASE
445 *                       |                       |       (MEMSCRUBBASE - NCARGS)
446 * 0x0000029F.FFD80000  -|-----------------------|- PPMAPBASE
447 *                       |                       |       (ARGSBASE - PPMAPSIZE)
448 * 0x0000029F.FFD00000  -|-----------------------|- PPMAP_FAST_BASE
449 *                       |                       |
450 * 0x0000029F.FF980000  -|-----------------------|- PIOMAPBASE
451 *                       |                       |
452 * 0x0000029F.FF580000  -|-----------------------|- NARG_BASE
453 *                       :                       :
454 *                       :                       :
455 * 0x00000000.FFFFFFFF  -|-----------------------|- OFW_END_ADDR
456 *                       |                       |
457 *                       |         OBP           |
458 *                       |                       |
459 * 0x00000000.F0000000  -|-----------------------|- OFW_START_ADDR
460 *                       |         kmdb          |
461 * 0x00000000.EDD00000  -|-----------------------|- SEGDEBUGBASE
462 *                       :                       :
463 *                       :                       :
464 * 0x00000000.7c000000  -|-----------------------|- SYSLIMIT32
465 *                       |                       |
466 *                       |  segkmem32 segment    | (SYSLIMIT32 - SYSBASE32 =
467 *                       |                       |    ~64MB)
468 * 0x00000000.70002000  -|-----------------------|
469 *                       |     panicbuf          |
470 * 0x00000000.70000000  -|-----------------------|- SYSBASE32
471 *                       |       boot-time       |
472 *                       |    temporary space    |
473 * 0x00000000.4C000000  -|-----------------------|- BOOTTMPBASE
474 *                       :                       :
475 *                       :                       :
476 *                       |                       |
477 *                       |-----------------------|- econtig32
478 *                       |    vm structures      |
479 * 0x00000000.01C00000   |-----------------------|- nalloc_end
480 *                       |         TSBs          |
481 *                       |-----------------------|- end/nalloc_base
482 *                       |   kernel data & bss   |
483 * 0x00000000.01800000  -|-----------------------|
484 *                       :   nucleus text hole   :
485 * 0x00000000.01400000  -|-----------------------|
486 *                       :                       :
487 *                       |-----------------------|
488 *                       |      module text      |
489 *                       |-----------------------|- e_text/modtext
490 *                       |      kernel text      |
491 *                       |-----------------------|
492 *                       |    trap table (48k)   |
493 * 0x00000000.01000000  -|-----------------------|- KERNELBASE
494 *                       | reserved for trapstat |} TSTAT_TOTAL_SIZE
495 *                       |-----------------------|
496 *                       |                       |
497 *                       |        invalid        |
498 *                       |                       |
499 * 0x00000000.00000000  _|_______________________|
500 *
501 *
502 *
503 *                   32-bit User Virtual Memory Layout.
504 *                       /-----------------------\
505 *                       |                       |
506 *                       |        invalid        |
507 *                       |                       |
508 *          0xFFC00000  -|-----------------------|- USERLIMIT
509 *                       |       user stack      |
510 *                       :                       :
511 *                       :                       :
512 *                       :                       :
513 *                       |       user data       |
514 *                      -|-----------------------|-
515 *                       |       user text       |
516 *          0x00002000  -|-----------------------|-
517 *                       |       invalid         |
518 *          0x00000000  _|_______________________|
519 *
520 *
521 *
522 *                   64-bit User Virtual Memory Layout.
523 *                       /-----------------------\
524 *                       |                       |
525 *                       |        invalid        |
526 *                       |                       |
527 *  0xFFFFFFFF.80000000 -|-----------------------|- USERLIMIT
528 *                       |       user stack      |
529 *                       :                       :
530 *                       :                       :
531 *                       :                       :
532 *                       |       user data       |
533 *                      -|-----------------------|-
534 *                       |       user text       |
535 *  0x00000000.01000000 -|-----------------------|-
536 *                       |       invalid         |
537 *  0x00000000.00000000 _|_______________________|
538 */
539
540extern caddr_t ecache_init_scrub_flush_area(caddr_t alloc_base);
541extern uint64_t ecache_flush_address(void);
542
543#pragma weak load_platform_modules
544#pragma weak plat_startup_memlist
545#pragma weak ecache_init_scrub_flush_area
546#pragma weak ecache_flush_address
547
548
549/*
550 * By default the DR Cage is enabled for maximum OS
551 * MPSS performance.  Users needing to disable the cage mechanism
552 * can set this variable to zero via /etc/system.
553 * Disabling the cage on systems supporting Dynamic Reconfiguration (DR)
554 * will result in loss of DR functionality.
555 * Platforms wishing to disable kernel Cage by default
556 * should do so in their set_platform_defaults() routine.
557 */
558int	kernel_cage_enable = 1;
559
560static void
561setup_cage_params(void)
562{
563	void (*func)(void);
564
565	func = (void (*)(void))kobj_getsymvalue("set_platform_cage_params", 0);
566	if (func != NULL) {
567		(*func)();
568		return;
569	}
570
571	if (kernel_cage_enable == 0) {
572		return;
573	}
574	kcage_range_init(phys_avail, KCAGE_DOWN, total_pages / 256);
575
576	if (kcage_on) {
577		cmn_err(CE_NOTE, "!Kernel Cage is ENABLED");
578	} else {
579		cmn_err(CE_NOTE, "!Kernel Cage is DISABLED");
580	}
581
582}
583
584/*
585 * Machine-dependent startup code
586 */
587void
588startup(void)
589{
590	startup_init();
591	if (&startup_platform)
592		startup_platform();
593	startup_memlist();
594	startup_modules();
595	setup_cage_params();
596	startup_bop_gone();
597	startup_vm();
598	startup_end();
599}
600
601struct regs sync_reg_buf;
602uint64_t sync_tt;
603
604void
605sync_handler(void)
606{
607	struct  panic_trap_info 	ti;
608	int i;
609
610	/*
611	 * Prevent trying to talk to the other CPUs since they are
612	 * sitting in the prom and won't reply.
613	 */
614	for (i = 0; i < NCPU; i++) {
615		if ((i != CPU->cpu_id) && CPU_XCALL_READY(i)) {
616			cpu[i]->cpu_flags &= ~CPU_READY;
617			cpu[i]->cpu_flags |= CPU_QUIESCED;
618			CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id);
619		}
620	}
621
622	/*
623	 * We've managed to get here without going through the
624	 * normal panic code path. Try and save some useful
625	 * information.
626	 */
627	if (!panicstr && (curthread->t_panic_trap == NULL)) {
628		ti.trap_type = sync_tt;
629		ti.trap_regs = &sync_reg_buf;
630		ti.trap_addr = NULL;
631		ti.trap_mmu_fsr = 0x0;
632
633		curthread->t_panic_trap = &ti;
634	}
635
636	/*
637	 * If we're re-entering the panic path, update the signature
638	 * block so that the SC knows we're in the second part of panic.
639	 */
640	if (panicstr)
641		CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1);
642
643	nopanicdebug = 1; /* do not perform debug_enter() prior to dump */
644	panic("sync initiated");
645}
646
647
648static void
649startup_init(void)
650{
651	/*
652	 * We want to save the registers while we're still in OBP
653	 * so that we know they haven't been fiddled with since.
654	 * (In principle, OBP can't change them just because it
655	 * makes a callback, but we'd rather not depend on that
656	 * behavior.)
657	 */
658	char		sync_str[] =
659	    "warning @ warning off : sync "
660	    "%%tl-c %%tstate h# %p x! "
661	    "%%g1 h# %p x! %%g2 h# %p x! %%g3 h# %p x! "
662	    "%%g4 h# %p x! %%g5 h# %p x! %%g6 h# %p x! "
663	    "%%g7 h# %p x! %%o0 h# %p x! %%o1 h# %p x! "
664	    "%%o2 h# %p x! %%o3 h# %p x! %%o4 h# %p x! "
665	    "%%o5 h# %p x! %%o6 h# %p x! %%o7 h# %p x! "
666	    "%%tl-c %%tpc h# %p x! %%tl-c %%tnpc h# %p x! "
667	    "%%y h# %p l! %%tl-c %%tt h# %p x! "
668	    "sync ; warning !";
669
670	/*
671	 * 20 == num of %p substrings
672	 * 16 == max num of chars %p will expand to.
673	 */
674	char 		bp[sizeof (sync_str) + 16 * 20];
675
676	/*
677	 * Initialize ptl1 stack for the 1st CPU.
678	 */
679	ptl1_init_cpu(&cpu0);
680
681	/*
682	 * Initialize the address map for cache consistent mappings
683	 * to random pages; must be done after vac_size is set.
684	 */
685	ppmapinit();
686
687	/*
688	 * Initialize the PROM callback handler.
689	 */
690	init_vx_handler();
691
692	/*
693	 * have prom call sync_callback() to handle the sync and
694	 * save some useful information which will be stored in the
695	 * core file later.
696	 */
697	(void) sprintf((char *)bp, sync_str,
698	    (void *)&sync_reg_buf.r_tstate, (void *)&sync_reg_buf.r_g1,
699	    (void *)&sync_reg_buf.r_g2, (void *)&sync_reg_buf.r_g3,
700	    (void *)&sync_reg_buf.r_g4, (void *)&sync_reg_buf.r_g5,
701	    (void *)&sync_reg_buf.r_g6, (void *)&sync_reg_buf.r_g7,
702	    (void *)&sync_reg_buf.r_o0, (void *)&sync_reg_buf.r_o1,
703	    (void *)&sync_reg_buf.r_o2, (void *)&sync_reg_buf.r_o3,
704	    (void *)&sync_reg_buf.r_o4, (void *)&sync_reg_buf.r_o5,
705	    (void *)&sync_reg_buf.r_o6, (void *)&sync_reg_buf.r_o7,
706	    (void *)&sync_reg_buf.r_pc, (void *)&sync_reg_buf.r_npc,
707	    (void *)&sync_reg_buf.r_y, (void *)&sync_tt);
708	prom_interpret(bp, 0, 0, 0, 0, 0);
709	add_vx_handler("sync", 1, (void (*)(cell_t *))sync_handler);
710}
711
712
713size_t
714calc_pp_sz(pgcnt_t npages)
715{
716
717	return (npages * sizeof (struct page));
718}
719
720size_t
721calc_kpmpp_sz(pgcnt_t npages)
722{
723
724	kpm_pgshft = (kpm_smallpages == 0) ? MMU_PAGESHIFT4M : MMU_PAGESHIFT;
725	kpm_pgsz = 1ull << kpm_pgshft;
726	kpm_pgoff = kpm_pgsz - 1;
727	kpmp2pshft = kpm_pgshft - PAGESHIFT;
728	kpmpnpgs = 1 << kpmp2pshft;
729
730	if (kpm_smallpages == 0) {
731		/*
732		 * Avoid fragmentation problems in kphysm_init()
733		 * by allocating for all of physical memory
734		 */
735		kpm_npages = ptokpmpr(physinstalled);
736		return (kpm_npages * sizeof (kpm_page_t));
737	} else {
738		kpm_npages = npages;
739		return (kpm_npages * sizeof (kpm_spage_t));
740	}
741}
742
743size_t
744calc_pagehash_sz(pgcnt_t npages)
745{
746
747	/*
748	 * The page structure hash table size is a power of 2
749	 * such that the average hash chain length is PAGE_HASHAVELEN.
750	 */
751	page_hashsz = npages / PAGE_HASHAVELEN;
752	page_hashsz = 1 << highbit(page_hashsz);
753	return (page_hashsz * sizeof (struct page *));
754}
755
756int testkmem64_smchunks = 0;
757
758int
759alloc_kmem64(caddr_t base, caddr_t end)
760{
761	int i;
762	caddr_t aligned_end = NULL;
763
764	if (testkmem64_smchunks)
765		return (1);
766
767	/*
768	 * Make one large memory alloc after figuring out the 64-bit size. This
769	 * will enable use of the largest page size appropriate for the system
770	 * architecture.
771	 */
772	ASSERT(mmu_exported_pagesize_mask & (1 << TTE8K));
773	ASSERT(IS_P2ALIGNED(base, TTEBYTES(max_bootlp_tteszc)));
774	for (i = max_bootlp_tteszc; i >= TTE8K; i--) {
775		size_t alloc_size, alignsize;
776#if !defined(C_OBP)
777		unsigned long long pa;
778#endif	/* !C_OBP */
779
780		if ((mmu_exported_pagesize_mask & (1 << i)) == 0)
781			continue;
782		alignsize = TTEBYTES(i);
783		kmem64_szc = i;
784
785		/* limit page size for small memory */
786		if (mmu_btop(alignsize) > (npages >> 2))
787			continue;
788
789		aligned_end = (caddr_t)roundup((uintptr_t)end, alignsize);
790		alloc_size = aligned_end - base;
791#if !defined(C_OBP)
792		if (prom_allocate_phys(alloc_size, alignsize, &pa) == 0) {
793			if (prom_claim_virt(alloc_size, base) != (caddr_t)-1) {
794				kmem64_pabase = pa;
795				kmem64_aligned_end = aligned_end;
796				install_kmem64_tte();
797				break;
798			} else {
799				prom_free_phys(alloc_size, pa);
800			}
801		}
802#else	/* !C_OBP */
803		if (prom_alloc(base, alloc_size, alignsize) == base) {
804			kmem64_pabase = va_to_pa(kmem64_base);
805			kmem64_aligned_end = aligned_end;
806			break;
807		}
808#endif	/* !C_OBP */
809		if (i == TTE8K) {
810#ifdef sun4v
811			/* return failure to try small allocations */
812			return (1);
813#else
814			prom_panic("kmem64 allocation failure");
815#endif
816		}
817	}
818	ASSERT(aligned_end != NULL);
819	return (0);
820}
821
822static prom_memlist_t *boot_physinstalled, *boot_physavail, *boot_virtavail;
823static size_t boot_physinstalled_len, boot_physavail_len, boot_virtavail_len;
824
825#define	IVSIZE	roundup(((MAXIVNUM * sizeof (intr_vec_t *)) + \
826			(MAX_RSVD_IV * sizeof (intr_vec_t)) + \
827			(MAX_RSVD_IVX * sizeof (intr_vecx_t))), PAGESIZE)
828
829#if !defined(C_OBP)
830/*
831 * Install a temporary tte handler in OBP for kmem64 area.
832 *
833 * We map kmem64 area with large pages before the trap table is taken
834 * over. Since OBP makes 8K mappings, it can create 8K tlb entries in
835 * the same area. Duplicate tlb entries with different page sizes
836 * cause unpredicatble behavior.  To avoid this, we don't create
837 * kmem64 mappings via BOP_ALLOC (ends up as prom_alloc() call to
838 * OBP).  Instead, we manage translations with a temporary va>tte-data
839 * handler (kmem64-tte).  This handler is replaced by unix-tte when
840 * the trap table is taken over.
841 *
842 * The temporary handler knows the physical address of the kmem64
843 * area. It uses the prom's pgmap@ Forth word for other addresses.
844 *
845 * We have to use BOP_ALLOC() method for C-OBP platforms because
846 * pgmap@ is not defined in C-OBP. C-OBP is only used on serengeti
847 * sun4u platforms. On sun4u we flush tlb after trap table is taken
848 * over if we use large pages for kernel heap and kmem64. Since sun4u
849 * prom (unlike sun4v) calls va>tte-data first for client address
850 * translation prom's ttes for kmem64 can't get into TLB even if we
851 * later switch to prom's trap table again. C-OBP uses 4M pages for
852 * client mappings when possible so on all platforms we get the
853 * benefit from large mappings for kmem64 area immediately during
854 * boot.
855 *
856 * pseudo code:
857 * if (context != 0) {
858 * 	return false
859 * } else if (miss_va in range[kmem64_base, kmem64_end)) {
860 *	tte = tte_template +
861 *		(((miss_va & pagemask) - kmem64_base));
862 *	return tte, true
863 * } else {
864 *	return pgmap@ result
865 * }
866 */
867char kmem64_obp_str[] =
868	"h# %lx constant kmem64-base "
869	"h# %lx constant kmem64-end "
870	"h# %lx constant kmem64-pagemask "
871	"h# %lx constant kmem64-template "
872
873	": kmem64-tte ( addr cnum -- false | tte-data true ) "
874	"    if                                       ( addr ) "
875	"       drop false exit then                  ( false ) "
876	"    dup  kmem64-base kmem64-end  within  if  ( addr ) "
877	"	kmem64-pagemask and                   ( addr' ) "
878	"	kmem64-base -                         ( addr' ) "
879	"	kmem64-template +                     ( tte ) "
880	"	true                                  ( tte true ) "
881	"    else                                     ( addr ) "
882	"	pgmap@                                ( tte ) "
883	"       dup 0< if true else drop false then   ( tte true  |  false ) "
884	"    then                                     ( tte true  |  false ) "
885	"; "
886
887	"' kmem64-tte is va>tte-data "
888;
889
890static void
891install_kmem64_tte()
892{
893	char b[sizeof (kmem64_obp_str) + (4 * 16)];
894	tte_t tte;
895
896	PRM_DEBUG(kmem64_pabase);
897	PRM_DEBUG(kmem64_szc);
898	sfmmu_memtte(&tte, kmem64_pabase >> MMU_PAGESHIFT,
899	    PROC_DATA | HAT_NOSYNC, kmem64_szc);
900	PRM_DEBUG(tte.ll);
901	(void) sprintf(b, kmem64_obp_str,
902	    kmem64_base, kmem64_end, TTE_PAGEMASK(kmem64_szc), tte.ll);
903	ASSERT(strlen(b) < sizeof (b));
904	prom_interpret(b, 0, 0, 0, 0, 0);
905}
906#endif	/* !C_OBP */
907
908/*
909 * As OBP takes up some RAM when the system boots, pages will already be "lost"
910 * to the system and reflected in npages by the time we see it.
911 *
912 * We only want to allocate kernel structures in the 64-bit virtual address
913 * space on systems with enough RAM to make the overhead of keeping track of
914 * an extra kernel memory segment worthwhile.
915 *
916 * Since OBP has already performed its memory allocations by this point, if we
917 * have more than MINMOVE_RAM_MB MB of RAM left free, go ahead and map
918 * memory in the 64-bit virtual address space; otherwise keep allocations
919 * contiguous with we've mapped so far in the 32-bit virtual address space.
920 */
921#define	MINMOVE_RAM_MB	((size_t)1900)
922#define	MB_TO_BYTES(mb)	((mb) * 1048576ul)
923#define	BYTES_TO_MB(b) ((b) / 1048576ul)
924
925pgcnt_t	tune_npages = (pgcnt_t)
926	(MB_TO_BYTES(MINMOVE_RAM_MB)/ (size_t)MMU_PAGESIZE);
927
928#pragma weak page_set_colorequiv_arr_cpu
929extern void page_set_colorequiv_arr_cpu(void);
930extern void page_set_colorequiv_arr(void);
931
932static pgcnt_t ramdisk_npages;
933static struct memlist *old_phys_avail;
934
935kcage_dir_t kcage_startup_dir = KCAGE_DOWN;
936
937static void
938startup_memlist(void)
939{
940	size_t hmehash_sz, pagelist_sz, tt_sz;
941	size_t psetable_sz;
942	caddr_t alloc_base;
943	caddr_t memspace;
944	struct memlist *cur;
945	size_t syslimit = (size_t)SYSLIMIT;
946	size_t sysbase = (size_t)SYSBASE;
947
948	/*
949	 * Initialize enough of the system to allow kmem_alloc to work by
950	 * calling boot to allocate its memory until the time that
951	 * kvm_init is completed.  The page structs are allocated after
952	 * rounding up end to the nearest page boundary; the memsegs are
953	 * initialized and the space they use comes from the kernel heap.
954	 * With appropriate initialization, they can be reallocated later
955	 * to a size appropriate for the machine's configuration.
956	 *
957	 * At this point, memory is allocated for things that will never
958	 * need to be freed, this used to be "valloced".  This allows a
959	 * savings as the pages don't need page structures to describe
960	 * them because them will not be managed by the vm system.
961	 */
962
963	/*
964	 * We're loaded by boot with the following configuration (as
965	 * specified in the sun4u/conf/Mapfile):
966	 *
967	 * 	text:		4 MB chunk aligned on a 4MB boundary
968	 * 	data & bss:	4 MB chunk aligned on a 4MB boundary
969	 *
970	 * These two chunks will eventually be mapped by 2 locked 4MB
971	 * ttes and will represent the nucleus of the kernel.  This gives
972	 * us some free space that is already allocated, some or all of
973	 * which is made available to kernel module text.
974	 *
975	 * The free space in the data-bss chunk is used for nucleus
976	 * allocatable data structures and we reserve it using the
977	 * nalloc_base and nalloc_end variables.  This space is currently
978	 * being used for hat data structures required for tlb miss
979	 * handling operations.  We align nalloc_base to a l2 cache
980	 * linesize because this is the line size the hardware uses to
981	 * maintain cache coherency.
982	 * 512K is carved out for module data.
983	 */
984
985	moddata = (caddr_t)roundup((uintptr_t)e_data, MMU_PAGESIZE);
986	e_moddata = moddata + MODDATA;
987	nalloc_base = e_moddata;
988
989	nalloc_end = (caddr_t)roundup((uintptr_t)nalloc_base, MMU_PAGESIZE4M);
990	valloc_base = nalloc_base;
991
992	/*
993	 * Calculate the start of the data segment.
994	 */
995	if (((uintptr_t)e_moddata & MMU_PAGEMASK4M) != (uintptr_t)s_data)
996		prom_panic("nucleus data overflow");
997
998	PRM_DEBUG(moddata);
999	PRM_DEBUG(nalloc_base);
1000	PRM_DEBUG(nalloc_end);
1001
1002	/*
1003	 * Remember any slop after e_text so we can give it to the modules.
1004	 */
1005	PRM_DEBUG(e_text);
1006	modtext = (caddr_t)roundup((uintptr_t)e_text, MMU_PAGESIZE);
1007	if (((uintptr_t)e_text & MMU_PAGEMASK4M) != (uintptr_t)s_text)
1008		prom_panic("nucleus text overflow");
1009	modtext_sz = (caddr_t)roundup((uintptr_t)modtext, MMU_PAGESIZE4M) -
1010	    modtext;
1011	PRM_DEBUG(modtext);
1012	PRM_DEBUG(modtext_sz);
1013
1014	init_boot_memlists();
1015	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1016	    &boot_physavail, &boot_physavail_len,
1017	    &boot_virtavail, &boot_virtavail_len);
1018
1019	/*
1020	 * Remember what the physically available highest page is
1021	 * so that dumpsys works properly, and find out how much
1022	 * memory is installed.
1023	 */
1024	installed_top_size_memlist_array(boot_physinstalled,
1025	    boot_physinstalled_len, &physmax, &physinstalled);
1026	PRM_DEBUG(physinstalled);
1027	PRM_DEBUG(physmax);
1028
1029	/* Fill out memory nodes config structure */
1030	startup_build_mem_nodes(boot_physinstalled, boot_physinstalled_len);
1031
1032	/*
1033	 * npages is the maximum of available physical memory possible.
1034	 * (ie. it will never be more than this)
1035	 *
1036	 * When we boot from a ramdisk, the ramdisk memory isn't free, so
1037	 * using phys_avail will underestimate what will end up being freed.
1038	 * A better initial guess is just total memory minus the kernel text
1039	 */
1040	npages = physinstalled - btop(MMU_PAGESIZE4M);
1041
1042	/*
1043	 * First allocate things that can go in the nucleus data page
1044	 * (fault status, TSBs, dmv, CPUs)
1045	 */
1046	ndata_alloc_init(&ndata, (uintptr_t)nalloc_base, (uintptr_t)nalloc_end);
1047
1048	if ((&ndata_alloc_mmfsa != NULL) && (ndata_alloc_mmfsa(&ndata) != 0))
1049		cmn_err(CE_PANIC, "no more nucleus memory after mfsa alloc");
1050
1051	if (ndata_alloc_tsbs(&ndata, npages) != 0)
1052		cmn_err(CE_PANIC, "no more nucleus memory after tsbs alloc");
1053
1054	if (ndata_alloc_dmv(&ndata) != 0)
1055		cmn_err(CE_PANIC, "no more nucleus memory after dmv alloc");
1056
1057	if (ndata_alloc_page_mutexs(&ndata) != 0)
1058		cmn_err(CE_PANIC,
1059		    "no more nucleus memory after page free lists alloc");
1060
1061	if (ndata_alloc_hat(&ndata, npages) != 0)
1062		cmn_err(CE_PANIC, "no more nucleus memory after hat alloc");
1063
1064	if (ndata_alloc_memseg(&ndata, boot_physavail_len) != 0)
1065		cmn_err(CE_PANIC, "no more nucleus memory after memseg alloc");
1066
1067	/*
1068	 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING
1069	 *
1070	 * There are comments all over the SFMMU code warning of dire
1071	 * consequences if the TSBs are moved out of 32-bit space.  This
1072	 * is largely because the asm code uses "sethi %hi(addr)"-type
1073	 * instructions which will not provide the expected result if the
1074	 * address is a 64-bit one.
1075	 *
1076	 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING
1077	 */
1078	alloc_base = (caddr_t)roundup((uintptr_t)nalloc_end, MMU_PAGESIZE);
1079	PRM_DEBUG(alloc_base);
1080
1081	alloc_base = sfmmu_ktsb_alloc(alloc_base);
1082	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1083	PRM_DEBUG(alloc_base);
1084
1085	/*
1086	 * Allocate IOMMU TSB array.  We do this here so that the physical
1087	 * memory gets deducted from the PROM's physical memory list.
1088	 */
1089	alloc_base = iommu_tsb_init(alloc_base);
1090	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1091	PRM_DEBUG(alloc_base);
1092
1093	/*
1094	 * Allow for an early allocation of physically contiguous memory.
1095	 */
1096	alloc_base = contig_mem_prealloc(alloc_base, npages);
1097
1098	/*
1099	 * Platforms like Starcat and OPL need special structures assigned in
1100	 * 32-bit virtual address space because their probing routines execute
1101	 * FCode, and FCode can't handle 64-bit virtual addresses...
1102	 */
1103	if (&plat_startup_memlist) {
1104		alloc_base = plat_startup_memlist(alloc_base);
1105		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1106		    ecache_alignsize);
1107		PRM_DEBUG(alloc_base);
1108	}
1109
1110	/*
1111	 * Save off where the contiguous allocations to date have ended
1112	 * in econtig32.
1113	 */
1114	econtig32 = alloc_base;
1115	PRM_DEBUG(econtig32);
1116	if (econtig32 > (caddr_t)KERNEL_LIMIT32)
1117		cmn_err(CE_PANIC, "econtig32 too big");
1118
1119	pp_sz = calc_pp_sz(npages);
1120	PRM_DEBUG(pp_sz);
1121	if (kpm_enable) {
1122		kpm_pp_sz = calc_kpmpp_sz(npages);
1123		PRM_DEBUG(kpm_pp_sz);
1124	}
1125
1126	hmehash_sz = calc_hmehash_sz(npages);
1127	PRM_DEBUG(hmehash_sz);
1128
1129	pagehash_sz = calc_pagehash_sz(npages);
1130	PRM_DEBUG(pagehash_sz);
1131
1132	pagelist_sz = calc_free_pagelist_sz();
1133	PRM_DEBUG(pagelist_sz);
1134
1135#ifdef	TRAPTRACE
1136	tt_sz = calc_traptrace_sz();
1137	PRM_DEBUG(tt_sz);
1138#else
1139	tt_sz = 0;
1140#endif	/* TRAPTRACE */
1141
1142	/*
1143	 * Place the array that protects pp->p_selock in the kmem64 wad.
1144	 */
1145	pse_shift = size_pse_array(npages, max_ncpus);
1146	PRM_DEBUG(pse_shift);
1147	pse_table_size = 1 << pse_shift;
1148	PRM_DEBUG(pse_table_size);
1149	psetable_sz = roundup(
1150	    pse_table_size * sizeof (pad_mutex_t), ecache_alignsize);
1151	PRM_DEBUG(psetable_sz);
1152
1153	/*
1154	 * Now allocate the whole wad
1155	 */
1156	kmem64_sz = pp_sz + kpm_pp_sz + hmehash_sz + pagehash_sz +
1157	    pagelist_sz + tt_sz + psetable_sz;
1158	kmem64_sz = roundup(kmem64_sz, PAGESIZE);
1159	kmem64_base = (caddr_t)syslimit;
1160	kmem64_end = kmem64_base + kmem64_sz;
1161	if (alloc_kmem64(kmem64_base, kmem64_end)) {
1162		/*
1163		 * Attempt for kmem64 to allocate one big
1164		 * contiguous chunk of memory failed.
1165		 * We get here because we are sun4v.
1166		 * We will proceed by breaking up
1167		 * the allocation into two attempts.
1168		 * First, we allocate kpm_pp_sz, hmehash_sz,
1169		 * pagehash_sz, pagelist_sz, tt_sz & psetable_sz as
1170		 * one contiguous chunk. This is a much smaller
1171		 * chunk and we should get it, if not we panic.
1172		 * Note that hmehash and tt need to be physically
1173		 * (in the real address sense) contiguous.
1174		 * Next, we use bop_alloc_chunk() to
1175		 * to allocate the page_t structures.
1176		 * This will allow the page_t to be allocated
1177		 * in multiple smaller chunks.
1178		 * In doing so, the assumption that page_t is
1179		 * physically contiguous no longer hold, this is ok
1180		 * for sun4v but not for sun4u.
1181		 */
1182		size_t  tmp_size;
1183		caddr_t tmp_base;
1184
1185		pp_sz  = roundup(pp_sz, PAGESIZE);
1186
1187		/*
1188		 * Allocate kpm_pp_sz, hmehash_sz,
1189		 * pagehash_sz, pagelist_sz, tt_sz & psetable_sz
1190		 */
1191		tmp_base = kmem64_base + pp_sz;
1192		tmp_size = roundup(kpm_pp_sz + hmehash_sz + pagehash_sz +
1193		    pagelist_sz + tt_sz + psetable_sz, PAGESIZE);
1194		if (prom_alloc(tmp_base, tmp_size, PAGESIZE) == 0)
1195			prom_panic("kmem64 prom_alloc contig failed");
1196		PRM_DEBUG(tmp_base);
1197		PRM_DEBUG(tmp_size);
1198
1199		/*
1200		 * Allocate the page_ts
1201		 */
1202		if (bop_alloc_chunk(kmem64_base, pp_sz, PAGESIZE) == 0)
1203			prom_panic("kmem64 bop_alloc_chunk page_t failed");
1204		PRM_DEBUG(kmem64_base);
1205		PRM_DEBUG(pp_sz);
1206
1207		kmem64_aligned_end = kmem64_base + pp_sz + tmp_size;
1208		ASSERT(kmem64_aligned_end >= kmem64_end);
1209
1210		kmem64_smchunks = 1;
1211	} else {
1212
1213		/*
1214		 * We need to adjust pp_sz for the normal
1215		 * case where kmem64 can allocate one large chunk
1216		 */
1217		if (kpm_smallpages == 0) {
1218			npages -= kmem64_sz / (PAGESIZE + sizeof (struct page));
1219		} else {
1220			npages -= kmem64_sz / (PAGESIZE + sizeof (struct page) +
1221			    sizeof (kpm_spage_t));
1222		}
1223		pp_sz = npages * sizeof (struct page);
1224	}
1225
1226	if (kmem64_aligned_end > (hole_start ? hole_start : kpm_vbase))
1227		cmn_err(CE_PANIC, "not enough kmem64 space");
1228	PRM_DEBUG(kmem64_base);
1229	PRM_DEBUG(kmem64_end);
1230	PRM_DEBUG(kmem64_aligned_end);
1231
1232	/*
1233	 * ... and divy it up
1234	 */
1235	alloc_base = kmem64_base;
1236
1237	pp_base = (page_t *)alloc_base;
1238	alloc_base += pp_sz;
1239	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1240	PRM_DEBUG(pp_base);
1241	PRM_DEBUG(npages);
1242
1243	if (kpm_enable) {
1244		kpm_pp_base = alloc_base;
1245		if (kpm_smallpages == 0) {
1246			/* kpm_npages based on physinstalled, don't reset */
1247			kpm_pp_sz = kpm_npages * sizeof (kpm_page_t);
1248		} else {
1249			kpm_npages = ptokpmpr(npages);
1250			kpm_pp_sz = kpm_npages * sizeof (kpm_spage_t);
1251		}
1252		alloc_base += kpm_pp_sz;
1253		alloc_base =
1254		    (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1255		PRM_DEBUG(kpm_pp_base);
1256	}
1257
1258	alloc_base = alloc_hmehash(alloc_base);
1259	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1260	PRM_DEBUG(alloc_base);
1261
1262	page_hash = (page_t **)alloc_base;
1263	alloc_base += pagehash_sz;
1264	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1265	PRM_DEBUG(page_hash);
1266
1267	alloc_base = alloc_page_freelists(alloc_base);
1268	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1269	PRM_DEBUG(alloc_base);
1270
1271#ifdef	TRAPTRACE
1272	ttrace_buf = alloc_base;
1273	alloc_base += tt_sz;
1274	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1275	PRM_DEBUG(alloc_base);
1276#endif	/* TRAPTRACE */
1277
1278	pse_mutex = (pad_mutex_t *)alloc_base;
1279	alloc_base += psetable_sz;
1280	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1281	PRM_DEBUG(alloc_base);
1282
1283	/*
1284	 * Note that if we use small chunk allocations for
1285	 * kmem64, we need to ensure kmem64_end is the same as
1286	 * kmem64_aligned_end to prevent subsequent logic from
1287	 * trying to reuse the overmapping.
1288	 * Otherwise we adjust kmem64_end to what we really allocated.
1289	 */
1290	if (kmem64_smchunks) {
1291		kmem64_end = kmem64_aligned_end;
1292	} else {
1293		kmem64_end = (caddr_t)roundup((uintptr_t)alloc_base, PAGESIZE);
1294	}
1295	kmem64_sz = kmem64_end - kmem64_base;
1296
1297	if (&ecache_init_scrub_flush_area) {
1298		alloc_base = ecache_init_scrub_flush_area(kmem64_aligned_end);
1299		ASSERT(alloc_base <= (hole_start ? hole_start : kpm_vbase));
1300	}
1301
1302	/*
1303	 * If physmem is patched to be non-zero, use it instead of
1304	 * the monitor value unless physmem is larger than the total
1305	 * amount of memory on hand.
1306	 */
1307	if (physmem == 0 || physmem > npages)
1308		physmem = npages;
1309
1310	/*
1311	 * root_is_ramdisk is set via /etc/system when the ramdisk miniroot
1312	 * is mounted as root. This memory is held down by OBP and unlike
1313	 * the stub boot_archive is never released.
1314	 *
1315	 * In order to get things sized correctly on lower memory
1316	 * machines (where the memory used by the ramdisk represents
1317	 * a significant portion of memory), physmem is adjusted.
1318	 *
1319	 * This is done by subtracting the ramdisk_size which is set
1320	 * to the size of the ramdisk (in Kb) in /etc/system at the
1321	 * time the miniroot archive is constructed.
1322	 */
1323	if (root_is_ramdisk == B_TRUE) {
1324		ramdisk_npages = (ramdisk_size * 1024) / PAGESIZE;
1325		physmem -= ramdisk_npages;
1326	}
1327
1328	if (kpm_enable && (ndata_alloc_kpm(&ndata, kpm_npages) != 0))
1329		cmn_err(CE_PANIC, "no more nucleus memory after kpm alloc");
1330
1331	/*
1332	 * Allocate space for the interrupt vector table.
1333	 */
1334	memspace = prom_alloc((caddr_t)intr_vec_table, IVSIZE, MMU_PAGESIZE);
1335	if (memspace != (caddr_t)intr_vec_table)
1336		prom_panic("interrupt vector table allocation failure");
1337
1338	/*
1339	 * Between now and when we finish copying in the memory lists,
1340	 * allocations happen so the space gets fragmented and the
1341	 * lists longer.  Leave enough space for lists twice as
1342	 * long as we have now; then roundup to a pagesize.
1343	 */
1344	memlist_sz = sizeof (struct memlist) * (prom_phys_installed_len() +
1345	    prom_phys_avail_len() + prom_virt_avail_len());
1346	memlist_sz *= 2;
1347	memlist_sz = roundup(memlist_sz, PAGESIZE);
1348	memspace = ndata_alloc(&ndata, memlist_sz, ecache_alignsize);
1349	if (memspace == NULL)
1350		cmn_err(CE_PANIC, "no more nucleus memory after memlist alloc");
1351
1352	memlist = (struct memlist *)memspace;
1353	memlist_end = (char *)memspace + memlist_sz;
1354	PRM_DEBUG(memlist);
1355	PRM_DEBUG(memlist_end);
1356
1357	PRM_DEBUG(sysbase);
1358	PRM_DEBUG(syslimit);
1359	kernelheap_init((void *)sysbase, (void *)syslimit,
1360	    (caddr_t)sysbase + PAGESIZE, NULL, NULL);
1361
1362	/*
1363	 * Take the most current snapshot we can by calling mem-update.
1364	 */
1365	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1366	    &boot_physavail, &boot_physavail_len,
1367	    &boot_virtavail, &boot_virtavail_len);
1368
1369	/*
1370	 * Remove the space used by prom_alloc from the kernel heap
1371	 * plus the area actually used by the OBP (if any)
1372	 * ignoring virtual addresses in virt_avail, above syslimit.
1373	 */
1374	virt_avail = memlist;
1375	copy_memlist(boot_virtavail, boot_virtavail_len, &memlist);
1376
1377	for (cur = virt_avail; cur->next; cur = cur->next) {
1378		uint64_t range_base, range_size;
1379
1380		if ((range_base = cur->address + cur->size) < (uint64_t)sysbase)
1381			continue;
1382		if (range_base >= (uint64_t)syslimit)
1383			break;
1384		/*
1385		 * Limit the range to end at syslimit.
1386		 */
1387		range_size = MIN(cur->next->address,
1388		    (uint64_t)syslimit) - range_base;
1389		(void) vmem_xalloc(heap_arena, (size_t)range_size, PAGESIZE,
1390		    0, 0, (void *)range_base, (void *)(range_base + range_size),
1391		    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1392	}
1393
1394	phys_avail = memlist;
1395	copy_memlist(boot_physavail, boot_physavail_len, &memlist);
1396
1397	/*
1398	 * Add any extra memory at the end of the ndata region if there's at
1399	 * least a page to add.  There might be a few more pages available in
1400	 * the middle of the ndata region, but for now they are ignored.
1401	 */
1402	nalloc_base = ndata_extra_base(&ndata, MMU_PAGESIZE, nalloc_end);
1403	if (nalloc_base == NULL)
1404		nalloc_base = nalloc_end;
1405	ndata_remain_sz = nalloc_end - nalloc_base;
1406
1407	/*
1408	 * Copy physinstalled list into kernel space.
1409	 */
1410	phys_install = memlist;
1411	copy_memlist(boot_physinstalled, boot_physinstalled_len, &memlist);
1412
1413	/*
1414	 * Create list of physical addrs we don't need pp's for:
1415	 * kernel text 4M page
1416	 * kernel data 4M page - ndata_remain_sz
1417	 * kmem64 pages
1418	 *
1419	 * NB if adding any pages here, make sure no kpm page
1420	 * overlaps can occur (see ASSERTs in kphysm_memsegs)
1421	 */
1422	nopp_list = memlist;
1423	memlist_new(va_to_pa(s_text), MMU_PAGESIZE4M, &memlist);
1424	memlist_add(va_to_pa(s_data), MMU_PAGESIZE4M - ndata_remain_sz,
1425	    &memlist, &nopp_list);
1426
1427	/* Don't add to nopp_list if kmem64 was allocated in smchunks */
1428	if (!kmem64_smchunks)
1429		memlist_add(kmem64_pabase, kmem64_sz, &memlist, &nopp_list);
1430
1431	if ((caddr_t)memlist > (memspace + memlist_sz))
1432		prom_panic("memlist overflow");
1433
1434	/*
1435	 * Size the pcf array based on the number of cpus in the box at
1436	 * boot time.
1437	 */
1438	pcf_init();
1439
1440	/*
1441	 * Initialize the page structures from the memory lists.
1442	 */
1443	kphysm_init();
1444
1445	availrmem_initial = availrmem = freemem;
1446	PRM_DEBUG(availrmem);
1447
1448	/*
1449	 * Some of the locks depend on page_hashsz being set!
1450	 * kmem_init() depends on this; so, keep it here.
1451	 */
1452	page_lock_init();
1453
1454	/*
1455	 * Initialize kernel memory allocator.
1456	 */
1457	kmem_init();
1458
1459	/*
1460	 * Factor in colorequiv to check additional 'equivalent' bins
1461	 */
1462	if (&page_set_colorequiv_arr_cpu != NULL)
1463		page_set_colorequiv_arr_cpu();
1464	else
1465		page_set_colorequiv_arr();
1466
1467	/*
1468	 * Initialize bp_mapin().
1469	 */
1470	bp_init(shm_alignment, HAT_STRICTORDER);
1471
1472	/*
1473	 * Reserve space for panicbuf, intr_vec_table, reserved interrupt
1474	 * vector data structures and MPO mblock structs from the 32-bit heap.
1475	 */
1476	(void) vmem_xalloc(heap32_arena, PANICBUFSIZE, PAGESIZE, 0, 0,
1477	    panicbuf, panicbuf + PANICBUFSIZE,
1478	    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1479
1480	(void) vmem_xalloc(heap32_arena, IVSIZE, PAGESIZE, 0, 0,
1481	    intr_vec_table, (caddr_t)intr_vec_table + IVSIZE,
1482	    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1483
1484	if (mpo_heap32_bufsz > (size_t)0) {
1485		(void) vmem_xalloc(heap32_arena, mpo_heap32_bufsz,
1486		    PAGESIZE, 0, 0, mpo_heap32_buf,
1487		    mpo_heap32_buf + mpo_heap32_bufsz,
1488		    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1489	}
1490	mem_config_init();
1491}
1492
1493static void
1494startup_modules(void)
1495{
1496	int nhblk1, nhblk8;
1497	size_t  nhblksz;
1498	pgcnt_t pages_per_hblk;
1499	size_t hme8blk_sz, hme1blk_sz;
1500
1501	/*
1502	 * Let the platforms have a chance to change default
1503	 * values before reading system file.
1504	 */
1505	if (&set_platform_defaults)
1506		set_platform_defaults();
1507
1508	/*
1509	 * Calculate default settings of system parameters based upon
1510	 * maxusers, yet allow to be overridden via the /etc/system file.
1511	 */
1512	param_calc(0);
1513
1514	mod_setup();
1515
1516	/*
1517	 * If this is a positron, complain and halt.
1518	 */
1519	if (&iam_positron && iam_positron()) {
1520		cmn_err(CE_WARN, "This hardware platform is not supported"
1521		    " by this release of Solaris.\n");
1522#ifdef DEBUG
1523		prom_enter_mon();	/* Type 'go' to resume */
1524		cmn_err(CE_WARN, "Booting an unsupported platform.\n");
1525		cmn_err(CE_WARN, "Booting with down-rev firmware.\n");
1526
1527#else /* DEBUG */
1528		halt(0);
1529#endif /* DEBUG */
1530	}
1531
1532	/*
1533	 * If we are running firmware that isn't 64-bit ready
1534	 * then complain and halt.
1535	 */
1536	do_prom_version_check();
1537
1538	/*
1539	 * Initialize system parameters
1540	 */
1541	param_init();
1542
1543	/*
1544	 * maxmem is the amount of physical memory we're playing with.
1545	 */
1546	maxmem = physmem;
1547
1548	/* Set segkp limits. */
1549	ncbase = kdi_segdebugbase;
1550	ncend = kdi_segdebugbase;
1551
1552	/*
1553	 * Initialize the hat layer.
1554	 */
1555	hat_init();
1556
1557	/*
1558	 * Initialize segment management stuff.
1559	 */
1560	seg_init();
1561
1562	/*
1563	 * Create the va>tte handler, so the prom can understand
1564	 * kernel translations.  The handler is installed later, just
1565	 * as we are about to take over the trap table from the prom.
1566	 */
1567	create_va_to_tte();
1568
1569	/*
1570	 * Load the forthdebugger (optional)
1571	 */
1572	forthdebug_init();
1573
1574	/*
1575	 * Create OBP node for console input callbacks
1576	 * if it is needed.
1577	 */
1578	startup_create_io_node();
1579
1580	if (modloadonly("fs", "specfs") == -1)
1581		halt("Can't load specfs");
1582
1583	if (modloadonly("fs", "devfs") == -1)
1584		halt("Can't load devfs");
1585
1586	if (modloadonly("fs", "procfs") == -1)
1587		halt("Can't load procfs");
1588
1589	if (modloadonly("misc", "swapgeneric") == -1)
1590		halt("Can't load swapgeneric");
1591
1592	(void) modloadonly("sys", "lbl_edition");
1593
1594	dispinit();
1595
1596	/*
1597	 * Infer meanings to the members of the idprom buffer.
1598	 */
1599	parse_idprom();
1600
1601	/* Read cluster configuration data. */
1602	clconf_init();
1603
1604	setup_ddi();
1605
1606	/*
1607	 * Lets take this opportunity to load the root device.
1608	 */
1609	if (loadrootmodules() != 0)
1610		debug_enter("Can't load the root filesystem");
1611
1612	/*
1613	 * Load tod driver module for the tod part found on this system.
1614	 * Recompute the cpu frequency/delays based on tod as tod part
1615	 * tends to keep time more accurately.
1616	 */
1617	if (&load_tod_module)
1618		load_tod_module();
1619
1620	/*
1621	 * Allow platforms to load modules which might
1622	 * be needed after bootops are gone.
1623	 */
1624	if (&load_platform_modules)
1625		load_platform_modules();
1626
1627	setcpudelay();
1628
1629	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1630	    &boot_physavail, &boot_physavail_len,
1631	    &boot_virtavail, &boot_virtavail_len);
1632
1633	/*
1634	 * Calculation and allocation of hmeblks needed to remap
1635	 * the memory allocated by PROM till now.
1636	 * Overestimate the number of hblk1 elements by assuming
1637	 * worst case of TTE64K mappings.
1638	 * sfmmu_hblk_alloc will panic if this calculation is wrong.
1639	 */
1640	bop_alloc_pages = btopr(kmem64_end - kmem64_base);
1641	pages_per_hblk = btop(HMEBLK_SPAN(TTE64K));
1642	bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk);
1643	nhblk1 = bop_alloc_pages / pages_per_hblk + hblk1_min;
1644
1645	bop_alloc_pages = size_virtalloc(boot_virtavail, boot_virtavail_len);
1646
1647	/* sfmmu_init_nucleus_hblks expects properly aligned data structures */
1648	hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
1649	hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
1650
1651	bop_alloc_pages += btopr(nhblk1 * hme1blk_sz);
1652
1653	pages_per_hblk = btop(HMEBLK_SPAN(TTE8K));
1654	nhblk8 = 0;
1655	while (bop_alloc_pages > 1) {
1656		bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk);
1657		nhblk8 += bop_alloc_pages /= pages_per_hblk;
1658		bop_alloc_pages *= hme8blk_sz;
1659		bop_alloc_pages = btopr(bop_alloc_pages);
1660	}
1661	nhblk8 += 2;
1662
1663	/*
1664	 * Since hblk8's can hold up to 64k of mappings aligned on a 64k
1665	 * boundary, the number of hblk8's needed to map the entries in the
1666	 * boot_virtavail list needs to be adjusted to take this into
1667	 * consideration.  Thus, we need to add additional hblk8's since it
1668	 * is possible that an hblk8 will not have all 8 slots used due to
1669	 * alignment constraints.  Since there were boot_virtavail_len entries
1670	 * in that list, we need to add that many hblk8's to the number
1671	 * already calculated to make sure we don't underestimate.
1672	 */
1673	nhblk8 += boot_virtavail_len;
1674	nhblksz = nhblk8 * hme8blk_sz + nhblk1 * hme1blk_sz;
1675
1676	/* Allocate in pagesize chunks */
1677	nhblksz = roundup(nhblksz, MMU_PAGESIZE);
1678	hblk_base = kmem_zalloc(nhblksz, KM_SLEEP);
1679	sfmmu_init_nucleus_hblks(hblk_base, nhblksz, nhblk8, nhblk1);
1680}
1681
1682static void
1683startup_bop_gone(void)
1684{
1685
1686	/*
1687	 * Destroy the MD initialized at startup
1688	 * The startup initializes the MD framework
1689	 * using prom and BOP alloc free it now.
1690	 */
1691	mach_descrip_startup_fini();
1692
1693	/*
1694	 * We're done with prom allocations.
1695	 */
1696	bop_fini();
1697
1698	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1699	    &boot_physavail, &boot_physavail_len,
1700	    &boot_virtavail, &boot_virtavail_len);
1701
1702	/*
1703	 * setup physically contiguous area twice as large as the ecache.
1704	 * this is used while doing displacement flush of ecaches
1705	 */
1706	if (&ecache_flush_address) {
1707		ecache_flushaddr = ecache_flush_address();
1708		if (ecache_flushaddr == (uint64_t)-1) {
1709			cmn_err(CE_PANIC,
1710			    "startup: no memory to set ecache_flushaddr");
1711		}
1712	}
1713
1714	/*
1715	 * Virtual available next.
1716	 */
1717	ASSERT(virt_avail != NULL);
1718	memlist_free_list(virt_avail);
1719	virt_avail = memlist;
1720	copy_memlist(boot_virtavail, boot_virtavail_len, &memlist);
1721
1722}
1723
1724
1725/*
1726 * startup_fixup_physavail - called from mach_sfmmu.c after the final
1727 * allocations have been performed.  We can't call it in startup_bop_gone
1728 * since later operations can cause obp to allocate more memory.
1729 */
1730void
1731startup_fixup_physavail(void)
1732{
1733	struct memlist *cur;
1734	size_t kmem64_overmap_size = kmem64_aligned_end - kmem64_end;
1735
1736	PRM_DEBUG(kmem64_overmap_size);
1737
1738	/*
1739	 * take the most current snapshot we can by calling mem-update
1740	 */
1741	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1742	    &boot_physavail, &boot_physavail_len,
1743	    &boot_virtavail, &boot_virtavail_len);
1744
1745	/*
1746	 * Copy phys_avail list, again.
1747	 * Both the kernel/boot and the prom have been allocating
1748	 * from the original list we copied earlier.
1749	 */
1750	cur = memlist;
1751	copy_memlist(boot_physavail, boot_physavail_len, &memlist);
1752
1753	/*
1754	 * Add any unused kmem64 memory from overmapped page
1755	 * (Note: va_to_pa does not work for kmem64_end)
1756	 */
1757	if (kmem64_overmap_size) {
1758		memlist_add(kmem64_pabase + (kmem64_end - kmem64_base),
1759		    kmem64_overmap_size, &memlist, &cur);
1760	}
1761
1762	/*
1763	 * Add any extra memory after e_data we added to the phys_avail list
1764	 * back to the old list.
1765	 */
1766	if (ndata_remain_sz >= MMU_PAGESIZE)
1767		memlist_add(va_to_pa(nalloc_base),
1768		    (uint64_t)ndata_remain_sz, &memlist, &cur);
1769
1770	/*
1771	 * There isn't any bounds checking on the memlist area
1772	 * so ensure it hasn't overgrown.
1773	 */
1774	if ((caddr_t)memlist > (caddr_t)memlist_end)
1775		cmn_err(CE_PANIC, "startup: memlist size exceeded");
1776
1777	/*
1778	 * The kernel removes the pages that were allocated for it from
1779	 * the freelist, but we now have to find any -extra- pages that
1780	 * the prom has allocated for it's own book-keeping, and remove
1781	 * them from the freelist too. sigh.
1782	 */
1783	sync_memlists(phys_avail, cur);
1784
1785	ASSERT(phys_avail != NULL);
1786
1787	old_phys_avail = phys_avail;
1788	phys_avail = cur;
1789}
1790
1791void
1792update_kcage_ranges(uint64_t addr, uint64_t len)
1793{
1794	pfn_t base = btop(addr);
1795	pgcnt_t num = btop(len);
1796	int rv;
1797
1798	rv = kcage_range_add(base, num, kcage_startup_dir);
1799
1800	if (rv == ENOMEM) {
1801		cmn_err(CE_WARN, "%ld megabytes not available to kernel cage",
1802		    (len == 0 ? 0 : BYTES_TO_MB(len)));
1803	} else if (rv != 0) {
1804		/* catch this in debug kernels */
1805		ASSERT(0);
1806
1807		cmn_err(CE_WARN, "unexpected kcage_range_add"
1808		    " return value %d", rv);
1809	}
1810}
1811
1812static void
1813startup_vm(void)
1814{
1815	size_t	i;
1816	struct segmap_crargs a;
1817	struct segkpm_crargs b;
1818
1819	uint64_t avmem;
1820	caddr_t va;
1821	pgcnt_t	max_phys_segkp;
1822	int	mnode;
1823
1824	extern int use_brk_lpg, use_stk_lpg;
1825
1826	/*
1827	 * get prom's mappings, create hments for them and switch
1828	 * to the kernel context.
1829	 */
1830	hat_kern_setup();
1831
1832	/*
1833	 * Take over trap table
1834	 */
1835	setup_trap_table();
1836
1837	/*
1838	 * Install the va>tte handler, so that the prom can handle
1839	 * misses and understand the kernel table layout in case
1840	 * we need call into the prom.
1841	 */
1842	install_va_to_tte();
1843
1844	/*
1845	 * Set a flag to indicate that the tba has been taken over.
1846	 */
1847	tba_taken_over = 1;
1848
1849	/* initialize MMU primary context register */
1850	mmu_init_kcontext();
1851
1852	/*
1853	 * The boot cpu can now take interrupts, x-calls, x-traps
1854	 */
1855	CPUSET_ADD(cpu_ready_set, CPU->cpu_id);
1856	CPU->cpu_flags |= (CPU_READY | CPU_ENABLE | CPU_EXISTS);
1857
1858	/*
1859	 * Set a flag to tell write_scb_int() that it can access V_TBR_WR_ADDR.
1860	 */
1861	tbr_wr_addr_inited = 1;
1862
1863	/*
1864	 * Initialize VM system, and map kernel address space.
1865	 */
1866	kvm_init();
1867
1868	ASSERT(old_phys_avail != NULL && phys_avail != NULL);
1869	if (kernel_cage_enable) {
1870		diff_memlists(phys_avail, old_phys_avail, update_kcage_ranges);
1871	}
1872	memlist_free_list(old_phys_avail);
1873
1874	/*
1875	 * If the following is true, someone has patched
1876	 * phsymem to be less than the number of pages that
1877	 * the system actually has.  Remove pages until system
1878	 * memory is limited to the requested amount.  Since we
1879	 * have allocated page structures for all pages, we
1880	 * correct the amount of memory we want to remove
1881	 * by the size of the memory used to hold page structures
1882	 * for the non-used pages.
1883	 */
1884	if (physmem + ramdisk_npages < npages) {
1885		pgcnt_t diff, off;
1886		struct page *pp;
1887		struct seg kseg;
1888
1889		cmn_err(CE_WARN, "limiting physmem to %ld pages", physmem);
1890
1891		off = 0;
1892		diff = npages - (physmem + ramdisk_npages);
1893		diff -= mmu_btopr(diff * sizeof (struct page));
1894		kseg.s_as = &kas;
1895		while (diff--) {
1896			pp = page_create_va(&unused_pages_vp, (offset_t)off,
1897			    MMU_PAGESIZE, PG_WAIT | PG_EXCL,
1898			    &kseg, (caddr_t)off);
1899			if (pp == NULL)
1900				cmn_err(CE_PANIC, "limited physmem too much!");
1901			page_io_unlock(pp);
1902			page_downgrade(pp);
1903			availrmem--;
1904			off += MMU_PAGESIZE;
1905		}
1906	}
1907
1908	/*
1909	 * When printing memory, show the total as physmem less
1910	 * that stolen by a debugger.
1911	 */
1912	cmn_err(CE_CONT, "?mem = %ldK (0x%lx000)\n",
1913	    (ulong_t)(physinstalled) << (PAGESHIFT - 10),
1914	    (ulong_t)(physinstalled) << (PAGESHIFT - 12));
1915
1916	avmem = (uint64_t)freemem << PAGESHIFT;
1917	cmn_err(CE_CONT, "?avail mem = %lld\n", (unsigned long long)avmem);
1918
1919	/*
1920	 * For small memory systems disable automatic large pages.
1921	 */
1922	if (physmem < privm_lpg_min_physmem) {
1923		use_brk_lpg = 0;
1924		use_stk_lpg = 0;
1925	}
1926
1927	/*
1928	 * Perform platform specific freelist processing
1929	 */
1930	if (&plat_freelist_process) {
1931		for (mnode = 0; mnode < max_mem_nodes; mnode++)
1932			if (mem_node_config[mnode].exists)
1933				plat_freelist_process(mnode);
1934	}
1935
1936	/*
1937	 * Initialize the segkp segment type.  We position it
1938	 * after the configured tables and buffers (whose end
1939	 * is given by econtig) and before V_WKBASE_ADDR.
1940	 * Also in this area is segkmap (size SEGMAPSIZE).
1941	 */
1942
1943	/* XXX - cache alignment? */
1944	va = (caddr_t)SEGKPBASE;
1945	ASSERT(((uintptr_t)va & PAGEOFFSET) == 0);
1946
1947	max_phys_segkp = (physmem * 2);
1948
1949	if (segkpsize < btop(SEGKPMINSIZE) || segkpsize > btop(SEGKPMAXSIZE)) {
1950		segkpsize = btop(SEGKPDEFSIZE);
1951		cmn_err(CE_WARN, "Illegal value for segkpsize. "
1952		    "segkpsize has been reset to %ld pages", segkpsize);
1953	}
1954
1955	i = ptob(MIN(segkpsize, max_phys_segkp));
1956
1957	rw_enter(&kas.a_lock, RW_WRITER);
1958	if (seg_attach(&kas, va, i, segkp) < 0)
1959		cmn_err(CE_PANIC, "startup: cannot attach segkp");
1960	if (segkp_create(segkp) != 0)
1961		cmn_err(CE_PANIC, "startup: segkp_create failed");
1962	rw_exit(&kas.a_lock);
1963
1964	/*
1965	 * kpm segment
1966	 */
1967	segmap_kpm = kpm_enable &&
1968	    segmap_kpm && PAGESIZE == MAXBSIZE;
1969
1970	if (kpm_enable) {
1971		rw_enter(&kas.a_lock, RW_WRITER);
1972
1973		/*
1974		 * The segkpm virtual range range is larger than the
1975		 * actual physical memory size and also covers gaps in
1976		 * the physical address range for the following reasons:
1977		 * . keep conversion between segkpm and physical addresses
1978		 *   simple, cheap and unambiguous.
1979		 * . avoid extension/shrink of the the segkpm in case of DR.
1980		 * . avoid complexity for handling of virtual addressed
1981		 *   caches, segkpm and the regular mapping scheme must be
1982		 *   kept in sync wrt. the virtual color of mapped pages.
1983		 * Any accesses to virtual segkpm ranges not backed by
1984		 * physical memory will fall through the memseg pfn hash
1985		 * and will be handled in segkpm_fault.
1986		 * Additional kpm_size spaces needed for vac alias prevention.
1987		 */
1988		if (seg_attach(&kas, kpm_vbase, kpm_size * vac_colors,
1989		    segkpm) < 0)
1990			cmn_err(CE_PANIC, "cannot attach segkpm");
1991
1992		b.prot = PROT_READ | PROT_WRITE;
1993		b.nvcolors = shm_alignment >> MMU_PAGESHIFT;
1994
1995		if (segkpm_create(segkpm, (caddr_t)&b) != 0)
1996			panic("segkpm_create segkpm");
1997
1998		rw_exit(&kas.a_lock);
1999
2000		mach_kpm_init();
2001	}
2002
2003	va = kpm_vbase + (kpm_size * vac_colors);
2004
2005	if (!segzio_fromheap) {
2006		size_t size;
2007		size_t physmem_b = mmu_ptob(physmem);
2008
2009		/* size is in bytes, segziosize is in pages */
2010		if (segziosize == 0) {
2011			size = physmem_b;
2012		} else {
2013			size = mmu_ptob(segziosize);
2014		}
2015
2016		if (size < SEGZIOMINSIZE) {
2017			size = SEGZIOMINSIZE;
2018		} else if (size > SEGZIOMAXSIZE) {
2019			size = SEGZIOMAXSIZE;
2020			/*
2021			 * On 64-bit x86, we only have 2TB of KVA.  This exists
2022			 * for parity with x86.
2023			 *
2024			 * SEGZIOMAXSIZE is capped at 512gb so that segzio
2025			 * doesn't consume all of KVA.  However, if we have a
2026			 * system that has more thant 512gb of physical memory,
2027			 * we can actually consume about half of the difference
2028			 * between 512gb and the rest of the available physical
2029			 * memory.
2030			 */
2031			if (physmem_b > SEGZIOMAXSIZE) {
2032				size += (physmem_b - SEGZIOMAXSIZE) / 2;
2033		}
2034		}
2035		segziosize = mmu_btop(roundup(size, MMU_PAGESIZE));
2036		/* put the base of the ZIO segment after the kpm segment */
2037		segzio_base = va;
2038		va += mmu_ptob(segziosize);
2039		PRM_DEBUG(segziosize);
2040		PRM_DEBUG(segzio_base);
2041
2042		/*
2043		 * On some platforms, kvm_init is called after the kpm
2044		 * sizes have been determined.  On SPARC, kvm_init is called
2045		 * before, so we have to attach the kzioseg after kvm is
2046		 * initialized, otherwise we'll try to allocate from the boot
2047		 * area since the kernel heap hasn't yet been configured.
2048		 */
2049		rw_enter(&kas.a_lock, RW_WRITER);
2050
2051		(void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize),
2052		    &kzioseg);
2053		(void) segkmem_zio_create(&kzioseg);
2054
2055		/* create zio area covering new segment */
2056		segkmem_zio_init(segzio_base, mmu_ptob(segziosize));
2057
2058		rw_exit(&kas.a_lock);
2059	}
2060
2061	if (ppvm_enable) {
2062		caddr_t ppvm_max;
2063
2064		/*
2065		 * ppvm refers to the static VA space used to map
2066		 * the page_t's for dynamically added memory.
2067		 *
2068		 * ppvm_base should not cross a potential VA hole.
2069		 *
2070		 * ppvm_size should be large enough to map the
2071		 * page_t's needed to manage all of KPM range.
2072		 */
2073		ppvm_size =
2074		    roundup(mmu_btop(kpm_size * vac_colors) * sizeof (page_t),
2075		    MMU_PAGESIZE);
2076		ppvm_max = (caddr_t)(0ull - ppvm_size);
2077		ppvm_base = (page_t *)va;
2078
2079		if ((caddr_t)ppvm_base <= hole_end) {
2080			cmn_err(CE_WARN,
2081			    "Memory DR disabled: invalid DR map base: 0x%p\n",
2082			    (void *)ppvm_base);
2083			ppvm_enable = 0;
2084		} else if ((caddr_t)ppvm_base > ppvm_max) {
2085			uint64_t diff = (caddr_t)ppvm_base - ppvm_max;
2086
2087			cmn_err(CE_WARN,
2088			    "Memory DR disabled: insufficient DR map size:"
2089			    " 0x%lx (needed 0x%lx)\n",
2090			    ppvm_size - diff, ppvm_size);
2091			ppvm_enable = 0;
2092		}
2093		PRM_DEBUG(ppvm_size);
2094		PRM_DEBUG(ppvm_base);
2095	}
2096
2097	/*
2098	 * Now create generic mapping segment.  This mapping
2099	 * goes SEGMAPSIZE beyond SEGMAPBASE.  But if the total
2100	 * virtual address is greater than the amount of free
2101	 * memory that is available, then we trim back the
2102	 * segment size to that amount
2103	 */
2104	va = (caddr_t)SEGMAPBASE;
2105
2106	/*
2107	 * 1201049: segkmap base address must be MAXBSIZE aligned
2108	 */
2109	ASSERT(((uintptr_t)va & MAXBOFFSET) == 0);
2110
2111	/*
2112	 * Set size of segmap to percentage of freemem at boot,
2113	 * but stay within the allowable range
2114	 * Note we take percentage  before converting from pages
2115	 * to bytes to avoid an overflow on 32-bit kernels.
2116	 */
2117	i = mmu_ptob((freemem * segmap_percent) / 100);
2118
2119	if (i < MINMAPSIZE)
2120		i = MINMAPSIZE;
2121
2122	if (i > MIN(SEGMAPSIZE, mmu_ptob(freemem)))
2123		i = MIN(SEGMAPSIZE, mmu_ptob(freemem));
2124
2125	i &= MAXBMASK;	/* 1201049: segkmap size must be MAXBSIZE aligned */
2126
2127	rw_enter(&kas.a_lock, RW_WRITER);
2128	if (seg_attach(&kas, va, i, segkmap) < 0)
2129		cmn_err(CE_PANIC, "cannot attach segkmap");
2130
2131	a.prot = PROT_READ | PROT_WRITE;
2132	a.shmsize = shm_alignment;
2133	a.nfreelist = 0;	/* use segmap driver defaults */
2134
2135	if (segmap_create(segkmap, (caddr_t)&a) != 0)
2136		panic("segmap_create segkmap");
2137	rw_exit(&kas.a_lock);
2138
2139	segdev_init();
2140}
2141
2142static void
2143startup_end(void)
2144{
2145	if ((caddr_t)memlist > (caddr_t)memlist_end)
2146		panic("memlist overflow 2");
2147	memlist_free_block((caddr_t)memlist,
2148	    ((caddr_t)memlist_end - (caddr_t)memlist));
2149	memlist = NULL;
2150
2151	/* enable page_relocation since OBP is now done */
2152	page_relocate_ready = 1;
2153
2154	/*
2155	 * Perform tasks that get done after most of the VM
2156	 * initialization has been done but before the clock
2157	 * and other devices get started.
2158	 */
2159	kern_setup1();
2160
2161	/*
2162	 * Perform CPC initialization for this CPU.
2163	 */
2164	kcpc_hw_init();
2165
2166	/*
2167	 * Intialize the VM arenas for allocating physically
2168	 * contiguus memory chunk for interrupt queues snd
2169	 * allocate/register boot cpu's queues, if any and
2170	 * allocate dump buffer for sun4v systems to store
2171	 * extra crash information during crash dump
2172	 */
2173	contig_mem_init();
2174	mach_descrip_init();
2175
2176	if (cpu_intrq_setup(CPU)) {
2177		cmn_err(CE_PANIC, "cpu%d: setup failed", CPU->cpu_id);
2178	}
2179	cpu_intrq_register(CPU);
2180	mach_htraptrace_setup(CPU->cpu_id);
2181	mach_htraptrace_configure(CPU->cpu_id);
2182	mach_dump_buffer_init();
2183
2184	/*
2185	 * Initialize interrupt related stuff
2186	 */
2187	cpu_intr_alloc(CPU, NINTR_THREADS);
2188
2189	(void) splzs();			/* allow hi clock ints but not zs */
2190
2191	/*
2192	 * Initialize errors.
2193	 */
2194	error_init();
2195
2196	/*
2197	 * Note that we may have already used kernel bcopy before this
2198	 * point - but if you really care about this, adb the use_hw_*
2199	 * variables to 0 before rebooting.
2200	 */
2201	mach_hw_copy_limit();
2202
2203	/*
2204	 * Install the "real" preemption guards before DDI services
2205	 * are available.
2206	 */
2207	(void) prom_set_preprom(kern_preprom);
2208	(void) prom_set_postprom(kern_postprom);
2209	CPU->cpu_m.mutex_ready = 1;
2210
2211	/*
2212	 * Initialize segnf (kernel support for non-faulting loads).
2213	 */
2214	segnf_init();
2215
2216	/*
2217	 * Configure the root devinfo node.
2218	 */
2219	configure();		/* set up devices */
2220	mach_cpu_halt_idle();
2221}
2222
2223
2224void
2225post_startup(void)
2226{
2227#ifdef	PTL1_PANIC_DEBUG
2228	extern void init_ptl1_thread(void);
2229#endif	/* PTL1_PANIC_DEBUG */
2230	extern void abort_sequence_init(void);
2231
2232	/*
2233	 * Set the system wide, processor-specific flags to be passed
2234	 * to userland via the aux vector for performance hints and
2235	 * instruction set extensions.
2236	 */
2237	bind_hwcap();
2238
2239	/*
2240	 * Startup memory scrubber (if any)
2241	 */
2242	mach_memscrub();
2243
2244	/*
2245	 * Allocate soft interrupt to handle abort sequence.
2246	 */
2247	abort_sequence_init();
2248
2249	/*
2250	 * Configure the rest of the system.
2251	 * Perform forceloading tasks for /etc/system.
2252	 */
2253	(void) mod_sysctl(SYS_FORCELOAD, NULL);
2254	/*
2255	 * ON4.0: Force /proc module in until clock interrupt handle fixed
2256	 * ON4.0: This must be fixed or restated in /etc/systems.
2257	 */
2258	(void) modload("fs", "procfs");
2259
2260	/* load machine class specific drivers */
2261	load_mach_drivers();
2262
2263	/* load platform specific drivers */
2264	if (&load_platform_drivers)
2265		load_platform_drivers();
2266
2267	/* load vis simulation module, if we are running w/fpu off */
2268	if (!fpu_exists) {
2269		if (modload("misc", "vis") == -1)
2270			halt("Can't load vis");
2271	}
2272
2273	mach_fpras();
2274
2275	maxmem = freemem;
2276
2277	pg_init();
2278
2279#ifdef	PTL1_PANIC_DEBUG
2280	init_ptl1_thread();
2281#endif	/* PTL1_PANIC_DEBUG */
2282}
2283
2284#ifdef	PTL1_PANIC_DEBUG
2285int		ptl1_panic_test = 0;
2286int		ptl1_panic_xc_one_test = 0;
2287int		ptl1_panic_xc_all_test = 0;
2288int		ptl1_panic_xt_one_test = 0;
2289int		ptl1_panic_xt_all_test = 0;
2290kthread_id_t	ptl1_thread_p = NULL;
2291kcondvar_t	ptl1_cv;
2292kmutex_t	ptl1_mutex;
2293int		ptl1_recurse_count_threshold = 0x40;
2294int		ptl1_recurse_trap_threshold = 0x3d;
2295extern void	ptl1_recurse(int, int);
2296extern void	ptl1_panic_xt(int, int);
2297
2298/*
2299 * Called once per second by timeout() to wake up
2300 * the ptl1_panic thread to see if it should cause
2301 * a trap to the ptl1_panic() code.
2302 */
2303/* ARGSUSED */
2304static void
2305ptl1_wakeup(void *arg)
2306{
2307	mutex_enter(&ptl1_mutex);
2308	cv_signal(&ptl1_cv);
2309	mutex_exit(&ptl1_mutex);
2310}
2311
2312/*
2313 * ptl1_panic cross call function:
2314 *     Needed because xc_one() and xc_some() can pass
2315 *	64 bit args but ptl1_recurse() expects ints.
2316 */
2317static void
2318ptl1_panic_xc(void)
2319{
2320	ptl1_recurse(ptl1_recurse_count_threshold,
2321	    ptl1_recurse_trap_threshold);
2322}
2323
2324/*
2325 * The ptl1 thread waits for a global flag to be set
2326 * and uses the recurse thresholds to set the stack depth
2327 * to cause a ptl1_panic() directly via a call to ptl1_recurse
2328 * or indirectly via the cross call and cross trap functions.
2329 *
2330 * This is useful testing stack overflows and normal
2331 * ptl1_panic() states with a know stack frame.
2332 *
2333 * ptl1_recurse() is an asm function in ptl1_panic.s that
2334 * sets the {In, Local, Out, and Global} registers to a
2335 * know state on the stack and just prior to causing a
2336 * test ptl1_panic trap.
2337 */
2338static void
2339ptl1_thread(void)
2340{
2341	mutex_enter(&ptl1_mutex);
2342	while (ptl1_thread_p) {
2343		cpuset_t	other_cpus;
2344		int		cpu_id;
2345		int		my_cpu_id;
2346		int		target_cpu_id;
2347		int		target_found;
2348
2349		if (ptl1_panic_test) {
2350			ptl1_recurse(ptl1_recurse_count_threshold,
2351			    ptl1_recurse_trap_threshold);
2352		}
2353
2354		/*
2355		 * Find potential targets for x-call and x-trap,
2356		 * if any exist while preempt is disabled we
2357		 * start a ptl1_panic if requested via a
2358		 * globals.
2359		 */
2360		kpreempt_disable();
2361		my_cpu_id = CPU->cpu_id;
2362		other_cpus = cpu_ready_set;
2363		CPUSET_DEL(other_cpus, CPU->cpu_id);
2364		target_found = 0;
2365		if (!CPUSET_ISNULL(other_cpus)) {
2366			/*
2367			 * Pick the first one
2368			 */
2369			for (cpu_id = 0; cpu_id < NCPU; cpu_id++) {
2370				if (cpu_id == my_cpu_id)
2371					continue;
2372
2373				if (CPU_XCALL_READY(cpu_id)) {
2374					target_cpu_id = cpu_id;
2375					target_found = 1;
2376					break;
2377				}
2378			}
2379			ASSERT(target_found);
2380
2381			if (ptl1_panic_xc_one_test) {
2382				xc_one(target_cpu_id,
2383				    (xcfunc_t *)ptl1_panic_xc, 0, 0);
2384			}
2385			if (ptl1_panic_xc_all_test) {
2386				xc_some(other_cpus,
2387				    (xcfunc_t *)ptl1_panic_xc, 0, 0);
2388			}
2389			if (ptl1_panic_xt_one_test) {
2390				xt_one(target_cpu_id,
2391				    (xcfunc_t *)ptl1_panic_xt, 0, 0);
2392			}
2393			if (ptl1_panic_xt_all_test) {
2394				xt_some(other_cpus,
2395				    (xcfunc_t *)ptl1_panic_xt, 0, 0);
2396			}
2397		}
2398		kpreempt_enable();
2399		(void) timeout(ptl1_wakeup, NULL, hz);
2400		(void) cv_wait(&ptl1_cv, &ptl1_mutex);
2401	}
2402	mutex_exit(&ptl1_mutex);
2403}
2404
2405/*
2406 * Called during early startup to create the ptl1_thread
2407 */
2408void
2409init_ptl1_thread(void)
2410{
2411	ptl1_thread_p = thread_create(NULL, 0, ptl1_thread, NULL, 0,
2412	    &p0, TS_RUN, 0);
2413}
2414#endif	/* PTL1_PANIC_DEBUG */
2415
2416
2417static void
2418memlist_new(uint64_t start, uint64_t len, struct memlist **memlistp)
2419{
2420	struct memlist *new;
2421
2422	new = *memlistp;
2423	new->address = start;
2424	new->size = len;
2425	*memlistp = new + 1;
2426}
2427
2428/*
2429 * Add to a memory list.
2430 * start = start of new memory segment
2431 * len = length of new memory segment in bytes
2432 * memlistp = pointer to array of available memory segment structures
2433 * curmemlistp = memory list to which to add segment.
2434 */
2435static void
2436memlist_add(uint64_t start, uint64_t len, struct memlist **memlistp,
2437	struct memlist **curmemlistp)
2438{
2439	struct memlist *new = *memlistp;
2440
2441	memlist_new(start, len, memlistp);
2442	memlist_insert(new, curmemlistp);
2443}
2444
2445static int
2446ndata_alloc_memseg(struct memlist *ndata, size_t avail)
2447{
2448	int nseg;
2449	size_t memseg_sz;
2450	struct memseg *msp;
2451
2452	/*
2453	 * The memseg list is for the chunks of physical memory that
2454	 * will be managed by the vm system.  The number calculated is
2455	 * a guess as boot may fragment it more when memory allocations
2456	 * are made before kphysm_init().
2457	 */
2458	memseg_sz = (avail + 10) * sizeof (struct memseg);
2459	memseg_sz = roundup(memseg_sz, PAGESIZE);
2460	nseg = memseg_sz / sizeof (struct memseg);
2461	msp = ndata_alloc(ndata, memseg_sz, ecache_alignsize);
2462	if (msp == NULL)
2463		return (1);
2464	PRM_DEBUG(memseg_free);
2465
2466	while (nseg--) {
2467		msp->next = memseg_free;
2468		memseg_free = msp;
2469		msp++;
2470	}
2471	return (0);
2472}
2473
2474/*
2475 * In the case of architectures that support dynamic addition of
2476 * memory at run-time there are two cases where memsegs need to
2477 * be initialized and added to the memseg list.
2478 * 1) memsegs that are constructed at startup.
2479 * 2) memsegs that are constructed at run-time on
2480 *    hot-plug capable architectures.
2481 * This code was originally part of the function kphysm_init().
2482 */
2483
2484static void
2485memseg_list_add(struct memseg *memsegp)
2486{
2487	struct memseg **prev_memsegp;
2488	pgcnt_t num;
2489
2490	/* insert in memseg list, decreasing number of pages order */
2491
2492	num = MSEG_NPAGES(memsegp);
2493
2494	for (prev_memsegp = &memsegs; *prev_memsegp;
2495	    prev_memsegp = &((*prev_memsegp)->next)) {
2496		if (num > MSEG_NPAGES(*prev_memsegp))
2497			break;
2498	}
2499
2500	memsegp->next = *prev_memsegp;
2501	*prev_memsegp = memsegp;
2502
2503	if (kpm_enable) {
2504		memsegp->nextpa = (memsegp->next) ?
2505		    va_to_pa(memsegp->next) : MSEG_NULLPTR_PA;
2506
2507		if (prev_memsegp != &memsegs) {
2508			struct memseg *msp;
2509			msp = (struct memseg *)((caddr_t)prev_memsegp -
2510			    offsetof(struct memseg, next));
2511			msp->nextpa = va_to_pa(memsegp);
2512		} else {
2513			memsegspa = va_to_pa(memsegs);
2514		}
2515	}
2516}
2517
2518/*
2519 * PSM add_physmem_cb(). US-II and newer processors have some
2520 * flavor of the prefetch capability implemented. We exploit
2521 * this capability for optimum performance.
2522 */
2523#define	PREFETCH_BYTES	64
2524
2525void
2526add_physmem_cb(page_t *pp, pfn_t pnum)
2527{
2528	extern void	 prefetch_page_w(void *);
2529
2530	pp->p_pagenum = pnum;
2531
2532	/*
2533	 * Prefetch one more page_t into E$. To prevent future
2534	 * mishaps with the sizeof(page_t) changing on us, we
2535	 * catch this on debug kernels if we can't bring in the
2536	 * entire hpage with 2 PREFETCH_BYTES reads. See
2537	 * also, sun4u/cpu/cpu_module.c
2538	 */
2539	/*LINTED*/
2540	ASSERT(sizeof (page_t) <= 2*PREFETCH_BYTES);
2541	prefetch_page_w((char *)pp);
2542}
2543
2544/*
2545 * Find memseg with given pfn
2546 */
2547static struct memseg *
2548memseg_find(pfn_t base, pfn_t *next)
2549{
2550	struct memseg *seg;
2551
2552	if (next != NULL)
2553		*next = LONG_MAX;
2554	for (seg = memsegs; seg != NULL; seg = seg->next) {
2555		if (base >= seg->pages_base && base < seg->pages_end)
2556			return (seg);
2557		if (next != NULL && seg->pages_base > base &&
2558		    seg->pages_base < *next)
2559			*next = seg->pages_base;
2560	}
2561	return (NULL);
2562}
2563
2564extern struct vnode prom_ppages;
2565
2566/*
2567 * Put page allocated by OBP on prom_ppages
2568 */
2569static void
2570kphysm_erase(uint64_t addr, uint64_t len)
2571{
2572	struct page *pp;
2573	struct memseg *seg;
2574	pfn_t base = btop(addr), next;
2575	pgcnt_t num = btop(len);
2576
2577	while (num != 0) {
2578		pgcnt_t off, left;
2579
2580		seg = memseg_find(base, &next);
2581		if (seg == NULL) {
2582			if (next == LONG_MAX)
2583				break;
2584			left = MIN(next - base, num);
2585			base += left, num -= left;
2586			continue;
2587		}
2588		off = base - seg->pages_base;
2589		pp = seg->pages + off;
2590		left = num - MIN(num, (seg->pages_end - seg->pages_base) - off);
2591		while (num != left) {
2592			/*
2593			 * init it, lock it, and hashin on prom_pages vp.
2594			 *
2595			 * Mark it as NONRELOC to let DR know the page
2596			 * is locked long term, otherwise DR hangs when
2597			 * trying to remove those pages.
2598			 *
2599			 * XXX	vnode offsets on the prom_ppages vnode
2600			 *	are page numbers (gack) for >32 bit
2601			 *	physical memory machines.
2602			 */
2603			PP_SETNORELOC(pp);
2604			add_physmem_cb(pp, base);
2605			if (page_trylock(pp, SE_EXCL) == 0)
2606				cmn_err(CE_PANIC, "prom page locked");
2607			(void) page_hashin(pp, &prom_ppages,
2608			    (offset_t)base, NULL);
2609			(void) page_pp_lock(pp, 0, 1);
2610			pp++, base++, num--;
2611		}
2612	}
2613}
2614
2615static page_t *ppnext;
2616static pgcnt_t ppleft;
2617
2618static void *kpm_ppnext;
2619static pgcnt_t kpm_ppleft;
2620
2621/*
2622 * Create a memseg
2623 */
2624static void
2625kphysm_memseg(uint64_t addr, uint64_t len)
2626{
2627	pfn_t base = btop(addr);
2628	pgcnt_t num = btop(len);
2629	struct memseg *seg;
2630
2631	seg = memseg_free;
2632	memseg_free = seg->next;
2633	ASSERT(seg != NULL);
2634
2635	seg->pages = ppnext;
2636	seg->epages = ppnext + num;
2637	seg->pages_base = base;
2638	seg->pages_end = base + num;
2639	ppnext += num;
2640	ppleft -= num;
2641
2642	if (kpm_enable) {
2643		pgcnt_t kpnum = ptokpmpr(num);
2644
2645		if (kpnum > kpm_ppleft)
2646			panic("kphysm_memseg: kpm_pp overflow");
2647		seg->pagespa = va_to_pa(seg->pages);
2648		seg->epagespa = va_to_pa(seg->epages);
2649		seg->kpm_pbase = kpmptop(ptokpmp(base));
2650		seg->kpm_nkpmpgs = kpnum;
2651		/*
2652		 * In the kpm_smallpage case, the kpm array
2653		 * is 1-1 wrt the page array
2654		 */
2655		if (kpm_smallpages) {
2656			kpm_spage_t *kpm_pp = kpm_ppnext;
2657
2658			kpm_ppnext = kpm_pp + kpnum;
2659			seg->kpm_spages = kpm_pp;
2660			seg->kpm_pagespa = va_to_pa(seg->kpm_spages);
2661		} else {
2662			kpm_page_t *kpm_pp = kpm_ppnext;
2663
2664			kpm_ppnext = kpm_pp + kpnum;
2665			seg->kpm_pages = kpm_pp;
2666			seg->kpm_pagespa = va_to_pa(seg->kpm_pages);
2667			/* ASSERT no kpm overlaps */
2668			ASSERT(
2669			    memseg_find(base - pmodkpmp(base), NULL) == NULL);
2670			ASSERT(memseg_find(
2671			    roundup(base + num, kpmpnpgs) - 1, NULL) == NULL);
2672		}
2673		kpm_ppleft -= kpnum;
2674	}
2675
2676	memseg_list_add(seg);
2677}
2678
2679/*
2680 * Add range to free list
2681 */
2682void
2683kphysm_add(uint64_t addr, uint64_t len, int reclaim)
2684{
2685	struct page *pp;
2686	struct memseg *seg;
2687	pfn_t base = btop(addr);
2688	pgcnt_t num = btop(len);
2689
2690	seg = memseg_find(base, NULL);
2691	ASSERT(seg != NULL);
2692	pp = seg->pages + (base - seg->pages_base);
2693
2694	if (reclaim) {
2695		struct page *rpp = pp;
2696		struct page *lpp = pp + num;
2697
2698		/*
2699		 * page should be locked on prom_ppages
2700		 * unhash and unlock it
2701		 */
2702		while (rpp < lpp) {
2703			ASSERT(PAGE_EXCL(rpp) && rpp->p_vnode == &prom_ppages);
2704			ASSERT(PP_ISNORELOC(rpp));
2705			PP_CLRNORELOC(rpp);
2706			page_pp_unlock(rpp, 0, 1);
2707			page_hashout(rpp, NULL);
2708			page_unlock(rpp);
2709			rpp++;
2710		}
2711	}
2712
2713	/*
2714	 * add_physmem() initializes the PSM part of the page
2715	 * struct by calling the PSM back with add_physmem_cb().
2716	 * In addition it coalesces pages into larger pages as
2717	 * it initializes them.
2718	 */
2719	add_physmem(pp, num, base);
2720}
2721
2722/*
2723 * kphysm_init() tackles the problem of initializing physical memory.
2724 */
2725static void
2726kphysm_init(void)
2727{
2728	struct memlist *pmem;
2729
2730	ASSERT(page_hash != NULL && page_hashsz != 0);
2731
2732	ppnext = pp_base;
2733	ppleft = npages;
2734	kpm_ppnext = kpm_pp_base;
2735	kpm_ppleft = kpm_npages;
2736
2737	/*
2738	 * installed pages not on nopp_memlist go in memseg list
2739	 */
2740	diff_memlists(phys_install, nopp_list, kphysm_memseg);
2741
2742	/*
2743	 * Free the avail list
2744	 */
2745	for (pmem = phys_avail; pmem != NULL; pmem = pmem->next)
2746		kphysm_add(pmem->address, pmem->size, 0);
2747
2748	/*
2749	 * Erase pages that aren't available
2750	 */
2751	diff_memlists(phys_install, phys_avail, kphysm_erase);
2752
2753	build_pfn_hash();
2754}
2755
2756/*
2757 * Kernel VM initialization.
2758 * Assumptions about kernel address space ordering:
2759 *	(1) gap (user space)
2760 *	(2) kernel text
2761 *	(3) kernel data/bss
2762 *	(4) gap
2763 *	(5) kernel data structures
2764 *	(6) gap
2765 *	(7) debugger (optional)
2766 *	(8) monitor
2767 *	(9) gap (possibly null)
2768 *	(10) dvma
2769 *	(11) devices
2770 */
2771static void
2772kvm_init(void)
2773{
2774	/*
2775	 * Put the kernel segments in kernel address space.
2776	 */
2777	rw_enter(&kas.a_lock, RW_WRITER);
2778	as_avlinit(&kas);
2779
2780	(void) seg_attach(&kas, (caddr_t)KERNELBASE,
2781	    (size_t)(e_moddata - KERNELBASE), &ktextseg);
2782	(void) segkmem_create(&ktextseg);
2783
2784	(void) seg_attach(&kas, (caddr_t)(KERNELBASE + MMU_PAGESIZE4M),
2785	    (size_t)(MMU_PAGESIZE4M), &ktexthole);
2786	(void) segkmem_create(&ktexthole);
2787
2788	(void) seg_attach(&kas, (caddr_t)valloc_base,
2789	    (size_t)(econtig32 - valloc_base), &kvalloc);
2790	(void) segkmem_create(&kvalloc);
2791
2792	if (kmem64_base) {
2793		(void) seg_attach(&kas, (caddr_t)kmem64_base,
2794		    (size_t)(kmem64_end - kmem64_base), &kmem64);
2795		(void) segkmem_create(&kmem64);
2796	}
2797
2798	/*
2799	 * We're about to map out /boot.  This is the beginning of the
2800	 * system resource management transition. We can no longer
2801	 * call into /boot for I/O or memory allocations.
2802	 */
2803	(void) seg_attach(&kas, kernelheap, ekernelheap - kernelheap, &kvseg);
2804	(void) segkmem_create(&kvseg);
2805	hblk_alloc_dynamic = 1;
2806
2807	/*
2808	 * we need to preallocate pages for DR operations before enabling large
2809	 * page kernel heap because of memseg_remap_init() hat_unload() hack.
2810	 */
2811	memseg_remap_init();
2812
2813	/* at this point we are ready to use large page heap */
2814	segkmem_heap_lp_init();
2815
2816	(void) seg_attach(&kas, (caddr_t)SYSBASE32, SYSLIMIT32 - SYSBASE32,
2817	    &kvseg32);
2818	(void) segkmem_create(&kvseg32);
2819
2820	/*
2821	 * Create a segment for the debugger.
2822	 */
2823	(void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg);
2824	(void) segkmem_create(&kdebugseg);
2825
2826	rw_exit(&kas.a_lock);
2827}
2828
2829char obp_tte_str[] =
2830	"h# %x constant MMU_PAGESHIFT "
2831	"h# %x constant TTE8K "
2832	"h# %x constant SFHME_SIZE "
2833	"h# %x constant SFHME_TTE "
2834	"h# %x constant HMEBLK_TAG "
2835	"h# %x constant HMEBLK_NEXT "
2836	"h# %x constant HMEBLK_MISC "
2837	"h# %x constant HMEBLK_HME1 "
2838	"h# %x constant NHMENTS "
2839	"h# %x constant HBLK_SZMASK "
2840	"h# %x constant HBLK_RANGE_SHIFT "
2841	"h# %x constant HMEBP_HBLK "
2842	"h# %x constant HMEBLK_ENDPA "
2843	"h# %x constant HMEBUCKET_SIZE "
2844	"h# %x constant HTAG_SFMMUPSZ "
2845	"h# %x constant HTAG_BSPAGE_SHIFT "
2846	"h# %x constant HTAG_REHASH_SHIFT "
2847	"h# %x constant SFMMU_INVALID_SHMERID "
2848	"h# %x constant mmu_hashcnt "
2849	"h# %p constant uhme_hash "
2850	"h# %p constant khme_hash "
2851	"h# %x constant UHMEHASH_SZ "
2852	"h# %x constant KHMEHASH_SZ "
2853	"h# %p constant KCONTEXT "
2854	"h# %p constant KHATID "
2855	"h# %x constant ASI_MEM "
2856
2857	": PHYS-X@ ( phys -- data ) "
2858	"   ASI_MEM spacex@ "
2859	"; "
2860
2861	": PHYS-W@ ( phys -- data ) "
2862	"   ASI_MEM spacew@ "
2863	"; "
2864
2865	": PHYS-L@ ( phys -- data ) "
2866	"   ASI_MEM spaceL@ "
2867	"; "
2868
2869	": TTE_PAGE_SHIFT ( ttesz -- hmeshift ) "
2870	"   3 * MMU_PAGESHIFT + "
2871	"; "
2872
2873	": TTE_IS_VALID ( ttep -- flag ) "
2874	"   PHYS-X@ 0< "
2875	"; "
2876
2877	": HME_HASH_SHIFT ( ttesz -- hmeshift ) "
2878	"   dup TTE8K =  if "
2879	"      drop HBLK_RANGE_SHIFT "
2880	"   else "
2881	"      TTE_PAGE_SHIFT "
2882	"   then "
2883	"; "
2884
2885	": HME_HASH_BSPAGE ( addr hmeshift -- bspage ) "
2886	"   tuck >> swap MMU_PAGESHIFT - << "
2887	"; "
2888
2889	": HME_HASH_FUNCTION ( sfmmup addr hmeshift -- hmebp ) "
2890	"   >> over xor swap                    ( hash sfmmup ) "
2891	"   KHATID <>  if                       ( hash ) "
2892	"      UHMEHASH_SZ and                  ( bucket ) "
2893	"      HMEBUCKET_SIZE * uhme_hash +     ( hmebp ) "
2894	"   else                                ( hash ) "
2895	"      KHMEHASH_SZ and                  ( bucket ) "
2896	"      HMEBUCKET_SIZE * khme_hash +     ( hmebp ) "
2897	"   then                                ( hmebp ) "
2898	"; "
2899
2900	": HME_HASH_TABLE_SEARCH "
2901	"       ( sfmmup hmebp hblktag --  sfmmup null | sfmmup hmeblkp ) "
2902	"   >r hmebp_hblk + phys-x@ begin ( sfmmup hmeblkp ) ( r: hblktag ) "
2903	"      dup HMEBLK_ENDPA <> if     ( sfmmup hmeblkp ) ( r: hblktag ) "
2904	"         dup hmeblk_tag + phys-x@ r@ = if ( sfmmup hmeblkp )	  "
2905	"	     dup hmeblk_tag + 8 + phys-x@ 2 pick = if		  "
2906	"		  true 	( sfmmup hmeblkp true ) ( r: hblktag )	  "
2907	"	     else						  "
2908	"	     	  hmeblk_next + phys-x@ false 			  "
2909	"			( sfmmup hmeblkp false ) ( r: hblktag )   "
2910	"	     then  						  "
2911	"	  else							  "
2912	"	     hmeblk_next + phys-x@ false 			  "
2913	"			( sfmmup hmeblkp false ) ( r: hblktag )   "
2914	"	  then 							  "
2915	"      else							  "
2916	"         drop 0 true 						  "
2917	"      then  							  "
2918	"   until r> drop 						  "
2919	"; "
2920
2921	": HME_HASH_TAG ( sfmmup rehash addr -- hblktag ) "
2922	"   over HME_HASH_SHIFT HME_HASH_BSPAGE  ( sfmmup rehash bspage ) "
2923	"   HTAG_BSPAGE_SHIFT <<		 ( sfmmup rehash htag-bspage )"
2924	"   swap HTAG_REHASH_SHIFT << or	 ( sfmmup htag-bspage-rehash )"
2925	"   SFMMU_INVALID_SHMERID or nip	 ( hblktag ) "
2926	"; "
2927
2928	": HBLK_TO_TTEP ( hmeblkp addr -- ttep ) "
2929	"   over HMEBLK_MISC + PHYS-L@ HBLK_SZMASK and  ( hmeblkp addr ttesz ) "
2930	"   TTE8K =  if                            ( hmeblkp addr ) "
2931	"      MMU_PAGESHIFT >> NHMENTS 1- and     ( hmeblkp hme-index ) "
2932	"   else                                   ( hmeblkp addr ) "
2933	"      drop 0                              ( hmeblkp 0 ) "
2934	"   then                                   ( hmeblkp hme-index ) "
2935	"   SFHME_SIZE * + HMEBLK_HME1 +           ( hmep ) "
2936	"   SFHME_TTE +                            ( ttep ) "
2937	"; "
2938
2939	": unix-tte ( addr cnum -- false | tte-data true ) "
2940	"    KCONTEXT = if                   ( addr ) "
2941	"	KHATID                       ( addr khatid ) "
2942	"    else                            ( addr ) "
2943	"       drop false exit              ( false ) "
2944	"    then "
2945	"      ( addr khatid ) "
2946	"      mmu_hashcnt 1+ 1  do           ( addr sfmmup ) "
2947	"         2dup swap i HME_HASH_SHIFT  "
2948					"( addr sfmmup sfmmup addr hmeshift ) "
2949	"         HME_HASH_FUNCTION           ( addr sfmmup hmebp ) "
2950	"         over i 4 pick               "
2951				"( addr sfmmup hmebp sfmmup rehash addr ) "
2952	"         HME_HASH_TAG                ( addr sfmmup hmebp hblktag ) "
2953	"         HME_HASH_TABLE_SEARCH       "
2954					"( addr sfmmup { null | hmeblkp } ) "
2955	"         ?dup  if                    ( addr sfmmup hmeblkp ) "
2956	"            nip swap HBLK_TO_TTEP    ( ttep ) "
2957	"            dup TTE_IS_VALID  if     ( valid-ttep ) "
2958	"               PHYS-X@ true          ( tte-data true ) "
2959	"            else                     ( invalid-tte ) "
2960	"               drop false            ( false ) "
2961	"            then                     ( false | tte-data true ) "
2962	"            unloop exit              ( false | tte-data true ) "
2963	"         then                        ( addr sfmmup ) "
2964	"      loop                           ( addr sfmmup ) "
2965	"      2drop false                    ( false ) "
2966	"; "
2967;
2968
2969void
2970create_va_to_tte(void)
2971{
2972	char *bp;
2973	extern int khmehash_num, uhmehash_num;
2974	extern struct hmehash_bucket *khme_hash, *uhme_hash;
2975
2976#define	OFFSET(type, field)	((uintptr_t)(&((type *)0)->field))
2977
2978	bp = (char *)kobj_zalloc(MMU_PAGESIZE, KM_SLEEP);
2979
2980	/*
2981	 * Teach obp how to parse our sw ttes.
2982	 */
2983	(void) sprintf(bp, obp_tte_str,
2984	    MMU_PAGESHIFT,
2985	    TTE8K,
2986	    sizeof (struct sf_hment),
2987	    OFFSET(struct sf_hment, hme_tte),
2988	    OFFSET(struct hme_blk, hblk_tag),
2989	    OFFSET(struct hme_blk, hblk_nextpa),
2990	    OFFSET(struct hme_blk, hblk_misc),
2991	    OFFSET(struct hme_blk, hblk_hme),
2992	    NHMENTS,
2993	    HBLK_SZMASK,
2994	    HBLK_RANGE_SHIFT,
2995	    OFFSET(struct hmehash_bucket, hmeh_nextpa),
2996	    HMEBLK_ENDPA,
2997	    sizeof (struct hmehash_bucket),
2998	    HTAG_SFMMUPSZ,
2999	    HTAG_BSPAGE_SHIFT,
3000	    HTAG_REHASH_SHIFT,
3001	    SFMMU_INVALID_SHMERID,
3002	    mmu_hashcnt,
3003	    (caddr_t)va_to_pa((caddr_t)uhme_hash),
3004	    (caddr_t)va_to_pa((caddr_t)khme_hash),
3005	    UHMEHASH_SZ,
3006	    KHMEHASH_SZ,
3007	    KCONTEXT,
3008	    KHATID,
3009	    ASI_MEM);
3010	prom_interpret(bp, 0, 0, 0, 0, 0);
3011
3012	kobj_free(bp, MMU_PAGESIZE);
3013}
3014
3015void
3016install_va_to_tte(void)
3017{
3018	/*
3019	 * advise prom that he can use unix-tte
3020	 */
3021	prom_interpret("' unix-tte is va>tte-data", 0, 0, 0, 0, 0);
3022}
3023
3024/*
3025 * Here we add "device-type=console" for /os-io node, for currently
3026 * our kernel console output only supports displaying text and
3027 * performing cursor-positioning operations (through kernel framebuffer
3028 * driver) and it doesn't support other functionalities required for a
3029 * standard "display" device as specified in 1275 spec. The main missing
3030 * interface defined by the 1275 spec is "draw-logo".
3031 * also see the comments above prom_stdout_is_framebuffer().
3032 */
3033static char *create_node =
3034	"\" /\" find-device "
3035	"new-device "
3036	"\" os-io\" device-name "
3037	"\" "OBP_DISPLAY_CONSOLE"\" device-type "
3038	": cb-r/w  ( adr,len method$ -- #read/#written ) "
3039	"   2>r swap 2 2r> ['] $callback  catch  if "
3040	"      2drop 3drop 0 "
3041	"   then "
3042	"; "
3043	": read ( adr,len -- #read ) "
3044	"       \" read\" ['] cb-r/w catch  if  2drop 2drop -2 exit then "
3045	"       ( retN ... ret1 N ) "
3046	"       ?dup  if "
3047	"               swap >r 1-  0  ?do  drop  loop  r> "
3048	"       else "
3049	"               -2 "
3050	"       then "
3051	";    "
3052	": write ( adr,len -- #written ) "
3053	"       \" write\" ['] cb-r/w catch  if  2drop 2drop 0 exit  then "
3054	"       ( retN ... ret1 N ) "
3055	"       ?dup  if "
3056	"               swap >r 1-  0  ?do  drop  loop  r> "
3057	"        else "
3058	"               0 "
3059	"       then "
3060	"; "
3061	": poll-tty ( -- ) ; "
3062	": install-abort  ( -- )  ['] poll-tty d# 10 alarm ; "
3063	": remove-abort ( -- )  ['] poll-tty 0 alarm ; "
3064	": cb-give/take ( $method -- ) "
3065	"       0 -rot ['] $callback catch  ?dup  if "
3066	"               >r 2drop 2drop r> throw "
3067	"       else "
3068	"               0  ?do  drop  loop "
3069	"       then "
3070	"; "
3071	": give ( -- )  \" exit-input\" cb-give/take ; "
3072	": take ( -- )  \" enter-input\" cb-give/take ; "
3073	": open ( -- ok? )  true ; "
3074	": close ( -- ) ; "
3075	"finish-device "
3076	"device-end ";
3077
3078/*
3079 * Create the OBP input/output node (FCode serial driver).
3080 * It is needed for both USB console keyboard and for
3081 * the kernel terminal emulator.  It is too early to check for a
3082 * kernel console compatible framebuffer now, so we create this
3083 * so that we're ready if we need to enable kernel terminal emulation.
3084 *
3085 * When the USB software takes over the input device at the time
3086 * consconfig runs, OBP's stdin is redirected to this node.
3087 * Whenever the FORTH user interface is used after this switch,
3088 * the node will call back into the kernel for console input.
3089 * If a serial device such as ttya or a UART with a Type 5 keyboard
3090 * attached is used, OBP takes over the serial device when the system
3091 * goes to the debugger after the system is booted.  This sharing
3092 * of the relatively simple serial device is difficult but possible.
3093 * Sharing the USB host controller is impossible due its complexity.
3094 *
3095 * Similarly to USB keyboard input redirection, after consconfig_dacf
3096 * configures a kernel console framebuffer as the standard output
3097 * device, OBP's stdout is switched to to vector through the
3098 * /os-io node into the kernel terminal emulator.
3099 */
3100static void
3101startup_create_io_node(void)
3102{
3103	prom_interpret(create_node, 0, 0, 0, 0, 0);
3104}
3105
3106
3107static void
3108do_prom_version_check(void)
3109{
3110	int i;
3111	pnode_t node;
3112	char buf[64];
3113	static char drev[] = "Down-rev firmware detected%s\n"
3114	    "\tPlease upgrade to the following minimum version:\n"
3115	    "\t\t%s\n";
3116
3117	i = prom_version_check(buf, sizeof (buf), &node);
3118
3119	if (i == PROM_VER64_OK)
3120		return;
3121
3122	if (i == PROM_VER64_UPGRADE) {
3123		cmn_err(CE_WARN, drev, "", buf);
3124
3125#ifdef	DEBUG
3126		prom_enter_mon();	/* Type 'go' to continue */
3127		cmn_err(CE_WARN, "Booting with down-rev firmware\n");
3128		return;
3129#else
3130		halt(0);
3131#endif
3132	}
3133
3134	/*
3135	 * The other possibility is that this is a server running
3136	 * good firmware, but down-rev firmware was detected on at
3137	 * least one other cpu board. We just complain if we see
3138	 * that.
3139	 */
3140	cmn_err(CE_WARN, drev, " on one or more CPU boards", buf);
3141}
3142
3143
3144/*
3145 * Must be defined in platform dependent code.
3146 */
3147extern caddr_t modtext;
3148extern size_t modtext_sz;
3149extern caddr_t moddata;
3150
3151#define	HEAPTEXT_ARENA(addr)	\
3152	((uintptr_t)(addr) < KERNELBASE + 2 * MMU_PAGESIZE4M ? 0 : \
3153	(((uintptr_t)(addr) - HEAPTEXT_BASE) / \
3154	(HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) + 1))
3155
3156#define	HEAPTEXT_OVERSIZED(addr)	\
3157	((uintptr_t)(addr) >= HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE)
3158
3159#define	HEAPTEXT_IN_NUCLEUSDATA(addr) \
3160	(((uintptr_t)(addr) >= KERNELBASE + 2 * MMU_PAGESIZE4M) && \
3161	((uintptr_t)(addr) < KERNELBASE + 3 * MMU_PAGESIZE4M))
3162
3163vmem_t *texthole_source[HEAPTEXT_NARENAS];
3164vmem_t *texthole_arena[HEAPTEXT_NARENAS];
3165kmutex_t texthole_lock;
3166
3167char kern_bootargs[OBP_MAXPATHLEN];
3168char kern_bootfile[OBP_MAXPATHLEN];
3169
3170void
3171kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
3172{
3173	uintptr_t addr, limit;
3174
3175	addr = HEAPTEXT_BASE;
3176	limit = addr + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE;
3177
3178	/*
3179	 * Before we initialize the text_arena, we want to punch holes in the
3180	 * underlying heaptext_arena.  This guarantees that for any text
3181	 * address we can find a text hole less than HEAPTEXT_MAPPED away.
3182	 */
3183	for (; addr + HEAPTEXT_UNMAPPED <= limit;
3184	    addr += HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) {
3185		(void) vmem_xalloc(heaptext_arena, HEAPTEXT_UNMAPPED, PAGESIZE,
3186		    0, 0, (void *)addr, (void *)(addr + HEAPTEXT_UNMAPPED),
3187		    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
3188	}
3189
3190	/*
3191	 * Allocate one page at the oversize to break up the text region
3192	 * from the oversized region.
3193	 */
3194	(void) vmem_xalloc(heaptext_arena, PAGESIZE, PAGESIZE, 0, 0,
3195	    (void *)limit, (void *)(limit + PAGESIZE),
3196	    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
3197
3198	*text_arena = vmem_create("module_text", modtext_sz ? modtext : NULL,
3199	    modtext_sz, sizeof (uintptr_t), segkmem_alloc, segkmem_free,
3200	    heaptext_arena, 0, VM_SLEEP);
3201	*data_arena = vmem_create("module_data", moddata, MODDATA, 1,
3202	    segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
3203}
3204
3205caddr_t
3206kobj_text_alloc(vmem_t *arena, size_t size)
3207{
3208	caddr_t rval, better;
3209
3210	/*
3211	 * First, try a sleeping allocation.
3212	 */
3213	rval = vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT);
3214
3215	if (size >= HEAPTEXT_MAPPED || !HEAPTEXT_OVERSIZED(rval))
3216		return (rval);
3217
3218	/*
3219	 * We didn't get the area that we wanted.  We're going to try to do an
3220	 * allocation with explicit constraints.
3221	 */
3222	better = vmem_xalloc(arena, size, sizeof (uintptr_t), 0, 0, NULL,
3223	    (void *)(HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE),
3224	    VM_NOSLEEP | VM_BESTFIT);
3225
3226	if (better != NULL) {
3227		/*
3228		 * That worked.  Free our first attempt and return.
3229		 */
3230		vmem_free(arena, rval, size);
3231		return (better);
3232	}
3233
3234	/*
3235	 * That didn't work; we'll have to return our first attempt.
3236	 */
3237	return (rval);
3238}
3239
3240caddr_t
3241kobj_texthole_alloc(caddr_t addr, size_t size)
3242{
3243	int arena = HEAPTEXT_ARENA(addr);
3244	char c[30];
3245	uintptr_t base;
3246
3247	if (HEAPTEXT_OVERSIZED(addr) || HEAPTEXT_IN_NUCLEUSDATA(addr)) {
3248		/*
3249		 * If this is an oversized allocation or it is allocated in
3250		 * the nucleus data page, there is no text hole available for
3251		 * it; return NULL.
3252		 */
3253		return (NULL);
3254	}
3255
3256	mutex_enter(&texthole_lock);
3257
3258	if (texthole_arena[arena] == NULL) {
3259		ASSERT(texthole_source[arena] == NULL);
3260
3261		if (arena == 0) {
3262			texthole_source[0] = vmem_create("module_text_holesrc",
3263			    (void *)(KERNELBASE + MMU_PAGESIZE4M),
3264			    MMU_PAGESIZE4M, PAGESIZE, NULL, NULL, NULL,
3265			    0, VM_SLEEP);
3266		} else {
3267			base = HEAPTEXT_BASE +
3268			    (arena - 1) * (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED);
3269
3270			(void) snprintf(c, sizeof (c),
3271			    "heaptext_holesrc_%d", arena);
3272
3273			texthole_source[arena] = vmem_create(c, (void *)base,
3274			    HEAPTEXT_UNMAPPED, PAGESIZE, NULL, NULL, NULL,
3275			    0, VM_SLEEP);
3276		}
3277
3278		(void) snprintf(c, sizeof (c), "heaptext_hole_%d", arena);
3279
3280		texthole_arena[arena] = vmem_create(c, NULL, 0,
3281		    sizeof (uint32_t), segkmem_alloc_permanent, segkmem_free,
3282		    texthole_source[arena], 0, VM_SLEEP);
3283	}
3284
3285	mutex_exit(&texthole_lock);
3286
3287	ASSERT(texthole_arena[arena] != NULL);
3288	ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS);
3289	return (vmem_alloc(texthole_arena[arena], size,
3290	    VM_BESTFIT | VM_NOSLEEP));
3291}
3292
3293void
3294kobj_texthole_free(caddr_t addr, size_t size)
3295{
3296	int arena = HEAPTEXT_ARENA(addr);
3297
3298	ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS);
3299	ASSERT(texthole_arena[arena] != NULL);
3300	vmem_free(texthole_arena[arena], addr, size);
3301}
3302
3303void
3304release_bootstrap(void)
3305{
3306	if (&cif_init)
3307		cif_init();
3308}
3309