prom_subr.c revision 7240:c4957ab6a78e
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#pragma ident	"%Z%%M%	%I%	%E% SMI"
27
28#include <sys/types.h>
29#include <sys/param.h>
30#include <sys/cmn_err.h>
31#include <sys/mutex.h>
32#include <sys/systm.h>
33#include <sys/sysmacros.h>
34#include <sys/machsystm.h>
35#include <sys/archsystm.h>
36#include <sys/x_call.h>
37#include <sys/promif.h>
38#include <sys/prom_isa.h>
39#include <sys/privregs.h>
40#include <sys/vmem.h>
41#include <sys/atomic.h>
42#include <sys/panic.h>
43#include <sys/rwlock.h>
44#include <sys/reboot.h>
45#include <sys/kdi.h>
46#include <sys/kdi_machimpl.h>
47
48/*
49 * We are called with a pointer to a cell-sized argument array.
50 * The service name (the first element of the argument array) is
51 * the name of the callback being invoked.  When called, we are
52 * running on the firmwares trap table as a trusted subroutine
53 * of the firmware.
54 *
55 * We define entry points to allow callback handlers to be dynamically
56 * added and removed, to support obpsym, which is a separate module
57 * and can be dynamically loaded and unloaded and registers its
58 * callback handlers dynamically.
59 *
60 * Note: The actual callback handler we register, is the assembly lang.
61 * glue, callback_handler, which takes care of switching from a 64
62 * bit stack and environment to a 32 bit stack and environment, and
63 * back again, if the callback handler returns. callback_handler calls
64 * vx_handler to process the callback.
65 */
66
67static kmutex_t vx_cmd_lock;	/* protect vx_cmd table */
68
69#define	VX_CMD_MAX	10
70#define	ENDADDR(a)	&a[sizeof (a) / sizeof (a[0])]
71#define	vx_cmd_end	((struct vx_cmd *)(ENDADDR(vx_cmd)))
72
73static struct vx_cmd {
74	char	*service;	/* Service name */
75	int	take_tba;	/* If Non-zero we take over the tba */
76	void	(*func)(cell_t *argument_array);
77} vx_cmd[VX_CMD_MAX+1];
78
79void
80init_vx_handler(void)
81{
82	extern int callback_handler(cell_t *arg_array);
83
84	/*
85	 * initialize the lock protecting additions and deletions from
86	 * the vx_cmd table.  At callback time we don't need to grab
87	 * this lock.  Callback handlers do not need to modify the
88	 * callback handler table.
89	 */
90	mutex_init(&vx_cmd_lock, NULL, MUTEX_DEFAULT, NULL);
91
92	/*
93	 * Tell OBP about our callback handler.
94	 */
95	(void) prom_set_callback((void *)callback_handler);
96}
97
98/*
99 * Add a kernel callback handler to the kernel's list.
100 * The table is static, so if you add a callback handler, increase
101 * the value of VX_CMD_MAX. Find the first empty slot and use it.
102 */
103void
104add_vx_handler(char *name, int flag, void (*func)(cell_t *))
105{
106	struct vx_cmd *vp;
107
108	mutex_enter(&vx_cmd_lock);
109	for (vp = vx_cmd; vp < vx_cmd_end; vp++) {
110		if (vp->service == NULL) {
111			vp->service = name;
112			vp->take_tba = flag;
113			vp->func = func;
114			mutex_exit(&vx_cmd_lock);
115			return;
116		}
117	}
118	mutex_exit(&vx_cmd_lock);
119
120#ifdef	DEBUG
121
122	/*
123	 * There must be enough entries to handle all callback entries.
124	 * Increase VX_CMD_MAX if this happens. This shouldn't happen.
125	 */
126	cmn_err(CE_PANIC, "add_vx_handler <%s>", name);
127	/* NOTREACHED */
128
129#else	/* DEBUG */
130
131	cmn_err(CE_WARN, "add_vx_handler: Can't add callback hander <%s>",
132	    name);
133
134#endif	/* DEBUG */
135
136}
137
138/*
139 * Remove a vx_handler function -- find the name string in the table,
140 * and clear it.
141 */
142void
143remove_vx_handler(char *name)
144{
145	struct vx_cmd *vp;
146
147	mutex_enter(&vx_cmd_lock);
148	for (vp = vx_cmd; vp < vx_cmd_end; vp++) {
149		if (vp->service == NULL)
150			continue;
151		if (strcmp(vp->service, name) != 0)
152			continue;
153		vp->service = 0;
154		vp->take_tba = 0;
155		vp->func = 0;
156		mutex_exit(&vx_cmd_lock);
157		return;
158	}
159	mutex_exit(&vx_cmd_lock);
160	cmn_err(CE_WARN, "remove_vx_handler: <%s> not found", name);
161}
162
163int
164vx_handler(cell_t *argument_array)
165{
166	char *name;
167	struct vx_cmd *vp;
168	void *old_tba;
169
170	name = p1275_cell2ptr(*argument_array);
171
172	for (vp = vx_cmd; vp < vx_cmd_end; vp++) {
173		if (vp->service == (char *)0)
174			continue;
175		if (strcmp(vp->service, name) != 0)
176			continue;
177		if (vp->take_tba != 0)  {
178			reestablish_curthread();
179			if (tba_taken_over != 0)
180				old_tba = set_tba((void *)&trap_table);
181		}
182		vp->func(argument_array);
183		if ((vp->take_tba != 0) && (tba_taken_over != 0))
184			(void) set_tba(old_tba);
185		return (0);	/* Service name was known */
186	}
187
188	return (-1);		/* Service name unknown */
189}
190
191/*
192 * PROM Locking Primitives
193 *
194 * These routines are called immediately before and immediately after calling
195 * into the firmware.  The firmware is single-threaded and assumes that the
196 * kernel will implement locking to prevent simultaneous service calls.  In
197 * addition, some service calls (particularly character rendering) can be
198 * slow, so we would like to sleep if we cannot acquire the lock to allow the
199 * caller's CPU to continue to perform useful work in the interim.  Service
200 * routines may also be called early in boot as part of slave CPU startup
201 * when mutexes and cvs are not yet available (i.e. they are still running on
202 * the prom's TLB handlers and cannot touch curthread).  Therefore, these
203 * routines must reduce to a simple compare-and-swap spin lock when necessary.
204 * Finally, kernel code may wish to acquire the firmware lock before executing
205 * a block of code that includes service calls, so we also allow the firmware
206 * lock to be acquired recursively by the owning CPU after disabling preemption.
207 *
208 * To meet these constraints, the lock itself is implemented as a compare-and-
209 * swap spin lock on the global prom_cpu pointer.  We implement recursion by
210 * atomically incrementing the integer prom_holdcnt after acquiring the lock.
211 * If the current CPU is an "adult" (determined by testing cpu_m.mutex_ready),
212 * we disable preemption before acquiring the lock and leave it disabled once
213 * the lock is held.  The kern_postprom() routine then enables preemption if
214 * we drop the lock and prom_holdcnt returns to zero.  If the current CPU is
215 * an adult and the lock is held by another adult CPU, we can safely sleep
216 * until the lock is released.  To do so, we acquire the adaptive prom_mutex
217 * and then sleep on prom_cv.  Therefore, service routines must not be called
218 * from above LOCK_LEVEL on any adult CPU.  Finally, if recursive entry is
219 * attempted on an adult CPU, we must also verify that curthread matches the
220 * saved prom_thread (the original owner) to ensure that low-level interrupt
221 * threads do not step on other threads running on the same CPU.
222 */
223
224static cpu_t *volatile prom_cpu;
225static kthread_t *volatile prom_thread;
226static uint32_t prom_holdcnt;
227static kmutex_t prom_mutex;
228static kcondvar_t prom_cv;
229
230/*
231 * The debugger uses PROM services, and is thus unable to run if any of the
232 * CPUs on the system are executing in the PROM at the time of debugger entry.
233 * If a CPU is determined to be in the PROM when the debugger is entered,
234 * prom_return_enter_debugger will be set, thus triggering a programmed debugger
235 * entry when the given CPU returns from the PROM.  That CPU is then released by
236 * the debugger, and is allowed to complete PROM-related work.
237 */
238int prom_exit_enter_debugger;
239
240void
241kern_preprom(void)
242{
243	for (;;) {
244		/*
245		 * Load the current CPU pointer and examine the mutex_ready bit.
246		 * It doesn't matter if we are preempted here because we are
247		 * only trying to determine if we are in the *set* of mutex
248		 * ready CPUs.  We cannot disable preemption until we confirm
249		 * that we are running on a CPU in this set, since a call to
250		 * kpreempt_disable() requires access to curthread.
251		 */
252		processorid_t cpuid = getprocessorid();
253		cpu_t *cp = cpu[cpuid];
254		cpu_t *prcp;
255
256		if (panicstr)
257			return; /* just return if we are currently panicking */
258
259		if (CPU_IN_SET(cpu_ready_set, cpuid) && cp->cpu_m.mutex_ready) {
260			/*
261			 * Disable premption, and reload the current CPU.  We
262			 * can't move from a mutex_ready cpu to a non-ready cpu
263			 * so we don't need to re-check cp->cpu_m.mutex_ready.
264			 */
265			kpreempt_disable();
266			cp = CPU;
267			ASSERT(cp->cpu_m.mutex_ready);
268
269			/*
270			 * Try the lock.  If we don't get the lock, re-enable
271			 * preemption and see if we should sleep.  If we are
272			 * already the lock holder, remove the effect of the
273			 * previous kpreempt_disable() before returning since
274			 * preemption was disabled by an earlier kern_preprom.
275			 */
276			prcp = casptr((void *)&prom_cpu, NULL, cp);
277			if (prcp == NULL ||
278			    (prcp == cp && prom_thread == curthread)) {
279				if (prcp == cp)
280					kpreempt_enable();
281				break;
282			}
283
284			kpreempt_enable();
285
286			/*
287			 * We have to be very careful here since both prom_cpu
288			 * and prcp->cpu_m.mutex_ready can be changed at any
289			 * time by a non mutex_ready cpu holding the lock.
290			 * If the owner is mutex_ready, holding prom_mutex
291			 * prevents kern_postprom() from completing.  If the
292			 * owner isn't mutex_ready, we only know it will clear
293			 * prom_cpu before changing cpu_m.mutex_ready, so we
294			 * issue a membar after checking mutex_ready and then
295			 * re-verify that prom_cpu is still held by the same
296			 * cpu before actually proceeding to cv_wait().
297			 */
298			mutex_enter(&prom_mutex);
299			prcp = prom_cpu;
300			if (prcp != NULL && prcp->cpu_m.mutex_ready != 0) {
301				membar_consumer();
302				if (prcp == prom_cpu)
303					cv_wait(&prom_cv, &prom_mutex);
304			}
305			mutex_exit(&prom_mutex);
306
307		} else {
308			/*
309			 * If we are not yet mutex_ready, just attempt to grab
310			 * the lock.  If we get it or already hold it, break.
311			 */
312			ASSERT(getpil() == PIL_MAX);
313			prcp = casptr((void *)&prom_cpu, NULL, cp);
314			if (prcp == NULL || prcp == cp)
315				break;
316		}
317	}
318
319	/*
320	 * We now hold the prom_cpu lock.  Increment the hold count by one
321	 * and assert our current state before returning to the caller.
322	 */
323	atomic_add_32(&prom_holdcnt, 1);
324	ASSERT(prom_holdcnt >= 1);
325	prom_thread = curthread;
326}
327
328/*
329 * Drop the prom lock if it is held by the current CPU.  If the lock is held
330 * recursively, return without clearing prom_cpu.  If the hold count is now
331 * zero, clear prom_cpu and cv_signal any waiting CPU.
332 */
333void
334kern_postprom(void)
335{
336	processorid_t cpuid = getprocessorid();
337	cpu_t *cp = cpu[cpuid];
338
339	if (panicstr)
340		return; /* do not modify lock further if we have panicked */
341
342	if (prom_cpu != cp)
343		panic("kern_postprom: not owner, cp=%p owner=%p",
344		    (void *)cp, (void *)prom_cpu);
345
346	if (prom_holdcnt == 0)
347		panic("kern_postprom: prom_holdcnt == 0, owner=%p",
348		    (void *)prom_cpu);
349
350	if (atomic_add_32_nv(&prom_holdcnt, -1) != 0)
351		return; /* prom lock is held recursively by this CPU */
352
353	if ((boothowto & RB_DEBUG) && prom_exit_enter_debugger)
354		kmdb_enter();
355
356	prom_thread = NULL;
357	membar_producer();
358
359	prom_cpu = NULL;
360	membar_producer();
361
362	if (CPU_IN_SET(cpu_ready_set, cpuid) && cp->cpu_m.mutex_ready) {
363		mutex_enter(&prom_mutex);
364		cv_signal(&prom_cv);
365		mutex_exit(&prom_mutex);
366		kpreempt_enable();
367	}
368}
369
370/*
371 * If the frame buffer device is busy, briefly capture the other CPUs so that
372 * another CPU executing code to manipulate the device does not execute at the
373 * same time we are rendering characters.  Refer to the comments and code in
374 * common/os/console.c for more information on these callbacks.
375 *
376 * Notice that we explicitly acquire the PROM lock using kern_preprom() prior
377 * to idling other CPUs.  The idling mechanism will cross-trap the other CPUs
378 * and have them spin at MAX(%pil, XCALL_PIL), so we must be sure that none of
379 * them are holding the PROM lock before we idle them and then call into the
380 * PROM routines that render characters to the frame buffer.
381 */
382int
383console_enter(int busy)
384{
385	int s = 0;
386
387	if (busy && panicstr == NULL) {
388		kern_preprom();
389		s = splhi();
390		idle_other_cpus();
391	}
392
393	return (s);
394}
395
396void
397console_exit(int busy, int spl)
398{
399	if (busy && panicstr == NULL) {
400		resume_other_cpus();
401		splx(spl);
402		kern_postprom();
403	}
404}
405
406/*
407 * This routine is a special form of pause_cpus().  It ensures that
408 * prom functions are callable while the cpus are paused.
409 */
410void
411promsafe_pause_cpus(void)
412{
413	pause_cpus(NULL);
414
415	/* If some other cpu is entering or is in the prom, spin */
416	while (prom_cpu || mutex_owner(&prom_mutex)) {
417
418		start_cpus();
419		mutex_enter(&prom_mutex);
420
421		/* Wait for other cpu to exit prom */
422		while (prom_cpu)
423			cv_wait(&prom_cv, &prom_mutex);
424
425		mutex_exit(&prom_mutex);
426		pause_cpus(NULL);
427	}
428
429	/* At this point all cpus are paused and none are in the prom */
430}
431
432/*
433 * This routine is a special form of xc_attention().  It ensures that
434 * prom functions are callable while the cpus are at attention.
435 */
436void
437promsafe_xc_attention(cpuset_t cpuset)
438{
439	xc_attention(cpuset);
440
441	/* If some other cpu is entering or is in the prom, spin */
442	while (prom_cpu || mutex_owner(&prom_mutex)) {
443
444		xc_dismissed(cpuset);
445		mutex_enter(&prom_mutex);
446
447		/* Wait for other cpu to exit prom */
448		while (prom_cpu)
449			cv_wait(&prom_cv, &prom_mutex);
450
451		mutex_exit(&prom_mutex);
452		xc_attention(cpuset);
453	}
454
455	/* At this point all cpus are paused and none are in the prom */
456}
457
458
459#if defined(PROM_32BIT_ADDRS)
460
461#include <sys/promimpl.h>
462#include <vm/seg_kmem.h>
463#include <sys/kmem.h>
464#include <sys/bootconf.h>
465
466/*
467 * These routines are only used to workaround "poor feature interaction"
468 * in OBP.  See bug 4115680 for details.
469 *
470 * Many of the promif routines need to allocate temporary buffers
471 * with 32-bit addresses to pass in/out of the CIF.  The lifetime
472 * of the buffers is extremely short, they are allocated and freed
473 * around the CIF call.  We use vmem_alloc() to cache 32-bit memory.
474 *
475 * Note the code in promplat_free() to prevent exhausting the 32 bit
476 * heap during boot.
477 */
478static void *promplat_last_free = NULL;
479static size_t promplat_last_size;
480static vmem_t *promplat_arena;
481static kmutex_t promplat_lock;  /* protect arena, last_free, and last_size */
482
483void *
484promplat_alloc(size_t size)
485{
486
487	mutex_enter(&promplat_lock);
488	if (promplat_arena == NULL) {
489		promplat_arena = vmem_create("promplat", NULL, 0, 8,
490		    segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
491	}
492	mutex_exit(&promplat_lock);
493
494	return (vmem_alloc(promplat_arena, size, VM_NOSLEEP));
495}
496
497/*
498 * Delaying the free() of small allocations gets more mileage
499 * from pages during boot, otherwise a cycle of allocate/free
500 * calls could burn through available heap32 space too quickly.
501 */
502void
503promplat_free(void *p, size_t size)
504{
505	void *p2 = NULL;
506	size_t s2;
507
508	/*
509	 * If VM is initialized, clean up any delayed free().
510	 */
511	if (kvseg.s_base != 0 && promplat_last_free != NULL) {
512		mutex_enter(&promplat_lock);
513		p2 = promplat_last_free;
514		s2 = promplat_last_size;
515		promplat_last_free = NULL;
516		promplat_last_size = 0;
517		mutex_exit(&promplat_lock);
518		if (p2 != NULL) {
519			vmem_free(promplat_arena, p2, s2);
520			p2 = NULL;
521		}
522	}
523
524	/*
525	 * Do the free if VM is initialized or it's a large allocation.
526	 */
527	if (kvseg.s_base != 0 || size >= PAGESIZE) {
528		vmem_free(promplat_arena, p, size);
529		return;
530	}
531
532	/*
533	 * Otherwise, do the last free request and delay this one.
534	 */
535	mutex_enter(&promplat_lock);
536	if (promplat_last_free != NULL) {
537		p2 = promplat_last_free;
538		s2 = promplat_last_size;
539	}
540	promplat_last_free = p;
541	promplat_last_size = size;
542	mutex_exit(&promplat_lock);
543
544	if (p2 != NULL)
545		vmem_free(promplat_arena, p2, s2);
546}
547
548void
549promplat_bcopy(const void *src, void *dst, size_t count)
550{
551	bcopy(src, dst, count);
552}
553
554#endif /* PROM_32BIT_ADDRS */
555
556static prom_generation_cookie_t prom_tree_gen;
557static krwlock_t prom_tree_lock;
558
559int
560prom_tree_access(int (*callback)(void *arg, int has_changed), void *arg,
561    prom_generation_cookie_t *ckp)
562{
563	int chg, rv;
564
565	rw_enter(&prom_tree_lock, RW_READER);
566	/*
567	 * If the tree has changed since the caller last accessed it
568	 * pass 1 as the second argument to the callback function,
569	 * otherwise 0.
570	 */
571	if (ckp != NULL && *ckp != prom_tree_gen) {
572		*ckp = prom_tree_gen;
573		chg = 1;
574	} else
575		chg = 0;
576	rv = callback(arg, chg);
577	rw_exit(&prom_tree_lock);
578	return (rv);
579}
580
581int
582prom_tree_update(int (*callback)(void *arg), void *arg)
583{
584	int rv;
585
586	rw_enter(&prom_tree_lock, RW_WRITER);
587	prom_tree_gen++;
588	rv = callback(arg);
589	rw_exit(&prom_tree_lock);
590	return (rv);
591}
592