hat_sfmmu.c revision 2296:4644f3dc5596
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#pragma ident	"%Z%%M%	%I%	%E% SMI"
27
28/*
29 * VM - Hardware Address Translation management for Spitfire MMU.
30 *
31 * This file implements the machine specific hardware translation
32 * needed by the VM system.  The machine independent interface is
33 * described in <vm/hat.h> while the machine dependent interface
34 * and data structures are described in <vm/hat_sfmmu.h>.
35 *
36 * The hat layer manages the address translation hardware as a cache
37 * driven by calls from the higher levels in the VM system.
38 */
39
40#include <sys/types.h>
41#include <sys/kstat.h>
42#include <vm/hat.h>
43#include <vm/hat_sfmmu.h>
44#include <vm/page.h>
45#include <sys/pte.h>
46#include <sys/systm.h>
47#include <sys/mman.h>
48#include <sys/sysmacros.h>
49#include <sys/machparam.h>
50#include <sys/vtrace.h>
51#include <sys/kmem.h>
52#include <sys/mmu.h>
53#include <sys/cmn_err.h>
54#include <sys/cpu.h>
55#include <sys/cpuvar.h>
56#include <sys/debug.h>
57#include <sys/lgrp.h>
58#include <sys/archsystm.h>
59#include <sys/machsystm.h>
60#include <sys/vmsystm.h>
61#include <vm/as.h>
62#include <vm/seg.h>
63#include <vm/seg_kp.h>
64#include <vm/seg_kmem.h>
65#include <vm/seg_kpm.h>
66#include <vm/rm.h>
67#include <sys/t_lock.h>
68#include <sys/obpdefs.h>
69#include <sys/vm_machparam.h>
70#include <sys/var.h>
71#include <sys/trap.h>
72#include <sys/machtrap.h>
73#include <sys/scb.h>
74#include <sys/bitmap.h>
75#include <sys/machlock.h>
76#include <sys/membar.h>
77#include <sys/atomic.h>
78#include <sys/cpu_module.h>
79#include <sys/prom_debug.h>
80#include <sys/ksynch.h>
81#include <sys/mem_config.h>
82#include <sys/mem_cage.h>
83#include <sys/dtrace.h>
84#include <vm/vm_dep.h>
85#include <vm/xhat_sfmmu.h>
86#include <sys/fpu/fpusystm.h>
87#include <vm/mach_kpm.h>
88
89#if defined(SF_ERRATA_57)
90extern caddr_t errata57_limit;
91#endif
92
93#define	HME8BLK_SZ_RND		((roundup(HME8BLK_SZ, sizeof (int64_t))) /  \
94				(sizeof (int64_t)))
95#define	HBLK_RESERVE		((struct hme_blk *)hblk_reserve)
96
97#define	HBLK_RESERVE_CNT	128
98#define	HBLK_RESERVE_MIN	20
99
100static struct hme_blk		*freehblkp;
101static kmutex_t			freehblkp_lock;
102static int			freehblkcnt;
103
104static int64_t			hblk_reserve[HME8BLK_SZ_RND];
105static kmutex_t			hblk_reserve_lock;
106static kthread_t		*hblk_reserve_thread;
107
108static nucleus_hblk8_info_t	nucleus_hblk8;
109static nucleus_hblk1_info_t	nucleus_hblk1;
110
111/*
112 * SFMMU specific hat functions
113 */
114void	hat_pagecachectl(struct page *, int);
115
116/* flags for hat_pagecachectl */
117#define	HAT_CACHE	0x1
118#define	HAT_UNCACHE	0x2
119#define	HAT_TMPNC	0x4
120
121/*
122 * Flag to allow the creation of non-cacheable translations
123 * to system memory. It is off by default. At the moment this
124 * flag is used by the ecache error injector. The error injector
125 * will turn it on when creating such a translation then shut it
126 * off when it's finished.
127 */
128
129int	sfmmu_allow_nc_trans = 0;
130
131/*
132 * Flag to disable large page support.
133 * 	value of 1 => disable all large pages.
134 *	bits 1, 2, and 3 are to disable 64K, 512K and 4M pages respectively.
135 *
136 * For example, use the value 0x4 to disable 512K pages.
137 *
138 */
139#define	LARGE_PAGES_OFF		0x1
140
141/*
142 * WARNING: 512K pages MUST be disabled for ISM/DISM. If not
143 * a process would page fault indefinitely if it tried to
144 * access a 512K page.
145 */
146int	disable_ism_large_pages = (1 << TTE512K);
147int	disable_large_pages = 0;
148int	disable_auto_large_pages = 0;
149
150/*
151 * Private sfmmu data structures for hat management
152 */
153static struct kmem_cache *sfmmuid_cache;
154static struct kmem_cache *mmuctxdom_cache;
155
156/*
157 * Private sfmmu data structures for tsb management
158 */
159static struct kmem_cache *sfmmu_tsbinfo_cache;
160static struct kmem_cache *sfmmu_tsb8k_cache;
161static struct kmem_cache *sfmmu_tsb_cache[NLGRPS_MAX];
162static vmem_t *kmem_tsb_arena;
163
164/*
165 * sfmmu static variables for hmeblk resource management.
166 */
167static vmem_t *hat_memload1_arena; /* HAT translation arena for sfmmu1_cache */
168static struct kmem_cache *sfmmu8_cache;
169static struct kmem_cache *sfmmu1_cache;
170static struct kmem_cache *pa_hment_cache;
171
172static kmutex_t 	ism_mlist_lock;	/* mutex for ism mapping list */
173/*
174 * private data for ism
175 */
176static struct kmem_cache *ism_blk_cache;
177static struct kmem_cache *ism_ment_cache;
178#define	ISMID_STARTADDR	NULL
179
180/*
181 * Whether to delay TLB flushes and use Cheetah's flush-all support
182 * when removing contexts from the dirty list.
183 */
184int delay_tlb_flush;
185int disable_delay_tlb_flush;
186
187/*
188 * ``hat_lock'' is a hashed mutex lock for protecting sfmmu TSB lists,
189 * HAT flags, synchronizing TLB/TSB coherency, and context management.
190 * The lock is hashed on the sfmmup since the case where we need to lock
191 * all processes is rare but does occur (e.g. we need to unload a shared
192 * mapping from all processes using the mapping).  We have a lot of buckets,
193 * and each slab of sfmmu_t's can use about a quarter of them, giving us
194 * a fairly good distribution without wasting too much space and overhead
195 * when we have to grab them all.
196 */
197#define	SFMMU_NUM_LOCK	128		/* must be power of two */
198hatlock_t	hat_lock[SFMMU_NUM_LOCK];
199
200/*
201 * Hash algorithm optimized for a small number of slabs.
202 *  7 is (highbit((sizeof sfmmu_t)) - 1)
203 * This hash algorithm is based upon the knowledge that sfmmu_t's come from a
204 * kmem_cache, and thus they will be sequential within that cache.  In
205 * addition, each new slab will have a different "color" up to cache_maxcolor
206 * which will skew the hashing for each successive slab which is allocated.
207 * If the size of sfmmu_t changed to a larger size, this algorithm may need
208 * to be revisited.
209 */
210#define	TSB_HASH_SHIFT_BITS (7)
211#define	PTR_HASH(x) ((uintptr_t)x >> TSB_HASH_SHIFT_BITS)
212
213#ifdef DEBUG
214int tsb_hash_debug = 0;
215#define	TSB_HASH(sfmmup)	\
216	(tsb_hash_debug ? &hat_lock[0] : \
217	&hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)])
218#else	/* DEBUG */
219#define	TSB_HASH(sfmmup)	&hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)]
220#endif	/* DEBUG */
221
222
223/* sfmmu_replace_tsb() return codes. */
224typedef enum tsb_replace_rc {
225	TSB_SUCCESS,
226	TSB_ALLOCFAIL,
227	TSB_LOSTRACE,
228	TSB_ALREADY_SWAPPED,
229	TSB_CANTGROW
230} tsb_replace_rc_t;
231
232/*
233 * Flags for TSB allocation routines.
234 */
235#define	TSB_ALLOC	0x01
236#define	TSB_FORCEALLOC	0x02
237#define	TSB_GROW	0x04
238#define	TSB_SHRINK	0x08
239#define	TSB_SWAPIN	0x10
240
241/*
242 * Support for HAT callbacks.
243 */
244#define	SFMMU_MAX_RELOC_CALLBACKS	10
245int sfmmu_max_cb_id = SFMMU_MAX_RELOC_CALLBACKS;
246static id_t sfmmu_cb_nextid = 0;
247static id_t sfmmu_tsb_cb_id;
248struct sfmmu_callback *sfmmu_cb_table;
249
250/*
251 * Kernel page relocation is enabled by default for non-caged
252 * kernel pages.  This has little effect unless segkmem_reloc is
253 * set, since by default kernel memory comes from inside the
254 * kernel cage.
255 */
256int hat_kpr_enabled = 1;
257
258kmutex_t	kpr_mutex;
259kmutex_t	kpr_suspendlock;
260kthread_t	*kreloc_thread;
261
262/*
263 * Enable VA->PA translation sanity checking on DEBUG kernels.
264 * Disabled by default.  This is incompatible with some
265 * drivers (error injector, RSM) so if it breaks you get
266 * to keep both pieces.
267 */
268int hat_check_vtop = 0;
269
270/*
271 * Private sfmmu routines (prototypes)
272 */
273static struct hme_blk *sfmmu_shadow_hcreate(sfmmu_t *, caddr_t, int, uint_t);
274static struct 	hme_blk *sfmmu_hblk_alloc(sfmmu_t *, caddr_t,
275			struct hmehash_bucket *, uint_t, hmeblk_tag, uint_t);
276static caddr_t	sfmmu_hblk_unload(struct hat *, struct hme_blk *, caddr_t,
277			caddr_t, demap_range_t *, uint_t);
278static caddr_t	sfmmu_hblk_sync(struct hat *, struct hme_blk *, caddr_t,
279			caddr_t, int);
280static void	sfmmu_hblk_free(struct hmehash_bucket *, struct hme_blk *,
281			uint64_t, struct hme_blk **);
282static void	sfmmu_hblks_list_purge(struct hme_blk **);
283static uint_t	sfmmu_get_free_hblk(struct hme_blk **, uint_t);
284static uint_t	sfmmu_put_free_hblk(struct hme_blk *, uint_t);
285static struct hme_blk *sfmmu_hblk_steal(int);
286static int	sfmmu_steal_this_hblk(struct hmehash_bucket *,
287			struct hme_blk *, uint64_t, uint64_t,
288			struct hme_blk *);
289static caddr_t	sfmmu_hblk_unlock(struct hme_blk *, caddr_t, caddr_t);
290
291static void	sfmmu_memload_batchsmall(struct hat *, caddr_t, page_t **,
292		    uint_t, uint_t, pgcnt_t);
293void		sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *,
294			uint_t);
295static int	sfmmu_tteload_array(sfmmu_t *, tte_t *, caddr_t, page_t **,
296			uint_t);
297static struct hmehash_bucket *sfmmu_tteload_acquire_hashbucket(sfmmu_t *,
298					caddr_t, int);
299static struct hme_blk *sfmmu_tteload_find_hmeblk(sfmmu_t *,
300			struct hmehash_bucket *, caddr_t, uint_t, uint_t);
301static int	sfmmu_tteload_addentry(sfmmu_t *, struct hme_blk *, tte_t *,
302			caddr_t, page_t **, uint_t);
303static void	sfmmu_tteload_release_hashbucket(struct hmehash_bucket *);
304
305static int	sfmmu_pagearray_setup(caddr_t, page_t **, tte_t *, int);
306pfn_t		sfmmu_uvatopfn(caddr_t, sfmmu_t *);
307void		sfmmu_memtte(tte_t *, pfn_t, uint_t, int);
308#ifdef VAC
309static void	sfmmu_vac_conflict(struct hat *, caddr_t, page_t *);
310static int	sfmmu_vacconflict_array(caddr_t, page_t *, int *);
311int	tst_tnc(page_t *pp, pgcnt_t);
312void	conv_tnc(page_t *pp, int);
313#endif
314
315static void	sfmmu_get_ctx(sfmmu_t *);
316static void	sfmmu_free_sfmmu(sfmmu_t *);
317
318static void	sfmmu_gettte(struct hat *, caddr_t, tte_t *);
319static void	sfmmu_ttesync(struct hat *, caddr_t, tte_t *, page_t *);
320static void	sfmmu_chgattr(struct hat *, caddr_t, size_t, uint_t, int);
321
322cpuset_t	sfmmu_pageunload(page_t *, struct sf_hment *, int);
323static void	hat_pagereload(struct page *, struct page *);
324static cpuset_t	sfmmu_pagesync(page_t *, struct sf_hment *, uint_t);
325#ifdef VAC
326void	sfmmu_page_cache_array(page_t *, int, int, pgcnt_t);
327static void	sfmmu_page_cache(page_t *, int, int, int);
328#endif
329
330static void	sfmmu_tlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
331			pfn_t, int, int, int, int);
332static void	sfmmu_ismtlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
333			pfn_t, int);
334static void	sfmmu_tlb_demap(caddr_t, sfmmu_t *, struct hme_blk *, int, int);
335static void	sfmmu_tlb_range_demap(demap_range_t *);
336static void	sfmmu_invalidate_ctx(sfmmu_t *);
337static void	sfmmu_sync_mmustate(sfmmu_t *);
338
339static void 	sfmmu_tsbinfo_setup_phys(struct tsb_info *, pfn_t);
340static int	sfmmu_tsbinfo_alloc(struct tsb_info **, int, int, uint_t,
341			sfmmu_t *);
342static void	sfmmu_tsb_free(struct tsb_info *);
343static void	sfmmu_tsbinfo_free(struct tsb_info *);
344static int	sfmmu_init_tsbinfo(struct tsb_info *, int, int, uint_t,
345			sfmmu_t *);
346
347static void	sfmmu_tsb_swapin(sfmmu_t *, hatlock_t *);
348static int	sfmmu_select_tsb_szc(pgcnt_t);
349static void	sfmmu_mod_tsb(sfmmu_t *, caddr_t, tte_t *, int);
350#define		sfmmu_load_tsb(sfmmup, vaddr, tte, szc) \
351	sfmmu_mod_tsb(sfmmup, vaddr, tte, szc)
352#define		sfmmu_unload_tsb(sfmmup, vaddr, szc)    \
353	sfmmu_mod_tsb(sfmmup, vaddr, NULL, szc)
354static void	sfmmu_copy_tsb(struct tsb_info *, struct tsb_info *);
355static tsb_replace_rc_t sfmmu_replace_tsb(sfmmu_t *, struct tsb_info *, uint_t,
356    hatlock_t *, uint_t);
357static void	sfmmu_size_tsb(sfmmu_t *, int, uint64_t, uint64_t, int);
358
359#ifdef VAC
360void	sfmmu_cache_flush(pfn_t, int);
361void	sfmmu_cache_flushcolor(int, pfn_t);
362#endif
363static caddr_t	sfmmu_hblk_chgattr(sfmmu_t *, struct hme_blk *, caddr_t,
364			caddr_t, demap_range_t *, uint_t, int);
365
366static uint64_t	sfmmu_vtop_attr(uint_t, int mode, tte_t *);
367static uint_t	sfmmu_ptov_attr(tte_t *);
368static caddr_t	sfmmu_hblk_chgprot(sfmmu_t *, struct hme_blk *, caddr_t,
369			caddr_t, demap_range_t *, uint_t);
370static uint_t	sfmmu_vtop_prot(uint_t, uint_t *);
371static int	sfmmu_idcache_constructor(void *, void *, int);
372static void	sfmmu_idcache_destructor(void *, void *);
373static int	sfmmu_hblkcache_constructor(void *, void *, int);
374static void	sfmmu_hblkcache_destructor(void *, void *);
375static void	sfmmu_hblkcache_reclaim(void *);
376static void	sfmmu_shadow_hcleanup(sfmmu_t *, struct hme_blk *,
377			struct hmehash_bucket *);
378static void	sfmmu_free_hblks(sfmmu_t *, caddr_t, caddr_t, int);
379static void	sfmmu_rm_large_mappings(page_t *, int);
380
381static void	hat_lock_init(void);
382static void	hat_kstat_init(void);
383static int	sfmmu_kstat_percpu_update(kstat_t *ksp, int rw);
384static void	sfmmu_check_page_sizes(sfmmu_t *, int);
385int	fnd_mapping_sz(page_t *);
386static void	iment_add(struct ism_ment *,  struct hat *);
387static void	iment_sub(struct ism_ment *, struct hat *);
388static pgcnt_t	ism_tsb_entries(sfmmu_t *, int szc);
389extern void	sfmmu_setup_tsbinfo(sfmmu_t *);
390extern void	sfmmu_clear_utsbinfo(void);
391
392static void	sfmmu_ctx_wrap_around(mmu_ctx_t *);
393
394/* kpm globals */
395#ifdef	DEBUG
396/*
397 * Enable trap level tsbmiss handling
398 */
399int	kpm_tsbmtl = 1;
400
401/*
402 * Flush the TLB on kpm mapout. Note: Xcalls are used (again) for the
403 * required TLB shootdowns in this case, so handle w/ care. Off by default.
404 */
405int	kpm_tlb_flush;
406#endif	/* DEBUG */
407
408static void	*sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *, size_t, int);
409
410#ifdef DEBUG
411static void	sfmmu_check_hblk_flist();
412#endif
413
414/*
415 * Semi-private sfmmu data structures.  Some of them are initialize in
416 * startup or in hat_init. Some of them are private but accessed by
417 * assembly code or mach_sfmmu.c
418 */
419struct hmehash_bucket *uhme_hash;	/* user hmeblk hash table */
420struct hmehash_bucket *khme_hash;	/* kernel hmeblk hash table */
421uint64_t	uhme_hash_pa;		/* PA of uhme_hash */
422uint64_t	khme_hash_pa;		/* PA of khme_hash */
423int 		uhmehash_num;		/* # of buckets in user hash table */
424int 		khmehash_num;		/* # of buckets in kernel hash table */
425
426uint_t		max_mmu_ctxdoms = 0;	/* max context domains in the system */
427mmu_ctx_t	**mmu_ctxs_tbl;		/* global array of context domains */
428uint64_t	mmu_saved_gnum = 0;	/* to init incoming MMUs' gnums */
429
430#define	DEFAULT_NUM_CTXS_PER_MMU 8192
431static uint_t	nctxs = DEFAULT_NUM_CTXS_PER_MMU;
432
433int		cache;			/* describes system cache */
434
435caddr_t		ktsb_base;		/* kernel 8k-indexed tsb base address */
436uint64_t	ktsb_pbase;		/* kernel 8k-indexed tsb phys address */
437int		ktsb_szcode;		/* kernel 8k-indexed tsb size code */
438int		ktsb_sz;		/* kernel 8k-indexed tsb size */
439
440caddr_t		ktsb4m_base;		/* kernel 4m-indexed tsb base address */
441uint64_t	ktsb4m_pbase;		/* kernel 4m-indexed tsb phys address */
442int		ktsb4m_szcode;		/* kernel 4m-indexed tsb size code */
443int		ktsb4m_sz;		/* kernel 4m-indexed tsb size */
444
445uint64_t	kpm_tsbbase;		/* kernel seg_kpm 4M TSB base address */
446int		kpm_tsbsz;		/* kernel seg_kpm 4M TSB size code */
447uint64_t	kpmsm_tsbbase;		/* kernel seg_kpm 8K TSB base address */
448int		kpmsm_tsbsz;		/* kernel seg_kpm 8K TSB size code */
449
450#ifndef sun4v
451int		utsb_dtlb_ttenum = -1;	/* index in TLB for utsb locked TTE */
452int		utsb4m_dtlb_ttenum = -1; /* index in TLB for 4M TSB TTE */
453int		dtlb_resv_ttenum;	/* index in TLB of first reserved TTE */
454caddr_t		utsb_vabase;		/* reserved kernel virtual memory */
455caddr_t		utsb4m_vabase;		/* for trap handler TSB accesses */
456#endif /* sun4v */
457uint64_t	tsb_alloc_bytes = 0;	/* bytes allocated to TSBs */
458vmem_t		*kmem_tsb_default_arena[NLGRPS_MAX];	/* For dynamic TSBs */
459
460/*
461 * Size to use for TSB slabs.  Future platforms that support page sizes
462 * larger than 4M may wish to change these values, and provide their own
463 * assembly macros for building and decoding the TSB base register contents.
464 * Note disable_large_pages will override the value set here.
465 */
466uint_t	tsb_slab_ttesz = TTE4M;
467uint_t	tsb_slab_size;
468uint_t	tsb_slab_shift;
469uint_t	tsb_slab_mask;	/* PFN mask for TTE */
470
471/* largest TSB size to grow to, will be smaller on smaller memory systems */
472int	tsb_max_growsize = UTSB_MAX_SZCODE;
473
474/*
475 * Tunable parameters dealing with TSB policies.
476 */
477
478/*
479 * This undocumented tunable forces all 8K TSBs to be allocated from
480 * the kernel heap rather than from the kmem_tsb_default_arena arenas.
481 */
482#ifdef	DEBUG
483int	tsb_forceheap = 0;
484#endif	/* DEBUG */
485
486/*
487 * Decide whether to use per-lgroup arenas, or one global set of
488 * TSB arenas.  The default is not to break up per-lgroup, since
489 * most platforms don't recognize any tangible benefit from it.
490 */
491int	tsb_lgrp_affinity = 0;
492
493/*
494 * Used for growing the TSB based on the process RSS.
495 * tsb_rss_factor is based on the smallest TSB, and is
496 * shifted by the TSB size to determine if we need to grow.
497 * The default will grow the TSB if the number of TTEs for
498 * this page size exceeds 75% of the number of TSB entries,
499 * which should _almost_ eliminate all conflict misses
500 * (at the expense of using up lots and lots of memory).
501 */
502#define	TSB_RSS_FACTOR		(TSB_ENTRIES(TSB_MIN_SZCODE) * 0.75)
503#define	SFMMU_RSS_TSBSIZE(tsbszc)	(tsb_rss_factor << tsbszc)
504#define	SELECT_TSB_SIZECODE(pgcnt) ( \
505	(enable_tsb_rss_sizing)? sfmmu_select_tsb_szc(pgcnt) : \
506	default_tsb_size)
507#define	TSB_OK_SHRINK()	\
508	(tsb_alloc_bytes > tsb_alloc_hiwater || freemem < desfree)
509#define	TSB_OK_GROW()	\
510	(tsb_alloc_bytes < tsb_alloc_hiwater && freemem > desfree)
511
512int	enable_tsb_rss_sizing = 1;
513int	tsb_rss_factor	= (int)TSB_RSS_FACTOR;
514
515/* which TSB size code to use for new address spaces or if rss sizing off */
516int default_tsb_size = TSB_8K_SZCODE;
517
518static uint64_t tsb_alloc_hiwater; /* limit TSB reserved memory */
519uint64_t tsb_alloc_hiwater_factor; /* tsb_alloc_hiwater = physmem / this */
520#define	TSB_ALLOC_HIWATER_FACTOR_DEFAULT	32
521
522#ifdef DEBUG
523static int tsb_random_size = 0;	/* set to 1 to test random tsb sizes on alloc */
524static int tsb_grow_stress = 0;	/* if set to 1, keep replacing TSB w/ random */
525static int tsb_alloc_mtbf = 0;	/* fail allocation every n attempts */
526static int tsb_alloc_fail_mtbf = 0;
527static int tsb_alloc_count = 0;
528#endif /* DEBUG */
529
530/* if set to 1, will remap valid TTEs when growing TSB. */
531int tsb_remap_ttes = 1;
532
533/*
534 * If we have more than this many mappings, allocate a second TSB.
535 * This default is chosen because the I/D fully associative TLBs are
536 * assumed to have at least 8 available entries. Platforms with a
537 * larger fully-associative TLB could probably override the default.
538 */
539int tsb_sectsb_threshold = 8;
540
541/*
542 * kstat data
543 */
544struct sfmmu_global_stat sfmmu_global_stat;
545struct sfmmu_tsbsize_stat sfmmu_tsbsize_stat;
546
547/*
548 * Global data
549 */
550sfmmu_t 	*ksfmmup;		/* kernel's hat id */
551
552#ifdef DEBUG
553static void	chk_tte(tte_t *, tte_t *, tte_t *, struct hme_blk *);
554#endif
555
556/* sfmmu locking operations */
557static kmutex_t *sfmmu_mlspl_enter(struct page *, int);
558static int	sfmmu_mlspl_held(struct page *, int);
559
560kmutex_t *sfmmu_page_enter(page_t *);
561void	sfmmu_page_exit(kmutex_t *);
562int	sfmmu_page_spl_held(struct page *);
563
564/* sfmmu internal locking operations - accessed directly */
565static void	sfmmu_mlist_reloc_enter(page_t *, page_t *,
566				kmutex_t **, kmutex_t **);
567static void	sfmmu_mlist_reloc_exit(kmutex_t *, kmutex_t *);
568static hatlock_t *
569		sfmmu_hat_enter(sfmmu_t *);
570static hatlock_t *
571		sfmmu_hat_tryenter(sfmmu_t *);
572static void	sfmmu_hat_exit(hatlock_t *);
573static void	sfmmu_hat_lock_all(void);
574static void	sfmmu_hat_unlock_all(void);
575static void	sfmmu_ismhat_enter(sfmmu_t *, int);
576static void	sfmmu_ismhat_exit(sfmmu_t *, int);
577
578/*
579 * Array of mutexes protecting a page's mapping list and p_nrm field.
580 *
581 * The hash function looks complicated, but is made up so that:
582 *
583 * "pp" not shifted, so adjacent pp values will hash to different cache lines
584 *  (8 byte alignment * 8 bytes/mutes == 64 byte coherency subblock)
585 *
586 * "pp" >> mml_shift, incorporates more source bits into the hash result
587 *
588 *  "& (mml_table_size - 1), should be faster than using remainder "%"
589 *
590 * Hopefully, mml_table, mml_table_size and mml_shift are all in the same
591 * cacheline, since they get declared next to each other below. We'll trust
592 * ld not to do something random.
593 */
594#ifdef	DEBUG
595int mlist_hash_debug = 0;
596#define	MLIST_HASH(pp)	(mlist_hash_debug ? &mml_table[0] : \
597	&mml_table[((uintptr_t)(pp) + \
598	((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)])
599#else	/* !DEBUG */
600#define	MLIST_HASH(pp)   &mml_table[ \
601	((uintptr_t)(pp) + ((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)]
602#endif	/* !DEBUG */
603
604kmutex_t		*mml_table;
605uint_t			mml_table_sz;	/* must be a power of 2 */
606uint_t			mml_shift;	/* log2(mml_table_sz) + 3 for align */
607
608kpm_hlk_t	*kpmp_table;
609uint_t		kpmp_table_sz;	/* must be a power of 2 */
610uchar_t		kpmp_shift;
611
612kpm_shlk_t	*kpmp_stable;
613uint_t		kpmp_stable_sz;	/* must be a power of 2 */
614
615/*
616 * SPL_HASH was improved to avoid false cache line sharing
617 */
618#define	SPL_TABLE_SIZE	128
619#define	SPL_MASK	(SPL_TABLE_SIZE - 1)
620#define	SPL_SHIFT	7		/* log2(SPL_TABLE_SIZE) */
621
622#define	SPL_INDEX(pp) \
623	((((uintptr_t)(pp) >> SPL_SHIFT) ^ \
624	((uintptr_t)(pp) >> (SPL_SHIFT << 1))) & \
625	(SPL_TABLE_SIZE - 1))
626
627#define	SPL_HASH(pp)    \
628	(&sfmmu_page_lock[SPL_INDEX(pp) & SPL_MASK].pad_mutex)
629
630static	pad_mutex_t	sfmmu_page_lock[SPL_TABLE_SIZE];
631
632
633/*
634 * hat_unload_callback() will group together callbacks in order
635 * to avoid xt_sync() calls.  This is the maximum size of the group.
636 */
637#define	MAX_CB_ADDR	32
638
639tte_t	hw_tte;
640static ulong_t sfmmu_dmr_maxbit = DMR_MAXBIT;
641
642static char	*mmu_ctx_kstat_names[] = {
643	"mmu_ctx_tsb_exceptions",
644	"mmu_ctx_tsb_raise_exception",
645	"mmu_ctx_wrap_around",
646};
647
648/*
649 * Wrapper for vmem_xalloc since vmem_create only allows limited
650 * parameters for vm_source_alloc functions.  This function allows us
651 * to specify alignment consistent with the size of the object being
652 * allocated.
653 */
654static void *
655sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *vmp, size_t size, int vmflag)
656{
657	return (vmem_xalloc(vmp, size, size, 0, 0, NULL, NULL, vmflag));
658}
659
660/* Common code for setting tsb_alloc_hiwater. */
661#define	SFMMU_SET_TSB_ALLOC_HIWATER(pages)	tsb_alloc_hiwater = \
662		ptob(pages) / tsb_alloc_hiwater_factor
663
664/*
665 * Set tsb_max_growsize to allow at most all of physical memory to be mapped by
666 * a single TSB.  physmem is the number of physical pages so we need physmem 8K
667 * TTEs to represent all those physical pages.  We round this up by using
668 * 1<<highbit().  To figure out which size code to use, remember that the size
669 * code is just an amount to shift the smallest TSB size to get the size of
670 * this TSB.  So we subtract that size, TSB_START_SIZE, from highbit() (or
671 * highbit() - 1) to get the size code for the smallest TSB that can represent
672 * all of physical memory, while erring on the side of too much.
673 *
674 * If the computed size code is less than the current tsb_max_growsize, we set
675 * tsb_max_growsize to the computed size code.  In the case where the computed
676 * size code is greater than tsb_max_growsize, we have these restrictions that
677 * apply to increasing tsb_max_growsize:
678 *	1) TSBs can't grow larger than the TSB slab size
679 *	2) TSBs can't grow larger than UTSB_MAX_SZCODE.
680 */
681#define	SFMMU_SET_TSB_MAX_GROWSIZE(pages) {				\
682	int	i, szc;							\
683									\
684	i = highbit(pages);						\
685	if ((1 << (i - 1)) == (pages))					\
686		i--;		/* 2^n case, round down */		\
687	szc = i - TSB_START_SIZE;					\
688	if (szc < tsb_max_growsize)					\
689		tsb_max_growsize = szc;					\
690	else if ((szc > tsb_max_growsize) &&				\
691	    (szc <= tsb_slab_shift - (TSB_START_SIZE + TSB_ENTRY_SHIFT))) \
692		tsb_max_growsize = MIN(szc, UTSB_MAX_SZCODE);		\
693}
694
695/*
696 * Given a pointer to an sfmmu and a TTE size code, return a pointer to the
697 * tsb_info which handles that TTE size.
698 */
699#define	SFMMU_GET_TSBINFO(tsbinfop, sfmmup, tte_szc)			\
700	(tsbinfop) = (sfmmup)->sfmmu_tsb;				\
701	ASSERT(sfmmu_hat_lock_held(sfmmup));				\
702	if ((tte_szc) >= TTE4M)						\
703		(tsbinfop) = (tsbinfop)->tsb_next;
704
705/*
706 * Return the number of mappings present in the HAT
707 * for a particular process and page size.
708 */
709#define	SFMMU_TTE_CNT(sfmmup, szc)					\
710	(sfmmup)->sfmmu_iblk?						\
711	    (sfmmup)->sfmmu_ismttecnt[(szc)] +				\
712	    (sfmmup)->sfmmu_ttecnt[(szc)] :				\
713	    (sfmmup)->sfmmu_ttecnt[(szc)];
714
715/*
716 * Macro to use to unload entries from the TSB.
717 * It has knowledge of which page sizes get replicated in the TSB
718 * and will call the appropriate unload routine for the appropriate size.
719 */
720#define	SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp)				\
721{									\
722	int ttesz = get_hblk_ttesz(hmeblkp);				\
723	if (ttesz == TTE8K || ttesz == TTE4M) {				\
724		sfmmu_unload_tsb(sfmmup, addr, ttesz);			\
725	} else {							\
726		caddr_t sva = (caddr_t)get_hblk_base(hmeblkp);		\
727		caddr_t eva = sva + get_hblk_span(hmeblkp);		\
728		ASSERT(addr >= sva && addr < eva);			\
729		sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz);	\
730	}								\
731}
732
733
734/* Update tsb_alloc_hiwater after memory is configured. */
735/*ARGSUSED*/
736static void
737sfmmu_update_tsb_post_add(void *arg, pgcnt_t delta_pages)
738{
739	/* Assumes physmem has already been updated. */
740	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
741	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
742}
743
744/*
745 * Update tsb_alloc_hiwater before memory is deleted.  We'll do nothing here
746 * and update tsb_alloc_hiwater and tsb_max_growsize after the memory is
747 * deleted.
748 */
749/*ARGSUSED*/
750static int
751sfmmu_update_tsb_pre_del(void *arg, pgcnt_t delta_pages)
752{
753	return (0);
754}
755
756/* Update tsb_alloc_hiwater after memory fails to be unconfigured. */
757/*ARGSUSED*/
758static void
759sfmmu_update_tsb_post_del(void *arg, pgcnt_t delta_pages, int cancelled)
760{
761	/*
762	 * Whether the delete was cancelled or not, just go ahead and update
763	 * tsb_alloc_hiwater and tsb_max_growsize.
764	 */
765	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
766	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
767}
768
769static kphysm_setup_vector_t sfmmu_update_tsb_vec = {
770	KPHYSM_SETUP_VECTOR_VERSION,	/* version */
771	sfmmu_update_tsb_post_add,	/* post_add */
772	sfmmu_update_tsb_pre_del,	/* pre_del */
773	sfmmu_update_tsb_post_del	/* post_del */
774};
775
776
777/*
778 * HME_BLK HASH PRIMITIVES
779 */
780
781/*
782 * Enter a hme on the mapping list for page pp.
783 * When large pages are more prevalent in the system we might want to
784 * keep the mapping list in ascending order by the hment size. For now,
785 * small pages are more frequent, so don't slow it down.
786 */
787#define	HME_ADD(hme, pp)					\
788{								\
789	ASSERT(sfmmu_mlist_held(pp));				\
790								\
791	hme->hme_prev = NULL;					\
792	hme->hme_next = pp->p_mapping;				\
793	hme->hme_page = pp;					\
794	if (pp->p_mapping) {					\
795		((struct sf_hment *)(pp->p_mapping))->hme_prev = hme;\
796		ASSERT(pp->p_share > 0);			\
797	} else  {						\
798		/* EMPTY */					\
799		ASSERT(pp->p_share == 0);			\
800	}							\
801	pp->p_mapping = hme;					\
802	pp->p_share++;						\
803}
804
805/*
806 * Enter a hme on the mapping list for page pp.
807 * If we are unmapping a large translation, we need to make sure that the
808 * change is reflect in the corresponding bit of the p_index field.
809 */
810#define	HME_SUB(hme, pp)					\
811{								\
812	ASSERT(sfmmu_mlist_held(pp));				\
813	ASSERT(hme->hme_page == pp || IS_PAHME(hme));		\
814								\
815	if (pp->p_mapping == NULL) {				\
816		panic("hme_remove - no mappings");		\
817	}							\
818								\
819	membar_stst();	/* ensure previous stores finish */	\
820								\
821	ASSERT(pp->p_share > 0);				\
822	pp->p_share--;						\
823								\
824	if (hme->hme_prev) {					\
825		ASSERT(pp->p_mapping != hme);			\
826		ASSERT(hme->hme_prev->hme_page == pp ||		\
827			IS_PAHME(hme->hme_prev));		\
828		hme->hme_prev->hme_next = hme->hme_next;	\
829	} else {						\
830		ASSERT(pp->p_mapping == hme);			\
831		pp->p_mapping = hme->hme_next;			\
832		ASSERT((pp->p_mapping == NULL) ?		\
833			(pp->p_share == 0) : 1);		\
834	}							\
835								\
836	if (hme->hme_next) {					\
837		ASSERT(hme->hme_next->hme_page == pp ||		\
838			IS_PAHME(hme->hme_next));		\
839		hme->hme_next->hme_prev = hme->hme_prev;	\
840	}							\
841								\
842	/* zero out the entry */				\
843	hme->hme_next = NULL;					\
844	hme->hme_prev = NULL;					\
845	hme->hme_page = NULL;					\
846								\
847	if (hme_size(hme) > TTE8K) {				\
848		/* remove mappings for remainder of large pg */	\
849		sfmmu_rm_large_mappings(pp, hme_size(hme));	\
850	}							\
851}
852
853/*
854 * This function returns the hment given the hme_blk and a vaddr.
855 * It assumes addr has already been checked to belong to hme_blk's
856 * range.
857 */
858#define	HBLKTOHME(hment, hmeblkp, addr)					\
859{									\
860	int index;							\
861	HBLKTOHME_IDX(hment, hmeblkp, addr, index)			\
862}
863
864/*
865 * Version of HBLKTOHME that also returns the index in hmeblkp
866 * of the hment.
867 */
868#define	HBLKTOHME_IDX(hment, hmeblkp, addr, idx)			\
869{									\
870	ASSERT(in_hblk_range((hmeblkp), (addr)));			\
871									\
872	if (get_hblk_ttesz(hmeblkp) == TTE8K) {				\
873		idx = (((uintptr_t)(addr) >> MMU_PAGESHIFT) & (NHMENTS-1)); \
874	} else								\
875		idx = 0;						\
876									\
877	(hment) = &(hmeblkp)->hblk_hme[idx];				\
878}
879
880/*
881 * Disable any page sizes not supported by the CPU
882 */
883void
884hat_init_pagesizes()
885{
886	int 		i;
887
888	mmu_exported_page_sizes = 0;
889	for (i = TTE8K; i < max_mmu_page_sizes; i++) {
890		extern int	disable_text_largepages;
891		extern int	disable_initdata_largepages;
892
893		szc_2_userszc[i] = (uint_t)-1;
894		userszc_2_szc[i] = (uint_t)-1;
895
896		if ((mmu_exported_pagesize_mask & (1 << i)) == 0) {
897			disable_large_pages |= (1 << i);
898			disable_ism_large_pages |= (1 << i);
899			disable_text_largepages |= (1 << i);
900			disable_initdata_largepages |= (1 << i);
901		} else {
902			szc_2_userszc[i] = mmu_exported_page_sizes;
903			userszc_2_szc[mmu_exported_page_sizes] = i;
904			mmu_exported_page_sizes++;
905		}
906	}
907
908	disable_auto_large_pages = disable_large_pages;
909
910	/*
911	 * Initialize mmu-specific large page sizes.
912	 */
913	if ((mmu_page_sizes == max_mmu_page_sizes) &&
914	    (&mmu_large_pages_disabled)) {
915		disable_large_pages |= mmu_large_pages_disabled(HAT_LOAD);
916		disable_ism_large_pages |=
917		    mmu_large_pages_disabled(HAT_LOAD_SHARE);
918		disable_auto_large_pages |=
919		    mmu_large_pages_disabled(HAT_LOAD_AUTOLPG);
920	}
921
922}
923
924/*
925 * Initialize the hardware address translation structures.
926 */
927void
928hat_init(void)
929{
930	int 		i;
931	uint_t		sz;
932	uint_t		maxtsb;
933	size_t		size;
934
935	hat_lock_init();
936	hat_kstat_init();
937
938	/*
939	 * Hardware-only bits in a TTE
940	 */
941	MAKE_TTE_MASK(&hw_tte);
942
943	hat_init_pagesizes();
944
945	/* Initialize the hash locks */
946	for (i = 0; i < khmehash_num; i++) {
947		mutex_init(&khme_hash[i].hmehash_mutex, NULL,
948		    MUTEX_DEFAULT, NULL);
949	}
950	for (i = 0; i < uhmehash_num; i++) {
951		mutex_init(&uhme_hash[i].hmehash_mutex, NULL,
952		    MUTEX_DEFAULT, NULL);
953	}
954	khmehash_num--;		/* make sure counter starts from 0 */
955	uhmehash_num--;		/* make sure counter starts from 0 */
956
957	/*
958	 * Allocate context domain structures.
959	 *
960	 * A platform may choose to modify max_mmu_ctxdoms in
961	 * set_platform_defaults(). If a platform does not define
962	 * a set_platform_defaults() or does not choose to modify
963	 * max_mmu_ctxdoms, it gets one MMU context domain for every CPU.
964	 *
965	 * For sun4v, there will be one global context domain, this is to
966	 * avoid the ldom cpu substitution problem.
967	 *
968	 * For all platforms that have CPUs sharing MMUs, this
969	 * value must be defined.
970	 */
971	if (max_mmu_ctxdoms == 0) {
972#ifndef sun4v
973		max_mmu_ctxdoms = max_ncpus;
974#else /* sun4v */
975		max_mmu_ctxdoms = 1;
976#endif /* sun4v */
977	}
978
979	size = max_mmu_ctxdoms * sizeof (mmu_ctx_t *);
980	mmu_ctxs_tbl = kmem_zalloc(size, KM_SLEEP);
981
982	/* mmu_ctx_t is 64 bytes aligned */
983	mmuctxdom_cache = kmem_cache_create("mmuctxdom_cache",
984	    sizeof (mmu_ctx_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
985	/*
986	 * MMU context domain initialization for the Boot CPU.
987	 * This needs the context domains array allocated above.
988	 */
989	mutex_enter(&cpu_lock);
990	sfmmu_cpu_init(CPU);
991	mutex_exit(&cpu_lock);
992
993	/*
994	 * Intialize ism mapping list lock.
995	 */
996
997	mutex_init(&ism_mlist_lock, NULL, MUTEX_DEFAULT, NULL);
998
999	/*
1000	 * Each sfmmu structure carries an array of MMU context info
1001	 * structures, one per context domain. The size of this array depends
1002	 * on the maximum number of context domains. So, the size of the
1003	 * sfmmu structure varies per platform.
1004	 *
1005	 * sfmmu is allocated from static arena, because trap
1006	 * handler at TL > 0 is not allowed to touch kernel relocatable
1007	 * memory. sfmmu's alignment is changed to 64 bytes from
1008	 * default 8 bytes, as the lower 6 bits will be used to pass
1009	 * pgcnt to vtag_flush_pgcnt_tl1.
1010	 */
1011	size = sizeof (sfmmu_t) + sizeof (sfmmu_ctx_t) * (max_mmu_ctxdoms - 1);
1012
1013	sfmmuid_cache = kmem_cache_create("sfmmuid_cache", size,
1014	    64, sfmmu_idcache_constructor, sfmmu_idcache_destructor,
1015	    NULL, NULL, static_arena, 0);
1016
1017	sfmmu_tsbinfo_cache = kmem_cache_create("sfmmu_tsbinfo_cache",
1018	    sizeof (struct tsb_info), 0, NULL, NULL, NULL, NULL, NULL, 0);
1019
1020	/*
1021	 * Since we only use the tsb8k cache to "borrow" pages for TSBs
1022	 * from the heap when low on memory or when TSB_FORCEALLOC is
1023	 * specified, don't use magazines to cache them--we want to return
1024	 * them to the system as quickly as possible.
1025	 */
1026	sfmmu_tsb8k_cache = kmem_cache_create("sfmmu_tsb8k_cache",
1027	    MMU_PAGESIZE, MMU_PAGESIZE, NULL, NULL, NULL, NULL,
1028	    static_arena, KMC_NOMAGAZINE);
1029
1030	/*
1031	 * Set tsb_alloc_hiwater to 1/tsb_alloc_hiwater_factor of physical
1032	 * memory, which corresponds to the old static reserve for TSBs.
1033	 * tsb_alloc_hiwater_factor defaults to 32.  This caps the amount of
1034	 * memory we'll allocate for TSB slabs; beyond this point TSB
1035	 * allocations will be taken from the kernel heap (via
1036	 * sfmmu_tsb8k_cache) and will be throttled as would any other kmem
1037	 * consumer.
1038	 */
1039	if (tsb_alloc_hiwater_factor == 0) {
1040		tsb_alloc_hiwater_factor = TSB_ALLOC_HIWATER_FACTOR_DEFAULT;
1041	}
1042	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
1043
1044	/* Set tsb_max_growsize. */
1045	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
1046
1047	/*
1048	 * On smaller memory systems, allocate TSB memory in smaller chunks
1049	 * than the default 4M slab size. We also honor disable_large_pages
1050	 * here.
1051	 *
1052	 * The trap handlers need to be patched with the final slab shift,
1053	 * since they need to be able to construct the TSB pointer at runtime.
1054	 */
1055	if (tsb_max_growsize <= TSB_512K_SZCODE)
1056		tsb_slab_ttesz = TTE512K;
1057
1058	for (sz = tsb_slab_ttesz; sz > 0; sz--) {
1059		if (!(disable_large_pages & (1 << sz)))
1060			break;
1061	}
1062
1063	tsb_slab_ttesz = sz;
1064	tsb_slab_shift = MMU_PAGESHIFT + (sz << 1) + sz;
1065	tsb_slab_size = 1 << tsb_slab_shift;
1066	tsb_slab_mask = (1 << (tsb_slab_shift - MMU_PAGESHIFT)) - 1;
1067
1068	maxtsb = tsb_slab_shift - (TSB_START_SIZE + TSB_ENTRY_SHIFT);
1069	if (tsb_max_growsize > maxtsb)
1070		tsb_max_growsize = maxtsb;
1071
1072	/*
1073	 * Set up memory callback to update tsb_alloc_hiwater and
1074	 * tsb_max_growsize.
1075	 */
1076	i = kphysm_setup_func_register(&sfmmu_update_tsb_vec, (void *) 0);
1077	ASSERT(i == 0);
1078
1079	/*
1080	 * kmem_tsb_arena is the source from which large TSB slabs are
1081	 * drawn.  The quantum of this arena corresponds to the largest
1082	 * TSB size we can dynamically allocate for user processes.
1083	 * Currently it must also be a supported page size since we
1084	 * use exactly one translation entry to map each slab page.
1085	 *
1086	 * The per-lgroup kmem_tsb_default_arena arenas are the arenas from
1087	 * which most TSBs are allocated.  Since most TSB allocations are
1088	 * typically 8K we have a kmem cache we stack on top of each
1089	 * kmem_tsb_default_arena to speed up those allocations.
1090	 *
1091	 * Note the two-level scheme of arenas is required only
1092	 * because vmem_create doesn't allow us to specify alignment
1093	 * requirements.  If this ever changes the code could be
1094	 * simplified to use only one level of arenas.
1095	 */
1096	kmem_tsb_arena = vmem_create("kmem_tsb", NULL, 0, tsb_slab_size,
1097	    sfmmu_vmem_xalloc_aligned_wrapper, vmem_xfree, heap_arena,
1098	    0, VM_SLEEP);
1099
1100	if (tsb_lgrp_affinity) {
1101		char s[50];
1102		for (i = 0; i < NLGRPS_MAX; i++) {
1103			(void) sprintf(s, "kmem_tsb_lgrp%d", i);
1104			kmem_tsb_default_arena[i] =
1105			    vmem_create(s, NULL, 0, PAGESIZE,
1106			    sfmmu_tsb_segkmem_alloc, sfmmu_tsb_segkmem_free,
1107			    kmem_tsb_arena, 0, VM_SLEEP | VM_BESTFIT);
1108			(void) sprintf(s, "sfmmu_tsb_lgrp%d_cache", i);
1109			sfmmu_tsb_cache[i] = kmem_cache_create(s, PAGESIZE,
1110			    PAGESIZE, NULL, NULL, NULL, NULL,
1111			    kmem_tsb_default_arena[i], 0);
1112		}
1113	} else {
1114		kmem_tsb_default_arena[0] = vmem_create("kmem_tsb_default",
1115		    NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc,
1116		    sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0,
1117		    VM_SLEEP | VM_BESTFIT);
1118
1119		sfmmu_tsb_cache[0] = kmem_cache_create("sfmmu_tsb_cache",
1120		    PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL,
1121		    kmem_tsb_default_arena[0], 0);
1122	}
1123
1124	sfmmu8_cache = kmem_cache_create("sfmmu8_cache", HME8BLK_SZ,
1125		HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1126		sfmmu_hblkcache_destructor,
1127		sfmmu_hblkcache_reclaim, (void *)HME8BLK_SZ,
1128		hat_memload_arena, KMC_NOHASH);
1129
1130	hat_memload1_arena = vmem_create("hat_memload1", NULL, 0, PAGESIZE,
1131	    segkmem_alloc_permanent, segkmem_free, heap_arena, 0, VM_SLEEP);
1132
1133	sfmmu1_cache = kmem_cache_create("sfmmu1_cache", HME1BLK_SZ,
1134		HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1135		sfmmu_hblkcache_destructor,
1136		NULL, (void *)HME1BLK_SZ,
1137		hat_memload1_arena, KMC_NOHASH);
1138
1139	pa_hment_cache = kmem_cache_create("pa_hment_cache", PAHME_SZ,
1140		0, NULL, NULL, NULL, NULL, static_arena, KMC_NOHASH);
1141
1142	ism_blk_cache = kmem_cache_create("ism_blk_cache",
1143		sizeof (ism_blk_t), ecache_alignsize, NULL, NULL,
1144		NULL, NULL, static_arena, KMC_NOHASH);
1145
1146	ism_ment_cache = kmem_cache_create("ism_ment_cache",
1147		sizeof (ism_ment_t), 0, NULL, NULL,
1148		NULL, NULL, NULL, 0);
1149
1150	/*
1151	 * We grab the first hat for the kernel,
1152	 */
1153	AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER);
1154	kas.a_hat = hat_alloc(&kas);
1155	AS_LOCK_EXIT(&kas, &kas.a_lock);
1156
1157	/*
1158	 * Initialize hblk_reserve.
1159	 */
1160	((struct hme_blk *)hblk_reserve)->hblk_nextpa =
1161				va_to_pa((caddr_t)hblk_reserve);
1162
1163#ifndef UTSB_PHYS
1164	/*
1165	 * Reserve some kernel virtual address space for the locked TTEs
1166	 * that allow us to probe the TSB from TL>0.
1167	 */
1168	utsb_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1169		0, 0, NULL, NULL, VM_SLEEP);
1170	utsb4m_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1171		0, 0, NULL, NULL, VM_SLEEP);
1172#endif
1173
1174#ifdef VAC
1175	/*
1176	 * The big page VAC handling code assumes VAC
1177	 * will not be bigger than the smallest big
1178	 * page- which is 64K.
1179	 */
1180	if (TTEPAGES(TTE64K) < CACHE_NUM_COLOR) {
1181		cmn_err(CE_PANIC, "VAC too big!");
1182	}
1183#endif
1184
1185	(void) xhat_init();
1186
1187	uhme_hash_pa = va_to_pa(uhme_hash);
1188	khme_hash_pa = va_to_pa(khme_hash);
1189
1190	/*
1191	 * Initialize relocation locks. kpr_suspendlock is held
1192	 * at PIL_MAX to prevent interrupts from pinning the holder
1193	 * of a suspended TTE which may access it leading to a
1194	 * deadlock condition.
1195	 */
1196	mutex_init(&kpr_mutex, NULL, MUTEX_DEFAULT, NULL);
1197	mutex_init(&kpr_suspendlock, NULL, MUTEX_SPIN, (void *)PIL_MAX);
1198}
1199
1200/*
1201 * Initialize locking for the hat layer, called early during boot.
1202 */
1203static void
1204hat_lock_init()
1205{
1206	int i;
1207
1208	/*
1209	 * initialize the array of mutexes protecting a page's mapping
1210	 * list and p_nrm field.
1211	 */
1212	for (i = 0; i < mml_table_sz; i++)
1213		mutex_init(&mml_table[i], NULL, MUTEX_DEFAULT, NULL);
1214
1215	if (kpm_enable) {
1216		for (i = 0; i < kpmp_table_sz; i++) {
1217			mutex_init(&kpmp_table[i].khl_mutex, NULL,
1218			    MUTEX_DEFAULT, NULL);
1219		}
1220	}
1221
1222	/*
1223	 * Initialize array of mutex locks that protects sfmmu fields and
1224	 * TSB lists.
1225	 */
1226	for (i = 0; i < SFMMU_NUM_LOCK; i++)
1227		mutex_init(HATLOCK_MUTEXP(&hat_lock[i]), NULL, MUTEX_DEFAULT,
1228		    NULL);
1229}
1230
1231extern caddr_t kmem64_base, kmem64_end;
1232
1233#define	SFMMU_KERNEL_MAXVA \
1234	(kmem64_base ? (uintptr_t)kmem64_end : (SYSLIMIT))
1235
1236/*
1237 * Allocate a hat structure.
1238 * Called when an address space first uses a hat.
1239 */
1240struct hat *
1241hat_alloc(struct as *as)
1242{
1243	sfmmu_t *sfmmup;
1244	int i;
1245	uint64_t cnum;
1246	extern uint_t get_color_start(struct as *);
1247
1248	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
1249	sfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP);
1250	sfmmup->sfmmu_as = as;
1251	sfmmup->sfmmu_flags = 0;
1252	LOCK_INIT_CLEAR(&sfmmup->sfmmu_ctx_lock);
1253
1254	if (as == &kas) {
1255		ksfmmup = sfmmup;
1256		sfmmup->sfmmu_cext = 0;
1257		cnum = KCONTEXT;
1258
1259		sfmmup->sfmmu_clrstart = 0;
1260		sfmmup->sfmmu_tsb = NULL;
1261		/*
1262		 * hat_kern_setup() will call sfmmu_init_ktsbinfo()
1263		 * to setup tsb_info for ksfmmup.
1264		 */
1265	} else {
1266
1267		/*
1268		 * Just set to invalid ctx. When it faults, it will
1269		 * get a valid ctx. This would avoid the situation
1270		 * where we get a ctx, but it gets stolen and then
1271		 * we fault when we try to run and so have to get
1272		 * another ctx.
1273		 */
1274		sfmmup->sfmmu_cext = 0;
1275		cnum = INVALID_CONTEXT;
1276
1277		/* initialize original physical page coloring bin */
1278		sfmmup->sfmmu_clrstart = get_color_start(as);
1279#ifdef DEBUG
1280		if (tsb_random_size) {
1281			uint32_t randval = (uint32_t)gettick() >> 4;
1282			int size = randval % (tsb_max_growsize + 1);
1283
1284			/* chose a random tsb size for stress testing */
1285			(void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb, size,
1286			    TSB8K|TSB64K|TSB512K, 0, sfmmup);
1287		} else
1288#endif /* DEBUG */
1289			(void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb,
1290			    default_tsb_size,
1291			    TSB8K|TSB64K|TSB512K, 0, sfmmup);
1292		sfmmup->sfmmu_flags = HAT_SWAPPED;
1293		ASSERT(sfmmup->sfmmu_tsb != NULL);
1294	}
1295
1296	ASSERT(max_mmu_ctxdoms > 0);
1297	for (i = 0; i < max_mmu_ctxdoms; i++) {
1298		sfmmup->sfmmu_ctxs[i].cnum = cnum;
1299		sfmmup->sfmmu_ctxs[i].gnum = 0;
1300	}
1301
1302	sfmmu_setup_tsbinfo(sfmmup);
1303	for (i = 0; i < max_mmu_page_sizes; i++) {
1304		sfmmup->sfmmu_ttecnt[i] = 0;
1305		sfmmup->sfmmu_ismttecnt[i] = 0;
1306		sfmmup->sfmmu_pgsz[i] = TTE8K;
1307	}
1308
1309	sfmmup->sfmmu_iblk = NULL;
1310	sfmmup->sfmmu_ismhat = 0;
1311	sfmmup->sfmmu_ismblkpa = (uint64_t)-1;
1312	if (sfmmup == ksfmmup) {
1313		CPUSET_ALL(sfmmup->sfmmu_cpusran);
1314	} else {
1315		CPUSET_ZERO(sfmmup->sfmmu_cpusran);
1316	}
1317	sfmmup->sfmmu_free = 0;
1318	sfmmup->sfmmu_rmstat = 0;
1319	sfmmup->sfmmu_clrbin = sfmmup->sfmmu_clrstart;
1320	sfmmup->sfmmu_xhat_provider = NULL;
1321	cv_init(&sfmmup->sfmmu_tsb_cv, NULL, CV_DEFAULT, NULL);
1322	return (sfmmup);
1323}
1324
1325/*
1326 * Create per-MMU context domain kstats for a given MMU ctx.
1327 */
1328static void
1329sfmmu_mmu_kstat_create(mmu_ctx_t *mmu_ctxp)
1330{
1331	mmu_ctx_stat_t	stat;
1332	kstat_t		*mmu_kstat;
1333
1334	ASSERT(MUTEX_HELD(&cpu_lock));
1335	ASSERT(mmu_ctxp->mmu_kstat == NULL);
1336
1337	mmu_kstat = kstat_create("unix", mmu_ctxp->mmu_idx, "mmu_ctx",
1338	    "hat", KSTAT_TYPE_NAMED, MMU_CTX_NUM_STATS, KSTAT_FLAG_VIRTUAL);
1339
1340	if (mmu_kstat == NULL) {
1341		cmn_err(CE_WARN, "kstat_create for MMU %d failed",
1342		    mmu_ctxp->mmu_idx);
1343	} else {
1344		mmu_kstat->ks_data = mmu_ctxp->mmu_kstat_data;
1345		for (stat = 0; stat < MMU_CTX_NUM_STATS; stat++)
1346			kstat_named_init(&mmu_ctxp->mmu_kstat_data[stat],
1347			    mmu_ctx_kstat_names[stat], KSTAT_DATA_INT64);
1348		mmu_ctxp->mmu_kstat = mmu_kstat;
1349		kstat_install(mmu_kstat);
1350	}
1351}
1352
1353/*
1354 * plat_cpuid_to_mmu_ctx_info() is a platform interface that returns MMU
1355 * context domain information for a given CPU. If a platform does not
1356 * specify that interface, then the function below is used instead to return
1357 * default information. The defaults are as follows:
1358 *
1359 *	- For sun4u systems there's one MMU context domain per CPU.
1360 *	  This default is used by all sun4u systems except OPL. OPL systems
1361 *	  provide platform specific interface to map CPU ids to MMU ids
1362 *	  because on OPL more than 1 CPU shares a single MMU.
1363 *        Note that on sun4v, there is one global context domain for
1364 *	  the entire system. This is to avoid running into potential problem
1365 *	  with ldom physical cpu substitution feature.
1366 *	- The number of MMU context IDs supported on any CPU in the
1367 *	  system is 8K.
1368 */
1369/*ARGSUSED*/
1370static void
1371sfmmu_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *infop)
1372{
1373	infop->mmu_nctxs = nctxs;
1374#ifndef sun4v
1375	infop->mmu_idx = cpu[cpuid]->cpu_seqid;
1376#else /* sun4v */
1377	infop->mmu_idx = 0;
1378#endif /* sun4v */
1379}
1380
1381/*
1382 * Called during CPU initialization to set the MMU context-related information
1383 * for a CPU.
1384 *
1385 * cpu_lock serializes accesses to mmu_ctxs and mmu_saved_gnum.
1386 */
1387void
1388sfmmu_cpu_init(cpu_t *cp)
1389{
1390	mmu_ctx_info_t	info;
1391	mmu_ctx_t	*mmu_ctxp;
1392
1393	ASSERT(MUTEX_HELD(&cpu_lock));
1394
1395	if (&plat_cpuid_to_mmu_ctx_info == NULL)
1396		sfmmu_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1397	else
1398		plat_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1399
1400	ASSERT(info.mmu_idx < max_mmu_ctxdoms);
1401
1402	if ((mmu_ctxp = mmu_ctxs_tbl[info.mmu_idx]) == NULL) {
1403		/* Each mmu_ctx is cacheline aligned. */
1404		mmu_ctxp = kmem_cache_alloc(mmuctxdom_cache, KM_SLEEP);
1405		bzero(mmu_ctxp, sizeof (mmu_ctx_t));
1406
1407		mutex_init(&mmu_ctxp->mmu_lock, NULL, MUTEX_SPIN,
1408		    (void *)ipltospl(DISP_LEVEL));
1409		mmu_ctxp->mmu_idx = info.mmu_idx;
1410		mmu_ctxp->mmu_nctxs = info.mmu_nctxs;
1411		/*
1412		 * Globally for lifetime of a system,
1413		 * gnum must always increase.
1414		 * mmu_saved_gnum is protected by the cpu_lock.
1415		 */
1416		mmu_ctxp->mmu_gnum = mmu_saved_gnum + 1;
1417		mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
1418
1419		sfmmu_mmu_kstat_create(mmu_ctxp);
1420
1421		mmu_ctxs_tbl[info.mmu_idx] = mmu_ctxp;
1422	} else {
1423		ASSERT(mmu_ctxp->mmu_idx == info.mmu_idx);
1424	}
1425
1426	/*
1427	 * The mmu_lock is acquired here to prevent races with
1428	 * the wrap-around code.
1429	 */
1430	mutex_enter(&mmu_ctxp->mmu_lock);
1431
1432
1433	mmu_ctxp->mmu_ncpus++;
1434	CPUSET_ADD(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1435	CPU_MMU_IDX(cp) = info.mmu_idx;
1436	CPU_MMU_CTXP(cp) = mmu_ctxp;
1437
1438	mutex_exit(&mmu_ctxp->mmu_lock);
1439}
1440
1441/*
1442 * Called to perform MMU context-related cleanup for a CPU.
1443 */
1444void
1445sfmmu_cpu_cleanup(cpu_t *cp)
1446{
1447	mmu_ctx_t	*mmu_ctxp;
1448
1449	ASSERT(MUTEX_HELD(&cpu_lock));
1450
1451	mmu_ctxp = CPU_MMU_CTXP(cp);
1452	ASSERT(mmu_ctxp != NULL);
1453
1454	/*
1455	 * The mmu_lock is acquired here to prevent races with
1456	 * the wrap-around code.
1457	 */
1458	mutex_enter(&mmu_ctxp->mmu_lock);
1459
1460	CPU_MMU_CTXP(cp) = NULL;
1461
1462	CPUSET_DEL(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1463	if (--mmu_ctxp->mmu_ncpus == 0) {
1464		mmu_ctxs_tbl[mmu_ctxp->mmu_idx] = NULL;
1465		mutex_exit(&mmu_ctxp->mmu_lock);
1466		mutex_destroy(&mmu_ctxp->mmu_lock);
1467
1468		if (mmu_ctxp->mmu_kstat)
1469			kstat_delete(mmu_ctxp->mmu_kstat);
1470
1471		/* mmu_saved_gnum is protected by the cpu_lock. */
1472		if (mmu_saved_gnum < mmu_ctxp->mmu_gnum)
1473			mmu_saved_gnum = mmu_ctxp->mmu_gnum;
1474
1475		kmem_cache_free(mmuctxdom_cache, mmu_ctxp);
1476
1477		return;
1478	}
1479
1480	mutex_exit(&mmu_ctxp->mmu_lock);
1481}
1482
1483/*
1484 * Hat_setup, makes an address space context the current active one.
1485 * In sfmmu this translates to setting the secondary context with the
1486 * corresponding context.
1487 */
1488void
1489hat_setup(struct hat *sfmmup, int allocflag)
1490{
1491	hatlock_t *hatlockp;
1492
1493	/* Init needs some special treatment. */
1494	if (allocflag == HAT_INIT) {
1495		/*
1496		 * Make sure that we have
1497		 * 1. a TSB
1498		 * 2. a valid ctx that doesn't get stolen after this point.
1499		 */
1500		hatlockp = sfmmu_hat_enter(sfmmup);
1501
1502		/*
1503		 * Swap in the TSB.  hat_init() allocates tsbinfos without
1504		 * TSBs, but we need one for init, since the kernel does some
1505		 * special things to set up its stack and needs the TSB to
1506		 * resolve page faults.
1507		 */
1508		sfmmu_tsb_swapin(sfmmup, hatlockp);
1509
1510		sfmmu_get_ctx(sfmmup);
1511
1512		sfmmu_hat_exit(hatlockp);
1513	} else {
1514		ASSERT(allocflag == HAT_ALLOC);
1515
1516		hatlockp = sfmmu_hat_enter(sfmmup);
1517		kpreempt_disable();
1518
1519		CPUSET_ADD(sfmmup->sfmmu_cpusran, CPU->cpu_id);
1520
1521		/*
1522		 * sfmmu_setctx_sec takes <pgsz|cnum> as a parameter,
1523		 * pagesize bits don't matter in this case since we are passing
1524		 * INVALID_CONTEXT to it.
1525		 */
1526		sfmmu_setctx_sec(INVALID_CONTEXT);
1527		sfmmu_clear_utsbinfo();
1528
1529		kpreempt_enable();
1530		sfmmu_hat_exit(hatlockp);
1531	}
1532}
1533
1534/*
1535 * Free all the translation resources for the specified address space.
1536 * Called from as_free when an address space is being destroyed.
1537 */
1538void
1539hat_free_start(struct hat *sfmmup)
1540{
1541	ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
1542	ASSERT(sfmmup != ksfmmup);
1543	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1544
1545	sfmmup->sfmmu_free = 1;
1546}
1547
1548void
1549hat_free_end(struct hat *sfmmup)
1550{
1551	int i;
1552
1553	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1554	if (sfmmup->sfmmu_ismhat) {
1555		for (i = 0; i < mmu_page_sizes; i++) {
1556			sfmmup->sfmmu_ttecnt[i] = 0;
1557			sfmmup->sfmmu_ismttecnt[i] = 0;
1558		}
1559	} else {
1560		/* EMPTY */
1561		ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
1562		ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
1563		ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
1564		ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
1565		ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
1566		ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
1567	}
1568
1569	if (sfmmup->sfmmu_rmstat) {
1570		hat_freestat(sfmmup->sfmmu_as, NULL);
1571	}
1572
1573	while (sfmmup->sfmmu_tsb != NULL) {
1574		struct tsb_info *next = sfmmup->sfmmu_tsb->tsb_next;
1575		sfmmu_tsbinfo_free(sfmmup->sfmmu_tsb);
1576		sfmmup->sfmmu_tsb = next;
1577	}
1578	sfmmu_free_sfmmu(sfmmup);
1579
1580	kmem_cache_free(sfmmuid_cache, sfmmup);
1581}
1582
1583/*
1584 * Set up any translation structures, for the specified address space,
1585 * that are needed or preferred when the process is being swapped in.
1586 */
1587/* ARGSUSED */
1588void
1589hat_swapin(struct hat *hat)
1590{
1591	ASSERT(hat->sfmmu_xhat_provider == NULL);
1592}
1593
1594/*
1595 * Free all of the translation resources, for the specified address space,
1596 * that can be freed while the process is swapped out. Called from as_swapout.
1597 * Also, free up the ctx that this process was using.
1598 */
1599void
1600hat_swapout(struct hat *sfmmup)
1601{
1602	struct hmehash_bucket *hmebp;
1603	struct hme_blk *hmeblkp;
1604	struct hme_blk *pr_hblk = NULL;
1605	struct hme_blk *nx_hblk;
1606	int i;
1607	uint64_t hblkpa, prevpa, nx_pa;
1608	struct hme_blk *list = NULL;
1609	hatlock_t *hatlockp;
1610	struct tsb_info *tsbinfop;
1611	struct free_tsb {
1612		struct free_tsb *next;
1613		struct tsb_info *tsbinfop;
1614	};			/* free list of TSBs */
1615	struct free_tsb *freelist, *last, *next;
1616
1617	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1618	SFMMU_STAT(sf_swapout);
1619
1620	/*
1621	 * There is no way to go from an as to all its translations in sfmmu.
1622	 * Here is one of the times when we take the big hit and traverse
1623	 * the hash looking for hme_blks to free up.  Not only do we free up
1624	 * this as hme_blks but all those that are free.  We are obviously
1625	 * swapping because we need memory so let's free up as much
1626	 * as we can.
1627	 *
1628	 * Note that we don't flush TLB/TSB here -- it's not necessary
1629	 * because:
1630	 *  1) we free the ctx we're using and throw away the TSB(s);
1631	 *  2) processes aren't runnable while being swapped out.
1632	 */
1633	ASSERT(sfmmup != KHATID);
1634	for (i = 0; i <= UHMEHASH_SZ; i++) {
1635		hmebp = &uhme_hash[i];
1636		SFMMU_HASH_LOCK(hmebp);
1637		hmeblkp = hmebp->hmeblkp;
1638		hblkpa = hmebp->hmeh_nextpa;
1639		prevpa = 0;
1640		pr_hblk = NULL;
1641		while (hmeblkp) {
1642
1643			ASSERT(!hmeblkp->hblk_xhat_bit);
1644
1645			if ((hmeblkp->hblk_tag.htag_id == sfmmup) &&
1646			    !hmeblkp->hblk_shw_bit && !hmeblkp->hblk_lckcnt) {
1647				(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
1648					(caddr_t)get_hblk_base(hmeblkp),
1649					get_hblk_endaddr(hmeblkp),
1650					NULL, HAT_UNLOAD);
1651			}
1652			nx_hblk = hmeblkp->hblk_next;
1653			nx_pa = hmeblkp->hblk_nextpa;
1654			if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
1655				ASSERT(!hmeblkp->hblk_lckcnt);
1656				sfmmu_hblk_hash_rm(hmebp, hmeblkp,
1657					prevpa, pr_hblk);
1658				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
1659			} else {
1660				pr_hblk = hmeblkp;
1661				prevpa = hblkpa;
1662			}
1663			hmeblkp = nx_hblk;
1664			hblkpa = nx_pa;
1665		}
1666		SFMMU_HASH_UNLOCK(hmebp);
1667	}
1668
1669	sfmmu_hblks_list_purge(&list);
1670
1671	/*
1672	 * Now free up the ctx so that others can reuse it.
1673	 */
1674	hatlockp = sfmmu_hat_enter(sfmmup);
1675
1676	sfmmu_invalidate_ctx(sfmmup);
1677
1678	/*
1679	 * Free TSBs, but not tsbinfos, and set SWAPPED flag.
1680	 * If TSBs were never swapped in, just return.
1681	 * This implies that we don't support partial swapping
1682	 * of TSBs -- either all are swapped out, or none are.
1683	 *
1684	 * We must hold the HAT lock here to prevent racing with another
1685	 * thread trying to unmap TTEs from the TSB or running the post-
1686	 * relocator after relocating the TSB's memory.  Unfortunately, we
1687	 * can't free memory while holding the HAT lock or we could
1688	 * deadlock, so we build a list of TSBs to be freed after marking
1689	 * the tsbinfos as swapped out and free them after dropping the
1690	 * lock.
1691	 */
1692	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
1693		sfmmu_hat_exit(hatlockp);
1694		return;
1695	}
1696
1697	SFMMU_FLAGS_SET(sfmmup, HAT_SWAPPED);
1698	last = freelist = NULL;
1699	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
1700	    tsbinfop = tsbinfop->tsb_next) {
1701		ASSERT((tsbinfop->tsb_flags & TSB_SWAPPED) == 0);
1702
1703		/*
1704		 * Cast the TSB into a struct free_tsb and put it on the free
1705		 * list.
1706		 */
1707		if (freelist == NULL) {
1708			last = freelist = (struct free_tsb *)tsbinfop->tsb_va;
1709		} else {
1710			last->next = (struct free_tsb *)tsbinfop->tsb_va;
1711			last = last->next;
1712		}
1713		last->next = NULL;
1714		last->tsbinfop = tsbinfop;
1715		tsbinfop->tsb_flags |= TSB_SWAPPED;
1716		/*
1717		 * Zero out the TTE to clear the valid bit.
1718		 * Note we can't use a value like 0xbad because we want to
1719		 * ensure diagnostic bits are NEVER set on TTEs that might
1720		 * be loaded.  The intent is to catch any invalid access
1721		 * to the swapped TSB, such as a thread running with a valid
1722		 * context without first calling sfmmu_tsb_swapin() to
1723		 * allocate TSB memory.
1724		 */
1725		tsbinfop->tsb_tte.ll = 0;
1726	}
1727
1728	/* Now we can drop the lock and free the TSB memory. */
1729	sfmmu_hat_exit(hatlockp);
1730	for (; freelist != NULL; freelist = next) {
1731		next = freelist->next;
1732		sfmmu_tsb_free(freelist->tsbinfop);
1733	}
1734}
1735
1736/*
1737 * Duplicate the translations of an as into another newas
1738 */
1739/* ARGSUSED */
1740int
1741hat_dup(struct hat *hat, struct hat *newhat, caddr_t addr, size_t len,
1742	uint_t flag)
1743{
1744	ASSERT(hat->sfmmu_xhat_provider == NULL);
1745	ASSERT((flag == 0) || (flag == HAT_DUP_ALL) || (flag == HAT_DUP_COW));
1746
1747	if (flag == HAT_DUP_COW) {
1748		panic("hat_dup: HAT_DUP_COW not supported");
1749	}
1750	return (0);
1751}
1752
1753/*
1754 * Set up addr to map to page pp with protection prot.
1755 * As an optimization we also load the TSB with the
1756 * corresponding tte but it is no big deal if  the tte gets kicked out.
1757 */
1758void
1759hat_memload(struct hat *hat, caddr_t addr, struct page *pp,
1760	uint_t attr, uint_t flags)
1761{
1762	tte_t tte;
1763
1764
1765	ASSERT(hat != NULL);
1766	ASSERT(PAGE_LOCKED(pp));
1767	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
1768	ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
1769	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
1770
1771	if (PP_ISFREE(pp)) {
1772		panic("hat_memload: loading a mapping to free page %p",
1773		    (void *)pp);
1774	}
1775
1776	if (hat->sfmmu_xhat_provider) {
1777		XHAT_MEMLOAD(hat, addr, pp, attr, flags);
1778		return;
1779	}
1780
1781	ASSERT((hat == ksfmmup) ||
1782		AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock));
1783
1784	if (flags & ~SFMMU_LOAD_ALLFLAG)
1785		cmn_err(CE_NOTE, "hat_memload: unsupported flags %d",
1786		    flags & ~SFMMU_LOAD_ALLFLAG);
1787
1788	if (hat->sfmmu_rmstat)
1789		hat_resvstat(MMU_PAGESIZE, hat->sfmmu_as, addr);
1790
1791#if defined(SF_ERRATA_57)
1792	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
1793	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
1794	    !(flags & HAT_LOAD_SHARE)) {
1795		cmn_err(CE_WARN, "hat_memload: illegal attempt to make user "
1796		    " page executable");
1797		attr &= ~PROT_EXEC;
1798	}
1799#endif
1800
1801	sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
1802	(void) sfmmu_tteload_array(hat, &tte, addr, &pp, flags);
1803
1804	/*
1805	 * Check TSB and TLB page sizes.
1806	 */
1807	if ((flags & HAT_LOAD_SHARE) == 0) {
1808		sfmmu_check_page_sizes(hat, 1);
1809	}
1810}
1811
1812/*
1813 * hat_devload can be called to map real memory (e.g.
1814 * /dev/kmem) and even though hat_devload will determine pf is
1815 * for memory, it will be unable to get a shared lock on the
1816 * page (because someone else has it exclusively) and will
1817 * pass dp = NULL.  If tteload doesn't get a non-NULL
1818 * page pointer it can't cache memory.
1819 */
1820void
1821hat_devload(struct hat *hat, caddr_t addr, size_t len, pfn_t pfn,
1822	uint_t attr, int flags)
1823{
1824	tte_t tte;
1825	struct page *pp = NULL;
1826	int use_lgpg = 0;
1827
1828	ASSERT(hat != NULL);
1829
1830	if (hat->sfmmu_xhat_provider) {
1831		XHAT_DEVLOAD(hat, addr, len, pfn, attr, flags);
1832		return;
1833	}
1834
1835	ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
1836	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
1837	ASSERT((hat == ksfmmup) ||
1838		AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock));
1839	if (len == 0)
1840		panic("hat_devload: zero len");
1841	if (flags & ~SFMMU_LOAD_ALLFLAG)
1842		cmn_err(CE_NOTE, "hat_devload: unsupported flags %d",
1843		    flags & ~SFMMU_LOAD_ALLFLAG);
1844
1845#if defined(SF_ERRATA_57)
1846	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
1847	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
1848	    !(flags & HAT_LOAD_SHARE)) {
1849		cmn_err(CE_WARN, "hat_devload: illegal attempt to make user "
1850		    " page executable");
1851		attr &= ~PROT_EXEC;
1852	}
1853#endif
1854
1855	/*
1856	 * If it's a memory page find its pp
1857	 */
1858	if (!(flags & HAT_LOAD_NOCONSIST) && pf_is_memory(pfn)) {
1859		pp = page_numtopp_nolock(pfn);
1860		if (pp == NULL) {
1861			flags |= HAT_LOAD_NOCONSIST;
1862		} else {
1863			if (PP_ISFREE(pp)) {
1864				panic("hat_memload: loading "
1865				    "a mapping to free page %p",
1866				    (void *)pp);
1867			}
1868			if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) {
1869				panic("hat_memload: loading a mapping "
1870				    "to unlocked relocatable page %p",
1871				    (void *)pp);
1872			}
1873			ASSERT(len == MMU_PAGESIZE);
1874		}
1875	}
1876
1877	if (hat->sfmmu_rmstat)
1878		hat_resvstat(len, hat->sfmmu_as, addr);
1879
1880	if (flags & HAT_LOAD_NOCONSIST) {
1881		attr |= SFMMU_UNCACHEVTTE;
1882		use_lgpg = 1;
1883	}
1884	if (!pf_is_memory(pfn)) {
1885		attr |= SFMMU_UNCACHEPTTE | HAT_NOSYNC;
1886		use_lgpg = 1;
1887		switch (attr & HAT_ORDER_MASK) {
1888			case HAT_STRICTORDER:
1889			case HAT_UNORDERED_OK:
1890				/*
1891				 * we set the side effect bit for all non
1892				 * memory mappings unless merging is ok
1893				 */
1894				attr |= SFMMU_SIDEFFECT;
1895				break;
1896			case HAT_MERGING_OK:
1897			case HAT_LOADCACHING_OK:
1898			case HAT_STORECACHING_OK:
1899				break;
1900			default:
1901				panic("hat_devload: bad attr");
1902				break;
1903		}
1904	}
1905	while (len) {
1906		if (!use_lgpg) {
1907			sfmmu_memtte(&tte, pfn, attr, TTE8K);
1908			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1909			    flags);
1910			len -= MMU_PAGESIZE;
1911			addr += MMU_PAGESIZE;
1912			pfn++;
1913			continue;
1914		}
1915		/*
1916		 *  try to use large pages, check va/pa alignments
1917		 *  Note that 32M/256M page sizes are not (yet) supported.
1918		 */
1919		if ((len >= MMU_PAGESIZE4M) &&
1920		    !((uintptr_t)addr & MMU_PAGEOFFSET4M) &&
1921		    !(disable_large_pages & (1 << TTE4M)) &&
1922		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET4M)) {
1923			sfmmu_memtte(&tte, pfn, attr, TTE4M);
1924			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1925			    flags);
1926			len -= MMU_PAGESIZE4M;
1927			addr += MMU_PAGESIZE4M;
1928			pfn += MMU_PAGESIZE4M / MMU_PAGESIZE;
1929		} else if ((len >= MMU_PAGESIZE512K) &&
1930		    !((uintptr_t)addr & MMU_PAGEOFFSET512K) &&
1931		    !(disable_large_pages & (1 << TTE512K)) &&
1932		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET512K)) {
1933			sfmmu_memtte(&tte, pfn, attr, TTE512K);
1934			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1935			    flags);
1936			len -= MMU_PAGESIZE512K;
1937			addr += MMU_PAGESIZE512K;
1938			pfn += MMU_PAGESIZE512K / MMU_PAGESIZE;
1939		} else if ((len >= MMU_PAGESIZE64K) &&
1940		    !((uintptr_t)addr & MMU_PAGEOFFSET64K) &&
1941		    !(disable_large_pages & (1 << TTE64K)) &&
1942		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET64K)) {
1943			sfmmu_memtte(&tte, pfn, attr, TTE64K);
1944			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1945			    flags);
1946			len -= MMU_PAGESIZE64K;
1947			addr += MMU_PAGESIZE64K;
1948			pfn += MMU_PAGESIZE64K / MMU_PAGESIZE;
1949		} else {
1950			sfmmu_memtte(&tte, pfn, attr, TTE8K);
1951			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1952			    flags);
1953			len -= MMU_PAGESIZE;
1954			addr += MMU_PAGESIZE;
1955			pfn++;
1956		}
1957	}
1958
1959	/*
1960	 * Check TSB and TLB page sizes.
1961	 */
1962	if ((flags & HAT_LOAD_SHARE) == 0) {
1963		sfmmu_check_page_sizes(hat, 1);
1964	}
1965}
1966
1967/*
1968 * Map the largest extend possible out of the page array. The array may NOT
1969 * be in order.  The largest possible mapping a page can have
1970 * is specified in the p_szc field.  The p_szc field
1971 * cannot change as long as there any mappings (large or small)
1972 * to any of the pages that make up the large page. (ie. any
1973 * promotion/demotion of page size is not up to the hat but up to
1974 * the page free list manager).  The array
1975 * should consist of properly aligned contigous pages that are
1976 * part of a big page for a large mapping to be created.
1977 */
1978void
1979hat_memload_array(struct hat *hat, caddr_t addr, size_t len,
1980	struct page **pps, uint_t attr, uint_t flags)
1981{
1982	int  ttesz;
1983	size_t mapsz;
1984	pgcnt_t	numpg, npgs;
1985	tte_t tte;
1986	page_t *pp;
1987	int large_pages_disable;
1988
1989	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
1990
1991	if (hat->sfmmu_xhat_provider) {
1992		XHAT_MEMLOAD_ARRAY(hat, addr, len, pps, attr, flags);
1993		return;
1994	}
1995
1996	if (hat->sfmmu_rmstat)
1997		hat_resvstat(len, hat->sfmmu_as, addr);
1998
1999#if defined(SF_ERRATA_57)
2000	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2001	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
2002	    !(flags & HAT_LOAD_SHARE)) {
2003		cmn_err(CE_WARN, "hat_memload_array: illegal attempt to make "
2004		    "user page executable");
2005		attr &= ~PROT_EXEC;
2006	}
2007#endif
2008
2009	/* Get number of pages */
2010	npgs = len >> MMU_PAGESHIFT;
2011
2012	if (flags & HAT_LOAD_SHARE) {
2013		large_pages_disable = disable_ism_large_pages;
2014	} else {
2015		large_pages_disable = disable_large_pages;
2016	}
2017
2018	if (npgs < NHMENTS || large_pages_disable == LARGE_PAGES_OFF) {
2019		sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs);
2020		return;
2021	}
2022
2023	while (npgs >= NHMENTS) {
2024		pp = *pps;
2025		for (ttesz = pp->p_szc; ttesz != TTE8K; ttesz--) {
2026			/*
2027			 * Check if this page size is disabled.
2028			 */
2029			if (large_pages_disable & (1 << ttesz))
2030				continue;
2031
2032			numpg = TTEPAGES(ttesz);
2033			mapsz = numpg << MMU_PAGESHIFT;
2034			if ((npgs >= numpg) &&
2035			    IS_P2ALIGNED(addr, mapsz) &&
2036			    IS_P2ALIGNED(pp->p_pagenum, numpg)) {
2037				/*
2038				 * At this point we have enough pages and
2039				 * we know the virtual address and the pfn
2040				 * are properly aligned.  We still need
2041				 * to check for physical contiguity but since
2042				 * it is very likely that this is the case
2043				 * we will assume they are so and undo
2044				 * the request if necessary.  It would
2045				 * be great if we could get a hint flag
2046				 * like HAT_CONTIG which would tell us
2047				 * the pages are contigous for sure.
2048				 */
2049				sfmmu_memtte(&tte, (*pps)->p_pagenum,
2050					attr, ttesz);
2051				if (!sfmmu_tteload_array(hat, &tte, addr,
2052				    pps, flags)) {
2053					break;
2054				}
2055			}
2056		}
2057		if (ttesz == TTE8K) {
2058			/*
2059			 * We were not able to map array using a large page
2060			 * batch a hmeblk or fraction at a time.
2061			 */
2062			numpg = ((uintptr_t)addr >> MMU_PAGESHIFT)
2063				& (NHMENTS-1);
2064			numpg = NHMENTS - numpg;
2065			ASSERT(numpg <= npgs);
2066			mapsz = numpg * MMU_PAGESIZE;
2067			sfmmu_memload_batchsmall(hat, addr, pps, attr, flags,
2068							numpg);
2069		}
2070		addr += mapsz;
2071		npgs -= numpg;
2072		pps += numpg;
2073	}
2074
2075	if (npgs) {
2076		sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs);
2077	}
2078
2079	/*
2080	 * Check TSB and TLB page sizes.
2081	 */
2082	if ((flags & HAT_LOAD_SHARE) == 0) {
2083		sfmmu_check_page_sizes(hat, 1);
2084	}
2085}
2086
2087/*
2088 * Function tries to batch 8K pages into the same hme blk.
2089 */
2090static void
2091sfmmu_memload_batchsmall(struct hat *hat, caddr_t vaddr, page_t **pps,
2092		    uint_t attr, uint_t flags, pgcnt_t npgs)
2093{
2094	tte_t	tte;
2095	page_t *pp;
2096	struct hmehash_bucket *hmebp;
2097	struct hme_blk *hmeblkp;
2098	int	index;
2099
2100	while (npgs) {
2101		/*
2102		 * Acquire the hash bucket.
2103		 */
2104		hmebp = sfmmu_tteload_acquire_hashbucket(hat, vaddr, TTE8K);
2105		ASSERT(hmebp);
2106
2107		/*
2108		 * Find the hment block.
2109		 */
2110		hmeblkp = sfmmu_tteload_find_hmeblk(hat, hmebp, vaddr,
2111				TTE8K, flags);
2112		ASSERT(hmeblkp);
2113
2114		do {
2115			/*
2116			 * Make the tte.
2117			 */
2118			pp = *pps;
2119			sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
2120
2121			/*
2122			 * Add the translation.
2123			 */
2124			(void) sfmmu_tteload_addentry(hat, hmeblkp, &tte,
2125					vaddr, pps, flags);
2126
2127			/*
2128			 * Goto next page.
2129			 */
2130			pps++;
2131			npgs--;
2132
2133			/*
2134			 * Goto next address.
2135			 */
2136			vaddr += MMU_PAGESIZE;
2137
2138			/*
2139			 * Don't crossover into a different hmentblk.
2140			 */
2141			index = (int)(((uintptr_t)vaddr >> MMU_PAGESHIFT) &
2142			    (NHMENTS-1));
2143
2144		} while (index != 0 && npgs != 0);
2145
2146		/*
2147		 * Release the hash bucket.
2148		 */
2149
2150		sfmmu_tteload_release_hashbucket(hmebp);
2151	}
2152}
2153
2154/*
2155 * Construct a tte for a page:
2156 *
2157 * tte_valid = 1
2158 * tte_size2 = size & TTE_SZ2_BITS (Panther and Olympus-C only)
2159 * tte_size = size
2160 * tte_nfo = attr & HAT_NOFAULT
2161 * tte_ie = attr & HAT_STRUCTURE_LE
2162 * tte_hmenum = hmenum
2163 * tte_pahi = pp->p_pagenum >> TTE_PASHIFT;
2164 * tte_palo = pp->p_pagenum & TTE_PALOMASK;
2165 * tte_ref = 1 (optimization)
2166 * tte_wr_perm = attr & PROT_WRITE;
2167 * tte_no_sync = attr & HAT_NOSYNC
2168 * tte_lock = attr & SFMMU_LOCKTTE
2169 * tte_cp = !(attr & SFMMU_UNCACHEPTTE)
2170 * tte_cv = !(attr & SFMMU_UNCACHEVTTE)
2171 * tte_e = attr & SFMMU_SIDEFFECT
2172 * tte_priv = !(attr & PROT_USER)
2173 * tte_hwwr = if nosync is set and it is writable we set the mod bit (opt)
2174 * tte_glb = 0
2175 */
2176void
2177sfmmu_memtte(tte_t *ttep, pfn_t pfn, uint_t attr, int tte_sz)
2178{
2179	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2180
2181	ttep->tte_inthi = MAKE_TTE_INTHI(pfn, attr, tte_sz, 0 /* hmenum */);
2182	ttep->tte_intlo = MAKE_TTE_INTLO(pfn, attr, tte_sz, 0 /* hmenum */);
2183
2184	if (TTE_IS_NOSYNC(ttep)) {
2185		TTE_SET_REF(ttep);
2186		if (TTE_IS_WRITABLE(ttep)) {
2187			TTE_SET_MOD(ttep);
2188		}
2189	}
2190	if (TTE_IS_NFO(ttep) && TTE_IS_EXECUTABLE(ttep)) {
2191		panic("sfmmu_memtte: can't set both NFO and EXEC bits");
2192	}
2193}
2194
2195/*
2196 * This function will add a translation to the hme_blk and allocate the
2197 * hme_blk if one does not exist.
2198 * If a page structure is specified then it will add the
2199 * corresponding hment to the mapping list.
2200 * It will also update the hmenum field for the tte.
2201 */
2202void
2203sfmmu_tteload(struct hat *sfmmup, tte_t *ttep, caddr_t vaddr, page_t *pp,
2204	uint_t flags)
2205{
2206	(void) sfmmu_tteload_array(sfmmup, ttep, vaddr, &pp, flags);
2207}
2208
2209/*
2210 * Load (ttep != NULL) or unload (ttep == NULL) one entry in the TSB.
2211 * Assumes that a particular page size may only be resident in one TSB.
2212 */
2213static void
2214sfmmu_mod_tsb(sfmmu_t *sfmmup, caddr_t vaddr, tte_t *ttep, int ttesz)
2215{
2216	struct tsb_info *tsbinfop = NULL;
2217	uint64_t tag;
2218	struct tsbe *tsbe_addr;
2219	uint64_t tsb_base;
2220	uint_t tsb_size;
2221	int vpshift = MMU_PAGESHIFT;
2222	int phys = 0;
2223
2224	if (sfmmup == ksfmmup) { /* No support for 32/256M ksfmmu pages */
2225		phys = ktsb_phys;
2226		if (ttesz >= TTE4M) {
2227#ifndef sun4v
2228			ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2229#endif
2230			tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2231			tsb_size = ktsb4m_szcode;
2232		} else {
2233			tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2234			tsb_size = ktsb_szcode;
2235		}
2236	} else {
2237		SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2238
2239		/*
2240		 * If there isn't a TSB for this page size, or the TSB is
2241		 * swapped out, there is nothing to do.  Note that the latter
2242		 * case seems impossible but can occur if hat_pageunload()
2243		 * is called on an ISM mapping while the process is swapped
2244		 * out.
2245		 */
2246		if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2247			return;
2248
2249		/*
2250		 * If another thread is in the middle of relocating a TSB
2251		 * we can't unload the entry so set a flag so that the
2252		 * TSB will be flushed before it can be accessed by the
2253		 * process.
2254		 */
2255		if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2256			if (ttep == NULL)
2257				tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2258			return;
2259		}
2260#if defined(UTSB_PHYS)
2261		phys = 1;
2262		tsb_base = (uint64_t)tsbinfop->tsb_pa;
2263#else
2264		tsb_base = (uint64_t)tsbinfop->tsb_va;
2265#endif
2266		tsb_size = tsbinfop->tsb_szc;
2267	}
2268	if (ttesz >= TTE4M)
2269		vpshift = MMU_PAGESHIFT4M;
2270
2271	tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2272	tag = sfmmu_make_tsbtag(vaddr);
2273
2274	if (ttep == NULL) {
2275		sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2276	} else {
2277		if (ttesz >= TTE4M) {
2278			SFMMU_STAT(sf_tsb_load4m);
2279		} else {
2280			SFMMU_STAT(sf_tsb_load8k);
2281		}
2282
2283		sfmmu_load_tsbe(tsbe_addr, tag, ttep, phys);
2284	}
2285}
2286
2287/*
2288 * Unmap all entries from [start, end) matching the given page size.
2289 *
2290 * This function is used primarily to unmap replicated 64K or 512K entries
2291 * from the TSB that are inserted using the base page size TSB pointer, but
2292 * it may also be called to unmap a range of addresses from the TSB.
2293 */
2294void
2295sfmmu_unload_tsb_range(sfmmu_t *sfmmup, caddr_t start, caddr_t end, int ttesz)
2296{
2297	struct tsb_info *tsbinfop;
2298	uint64_t tag;
2299	struct tsbe *tsbe_addr;
2300	caddr_t vaddr;
2301	uint64_t tsb_base;
2302	int vpshift, vpgsz;
2303	uint_t tsb_size;
2304	int phys = 0;
2305
2306	/*
2307	 * Assumptions:
2308	 *  If ttesz == 8K, 64K or 512K, we walk through the range 8K
2309	 *  at a time shooting down any valid entries we encounter.
2310	 *
2311	 *  If ttesz >= 4M we walk the range 4M at a time shooting
2312	 *  down any valid mappings we find.
2313	 */
2314	if (sfmmup == ksfmmup) {
2315		phys = ktsb_phys;
2316		if (ttesz >= TTE4M) {
2317#ifndef sun4v
2318			ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2319#endif
2320			tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2321			tsb_size = ktsb4m_szcode;
2322		} else {
2323			tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2324			tsb_size = ktsb_szcode;
2325		}
2326	} else {
2327		SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2328
2329		/*
2330		 * If there isn't a TSB for this page size, or the TSB is
2331		 * swapped out, there is nothing to do.  Note that the latter
2332		 * case seems impossible but can occur if hat_pageunload()
2333		 * is called on an ISM mapping while the process is swapped
2334		 * out.
2335		 */
2336		if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2337			return;
2338
2339		/*
2340		 * If another thread is in the middle of relocating a TSB
2341		 * we can't unload the entry so set a flag so that the
2342		 * TSB will be flushed before it can be accessed by the
2343		 * process.
2344		 */
2345		if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2346			tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2347			return;
2348		}
2349#if defined(UTSB_PHYS)
2350		phys = 1;
2351		tsb_base = (uint64_t)tsbinfop->tsb_pa;
2352#else
2353		tsb_base = (uint64_t)tsbinfop->tsb_va;
2354#endif
2355		tsb_size = tsbinfop->tsb_szc;
2356	}
2357	if (ttesz >= TTE4M) {
2358		vpshift = MMU_PAGESHIFT4M;
2359		vpgsz = MMU_PAGESIZE4M;
2360	} else {
2361		vpshift = MMU_PAGESHIFT;
2362		vpgsz = MMU_PAGESIZE;
2363	}
2364
2365	for (vaddr = start; vaddr < end; vaddr += vpgsz) {
2366		tag = sfmmu_make_tsbtag(vaddr);
2367		tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2368		sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2369	}
2370}
2371
2372/*
2373 * Select the optimum TSB size given the number of mappings
2374 * that need to be cached.
2375 */
2376static int
2377sfmmu_select_tsb_szc(pgcnt_t pgcnt)
2378{
2379	int szc = 0;
2380
2381#ifdef DEBUG
2382	if (tsb_grow_stress) {
2383		uint32_t randval = (uint32_t)gettick() >> 4;
2384		return (randval % (tsb_max_growsize + 1));
2385	}
2386#endif	/* DEBUG */
2387
2388	while ((szc < tsb_max_growsize) && (pgcnt > SFMMU_RSS_TSBSIZE(szc)))
2389		szc++;
2390	return (szc);
2391}
2392
2393/*
2394 * This function will add a translation to the hme_blk and allocate the
2395 * hme_blk if one does not exist.
2396 * If a page structure is specified then it will add the
2397 * corresponding hment to the mapping list.
2398 * It will also update the hmenum field for the tte.
2399 * Furthermore, it attempts to create a large page translation
2400 * for <addr,hat> at page array pps.  It assumes addr and first
2401 * pp is correctly aligned.  It returns 0 if successful and 1 otherwise.
2402 */
2403static int
2404sfmmu_tteload_array(sfmmu_t *sfmmup, tte_t *ttep, caddr_t vaddr,
2405	page_t **pps, uint_t flags)
2406{
2407	struct hmehash_bucket *hmebp;
2408	struct hme_blk *hmeblkp;
2409	int 	ret;
2410	uint_t	size;
2411
2412	/*
2413	 * Get mapping size.
2414	 */
2415	size = TTE_CSZ(ttep);
2416	ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
2417
2418	/*
2419	 * Acquire the hash bucket.
2420	 */
2421	hmebp = sfmmu_tteload_acquire_hashbucket(sfmmup, vaddr, size);
2422	ASSERT(hmebp);
2423
2424	/*
2425	 * Find the hment block.
2426	 */
2427	hmeblkp = sfmmu_tteload_find_hmeblk(sfmmup, hmebp, vaddr, size, flags);
2428	ASSERT(hmeblkp);
2429
2430	/*
2431	 * Add the translation.
2432	 */
2433	ret = sfmmu_tteload_addentry(sfmmup, hmeblkp, ttep, vaddr, pps, flags);
2434
2435	/*
2436	 * Release the hash bucket.
2437	 */
2438	sfmmu_tteload_release_hashbucket(hmebp);
2439
2440	return (ret);
2441}
2442
2443/*
2444 * Function locks and returns a pointer to the hash bucket for vaddr and size.
2445 */
2446static struct hmehash_bucket *
2447sfmmu_tteload_acquire_hashbucket(sfmmu_t *sfmmup, caddr_t vaddr, int size)
2448{
2449	struct hmehash_bucket *hmebp;
2450	int hmeshift;
2451
2452	hmeshift = HME_HASH_SHIFT(size);
2453
2454	hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
2455
2456	SFMMU_HASH_LOCK(hmebp);
2457
2458	return (hmebp);
2459}
2460
2461/*
2462 * Function returns a pointer to an hmeblk in the hash bucket, hmebp. If the
2463 * hmeblk doesn't exists for the [sfmmup, vaddr & size] signature, a hmeblk is
2464 * allocated.
2465 */
2466static struct hme_blk *
2467sfmmu_tteload_find_hmeblk(sfmmu_t *sfmmup, struct hmehash_bucket *hmebp,
2468	caddr_t vaddr, uint_t size, uint_t flags)
2469{
2470	hmeblk_tag hblktag;
2471	int hmeshift;
2472	struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
2473	uint64_t hblkpa, prevpa;
2474	struct kmem_cache *sfmmu_cache;
2475	uint_t forcefree;
2476
2477	hblktag.htag_id = sfmmup;
2478	hmeshift = HME_HASH_SHIFT(size);
2479	hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
2480	hblktag.htag_rehash = HME_HASH_REHASH(size);
2481
2482ttearray_realloc:
2483
2484	HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa,
2485	    pr_hblk, prevpa, &list);
2486
2487	/*
2488	 * We block until hblk_reserve_lock is released; it's held by
2489	 * the thread, temporarily using hblk_reserve, until hblk_reserve is
2490	 * replaced by a hblk from sfmmu8_cache.
2491	 */
2492	if (hmeblkp == (struct hme_blk *)hblk_reserve &&
2493	    hblk_reserve_thread != curthread) {
2494		SFMMU_HASH_UNLOCK(hmebp);
2495		mutex_enter(&hblk_reserve_lock);
2496		mutex_exit(&hblk_reserve_lock);
2497		SFMMU_STAT(sf_hblk_reserve_hit);
2498		SFMMU_HASH_LOCK(hmebp);
2499		goto ttearray_realloc;
2500	}
2501
2502	if (hmeblkp == NULL) {
2503		hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
2504		    hblktag, flags);
2505	} else {
2506		/*
2507		 * It is possible for 8k and 64k hblks to collide since they
2508		 * have the same rehash value. This is because we
2509		 * lazily free hblks and 8K/64K blks could be lingering.
2510		 * If we find size mismatch we free the block and & try again.
2511		 */
2512		if (get_hblk_ttesz(hmeblkp) != size) {
2513			ASSERT(!hmeblkp->hblk_vcnt);
2514			ASSERT(!hmeblkp->hblk_hmecnt);
2515			sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk);
2516			sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
2517			goto ttearray_realloc;
2518		}
2519		if (hmeblkp->hblk_shw_bit) {
2520			/*
2521			 * if the hblk was previously used as a shadow hblk then
2522			 * we will change it to a normal hblk
2523			 */
2524			if (hmeblkp->hblk_shw_mask) {
2525				sfmmu_shadow_hcleanup(sfmmup, hmeblkp, hmebp);
2526				ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
2527				goto ttearray_realloc;
2528			} else {
2529				hmeblkp->hblk_shw_bit = 0;
2530			}
2531		}
2532		SFMMU_STAT(sf_hblk_hit);
2533	}
2534
2535	/*
2536	 * hat_memload() should never call kmem_cache_free(); see block
2537	 * comment showing the stacktrace in sfmmu_hblk_alloc();
2538	 * enqueue each hblk in the list to reserve list if it's created
2539	 * from sfmmu8_cache *and* sfmmup == KHATID.
2540	 */
2541	forcefree = (sfmmup == KHATID) ? 1 : 0;
2542	while ((pr_hblk = list) != NULL) {
2543		list = pr_hblk->hblk_next;
2544		sfmmu_cache = get_hblk_cache(pr_hblk);
2545		if ((sfmmu_cache == sfmmu8_cache) &&
2546		    sfmmu_put_free_hblk(pr_hblk, forcefree))
2547			continue;
2548
2549		ASSERT(sfmmup != KHATID);
2550		kmem_cache_free(sfmmu_cache, pr_hblk);
2551	}
2552
2553	ASSERT(get_hblk_ttesz(hmeblkp) == size);
2554	ASSERT(!hmeblkp->hblk_shw_bit);
2555
2556	return (hmeblkp);
2557}
2558
2559/*
2560 * Function adds a tte entry into the hmeblk. It returns 0 if successful and 1
2561 * otherwise.
2562 */
2563static int
2564sfmmu_tteload_addentry(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, tte_t *ttep,
2565	caddr_t vaddr, page_t **pps, uint_t flags)
2566{
2567	page_t *pp = *pps;
2568	int hmenum, size, remap;
2569	tte_t tteold, flush_tte;
2570#ifdef DEBUG
2571	tte_t orig_old;
2572#endif /* DEBUG */
2573	struct sf_hment *sfhme;
2574	kmutex_t *pml, *pmtx;
2575	hatlock_t *hatlockp;
2576
2577	/*
2578	 * remove this panic when we decide to let user virtual address
2579	 * space be >= USERLIMIT.
2580	 */
2581	if (!TTE_IS_PRIVILEGED(ttep) && vaddr >= (caddr_t)USERLIMIT)
2582		panic("user addr %p in kernel space", vaddr);
2583#if defined(TTE_IS_GLOBAL)
2584	if (TTE_IS_GLOBAL(ttep))
2585		panic("sfmmu_tteload: creating global tte");
2586#endif
2587
2588#ifdef DEBUG
2589	if (pf_is_memory(sfmmu_ttetopfn(ttep, vaddr)) &&
2590	    !TTE_IS_PCACHEABLE(ttep) && !sfmmu_allow_nc_trans)
2591		panic("sfmmu_tteload: non cacheable memory tte");
2592#endif /* DEBUG */
2593
2594	if ((flags & HAT_LOAD_SHARE) || !TTE_IS_REF(ttep) ||
2595	    !TTE_IS_MOD(ttep)) {
2596		/*
2597		 * Don't load TSB for dummy as in ISM.  Also don't preload
2598		 * the TSB if the TTE isn't writable since we're likely to
2599		 * fault on it again -- preloading can be fairly expensive.
2600		 */
2601		flags |= SFMMU_NO_TSBLOAD;
2602	}
2603
2604	size = TTE_CSZ(ttep);
2605	switch (size) {
2606	case TTE8K:
2607		SFMMU_STAT(sf_tteload8k);
2608		break;
2609	case TTE64K:
2610		SFMMU_STAT(sf_tteload64k);
2611		break;
2612	case TTE512K:
2613		SFMMU_STAT(sf_tteload512k);
2614		break;
2615	case TTE4M:
2616		SFMMU_STAT(sf_tteload4m);
2617		break;
2618	case (TTE32M):
2619		SFMMU_STAT(sf_tteload32m);
2620		ASSERT(mmu_page_sizes == max_mmu_page_sizes);
2621		break;
2622	case (TTE256M):
2623		SFMMU_STAT(sf_tteload256m);
2624		ASSERT(mmu_page_sizes == max_mmu_page_sizes);
2625		break;
2626	}
2627
2628	ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
2629
2630	HBLKTOHME_IDX(sfhme, hmeblkp, vaddr, hmenum);
2631
2632	/*
2633	 * Need to grab mlist lock here so that pageunload
2634	 * will not change tte behind us.
2635	 */
2636	if (pp) {
2637		pml = sfmmu_mlist_enter(pp);
2638	}
2639
2640	sfmmu_copytte(&sfhme->hme_tte, &tteold);
2641	/*
2642	 * Look for corresponding hment and if valid verify
2643	 * pfns are equal.
2644	 */
2645	remap = TTE_IS_VALID(&tteold);
2646	if (remap) {
2647		pfn_t	new_pfn, old_pfn;
2648
2649		old_pfn = TTE_TO_PFN(vaddr, &tteold);
2650		new_pfn = TTE_TO_PFN(vaddr, ttep);
2651
2652		if (flags & HAT_LOAD_REMAP) {
2653			/* make sure we are remapping same type of pages */
2654			if (pf_is_memory(old_pfn) != pf_is_memory(new_pfn)) {
2655				panic("sfmmu_tteload - tte remap io<->memory");
2656			}
2657			if (old_pfn != new_pfn &&
2658			    (pp != NULL || sfhme->hme_page != NULL)) {
2659				panic("sfmmu_tteload - tte remap pp != NULL");
2660			}
2661		} else if (old_pfn != new_pfn) {
2662			panic("sfmmu_tteload - tte remap, hmeblkp 0x%p",
2663			    (void *)hmeblkp);
2664		}
2665		ASSERT(TTE_CSZ(&tteold) == TTE_CSZ(ttep));
2666	}
2667
2668	if (pp) {
2669		if (size == TTE8K) {
2670#ifdef VAC
2671			/*
2672			 * Handle VAC consistency
2673			 */
2674			if (!remap && (cache & CACHE_VAC) && !PP_ISNC(pp)) {
2675				sfmmu_vac_conflict(sfmmup, vaddr, pp);
2676			}
2677#endif
2678
2679			if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
2680				pmtx = sfmmu_page_enter(pp);
2681				PP_CLRRO(pp);
2682				sfmmu_page_exit(pmtx);
2683			} else if (!PP_ISMAPPED(pp) &&
2684			    (!TTE_IS_WRITABLE(ttep)) && !(PP_ISMOD(pp))) {
2685				pmtx = sfmmu_page_enter(pp);
2686				if (!(PP_ISMOD(pp))) {
2687					PP_SETRO(pp);
2688				}
2689				sfmmu_page_exit(pmtx);
2690			}
2691
2692		} else if (sfmmu_pagearray_setup(vaddr, pps, ttep, remap)) {
2693			/*
2694			 * sfmmu_pagearray_setup failed so return
2695			 */
2696			sfmmu_mlist_exit(pml);
2697			return (1);
2698		}
2699	}
2700
2701	/*
2702	 * Make sure hment is not on a mapping list.
2703	 */
2704	ASSERT(remap || (sfhme->hme_page == NULL));
2705
2706	/* if it is not a remap then hme->next better be NULL */
2707	ASSERT((!remap) ? sfhme->hme_next == NULL : 1);
2708
2709	if (flags & HAT_LOAD_LOCK) {
2710		if (((int)hmeblkp->hblk_lckcnt + 1) >= MAX_HBLK_LCKCNT) {
2711			panic("too high lckcnt-hmeblk %p",
2712			    (void *)hmeblkp);
2713		}
2714		atomic_add_16(&hmeblkp->hblk_lckcnt, 1);
2715
2716		HBLK_STACK_TRACE(hmeblkp, HBLK_LOCK);
2717	}
2718
2719#ifdef VAC
2720	if (pp && PP_ISNC(pp)) {
2721		/*
2722		 * If the physical page is marked to be uncacheable, like
2723		 * by a vac conflict, make sure the new mapping is also
2724		 * uncacheable.
2725		 */
2726		TTE_CLR_VCACHEABLE(ttep);
2727		ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
2728	}
2729#endif
2730	ttep->tte_hmenum = hmenum;
2731
2732#ifdef DEBUG
2733	orig_old = tteold;
2734#endif /* DEBUG */
2735
2736	while (sfmmu_modifytte_try(&tteold, ttep, &sfhme->hme_tte) < 0) {
2737		if ((sfmmup == KHATID) &&
2738		    (flags & (HAT_LOAD_LOCK | HAT_LOAD_REMAP))) {
2739			sfmmu_copytte(&sfhme->hme_tte, &tteold);
2740		}
2741#ifdef DEBUG
2742		chk_tte(&orig_old, &tteold, ttep, hmeblkp);
2743#endif /* DEBUG */
2744	}
2745
2746	if (!TTE_IS_VALID(&tteold)) {
2747
2748		atomic_add_16(&hmeblkp->hblk_vcnt, 1);
2749		atomic_add_long(&sfmmup->sfmmu_ttecnt[size], 1);
2750
2751		/*
2752		 * HAT_RELOAD_SHARE has been deprecated with lpg DISM.
2753		 */
2754
2755		if (size > TTE8K && (flags & HAT_LOAD_SHARE) == 0 &&
2756		    sfmmup != ksfmmup) {
2757			/*
2758			 * If this is the first large mapping for the process
2759			 * we must force any CPUs running this process to TL=0
2760			 * where they will reload the HAT flags from the
2761			 * tsbmiss area.  This is necessary to make the large
2762			 * mappings we are about to load visible to those CPUs;
2763			 * otherwise they'll loop forever calling pagefault()
2764			 * since we don't search large hash chains by default.
2765			 */
2766			hatlockp = sfmmu_hat_enter(sfmmup);
2767			if (size == TTE512K &&
2768			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_512K_FLAG)) {
2769				SFMMU_FLAGS_SET(sfmmup, HAT_512K_FLAG);
2770				sfmmu_sync_mmustate(sfmmup);
2771			} else if (size == TTE4M &&
2772			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG)) {
2773				SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG);
2774				sfmmu_sync_mmustate(sfmmup);
2775			} else if (size == TTE64K &&
2776			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_64K_FLAG)) {
2777				SFMMU_FLAGS_SET(sfmmup, HAT_64K_FLAG);
2778				/* no sync mmustate; 64K shares 8K hashes */
2779			} else if (mmu_page_sizes == max_mmu_page_sizes) {
2780			    if (size == TTE32M &&
2781				!SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_FLAG)) {
2782				SFMMU_FLAGS_SET(sfmmup, HAT_32M_FLAG);
2783				sfmmu_sync_mmustate(sfmmup);
2784			    } else if (size == TTE256M &&
2785				!SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_FLAG)) {
2786				SFMMU_FLAGS_SET(sfmmup, HAT_256M_FLAG);
2787				sfmmu_sync_mmustate(sfmmup);
2788			    }
2789			}
2790			if (size >= TTE4M && (flags & HAT_LOAD_TEXT) &&
2791			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) {
2792				SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG);
2793			}
2794			sfmmu_hat_exit(hatlockp);
2795		}
2796	}
2797	ASSERT(TTE_IS_VALID(&sfhme->hme_tte));
2798
2799	flush_tte.tte_intlo = (tteold.tte_intlo ^ ttep->tte_intlo) &
2800	    hw_tte.tte_intlo;
2801	flush_tte.tte_inthi = (tteold.tte_inthi ^ ttep->tte_inthi) &
2802	    hw_tte.tte_inthi;
2803
2804	if (remap && (flush_tte.tte_inthi || flush_tte.tte_intlo)) {
2805		/*
2806		 * If remap and new tte differs from old tte we need
2807		 * to sync the mod bit and flush TLB/TSB.  We don't
2808		 * need to sync ref bit because we currently always set
2809		 * ref bit in tteload.
2810		 */
2811		ASSERT(TTE_IS_REF(ttep));
2812		if (TTE_IS_MOD(&tteold)) {
2813			sfmmu_ttesync(sfmmup, vaddr, &tteold, pp);
2814		}
2815		sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 0);
2816		xt_sync(sfmmup->sfmmu_cpusran);
2817	}
2818
2819	if ((flags & SFMMU_NO_TSBLOAD) == 0) {
2820		/*
2821		 * We only preload 8K and 4M mappings into the TSB, since
2822		 * 64K and 512K mappings are replicated and hence don't
2823		 * have a single, unique TSB entry. Ditto for 32M/256M.
2824		 */
2825		if (size == TTE8K || size == TTE4M) {
2826			hatlockp = sfmmu_hat_enter(sfmmup);
2827			sfmmu_load_tsb(sfmmup, vaddr, &sfhme->hme_tte, size);
2828			sfmmu_hat_exit(hatlockp);
2829		}
2830	}
2831	if (pp) {
2832		if (!remap) {
2833			HME_ADD(sfhme, pp);
2834			atomic_add_16(&hmeblkp->hblk_hmecnt, 1);
2835			ASSERT(hmeblkp->hblk_hmecnt > 0);
2836
2837			/*
2838			 * Cannot ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
2839			 * see pageunload() for comment.
2840			 */
2841		}
2842		sfmmu_mlist_exit(pml);
2843	}
2844
2845	return (0);
2846}
2847/*
2848 * Function unlocks hash bucket.
2849 */
2850static void
2851sfmmu_tteload_release_hashbucket(struct hmehash_bucket *hmebp)
2852{
2853	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
2854	SFMMU_HASH_UNLOCK(hmebp);
2855}
2856
2857/*
2858 * function which checks and sets up page array for a large
2859 * translation.  Will set p_vcolor, p_index, p_ro fields.
2860 * Assumes addr and pfnum of first page are properly aligned.
2861 * Will check for physical contiguity. If check fails it return
2862 * non null.
2863 */
2864static int
2865sfmmu_pagearray_setup(caddr_t addr, page_t **pps, tte_t *ttep, int remap)
2866{
2867	int 	i, index, ttesz;
2868	pfn_t	pfnum;
2869	pgcnt_t	npgs;
2870	page_t *pp, *pp1;
2871	kmutex_t *pmtx;
2872#ifdef VAC
2873	int osz;
2874	int cflags = 0;
2875	int vac_err = 0;
2876#endif
2877	int newidx = 0;
2878
2879	ttesz = TTE_CSZ(ttep);
2880
2881	ASSERT(ttesz > TTE8K);
2882
2883	npgs = TTEPAGES(ttesz);
2884	index = PAGESZ_TO_INDEX(ttesz);
2885
2886	pfnum = (*pps)->p_pagenum;
2887	ASSERT(IS_P2ALIGNED(pfnum, npgs));
2888
2889	/*
2890	 * Save the first pp so we can do HAT_TMPNC at the end.
2891	 */
2892	pp1 = *pps;
2893#ifdef VAC
2894	osz = fnd_mapping_sz(pp1);
2895#endif
2896
2897	for (i = 0; i < npgs; i++, pps++) {
2898		pp = *pps;
2899		ASSERT(PAGE_LOCKED(pp));
2900		ASSERT(pp->p_szc >= ttesz);
2901		ASSERT(pp->p_szc == pp1->p_szc);
2902		ASSERT(sfmmu_mlist_held(pp));
2903
2904		/*
2905		 * XXX is it possible to maintain P_RO on the root only?
2906		 */
2907		if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
2908			pmtx = sfmmu_page_enter(pp);
2909			PP_CLRRO(pp);
2910			sfmmu_page_exit(pmtx);
2911		} else if (!PP_ISMAPPED(pp) && !TTE_IS_WRITABLE(ttep) &&
2912		    !PP_ISMOD(pp)) {
2913			pmtx = sfmmu_page_enter(pp);
2914			if (!(PP_ISMOD(pp))) {
2915				PP_SETRO(pp);
2916			}
2917			sfmmu_page_exit(pmtx);
2918		}
2919
2920		/*
2921		 * If this is a remap we skip vac & contiguity checks.
2922		 */
2923		if (remap)
2924			continue;
2925
2926		/*
2927		 * set p_vcolor and detect any vac conflicts.
2928		 */
2929#ifdef VAC
2930		if (vac_err == 0) {
2931			vac_err = sfmmu_vacconflict_array(addr, pp, &cflags);
2932
2933		}
2934#endif
2935
2936		/*
2937		 * Save current index in case we need to undo it.
2938		 * Note: "PAGESZ_TO_INDEX(sz)	(1 << (sz))"
2939		 *	"SFMMU_INDEX_SHIFT	6"
2940		 *	 "SFMMU_INDEX_MASK	((1 << SFMMU_INDEX_SHIFT) - 1)"
2941		 *	 "PP_MAPINDEX(p_index)	(p_index & SFMMU_INDEX_MASK)"
2942		 *
2943		 * So:	index = PAGESZ_TO_INDEX(ttesz);
2944		 *	if ttesz == 1 then index = 0x2
2945		 *		    2 then index = 0x4
2946		 *		    3 then index = 0x8
2947		 *		    4 then index = 0x10
2948		 *		    5 then index = 0x20
2949		 * The code below checks if it's a new pagesize (ie, newidx)
2950		 * in case we need to take it back out of p_index,
2951		 * and then or's the new index into the existing index.
2952		 */
2953		if ((PP_MAPINDEX(pp) & index) == 0)
2954			newidx = 1;
2955		pp->p_index = (PP_MAPINDEX(pp) | index);
2956
2957		/*
2958		 * contiguity check
2959		 */
2960		if (pp->p_pagenum != pfnum) {
2961			/*
2962			 * If we fail the contiguity test then
2963			 * the only thing we need to fix is the p_index field.
2964			 * We might get a few extra flushes but since this
2965			 * path is rare that is ok.  The p_ro field will
2966			 * get automatically fixed on the next tteload to
2967			 * the page.  NO TNC bit is set yet.
2968			 */
2969			while (i >= 0) {
2970				pp = *pps;
2971				if (newidx)
2972					pp->p_index = (PP_MAPINDEX(pp) &
2973					    ~index);
2974				pps--;
2975				i--;
2976			}
2977			return (1);
2978		}
2979		pfnum++;
2980		addr += MMU_PAGESIZE;
2981	}
2982
2983#ifdef VAC
2984	if (vac_err) {
2985		if (ttesz > osz) {
2986			/*
2987			 * There are some smaller mappings that causes vac
2988			 * conflicts. Convert all existing small mappings to
2989			 * TNC.
2990			 */
2991			SFMMU_STAT_ADD(sf_uncache_conflict, npgs);
2992			sfmmu_page_cache_array(pp1, HAT_TMPNC, CACHE_FLUSH,
2993				npgs);
2994		} else {
2995			/* EMPTY */
2996			/*
2997			 * If there exists an big page mapping,
2998			 * that means the whole existing big page
2999			 * has TNC setting already. No need to covert to
3000			 * TNC again.
3001			 */
3002			ASSERT(PP_ISTNC(pp1));
3003		}
3004	}
3005#endif	/* VAC */
3006
3007	return (0);
3008}
3009
3010#ifdef VAC
3011/*
3012 * Routine that detects vac consistency for a large page. It also
3013 * sets virtual color for all pp's for this big mapping.
3014 */
3015static int
3016sfmmu_vacconflict_array(caddr_t addr, page_t *pp, int *cflags)
3017{
3018	int vcolor, ocolor;
3019
3020	ASSERT(sfmmu_mlist_held(pp));
3021
3022	if (PP_ISNC(pp)) {
3023		return (HAT_TMPNC);
3024	}
3025
3026	vcolor = addr_to_vcolor(addr);
3027	if (PP_NEWPAGE(pp)) {
3028		PP_SET_VCOLOR(pp, vcolor);
3029		return (0);
3030	}
3031
3032	ocolor = PP_GET_VCOLOR(pp);
3033	if (ocolor == vcolor) {
3034		return (0);
3035	}
3036
3037	if (!PP_ISMAPPED(pp)) {
3038		/*
3039		 * Previous user of page had a differnet color
3040		 * but since there are no current users
3041		 * we just flush the cache and change the color.
3042		 * As an optimization for large pages we flush the
3043		 * entire cache of that color and set a flag.
3044		 */
3045		SFMMU_STAT(sf_pgcolor_conflict);
3046		if (!CacheColor_IsFlushed(*cflags, ocolor)) {
3047			CacheColor_SetFlushed(*cflags, ocolor);
3048			sfmmu_cache_flushcolor(ocolor, pp->p_pagenum);
3049		}
3050		PP_SET_VCOLOR(pp, vcolor);
3051		return (0);
3052	}
3053
3054	/*
3055	 * We got a real conflict with a current mapping.
3056	 * set flags to start unencaching all mappings
3057	 * and return failure so we restart looping
3058	 * the pp array from the beginning.
3059	 */
3060	return (HAT_TMPNC);
3061}
3062#endif	/* VAC */
3063
3064/*
3065 * creates a large page shadow hmeblk for a tte.
3066 * The purpose of this routine is to allow us to do quick unloads because
3067 * the vm layer can easily pass a very large but sparsely populated range.
3068 */
3069static struct hme_blk *
3070sfmmu_shadow_hcreate(sfmmu_t *sfmmup, caddr_t vaddr, int ttesz, uint_t flags)
3071{
3072	struct hmehash_bucket *hmebp;
3073	hmeblk_tag hblktag;
3074	int hmeshift, size, vshift;
3075	uint_t shw_mask, newshw_mask;
3076	struct hme_blk *hmeblkp;
3077
3078	ASSERT(sfmmup != KHATID);
3079	if (mmu_page_sizes == max_mmu_page_sizes) {
3080		ASSERT(ttesz < TTE256M);
3081	} else {
3082		ASSERT(ttesz < TTE4M);
3083		ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
3084		ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
3085	}
3086
3087	if (ttesz == TTE8K) {
3088		size = TTE512K;
3089	} else {
3090		size = ++ttesz;
3091	}
3092
3093	hblktag.htag_id = sfmmup;
3094	hmeshift = HME_HASH_SHIFT(size);
3095	hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
3096	hblktag.htag_rehash = HME_HASH_REHASH(size);
3097	hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
3098
3099	SFMMU_HASH_LOCK(hmebp);
3100
3101	HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3102	ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
3103	if (hmeblkp == NULL) {
3104		hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
3105			hblktag, flags);
3106	}
3107	ASSERT(hmeblkp);
3108	if (!hmeblkp->hblk_shw_mask) {
3109		/*
3110		 * if this is a unused hblk it was just allocated or could
3111		 * potentially be a previous large page hblk so we need to
3112		 * set the shadow bit.
3113		 */
3114		hmeblkp->hblk_shw_bit = 1;
3115	}
3116	ASSERT(hmeblkp->hblk_shw_bit == 1);
3117	vshift = vaddr_to_vshift(hblktag, vaddr, size);
3118	ASSERT(vshift < 8);
3119	/*
3120	 * Atomically set shw mask bit
3121	 */
3122	do {
3123		shw_mask = hmeblkp->hblk_shw_mask;
3124		newshw_mask = shw_mask | (1 << vshift);
3125		newshw_mask = cas32(&hmeblkp->hblk_shw_mask, shw_mask,
3126		    newshw_mask);
3127	} while (newshw_mask != shw_mask);
3128
3129	SFMMU_HASH_UNLOCK(hmebp);
3130
3131	return (hmeblkp);
3132}
3133
3134/*
3135 * This routine cleanup a previous shadow hmeblk and changes it to
3136 * a regular hblk.  This happens rarely but it is possible
3137 * when a process wants to use large pages and there are hblks still
3138 * lying around from the previous as that used these hmeblks.
3139 * The alternative was to cleanup the shadow hblks at unload time
3140 * but since so few user processes actually use large pages, it is
3141 * better to be lazy and cleanup at this time.
3142 */
3143static void
3144sfmmu_shadow_hcleanup(sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
3145	struct hmehash_bucket *hmebp)
3146{
3147	caddr_t addr, endaddr;
3148	int hashno, size;
3149
3150	ASSERT(hmeblkp->hblk_shw_bit);
3151
3152	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3153
3154	if (!hmeblkp->hblk_shw_mask) {
3155		hmeblkp->hblk_shw_bit = 0;
3156		return;
3157	}
3158	addr = (caddr_t)get_hblk_base(hmeblkp);
3159	endaddr = get_hblk_endaddr(hmeblkp);
3160	size = get_hblk_ttesz(hmeblkp);
3161	hashno = size - 1;
3162	ASSERT(hashno > 0);
3163	SFMMU_HASH_UNLOCK(hmebp);
3164
3165	sfmmu_free_hblks(sfmmup, addr, endaddr, hashno);
3166
3167	SFMMU_HASH_LOCK(hmebp);
3168}
3169
3170static void
3171sfmmu_free_hblks(sfmmu_t *sfmmup, caddr_t addr, caddr_t endaddr,
3172	int hashno)
3173{
3174	int hmeshift, shadow = 0;
3175	hmeblk_tag hblktag;
3176	struct hmehash_bucket *hmebp;
3177	struct hme_blk *hmeblkp;
3178	struct hme_blk *nx_hblk, *pr_hblk, *list = NULL;
3179	uint64_t hblkpa, prevpa, nx_pa;
3180
3181	ASSERT(hashno > 0);
3182	hblktag.htag_id = sfmmup;
3183	hblktag.htag_rehash = hashno;
3184
3185	hmeshift = HME_HASH_SHIFT(hashno);
3186
3187	while (addr < endaddr) {
3188		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3189		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3190		SFMMU_HASH_LOCK(hmebp);
3191		/* inline HME_HASH_SEARCH */
3192		hmeblkp = hmebp->hmeblkp;
3193		hblkpa = hmebp->hmeh_nextpa;
3194		prevpa = 0;
3195		pr_hblk = NULL;
3196		while (hmeblkp) {
3197			ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
3198			if (HTAGS_EQ(hmeblkp->hblk_tag, hblktag)) {
3199				/* found hme_blk */
3200				if (hmeblkp->hblk_shw_bit) {
3201					if (hmeblkp->hblk_shw_mask) {
3202						shadow = 1;
3203						sfmmu_shadow_hcleanup(sfmmup,
3204						    hmeblkp, hmebp);
3205						break;
3206					} else {
3207						hmeblkp->hblk_shw_bit = 0;
3208					}
3209				}
3210
3211				/*
3212				 * Hblk_hmecnt and hblk_vcnt could be non zero
3213				 * since hblk_unload() does not gurantee that.
3214				 *
3215				 * XXX - this could cause tteload() to spin
3216				 * where sfmmu_shadow_hcleanup() is called.
3217				 */
3218			}
3219
3220			nx_hblk = hmeblkp->hblk_next;
3221			nx_pa = hmeblkp->hblk_nextpa;
3222			if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
3223				sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
3224					pr_hblk);
3225				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
3226			} else {
3227				pr_hblk = hmeblkp;
3228				prevpa = hblkpa;
3229			}
3230			hmeblkp = nx_hblk;
3231			hblkpa = nx_pa;
3232		}
3233
3234		SFMMU_HASH_UNLOCK(hmebp);
3235
3236		if (shadow) {
3237			/*
3238			 * We found another shadow hblk so cleaned its
3239			 * children.  We need to go back and cleanup
3240			 * the original hblk so we don't change the
3241			 * addr.
3242			 */
3243			shadow = 0;
3244		} else {
3245			addr = (caddr_t)roundup((uintptr_t)addr + 1,
3246				(1 << hmeshift));
3247		}
3248	}
3249	sfmmu_hblks_list_purge(&list);
3250}
3251
3252/*
3253 * Release one hardware address translation lock on the given address range.
3254 */
3255void
3256hat_unlock(struct hat *sfmmup, caddr_t addr, size_t len)
3257{
3258	struct hmehash_bucket *hmebp;
3259	hmeblk_tag hblktag;
3260	int hmeshift, hashno = 1;
3261	struct hme_blk *hmeblkp, *list = NULL;
3262	caddr_t endaddr;
3263
3264	ASSERT(sfmmup != NULL);
3265	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3266
3267	ASSERT((sfmmup == ksfmmup) ||
3268		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
3269	ASSERT((len & MMU_PAGEOFFSET) == 0);
3270	endaddr = addr + len;
3271	hblktag.htag_id = sfmmup;
3272
3273	/*
3274	 * Spitfire supports 4 page sizes.
3275	 * Most pages are expected to be of the smallest page size (8K) and
3276	 * these will not need to be rehashed. 64K pages also don't need to be
3277	 * rehashed because an hmeblk spans 64K of address space. 512K pages
3278	 * might need 1 rehash and and 4M pages might need 2 rehashes.
3279	 */
3280	while (addr < endaddr) {
3281		hmeshift = HME_HASH_SHIFT(hashno);
3282		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3283		hblktag.htag_rehash = hashno;
3284		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3285
3286		SFMMU_HASH_LOCK(hmebp);
3287
3288		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
3289		if (hmeblkp != NULL) {
3290			/*
3291			 * If we encounter a shadow hmeblk then
3292			 * we know there are no valid hmeblks mapping
3293			 * this address at this size or larger.
3294			 * Just increment address by the smallest
3295			 * page size.
3296			 */
3297			if (hmeblkp->hblk_shw_bit) {
3298				addr += MMU_PAGESIZE;
3299			} else {
3300				addr = sfmmu_hblk_unlock(hmeblkp, addr,
3301				    endaddr);
3302			}
3303			SFMMU_HASH_UNLOCK(hmebp);
3304			hashno = 1;
3305			continue;
3306		}
3307		SFMMU_HASH_UNLOCK(hmebp);
3308
3309		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
3310			/*
3311			 * We have traversed the whole list and rehashed
3312			 * if necessary without finding the address to unlock
3313			 * which should never happen.
3314			 */
3315			panic("sfmmu_unlock: addr not found. "
3316			    "addr %p hat %p", (void *)addr, (void *)sfmmup);
3317		} else {
3318			hashno++;
3319		}
3320	}
3321
3322	sfmmu_hblks_list_purge(&list);
3323}
3324
3325/*
3326 * Function to unlock a range of addresses in an hmeblk.  It returns the
3327 * next address that needs to be unlocked.
3328 * Should be called with the hash lock held.
3329 */
3330static caddr_t
3331sfmmu_hblk_unlock(struct hme_blk *hmeblkp, caddr_t addr, caddr_t endaddr)
3332{
3333	struct sf_hment *sfhme;
3334	tte_t tteold, ttemod;
3335	int ttesz, ret;
3336
3337	ASSERT(in_hblk_range(hmeblkp, addr));
3338	ASSERT(hmeblkp->hblk_shw_bit == 0);
3339
3340	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
3341	ttesz = get_hblk_ttesz(hmeblkp);
3342
3343	HBLKTOHME(sfhme, hmeblkp, addr);
3344	while (addr < endaddr) {
3345readtte:
3346		sfmmu_copytte(&sfhme->hme_tte, &tteold);
3347		if (TTE_IS_VALID(&tteold)) {
3348
3349			ttemod = tteold;
3350
3351			ret = sfmmu_modifytte_try(&tteold, &ttemod,
3352			    &sfhme->hme_tte);
3353
3354			if (ret < 0)
3355				goto readtte;
3356
3357			if (hmeblkp->hblk_lckcnt == 0)
3358				panic("zero hblk lckcnt");
3359
3360			if (((uintptr_t)addr + TTEBYTES(ttesz)) >
3361			    (uintptr_t)endaddr)
3362				panic("can't unlock large tte");
3363
3364			ASSERT(hmeblkp->hblk_lckcnt > 0);
3365			atomic_add_16(&hmeblkp->hblk_lckcnt, -1);
3366			HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
3367		} else {
3368			panic("sfmmu_hblk_unlock: invalid tte");
3369		}
3370		addr += TTEBYTES(ttesz);
3371		sfhme++;
3372	}
3373	return (addr);
3374}
3375
3376/*
3377 * Physical Address Mapping Framework
3378 *
3379 * General rules:
3380 *
3381 * (1) Applies only to seg_kmem memory pages. To make things easier,
3382 *     seg_kpm addresses are also accepted by the routines, but nothing
3383 *     is done with them since by definition their PA mappings are static.
3384 * (2) hat_add_callback() may only be called while holding the page lock
3385 *     SE_SHARED or SE_EXCL of the underlying page (e.g., as_pagelock()),
3386 *     or passing HAC_PAGELOCK flag.
3387 * (3) prehandler() and posthandler() may not call hat_add_callback() or
3388 *     hat_delete_callback(), nor should they allocate memory. Post quiesce
3389 *     callbacks may not sleep or acquire adaptive mutex locks.
3390 * (4) Either prehandler() or posthandler() (but not both) may be specified
3391 *     as being NULL.  Specifying an errhandler() is optional.
3392 *
3393 * Details of using the framework:
3394 *
3395 * registering a callback (hat_register_callback())
3396 *
3397 *	Pass prehandler, posthandler, errhandler addresses
3398 *	as described below. If capture_cpus argument is nonzero,
3399 *	suspend callback to the prehandler will occur with CPUs
3400 *	captured and executing xc_loop() and CPUs will remain
3401 *	captured until after the posthandler suspend callback
3402 *	occurs.
3403 *
3404 * adding a callback (hat_add_callback())
3405 *
3406 *      as_pagelock();
3407 *	hat_add_callback();
3408 *      save returned pfn in private data structures or program registers;
3409 *      as_pageunlock();
3410 *
3411 * prehandler()
3412 *
3413 *	Stop all accesses by physical address to this memory page.
3414 *	Called twice: the first, PRESUSPEND, is a context safe to acquire
3415 *	adaptive locks. The second, SUSPEND, is called at high PIL with
3416 *	CPUs captured so adaptive locks may NOT be acquired (and all spin
3417 *	locks must be XCALL_PIL or higher locks).
3418 *
3419 *	May return the following errors:
3420 *		EIO:	A fatal error has occurred. This will result in panic.
3421 *		EAGAIN:	The page cannot be suspended. This will fail the
3422 *			relocation.
3423 *		0:	Success.
3424 *
3425 * posthandler()
3426 *
3427 *      Save new pfn in private data structures or program registers;
3428 *	not allowed to fail (non-zero return values will result in panic).
3429 *
3430 * errhandler()
3431 *
3432 *	called when an error occurs related to the callback.  Currently
3433 *	the only such error is HAT_CB_ERR_LEAKED which indicates that
3434 *	a page is being freed, but there are still outstanding callback(s)
3435 *	registered on the page.
3436 *
3437 * removing a callback (hat_delete_callback(); e.g., prior to freeing memory)
3438 *
3439 *	stop using physical address
3440 *	hat_delete_callback();
3441 *
3442 */
3443
3444/*
3445 * Register a callback class.  Each subsystem should do this once and
3446 * cache the id_t returned for use in setting up and tearing down callbacks.
3447 *
3448 * There is no facility for removing callback IDs once they are created;
3449 * the "key" should be unique for each module, so in case a module is unloaded
3450 * and subsequently re-loaded, we can recycle the module's previous entry.
3451 */
3452id_t
3453hat_register_callback(int key,
3454	int (*prehandler)(caddr_t, uint_t, uint_t, void *),
3455	int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t),
3456	int (*errhandler)(caddr_t, uint_t, uint_t, void *),
3457	int capture_cpus)
3458{
3459	id_t id;
3460
3461	/*
3462	 * Search the table for a pre-existing callback associated with
3463	 * the identifier "key".  If one exists, we re-use that entry in
3464	 * the table for this instance, otherwise we assign the next
3465	 * available table slot.
3466	 */
3467	for (id = 0; id < sfmmu_max_cb_id; id++) {
3468		if (sfmmu_cb_table[id].key == key)
3469			break;
3470	}
3471
3472	if (id == sfmmu_max_cb_id) {
3473		id = sfmmu_cb_nextid++;
3474		if (id >= sfmmu_max_cb_id)
3475			panic("hat_register_callback: out of callback IDs");
3476	}
3477
3478	ASSERT(prehandler != NULL || posthandler != NULL);
3479
3480	sfmmu_cb_table[id].key = key;
3481	sfmmu_cb_table[id].prehandler = prehandler;
3482	sfmmu_cb_table[id].posthandler = posthandler;
3483	sfmmu_cb_table[id].errhandler = errhandler;
3484	sfmmu_cb_table[id].capture_cpus = capture_cpus;
3485
3486	return (id);
3487}
3488
3489#define	HAC_COOKIE_NONE	(void *)-1
3490
3491/*
3492 * Add relocation callbacks to the specified addr/len which will be called
3493 * when relocating the associated page. See the description of pre and
3494 * posthandler above for more details.
3495 *
3496 * If HAC_PAGELOCK is included in flags, the underlying memory page is
3497 * locked internally so the caller must be able to deal with the callback
3498 * running even before this function has returned.  If HAC_PAGELOCK is not
3499 * set, it is assumed that the underlying memory pages are locked.
3500 *
3501 * Since the caller must track the individual page boundaries anyway,
3502 * we only allow a callback to be added to a single page (large
3503 * or small).  Thus [addr, addr + len) MUST be contained within a single
3504 * page.
3505 *
3506 * Registering multiple callbacks on the same [addr, addr+len) is supported,
3507 * _provided_that_ a unique parameter is specified for each callback.
3508 * If multiple callbacks are registered on the same range the callback will
3509 * be invoked with each unique parameter. Registering the same callback with
3510 * the same argument more than once will result in corrupted kernel state.
3511 *
3512 * Returns the pfn of the underlying kernel page in *rpfn
3513 * on success, or PFN_INVALID on failure.
3514 *
3515 * cookiep (if passed) provides storage space for an opaque cookie
3516 * to return later to hat_delete_callback(). This cookie makes the callback
3517 * deletion significantly quicker by avoiding a potentially lengthy hash
3518 * search.
3519 *
3520 * Returns values:
3521 *    0:      success
3522 *    ENOMEM: memory allocation failure (e.g. flags was passed as HAC_NOSLEEP)
3523 *    EINVAL: callback ID is not valid
3524 *    ENXIO:  ["vaddr", "vaddr" + len) is not mapped in the kernel's address
3525 *            space
3526 *    ERANGE: ["vaddr", "vaddr" + len) crosses a page boundary
3527 */
3528int
3529hat_add_callback(id_t callback_id, caddr_t vaddr, uint_t len, uint_t flags,
3530	void *pvt, pfn_t *rpfn, void **cookiep)
3531{
3532	struct 		hmehash_bucket *hmebp;
3533	hmeblk_tag 	hblktag;
3534	struct hme_blk	*hmeblkp;
3535	int 		hmeshift, hashno;
3536	caddr_t 	saddr, eaddr, baseaddr;
3537	struct pa_hment *pahmep;
3538	struct sf_hment *sfhmep, *osfhmep;
3539	kmutex_t	*pml;
3540	tte_t   	tte;
3541	page_t		*pp;
3542	vnode_t		*vp;
3543	u_offset_t	off;
3544	pfn_t		pfn;
3545	int		kmflags = (flags & HAC_SLEEP)? KM_SLEEP : KM_NOSLEEP;
3546	int		locked = 0;
3547
3548	/*
3549	 * For KPM mappings, just return the physical address since we
3550	 * don't need to register any callbacks.
3551	 */
3552	if (IS_KPM_ADDR(vaddr)) {
3553		uint64_t paddr;
3554		SFMMU_KPM_VTOP(vaddr, paddr);
3555		*rpfn = btop(paddr);
3556		if (cookiep != NULL)
3557			*cookiep = HAC_COOKIE_NONE;
3558		return (0);
3559	}
3560
3561	if (callback_id < (id_t)0 || callback_id >= sfmmu_cb_nextid) {
3562		*rpfn = PFN_INVALID;
3563		return (EINVAL);
3564	}
3565
3566	if ((pahmep = kmem_cache_alloc(pa_hment_cache, kmflags)) == NULL) {
3567		*rpfn = PFN_INVALID;
3568		return (ENOMEM);
3569	}
3570
3571	sfhmep = &pahmep->sfment;
3572
3573	saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
3574	eaddr = saddr + len;
3575
3576rehash:
3577	/* Find the mapping(s) for this page */
3578	for (hashno = TTE64K, hmeblkp = NULL;
3579	    hmeblkp == NULL && hashno <= mmu_hashcnt;
3580	    hashno++) {
3581		hmeshift = HME_HASH_SHIFT(hashno);
3582		hblktag.htag_id = ksfmmup;
3583		hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
3584		hblktag.htag_rehash = hashno;
3585		hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
3586
3587		SFMMU_HASH_LOCK(hmebp);
3588
3589		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3590
3591		if (hmeblkp == NULL)
3592			SFMMU_HASH_UNLOCK(hmebp);
3593	}
3594
3595	if (hmeblkp == NULL) {
3596		kmem_cache_free(pa_hment_cache, pahmep);
3597		*rpfn = PFN_INVALID;
3598		return (ENXIO);
3599	}
3600
3601	HBLKTOHME(osfhmep, hmeblkp, saddr);
3602	sfmmu_copytte(&osfhmep->hme_tte, &tte);
3603
3604	if (!TTE_IS_VALID(&tte)) {
3605		SFMMU_HASH_UNLOCK(hmebp);
3606		kmem_cache_free(pa_hment_cache, pahmep);
3607		*rpfn = PFN_INVALID;
3608		return (ENXIO);
3609	}
3610
3611	/*
3612	 * Make sure the boundaries for the callback fall within this
3613	 * single mapping.
3614	 */
3615	baseaddr = (caddr_t)get_hblk_base(hmeblkp);
3616	ASSERT(saddr >= baseaddr);
3617	if (eaddr > saddr + TTEBYTES(TTE_CSZ(&tte))) {
3618		SFMMU_HASH_UNLOCK(hmebp);
3619		kmem_cache_free(pa_hment_cache, pahmep);
3620		*rpfn = PFN_INVALID;
3621		return (ERANGE);
3622	}
3623
3624	pfn = sfmmu_ttetopfn(&tte, vaddr);
3625
3626	/*
3627	 * The pfn may not have a page_t underneath in which case we
3628	 * just return it. This can happen if we are doing I/O to a
3629	 * static portion of the kernel's address space, for instance.
3630	 */
3631	pp = osfhmep->hme_page;
3632	if (pp == NULL) {
3633		SFMMU_HASH_UNLOCK(hmebp);
3634		kmem_cache_free(pa_hment_cache, pahmep);
3635		*rpfn = pfn;
3636		if (cookiep)
3637			*cookiep = HAC_COOKIE_NONE;
3638		return (0);
3639	}
3640	ASSERT(pp == PP_PAGEROOT(pp));
3641
3642	vp = pp->p_vnode;
3643	off = pp->p_offset;
3644
3645	pml = sfmmu_mlist_enter(pp);
3646
3647	if (flags & HAC_PAGELOCK) {
3648		if (!page_trylock(pp, SE_SHARED)) {
3649			/*
3650			 * Somebody is holding SE_EXCL lock. Might
3651			 * even be hat_page_relocate(). Drop all
3652			 * our locks, lookup the page in &kvp, and
3653			 * retry. If it doesn't exist in &kvp, then
3654			 * we must be dealing with a kernel mapped
3655			 * page which doesn't actually belong to
3656			 * segkmem so we punt.
3657			 */
3658			sfmmu_mlist_exit(pml);
3659			SFMMU_HASH_UNLOCK(hmebp);
3660			pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
3661			if (pp == NULL) {
3662				kmem_cache_free(pa_hment_cache, pahmep);
3663				*rpfn = pfn;
3664				if (cookiep)
3665					*cookiep = HAC_COOKIE_NONE;
3666				return (0);
3667			}
3668			page_unlock(pp);
3669			goto rehash;
3670		}
3671		locked = 1;
3672	}
3673
3674	if (!PAGE_LOCKED(pp) && !panicstr)
3675		panic("hat_add_callback: page 0x%p not locked", pp);
3676
3677	if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
3678	    pp->p_offset != off) {
3679		/*
3680		 * The page moved before we got our hands on it.  Drop
3681		 * all the locks and try again.
3682		 */
3683		ASSERT((flags & HAC_PAGELOCK) != 0);
3684		sfmmu_mlist_exit(pml);
3685		SFMMU_HASH_UNLOCK(hmebp);
3686		page_unlock(pp);
3687		locked = 0;
3688		goto rehash;
3689	}
3690
3691	if (vp != &kvp) {
3692		/*
3693		 * This is not a segkmem page but another page which
3694		 * has been kernel mapped. It had better have at least
3695		 * a share lock on it. Return the pfn.
3696		 */
3697		sfmmu_mlist_exit(pml);
3698		SFMMU_HASH_UNLOCK(hmebp);
3699		if (locked)
3700			page_unlock(pp);
3701		kmem_cache_free(pa_hment_cache, pahmep);
3702		ASSERT(PAGE_LOCKED(pp));
3703		*rpfn = pfn;
3704		if (cookiep)
3705			*cookiep = HAC_COOKIE_NONE;
3706		return (0);
3707	}
3708
3709	/*
3710	 * Setup this pa_hment and link its embedded dummy sf_hment into
3711	 * the mapping list.
3712	 */
3713	pp->p_share++;
3714	pahmep->cb_id = callback_id;
3715	pahmep->addr = vaddr;
3716	pahmep->len = len;
3717	pahmep->refcnt = 1;
3718	pahmep->flags = 0;
3719	pahmep->pvt = pvt;
3720
3721	sfhmep->hme_tte.ll = 0;
3722	sfhmep->hme_data = pahmep;
3723	sfhmep->hme_prev = osfhmep;
3724	sfhmep->hme_next = osfhmep->hme_next;
3725
3726	if (osfhmep->hme_next)
3727		osfhmep->hme_next->hme_prev = sfhmep;
3728
3729	osfhmep->hme_next = sfhmep;
3730
3731	sfmmu_mlist_exit(pml);
3732	SFMMU_HASH_UNLOCK(hmebp);
3733
3734	if (locked)
3735		page_unlock(pp);
3736
3737	*rpfn = pfn;
3738	if (cookiep)
3739		*cookiep = (void *)pahmep;
3740
3741	return (0);
3742}
3743
3744/*
3745 * Remove the relocation callbacks from the specified addr/len.
3746 */
3747void
3748hat_delete_callback(caddr_t vaddr, uint_t len, void *pvt, uint_t flags,
3749	void *cookie)
3750{
3751	struct		hmehash_bucket *hmebp;
3752	hmeblk_tag	hblktag;
3753	struct hme_blk	*hmeblkp;
3754	int		hmeshift, hashno;
3755	caddr_t		saddr;
3756	struct pa_hment	*pahmep;
3757	struct sf_hment	*sfhmep, *osfhmep;
3758	kmutex_t	*pml;
3759	tte_t		tte;
3760	page_t		*pp;
3761	vnode_t		*vp;
3762	u_offset_t	off;
3763	int		locked = 0;
3764
3765	/*
3766	 * If the cookie is HAC_COOKIE_NONE then there is no pa_hment to
3767	 * remove so just return.
3768	 */
3769	if (cookie == HAC_COOKIE_NONE || IS_KPM_ADDR(vaddr))
3770		return;
3771
3772	saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
3773
3774rehash:
3775	/* Find the mapping(s) for this page */
3776	for (hashno = TTE64K, hmeblkp = NULL;
3777	    hmeblkp == NULL && hashno <= mmu_hashcnt;
3778	    hashno++) {
3779		hmeshift = HME_HASH_SHIFT(hashno);
3780		hblktag.htag_id = ksfmmup;
3781		hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
3782		hblktag.htag_rehash = hashno;
3783		hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
3784
3785		SFMMU_HASH_LOCK(hmebp);
3786
3787		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3788
3789		if (hmeblkp == NULL)
3790			SFMMU_HASH_UNLOCK(hmebp);
3791	}
3792
3793	if (hmeblkp == NULL)
3794		return;
3795
3796	HBLKTOHME(osfhmep, hmeblkp, saddr);
3797
3798	sfmmu_copytte(&osfhmep->hme_tte, &tte);
3799	if (!TTE_IS_VALID(&tte)) {
3800		SFMMU_HASH_UNLOCK(hmebp);
3801		return;
3802	}
3803
3804	pp = osfhmep->hme_page;
3805	if (pp == NULL) {
3806		SFMMU_HASH_UNLOCK(hmebp);
3807		ASSERT(cookie == NULL);
3808		return;
3809	}
3810
3811	vp = pp->p_vnode;
3812	off = pp->p_offset;
3813
3814	pml = sfmmu_mlist_enter(pp);
3815
3816	if (flags & HAC_PAGELOCK) {
3817		if (!page_trylock(pp, SE_SHARED)) {
3818			/*
3819			 * Somebody is holding SE_EXCL lock. Might
3820			 * even be hat_page_relocate(). Drop all
3821			 * our locks, lookup the page in &kvp, and
3822			 * retry. If it doesn't exist in &kvp, then
3823			 * we must be dealing with a kernel mapped
3824			 * page which doesn't actually belong to
3825			 * segkmem so we punt.
3826			 */
3827			sfmmu_mlist_exit(pml);
3828			SFMMU_HASH_UNLOCK(hmebp);
3829			pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
3830			if (pp == NULL) {
3831				ASSERT(cookie == NULL);
3832				return;
3833			}
3834			page_unlock(pp);
3835			goto rehash;
3836		}
3837		locked = 1;
3838	}
3839
3840	ASSERT(PAGE_LOCKED(pp));
3841
3842	if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
3843	    pp->p_offset != off) {
3844		/*
3845		 * The page moved before we got our hands on it.  Drop
3846		 * all the locks and try again.
3847		 */
3848		ASSERT((flags & HAC_PAGELOCK) != 0);
3849		sfmmu_mlist_exit(pml);
3850		SFMMU_HASH_UNLOCK(hmebp);
3851		page_unlock(pp);
3852		locked = 0;
3853		goto rehash;
3854	}
3855
3856	if (vp != &kvp) {
3857		/*
3858		 * This is not a segkmem page but another page which
3859		 * has been kernel mapped.
3860		 */
3861		sfmmu_mlist_exit(pml);
3862		SFMMU_HASH_UNLOCK(hmebp);
3863		if (locked)
3864			page_unlock(pp);
3865		ASSERT(cookie == NULL);
3866		return;
3867	}
3868
3869	if (cookie != NULL) {
3870		pahmep = (struct pa_hment *)cookie;
3871		sfhmep = &pahmep->sfment;
3872	} else {
3873		for (sfhmep = pp->p_mapping; sfhmep != NULL;
3874		    sfhmep = sfhmep->hme_next) {
3875
3876			/*
3877			 * skip va<->pa mappings
3878			 */
3879			if (!IS_PAHME(sfhmep))
3880				continue;
3881
3882			pahmep = sfhmep->hme_data;
3883			ASSERT(pahmep != NULL);
3884
3885			/*
3886			 * if pa_hment matches, remove it
3887			 */
3888			if ((pahmep->pvt == pvt) &&
3889			    (pahmep->addr == vaddr) &&
3890			    (pahmep->len == len)) {
3891				break;
3892			}
3893		}
3894	}
3895
3896	if (sfhmep == NULL) {
3897		if (!panicstr) {
3898			panic("hat_delete_callback: pa_hment not found, pp %p",
3899			    (void *)pp);
3900		}
3901		return;
3902	}
3903
3904	/*
3905	 * Note: at this point a valid kernel mapping must still be
3906	 * present on this page.
3907	 */
3908	pp->p_share--;
3909	if (pp->p_share <= 0)
3910		panic("hat_delete_callback: zero p_share");
3911
3912	if (--pahmep->refcnt == 0) {
3913		if (pahmep->flags != 0)
3914			panic("hat_delete_callback: pa_hment is busy");
3915
3916		/*
3917		 * Remove sfhmep from the mapping list for the page.
3918		 */
3919		if (sfhmep->hme_prev) {
3920			sfhmep->hme_prev->hme_next = sfhmep->hme_next;
3921		} else {
3922			pp->p_mapping = sfhmep->hme_next;
3923		}
3924
3925		if (sfhmep->hme_next)
3926			sfhmep->hme_next->hme_prev = sfhmep->hme_prev;
3927
3928		sfmmu_mlist_exit(pml);
3929		SFMMU_HASH_UNLOCK(hmebp);
3930
3931		if (locked)
3932			page_unlock(pp);
3933
3934		kmem_cache_free(pa_hment_cache, pahmep);
3935		return;
3936	}
3937
3938	sfmmu_mlist_exit(pml);
3939	SFMMU_HASH_UNLOCK(hmebp);
3940	if (locked)
3941		page_unlock(pp);
3942}
3943
3944/*
3945 * hat_probe returns 1 if the translation for the address 'addr' is
3946 * loaded, zero otherwise.
3947 *
3948 * hat_probe should be used only for advisorary purposes because it may
3949 * occasionally return the wrong value. The implementation must guarantee that
3950 * returning the wrong value is a very rare event. hat_probe is used
3951 * to implement optimizations in the segment drivers.
3952 *
3953 */
3954int
3955hat_probe(struct hat *sfmmup, caddr_t addr)
3956{
3957	pfn_t pfn;
3958	tte_t tte;
3959
3960	ASSERT(sfmmup != NULL);
3961	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3962
3963	ASSERT((sfmmup == ksfmmup) ||
3964		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
3965
3966	if (sfmmup == ksfmmup) {
3967		while ((pfn = sfmmu_vatopfn(addr, sfmmup, &tte))
3968		    == PFN_SUSPENDED) {
3969			sfmmu_vatopfn_suspended(addr, sfmmup, &tte);
3970		}
3971	} else {
3972		pfn = sfmmu_uvatopfn(addr, sfmmup);
3973	}
3974
3975	if (pfn != PFN_INVALID)
3976		return (1);
3977	else
3978		return (0);
3979}
3980
3981ssize_t
3982hat_getpagesize(struct hat *sfmmup, caddr_t addr)
3983{
3984	tte_t tte;
3985
3986	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3987
3988	sfmmu_gettte(sfmmup, addr, &tte);
3989	if (TTE_IS_VALID(&tte)) {
3990		return (TTEBYTES(TTE_CSZ(&tte)));
3991	}
3992	return (-1);
3993}
3994
3995static void
3996sfmmu_gettte(struct hat *sfmmup, caddr_t addr, tte_t *ttep)
3997{
3998	struct hmehash_bucket *hmebp;
3999	hmeblk_tag hblktag;
4000	int hmeshift, hashno = 1;
4001	struct hme_blk *hmeblkp, *list = NULL;
4002	struct sf_hment *sfhmep;
4003
4004	/* support for ISM */
4005	ism_map_t	*ism_map;
4006	ism_blk_t	*ism_blkp;
4007	int		i;
4008	sfmmu_t		*ism_hatid = NULL;
4009	sfmmu_t		*locked_hatid = NULL;
4010
4011	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
4012
4013	ism_blkp = sfmmup->sfmmu_iblk;
4014	if (ism_blkp) {
4015		sfmmu_ismhat_enter(sfmmup, 0);
4016		locked_hatid = sfmmup;
4017	}
4018	while (ism_blkp && ism_hatid == NULL) {
4019		ism_map = ism_blkp->iblk_maps;
4020		for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
4021			if (addr >= ism_start(ism_map[i]) &&
4022			    addr < ism_end(ism_map[i])) {
4023				sfmmup = ism_hatid = ism_map[i].imap_ismhat;
4024				addr = (caddr_t)(addr -
4025					ism_start(ism_map[i]));
4026				break;
4027			}
4028		}
4029		ism_blkp = ism_blkp->iblk_next;
4030	}
4031	if (locked_hatid) {
4032		sfmmu_ismhat_exit(locked_hatid, 0);
4033	}
4034
4035	hblktag.htag_id = sfmmup;
4036	ttep->ll = 0;
4037
4038	do {
4039		hmeshift = HME_HASH_SHIFT(hashno);
4040		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4041		hblktag.htag_rehash = hashno;
4042		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4043
4044		SFMMU_HASH_LOCK(hmebp);
4045
4046		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4047		if (hmeblkp != NULL) {
4048			HBLKTOHME(sfhmep, hmeblkp, addr);
4049			sfmmu_copytte(&sfhmep->hme_tte, ttep);
4050			SFMMU_HASH_UNLOCK(hmebp);
4051			break;
4052		}
4053		SFMMU_HASH_UNLOCK(hmebp);
4054		hashno++;
4055	} while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt));
4056
4057	sfmmu_hblks_list_purge(&list);
4058}
4059
4060uint_t
4061hat_getattr(struct hat *sfmmup, caddr_t addr, uint_t *attr)
4062{
4063	tte_t tte;
4064
4065	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
4066
4067	sfmmu_gettte(sfmmup, addr, &tte);
4068	if (TTE_IS_VALID(&tte)) {
4069		*attr = sfmmu_ptov_attr(&tte);
4070		return (0);
4071	}
4072	*attr = 0;
4073	return ((uint_t)0xffffffff);
4074}
4075
4076/*
4077 * Enables more attributes on specified address range (ie. logical OR)
4078 */
4079void
4080hat_setattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4081{
4082	if (hat->sfmmu_xhat_provider) {
4083		XHAT_SETATTR(hat, addr, len, attr);
4084		return;
4085	} else {
4086		/*
4087		 * This must be a CPU HAT. If the address space has
4088		 * XHATs attached, change attributes for all of them,
4089		 * just in case
4090		 */
4091		ASSERT(hat->sfmmu_as != NULL);
4092		if (hat->sfmmu_as->a_xhat != NULL)
4093			xhat_setattr_all(hat->sfmmu_as, addr, len, attr);
4094	}
4095
4096	sfmmu_chgattr(hat, addr, len, attr, SFMMU_SETATTR);
4097}
4098
4099/*
4100 * Assigns attributes to the specified address range.  All the attributes
4101 * are specified.
4102 */
4103void
4104hat_chgattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4105{
4106	if (hat->sfmmu_xhat_provider) {
4107		XHAT_CHGATTR(hat, addr, len, attr);
4108		return;
4109	} else {
4110		/*
4111		 * This must be a CPU HAT. If the address space has
4112		 * XHATs attached, change attributes for all of them,
4113		 * just in case
4114		 */
4115		ASSERT(hat->sfmmu_as != NULL);
4116		if (hat->sfmmu_as->a_xhat != NULL)
4117			xhat_chgattr_all(hat->sfmmu_as, addr, len, attr);
4118	}
4119
4120	sfmmu_chgattr(hat, addr, len, attr, SFMMU_CHGATTR);
4121}
4122
4123/*
4124 * Remove attributes on the specified address range (ie. loginal NAND)
4125 */
4126void
4127hat_clrattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4128{
4129	if (hat->sfmmu_xhat_provider) {
4130		XHAT_CLRATTR(hat, addr, len, attr);
4131		return;
4132	} else {
4133		/*
4134		 * This must be a CPU HAT. If the address space has
4135		 * XHATs attached, change attributes for all of them,
4136		 * just in case
4137		 */
4138		ASSERT(hat->sfmmu_as != NULL);
4139		if (hat->sfmmu_as->a_xhat != NULL)
4140			xhat_clrattr_all(hat->sfmmu_as, addr, len, attr);
4141	}
4142
4143	sfmmu_chgattr(hat, addr, len, attr, SFMMU_CLRATTR);
4144}
4145
4146/*
4147 * Change attributes on an address range to that specified by attr and mode.
4148 */
4149static void
4150sfmmu_chgattr(struct hat *sfmmup, caddr_t addr, size_t len, uint_t attr,
4151	int mode)
4152{
4153	struct hmehash_bucket *hmebp;
4154	hmeblk_tag hblktag;
4155	int hmeshift, hashno = 1;
4156	struct hme_blk *hmeblkp, *list = NULL;
4157	caddr_t endaddr;
4158	cpuset_t cpuset;
4159	demap_range_t dmr;
4160
4161	CPUSET_ZERO(cpuset);
4162
4163	ASSERT((sfmmup == ksfmmup) ||
4164		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
4165	ASSERT((len & MMU_PAGEOFFSET) == 0);
4166	ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
4167
4168	if ((attr & PROT_USER) && (mode != SFMMU_CLRATTR) &&
4169	    ((addr + len) > (caddr_t)USERLIMIT)) {
4170		panic("user addr %p in kernel space",
4171		    (void *)addr);
4172	}
4173
4174	endaddr = addr + len;
4175	hblktag.htag_id = sfmmup;
4176	DEMAP_RANGE_INIT(sfmmup, &dmr);
4177
4178	while (addr < endaddr) {
4179		hmeshift = HME_HASH_SHIFT(hashno);
4180		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4181		hblktag.htag_rehash = hashno;
4182		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4183
4184		SFMMU_HASH_LOCK(hmebp);
4185
4186		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4187		if (hmeblkp != NULL) {
4188			/*
4189			 * We've encountered a shadow hmeblk so skip the range
4190			 * of the next smaller mapping size.
4191			 */
4192			if (hmeblkp->hblk_shw_bit) {
4193				ASSERT(sfmmup != ksfmmup);
4194				ASSERT(hashno > 1);
4195				addr = (caddr_t)P2END((uintptr_t)addr,
4196					    TTEBYTES(hashno - 1));
4197			} else {
4198				addr = sfmmu_hblk_chgattr(sfmmup,
4199				    hmeblkp, addr, endaddr, &dmr, attr, mode);
4200			}
4201			SFMMU_HASH_UNLOCK(hmebp);
4202			hashno = 1;
4203			continue;
4204		}
4205		SFMMU_HASH_UNLOCK(hmebp);
4206
4207		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
4208			/*
4209			 * We have traversed the whole list and rehashed
4210			 * if necessary without finding the address to chgattr.
4211			 * This is ok, so we increment the address by the
4212			 * smallest hmeblk range for kernel mappings or for
4213			 * user mappings with no large pages, and the largest
4214			 * hmeblk range, to account for shadow hmeblks, for
4215			 * user mappings with large pages and continue.
4216			 */
4217			if (sfmmup == ksfmmup)
4218				addr = (caddr_t)P2END((uintptr_t)addr,
4219					    TTEBYTES(1));
4220			else
4221				addr = (caddr_t)P2END((uintptr_t)addr,
4222					    TTEBYTES(hashno));
4223			hashno = 1;
4224		} else {
4225			hashno++;
4226		}
4227	}
4228
4229	sfmmu_hblks_list_purge(&list);
4230	DEMAP_RANGE_FLUSH(&dmr);
4231	cpuset = sfmmup->sfmmu_cpusran;
4232	xt_sync(cpuset);
4233}
4234
4235/*
4236 * This function chgattr on a range of addresses in an hmeblk.  It returns the
4237 * next addres that needs to be chgattr.
4238 * It should be called with the hash lock held.
4239 * XXX It should be possible to optimize chgattr by not flushing every time but
4240 * on the other hand:
4241 * 1. do one flush crosscall.
4242 * 2. only flush if we are increasing permissions (make sure this will work)
4243 */
4244static caddr_t
4245sfmmu_hblk_chgattr(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
4246	caddr_t endaddr, demap_range_t *dmrp, uint_t attr, int mode)
4247{
4248	tte_t tte, tteattr, tteflags, ttemod;
4249	struct sf_hment *sfhmep;
4250	int ttesz;
4251	struct page *pp = NULL;
4252	kmutex_t *pml, *pmtx;
4253	int ret;
4254	int use_demap_range;
4255#if defined(SF_ERRATA_57)
4256	int check_exec;
4257#endif
4258
4259	ASSERT(in_hblk_range(hmeblkp, addr));
4260	ASSERT(hmeblkp->hblk_shw_bit == 0);
4261
4262	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4263	ttesz = get_hblk_ttesz(hmeblkp);
4264
4265	/*
4266	 * Flush the current demap region if addresses have been
4267	 * skipped or the page size doesn't match.
4268	 */
4269	use_demap_range = (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp));
4270	if (use_demap_range) {
4271		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
4272	} else {
4273		DEMAP_RANGE_FLUSH(dmrp);
4274	}
4275
4276	tteattr.ll = sfmmu_vtop_attr(attr, mode, &tteflags);
4277#if defined(SF_ERRATA_57)
4278	check_exec = (sfmmup != ksfmmup) &&
4279	    AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
4280	    TTE_IS_EXECUTABLE(&tteattr);
4281#endif
4282	HBLKTOHME(sfhmep, hmeblkp, addr);
4283	while (addr < endaddr) {
4284		sfmmu_copytte(&sfhmep->hme_tte, &tte);
4285		if (TTE_IS_VALID(&tte)) {
4286			if ((tte.ll & tteflags.ll) == tteattr.ll) {
4287				/*
4288				 * if the new attr is the same as old
4289				 * continue
4290				 */
4291				goto next_addr;
4292			}
4293			if (!TTE_IS_WRITABLE(&tteattr)) {
4294				/*
4295				 * make sure we clear hw modify bit if we
4296				 * removing write protections
4297				 */
4298				tteflags.tte_intlo |= TTE_HWWR_INT;
4299			}
4300
4301			pml = NULL;
4302			pp = sfhmep->hme_page;
4303			if (pp) {
4304				pml = sfmmu_mlist_enter(pp);
4305			}
4306
4307			if (pp != sfhmep->hme_page) {
4308				/*
4309				 * tte must have been unloaded.
4310				 */
4311				ASSERT(pml);
4312				sfmmu_mlist_exit(pml);
4313				continue;
4314			}
4315
4316			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
4317
4318			ttemod = tte;
4319			ttemod.ll = (ttemod.ll & ~tteflags.ll) | tteattr.ll;
4320			ASSERT(TTE_TO_TTEPFN(&ttemod) == TTE_TO_TTEPFN(&tte));
4321
4322#if defined(SF_ERRATA_57)
4323			if (check_exec && addr < errata57_limit)
4324				ttemod.tte_exec_perm = 0;
4325#endif
4326			ret = sfmmu_modifytte_try(&tte, &ttemod,
4327			    &sfhmep->hme_tte);
4328
4329			if (ret < 0) {
4330				/* tte changed underneath us */
4331				if (pml) {
4332					sfmmu_mlist_exit(pml);
4333				}
4334				continue;
4335			}
4336
4337			if (tteflags.tte_intlo & TTE_HWWR_INT) {
4338				/*
4339				 * need to sync if we are clearing modify bit.
4340				 */
4341				sfmmu_ttesync(sfmmup, addr, &tte, pp);
4342			}
4343
4344			if (pp && PP_ISRO(pp)) {
4345				if (tteattr.tte_intlo & TTE_WRPRM_INT) {
4346					pmtx = sfmmu_page_enter(pp);
4347					PP_CLRRO(pp);
4348					sfmmu_page_exit(pmtx);
4349				}
4350			}
4351
4352			if (ret > 0 && use_demap_range) {
4353				DEMAP_RANGE_MARKPG(dmrp, addr);
4354			} else if (ret > 0) {
4355				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
4356			}
4357
4358			if (pml) {
4359				sfmmu_mlist_exit(pml);
4360			}
4361		}
4362next_addr:
4363		addr += TTEBYTES(ttesz);
4364		sfhmep++;
4365		DEMAP_RANGE_NEXTPG(dmrp);
4366	}
4367	return (addr);
4368}
4369
4370/*
4371 * This routine converts virtual attributes to physical ones.  It will
4372 * update the tteflags field with the tte mask corresponding to the attributes
4373 * affected and it returns the new attributes.  It will also clear the modify
4374 * bit if we are taking away write permission.  This is necessary since the
4375 * modify bit is the hardware permission bit and we need to clear it in order
4376 * to detect write faults.
4377 */
4378static uint64_t
4379sfmmu_vtop_attr(uint_t attr, int mode, tte_t *ttemaskp)
4380{
4381	tte_t ttevalue;
4382
4383	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
4384
4385	switch (mode) {
4386	case SFMMU_CHGATTR:
4387		/* all attributes specified */
4388		ttevalue.tte_inthi = MAKE_TTEATTR_INTHI(attr);
4389		ttevalue.tte_intlo = MAKE_TTEATTR_INTLO(attr);
4390		ttemaskp->tte_inthi = TTEINTHI_ATTR;
4391		ttemaskp->tte_intlo = TTEINTLO_ATTR;
4392		break;
4393	case SFMMU_SETATTR:
4394		ASSERT(!(attr & ~HAT_PROT_MASK));
4395		ttemaskp->ll = 0;
4396		ttevalue.ll = 0;
4397		/*
4398		 * a valid tte implies exec and read for sfmmu
4399		 * so no need to do anything about them.
4400		 * since priviledged access implies user access
4401		 * PROT_USER doesn't make sense either.
4402		 */
4403		if (attr & PROT_WRITE) {
4404			ttemaskp->tte_intlo |= TTE_WRPRM_INT;
4405			ttevalue.tte_intlo |= TTE_WRPRM_INT;
4406		}
4407		break;
4408	case SFMMU_CLRATTR:
4409		/* attributes will be nand with current ones */
4410		if (attr & ~(PROT_WRITE | PROT_USER)) {
4411			panic("sfmmu: attr %x not supported", attr);
4412		}
4413		ttemaskp->ll = 0;
4414		ttevalue.ll = 0;
4415		if (attr & PROT_WRITE) {
4416			/* clear both writable and modify bit */
4417			ttemaskp->tte_intlo |= TTE_WRPRM_INT | TTE_HWWR_INT;
4418		}
4419		if (attr & PROT_USER) {
4420			ttemaskp->tte_intlo |= TTE_PRIV_INT;
4421			ttevalue.tte_intlo |= TTE_PRIV_INT;
4422		}
4423		break;
4424	default:
4425		panic("sfmmu_vtop_attr: bad mode %x", mode);
4426	}
4427	ASSERT(TTE_TO_TTEPFN(&ttevalue) == 0);
4428	return (ttevalue.ll);
4429}
4430
4431static uint_t
4432sfmmu_ptov_attr(tte_t *ttep)
4433{
4434	uint_t attr;
4435
4436	ASSERT(TTE_IS_VALID(ttep));
4437
4438	attr = PROT_READ;
4439
4440	if (TTE_IS_WRITABLE(ttep)) {
4441		attr |= PROT_WRITE;
4442	}
4443	if (TTE_IS_EXECUTABLE(ttep)) {
4444		attr |= PROT_EXEC;
4445	}
4446	if (!TTE_IS_PRIVILEGED(ttep)) {
4447		attr |= PROT_USER;
4448	}
4449	if (TTE_IS_NFO(ttep)) {
4450		attr |= HAT_NOFAULT;
4451	}
4452	if (TTE_IS_NOSYNC(ttep)) {
4453		attr |= HAT_NOSYNC;
4454	}
4455	if (TTE_IS_SIDEFFECT(ttep)) {
4456		attr |= SFMMU_SIDEFFECT;
4457	}
4458	if (!TTE_IS_VCACHEABLE(ttep)) {
4459		attr |= SFMMU_UNCACHEVTTE;
4460	}
4461	if (!TTE_IS_PCACHEABLE(ttep)) {
4462		attr |= SFMMU_UNCACHEPTTE;
4463	}
4464	return (attr);
4465}
4466
4467/*
4468 * hat_chgprot is a deprecated hat call.  New segment drivers
4469 * should store all attributes and use hat_*attr calls.
4470 *
4471 * Change the protections in the virtual address range
4472 * given to the specified virtual protection.  If vprot is ~PROT_WRITE,
4473 * then remove write permission, leaving the other
4474 * permissions unchanged.  If vprot is ~PROT_USER, remove user permissions.
4475 *
4476 */
4477void
4478hat_chgprot(struct hat *sfmmup, caddr_t addr, size_t len, uint_t vprot)
4479{
4480	struct hmehash_bucket *hmebp;
4481	hmeblk_tag hblktag;
4482	int hmeshift, hashno = 1;
4483	struct hme_blk *hmeblkp, *list = NULL;
4484	caddr_t endaddr;
4485	cpuset_t cpuset;
4486	demap_range_t dmr;
4487
4488	ASSERT((len & MMU_PAGEOFFSET) == 0);
4489	ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
4490
4491	if (sfmmup->sfmmu_xhat_provider) {
4492		XHAT_CHGPROT(sfmmup, addr, len, vprot);
4493		return;
4494	} else {
4495		/*
4496		 * This must be a CPU HAT. If the address space has
4497		 * XHATs attached, change attributes for all of them,
4498		 * just in case
4499		 */
4500		ASSERT(sfmmup->sfmmu_as != NULL);
4501		if (sfmmup->sfmmu_as->a_xhat != NULL)
4502			xhat_chgprot_all(sfmmup->sfmmu_as, addr, len, vprot);
4503	}
4504
4505	CPUSET_ZERO(cpuset);
4506
4507	if ((vprot != (uint_t)~PROT_WRITE) && (vprot & PROT_USER) &&
4508	    ((addr + len) > (caddr_t)USERLIMIT)) {
4509		panic("user addr %p vprot %x in kernel space",
4510		    (void *)addr, vprot);
4511	}
4512	endaddr = addr + len;
4513	hblktag.htag_id = sfmmup;
4514	DEMAP_RANGE_INIT(sfmmup, &dmr);
4515
4516	while (addr < endaddr) {
4517		hmeshift = HME_HASH_SHIFT(hashno);
4518		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4519		hblktag.htag_rehash = hashno;
4520		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4521
4522		SFMMU_HASH_LOCK(hmebp);
4523
4524		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4525		if (hmeblkp != NULL) {
4526			/*
4527			 * We've encountered a shadow hmeblk so skip the range
4528			 * of the next smaller mapping size.
4529			 */
4530			if (hmeblkp->hblk_shw_bit) {
4531				ASSERT(sfmmup != ksfmmup);
4532				ASSERT(hashno > 1);
4533				addr = (caddr_t)P2END((uintptr_t)addr,
4534					    TTEBYTES(hashno - 1));
4535			} else {
4536				addr = sfmmu_hblk_chgprot(sfmmup, hmeblkp,
4537					addr, endaddr, &dmr, vprot);
4538			}
4539			SFMMU_HASH_UNLOCK(hmebp);
4540			hashno = 1;
4541			continue;
4542		}
4543		SFMMU_HASH_UNLOCK(hmebp);
4544
4545		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
4546			/*
4547			 * We have traversed the whole list and rehashed
4548			 * if necessary without finding the address to chgprot.
4549			 * This is ok so we increment the address by the
4550			 * smallest hmeblk range for kernel mappings and the
4551			 * largest hmeblk range, to account for shadow hmeblks,
4552			 * for user mappings and continue.
4553			 */
4554			if (sfmmup == ksfmmup)
4555				addr = (caddr_t)P2END((uintptr_t)addr,
4556					    TTEBYTES(1));
4557			else
4558				addr = (caddr_t)P2END((uintptr_t)addr,
4559					    TTEBYTES(hashno));
4560			hashno = 1;
4561		} else {
4562			hashno++;
4563		}
4564	}
4565
4566	sfmmu_hblks_list_purge(&list);
4567	DEMAP_RANGE_FLUSH(&dmr);
4568	cpuset = sfmmup->sfmmu_cpusran;
4569	xt_sync(cpuset);
4570}
4571
4572/*
4573 * This function chgprots a range of addresses in an hmeblk.  It returns the
4574 * next addres that needs to be chgprot.
4575 * It should be called with the hash lock held.
4576 * XXX It shold be possible to optimize chgprot by not flushing every time but
4577 * on the other hand:
4578 * 1. do one flush crosscall.
4579 * 2. only flush if we are increasing permissions (make sure this will work)
4580 */
4581static caddr_t
4582sfmmu_hblk_chgprot(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
4583	caddr_t endaddr, demap_range_t *dmrp, uint_t vprot)
4584{
4585	uint_t pprot;
4586	tte_t tte, ttemod;
4587	struct sf_hment *sfhmep;
4588	uint_t tteflags;
4589	int ttesz;
4590	struct page *pp = NULL;
4591	kmutex_t *pml, *pmtx;
4592	int ret;
4593	int use_demap_range;
4594#if defined(SF_ERRATA_57)
4595	int check_exec;
4596#endif
4597
4598	ASSERT(in_hblk_range(hmeblkp, addr));
4599	ASSERT(hmeblkp->hblk_shw_bit == 0);
4600
4601#ifdef DEBUG
4602	if (get_hblk_ttesz(hmeblkp) != TTE8K &&
4603	    (endaddr < get_hblk_endaddr(hmeblkp))) {
4604		panic("sfmmu_hblk_chgprot: partial chgprot of large page");
4605	}
4606#endif /* DEBUG */
4607
4608	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4609	ttesz = get_hblk_ttesz(hmeblkp);
4610
4611	pprot = sfmmu_vtop_prot(vprot, &tteflags);
4612#if defined(SF_ERRATA_57)
4613	check_exec = (sfmmup != ksfmmup) &&
4614	    AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
4615	    ((vprot & PROT_EXEC) == PROT_EXEC);
4616#endif
4617	HBLKTOHME(sfhmep, hmeblkp, addr);
4618
4619	/*
4620	 * Flush the current demap region if addresses have been
4621	 * skipped or the page size doesn't match.
4622	 */
4623	use_demap_range = (TTEBYTES(ttesz) == MMU_PAGESIZE);
4624	if (use_demap_range) {
4625		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
4626	} else {
4627		DEMAP_RANGE_FLUSH(dmrp);
4628	}
4629
4630	while (addr < endaddr) {
4631		sfmmu_copytte(&sfhmep->hme_tte, &tte);
4632		if (TTE_IS_VALID(&tte)) {
4633			if (TTE_GET_LOFLAGS(&tte, tteflags) == pprot) {
4634				/*
4635				 * if the new protection is the same as old
4636				 * continue
4637				 */
4638				goto next_addr;
4639			}
4640			pml = NULL;
4641			pp = sfhmep->hme_page;
4642			if (pp) {
4643				pml = sfmmu_mlist_enter(pp);
4644			}
4645			if (pp != sfhmep->hme_page) {
4646				/*
4647				 * tte most have been unloaded
4648				 * underneath us.  Recheck
4649				 */
4650				ASSERT(pml);
4651				sfmmu_mlist_exit(pml);
4652				continue;
4653			}
4654
4655			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
4656
4657			ttemod = tte;
4658			TTE_SET_LOFLAGS(&ttemod, tteflags, pprot);
4659#if defined(SF_ERRATA_57)
4660			if (check_exec && addr < errata57_limit)
4661				ttemod.tte_exec_perm = 0;
4662#endif
4663			ret = sfmmu_modifytte_try(&tte, &ttemod,
4664			    &sfhmep->hme_tte);
4665
4666			if (ret < 0) {
4667				/* tte changed underneath us */
4668				if (pml) {
4669					sfmmu_mlist_exit(pml);
4670				}
4671				continue;
4672			}
4673
4674			if (tteflags & TTE_HWWR_INT) {
4675				/*
4676				 * need to sync if we are clearing modify bit.
4677				 */
4678				sfmmu_ttesync(sfmmup, addr, &tte, pp);
4679			}
4680
4681			if (pp && PP_ISRO(pp)) {
4682				if (pprot & TTE_WRPRM_INT) {
4683					pmtx = sfmmu_page_enter(pp);
4684					PP_CLRRO(pp);
4685					sfmmu_page_exit(pmtx);
4686				}
4687			}
4688
4689			if (ret > 0 && use_demap_range) {
4690				DEMAP_RANGE_MARKPG(dmrp, addr);
4691			} else if (ret > 0) {
4692				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
4693			}
4694
4695			if (pml) {
4696				sfmmu_mlist_exit(pml);
4697			}
4698		}
4699next_addr:
4700		addr += TTEBYTES(ttesz);
4701		sfhmep++;
4702		DEMAP_RANGE_NEXTPG(dmrp);
4703	}
4704	return (addr);
4705}
4706
4707/*
4708 * This routine is deprecated and should only be used by hat_chgprot.
4709 * The correct routine is sfmmu_vtop_attr.
4710 * This routine converts virtual page protections to physical ones.  It will
4711 * update the tteflags field with the tte mask corresponding to the protections
4712 * affected and it returns the new protections.  It will also clear the modify
4713 * bit if we are taking away write permission.  This is necessary since the
4714 * modify bit is the hardware permission bit and we need to clear it in order
4715 * to detect write faults.
4716 * It accepts the following special protections:
4717 * ~PROT_WRITE = remove write permissions.
4718 * ~PROT_USER = remove user permissions.
4719 */
4720static uint_t
4721sfmmu_vtop_prot(uint_t vprot, uint_t *tteflagsp)
4722{
4723	if (vprot == (uint_t)~PROT_WRITE) {
4724		*tteflagsp = TTE_WRPRM_INT | TTE_HWWR_INT;
4725		return (0);		/* will cause wrprm to be cleared */
4726	}
4727	if (vprot == (uint_t)~PROT_USER) {
4728		*tteflagsp = TTE_PRIV_INT;
4729		return (0);		/* will cause privprm to be cleared */
4730	}
4731	if ((vprot == 0) || (vprot == PROT_USER) ||
4732		((vprot & PROT_ALL) != vprot)) {
4733		panic("sfmmu_vtop_prot -- bad prot %x", vprot);
4734	}
4735
4736	switch (vprot) {
4737	case (PROT_READ):
4738	case (PROT_EXEC):
4739	case (PROT_EXEC | PROT_READ):
4740		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
4741		return (TTE_PRIV_INT); 		/* set prv and clr wrt */
4742	case (PROT_WRITE):
4743	case (PROT_WRITE | PROT_READ):
4744	case (PROT_EXEC | PROT_WRITE):
4745	case (PROT_EXEC | PROT_WRITE | PROT_READ):
4746		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
4747		return (TTE_PRIV_INT | TTE_WRPRM_INT); 	/* set prv and wrt */
4748	case (PROT_USER | PROT_READ):
4749	case (PROT_USER | PROT_EXEC):
4750	case (PROT_USER | PROT_EXEC | PROT_READ):
4751		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
4752		return (0); 			/* clr prv and wrt */
4753	case (PROT_USER | PROT_WRITE):
4754	case (PROT_USER | PROT_WRITE | PROT_READ):
4755	case (PROT_USER | PROT_EXEC | PROT_WRITE):
4756	case (PROT_USER | PROT_EXEC | PROT_WRITE | PROT_READ):
4757		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
4758		return (TTE_WRPRM_INT); 	/* clr prv and set wrt */
4759	default:
4760		panic("sfmmu_vtop_prot -- bad prot %x", vprot);
4761	}
4762	return (0);
4763}
4764
4765/*
4766 * Alternate unload for very large virtual ranges. With a true 64 bit VA,
4767 * the normal algorithm would take too long for a very large VA range with
4768 * few real mappings. This routine just walks thru all HMEs in the global
4769 * hash table to find and remove mappings.
4770 */
4771static void
4772hat_unload_large_virtual(
4773	struct hat		*sfmmup,
4774	caddr_t			startaddr,
4775	size_t			len,
4776	uint_t			flags,
4777	hat_callback_t		*callback)
4778{
4779	struct hmehash_bucket *hmebp;
4780	struct hme_blk *hmeblkp;
4781	struct hme_blk *pr_hblk = NULL;
4782	struct hme_blk *nx_hblk;
4783	struct hme_blk *list = NULL;
4784	int i;
4785	uint64_t hblkpa, prevpa, nx_pa;
4786	demap_range_t dmr, *dmrp;
4787	cpuset_t cpuset;
4788	caddr_t	endaddr = startaddr + len;
4789	caddr_t	sa;
4790	caddr_t	ea;
4791	caddr_t	cb_sa[MAX_CB_ADDR];
4792	caddr_t	cb_ea[MAX_CB_ADDR];
4793	int	addr_cnt = 0;
4794	int	a = 0;
4795
4796	if (sfmmup->sfmmu_free) {
4797		dmrp = NULL;
4798	} else {
4799		dmrp = &dmr;
4800		DEMAP_RANGE_INIT(sfmmup, dmrp);
4801	}
4802
4803	/*
4804	 * Loop through all the hash buckets of HME blocks looking for matches.
4805	 */
4806	for (i = 0; i <= UHMEHASH_SZ; i++) {
4807		hmebp = &uhme_hash[i];
4808		SFMMU_HASH_LOCK(hmebp);
4809		hmeblkp = hmebp->hmeblkp;
4810		hblkpa = hmebp->hmeh_nextpa;
4811		prevpa = 0;
4812		pr_hblk = NULL;
4813		while (hmeblkp) {
4814			nx_hblk = hmeblkp->hblk_next;
4815			nx_pa = hmeblkp->hblk_nextpa;
4816
4817			/*
4818			 * skip if not this context, if a shadow block or
4819			 * if the mapping is not in the requested range
4820			 */
4821			if (hmeblkp->hblk_tag.htag_id != sfmmup ||
4822			    hmeblkp->hblk_shw_bit ||
4823			    (sa = (caddr_t)get_hblk_base(hmeblkp)) >= endaddr ||
4824			    (ea = get_hblk_endaddr(hmeblkp)) <= startaddr) {
4825				pr_hblk = hmeblkp;
4826				prevpa = hblkpa;
4827				goto next_block;
4828			}
4829
4830			/*
4831			 * unload if there are any current valid mappings
4832			 */
4833			if (hmeblkp->hblk_vcnt != 0 ||
4834			    hmeblkp->hblk_hmecnt != 0)
4835				(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
4836				    sa, ea, dmrp, flags);
4837
4838			/*
4839			 * on unmap we also release the HME block itself, once
4840			 * all mappings are gone.
4841			 */
4842			if ((flags & HAT_UNLOAD_UNMAP) != 0 &&
4843			    !hmeblkp->hblk_vcnt &&
4844			    !hmeblkp->hblk_hmecnt) {
4845				ASSERT(!hmeblkp->hblk_lckcnt);
4846				sfmmu_hblk_hash_rm(hmebp, hmeblkp,
4847					prevpa, pr_hblk);
4848				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
4849			} else {
4850				pr_hblk = hmeblkp;
4851				prevpa = hblkpa;
4852			}
4853
4854			if (callback == NULL)
4855				goto next_block;
4856
4857			/*
4858			 * HME blocks may span more than one page, but we may be
4859			 * unmapping only one page, so check for a smaller range
4860			 * for the callback
4861			 */
4862			if (sa < startaddr)
4863				sa = startaddr;
4864			if (--ea > endaddr)
4865				ea = endaddr - 1;
4866
4867			cb_sa[addr_cnt] = sa;
4868			cb_ea[addr_cnt] = ea;
4869			if (++addr_cnt == MAX_CB_ADDR) {
4870				if (dmrp != NULL) {
4871					DEMAP_RANGE_FLUSH(dmrp);
4872					cpuset = sfmmup->sfmmu_cpusran;
4873					xt_sync(cpuset);
4874				}
4875
4876				for (a = 0; a < MAX_CB_ADDR; ++a) {
4877					callback->hcb_start_addr = cb_sa[a];
4878					callback->hcb_end_addr = cb_ea[a];
4879					callback->hcb_function(callback);
4880				}
4881				addr_cnt = 0;
4882			}
4883
4884next_block:
4885			hmeblkp = nx_hblk;
4886			hblkpa = nx_pa;
4887		}
4888		SFMMU_HASH_UNLOCK(hmebp);
4889	}
4890
4891	sfmmu_hblks_list_purge(&list);
4892	if (dmrp != NULL) {
4893		DEMAP_RANGE_FLUSH(dmrp);
4894		cpuset = sfmmup->sfmmu_cpusran;
4895		xt_sync(cpuset);
4896	}
4897
4898	for (a = 0; a < addr_cnt; ++a) {
4899		callback->hcb_start_addr = cb_sa[a];
4900		callback->hcb_end_addr = cb_ea[a];
4901		callback->hcb_function(callback);
4902	}
4903
4904	/*
4905	 * Check TSB and TLB page sizes if the process isn't exiting.
4906	 */
4907	if (!sfmmup->sfmmu_free)
4908		sfmmu_check_page_sizes(sfmmup, 0);
4909}
4910
4911/*
4912 * Unload all the mappings in the range [addr..addr+len). addr and len must
4913 * be MMU_PAGESIZE aligned.
4914 */
4915
4916extern struct seg *segkmap;
4917#define	ISSEGKMAP(sfmmup, addr) (sfmmup == ksfmmup && \
4918segkmap->s_base <= (addr) && (addr) < (segkmap->s_base + segkmap->s_size))
4919
4920
4921void
4922hat_unload_callback(
4923	struct hat *sfmmup,
4924	caddr_t addr,
4925	size_t len,
4926	uint_t flags,
4927	hat_callback_t *callback)
4928{
4929	struct hmehash_bucket *hmebp;
4930	hmeblk_tag hblktag;
4931	int hmeshift, hashno, iskernel;
4932	struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
4933	caddr_t endaddr;
4934	cpuset_t cpuset;
4935	uint64_t hblkpa, prevpa;
4936	int addr_count = 0;
4937	int a;
4938	caddr_t cb_start_addr[MAX_CB_ADDR];
4939	caddr_t cb_end_addr[MAX_CB_ADDR];
4940	int issegkmap = ISSEGKMAP(sfmmup, addr);
4941	demap_range_t dmr, *dmrp;
4942
4943	if (sfmmup->sfmmu_xhat_provider) {
4944		XHAT_UNLOAD_CALLBACK(sfmmup, addr, len, flags, callback);
4945		return;
4946	} else {
4947		/*
4948		 * This must be a CPU HAT. If the address space has
4949		 * XHATs attached, unload the mappings for all of them,
4950		 * just in case
4951		 */
4952		ASSERT(sfmmup->sfmmu_as != NULL);
4953		if (sfmmup->sfmmu_as->a_xhat != NULL)
4954			xhat_unload_callback_all(sfmmup->sfmmu_as, addr,
4955			    len, flags, callback);
4956	}
4957
4958	ASSERT((sfmmup == ksfmmup) || (flags & HAT_UNLOAD_OTHER) || \
4959	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
4960
4961	ASSERT(sfmmup != NULL);
4962	ASSERT((len & MMU_PAGEOFFSET) == 0);
4963	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
4964
4965	/*
4966	 * Probing through a large VA range (say 63 bits) will be slow, even
4967	 * at 4 Meg steps between the probes. So, when the virtual address range
4968	 * is very large, search the HME entries for what to unload.
4969	 *
4970	 *	len >> TTE_PAGE_SHIFT(TTE4M) is the # of 4Meg probes we'd need
4971	 *
4972	 *	UHMEHASH_SZ is number of hash buckets to examine
4973	 *
4974	 */
4975	if (sfmmup != KHATID && (len >> TTE_PAGE_SHIFT(TTE4M)) > UHMEHASH_SZ) {
4976		hat_unload_large_virtual(sfmmup, addr, len, flags, callback);
4977		return;
4978	}
4979
4980	CPUSET_ZERO(cpuset);
4981
4982	/*
4983	 * If the process is exiting, we can save a lot of fuss since
4984	 * we'll flush the TLB when we free the ctx anyway.
4985	 */
4986	if (sfmmup->sfmmu_free)
4987		dmrp = NULL;
4988	else
4989		dmrp = &dmr;
4990
4991	DEMAP_RANGE_INIT(sfmmup, dmrp);
4992	endaddr = addr + len;
4993	hblktag.htag_id = sfmmup;
4994
4995	/*
4996	 * It is likely for the vm to call unload over a wide range of
4997	 * addresses that are actually very sparsely populated by
4998	 * translations.  In order to speed this up the sfmmu hat supports
4999	 * the concept of shadow hmeblks. Dummy large page hmeblks that
5000	 * correspond to actual small translations are allocated at tteload
5001	 * time and are referred to as shadow hmeblks.  Now, during unload
5002	 * time, we first check if we have a shadow hmeblk for that
5003	 * translation.  The absence of one means the corresponding address
5004	 * range is empty and can be skipped.
5005	 *
5006	 * The kernel is an exception to above statement and that is why
5007	 * we don't use shadow hmeblks and hash starting from the smallest
5008	 * page size.
5009	 */
5010	if (sfmmup == KHATID) {
5011		iskernel = 1;
5012		hashno = TTE64K;
5013	} else {
5014		iskernel = 0;
5015		if (mmu_page_sizes == max_mmu_page_sizes) {
5016			hashno = TTE256M;
5017		} else {
5018			hashno = TTE4M;
5019		}
5020	}
5021	while (addr < endaddr) {
5022		hmeshift = HME_HASH_SHIFT(hashno);
5023		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5024		hblktag.htag_rehash = hashno;
5025		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5026
5027		SFMMU_HASH_LOCK(hmebp);
5028
5029		HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa, pr_hblk,
5030			prevpa, &list);
5031		if (hmeblkp == NULL) {
5032			/*
5033			 * didn't find an hmeblk. skip the appropiate
5034			 * address range.
5035			 */
5036			SFMMU_HASH_UNLOCK(hmebp);
5037			if (iskernel) {
5038				if (hashno < mmu_hashcnt) {
5039					hashno++;
5040					continue;
5041				} else {
5042					hashno = TTE64K;
5043					addr = (caddr_t)roundup((uintptr_t)addr
5044						+ 1, MMU_PAGESIZE64K);
5045					continue;
5046				}
5047			}
5048			addr = (caddr_t)roundup((uintptr_t)addr + 1,
5049				(1 << hmeshift));
5050			if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5051				ASSERT(hashno == TTE64K);
5052				continue;
5053			}
5054			if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5055				hashno = TTE512K;
5056				continue;
5057			}
5058			if (mmu_page_sizes == max_mmu_page_sizes) {
5059				if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5060					hashno = TTE4M;
5061					continue;
5062				}
5063				if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5064					hashno = TTE32M;
5065					continue;
5066				}
5067				hashno = TTE256M;
5068				continue;
5069			} else {
5070				hashno = TTE4M;
5071				continue;
5072			}
5073		}
5074		ASSERT(hmeblkp);
5075		if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5076			/*
5077			 * If the valid count is zero we can skip the range
5078			 * mapped by this hmeblk.
5079			 * We free hblks in the case of HAT_UNMAP.  HAT_UNMAP
5080			 * is used by segment drivers as a hint
5081			 * that the mapping resource won't be used any longer.
5082			 * The best example of this is during exit().
5083			 */
5084			addr = (caddr_t)roundup((uintptr_t)addr + 1,
5085				get_hblk_span(hmeblkp));
5086			if ((flags & HAT_UNLOAD_UNMAP) ||
5087			    (iskernel && !issegkmap)) {
5088				sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
5089				    pr_hblk);
5090				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
5091			}
5092			SFMMU_HASH_UNLOCK(hmebp);
5093
5094			if (iskernel) {
5095				hashno = TTE64K;
5096				continue;
5097			}
5098			if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5099				ASSERT(hashno == TTE64K);
5100				continue;
5101			}
5102			if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5103				hashno = TTE512K;
5104				continue;
5105			}
5106			if (mmu_page_sizes == max_mmu_page_sizes) {
5107				if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5108					hashno = TTE4M;
5109					continue;
5110				}
5111				if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5112					hashno = TTE32M;
5113					continue;
5114				}
5115				hashno = TTE256M;
5116				continue;
5117			} else {
5118				hashno = TTE4M;
5119				continue;
5120			}
5121		}
5122		if (hmeblkp->hblk_shw_bit) {
5123			/*
5124			 * If we encounter a shadow hmeblk we know there is
5125			 * smaller sized hmeblks mapping the same address space.
5126			 * Decrement the hash size and rehash.
5127			 */
5128			ASSERT(sfmmup != KHATID);
5129			hashno--;
5130			SFMMU_HASH_UNLOCK(hmebp);
5131			continue;
5132		}
5133
5134		/*
5135		 * track callback address ranges.
5136		 * only start a new range when it's not contiguous
5137		 */
5138		if (callback != NULL) {
5139			if (addr_count > 0 &&
5140			    addr == cb_end_addr[addr_count - 1])
5141				--addr_count;
5142			else
5143				cb_start_addr[addr_count] = addr;
5144		}
5145
5146		addr = sfmmu_hblk_unload(sfmmup, hmeblkp, addr, endaddr,
5147				dmrp, flags);
5148
5149		if (callback != NULL)
5150			cb_end_addr[addr_count++] = addr;
5151
5152		if (((flags & HAT_UNLOAD_UNMAP) || (iskernel && !issegkmap)) &&
5153		    !hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5154			sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
5155			    pr_hblk);
5156			sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
5157		}
5158		SFMMU_HASH_UNLOCK(hmebp);
5159
5160		/*
5161		 * Notify our caller as to exactly which pages
5162		 * have been unloaded. We do these in clumps,
5163		 * to minimize the number of xt_sync()s that need to occur.
5164		 */
5165		if (callback != NULL && addr_count == MAX_CB_ADDR) {
5166			DEMAP_RANGE_FLUSH(dmrp);
5167			if (dmrp != NULL) {
5168				cpuset = sfmmup->sfmmu_cpusran;
5169				xt_sync(cpuset);
5170			}
5171
5172			for (a = 0; a < MAX_CB_ADDR; ++a) {
5173				callback->hcb_start_addr = cb_start_addr[a];
5174				callback->hcb_end_addr = cb_end_addr[a];
5175				callback->hcb_function(callback);
5176			}
5177			addr_count = 0;
5178		}
5179		if (iskernel) {
5180			hashno = TTE64K;
5181			continue;
5182		}
5183		if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5184			ASSERT(hashno == TTE64K);
5185			continue;
5186		}
5187		if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5188			hashno = TTE512K;
5189			continue;
5190		}
5191		if (mmu_page_sizes == max_mmu_page_sizes) {
5192			if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5193				hashno = TTE4M;
5194				continue;
5195			}
5196			if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5197				hashno = TTE32M;
5198				continue;
5199			}
5200			hashno = TTE256M;
5201		} else {
5202			hashno = TTE4M;
5203		}
5204	}
5205
5206	sfmmu_hblks_list_purge(&list);
5207	DEMAP_RANGE_FLUSH(dmrp);
5208	if (dmrp != NULL) {
5209		cpuset = sfmmup->sfmmu_cpusran;
5210		xt_sync(cpuset);
5211	}
5212	if (callback && addr_count != 0) {
5213		for (a = 0; a < addr_count; ++a) {
5214			callback->hcb_start_addr = cb_start_addr[a];
5215			callback->hcb_end_addr = cb_end_addr[a];
5216			callback->hcb_function(callback);
5217		}
5218	}
5219
5220	/*
5221	 * Check TSB and TLB page sizes if the process isn't exiting.
5222	 */
5223	if (!sfmmup->sfmmu_free)
5224		sfmmu_check_page_sizes(sfmmup, 0);
5225}
5226
5227/*
5228 * Unload all the mappings in the range [addr..addr+len). addr and len must
5229 * be MMU_PAGESIZE aligned.
5230 */
5231void
5232hat_unload(struct hat *sfmmup, caddr_t addr, size_t len, uint_t flags)
5233{
5234	if (sfmmup->sfmmu_xhat_provider) {
5235		XHAT_UNLOAD(sfmmup, addr, len, flags);
5236		return;
5237	}
5238	hat_unload_callback(sfmmup, addr, len, flags, NULL);
5239}
5240
5241
5242/*
5243 * Find the largest mapping size for this page.
5244 */
5245int
5246fnd_mapping_sz(page_t *pp)
5247{
5248	int sz;
5249	int p_index;
5250
5251	p_index = PP_MAPINDEX(pp);
5252
5253	sz = 0;
5254	p_index >>= 1;	/* don't care about 8K bit */
5255	for (; p_index; p_index >>= 1) {
5256		sz++;
5257	}
5258
5259	return (sz);
5260}
5261
5262/*
5263 * This function unloads a range of addresses for an hmeblk.
5264 * It returns the next address to be unloaded.
5265 * It should be called with the hash lock held.
5266 */
5267static caddr_t
5268sfmmu_hblk_unload(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5269	caddr_t endaddr, demap_range_t *dmrp, uint_t flags)
5270{
5271	tte_t	tte, ttemod;
5272	struct	sf_hment *sfhmep;
5273	int	ttesz;
5274	long	ttecnt;
5275	page_t *pp;
5276	kmutex_t *pml;
5277	int ret;
5278	int use_demap_range;
5279
5280	ASSERT(in_hblk_range(hmeblkp, addr));
5281	ASSERT(!hmeblkp->hblk_shw_bit);
5282#ifdef DEBUG
5283	if (get_hblk_ttesz(hmeblkp) != TTE8K &&
5284	    (endaddr < get_hblk_endaddr(hmeblkp))) {
5285		panic("sfmmu_hblk_unload: partial unload of large page");
5286	}
5287#endif /* DEBUG */
5288
5289	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5290	ttesz = get_hblk_ttesz(hmeblkp);
5291
5292	use_demap_range = (do_virtual_coloring &&
5293	    ((dmrp == NULL) || TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp)));
5294	if (use_demap_range) {
5295		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
5296	} else {
5297		DEMAP_RANGE_FLUSH(dmrp);
5298	}
5299	ttecnt = 0;
5300	HBLKTOHME(sfhmep, hmeblkp, addr);
5301
5302	while (addr < endaddr) {
5303		pml = NULL;
5304again:
5305		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5306		if (TTE_IS_VALID(&tte)) {
5307			pp = sfhmep->hme_page;
5308			if (pp && pml == NULL) {
5309				pml = sfmmu_mlist_enter(pp);
5310			}
5311
5312			/*
5313			 * Verify if hme still points to 'pp' now that
5314			 * we have p_mapping lock.
5315			 */
5316			if (sfhmep->hme_page != pp) {
5317				if (pp != NULL && sfhmep->hme_page != NULL) {
5318					if (pml) {
5319						sfmmu_mlist_exit(pml);
5320					}
5321					/* Re-start this iteration. */
5322					continue;
5323				}
5324				ASSERT((pp != NULL) &&
5325				    (sfhmep->hme_page == NULL));
5326				goto tte_unloaded;
5327			}
5328
5329			/*
5330			 * This point on we have both HASH and p_mapping
5331			 * lock.
5332			 */
5333			ASSERT(pp == sfhmep->hme_page);
5334			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5335
5336			/*
5337			 * We need to loop on modify tte because it is
5338			 * possible for pagesync to come along and
5339			 * change the software bits beneath us.
5340			 *
5341			 * Page_unload can also invalidate the tte after
5342			 * we read tte outside of p_mapping lock.
5343			 */
5344			ttemod = tte;
5345
5346			TTE_SET_INVALID(&ttemod);
5347			ret = sfmmu_modifytte_try(&tte, &ttemod,
5348			    &sfhmep->hme_tte);
5349
5350			if (ret <= 0) {
5351				if (TTE_IS_VALID(&tte)) {
5352					goto again;
5353				} else {
5354					/*
5355					 * We read in a valid pte, but it
5356					 * is unloaded by page_unload.
5357					 * hme_page has become NULL and
5358					 * we hold no p_mapping lock.
5359					 */
5360					ASSERT(pp == NULL && pml == NULL);
5361					goto tte_unloaded;
5362				}
5363			}
5364
5365			if (!(flags & HAT_UNLOAD_NOSYNC)) {
5366				sfmmu_ttesync(sfmmup, addr, &tte, pp);
5367			}
5368
5369			/*
5370			 * Ok- we invalidated the tte. Do the rest of the job.
5371			 */
5372			ttecnt++;
5373
5374			if (flags & HAT_UNLOAD_UNLOCK) {
5375				ASSERT(hmeblkp->hblk_lckcnt > 0);
5376				atomic_add_16(&hmeblkp->hblk_lckcnt, -1);
5377				HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
5378			}
5379
5380			/*
5381			 * Normally we would need to flush the page
5382			 * from the virtual cache at this point in
5383			 * order to prevent a potential cache alias
5384			 * inconsistency.
5385			 * The particular scenario we need to worry
5386			 * about is:
5387			 * Given:  va1 and va2 are two virtual address
5388			 * that alias and map the same physical
5389			 * address.
5390			 * 1.	mapping exists from va1 to pa and data
5391			 * has been read into the cache.
5392			 * 2.	unload va1.
5393			 * 3.	load va2 and modify data using va2.
5394			 * 4	unload va2.
5395			 * 5.	load va1 and reference data.  Unless we
5396			 * flush the data cache when we unload we will
5397			 * get stale data.
5398			 * Fortunately, page coloring eliminates the
5399			 * above scenario by remembering the color a
5400			 * physical page was last or is currently
5401			 * mapped to.  Now, we delay the flush until
5402			 * the loading of translations.  Only when the
5403			 * new translation is of a different color
5404			 * are we forced to flush.
5405			 */
5406			if (use_demap_range) {
5407				/*
5408				 * Mark this page as needing a demap.
5409				 */
5410				DEMAP_RANGE_MARKPG(dmrp, addr);
5411			} else {
5412				if (do_virtual_coloring) {
5413					sfmmu_tlb_demap(addr, sfmmup, hmeblkp,
5414					    sfmmup->sfmmu_free, 0);
5415				} else {
5416					pfn_t pfnum;
5417
5418					pfnum = TTE_TO_PFN(addr, &tte);
5419					sfmmu_tlbcache_demap(addr, sfmmup,
5420					    hmeblkp, pfnum, sfmmup->sfmmu_free,
5421					    FLUSH_NECESSARY_CPUS,
5422					    CACHE_FLUSH, 0);
5423				}
5424			}
5425
5426			if (pp) {
5427				/*
5428				 * Remove the hment from the mapping list
5429				 */
5430				ASSERT(hmeblkp->hblk_hmecnt > 0);
5431
5432				/*
5433				 * Again, we cannot
5434				 * ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS);
5435				 */
5436				HME_SUB(sfhmep, pp);
5437				membar_stst();
5438				atomic_add_16(&hmeblkp->hblk_hmecnt, -1);
5439			}
5440
5441			ASSERT(hmeblkp->hblk_vcnt > 0);
5442			atomic_add_16(&hmeblkp->hblk_vcnt, -1);
5443
5444			ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
5445			    !hmeblkp->hblk_lckcnt);
5446
5447#ifdef VAC
5448			if (pp && (pp->p_nrm & (P_KPMC | P_KPMS | P_TNC))) {
5449				if (PP_ISTNC(pp)) {
5450					/*
5451					 * If page was temporary
5452					 * uncached, try to recache
5453					 * it. Note that HME_SUB() was
5454					 * called above so p_index and
5455					 * mlist had been updated.
5456					 */
5457					conv_tnc(pp, ttesz);
5458				} else if (pp->p_mapping == NULL) {
5459					ASSERT(kpm_enable);
5460					/*
5461					 * Page is marked to be in VAC conflict
5462					 * to an existing kpm mapping and/or is
5463					 * kpm mapped using only the regular
5464					 * pagesize.
5465					 */
5466					sfmmu_kpm_hme_unload(pp);
5467				}
5468			}
5469#endif	/* VAC */
5470		} else if ((pp = sfhmep->hme_page) != NULL) {
5471				/*
5472				 * TTE is invalid but the hme
5473				 * still exists. let pageunload
5474				 * complete its job.
5475				 */
5476				ASSERT(pml == NULL);
5477				pml = sfmmu_mlist_enter(pp);
5478				if (sfhmep->hme_page != NULL) {
5479					sfmmu_mlist_exit(pml);
5480					pml = NULL;
5481					goto again;
5482				}
5483				ASSERT(sfhmep->hme_page == NULL);
5484		} else if (hmeblkp->hblk_hmecnt != 0) {
5485			/*
5486			 * pageunload may have not finished decrementing
5487			 * hblk_vcnt and hblk_hmecnt. Find page_t if any and
5488			 * wait for pageunload to finish. Rely on pageunload
5489			 * to decrement hblk_hmecnt after hblk_vcnt.
5490			 */
5491			pfn_t pfn = TTE_TO_TTEPFN(&tte);
5492			ASSERT(pml == NULL);
5493			if (pf_is_memory(pfn)) {
5494				pp = page_numtopp_nolock(pfn);
5495				if (pp != NULL) {
5496					pml = sfmmu_mlist_enter(pp);
5497					sfmmu_mlist_exit(pml);
5498					pml = NULL;
5499				}
5500			}
5501		}
5502
5503tte_unloaded:
5504		/*
5505		 * At this point, the tte we are looking at
5506		 * should be unloaded, and hme has been unlinked
5507		 * from page too. This is important because in
5508		 * pageunload, it does ttesync() then HME_SUB.
5509		 * We need to make sure HME_SUB has been completed
5510		 * so we know ttesync() has been completed. Otherwise,
5511		 * at exit time, after return from hat layer, VM will
5512		 * release as structure which hat_setstat() (called
5513		 * by ttesync()) needs.
5514		 */
5515#ifdef DEBUG
5516		{
5517			tte_t	dtte;
5518
5519			ASSERT(sfhmep->hme_page == NULL);
5520
5521			sfmmu_copytte(&sfhmep->hme_tte, &dtte);
5522			ASSERT(!TTE_IS_VALID(&dtte));
5523		}
5524#endif
5525
5526		if (pml) {
5527			sfmmu_mlist_exit(pml);
5528		}
5529
5530		addr += TTEBYTES(ttesz);
5531		sfhmep++;
5532		DEMAP_RANGE_NEXTPG(dmrp);
5533	}
5534	if (ttecnt > 0)
5535		atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -ttecnt);
5536	return (addr);
5537}
5538
5539/*
5540 * Synchronize all the mappings in the range [addr..addr+len).
5541 * Can be called with clearflag having two states:
5542 * HAT_SYNC_DONTZERO means just return the rm stats
5543 * HAT_SYNC_ZERORM means zero rm bits in the tte and return the stats
5544 */
5545void
5546hat_sync(struct hat *sfmmup, caddr_t addr, size_t len, uint_t clearflag)
5547{
5548	struct hmehash_bucket *hmebp;
5549	hmeblk_tag hblktag;
5550	int hmeshift, hashno = 1;
5551	struct hme_blk *hmeblkp, *list = NULL;
5552	caddr_t endaddr;
5553	cpuset_t cpuset;
5554
5555	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
5556	ASSERT((sfmmup == ksfmmup) ||
5557		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
5558	ASSERT((len & MMU_PAGEOFFSET) == 0);
5559	ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
5560		(clearflag == HAT_SYNC_ZERORM));
5561
5562	CPUSET_ZERO(cpuset);
5563
5564	endaddr = addr + len;
5565	hblktag.htag_id = sfmmup;
5566	/*
5567	 * Spitfire supports 4 page sizes.
5568	 * Most pages are expected to be of the smallest page
5569	 * size (8K) and these will not need to be rehashed. 64K
5570	 * pages also don't need to be rehashed because the an hmeblk
5571	 * spans 64K of address space. 512K pages might need 1 rehash and
5572	 * and 4M pages 2 rehashes.
5573	 */
5574	while (addr < endaddr) {
5575		hmeshift = HME_HASH_SHIFT(hashno);
5576		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5577		hblktag.htag_rehash = hashno;
5578		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5579
5580		SFMMU_HASH_LOCK(hmebp);
5581
5582		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
5583		if (hmeblkp != NULL) {
5584			/*
5585			 * We've encountered a shadow hmeblk so skip the range
5586			 * of the next smaller mapping size.
5587			 */
5588			if (hmeblkp->hblk_shw_bit) {
5589				ASSERT(sfmmup != ksfmmup);
5590				ASSERT(hashno > 1);
5591				addr = (caddr_t)P2END((uintptr_t)addr,
5592					    TTEBYTES(hashno - 1));
5593			} else {
5594				addr = sfmmu_hblk_sync(sfmmup, hmeblkp,
5595				    addr, endaddr, clearflag);
5596			}
5597			SFMMU_HASH_UNLOCK(hmebp);
5598			hashno = 1;
5599			continue;
5600		}
5601		SFMMU_HASH_UNLOCK(hmebp);
5602
5603		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
5604			/*
5605			 * We have traversed the whole list and rehashed
5606			 * if necessary without finding the address to sync.
5607			 * This is ok so we increment the address by the
5608			 * smallest hmeblk range for kernel mappings and the
5609			 * largest hmeblk range, to account for shadow hmeblks,
5610			 * for user mappings and continue.
5611			 */
5612			if (sfmmup == ksfmmup)
5613				addr = (caddr_t)P2END((uintptr_t)addr,
5614					    TTEBYTES(1));
5615			else
5616				addr = (caddr_t)P2END((uintptr_t)addr,
5617					    TTEBYTES(hashno));
5618			hashno = 1;
5619		} else {
5620			hashno++;
5621		}
5622	}
5623	sfmmu_hblks_list_purge(&list);
5624	cpuset = sfmmup->sfmmu_cpusran;
5625	xt_sync(cpuset);
5626}
5627
5628static caddr_t
5629sfmmu_hblk_sync(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5630	caddr_t endaddr, int clearflag)
5631{
5632	tte_t	tte, ttemod;
5633	struct sf_hment *sfhmep;
5634	int ttesz;
5635	struct page *pp;
5636	kmutex_t *pml;
5637	int ret;
5638
5639	ASSERT(hmeblkp->hblk_shw_bit == 0);
5640
5641	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5642
5643	ttesz = get_hblk_ttesz(hmeblkp);
5644	HBLKTOHME(sfhmep, hmeblkp, addr);
5645
5646	while (addr < endaddr) {
5647		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5648		if (TTE_IS_VALID(&tte)) {
5649			pml = NULL;
5650			pp = sfhmep->hme_page;
5651			if (pp) {
5652				pml = sfmmu_mlist_enter(pp);
5653			}
5654			if (pp != sfhmep->hme_page) {
5655				/*
5656				 * tte most have been unloaded
5657				 * underneath us.  Recheck
5658				 */
5659				ASSERT(pml);
5660				sfmmu_mlist_exit(pml);
5661				continue;
5662			}
5663
5664			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5665
5666			if (clearflag == HAT_SYNC_ZERORM) {
5667				ttemod = tte;
5668				TTE_CLR_RM(&ttemod);
5669				ret = sfmmu_modifytte_try(&tte, &ttemod,
5670				    &sfhmep->hme_tte);
5671				if (ret < 0) {
5672					if (pml) {
5673						sfmmu_mlist_exit(pml);
5674					}
5675					continue;
5676				}
5677
5678				if (ret > 0) {
5679					sfmmu_tlb_demap(addr, sfmmup,
5680						hmeblkp, 0, 0);
5681				}
5682			}
5683			sfmmu_ttesync(sfmmup, addr, &tte, pp);
5684			if (pml) {
5685				sfmmu_mlist_exit(pml);
5686			}
5687		}
5688		addr += TTEBYTES(ttesz);
5689		sfhmep++;
5690	}
5691	return (addr);
5692}
5693
5694/*
5695 * This function will sync a tte to the page struct and it will
5696 * update the hat stats. Currently it allows us to pass a NULL pp
5697 * and we will simply update the stats.  We may want to change this
5698 * so we only keep stats for pages backed by pp's.
5699 */
5700static void
5701sfmmu_ttesync(struct hat *sfmmup, caddr_t addr, tte_t *ttep, page_t *pp)
5702{
5703	uint_t rm = 0;
5704	int   	sz;
5705	pgcnt_t	npgs;
5706
5707	ASSERT(TTE_IS_VALID(ttep));
5708
5709	if (TTE_IS_NOSYNC(ttep)) {
5710		return;
5711	}
5712
5713	if (TTE_IS_REF(ttep))  {
5714		rm = P_REF;
5715	}
5716	if (TTE_IS_MOD(ttep))  {
5717		rm |= P_MOD;
5718	}
5719
5720	if (rm == 0) {
5721		return;
5722	}
5723
5724	sz = TTE_CSZ(ttep);
5725	if (sfmmup->sfmmu_rmstat) {
5726		int i;
5727		caddr_t	vaddr = addr;
5728
5729		for (i = 0; i < TTEPAGES(sz); i++, vaddr += MMU_PAGESIZE) {
5730			hat_setstat(sfmmup->sfmmu_as, vaddr, MMU_PAGESIZE, rm);
5731		}
5732
5733	}
5734
5735	/*
5736	 * XXX I want to use cas to update nrm bits but they
5737	 * currently belong in common/vm and not in hat where
5738	 * they should be.
5739	 * The nrm bits are protected by the same mutex as
5740	 * the one that protects the page's mapping list.
5741	 */
5742	if (!pp)
5743		return;
5744	ASSERT(sfmmu_mlist_held(pp));
5745	/*
5746	 * If the tte is for a large page, we need to sync all the
5747	 * pages covered by the tte.
5748	 */
5749	if (sz != TTE8K) {
5750		ASSERT(pp->p_szc != 0);
5751		pp = PP_GROUPLEADER(pp, sz);
5752		ASSERT(sfmmu_mlist_held(pp));
5753	}
5754
5755	/* Get number of pages from tte size. */
5756	npgs = TTEPAGES(sz);
5757
5758	do {
5759		ASSERT(pp);
5760		ASSERT(sfmmu_mlist_held(pp));
5761		if (((rm & P_REF) != 0 && !PP_ISREF(pp)) ||
5762		    ((rm & P_MOD) != 0 && !PP_ISMOD(pp)))
5763			hat_page_setattr(pp, rm);
5764
5765		/*
5766		 * Are we done? If not, we must have a large mapping.
5767		 * For large mappings we need to sync the rest of the pages
5768		 * covered by this tte; goto the next page.
5769		 */
5770	} while (--npgs > 0 && (pp = PP_PAGENEXT(pp)));
5771}
5772
5773/*
5774 * Execute pre-callback handler of each pa_hment linked to pp
5775 *
5776 * Inputs:
5777 *   flag: either HAT_PRESUSPEND or HAT_SUSPEND.
5778 *   capture_cpus: pointer to return value (below)
5779 *
5780 * Returns:
5781 *   Propagates the subsystem callback return values back to the caller;
5782 *   returns 0 on success.  If capture_cpus is non-NULL, the value returned
5783 *   is zero if all of the pa_hments are of a type that do not require
5784 *   capturing CPUs prior to suspending the mapping, else it is 1.
5785 */
5786static int
5787hat_pageprocess_precallbacks(struct page *pp, uint_t flag, int *capture_cpus)
5788{
5789	struct sf_hment	*sfhmep;
5790	struct pa_hment *pahmep;
5791	int (*f)(caddr_t, uint_t, uint_t, void *);
5792	int		ret;
5793	id_t		id;
5794	int		locked = 0;
5795	kmutex_t	*pml;
5796
5797	ASSERT(PAGE_EXCL(pp));
5798	if (!sfmmu_mlist_held(pp)) {
5799		pml = sfmmu_mlist_enter(pp);
5800		locked = 1;
5801	}
5802
5803	if (capture_cpus)
5804		*capture_cpus = 0;
5805
5806top:
5807	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
5808		/*
5809		 * skip sf_hments corresponding to VA<->PA mappings;
5810		 * for pa_hment's, hme_tte.ll is zero
5811		 */
5812		if (!IS_PAHME(sfhmep))
5813			continue;
5814
5815		pahmep = sfhmep->hme_data;
5816		ASSERT(pahmep != NULL);
5817
5818		/*
5819		 * skip if pre-handler has been called earlier in this loop
5820		 */
5821		if (pahmep->flags & flag)
5822			continue;
5823
5824		id = pahmep->cb_id;
5825		ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
5826		if (capture_cpus && sfmmu_cb_table[id].capture_cpus != 0)
5827			*capture_cpus = 1;
5828		if ((f = sfmmu_cb_table[id].prehandler) == NULL) {
5829			pahmep->flags |= flag;
5830			continue;
5831		}
5832
5833		/*
5834		 * Drop the mapping list lock to avoid locking order issues.
5835		 */
5836		if (locked)
5837			sfmmu_mlist_exit(pml);
5838
5839		ret = f(pahmep->addr, pahmep->len, flag, pahmep->pvt);
5840		if (ret != 0)
5841			return (ret);	/* caller must do the cleanup */
5842
5843		if (locked) {
5844			pml = sfmmu_mlist_enter(pp);
5845			pahmep->flags |= flag;
5846			goto top;
5847		}
5848
5849		pahmep->flags |= flag;
5850	}
5851
5852	if (locked)
5853		sfmmu_mlist_exit(pml);
5854
5855	return (0);
5856}
5857
5858/*
5859 * Execute post-callback handler of each pa_hment linked to pp
5860 *
5861 * Same overall assumptions and restrictions apply as for
5862 * hat_pageprocess_precallbacks().
5863 */
5864static void
5865hat_pageprocess_postcallbacks(struct page *pp, uint_t flag)
5866{
5867	pfn_t pgpfn = pp->p_pagenum;
5868	pfn_t pgmask = btop(page_get_pagesize(pp->p_szc)) - 1;
5869	pfn_t newpfn;
5870	struct sf_hment *sfhmep;
5871	struct pa_hment *pahmep;
5872	int (*f)(caddr_t, uint_t, uint_t, void *, pfn_t);
5873	id_t	id;
5874	int	locked = 0;
5875	kmutex_t *pml;
5876
5877	ASSERT(PAGE_EXCL(pp));
5878	if (!sfmmu_mlist_held(pp)) {
5879		pml = sfmmu_mlist_enter(pp);
5880		locked = 1;
5881	}
5882
5883top:
5884	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
5885		/*
5886		 * skip sf_hments corresponding to VA<->PA mappings;
5887		 * for pa_hment's, hme_tte.ll is zero
5888		 */
5889		if (!IS_PAHME(sfhmep))
5890			continue;
5891
5892		pahmep = sfhmep->hme_data;
5893		ASSERT(pahmep != NULL);
5894
5895		if ((pahmep->flags & flag) == 0)
5896			continue;
5897
5898		pahmep->flags &= ~flag;
5899
5900		id = pahmep->cb_id;
5901		ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
5902		if ((f = sfmmu_cb_table[id].posthandler) == NULL)
5903			continue;
5904
5905		/*
5906		 * Convert the base page PFN into the constituent PFN
5907		 * which is needed by the callback handler.
5908		 */
5909		newpfn = pgpfn | (btop((uintptr_t)pahmep->addr) & pgmask);
5910
5911		/*
5912		 * Drop the mapping list lock to avoid locking order issues.
5913		 */
5914		if (locked)
5915			sfmmu_mlist_exit(pml);
5916
5917		if (f(pahmep->addr, pahmep->len, flag, pahmep->pvt, newpfn)
5918		    != 0)
5919			panic("sfmmu: posthandler failed");
5920
5921		if (locked) {
5922			pml = sfmmu_mlist_enter(pp);
5923			goto top;
5924		}
5925	}
5926
5927	if (locked)
5928		sfmmu_mlist_exit(pml);
5929}
5930
5931/*
5932 * Suspend locked kernel mapping
5933 */
5934void
5935hat_pagesuspend(struct page *pp)
5936{
5937	struct sf_hment *sfhmep;
5938	sfmmu_t *sfmmup;
5939	tte_t tte, ttemod;
5940	struct hme_blk *hmeblkp;
5941	caddr_t addr;
5942	int index, cons;
5943	cpuset_t cpuset;
5944
5945	ASSERT(PAGE_EXCL(pp));
5946	ASSERT(sfmmu_mlist_held(pp));
5947
5948	mutex_enter(&kpr_suspendlock);
5949
5950	/*
5951	 * Call into dtrace to tell it we're about to suspend a
5952	 * kernel mapping. This prevents us from running into issues
5953	 * with probe context trying to touch a suspended page
5954	 * in the relocation codepath itself.
5955	 */
5956	if (dtrace_kreloc_init)
5957		(*dtrace_kreloc_init)();
5958
5959	index = PP_MAPINDEX(pp);
5960	cons = TTE8K;
5961
5962retry:
5963	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
5964
5965		if (IS_PAHME(sfhmep))
5966			continue;
5967
5968		if (get_hblk_ttesz(sfmmu_hmetohblk(sfhmep)) != cons)
5969			continue;
5970
5971		/*
5972		 * Loop until we successfully set the suspend bit in
5973		 * the TTE.
5974		 */
5975again:
5976		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5977		ASSERT(TTE_IS_VALID(&tte));
5978
5979		ttemod = tte;
5980		TTE_SET_SUSPEND(&ttemod);
5981		if (sfmmu_modifytte_try(&tte, &ttemod,
5982		    &sfhmep->hme_tte) < 0)
5983			goto again;
5984
5985		/*
5986		 * Invalidate TSB entry
5987		 */
5988		hmeblkp = sfmmu_hmetohblk(sfhmep);
5989
5990		sfmmup = hblktosfmmu(hmeblkp);
5991		ASSERT(sfmmup == ksfmmup);
5992
5993		addr = tte_to_vaddr(hmeblkp, tte);
5994
5995		/*
5996		 * No need to make sure that the TSB for this sfmmu is
5997		 * not being relocated since it is ksfmmup and thus it
5998		 * will never be relocated.
5999		 */
6000		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp);
6001
6002		/*
6003		 * Update xcall stats
6004		 */
6005		cpuset = cpu_ready_set;
6006		CPUSET_DEL(cpuset, CPU->cpu_id);
6007
6008		/* LINTED: constant in conditional context */
6009		SFMMU_XCALL_STATS(ksfmmup);
6010
6011		/*
6012		 * Flush TLB entry on remote CPU's
6013		 */
6014		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
6015		    (uint64_t)ksfmmup);
6016		xt_sync(cpuset);
6017
6018		/*
6019		 * Flush TLB entry on local CPU
6020		 */
6021		vtag_flushpage(addr, (uint64_t)ksfmmup);
6022	}
6023
6024	while (index != 0) {
6025		index = index >> 1;
6026		if (index != 0)
6027			cons++;
6028		if (index & 0x1) {
6029			pp = PP_GROUPLEADER(pp, cons);
6030			goto retry;
6031		}
6032	}
6033}
6034
6035#ifdef	DEBUG
6036
6037#define	N_PRLE	1024
6038struct prle {
6039	page_t *targ;
6040	page_t *repl;
6041	int status;
6042	int pausecpus;
6043	hrtime_t whence;
6044};
6045
6046static struct prle page_relocate_log[N_PRLE];
6047static int prl_entry;
6048static kmutex_t prl_mutex;
6049
6050#define	PAGE_RELOCATE_LOG(t, r, s, p)					\
6051	mutex_enter(&prl_mutex);					\
6052	page_relocate_log[prl_entry].targ = *(t);			\
6053	page_relocate_log[prl_entry].repl = *(r);			\
6054	page_relocate_log[prl_entry].status = (s);			\
6055	page_relocate_log[prl_entry].pausecpus = (p);			\
6056	page_relocate_log[prl_entry].whence = gethrtime();		\
6057	prl_entry = (prl_entry == (N_PRLE - 1))? 0 : prl_entry + 1;	\
6058	mutex_exit(&prl_mutex);
6059
6060#else	/* !DEBUG */
6061#define	PAGE_RELOCATE_LOG(t, r, s, p)
6062#endif
6063
6064/*
6065 * Core Kernel Page Relocation Algorithm
6066 *
6067 * Input:
6068 *
6069 * target : 	constituent pages are SE_EXCL locked.
6070 * replacement:	constituent pages are SE_EXCL locked.
6071 *
6072 * Output:
6073 *
6074 * nrelocp:	number of pages relocated
6075 */
6076int
6077hat_page_relocate(page_t **target, page_t **replacement, spgcnt_t *nrelocp)
6078{
6079	page_t		*targ, *repl;
6080	page_t		*tpp, *rpp;
6081	kmutex_t	*low, *high;
6082	spgcnt_t	npages, i;
6083	page_t		*pl = NULL;
6084	int		old_pil;
6085	cpuset_t	cpuset;
6086	int		cap_cpus;
6087	int		ret;
6088
6089	if (hat_kpr_enabled == 0 || !kcage_on || PP_ISNORELOC(*target)) {
6090		PAGE_RELOCATE_LOG(target, replacement, EAGAIN, -1);
6091		return (EAGAIN);
6092	}
6093
6094	mutex_enter(&kpr_mutex);
6095	kreloc_thread = curthread;
6096
6097	targ = *target;
6098	repl = *replacement;
6099	ASSERT(repl != NULL);
6100	ASSERT(targ->p_szc == repl->p_szc);
6101
6102	npages = page_get_pagecnt(targ->p_szc);
6103
6104	/*
6105	 * unload VA<->PA mappings that are not locked
6106	 */
6107	tpp = targ;
6108	for (i = 0; i < npages; i++) {
6109		(void) hat_pageunload(tpp, SFMMU_KERNEL_RELOC);
6110		tpp++;
6111	}
6112
6113	/*
6114	 * Do "presuspend" callbacks, in a context from which we can still
6115	 * block as needed. Note that we don't hold the mapping list lock
6116	 * of "targ" at this point due to potential locking order issues;
6117	 * we assume that between the hat_pageunload() above and holding
6118	 * the SE_EXCL lock that the mapping list *cannot* change at this
6119	 * point.
6120	 */
6121	ret = hat_pageprocess_precallbacks(targ, HAT_PRESUSPEND, &cap_cpus);
6122	if (ret != 0) {
6123		/*
6124		 * EIO translates to fatal error, for all others cleanup
6125		 * and return EAGAIN.
6126		 */
6127		ASSERT(ret != EIO);
6128		hat_pageprocess_postcallbacks(targ, HAT_POSTUNSUSPEND);
6129		PAGE_RELOCATE_LOG(target, replacement, ret, -1);
6130		kreloc_thread = NULL;
6131		mutex_exit(&kpr_mutex);
6132		return (EAGAIN);
6133	}
6134
6135	/*
6136	 * acquire p_mapping list lock for both the target and replacement
6137	 * root pages.
6138	 *
6139	 * low and high refer to the need to grab the mlist locks in a
6140	 * specific order in order to prevent race conditions.  Thus the
6141	 * lower lock must be grabbed before the higher lock.
6142	 *
6143	 * This will block hat_unload's accessing p_mapping list.  Since
6144	 * we have SE_EXCL lock, hat_memload and hat_pageunload will be
6145	 * blocked.  Thus, no one else will be accessing the p_mapping list
6146	 * while we suspend and reload the locked mapping below.
6147	 */
6148	tpp = targ;
6149	rpp = repl;
6150	sfmmu_mlist_reloc_enter(tpp, rpp, &low, &high);
6151
6152	kpreempt_disable();
6153
6154#ifdef VAC
6155	/*
6156	 * If the replacement page is of a different virtual color
6157	 * than the page it is replacing, we need to handle the VAC
6158	 * consistency for it just as we would if we were setting up
6159	 * a new mapping to a page.
6160	 */
6161	if ((tpp->p_szc == 0) && (PP_GET_VCOLOR(rpp) != NO_VCOLOR)) {
6162		if (tpp->p_vcolor != rpp->p_vcolor) {
6163			sfmmu_cache_flushcolor(PP_GET_VCOLOR(rpp),
6164			    rpp->p_pagenum);
6165		}
6166	}
6167#endif
6168
6169	/*
6170	 * We raise our PIL to 13 so that we don't get captured by
6171	 * another CPU or pinned by an interrupt thread.  We can't go to
6172	 * PIL 14 since the nexus driver(s) may need to interrupt at
6173	 * that level in the case of IOMMU pseudo mappings.
6174	 */
6175	cpuset = cpu_ready_set;
6176	CPUSET_DEL(cpuset, CPU->cpu_id);
6177	if (!cap_cpus || CPUSET_ISNULL(cpuset)) {
6178		old_pil = splr(XCALL_PIL);
6179	} else {
6180		old_pil = -1;
6181		xc_attention(cpuset);
6182	}
6183	ASSERT(getpil() == XCALL_PIL);
6184
6185	/*
6186	 * Now do suspend callbacks. In the case of an IOMMU mapping
6187	 * this will suspend all DMA activity to the page while it is
6188	 * being relocated. Since we are well above LOCK_LEVEL and CPUs
6189	 * may be captured at this point we should have acquired any needed
6190	 * locks in the presuspend callback.
6191	 */
6192	ret = hat_pageprocess_precallbacks(targ, HAT_SUSPEND, NULL);
6193	if (ret != 0) {
6194		repl = targ;
6195		goto suspend_fail;
6196	}
6197
6198	/*
6199	 * Raise the PIL yet again, this time to block all high-level
6200	 * interrupts on this CPU. This is necessary to prevent an
6201	 * interrupt routine from pinning the thread which holds the
6202	 * mapping suspended and then touching the suspended page.
6203	 *
6204	 * Once the page is suspended we also need to be careful to
6205	 * avoid calling any functions which touch any seg_kmem memory
6206	 * since that memory may be backed by the very page we are
6207	 * relocating in here!
6208	 */
6209	hat_pagesuspend(targ);
6210
6211	/*
6212	 * Now that we are confident everybody has stopped using this page,
6213	 * copy the page contents.  Note we use a physical copy to prevent
6214	 * locking issues and to avoid fpRAS because we can't handle it in
6215	 * this context.
6216	 */
6217	for (i = 0; i < npages; i++, tpp++, rpp++) {
6218		/*
6219		 * Copy the contents of the page.
6220		 */
6221		ppcopy_kernel(tpp, rpp);
6222	}
6223
6224	tpp = targ;
6225	rpp = repl;
6226	for (i = 0; i < npages; i++, tpp++, rpp++) {
6227		/*
6228		 * Copy attributes.  VAC consistency was handled above,
6229		 * if required.
6230		 */
6231		rpp->p_nrm = tpp->p_nrm;
6232		tpp->p_nrm = 0;
6233		rpp->p_index = tpp->p_index;
6234		tpp->p_index = 0;
6235#ifdef VAC
6236		rpp->p_vcolor = tpp->p_vcolor;
6237#endif
6238	}
6239
6240	/*
6241	 * First, unsuspend the page, if we set the suspend bit, and transfer
6242	 * the mapping list from the target page to the replacement page.
6243	 * Next process postcallbacks; since pa_hment's are linked only to the
6244	 * p_mapping list of root page, we don't iterate over the constituent
6245	 * pages.
6246	 */
6247	hat_pagereload(targ, repl);
6248
6249suspend_fail:
6250	hat_pageprocess_postcallbacks(repl, HAT_UNSUSPEND);
6251
6252	/*
6253	 * Now lower our PIL and release any captured CPUs since we
6254	 * are out of the "danger zone".  After this it will again be
6255	 * safe to acquire adaptive mutex locks, or to drop them...
6256	 */
6257	if (old_pil != -1) {
6258		splx(old_pil);
6259	} else {
6260		xc_dismissed(cpuset);
6261	}
6262
6263	kpreempt_enable();
6264
6265	sfmmu_mlist_reloc_exit(low, high);
6266
6267	/*
6268	 * Postsuspend callbacks should drop any locks held across
6269	 * the suspend callbacks.  As before, we don't hold the mapping
6270	 * list lock at this point.. our assumption is that the mapping
6271	 * list still can't change due to our holding SE_EXCL lock and
6272	 * there being no unlocked mappings left. Hence the restriction
6273	 * on calling context to hat_delete_callback()
6274	 */
6275	hat_pageprocess_postcallbacks(repl, HAT_POSTUNSUSPEND);
6276	if (ret != 0) {
6277		/*
6278		 * The second presuspend call failed: we got here through
6279		 * the suspend_fail label above.
6280		 */
6281		ASSERT(ret != EIO);
6282		PAGE_RELOCATE_LOG(target, replacement, ret, cap_cpus);
6283		kreloc_thread = NULL;
6284		mutex_exit(&kpr_mutex);
6285		return (EAGAIN);
6286	}
6287
6288	/*
6289	 * Now that we're out of the performance critical section we can
6290	 * take care of updating the hash table, since we still
6291	 * hold all the pages locked SE_EXCL at this point we
6292	 * needn't worry about things changing out from under us.
6293	 */
6294	tpp = targ;
6295	rpp = repl;
6296	for (i = 0; i < npages; i++, tpp++, rpp++) {
6297
6298		/*
6299		 * replace targ with replacement in page_hash table
6300		 */
6301		targ = tpp;
6302		page_relocate_hash(rpp, targ);
6303
6304		/*
6305		 * concatenate target; caller of platform_page_relocate()
6306		 * expects target to be concatenated after returning.
6307		 */
6308		ASSERT(targ->p_next == targ);
6309		ASSERT(targ->p_prev == targ);
6310		page_list_concat(&pl, &targ);
6311	}
6312
6313	ASSERT(*target == pl);
6314	*nrelocp = npages;
6315	PAGE_RELOCATE_LOG(target, replacement, 0, cap_cpus);
6316	kreloc_thread = NULL;
6317	mutex_exit(&kpr_mutex);
6318	return (0);
6319}
6320
6321/*
6322 * Called when stray pa_hments are found attached to a page which is
6323 * being freed.  Notify the subsystem which attached the pa_hment of
6324 * the error if it registered a suitable handler, else panic.
6325 */
6326static void
6327sfmmu_pahment_leaked(struct pa_hment *pahmep)
6328{
6329	id_t cb_id = pahmep->cb_id;
6330
6331	ASSERT(cb_id >= (id_t)0 && cb_id < sfmmu_cb_nextid);
6332	if (sfmmu_cb_table[cb_id].errhandler != NULL) {
6333		if (sfmmu_cb_table[cb_id].errhandler(pahmep->addr, pahmep->len,
6334		    HAT_CB_ERR_LEAKED, pahmep->pvt) == 0)
6335			return;		/* non-fatal */
6336	}
6337	panic("pa_hment leaked: 0x%p", pahmep);
6338}
6339
6340/*
6341 * Remove all mappings to page 'pp'.
6342 */
6343int
6344hat_pageunload(struct page *pp, uint_t forceflag)
6345{
6346	struct page *origpp = pp;
6347	struct sf_hment *sfhme, *tmphme;
6348	struct hme_blk *hmeblkp;
6349	kmutex_t *pml;
6350#ifdef VAC
6351	kmutex_t *pmtx;
6352#endif
6353	cpuset_t cpuset, tset;
6354	int index, cons;
6355	int xhme_blks;
6356	int pa_hments;
6357
6358	ASSERT(PAGE_EXCL(pp));
6359
6360retry_xhat:
6361	tmphme = NULL;
6362	xhme_blks = 0;
6363	pa_hments = 0;
6364	CPUSET_ZERO(cpuset);
6365
6366	pml = sfmmu_mlist_enter(pp);
6367
6368	if (pp->p_kpmref)
6369		sfmmu_kpm_pageunload(pp);
6370	ASSERT(!PP_ISMAPPED_KPM(pp));
6371
6372	index = PP_MAPINDEX(pp);
6373	cons = TTE8K;
6374retry:
6375	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6376		tmphme = sfhme->hme_next;
6377
6378		if (IS_PAHME(sfhme)) {
6379			ASSERT(sfhme->hme_data != NULL);
6380			pa_hments++;
6381			continue;
6382		}
6383
6384		hmeblkp = sfmmu_hmetohblk(sfhme);
6385		if (hmeblkp->hblk_xhat_bit) {
6386			struct xhat_hme_blk *xblk =
6387			    (struct xhat_hme_blk *)hmeblkp;
6388
6389			(void) XHAT_PAGEUNLOAD(xblk->xhat_hme_blk_hat,
6390			    pp, forceflag, XBLK2PROVBLK(xblk));
6391
6392			xhme_blks = 1;
6393			continue;
6394		}
6395
6396		/*
6397		 * If there are kernel mappings don't unload them, they will
6398		 * be suspended.
6399		 */
6400		if (forceflag == SFMMU_KERNEL_RELOC && hmeblkp->hblk_lckcnt &&
6401		    hmeblkp->hblk_tag.htag_id == ksfmmup)
6402			continue;
6403
6404		tset = sfmmu_pageunload(pp, sfhme, cons);
6405		CPUSET_OR(cpuset, tset);
6406	}
6407
6408	while (index != 0) {
6409		index = index >> 1;
6410		if (index != 0)
6411			cons++;
6412		if (index & 0x1) {
6413			/* Go to leading page */
6414			pp = PP_GROUPLEADER(pp, cons);
6415			ASSERT(sfmmu_mlist_held(pp));
6416			goto retry;
6417		}
6418	}
6419
6420	/*
6421	 * cpuset may be empty if the page was only mapped by segkpm,
6422	 * in which case we won't actually cross-trap.
6423	 */
6424	xt_sync(cpuset);
6425
6426	/*
6427	 * The page should have no mappings at this point, unless
6428	 * we were called from hat_page_relocate() in which case we
6429	 * leave the locked mappings which will be suspended later.
6430	 */
6431	ASSERT(!PP_ISMAPPED(origpp) || xhme_blks || pa_hments ||
6432	    (forceflag == SFMMU_KERNEL_RELOC));
6433
6434#ifdef VAC
6435	if (PP_ISTNC(pp)) {
6436		if (cons == TTE8K) {
6437			pmtx = sfmmu_page_enter(pp);
6438			PP_CLRTNC(pp);
6439			sfmmu_page_exit(pmtx);
6440		} else {
6441			conv_tnc(pp, cons);
6442		}
6443	}
6444#endif	/* VAC */
6445
6446	if (pa_hments && forceflag != SFMMU_KERNEL_RELOC) {
6447		/*
6448		 * Unlink any pa_hments and free them, calling back
6449		 * the responsible subsystem to notify it of the error.
6450		 * This can occur in situations such as drivers leaking
6451		 * DMA handles: naughty, but common enough that we'd like
6452		 * to keep the system running rather than bringing it
6453		 * down with an obscure error like "pa_hment leaked"
6454		 * which doesn't aid the user in debugging their driver.
6455		 */
6456		for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6457			tmphme = sfhme->hme_next;
6458			if (IS_PAHME(sfhme)) {
6459				struct pa_hment *pahmep = sfhme->hme_data;
6460				sfmmu_pahment_leaked(pahmep);
6461				HME_SUB(sfhme, pp);
6462				kmem_cache_free(pa_hment_cache, pahmep);
6463			}
6464		}
6465
6466		ASSERT(!PP_ISMAPPED(origpp) || xhme_blks);
6467	}
6468
6469	sfmmu_mlist_exit(pml);
6470
6471	/*
6472	 * XHAT may not have finished unloading pages
6473	 * because some other thread was waiting for
6474	 * mlist lock and XHAT_PAGEUNLOAD let it do
6475	 * the job.
6476	 */
6477	if (xhme_blks) {
6478		pp = origpp;
6479		goto retry_xhat;
6480	}
6481
6482	return (0);
6483}
6484
6485cpuset_t
6486sfmmu_pageunload(page_t *pp, struct sf_hment *sfhme, int cons)
6487{
6488	struct hme_blk *hmeblkp;
6489	sfmmu_t *sfmmup;
6490	tte_t tte, ttemod;
6491#ifdef DEBUG
6492	tte_t orig_old;
6493#endif /* DEBUG */
6494	caddr_t addr;
6495	int ttesz;
6496	int ret;
6497	cpuset_t cpuset;
6498
6499	ASSERT(pp != NULL);
6500	ASSERT(sfmmu_mlist_held(pp));
6501	ASSERT(pp->p_vnode != &kvp);
6502
6503	CPUSET_ZERO(cpuset);
6504
6505	hmeblkp = sfmmu_hmetohblk(sfhme);
6506
6507readtte:
6508	sfmmu_copytte(&sfhme->hme_tte, &tte);
6509	if (TTE_IS_VALID(&tte)) {
6510		sfmmup = hblktosfmmu(hmeblkp);
6511		ttesz = get_hblk_ttesz(hmeblkp);
6512		/*
6513		 * Only unload mappings of 'cons' size.
6514		 */
6515		if (ttesz != cons)
6516			return (cpuset);
6517
6518		/*
6519		 * Note that we have p_mapping lock, but no hash lock here.
6520		 * hblk_unload() has to have both hash lock AND p_mapping
6521		 * lock before it tries to modify tte. So, the tte could
6522		 * not become invalid in the sfmmu_modifytte_try() below.
6523		 */
6524		ttemod = tte;
6525#ifdef DEBUG
6526		orig_old = tte;
6527#endif /* DEBUG */
6528
6529		TTE_SET_INVALID(&ttemod);
6530		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
6531		if (ret < 0) {
6532#ifdef DEBUG
6533			/* only R/M bits can change. */
6534			chk_tte(&orig_old, &tte, &ttemod, hmeblkp);
6535#endif /* DEBUG */
6536			goto readtte;
6537		}
6538
6539		if (ret == 0) {
6540			panic("pageunload: cas failed?");
6541		}
6542
6543		addr = tte_to_vaddr(hmeblkp, tte);
6544
6545		sfmmu_ttesync(sfmmup, addr, &tte, pp);
6546
6547		atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -1);
6548
6549		/*
6550		 * We need to flush the page from the virtual cache
6551		 * in order to prevent a virtual cache alias
6552		 * inconsistency. The particular scenario we need
6553		 * to worry about is:
6554		 * Given:  va1 and va2 are two virtual address that
6555		 * alias and will map the same physical address.
6556		 * 1.	mapping exists from va1 to pa and data has
6557		 *	been read into the cache.
6558		 * 2.	unload va1.
6559		 * 3.	load va2 and modify data using va2.
6560		 * 4	unload va2.
6561		 * 5.	load va1 and reference data.  Unless we flush
6562		 *	the data cache when we unload we will get
6563		 *	stale data.
6564		 * This scenario is taken care of by using virtual
6565		 * page coloring.
6566		 */
6567		if (sfmmup->sfmmu_ismhat) {
6568			/*
6569			 * Flush TSBs, TLBs and caches
6570			 * of every process
6571			 * sharing this ism segment.
6572			 */
6573			sfmmu_hat_lock_all();
6574			mutex_enter(&ism_mlist_lock);
6575			kpreempt_disable();
6576			if (do_virtual_coloring)
6577				sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp,
6578					pp->p_pagenum, CACHE_NO_FLUSH);
6579			else
6580				sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp,
6581					pp->p_pagenum, CACHE_FLUSH);
6582			kpreempt_enable();
6583			mutex_exit(&ism_mlist_lock);
6584			sfmmu_hat_unlock_all();
6585			cpuset = cpu_ready_set;
6586		} else if (do_virtual_coloring) {
6587			sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
6588			cpuset = sfmmup->sfmmu_cpusran;
6589		} else {
6590			sfmmu_tlbcache_demap(addr, sfmmup, hmeblkp,
6591				pp->p_pagenum, 0, FLUSH_NECESSARY_CPUS,
6592				CACHE_FLUSH, 0);
6593			cpuset = sfmmup->sfmmu_cpusran;
6594		}
6595
6596		/*
6597		 * Hme_sub has to run after ttesync() and a_rss update.
6598		 * See hblk_unload().
6599		 */
6600		HME_SUB(sfhme, pp);
6601		membar_stst();
6602
6603		/*
6604		 * We can not make ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
6605		 * since pteload may have done a HME_ADD() right after
6606		 * we did the HME_SUB() above. Hmecnt is now maintained
6607		 * by cas only. no lock guranteed its value. The only
6608		 * gurantee we have is the hmecnt should not be less than
6609		 * what it should be so the hblk will not be taken away.
6610		 * It's also important that we decremented the hmecnt after
6611		 * we are done with hmeblkp so that this hmeblk won't be
6612		 * stolen.
6613		 */
6614		ASSERT(hmeblkp->hblk_hmecnt > 0);
6615		ASSERT(hmeblkp->hblk_vcnt > 0);
6616		atomic_add_16(&hmeblkp->hblk_vcnt, -1);
6617		atomic_add_16(&hmeblkp->hblk_hmecnt, -1);
6618		/*
6619		 * This is bug 4063182.
6620		 * XXX: fixme
6621		 * ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
6622		 *	!hmeblkp->hblk_lckcnt);
6623		 */
6624	} else {
6625		panic("invalid tte? pp %p &tte %p",
6626		    (void *)pp, (void *)&tte);
6627	}
6628
6629	return (cpuset);
6630}
6631
6632/*
6633 * While relocating a kernel page, this function will move the mappings
6634 * from tpp to dpp and modify any associated data with these mappings.
6635 * It also unsuspends the suspended kernel mapping.
6636 */
6637static void
6638hat_pagereload(struct page *tpp, struct page *dpp)
6639{
6640	struct sf_hment *sfhme;
6641	tte_t tte, ttemod;
6642	int index, cons;
6643
6644	ASSERT(getpil() == PIL_MAX);
6645	ASSERT(sfmmu_mlist_held(tpp));
6646	ASSERT(sfmmu_mlist_held(dpp));
6647
6648	index = PP_MAPINDEX(tpp);
6649	cons = TTE8K;
6650
6651	/* Update real mappings to the page */
6652retry:
6653	for (sfhme = tpp->p_mapping; sfhme != NULL; sfhme = sfhme->hme_next) {
6654		if (IS_PAHME(sfhme))
6655			continue;
6656		sfmmu_copytte(&sfhme->hme_tte, &tte);
6657		ttemod = tte;
6658
6659		/*
6660		 * replace old pfn with new pfn in TTE
6661		 */
6662		PFN_TO_TTE(ttemod, dpp->p_pagenum);
6663
6664		/*
6665		 * clear suspend bit
6666		 */
6667		ASSERT(TTE_IS_SUSPEND(&ttemod));
6668		TTE_CLR_SUSPEND(&ttemod);
6669
6670		if (sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte) < 0)
6671			panic("hat_pagereload(): sfmmu_modifytte_try() failed");
6672
6673		/*
6674		 * set hme_page point to new page
6675		 */
6676		sfhme->hme_page = dpp;
6677	}
6678
6679	/*
6680	 * move p_mapping list from old page to new page
6681	 */
6682	dpp->p_mapping = tpp->p_mapping;
6683	tpp->p_mapping = NULL;
6684	dpp->p_share = tpp->p_share;
6685	tpp->p_share = 0;
6686
6687	while (index != 0) {
6688		index = index >> 1;
6689		if (index != 0)
6690			cons++;
6691		if (index & 0x1) {
6692			tpp = PP_GROUPLEADER(tpp, cons);
6693			dpp = PP_GROUPLEADER(dpp, cons);
6694			goto retry;
6695		}
6696	}
6697
6698	if (dtrace_kreloc_fini)
6699		(*dtrace_kreloc_fini)();
6700	mutex_exit(&kpr_suspendlock);
6701}
6702
6703uint_t
6704hat_pagesync(struct page *pp, uint_t clearflag)
6705{
6706	struct sf_hment *sfhme, *tmphme = NULL;
6707	struct hme_blk *hmeblkp;
6708	kmutex_t *pml;
6709	cpuset_t cpuset, tset;
6710	int	index, cons;
6711	extern	ulong_t po_share;
6712	page_t	*save_pp = pp;
6713
6714	CPUSET_ZERO(cpuset);
6715
6716	if (PP_ISRO(pp) && (clearflag & HAT_SYNC_STOPON_MOD)) {
6717		return (PP_GENERIC_ATTR(pp));
6718	}
6719
6720	if ((clearflag == (HAT_SYNC_STOPON_REF | HAT_SYNC_DONTZERO)) &&
6721	    PP_ISREF(pp)) {
6722		return (PP_GENERIC_ATTR(pp));
6723	}
6724
6725	if ((clearflag == (HAT_SYNC_STOPON_MOD | HAT_SYNC_DONTZERO)) &&
6726	    PP_ISMOD(pp)) {
6727		return (PP_GENERIC_ATTR(pp));
6728	}
6729
6730	if ((clearflag & HAT_SYNC_STOPON_SHARED) != 0 &&
6731	    (pp->p_share > po_share) &&
6732	    !(clearflag & HAT_SYNC_ZERORM)) {
6733		if (PP_ISRO(pp))
6734			hat_page_setattr(pp, P_REF);
6735		return (PP_GENERIC_ATTR(pp));
6736	}
6737
6738	clearflag &= ~HAT_SYNC_STOPON_SHARED;
6739	pml = sfmmu_mlist_enter(pp);
6740	index = PP_MAPINDEX(pp);
6741	cons = TTE8K;
6742retry:
6743	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6744		/*
6745		 * We need to save the next hment on the list since
6746		 * it is possible for pagesync to remove an invalid hment
6747		 * from the list.
6748		 */
6749		tmphme = sfhme->hme_next;
6750		/*
6751		 * If we are looking for large mappings and this hme doesn't
6752		 * reach the range we are seeking, just ignore its.
6753		 */
6754		hmeblkp = sfmmu_hmetohblk(sfhme);
6755		if (hmeblkp->hblk_xhat_bit)
6756			continue;
6757
6758		if (hme_size(sfhme) < cons)
6759			continue;
6760		tset = sfmmu_pagesync(pp, sfhme,
6761			clearflag & ~HAT_SYNC_STOPON_RM);
6762		CPUSET_OR(cpuset, tset);
6763		/*
6764		 * If clearflag is HAT_SYNC_DONTZERO, break out as soon
6765		 * as the "ref" or "mod" is set.
6766		 */
6767		if ((clearflag & ~HAT_SYNC_STOPON_RM) == HAT_SYNC_DONTZERO &&
6768		    ((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp)) ||
6769		    ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp))) {
6770			index = 0;
6771			break;
6772		}
6773	}
6774
6775	while (index) {
6776		index = index >> 1;
6777		cons++;
6778		if (index & 0x1) {
6779			/* Go to leading page */
6780			pp = PP_GROUPLEADER(pp, cons);
6781			goto retry;
6782		}
6783	}
6784
6785	xt_sync(cpuset);
6786	sfmmu_mlist_exit(pml);
6787	return (PP_GENERIC_ATTR(save_pp));
6788}
6789
6790/*
6791 * Get all the hardware dependent attributes for a page struct
6792 */
6793static cpuset_t
6794sfmmu_pagesync(struct page *pp, struct sf_hment *sfhme,
6795	uint_t clearflag)
6796{
6797	caddr_t addr;
6798	tte_t tte, ttemod;
6799	struct hme_blk *hmeblkp;
6800	int ret;
6801	sfmmu_t *sfmmup;
6802	cpuset_t cpuset;
6803
6804	ASSERT(pp != NULL);
6805	ASSERT(sfmmu_mlist_held(pp));
6806	ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
6807		(clearflag == HAT_SYNC_ZERORM));
6808
6809	SFMMU_STAT(sf_pagesync);
6810
6811	CPUSET_ZERO(cpuset);
6812
6813sfmmu_pagesync_retry:
6814
6815	sfmmu_copytte(&sfhme->hme_tte, &tte);
6816	if (TTE_IS_VALID(&tte)) {
6817		hmeblkp = sfmmu_hmetohblk(sfhme);
6818		sfmmup = hblktosfmmu(hmeblkp);
6819		addr = tte_to_vaddr(hmeblkp, tte);
6820		if (clearflag == HAT_SYNC_ZERORM) {
6821			ttemod = tte;
6822			TTE_CLR_RM(&ttemod);
6823			ret = sfmmu_modifytte_try(&tte, &ttemod,
6824				&sfhme->hme_tte);
6825			if (ret < 0) {
6826				/*
6827				 * cas failed and the new value is not what
6828				 * we want.
6829				 */
6830				goto sfmmu_pagesync_retry;
6831			}
6832
6833			if (ret > 0) {
6834				/* we win the cas */
6835				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
6836				cpuset = sfmmup->sfmmu_cpusran;
6837			}
6838		}
6839
6840		sfmmu_ttesync(sfmmup, addr, &tte, pp);
6841	}
6842	return (cpuset);
6843}
6844
6845/*
6846 * Remove write permission from a mappings to a page, so that
6847 * we can detect the next modification of it. This requires modifying
6848 * the TTE then invalidating (demap) any TLB entry using that TTE.
6849 * This code is similar to sfmmu_pagesync().
6850 */
6851static cpuset_t
6852sfmmu_pageclrwrt(struct page *pp, struct sf_hment *sfhme)
6853{
6854	caddr_t addr;
6855	tte_t tte;
6856	tte_t ttemod;
6857	struct hme_blk *hmeblkp;
6858	int ret;
6859	sfmmu_t *sfmmup;
6860	cpuset_t cpuset;
6861
6862	ASSERT(pp != NULL);
6863	ASSERT(sfmmu_mlist_held(pp));
6864
6865	CPUSET_ZERO(cpuset);
6866	SFMMU_STAT(sf_clrwrt);
6867
6868retry:
6869
6870	sfmmu_copytte(&sfhme->hme_tte, &tte);
6871	if (TTE_IS_VALID(&tte) && TTE_IS_WRITABLE(&tte)) {
6872		hmeblkp = sfmmu_hmetohblk(sfhme);
6873
6874		/*
6875		 * xhat mappings should never be to a VMODSORT page.
6876		 */
6877		ASSERT(hmeblkp->hblk_xhat_bit == 0);
6878
6879		sfmmup = hblktosfmmu(hmeblkp);
6880		addr = tte_to_vaddr(hmeblkp, tte);
6881
6882		ttemod = tte;
6883		TTE_CLR_WRT(&ttemod);
6884		TTE_CLR_MOD(&ttemod);
6885		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
6886
6887		/*
6888		 * if cas failed and the new value is not what
6889		 * we want retry
6890		 */
6891		if (ret < 0)
6892			goto retry;
6893
6894		/* we win the cas */
6895		if (ret > 0) {
6896			sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
6897			cpuset = sfmmup->sfmmu_cpusran;
6898		}
6899	}
6900
6901	return (cpuset);
6902}
6903
6904/*
6905 * Walk all mappings of a page, removing write permission and clearing the
6906 * ref/mod bits. This code is similar to hat_pagesync()
6907 */
6908static void
6909hat_page_clrwrt(page_t *pp)
6910{
6911	struct sf_hment *sfhme;
6912	struct sf_hment *tmphme = NULL;
6913	kmutex_t *pml;
6914	cpuset_t cpuset;
6915	cpuset_t tset;
6916	int	index;
6917	int	 cons;
6918
6919	CPUSET_ZERO(cpuset);
6920
6921	pml = sfmmu_mlist_enter(pp);
6922	index = PP_MAPINDEX(pp);
6923	cons = TTE8K;
6924retry:
6925	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6926		tmphme = sfhme->hme_next;
6927
6928		/*
6929		 * If we are looking for large mappings and this hme doesn't
6930		 * reach the range we are seeking, just ignore its.
6931		 */
6932
6933		if (hme_size(sfhme) < cons)
6934			continue;
6935
6936		tset = sfmmu_pageclrwrt(pp, sfhme);
6937		CPUSET_OR(cpuset, tset);
6938	}
6939
6940	while (index) {
6941		index = index >> 1;
6942		cons++;
6943		if (index & 0x1) {
6944			/* Go to leading page */
6945			pp = PP_GROUPLEADER(pp, cons);
6946			goto retry;
6947		}
6948	}
6949
6950	xt_sync(cpuset);
6951	sfmmu_mlist_exit(pml);
6952}
6953
6954/*
6955 * Set the given REF/MOD/RO bits for the given page.
6956 * For a vnode with a sorted v_pages list, we need to change
6957 * the attributes and the v_pages list together under page_vnode_mutex.
6958 */
6959void
6960hat_page_setattr(page_t *pp, uint_t flag)
6961{
6962	vnode_t		*vp = pp->p_vnode;
6963	page_t		**listp;
6964	kmutex_t	*pmtx;
6965	kmutex_t	*vphm = NULL;
6966
6967	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
6968
6969	/*
6970	 * nothing to do if attribute already set
6971	 */
6972	if ((pp->p_nrm & flag) == flag)
6973		return;
6974
6975	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
6976		vphm = page_vnode_mutex(vp);
6977		mutex_enter(vphm);
6978	}
6979
6980	pmtx = sfmmu_page_enter(pp);
6981	pp->p_nrm |= flag;
6982	sfmmu_page_exit(pmtx);
6983
6984	if (vphm != NULL) {
6985		/*
6986		 * Some File Systems examine v_pages for NULL w/o
6987		 * grabbing the vphm mutex. Must not let it become NULL when
6988		 * pp is the only page on the list.
6989		 */
6990		if (pp->p_vpnext != pp) {
6991			page_vpsub(&vp->v_pages, pp);
6992			if (vp->v_pages != NULL)
6993				listp = &vp->v_pages->p_vpprev->p_vpnext;
6994			else
6995				listp = &vp->v_pages;
6996			page_vpadd(listp, pp);
6997		}
6998		mutex_exit(vphm);
6999	}
7000}
7001
7002void
7003hat_page_clrattr(page_t *pp, uint_t flag)
7004{
7005	vnode_t		*vp = pp->p_vnode;
7006	kmutex_t	*vphm = NULL;
7007	kmutex_t	*pmtx;
7008
7009	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7010
7011	/*
7012	 * For vnode with a sorted v_pages list, we need to change
7013	 * the attributes and the v_pages list together under page_vnode_mutex.
7014	 */
7015	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
7016		vphm = page_vnode_mutex(vp);
7017		mutex_enter(vphm);
7018	}
7019
7020	pmtx = sfmmu_page_enter(pp);
7021	pp->p_nrm &= ~flag;
7022	sfmmu_page_exit(pmtx);
7023
7024	if (vphm != NULL) {
7025		/*
7026		 * Some File Systems examine v_pages for NULL w/o
7027		 * grabbing the vphm mutex. Must not let it become NULL when
7028		 * pp is the only page on the list.
7029		 */
7030		if (pp->p_vpnext != pp) {
7031			page_vpsub(&vp->v_pages, pp);
7032			page_vpadd(&vp->v_pages, pp);
7033		}
7034		mutex_exit(vphm);
7035
7036		/*
7037		 * VMODSORT works by removing write permissions and getting
7038		 * a fault when a page is made dirty. At this point
7039		 * we need to remove write permission from all mappings
7040		 * to this page.
7041		 */
7042		hat_page_clrwrt(pp);
7043	}
7044}
7045
7046
7047uint_t
7048hat_page_getattr(page_t *pp, uint_t flag)
7049{
7050	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7051	return ((uint_t)(pp->p_nrm & flag));
7052}
7053
7054/*
7055 * DEBUG kernels: verify that a kernel va<->pa translation
7056 * is safe by checking the underlying page_t is in a page
7057 * relocation-safe state.
7058 */
7059#ifdef	DEBUG
7060void
7061sfmmu_check_kpfn(pfn_t pfn)
7062{
7063	page_t *pp;
7064	int index, cons;
7065
7066	if (hat_check_vtop == 0)
7067		return;
7068
7069	if (hat_kpr_enabled == 0 || kvseg.s_base == NULL || panicstr)
7070		return;
7071
7072	pp = page_numtopp_nolock(pfn);
7073	if (!pp)
7074		return;
7075
7076	if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7077		return;
7078
7079	/*
7080	 * Handed a large kernel page, we dig up the root page since we
7081	 * know the root page might have the lock also.
7082	 */
7083	if (pp->p_szc != 0) {
7084		index = PP_MAPINDEX(pp);
7085		cons = TTE8K;
7086again:
7087		while (index != 0) {
7088			index >>= 1;
7089			if (index != 0)
7090				cons++;
7091			if (index & 0x1) {
7092				pp = PP_GROUPLEADER(pp, cons);
7093				goto again;
7094			}
7095		}
7096	}
7097
7098	if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7099		return;
7100
7101	/*
7102	 * Pages need to be locked or allocated "permanent" (either from
7103	 * static_arena arena or explicitly setting PG_NORELOC when calling
7104	 * page_create_va()) for VA->PA translations to be valid.
7105	 */
7106	if (!PP_ISNORELOC(pp))
7107		panic("Illegal VA->PA translation, pp 0x%p not permanent", pp);
7108	else
7109		panic("Illegal VA->PA translation, pp 0x%p not locked", pp);
7110}
7111#endif	/* DEBUG */
7112
7113/*
7114 * Returns a page frame number for a given virtual address.
7115 * Returns PFN_INVALID to indicate an invalid mapping
7116 */
7117pfn_t
7118hat_getpfnum(struct hat *hat, caddr_t addr)
7119{
7120	pfn_t pfn;
7121	tte_t tte;
7122
7123	/*
7124	 * We would like to
7125	 * ASSERT(AS_LOCK_HELD(as, &as->a_lock));
7126	 * but we can't because the iommu driver will call this
7127	 * routine at interrupt time and it can't grab the as lock
7128	 * or it will deadlock: A thread could have the as lock
7129	 * and be waiting for io.  The io can't complete
7130	 * because the interrupt thread is blocked trying to grab
7131	 * the as lock.
7132	 */
7133
7134	ASSERT(hat->sfmmu_xhat_provider == NULL);
7135
7136	if (hat == ksfmmup) {
7137		if (segkpm && IS_KPM_ADDR(addr))
7138			return (sfmmu_kpm_vatopfn(addr));
7139		while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
7140		    == PFN_SUSPENDED) {
7141			sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
7142		}
7143		sfmmu_check_kpfn(pfn);
7144		return (pfn);
7145	} else {
7146		return (sfmmu_uvatopfn(addr, hat));
7147	}
7148}
7149
7150/*
7151 * hat_getkpfnum() is an obsolete DDI routine, and its use is discouraged.
7152 * Use hat_getpfnum(kas.a_hat, ...) instead.
7153 *
7154 * We'd like to return PFN_INVALID if the mappings have underlying page_t's
7155 * but can't right now due to the fact that some software has grown to use
7156 * this interface incorrectly. So for now when the interface is misused,
7157 * return a warning to the user that in the future it won't work in the
7158 * way they're abusing it, and carry on (after disabling page relocation).
7159 */
7160pfn_t
7161hat_getkpfnum(caddr_t addr)
7162{
7163	pfn_t pfn;
7164	tte_t tte;
7165	int badcaller = 0;
7166	extern int segkmem_reloc;
7167
7168	if (segkpm && IS_KPM_ADDR(addr)) {
7169		badcaller = 1;
7170		pfn = sfmmu_kpm_vatopfn(addr);
7171	} else {
7172		while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
7173		    == PFN_SUSPENDED) {
7174			sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
7175		}
7176		badcaller = pf_is_memory(pfn);
7177	}
7178
7179	if (badcaller) {
7180		/*
7181		 * We can't return PFN_INVALID or the caller may panic
7182		 * or corrupt the system.  The only alternative is to
7183		 * disable page relocation at this point for all kernel
7184		 * memory.  This will impact any callers of page_relocate()
7185		 * such as FMA or DR.
7186		 *
7187		 * RFE: Add junk here to spit out an ereport so the sysadmin
7188		 * can be advised that he should upgrade his device driver
7189		 * so that this doesn't happen.
7190		 */
7191		hat_getkpfnum_badcall(caller());
7192		if (hat_kpr_enabled && segkmem_reloc) {
7193			hat_kpr_enabled = 0;
7194			segkmem_reloc = 0;
7195			cmn_err(CE_WARN, "Kernel Page Relocation is DISABLED");
7196		}
7197	}
7198	return (pfn);
7199}
7200
7201pfn_t
7202sfmmu_uvatopfn(caddr_t vaddr, struct hat *sfmmup)
7203{
7204	struct hmehash_bucket *hmebp;
7205	hmeblk_tag hblktag;
7206	int hmeshift, hashno = 1;
7207	struct hme_blk *hmeblkp = NULL;
7208
7209	struct sf_hment *sfhmep;
7210	tte_t tte;
7211	pfn_t pfn;
7212
7213	/* support for ISM */
7214	ism_map_t	*ism_map;
7215	ism_blk_t	*ism_blkp;
7216	int		i;
7217	sfmmu_t *ism_hatid = NULL;
7218	sfmmu_t *locked_hatid = NULL;
7219
7220
7221	ASSERT(sfmmup != ksfmmup);
7222	SFMMU_STAT(sf_user_vtop);
7223	/*
7224	 * Set ism_hatid if vaddr falls in a ISM segment.
7225	 */
7226	ism_blkp = sfmmup->sfmmu_iblk;
7227	if (ism_blkp) {
7228		sfmmu_ismhat_enter(sfmmup, 0);
7229		locked_hatid = sfmmup;
7230	}
7231	while (ism_blkp && ism_hatid == NULL) {
7232		ism_map = ism_blkp->iblk_maps;
7233		for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
7234			if (vaddr >= ism_start(ism_map[i]) &&
7235			    vaddr < ism_end(ism_map[i])) {
7236				sfmmup = ism_hatid = ism_map[i].imap_ismhat;
7237				vaddr = (caddr_t)(vaddr -
7238					ism_start(ism_map[i]));
7239				break;
7240			}
7241		}
7242		ism_blkp = ism_blkp->iblk_next;
7243	}
7244	if (locked_hatid) {
7245		sfmmu_ismhat_exit(locked_hatid, 0);
7246	}
7247
7248	hblktag.htag_id = sfmmup;
7249	do {
7250		hmeshift = HME_HASH_SHIFT(hashno);
7251		hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
7252		hblktag.htag_rehash = hashno;
7253		hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
7254
7255		SFMMU_HASH_LOCK(hmebp);
7256
7257		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
7258		if (hmeblkp != NULL) {
7259			HBLKTOHME(sfhmep, hmeblkp, vaddr);
7260			sfmmu_copytte(&sfhmep->hme_tte, &tte);
7261			if (TTE_IS_VALID(&tte)) {
7262				pfn = TTE_TO_PFN(vaddr, &tte);
7263			} else {
7264				pfn = PFN_INVALID;
7265			}
7266			SFMMU_HASH_UNLOCK(hmebp);
7267			return (pfn);
7268		}
7269		SFMMU_HASH_UNLOCK(hmebp);
7270		hashno++;
7271	} while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt));
7272	return (PFN_INVALID);
7273}
7274
7275
7276/*
7277 * For compatability with AT&T and later optimizations
7278 */
7279/* ARGSUSED */
7280void
7281hat_map(struct hat *hat, caddr_t addr, size_t len, uint_t flags)
7282{
7283	ASSERT(hat != NULL);
7284	ASSERT(hat->sfmmu_xhat_provider == NULL);
7285}
7286
7287/*
7288 * Return the number of mappings to a particular page.
7289 * This number is an approximation of the number of
7290 * number of people sharing the page.
7291 */
7292ulong_t
7293hat_page_getshare(page_t *pp)
7294{
7295	page_t *spp = pp;	/* start page */
7296	kmutex_t *pml;
7297	ulong_t	cnt;
7298	int index, sz = TTE64K;
7299
7300	/*
7301	 * We need to grab the mlist lock to make sure any outstanding
7302	 * load/unloads complete.  Otherwise we could return zero
7303	 * even though the unload(s) hasn't finished yet.
7304	 */
7305	pml = sfmmu_mlist_enter(spp);
7306	cnt = spp->p_share;
7307
7308	if (kpm_enable)
7309		cnt += spp->p_kpmref;
7310
7311	/*
7312	 * If we have any large mappings, we count the number of
7313	 * mappings that this large page is part of.
7314	 */
7315	index = PP_MAPINDEX(spp);
7316	index >>= 1;
7317	while (index) {
7318		pp = PP_GROUPLEADER(spp, sz);
7319		if ((index & 0x1) && pp != spp) {
7320			cnt += pp->p_share;
7321			spp = pp;
7322		}
7323		index >>= 1;
7324		sz++;
7325	}
7326	sfmmu_mlist_exit(pml);
7327	return (cnt);
7328}
7329
7330/*
7331 * Unload all large mappings to the pp and reset the p_szc field of every
7332 * constituent page according to the remaining mappings.
7333 *
7334 * pp must be locked SE_EXCL. Even though no other constituent pages are
7335 * locked it's legal to unload the large mappings to the pp because all
7336 * constituent pages of large locked mappings have to be locked SE_SHARED.
7337 * This means if we have SE_EXCL lock on one of constituent pages none of the
7338 * large mappings to pp are locked.
7339 *
7340 * Decrease p_szc field starting from the last constituent page and ending
7341 * with the root page. This method is used because other threads rely on the
7342 * root's p_szc to find the lock to syncronize on. After a root page_t's p_szc
7343 * is demoted then other threads will succeed in sfmmu_mlspl_enter(). This
7344 * ensures that p_szc changes of the constituent pages appears atomic for all
7345 * threads that use sfmmu_mlspl_enter() to examine p_szc field.
7346 *
7347 * This mechanism is only used for file system pages where it's not always
7348 * possible to get SE_EXCL locks on all constituent pages to demote the size
7349 * code (as is done for anonymous or kernel large pages).
7350 *
7351 * See more comments in front of sfmmu_mlspl_enter().
7352 */
7353void
7354hat_page_demote(page_t *pp)
7355{
7356	int index;
7357	int sz;
7358	cpuset_t cpuset;
7359	int sync = 0;
7360	page_t *rootpp;
7361	struct sf_hment *sfhme;
7362	struct sf_hment *tmphme = NULL;
7363	struct hme_blk *hmeblkp;
7364	uint_t pszc;
7365	page_t *lastpp;
7366	cpuset_t tset;
7367	pgcnt_t npgs;
7368	kmutex_t *pml;
7369	kmutex_t *pmtx = NULL;
7370
7371	ASSERT(PAGE_EXCL(pp));
7372	ASSERT(!PP_ISFREE(pp));
7373	ASSERT(page_szc_lock_assert(pp));
7374	pml = sfmmu_mlist_enter(pp);
7375
7376	pszc = pp->p_szc;
7377	if (pszc == 0) {
7378		goto out;
7379	}
7380
7381	index = PP_MAPINDEX(pp) >> 1;
7382
7383	if (index) {
7384		CPUSET_ZERO(cpuset);
7385		sz = TTE64K;
7386		sync = 1;
7387	}
7388
7389	while (index) {
7390		if (!(index & 0x1)) {
7391			index >>= 1;
7392			sz++;
7393			continue;
7394		}
7395		ASSERT(sz <= pszc);
7396		rootpp = PP_GROUPLEADER(pp, sz);
7397		for (sfhme = rootpp->p_mapping; sfhme; sfhme = tmphme) {
7398			tmphme = sfhme->hme_next;
7399			hmeblkp = sfmmu_hmetohblk(sfhme);
7400			if (hme_size(sfhme) != sz) {
7401				continue;
7402			}
7403			if (hmeblkp->hblk_xhat_bit) {
7404				cmn_err(CE_PANIC,
7405				    "hat_page_demote: xhat hmeblk");
7406			}
7407			tset = sfmmu_pageunload(rootpp, sfhme, sz);
7408			CPUSET_OR(cpuset, tset);
7409		}
7410		if (index >>= 1) {
7411			sz++;
7412		}
7413	}
7414
7415	ASSERT(!PP_ISMAPPED_LARGE(pp));
7416
7417	if (sync) {
7418		xt_sync(cpuset);
7419#ifdef VAC
7420		if (PP_ISTNC(pp)) {
7421			conv_tnc(rootpp, sz);
7422		}
7423#endif	/* VAC */
7424	}
7425
7426	pmtx = sfmmu_page_enter(pp);
7427
7428	ASSERT(pp->p_szc == pszc);
7429	rootpp = PP_PAGEROOT(pp);
7430	ASSERT(rootpp->p_szc == pszc);
7431	lastpp = PP_PAGENEXT_N(rootpp, TTEPAGES(pszc) - 1);
7432
7433	while (lastpp != rootpp) {
7434		sz = PP_MAPINDEX(lastpp) ? fnd_mapping_sz(lastpp) : 0;
7435		ASSERT(sz < pszc);
7436		npgs = (sz == 0) ? 1 : TTEPAGES(sz);
7437		ASSERT(P2PHASE(lastpp->p_pagenum, npgs) == npgs - 1);
7438		while (--npgs > 0) {
7439			lastpp->p_szc = (uchar_t)sz;
7440			lastpp = PP_PAGEPREV(lastpp);
7441		}
7442		if (sz) {
7443			/*
7444			 * make sure before current root's pszc
7445			 * is updated all updates to constituent pages pszc
7446			 * fields are globally visible.
7447			 */
7448			membar_producer();
7449		}
7450		lastpp->p_szc = sz;
7451		ASSERT(IS_P2ALIGNED(lastpp->p_pagenum, TTEPAGES(sz)));
7452		if (lastpp != rootpp) {
7453			lastpp = PP_PAGEPREV(lastpp);
7454		}
7455	}
7456	if (sz == 0) {
7457		/* the loop above doesn't cover this case */
7458		rootpp->p_szc = 0;
7459	}
7460out:
7461	ASSERT(pp->p_szc == 0);
7462	if (pmtx != NULL) {
7463		sfmmu_page_exit(pmtx);
7464	}
7465	sfmmu_mlist_exit(pml);
7466}
7467
7468/*
7469 * Refresh the HAT ismttecnt[] element for size szc.
7470 * Caller must have set ISM busy flag to prevent mapping
7471 * lists from changing while we're traversing them.
7472 */
7473pgcnt_t
7474ism_tsb_entries(sfmmu_t *sfmmup, int szc)
7475{
7476	ism_blk_t	*ism_blkp = sfmmup->sfmmu_iblk;
7477	ism_map_t	*ism_map;
7478	pgcnt_t		npgs = 0;
7479	int		j;
7480
7481	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
7482	for (; ism_blkp != NULL; ism_blkp = ism_blkp->iblk_next) {
7483		ism_map = ism_blkp->iblk_maps;
7484		for (j = 0; ism_map[j].imap_ismhat && j < ISM_MAP_SLOTS; j++)
7485			npgs += ism_map[j].imap_ismhat->sfmmu_ttecnt[szc];
7486	}
7487	sfmmup->sfmmu_ismttecnt[szc] = npgs;
7488	return (npgs);
7489}
7490
7491/*
7492 * Yield the memory claim requirement for an address space.
7493 *
7494 * This is currently implemented as the number of bytes that have active
7495 * hardware translations that have page structures.  Therefore, it can
7496 * underestimate the traditional resident set size, eg, if the
7497 * physical page is present and the hardware translation is missing;
7498 * and it can overestimate the rss, eg, if there are active
7499 * translations to a frame buffer with page structs.
7500 * Also, it does not take sharing into account.
7501 *
7502 * Note that we don't acquire locks here since this function is most often
7503 * called from the clock thread.
7504 */
7505size_t
7506hat_get_mapped_size(struct hat *hat)
7507{
7508	size_t		assize = 0;
7509	int 		i;
7510
7511	if (hat == NULL)
7512		return (0);
7513
7514	ASSERT(hat->sfmmu_xhat_provider == NULL);
7515
7516	for (i = 0; i < mmu_page_sizes; i++)
7517		assize += (pgcnt_t)hat->sfmmu_ttecnt[i] * TTEBYTES(i);
7518
7519	if (hat->sfmmu_iblk == NULL)
7520		return (assize);
7521
7522	for (i = 0; i < mmu_page_sizes; i++)
7523		assize += (pgcnt_t)hat->sfmmu_ismttecnt[i] * TTEBYTES(i);
7524
7525	return (assize);
7526}
7527
7528int
7529hat_stats_enable(struct hat *hat)
7530{
7531	hatlock_t	*hatlockp;
7532
7533	ASSERT(hat->sfmmu_xhat_provider == NULL);
7534
7535	hatlockp = sfmmu_hat_enter(hat);
7536	hat->sfmmu_rmstat++;
7537	sfmmu_hat_exit(hatlockp);
7538	return (1);
7539}
7540
7541void
7542hat_stats_disable(struct hat *hat)
7543{
7544	hatlock_t	*hatlockp;
7545
7546	ASSERT(hat->sfmmu_xhat_provider == NULL);
7547
7548	hatlockp = sfmmu_hat_enter(hat);
7549	hat->sfmmu_rmstat--;
7550	sfmmu_hat_exit(hatlockp);
7551}
7552
7553/*
7554 * Routines for entering or removing  ourselves from the
7555 * ism_hat's mapping list.
7556 */
7557static void
7558iment_add(struct ism_ment *iment,  struct hat *ism_hat)
7559{
7560	ASSERT(MUTEX_HELD(&ism_mlist_lock));
7561
7562	iment->iment_prev = NULL;
7563	iment->iment_next = ism_hat->sfmmu_iment;
7564	if (ism_hat->sfmmu_iment) {
7565		ism_hat->sfmmu_iment->iment_prev = iment;
7566	}
7567	ism_hat->sfmmu_iment = iment;
7568}
7569
7570static void
7571iment_sub(struct ism_ment *iment, struct hat *ism_hat)
7572{
7573	ASSERT(MUTEX_HELD(&ism_mlist_lock));
7574
7575	if (ism_hat->sfmmu_iment == NULL) {
7576		panic("ism map entry remove - no entries");
7577	}
7578
7579	if (iment->iment_prev) {
7580		ASSERT(ism_hat->sfmmu_iment != iment);
7581		iment->iment_prev->iment_next = iment->iment_next;
7582	} else {
7583		ASSERT(ism_hat->sfmmu_iment == iment);
7584		ism_hat->sfmmu_iment = iment->iment_next;
7585	}
7586
7587	if (iment->iment_next) {
7588		iment->iment_next->iment_prev = iment->iment_prev;
7589	}
7590
7591	/*
7592	 * zero out the entry
7593	 */
7594	iment->iment_next = NULL;
7595	iment->iment_prev = NULL;
7596	iment->iment_hat =  NULL;
7597}
7598
7599/*
7600 * Hat_share()/unshare() return an (non-zero) error
7601 * when saddr and daddr are not properly aligned.
7602 *
7603 * The top level mapping element determines the alignment
7604 * requirement for saddr and daddr, depending on different
7605 * architectures.
7606 *
7607 * When hat_share()/unshare() are not supported,
7608 * HATOP_SHARE()/UNSHARE() return 0
7609 */
7610int
7611hat_share(struct hat *sfmmup, caddr_t addr,
7612	struct hat *ism_hatid, caddr_t sptaddr, size_t len, uint_t ismszc)
7613{
7614	ism_blk_t	*ism_blkp;
7615	ism_blk_t	*new_iblk;
7616	ism_map_t 	*ism_map;
7617	ism_ment_t	*ism_ment;
7618	int		i, added;
7619	hatlock_t	*hatlockp;
7620	int		reload_mmu = 0;
7621	uint_t		ismshift = page_get_shift(ismszc);
7622	size_t		ismpgsz = page_get_pagesize(ismszc);
7623	uint_t		ismmask = (uint_t)ismpgsz - 1;
7624	size_t		sh_size = ISM_SHIFT(ismshift, len);
7625	ushort_t	ismhatflag;
7626
7627#ifdef DEBUG
7628	caddr_t		eaddr = addr + len;
7629#endif /* DEBUG */
7630
7631	ASSERT(ism_hatid != NULL && sfmmup != NULL);
7632	ASSERT(sptaddr == ISMID_STARTADDR);
7633	/*
7634	 * Check the alignment.
7635	 */
7636	if (!ISM_ALIGNED(ismshift, addr) || !ISM_ALIGNED(ismshift, sptaddr))
7637		return (EINVAL);
7638
7639	/*
7640	 * Check size alignment.
7641	 */
7642	if (!ISM_ALIGNED(ismshift, len))
7643		return (EINVAL);
7644
7645	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
7646
7647	/*
7648	 * Allocate ism_ment for the ism_hat's mapping list, and an
7649	 * ism map blk in case we need one.  We must do our
7650	 * allocations before acquiring locks to prevent a deadlock
7651	 * in the kmem allocator on the mapping list lock.
7652	 */
7653	new_iblk = kmem_cache_alloc(ism_blk_cache, KM_SLEEP);
7654	ism_ment = kmem_cache_alloc(ism_ment_cache, KM_SLEEP);
7655
7656	/*
7657	 * Serialize ISM mappings with the ISM busy flag, and also the
7658	 * trap handlers.
7659	 */
7660	sfmmu_ismhat_enter(sfmmup, 0);
7661
7662	/*
7663	 * Allocate an ism map blk if necessary.
7664	 */
7665	if (sfmmup->sfmmu_iblk == NULL) {
7666		sfmmup->sfmmu_iblk = new_iblk;
7667		bzero(new_iblk, sizeof (*new_iblk));
7668		new_iblk->iblk_nextpa = (uint64_t)-1;
7669		membar_stst();	/* make sure next ptr visible to all CPUs */
7670		sfmmup->sfmmu_ismblkpa = va_to_pa((caddr_t)new_iblk);
7671		reload_mmu = 1;
7672		new_iblk = NULL;
7673	}
7674
7675#ifdef DEBUG
7676	/*
7677	 * Make sure mapping does not already exist.
7678	 */
7679	ism_blkp = sfmmup->sfmmu_iblk;
7680	while (ism_blkp) {
7681		ism_map = ism_blkp->iblk_maps;
7682		for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) {
7683			if ((addr >= ism_start(ism_map[i]) &&
7684			    addr < ism_end(ism_map[i])) ||
7685			    eaddr > ism_start(ism_map[i]) &&
7686			    eaddr <= ism_end(ism_map[i])) {
7687				panic("sfmmu_share: Already mapped!");
7688			}
7689		}
7690		ism_blkp = ism_blkp->iblk_next;
7691	}
7692#endif /* DEBUG */
7693
7694	ASSERT(ismszc >= TTE4M);
7695	if (ismszc == TTE4M) {
7696		ismhatflag = HAT_4M_FLAG;
7697	} else if (ismszc == TTE32M) {
7698		ismhatflag = HAT_32M_FLAG;
7699	} else if (ismszc == TTE256M) {
7700		ismhatflag = HAT_256M_FLAG;
7701	}
7702	/*
7703	 * Add mapping to first available mapping slot.
7704	 */
7705	ism_blkp = sfmmup->sfmmu_iblk;
7706	added = 0;
7707	while (!added) {
7708		ism_map = ism_blkp->iblk_maps;
7709		for (i = 0; i < ISM_MAP_SLOTS; i++)  {
7710			if (ism_map[i].imap_ismhat == NULL) {
7711
7712				ism_map[i].imap_ismhat = ism_hatid;
7713				ism_map[i].imap_vb_shift = (ushort_t)ismshift;
7714				ism_map[i].imap_hatflags = ismhatflag;
7715				ism_map[i].imap_sz_mask = ismmask;
7716				/*
7717				 * imap_seg is checked in ISM_CHECK to see if
7718				 * non-NULL, then other info assumed valid.
7719				 */
7720				membar_stst();
7721				ism_map[i].imap_seg = (uintptr_t)addr | sh_size;
7722				ism_map[i].imap_ment = ism_ment;
7723
7724				/*
7725				 * Now add ourselves to the ism_hat's
7726				 * mapping list.
7727				 */
7728				ism_ment->iment_hat = sfmmup;
7729				ism_ment->iment_base_va = addr;
7730				ism_hatid->sfmmu_ismhat = 1;
7731				ism_hatid->sfmmu_flags = 0;
7732				mutex_enter(&ism_mlist_lock);
7733				iment_add(ism_ment, ism_hatid);
7734				mutex_exit(&ism_mlist_lock);
7735				added = 1;
7736				break;
7737			}
7738		}
7739		if (!added && ism_blkp->iblk_next == NULL) {
7740			ism_blkp->iblk_next = new_iblk;
7741			new_iblk = NULL;
7742			bzero(ism_blkp->iblk_next,
7743			    sizeof (*ism_blkp->iblk_next));
7744			ism_blkp->iblk_next->iblk_nextpa = (uint64_t)-1;
7745			membar_stst();
7746			ism_blkp->iblk_nextpa =
7747				va_to_pa((caddr_t)ism_blkp->iblk_next);
7748		}
7749		ism_blkp = ism_blkp->iblk_next;
7750	}
7751
7752	/*
7753	 * Update our counters for this sfmmup's ism mappings.
7754	 */
7755	for (i = 0; i <= ismszc; i++) {
7756		if (!(disable_ism_large_pages & (1 << i)))
7757			(void) ism_tsb_entries(sfmmup, i);
7758	}
7759
7760	hatlockp = sfmmu_hat_enter(sfmmup);
7761
7762	/*
7763	 * For ISM and DISM we do not support 512K pages, so we only
7764	 * only search the 4M and 8K/64K hashes for 4 pagesize cpus, and search
7765	 * the 256M or 32M, and 4M and 8K/64K hashes for 6 pagesize cpus.
7766	 */
7767	ASSERT((disable_ism_large_pages & (1 << TTE512K)) != 0);
7768
7769	if (ismszc > TTE4M && !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG))
7770		SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG);
7771
7772	if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_64K_FLAG))
7773		SFMMU_FLAGS_SET(sfmmup, HAT_64K_FLAG);
7774
7775	/*
7776	 * If we updated the ismblkpa for this HAT or we need
7777	 * to start searching the 256M or 32M or 4M hash, we must
7778	 * make sure all CPUs running this process reload their
7779	 * tsbmiss area.  Otherwise they will fail to load the mappings
7780	 * in the tsbmiss handler and will loop calling pagefault().
7781	 */
7782	switch (ismszc) {
7783	case TTE256M:
7784		if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_FLAG)) {
7785			SFMMU_FLAGS_SET(sfmmup, HAT_256M_FLAG);
7786			sfmmu_sync_mmustate(sfmmup);
7787		}
7788		break;
7789	case TTE32M:
7790		if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_FLAG)) {
7791			SFMMU_FLAGS_SET(sfmmup, HAT_32M_FLAG);
7792			sfmmu_sync_mmustate(sfmmup);
7793		}
7794		break;
7795	case TTE4M:
7796		if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG)) {
7797			SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG);
7798			sfmmu_sync_mmustate(sfmmup);
7799		}
7800		break;
7801	default:
7802		break;
7803	}
7804
7805	/*
7806	 * Now we can drop the locks.
7807	 */
7808	sfmmu_ismhat_exit(sfmmup, 1);
7809	sfmmu_hat_exit(hatlockp);
7810
7811	/*
7812	 * Free up ismblk if we didn't use it.
7813	 */
7814	if (new_iblk != NULL)
7815		kmem_cache_free(ism_blk_cache, new_iblk);
7816
7817	/*
7818	 * Check TSB and TLB page sizes.
7819	 */
7820	sfmmu_check_page_sizes(sfmmup, 1);
7821
7822	return (0);
7823}
7824
7825/*
7826 * hat_unshare removes exactly one ism_map from
7827 * this process's as.  It expects multiple calls
7828 * to hat_unshare for multiple shm segments.
7829 */
7830void
7831hat_unshare(struct hat *sfmmup, caddr_t addr, size_t len, uint_t ismszc)
7832{
7833	ism_map_t 	*ism_map;
7834	ism_ment_t	*free_ment = NULL;
7835	ism_blk_t	*ism_blkp;
7836	struct hat	*ism_hatid;
7837	int 		found, i;
7838	hatlock_t	*hatlockp;
7839	struct tsb_info	*tsbinfo;
7840	uint_t		ismshift = page_get_shift(ismszc);
7841	size_t		sh_size = ISM_SHIFT(ismshift, len);
7842
7843	ASSERT(ISM_ALIGNED(ismshift, addr));
7844	ASSERT(ISM_ALIGNED(ismshift, len));
7845	ASSERT(sfmmup != NULL);
7846	ASSERT(sfmmup != ksfmmup);
7847
7848	if (sfmmup->sfmmu_xhat_provider) {
7849		XHAT_UNSHARE(sfmmup, addr, len);
7850		return;
7851	} else {
7852		/*
7853		 * This must be a CPU HAT. If the address space has
7854		 * XHATs attached, inform all XHATs that ISM segment
7855		 * is going away
7856		 */
7857		ASSERT(sfmmup->sfmmu_as != NULL);
7858		if (sfmmup->sfmmu_as->a_xhat != NULL)
7859			xhat_unshare_all(sfmmup->sfmmu_as, addr, len);
7860	}
7861
7862	/*
7863	 * Make sure that during the entire time ISM mappings are removed,
7864	 * the trap handlers serialize behind us, and that no one else
7865	 * can be mucking with ISM mappings.  This also lets us get away
7866	 * with not doing expensive cross calls to flush the TLB -- we
7867	 * just discard the context, flush the entire TSB, and call it
7868	 * a day.
7869	 */
7870	sfmmu_ismhat_enter(sfmmup, 0);
7871
7872	/*
7873	 * Remove the mapping.
7874	 *
7875	 * We can't have any holes in the ism map.
7876	 * The tsb miss code while searching the ism map will
7877	 * stop on an empty map slot.  So we must move
7878	 * everyone past the hole up 1 if any.
7879	 *
7880	 * Also empty ism map blks are not freed until the
7881	 * process exits. This is to prevent a MT race condition
7882	 * between sfmmu_unshare() and sfmmu_tsbmiss_exception().
7883	 */
7884	found = 0;
7885	ism_blkp = sfmmup->sfmmu_iblk;
7886	while (!found && ism_blkp) {
7887		ism_map = ism_blkp->iblk_maps;
7888		for (i = 0; i < ISM_MAP_SLOTS; i++) {
7889			if (addr == ism_start(ism_map[i]) &&
7890			    sh_size == (size_t)(ism_size(ism_map[i]))) {
7891				found = 1;
7892				break;
7893			}
7894		}
7895		if (!found)
7896			ism_blkp = ism_blkp->iblk_next;
7897	}
7898
7899	if (found) {
7900		ism_hatid = ism_map[i].imap_ismhat;
7901		ASSERT(ism_hatid != NULL);
7902		ASSERT(ism_hatid->sfmmu_ismhat == 1);
7903
7904		/*
7905		 * First remove ourselves from the ism mapping list.
7906		 */
7907		mutex_enter(&ism_mlist_lock);
7908		iment_sub(ism_map[i].imap_ment, ism_hatid);
7909		mutex_exit(&ism_mlist_lock);
7910		free_ment = ism_map[i].imap_ment;
7911
7912		/*
7913		 * Now gurantee that any other cpu
7914		 * that tries to process an ISM miss
7915		 * will go to tl=0.
7916		 */
7917		hatlockp = sfmmu_hat_enter(sfmmup);
7918
7919		sfmmu_invalidate_ctx(sfmmup);
7920
7921		sfmmu_hat_exit(hatlockp);
7922
7923		/*
7924		 * We delete the ism map by copying
7925		 * the next map over the current one.
7926		 * We will take the next one in the maps
7927		 * array or from the next ism_blk.
7928		 */
7929		while (ism_blkp) {
7930			ism_map = ism_blkp->iblk_maps;
7931			while (i < (ISM_MAP_SLOTS - 1)) {
7932				ism_map[i] = ism_map[i + 1];
7933				i++;
7934			}
7935			/* i == (ISM_MAP_SLOTS - 1) */
7936			ism_blkp = ism_blkp->iblk_next;
7937			if (ism_blkp) {
7938				ism_map[i] = ism_blkp->iblk_maps[0];
7939				i = 0;
7940			} else {
7941				ism_map[i].imap_seg = 0;
7942				ism_map[i].imap_vb_shift = 0;
7943				ism_map[i].imap_hatflags = 0;
7944				ism_map[i].imap_sz_mask = 0;
7945				ism_map[i].imap_ismhat = NULL;
7946				ism_map[i].imap_ment = NULL;
7947			}
7948		}
7949
7950		/*
7951		 * Now flush entire TSB for the process, since
7952		 * demapping page by page can be too expensive.
7953		 * We don't have to flush the TLB here anymore
7954		 * since we switch to a new TLB ctx instead.
7955		 * Also, there is no need to flush if the process
7956		 * is exiting since the TSB will be freed later.
7957		 */
7958		if (!sfmmup->sfmmu_free) {
7959			hatlockp = sfmmu_hat_enter(sfmmup);
7960			for (tsbinfo = sfmmup->sfmmu_tsb; tsbinfo != NULL;
7961			    tsbinfo = tsbinfo->tsb_next) {
7962				if (tsbinfo->tsb_flags & TSB_SWAPPED)
7963					continue;
7964				sfmmu_inv_tsb(tsbinfo->tsb_va,
7965				    TSB_BYTES(tsbinfo->tsb_szc));
7966			}
7967			sfmmu_hat_exit(hatlockp);
7968		}
7969	}
7970
7971	/*
7972	 * Update our counters for this sfmmup's ism mappings.
7973	 */
7974	for (i = 0; i <= ismszc; i++) {
7975		if (!(disable_ism_large_pages & (1 << i)))
7976			(void) ism_tsb_entries(sfmmup, i);
7977	}
7978
7979	sfmmu_ismhat_exit(sfmmup, 0);
7980
7981	/*
7982	 * We must do our freeing here after dropping locks
7983	 * to prevent a deadlock in the kmem allocator on the
7984	 * mapping list lock.
7985	 */
7986	if (free_ment != NULL)
7987		kmem_cache_free(ism_ment_cache, free_ment);
7988
7989	/*
7990	 * Check TSB and TLB page sizes if the process isn't exiting.
7991	 */
7992	if (!sfmmup->sfmmu_free)
7993		sfmmu_check_page_sizes(sfmmup, 0);
7994}
7995
7996/* ARGSUSED */
7997static int
7998sfmmu_idcache_constructor(void *buf, void *cdrarg, int kmflags)
7999{
8000	/* void *buf is sfmmu_t pointer */
8001	return (0);
8002}
8003
8004/* ARGSUSED */
8005static void
8006sfmmu_idcache_destructor(void *buf, void *cdrarg)
8007{
8008	/* void *buf is sfmmu_t pointer */
8009}
8010
8011/*
8012 * setup kmem hmeblks by bzeroing all members and initializing the nextpa
8013 * field to be the pa of this hmeblk
8014 */
8015/* ARGSUSED */
8016static int
8017sfmmu_hblkcache_constructor(void *buf, void *cdrarg, int kmflags)
8018{
8019	struct hme_blk *hmeblkp;
8020
8021	bzero(buf, (size_t)cdrarg);
8022	hmeblkp = (struct hme_blk *)buf;
8023	hmeblkp->hblk_nextpa = va_to_pa((caddr_t)hmeblkp);
8024
8025#ifdef	HBLK_TRACE
8026	mutex_init(&hmeblkp->hblk_audit_lock, NULL, MUTEX_DEFAULT, NULL);
8027#endif	/* HBLK_TRACE */
8028
8029	return (0);
8030}
8031
8032/* ARGSUSED */
8033static void
8034sfmmu_hblkcache_destructor(void *buf, void *cdrarg)
8035{
8036
8037#ifdef	HBLK_TRACE
8038
8039	struct hme_blk *hmeblkp;
8040
8041	hmeblkp = (struct hme_blk *)buf;
8042	mutex_destroy(&hmeblkp->hblk_audit_lock);
8043
8044#endif	/* HBLK_TRACE */
8045}
8046
8047#define	SFMMU_CACHE_RECLAIM_SCAN_RATIO 8
8048static int sfmmu_cache_reclaim_scan_ratio = SFMMU_CACHE_RECLAIM_SCAN_RATIO;
8049/*
8050 * The kmem allocator will callback into our reclaim routine when the system
8051 * is running low in memory.  We traverse the hash and free up all unused but
8052 * still cached hme_blks.  We also traverse the free list and free them up
8053 * as well.
8054 */
8055/*ARGSUSED*/
8056static void
8057sfmmu_hblkcache_reclaim(void *cdrarg)
8058{
8059	int i;
8060	uint64_t hblkpa, prevpa, nx_pa;
8061	struct hmehash_bucket *hmebp;
8062	struct hme_blk *hmeblkp, *nx_hblk, *pr_hblk = NULL;
8063	static struct hmehash_bucket *uhmehash_reclaim_hand;
8064	static struct hmehash_bucket *khmehash_reclaim_hand;
8065	struct hme_blk *list = NULL;
8066
8067	hmebp = uhmehash_reclaim_hand;
8068	if (hmebp == NULL || hmebp > &uhme_hash[UHMEHASH_SZ])
8069		uhmehash_reclaim_hand = hmebp = uhme_hash;
8070	uhmehash_reclaim_hand += UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
8071
8072	for (i = UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
8073		if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
8074			hmeblkp = hmebp->hmeblkp;
8075			hblkpa = hmebp->hmeh_nextpa;
8076			prevpa = 0;
8077			pr_hblk = NULL;
8078			while (hmeblkp) {
8079				nx_hblk = hmeblkp->hblk_next;
8080				nx_pa = hmeblkp->hblk_nextpa;
8081				if (!hmeblkp->hblk_vcnt &&
8082				    !hmeblkp->hblk_hmecnt) {
8083					sfmmu_hblk_hash_rm(hmebp, hmeblkp,
8084						prevpa, pr_hblk);
8085					sfmmu_hblk_free(hmebp, hmeblkp,
8086					    hblkpa, &list);
8087				} else {
8088					pr_hblk = hmeblkp;
8089					prevpa = hblkpa;
8090				}
8091				hmeblkp = nx_hblk;
8092				hblkpa = nx_pa;
8093			}
8094			SFMMU_HASH_UNLOCK(hmebp);
8095		}
8096		if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
8097			hmebp = uhme_hash;
8098	}
8099
8100	hmebp = khmehash_reclaim_hand;
8101	if (hmebp == NULL || hmebp > &khme_hash[KHMEHASH_SZ])
8102		khmehash_reclaim_hand = hmebp = khme_hash;
8103	khmehash_reclaim_hand += KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
8104
8105	for (i = KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
8106		if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
8107			hmeblkp = hmebp->hmeblkp;
8108			hblkpa = hmebp->hmeh_nextpa;
8109			prevpa = 0;
8110			pr_hblk = NULL;
8111			while (hmeblkp) {
8112				nx_hblk = hmeblkp->hblk_next;
8113				nx_pa = hmeblkp->hblk_nextpa;
8114				if (!hmeblkp->hblk_vcnt &&
8115				    !hmeblkp->hblk_hmecnt) {
8116					sfmmu_hblk_hash_rm(hmebp, hmeblkp,
8117						prevpa, pr_hblk);
8118					sfmmu_hblk_free(hmebp, hmeblkp,
8119					    hblkpa, &list);
8120				} else {
8121					pr_hblk = hmeblkp;
8122					prevpa = hblkpa;
8123				}
8124				hmeblkp = nx_hblk;
8125				hblkpa = nx_pa;
8126			}
8127			SFMMU_HASH_UNLOCK(hmebp);
8128		}
8129		if (hmebp++ == &khme_hash[KHMEHASH_SZ])
8130			hmebp = khme_hash;
8131	}
8132	sfmmu_hblks_list_purge(&list);
8133}
8134
8135/*
8136 * sfmmu_get_ppvcolor should become a vm_machdep or hatop interface.
8137 * same goes for sfmmu_get_addrvcolor().
8138 *
8139 * This function will return the virtual color for the specified page. The
8140 * virtual color corresponds to this page current mapping or its last mapping.
8141 * It is used by memory allocators to choose addresses with the correct
8142 * alignment so vac consistency is automatically maintained.  If the page
8143 * has no color it returns -1.
8144 */
8145/*ARGSUSED*/
8146int
8147sfmmu_get_ppvcolor(struct page *pp)
8148{
8149#ifdef VAC
8150	int color;
8151
8152	if (!(cache & CACHE_VAC) || PP_NEWPAGE(pp)) {
8153		return (-1);
8154	}
8155	color = PP_GET_VCOLOR(pp);
8156	ASSERT(color < mmu_btop(shm_alignment));
8157	return (color);
8158#else
8159	return (-1);
8160#endif	/* VAC */
8161}
8162
8163/*
8164 * This function will return the desired alignment for vac consistency
8165 * (vac color) given a virtual address.  If no vac is present it returns -1.
8166 */
8167/*ARGSUSED*/
8168int
8169sfmmu_get_addrvcolor(caddr_t vaddr)
8170{
8171#ifdef VAC
8172	if (cache & CACHE_VAC) {
8173		return (addr_to_vcolor(vaddr));
8174	} else {
8175		return (-1);
8176	}
8177#else
8178	return (-1);
8179#endif	/* VAC */
8180}
8181
8182#ifdef VAC
8183/*
8184 * Check for conflicts.
8185 * A conflict exists if the new and existent mappings do not match in
8186 * their "shm_alignment fields. If conflicts exist, the existant mappings
8187 * are flushed unless one of them is locked. If one of them is locked, then
8188 * the mappings are flushed and converted to non-cacheable mappings.
8189 */
8190static void
8191sfmmu_vac_conflict(struct hat *hat, caddr_t addr, page_t *pp)
8192{
8193	struct hat *tmphat;
8194	struct sf_hment *sfhmep, *tmphme = NULL;
8195	struct hme_blk *hmeblkp;
8196	int vcolor;
8197	tte_t tte;
8198
8199	ASSERT(sfmmu_mlist_held(pp));
8200	ASSERT(!PP_ISNC(pp));		/* page better be cacheable */
8201
8202	vcolor = addr_to_vcolor(addr);
8203	if (PP_NEWPAGE(pp)) {
8204		PP_SET_VCOLOR(pp, vcolor);
8205		return;
8206	}
8207
8208	if (PP_GET_VCOLOR(pp) == vcolor) {
8209		return;
8210	}
8211
8212	if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) {
8213		/*
8214		 * Previous user of page had a different color
8215		 * but since there are no current users
8216		 * we just flush the cache and change the color.
8217		 */
8218		SFMMU_STAT(sf_pgcolor_conflict);
8219		sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
8220		PP_SET_VCOLOR(pp, vcolor);
8221		return;
8222	}
8223
8224	/*
8225	 * If we get here we have a vac conflict with a current
8226	 * mapping.  VAC conflict policy is as follows.
8227	 * - The default is to unload the other mappings unless:
8228	 * - If we have a large mapping we uncache the page.
8229	 * We need to uncache the rest of the large page too.
8230	 * - If any of the mappings are locked we uncache the page.
8231	 * - If the requested mapping is inconsistent
8232	 * with another mapping and that mapping
8233	 * is in the same address space we have to
8234	 * make it non-cached.  The default thing
8235	 * to do is unload the inconsistent mapping
8236	 * but if they are in the same address space
8237	 * we run the risk of unmapping the pc or the
8238	 * stack which we will use as we return to the user,
8239	 * in which case we can then fault on the thing
8240	 * we just unloaded and get into an infinite loop.
8241	 */
8242	if (PP_ISMAPPED_LARGE(pp)) {
8243		int sz;
8244
8245		/*
8246		 * Existing mapping is for big pages. We don't unload
8247		 * existing big mappings to satisfy new mappings.
8248		 * Always convert all mappings to TNC.
8249		 */
8250		sz = fnd_mapping_sz(pp);
8251		pp = PP_GROUPLEADER(pp, sz);
8252		SFMMU_STAT_ADD(sf_uncache_conflict, TTEPAGES(sz));
8253		sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH,
8254			TTEPAGES(sz));
8255
8256		return;
8257	}
8258
8259	/*
8260	 * check if any mapping is in same as or if it is locked
8261	 * since in that case we need to uncache.
8262	 */
8263	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
8264		tmphme = sfhmep->hme_next;
8265		hmeblkp = sfmmu_hmetohblk(sfhmep);
8266		if (hmeblkp->hblk_xhat_bit)
8267			continue;
8268		tmphat = hblktosfmmu(hmeblkp);
8269		sfmmu_copytte(&sfhmep->hme_tte, &tte);
8270		ASSERT(TTE_IS_VALID(&tte));
8271		if ((tmphat == hat) || hmeblkp->hblk_lckcnt) {
8272			/*
8273			 * We have an uncache conflict
8274			 */
8275			SFMMU_STAT(sf_uncache_conflict);
8276			sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH, 1);
8277			return;
8278		}
8279	}
8280
8281	/*
8282	 * We have an unload conflict
8283	 * We have already checked for LARGE mappings, therefore
8284	 * the remaining mapping(s) must be TTE8K.
8285	 */
8286	SFMMU_STAT(sf_unload_conflict);
8287
8288	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
8289		tmphme = sfhmep->hme_next;
8290		hmeblkp = sfmmu_hmetohblk(sfhmep);
8291		if (hmeblkp->hblk_xhat_bit)
8292			continue;
8293		(void) sfmmu_pageunload(pp, sfhmep, TTE8K);
8294	}
8295
8296	if (PP_ISMAPPED_KPM(pp))
8297		sfmmu_kpm_vac_unload(pp, addr);
8298
8299	/*
8300	 * Unloads only do TLB flushes so we need to flush the
8301	 * cache here.
8302	 */
8303	sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
8304	PP_SET_VCOLOR(pp, vcolor);
8305}
8306
8307/*
8308 * Whenever a mapping is unloaded and the page is in TNC state,
8309 * we see if the page can be made cacheable again. 'pp' is
8310 * the page that we just unloaded a mapping from, the size
8311 * of mapping that was unloaded is 'ottesz'.
8312 * Remark:
8313 * The recache policy for mpss pages can leave a performance problem
8314 * under the following circumstances:
8315 * . A large page in uncached mode has just been unmapped.
8316 * . All constituent pages are TNC due to a conflicting small mapping.
8317 * . There are many other, non conflicting, small mappings around for
8318 *   a lot of the constituent pages.
8319 * . We're called w/ the "old" groupleader page and the old ottesz,
8320 *   but this is irrelevant, since we're no more "PP_ISMAPPED_LARGE", so
8321 *   we end up w/ TTE8K or npages == 1.
8322 * . We call tst_tnc w/ the old groupleader only, and if there is no
8323 *   conflict, we re-cache only this page.
8324 * . All other small mappings are not checked and will be left in TNC mode.
8325 * The problem is not very serious because:
8326 * . mpss is actually only defined for heap and stack, so the probability
8327 *   is not very high that a large page mapping exists in parallel to a small
8328 *   one (this is possible, but seems to be bad programming style in the
8329 *   appl).
8330 * . The problem gets a little bit more serious, when those TNC pages
8331 *   have to be mapped into kernel space, e.g. for networking.
8332 * . When VAC alias conflicts occur in applications, this is regarded
8333 *   as an application bug. So if kstat's show them, the appl should
8334 *   be changed anyway.
8335 */
8336void
8337conv_tnc(page_t *pp, int ottesz)
8338{
8339	int cursz, dosz;
8340	pgcnt_t curnpgs, dopgs;
8341	pgcnt_t pg64k;
8342	page_t *pp2;
8343
8344	/*
8345	 * Determine how big a range we check for TNC and find
8346	 * leader page. cursz is the size of the biggest
8347	 * mapping that still exist on 'pp'.
8348	 */
8349	if (PP_ISMAPPED_LARGE(pp)) {
8350		cursz = fnd_mapping_sz(pp);
8351	} else {
8352		cursz = TTE8K;
8353	}
8354
8355	if (ottesz >= cursz) {
8356		dosz = ottesz;
8357		pp2 = pp;
8358	} else {
8359		dosz = cursz;
8360		pp2 = PP_GROUPLEADER(pp, dosz);
8361	}
8362
8363	pg64k = TTEPAGES(TTE64K);
8364	dopgs = TTEPAGES(dosz);
8365
8366	ASSERT(dopgs == 1 || ((dopgs & (pg64k - 1)) == 0));
8367
8368	while (dopgs != 0) {
8369		curnpgs = TTEPAGES(cursz);
8370		if (tst_tnc(pp2, curnpgs)) {
8371			SFMMU_STAT_ADD(sf_recache, curnpgs);
8372			sfmmu_page_cache_array(pp2, HAT_CACHE, CACHE_NO_FLUSH,
8373				curnpgs);
8374		}
8375
8376		ASSERT(dopgs >= curnpgs);
8377		dopgs -= curnpgs;
8378
8379		if (dopgs == 0) {
8380			break;
8381		}
8382
8383		pp2 = PP_PAGENEXT_N(pp2, curnpgs);
8384		if (((dopgs & (pg64k - 1)) == 0) && PP_ISMAPPED_LARGE(pp2)) {
8385			cursz = fnd_mapping_sz(pp2);
8386		} else {
8387			cursz = TTE8K;
8388		}
8389	}
8390}
8391
8392/*
8393 * Returns 1 if page(s) can be converted from TNC to cacheable setting,
8394 * returns 0 otherwise. Note that oaddr argument is valid for only
8395 * 8k pages.
8396 */
8397int
8398tst_tnc(page_t *pp, pgcnt_t npages)
8399{
8400	struct	sf_hment *sfhme;
8401	struct	hme_blk *hmeblkp;
8402	tte_t	tte;
8403	caddr_t	vaddr;
8404	int	clr_valid = 0;
8405	int 	color, color1, bcolor;
8406	int	i, ncolors;
8407
8408	ASSERT(pp != NULL);
8409	ASSERT(!(cache & CACHE_WRITEBACK));
8410
8411	if (npages > 1) {
8412		ncolors = CACHE_NUM_COLOR;
8413	}
8414
8415	for (i = 0; i < npages; i++) {
8416		ASSERT(sfmmu_mlist_held(pp));
8417		ASSERT(PP_ISTNC(pp));
8418		ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
8419
8420		if (PP_ISPNC(pp)) {
8421			return (0);
8422		}
8423
8424		clr_valid = 0;
8425		if (PP_ISMAPPED_KPM(pp)) {
8426			caddr_t kpmvaddr;
8427
8428			ASSERT(kpm_enable);
8429			kpmvaddr = hat_kpm_page2va(pp, 1);
8430			ASSERT(!(npages > 1 && IS_KPM_ALIAS_RANGE(kpmvaddr)));
8431			color1 = addr_to_vcolor(kpmvaddr);
8432			clr_valid = 1;
8433		}
8434
8435		for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
8436			hmeblkp = sfmmu_hmetohblk(sfhme);
8437			if (hmeblkp->hblk_xhat_bit)
8438				continue;
8439
8440			sfmmu_copytte(&sfhme->hme_tte, &tte);
8441			ASSERT(TTE_IS_VALID(&tte));
8442
8443			vaddr = tte_to_vaddr(hmeblkp, tte);
8444			color = addr_to_vcolor(vaddr);
8445
8446			if (npages > 1) {
8447				/*
8448				 * If there is a big mapping, make sure
8449				 * 8K mapping is consistent with the big
8450				 * mapping.
8451				 */
8452				bcolor = i % ncolors;
8453				if (color != bcolor) {
8454					return (0);
8455				}
8456			}
8457			if (!clr_valid) {
8458				clr_valid = 1;
8459				color1 = color;
8460			}
8461
8462			if (color1 != color) {
8463				return (0);
8464			}
8465		}
8466
8467		pp = PP_PAGENEXT(pp);
8468	}
8469
8470	return (1);
8471}
8472
8473void
8474sfmmu_page_cache_array(page_t *pp, int flags, int cache_flush_flag,
8475	pgcnt_t npages)
8476{
8477	kmutex_t *pmtx;
8478	int i, ncolors, bcolor;
8479	kpm_hlk_t *kpmp;
8480	cpuset_t cpuset;
8481
8482	ASSERT(pp != NULL);
8483	ASSERT(!(cache & CACHE_WRITEBACK));
8484
8485	kpmp = sfmmu_kpm_kpmp_enter(pp, npages);
8486	pmtx = sfmmu_page_enter(pp);
8487
8488	/*
8489	 * Fast path caching single unmapped page
8490	 */
8491	if (npages == 1 && !PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp) &&
8492	    flags == HAT_CACHE) {
8493		PP_CLRTNC(pp);
8494		PP_CLRPNC(pp);
8495		sfmmu_page_exit(pmtx);
8496		sfmmu_kpm_kpmp_exit(kpmp);
8497		return;
8498	}
8499
8500	/*
8501	 * We need to capture all cpus in order to change cacheability
8502	 * because we can't allow one cpu to access the same physical
8503	 * page using a cacheable and a non-cachebale mapping at the same
8504	 * time. Since we may end up walking the ism mapping list
8505	 * have to grab it's lock now since we can't after all the
8506	 * cpus have been captured.
8507	 */
8508	sfmmu_hat_lock_all();
8509	mutex_enter(&ism_mlist_lock);
8510	kpreempt_disable();
8511	cpuset = cpu_ready_set;
8512	xc_attention(cpuset);
8513
8514	if (npages > 1) {
8515		/*
8516		 * Make sure all colors are flushed since the
8517		 * sfmmu_page_cache() only flushes one color-
8518		 * it does not know big pages.
8519		 */
8520		ncolors = CACHE_NUM_COLOR;
8521		if (flags & HAT_TMPNC) {
8522			for (i = 0; i < ncolors; i++) {
8523				sfmmu_cache_flushcolor(i, pp->p_pagenum);
8524			}
8525			cache_flush_flag = CACHE_NO_FLUSH;
8526		}
8527	}
8528
8529	for (i = 0; i < npages; i++) {
8530
8531		ASSERT(sfmmu_mlist_held(pp));
8532
8533		if (!(flags == HAT_TMPNC && PP_ISTNC(pp))) {
8534
8535			if (npages > 1) {
8536				bcolor = i % ncolors;
8537			} else {
8538				bcolor = NO_VCOLOR;
8539			}
8540
8541			sfmmu_page_cache(pp, flags, cache_flush_flag,
8542			    bcolor);
8543		}
8544
8545		pp = PP_PAGENEXT(pp);
8546	}
8547
8548	xt_sync(cpuset);
8549	xc_dismissed(cpuset);
8550	mutex_exit(&ism_mlist_lock);
8551	sfmmu_hat_unlock_all();
8552	sfmmu_page_exit(pmtx);
8553	sfmmu_kpm_kpmp_exit(kpmp);
8554	kpreempt_enable();
8555}
8556
8557/*
8558 * This function changes the virtual cacheability of all mappings to a
8559 * particular page.  When changing from uncache to cacheable the mappings will
8560 * only be changed if all of them have the same virtual color.
8561 * We need to flush the cache in all cpus.  It is possible that
8562 * a process referenced a page as cacheable but has sinced exited
8563 * and cleared the mapping list.  We still to flush it but have no
8564 * state so all cpus is the only alternative.
8565 */
8566static void
8567sfmmu_page_cache(page_t *pp, int flags, int cache_flush_flag, int bcolor)
8568{
8569	struct	sf_hment *sfhme;
8570	struct	hme_blk *hmeblkp;
8571	sfmmu_t *sfmmup;
8572	tte_t	tte, ttemod;
8573	caddr_t	vaddr;
8574	int	ret, color;
8575	pfn_t	pfn;
8576
8577	color = bcolor;
8578	pfn = pp->p_pagenum;
8579
8580	for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
8581
8582		hmeblkp = sfmmu_hmetohblk(sfhme);
8583
8584		if (hmeblkp->hblk_xhat_bit)
8585			continue;
8586
8587		sfmmu_copytte(&sfhme->hme_tte, &tte);
8588		ASSERT(TTE_IS_VALID(&tte));
8589		vaddr = tte_to_vaddr(hmeblkp, tte);
8590		color = addr_to_vcolor(vaddr);
8591
8592#ifdef DEBUG
8593		if ((flags & HAT_CACHE) && bcolor != NO_VCOLOR) {
8594			ASSERT(color == bcolor);
8595		}
8596#endif
8597
8598		ASSERT(flags != HAT_TMPNC || color == PP_GET_VCOLOR(pp));
8599
8600		ttemod = tte;
8601		if (flags & (HAT_UNCACHE | HAT_TMPNC)) {
8602			TTE_CLR_VCACHEABLE(&ttemod);
8603		} else {	/* flags & HAT_CACHE */
8604			TTE_SET_VCACHEABLE(&ttemod);
8605		}
8606		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
8607		if (ret < 0) {
8608			/*
8609			 * Since all cpus are captured modifytte should not
8610			 * fail.
8611			 */
8612			panic("sfmmu_page_cache: write to tte failed");
8613		}
8614
8615		sfmmup = hblktosfmmu(hmeblkp);
8616		if (cache_flush_flag == CACHE_FLUSH) {
8617			/*
8618			 * Flush TSBs, TLBs and caches
8619			 */
8620			if (sfmmup->sfmmu_ismhat) {
8621				if (flags & HAT_CACHE) {
8622					SFMMU_STAT(sf_ism_recache);
8623				} else {
8624					SFMMU_STAT(sf_ism_uncache);
8625				}
8626				sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
8627				    pfn, CACHE_FLUSH);
8628			} else {
8629				sfmmu_tlbcache_demap(vaddr, sfmmup, hmeblkp,
8630				    pfn, 0, FLUSH_ALL_CPUS, CACHE_FLUSH, 1);
8631			}
8632
8633			/*
8634			 * all cache entries belonging to this pfn are
8635			 * now flushed.
8636			 */
8637			cache_flush_flag = CACHE_NO_FLUSH;
8638		} else {
8639
8640			/*
8641			 * Flush only TSBs and TLBs.
8642			 */
8643			if (sfmmup->sfmmu_ismhat) {
8644				if (flags & HAT_CACHE) {
8645					SFMMU_STAT(sf_ism_recache);
8646				} else {
8647					SFMMU_STAT(sf_ism_uncache);
8648				}
8649				sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
8650				    pfn, CACHE_NO_FLUSH);
8651			} else {
8652				sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 1);
8653			}
8654		}
8655	}
8656
8657	if (PP_ISMAPPED_KPM(pp))
8658		sfmmu_kpm_page_cache(pp, flags, cache_flush_flag);
8659
8660	switch (flags) {
8661
8662		default:
8663			panic("sfmmu_pagecache: unknown flags");
8664			break;
8665
8666		case HAT_CACHE:
8667			PP_CLRTNC(pp);
8668			PP_CLRPNC(pp);
8669			PP_SET_VCOLOR(pp, color);
8670			break;
8671
8672		case HAT_TMPNC:
8673			PP_SETTNC(pp);
8674			PP_SET_VCOLOR(pp, NO_VCOLOR);
8675			break;
8676
8677		case HAT_UNCACHE:
8678			PP_SETPNC(pp);
8679			PP_CLRTNC(pp);
8680			PP_SET_VCOLOR(pp, NO_VCOLOR);
8681			break;
8682	}
8683}
8684#endif	/* VAC */
8685
8686
8687/*
8688 * Wrapper routine used to return a context.
8689 *
8690 * It's the responsibility of the caller to guarantee that the
8691 * process serializes on calls here by taking the HAT lock for
8692 * the hat.
8693 *
8694 */
8695static void
8696sfmmu_get_ctx(sfmmu_t *sfmmup)
8697{
8698	mmu_ctx_t *mmu_ctxp;
8699	uint_t pstate_save;
8700
8701	ASSERT(sfmmu_hat_lock_held(sfmmup));
8702	ASSERT(sfmmup != ksfmmup);
8703
8704	kpreempt_disable();
8705
8706	mmu_ctxp = CPU_MMU_CTXP(CPU);
8707	ASSERT(mmu_ctxp);
8708	ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
8709	ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
8710
8711	/*
8712	 * Do a wrap-around if cnum reaches the max # cnum supported by a MMU.
8713	 */
8714	if (mmu_ctxp->mmu_cnum == mmu_ctxp->mmu_nctxs)
8715		sfmmu_ctx_wrap_around(mmu_ctxp);
8716
8717	/*
8718	 * Let the MMU set up the page sizes to use for
8719	 * this context in the TLB. Don't program 2nd dtlb for ism hat.
8720	 */
8721	if ((&mmu_set_ctx_page_sizes) && (sfmmup->sfmmu_ismhat == 0)) {
8722		mmu_set_ctx_page_sizes(sfmmup);
8723	}
8724
8725	/*
8726	 * sfmmu_alloc_ctx and sfmmu_load_mmustate will be performed with
8727	 * interrupts disabled to prevent race condition with wrap-around
8728	 * ctx invalidatation. In sun4v, ctx invalidation also involves
8729	 * a HV call to set the number of TSBs to 0. If interrupts are not
8730	 * disabled until after sfmmu_load_mmustate is complete TSBs may
8731	 * become assigned to INVALID_CONTEXT. This is not allowed.
8732	 */
8733	pstate_save = sfmmu_disable_intrs();
8734
8735	sfmmu_alloc_ctx(sfmmup, 1, CPU);
8736	sfmmu_load_mmustate(sfmmup);
8737
8738	sfmmu_enable_intrs(pstate_save);
8739
8740	kpreempt_enable();
8741}
8742
8743/*
8744 * When all cnums are used up in a MMU, cnum will wrap around to the
8745 * next generation and start from 2.
8746 */
8747static void
8748sfmmu_ctx_wrap_around(mmu_ctx_t *mmu_ctxp)
8749{
8750
8751	/* caller must have disabled the preemption */
8752	ASSERT(curthread->t_preempt >= 1);
8753	ASSERT(mmu_ctxp != NULL);
8754
8755	/* acquire Per-MMU (PM) spin lock */
8756	mutex_enter(&mmu_ctxp->mmu_lock);
8757
8758	/* re-check to see if wrap-around is needed */
8759	if (mmu_ctxp->mmu_cnum < mmu_ctxp->mmu_nctxs)
8760		goto done;
8761
8762	SFMMU_MMU_STAT(mmu_wrap_around);
8763
8764	/* update gnum */
8765	ASSERT(mmu_ctxp->mmu_gnum != 0);
8766	mmu_ctxp->mmu_gnum++;
8767	if (mmu_ctxp->mmu_gnum == 0 ||
8768	    mmu_ctxp->mmu_gnum > MAX_SFMMU_GNUM_VAL) {
8769		cmn_err(CE_PANIC, "mmu_gnum of mmu_ctx 0x%p is out of bound.",
8770		    (void *)mmu_ctxp);
8771	}
8772
8773	if (mmu_ctxp->mmu_ncpus > 1) {
8774		cpuset_t cpuset;
8775
8776		membar_enter(); /* make sure updated gnum visible */
8777
8778		SFMMU_XCALL_STATS(NULL);
8779
8780		/* xcall to others on the same MMU to invalidate ctx */
8781		cpuset = mmu_ctxp->mmu_cpuset;
8782		ASSERT(CPU_IN_SET(cpuset, CPU->cpu_id));
8783		CPUSET_DEL(cpuset, CPU->cpu_id);
8784		CPUSET_AND(cpuset, cpu_ready_set);
8785
8786		/*
8787		 * Pass in INVALID_CONTEXT as the first parameter to
8788		 * sfmmu_raise_tsb_exception, which invalidates the context
8789		 * of any process running on the CPUs in the MMU.
8790		 */
8791		xt_some(cpuset, sfmmu_raise_tsb_exception,
8792		    INVALID_CONTEXT, INVALID_CONTEXT);
8793		xt_sync(cpuset);
8794
8795		SFMMU_MMU_STAT(mmu_tsb_raise_exception);
8796	}
8797
8798	if (sfmmu_getctx_sec() != INVALID_CONTEXT) {
8799		sfmmu_setctx_sec(INVALID_CONTEXT);
8800		sfmmu_clear_utsbinfo();
8801	}
8802
8803	/*
8804	 * No xcall is needed here. For sun4u systems all CPUs in context
8805	 * domain share a single physical MMU therefore it's enough to flush
8806	 * TLB on local CPU. On sun4v systems we use 1 global context
8807	 * domain and flush all remote TLBs in sfmmu_raise_tsb_exception
8808	 * handler. Note that vtag_flushall_uctxs() is called
8809	 * for Ultra II machine, where the equivalent flushall functionality
8810	 * is implemented in SW, and only user ctx TLB entries are flushed.
8811	 */
8812	if (&vtag_flushall_uctxs != NULL) {
8813		vtag_flushall_uctxs();
8814	} else {
8815		vtag_flushall();
8816	}
8817
8818	/* reset mmu cnum, skips cnum 0 and 1 */
8819	mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
8820
8821done:
8822	mutex_exit(&mmu_ctxp->mmu_lock);
8823}
8824
8825
8826/*
8827 * For multi-threaded process, set the process context to INVALID_CONTEXT
8828 * so that it faults and reloads the MMU state from TL=0. For single-threaded
8829 * process, we can just load the MMU state directly without having to
8830 * set context invalid. Caller must hold the hat lock since we don't
8831 * acquire it here.
8832 */
8833static void
8834sfmmu_sync_mmustate(sfmmu_t *sfmmup)
8835{
8836	uint_t cnum;
8837	uint_t pstate_save;
8838
8839	ASSERT(sfmmup != ksfmmup);
8840	ASSERT(sfmmu_hat_lock_held(sfmmup));
8841
8842	kpreempt_disable();
8843
8844	/*
8845	 * We check whether the pass'ed-in sfmmup is the same as the
8846	 * current running proc. This is to makes sure the current proc
8847	 * stays single-threaded if it already is.
8848	 */
8849	if ((sfmmup == curthread->t_procp->p_as->a_hat) &&
8850	    (curthread->t_procp->p_lwpcnt == 1)) {
8851		/* single-thread */
8852		cnum = sfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum;
8853		if (cnum != INVALID_CONTEXT) {
8854			uint_t curcnum;
8855			/*
8856			 * Disable interrupts to prevent race condition
8857			 * with sfmmu_ctx_wrap_around ctx invalidation.
8858			 * In sun4v, ctx invalidation involves setting
8859			 * TSB to NULL, hence, interrupts should be disabled
8860			 * untill after sfmmu_load_mmustate is completed.
8861			 */
8862			pstate_save = sfmmu_disable_intrs();
8863			curcnum = sfmmu_getctx_sec();
8864			if (curcnum == cnum)
8865				sfmmu_load_mmustate(sfmmup);
8866			sfmmu_enable_intrs(pstate_save);
8867			ASSERT(curcnum == cnum || curcnum == INVALID_CONTEXT);
8868		}
8869	} else {
8870		/*
8871		 * multi-thread
8872		 * or when sfmmup is not the same as the curproc.
8873		 */
8874		sfmmu_invalidate_ctx(sfmmup);
8875	}
8876
8877	kpreempt_enable();
8878}
8879
8880
8881/*
8882 * Replace the specified TSB with a new TSB.  This function gets called when
8883 * we grow, shrink or swapin a TSB.  When swapping in a TSB (TSB_SWAPIN), the
8884 * TSB_FORCEALLOC flag may be used to force allocation of a minimum-sized TSB
8885 * (8K).
8886 *
8887 * Caller must hold the HAT lock, but should assume any tsb_info
8888 * pointers it has are no longer valid after calling this function.
8889 *
8890 * Return values:
8891 *	TSB_ALLOCFAIL	Failed to allocate a TSB, due to memory constraints
8892 *	TSB_LOSTRACE	HAT is busy, i.e. another thread is already doing
8893 *			something to this tsbinfo/TSB
8894 *	TSB_SUCCESS	Operation succeeded
8895 */
8896static tsb_replace_rc_t
8897sfmmu_replace_tsb(sfmmu_t *sfmmup, struct tsb_info *old_tsbinfo, uint_t szc,
8898    hatlock_t *hatlockp, uint_t flags)
8899{
8900	struct tsb_info *new_tsbinfo = NULL;
8901	struct tsb_info *curtsb, *prevtsb;
8902	uint_t tte_sz_mask;
8903	int i;
8904
8905	ASSERT(sfmmup != ksfmmup);
8906	ASSERT(sfmmup->sfmmu_ismhat == 0);
8907	ASSERT(sfmmu_hat_lock_held(sfmmup));
8908	ASSERT(szc <= tsb_max_growsize);
8909
8910	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_BUSY))
8911		return (TSB_LOSTRACE);
8912
8913	/*
8914	 * Find the tsb_info ahead of this one in the list, and
8915	 * also make sure that the tsb_info passed in really
8916	 * exists!
8917	 */
8918	for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
8919	    curtsb != old_tsbinfo && curtsb != NULL;
8920	    prevtsb = curtsb, curtsb = curtsb->tsb_next);
8921	ASSERT(curtsb != NULL);
8922
8923	if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
8924		/*
8925		 * The process is swapped out, so just set the new size
8926		 * code.  When it swaps back in, we'll allocate a new one
8927		 * of the new chosen size.
8928		 */
8929		curtsb->tsb_szc = szc;
8930		return (TSB_SUCCESS);
8931	}
8932	SFMMU_FLAGS_SET(sfmmup, HAT_BUSY);
8933
8934	tte_sz_mask = old_tsbinfo->tsb_ttesz_mask;
8935
8936	/*
8937	 * All initialization is done inside of sfmmu_tsbinfo_alloc().
8938	 * If we fail to allocate a TSB, exit.
8939	 */
8940	sfmmu_hat_exit(hatlockp);
8941	if (sfmmu_tsbinfo_alloc(&new_tsbinfo, szc, tte_sz_mask,
8942	    flags, sfmmup)) {
8943		(void) sfmmu_hat_enter(sfmmup);
8944		if (!(flags & TSB_SWAPIN))
8945			SFMMU_STAT(sf_tsb_resize_failures);
8946		SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
8947		return (TSB_ALLOCFAIL);
8948	}
8949	(void) sfmmu_hat_enter(sfmmup);
8950
8951	/*
8952	 * Re-check to make sure somebody else didn't muck with us while we
8953	 * didn't hold the HAT lock.  If the process swapped out, fine, just
8954	 * exit; this can happen if we try to shrink the TSB from the context
8955	 * of another process (such as on an ISM unmap), though it is rare.
8956	 */
8957	if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
8958		SFMMU_STAT(sf_tsb_resize_failures);
8959		SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
8960		sfmmu_hat_exit(hatlockp);
8961		sfmmu_tsbinfo_free(new_tsbinfo);
8962		(void) sfmmu_hat_enter(sfmmup);
8963		return (TSB_LOSTRACE);
8964	}
8965
8966#ifdef	DEBUG
8967	/* Reverify that the tsb_info still exists.. for debugging only */
8968	for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
8969	    curtsb != old_tsbinfo && curtsb != NULL;
8970	    prevtsb = curtsb, curtsb = curtsb->tsb_next);
8971	ASSERT(curtsb != NULL);
8972#endif	/* DEBUG */
8973
8974	/*
8975	 * Quiesce any CPUs running this process on their next TLB miss
8976	 * so they atomically see the new tsb_info.  We temporarily set the
8977	 * context to invalid context so new threads that come on processor
8978	 * after we do the xcall to cpusran will also serialize behind the
8979	 * HAT lock on TLB miss and will see the new TSB.  Since this short
8980	 * race with a new thread coming on processor is relatively rare,
8981	 * this synchronization mechanism should be cheaper than always
8982	 * pausing all CPUs for the duration of the setup, which is what
8983	 * the old implementation did.  This is particuarly true if we are
8984	 * copying a huge chunk of memory around during that window.
8985	 *
8986	 * The memory barriers are to make sure things stay consistent
8987	 * with resume() since it does not hold the HAT lock while
8988	 * walking the list of tsb_info structures.
8989	 */
8990	if ((flags & TSB_SWAPIN) != TSB_SWAPIN) {
8991		/* The TSB is either growing or shrinking. */
8992		sfmmu_invalidate_ctx(sfmmup);
8993	} else {
8994		/*
8995		 * It is illegal to swap in TSBs from a process other
8996		 * than a process being swapped in.  This in turn
8997		 * implies we do not have a valid MMU context here
8998		 * since a process needs one to resolve translation
8999		 * misses.
9000		 */
9001		ASSERT(curthread->t_procp->p_as->a_hat == sfmmup);
9002	}
9003
9004#ifdef DEBUG
9005	ASSERT(max_mmu_ctxdoms > 0);
9006
9007	/*
9008	 * Process should have INVALID_CONTEXT on all MMUs
9009	 */
9010	for (i = 0; i < max_mmu_ctxdoms; i++) {
9011
9012		ASSERT(sfmmup->sfmmu_ctxs[i].cnum == INVALID_CONTEXT);
9013	}
9014#endif
9015
9016	new_tsbinfo->tsb_next = old_tsbinfo->tsb_next;
9017	membar_stst();	/* strict ordering required */
9018	if (prevtsb)
9019		prevtsb->tsb_next = new_tsbinfo;
9020	else
9021		sfmmup->sfmmu_tsb = new_tsbinfo;
9022	membar_enter();	/* make sure new TSB globally visible */
9023	sfmmu_setup_tsbinfo(sfmmup);
9024
9025	/*
9026	 * We need to migrate TSB entries from the old TSB to the new TSB
9027	 * if tsb_remap_ttes is set and the TSB is growing.
9028	 */
9029	if (tsb_remap_ttes && ((flags & TSB_GROW) == TSB_GROW))
9030		sfmmu_copy_tsb(old_tsbinfo, new_tsbinfo);
9031
9032	SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
9033
9034	/*
9035	 * Drop the HAT lock to free our old tsb_info.
9036	 */
9037	sfmmu_hat_exit(hatlockp);
9038
9039	if ((flags & TSB_GROW) == TSB_GROW) {
9040		SFMMU_STAT(sf_tsb_grow);
9041	} else if ((flags & TSB_SHRINK) == TSB_SHRINK) {
9042		SFMMU_STAT(sf_tsb_shrink);
9043	}
9044
9045	sfmmu_tsbinfo_free(old_tsbinfo);
9046
9047	(void) sfmmu_hat_enter(sfmmup);
9048	return (TSB_SUCCESS);
9049}
9050
9051/*
9052 * This function will re-program hat pgsz array, and invalidate the
9053 * process' context, forcing the process to switch to another
9054 * context on the next TLB miss, and therefore start using the
9055 * TLB that is reprogrammed for the new page sizes.
9056 */
9057void
9058sfmmu_reprog_pgsz_arr(sfmmu_t *sfmmup, uint8_t *tmp_pgsz)
9059{
9060	int i;
9061	hatlock_t *hatlockp = NULL;
9062
9063	hatlockp = sfmmu_hat_enter(sfmmup);
9064	/* USIII+-IV+ optimization, requires hat lock */
9065	if (tmp_pgsz) {
9066		for (i = 0; i < mmu_page_sizes; i++)
9067			sfmmup->sfmmu_pgsz[i] = tmp_pgsz[i];
9068	}
9069	SFMMU_STAT(sf_tlb_reprog_pgsz);
9070
9071	sfmmu_invalidate_ctx(sfmmup);
9072
9073	sfmmu_hat_exit(hatlockp);
9074}
9075
9076/*
9077 * This function assumes that there are either four or six supported page
9078 * sizes and at most two programmable TLBs, so we need to decide which
9079 * page sizes are most important and then tell the MMU layer so it
9080 * can adjust the TLB page sizes accordingly (if supported).
9081 *
9082 * If these assumptions change, this function will need to be
9083 * updated to support whatever the new limits are.
9084 *
9085 * The growing flag is nonzero if we are growing the address space,
9086 * and zero if it is shrinking.  This allows us to decide whether
9087 * to grow or shrink our TSB, depending upon available memory
9088 * conditions.
9089 */
9090static void
9091sfmmu_check_page_sizes(sfmmu_t *sfmmup, int growing)
9092{
9093	uint64_t ttecnt[MMU_PAGE_SIZES];
9094	uint64_t tte8k_cnt, tte4m_cnt;
9095	uint8_t i;
9096	int sectsb_thresh;
9097
9098	/*
9099	 * Kernel threads, processes with small address spaces not using
9100	 * large pages, and dummy ISM HATs need not apply.
9101	 */
9102	if (sfmmup == ksfmmup || sfmmup->sfmmu_ismhat != NULL)
9103		return;
9104
9105	if ((sfmmup->sfmmu_flags & HAT_LGPG_FLAGS) == 0 &&
9106	    sfmmup->sfmmu_ttecnt[TTE8K] <= tsb_rss_factor)
9107		return;
9108
9109	for (i = 0; i < mmu_page_sizes; i++) {
9110		ttecnt[i] = SFMMU_TTE_CNT(sfmmup, i);
9111	}
9112
9113	/* Check pagesizes in use, and possibly reprogram DTLB. */
9114	if (&mmu_check_page_sizes)
9115		mmu_check_page_sizes(sfmmup, ttecnt);
9116
9117	/*
9118	 * Calculate the number of 8k ttes to represent the span of these
9119	 * pages.
9120	 */
9121	tte8k_cnt = ttecnt[TTE8K] +
9122	    (ttecnt[TTE64K] << (MMU_PAGESHIFT64K - MMU_PAGESHIFT)) +
9123	    (ttecnt[TTE512K] << (MMU_PAGESHIFT512K - MMU_PAGESHIFT));
9124	if (mmu_page_sizes == max_mmu_page_sizes) {
9125		tte4m_cnt = ttecnt[TTE4M] +
9126		    (ttecnt[TTE32M] << (MMU_PAGESHIFT32M - MMU_PAGESHIFT4M)) +
9127		    (ttecnt[TTE256M] << (MMU_PAGESHIFT256M - MMU_PAGESHIFT4M));
9128	} else {
9129		tte4m_cnt = ttecnt[TTE4M];
9130	}
9131
9132	/*
9133	 * Inflate TSB sizes by a factor of 2 if this process
9134	 * uses 4M text pages to minimize extra conflict misses
9135	 * in the first TSB since without counting text pages
9136	 * 8K TSB may become too small.
9137	 *
9138	 * Also double the size of the second TSB to minimize
9139	 * extra conflict misses due to competition between 4M text pages
9140	 * and data pages.
9141	 *
9142	 * We need to adjust the second TSB allocation threshold by the
9143	 * inflation factor, since there is no point in creating a second
9144	 * TSB when we know all the mappings can fit in the I/D TLBs.
9145	 */
9146	sectsb_thresh = tsb_sectsb_threshold;
9147	if (sfmmup->sfmmu_flags & HAT_4MTEXT_FLAG) {
9148		tte8k_cnt <<= 1;
9149		tte4m_cnt <<= 1;
9150		sectsb_thresh <<= 1;
9151	}
9152
9153	/*
9154	 * Check to see if our TSB is the right size; we may need to
9155	 * grow or shrink it.  If the process is small, our work is
9156	 * finished at this point.
9157	 */
9158	if (tte8k_cnt <= tsb_rss_factor && tte4m_cnt <= sectsb_thresh) {
9159		return;
9160	}
9161	sfmmu_size_tsb(sfmmup, growing, tte8k_cnt, tte4m_cnt, sectsb_thresh);
9162}
9163
9164static void
9165sfmmu_size_tsb(sfmmu_t *sfmmup, int growing, uint64_t tte8k_cnt,
9166	uint64_t tte4m_cnt, int sectsb_thresh)
9167{
9168	int tsb_bits;
9169	uint_t tsb_szc;
9170	struct tsb_info *tsbinfop;
9171	hatlock_t *hatlockp = NULL;
9172
9173	hatlockp = sfmmu_hat_enter(sfmmup);
9174	ASSERT(hatlockp != NULL);
9175	tsbinfop = sfmmup->sfmmu_tsb;
9176	ASSERT(tsbinfop != NULL);
9177
9178	/*
9179	 * If we're growing, select the size based on RSS.  If we're
9180	 * shrinking, leave some room so we don't have to turn around and
9181	 * grow again immediately.
9182	 */
9183	if (growing)
9184		tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt);
9185	else
9186		tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt << 1);
9187
9188	if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
9189	    (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
9190		(void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
9191		    hatlockp, TSB_SHRINK);
9192	} else if (growing && tsb_szc > tsbinfop->tsb_szc && TSB_OK_GROW()) {
9193		(void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
9194		    hatlockp, TSB_GROW);
9195	}
9196	tsbinfop = sfmmup->sfmmu_tsb;
9197
9198	/*
9199	 * With the TLB and first TSB out of the way, we need to see if
9200	 * we need a second TSB for 4M pages.  If we managed to reprogram
9201	 * the TLB page sizes above, the process will start using this new
9202	 * TSB right away; otherwise, it will start using it on the next
9203	 * context switch.  Either way, it's no big deal so there's no
9204	 * synchronization with the trap handlers here unless we grow the
9205	 * TSB (in which case it's required to prevent using the old one
9206	 * after it's freed). Note: second tsb is required for 32M/256M
9207	 * page sizes.
9208	 */
9209	if (tte4m_cnt > sectsb_thresh) {
9210		/*
9211		 * If we're growing, select the size based on RSS.  If we're
9212		 * shrinking, leave some room so we don't have to turn
9213		 * around and grow again immediately.
9214		 */
9215		if (growing)
9216			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt);
9217		else
9218			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt << 1);
9219		if (tsbinfop->tsb_next == NULL) {
9220			struct tsb_info *newtsb;
9221			int allocflags = SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)?
9222			    0 : TSB_ALLOC;
9223
9224			sfmmu_hat_exit(hatlockp);
9225
9226			/*
9227			 * Try to allocate a TSB for 4[32|256]M pages.  If we
9228			 * can't get the size we want, retry w/a minimum sized
9229			 * TSB.  If that still didn't work, give up; we can
9230			 * still run without one.
9231			 */
9232			tsb_bits = (mmu_page_sizes == max_mmu_page_sizes)?
9233			    TSB4M|TSB32M|TSB256M:TSB4M;
9234			if ((sfmmu_tsbinfo_alloc(&newtsb, tsb_szc, tsb_bits,
9235			    allocflags, sfmmup) != 0) &&
9236			    (sfmmu_tsbinfo_alloc(&newtsb, TSB_MIN_SZCODE,
9237			    tsb_bits, allocflags, sfmmup) != 0)) {
9238				return;
9239			}
9240
9241			hatlockp = sfmmu_hat_enter(sfmmup);
9242
9243			if (sfmmup->sfmmu_tsb->tsb_next == NULL) {
9244				sfmmup->sfmmu_tsb->tsb_next = newtsb;
9245				SFMMU_STAT(sf_tsb_sectsb_create);
9246				sfmmu_setup_tsbinfo(sfmmup);
9247				sfmmu_hat_exit(hatlockp);
9248				return;
9249			} else {
9250				/*
9251				 * It's annoying, but possible for us
9252				 * to get here.. we dropped the HAT lock
9253				 * because of locking order in the kmem
9254				 * allocator, and while we were off getting
9255				 * our memory, some other thread decided to
9256				 * do us a favor and won the race to get a
9257				 * second TSB for this process.  Sigh.
9258				 */
9259				sfmmu_hat_exit(hatlockp);
9260				sfmmu_tsbinfo_free(newtsb);
9261				return;
9262			}
9263		}
9264
9265		/*
9266		 * We have a second TSB, see if it's big enough.
9267		 */
9268		tsbinfop = tsbinfop->tsb_next;
9269
9270		/*
9271		 * Check to see if our second TSB is the right size;
9272		 * we may need to grow or shrink it.
9273		 * To prevent thrashing (e.g. growing the TSB on a
9274		 * subsequent map operation), only try to shrink if
9275		 * the TSB reach exceeds twice the virtual address
9276		 * space size.
9277		 */
9278		if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
9279		    (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
9280			(void) sfmmu_replace_tsb(sfmmup, tsbinfop,
9281			    tsb_szc, hatlockp, TSB_SHRINK);
9282		} else if (growing && tsb_szc > tsbinfop->tsb_szc &&
9283		    TSB_OK_GROW()) {
9284			(void) sfmmu_replace_tsb(sfmmup, tsbinfop,
9285			    tsb_szc, hatlockp, TSB_GROW);
9286		}
9287	}
9288
9289	sfmmu_hat_exit(hatlockp);
9290}
9291
9292/*
9293 * Get the preferred page size code for a hat.
9294 * This is only advice, so locking is not done;
9295 * this transitory information could change
9296 * following the call anyway.  This interface is
9297 * sun4 private.
9298 */
9299/*ARGSUSED*/
9300uint_t
9301hat_preferred_pgsz(struct hat *hat, caddr_t vaddr, size_t maplen, int maptype)
9302{
9303	sfmmu_t *sfmmup = (sfmmu_t *)hat;
9304	uint_t szc, maxszc = mmu_page_sizes - 1;
9305	size_t pgsz;
9306
9307	if (maptype == MAPPGSZ_ISM) {
9308		for (szc = maxszc; szc >= TTE4M; szc--) {
9309			if (disable_ism_large_pages & (1 << szc))
9310				continue;
9311
9312			pgsz = hw_page_array[szc].hp_size;
9313			if ((maplen >= pgsz) && IS_P2ALIGNED(vaddr, pgsz))
9314				return (szc);
9315		}
9316		return (TTE4M);
9317	} else if (&mmu_preferred_pgsz) { /* USIII+-USIV+ */
9318		return (mmu_preferred_pgsz(sfmmup, vaddr, maplen));
9319	} else {	/* USIII, USII, Niagara */
9320		for (szc = maxszc; szc > TTE8K; szc--) {
9321			if (disable_large_pages & (1 << szc))
9322				continue;
9323
9324			pgsz = hw_page_array[szc].hp_size;
9325			if ((maplen >= pgsz) && IS_P2ALIGNED(vaddr, pgsz))
9326				return (szc);
9327		}
9328		return (TTE8K);
9329	}
9330}
9331
9332/*
9333 * Free up a sfmmu
9334 * Since the sfmmu is currently embedded in the hat struct we simply zero
9335 * out our fields and free up the ism map blk list if any.
9336 */
9337static void
9338sfmmu_free_sfmmu(sfmmu_t *sfmmup)
9339{
9340	ism_blk_t	*blkp, *nx_blkp;
9341#ifdef	DEBUG
9342	ism_map_t	*map;
9343	int 		i;
9344#endif
9345
9346	ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
9347	ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
9348	ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
9349	ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
9350	ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
9351	ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
9352
9353	sfmmup->sfmmu_free = 0;
9354	sfmmup->sfmmu_ismhat = 0;
9355
9356	blkp = sfmmup->sfmmu_iblk;
9357	sfmmup->sfmmu_iblk = NULL;
9358
9359	while (blkp) {
9360#ifdef	DEBUG
9361		map = blkp->iblk_maps;
9362		for (i = 0; i < ISM_MAP_SLOTS; i++) {
9363			ASSERT(map[i].imap_seg == 0);
9364			ASSERT(map[i].imap_ismhat == NULL);
9365			ASSERT(map[i].imap_ment == NULL);
9366		}
9367#endif
9368		nx_blkp = blkp->iblk_next;
9369		blkp->iblk_next = NULL;
9370		blkp->iblk_nextpa = (uint64_t)-1;
9371		kmem_cache_free(ism_blk_cache, blkp);
9372		blkp = nx_blkp;
9373	}
9374}
9375
9376/*
9377 * Locking primitves accessed by HATLOCK macros
9378 */
9379
9380#define	SFMMU_SPL_MTX	(0x0)
9381#define	SFMMU_ML_MTX	(0x1)
9382
9383#define	SFMMU_MLSPL_MTX(type, pg)	(((type) == SFMMU_SPL_MTX) ? \
9384					    SPL_HASH(pg) : MLIST_HASH(pg))
9385
9386kmutex_t *
9387sfmmu_page_enter(struct page *pp)
9388{
9389	return (sfmmu_mlspl_enter(pp, SFMMU_SPL_MTX));
9390}
9391
9392void
9393sfmmu_page_exit(kmutex_t *spl)
9394{
9395	mutex_exit(spl);
9396}
9397
9398int
9399sfmmu_page_spl_held(struct page *pp)
9400{
9401	return (sfmmu_mlspl_held(pp, SFMMU_SPL_MTX));
9402}
9403
9404kmutex_t *
9405sfmmu_mlist_enter(struct page *pp)
9406{
9407	return (sfmmu_mlspl_enter(pp, SFMMU_ML_MTX));
9408}
9409
9410void
9411sfmmu_mlist_exit(kmutex_t *mml)
9412{
9413	mutex_exit(mml);
9414}
9415
9416int
9417sfmmu_mlist_held(struct page *pp)
9418{
9419
9420	return (sfmmu_mlspl_held(pp, SFMMU_ML_MTX));
9421}
9422
9423/*
9424 * Common code for sfmmu_mlist_enter() and sfmmu_page_enter().  For
9425 * sfmmu_mlist_enter() case mml_table lock array is used and for
9426 * sfmmu_page_enter() sfmmu_page_lock lock array is used.
9427 *
9428 * The lock is taken on a root page so that it protects an operation on all
9429 * constituent pages of a large page pp belongs to.
9430 *
9431 * The routine takes a lock from the appropriate array. The lock is determined
9432 * by hashing the root page. After taking the lock this routine checks if the
9433 * root page has the same size code that was used to determine the root (i.e
9434 * that root hasn't changed).  If root page has the expected p_szc field we
9435 * have the right lock and it's returned to the caller. If root's p_szc
9436 * decreased we release the lock and retry from the beginning.  This case can
9437 * happen due to hat_page_demote() decreasing p_szc between our load of p_szc
9438 * value and taking the lock. The number of retries due to p_szc decrease is
9439 * limited by the maximum p_szc value. If p_szc is 0 we return the lock
9440 * determined by hashing pp itself.
9441 *
9442 * If our caller doesn't hold a SE_SHARED or SE_EXCL lock on pp it's also
9443 * possible that p_szc can increase. To increase p_szc a thread has to lock
9444 * all constituent pages EXCL and do hat_pageunload() on all of them. All the
9445 * callers that don't hold a page locked recheck if hmeblk through which pp
9446 * was found still maps this pp.  If it doesn't map it anymore returned lock
9447 * is immediately dropped. Therefore if sfmmu_mlspl_enter() hits the case of
9448 * p_szc increase after taking the lock it returns this lock without further
9449 * retries because in this case the caller doesn't care about which lock was
9450 * taken. The caller will drop it right away.
9451 *
9452 * After the routine returns it's guaranteed that hat_page_demote() can't
9453 * change p_szc field of any of constituent pages of a large page pp belongs
9454 * to as long as pp was either locked at least SHARED prior to this call or
9455 * the caller finds that hment that pointed to this pp still references this
9456 * pp (this also assumes that the caller holds hme hash bucket lock so that
9457 * the same pp can't be remapped into the same hmeblk after it was unmapped by
9458 * hat_pageunload()).
9459 */
9460static kmutex_t *
9461sfmmu_mlspl_enter(struct page *pp, int type)
9462{
9463	kmutex_t	*mtx;
9464	uint_t		prev_rszc = UINT_MAX;
9465	page_t		*rootpp;
9466	uint_t		szc;
9467	uint_t		rszc;
9468	uint_t		pszc = pp->p_szc;
9469
9470	ASSERT(pp != NULL);
9471
9472again:
9473	if (pszc == 0) {
9474		mtx = SFMMU_MLSPL_MTX(type, pp);
9475		mutex_enter(mtx);
9476		return (mtx);
9477	}
9478
9479	/* The lock lives in the root page */
9480	rootpp = PP_GROUPLEADER(pp, pszc);
9481	mtx = SFMMU_MLSPL_MTX(type, rootpp);
9482	mutex_enter(mtx);
9483
9484	/*
9485	 * Return mml in the following 3 cases:
9486	 *
9487	 * 1) If pp itself is root since if its p_szc decreased before we took
9488	 * the lock pp is still the root of smaller szc page. And if its p_szc
9489	 * increased it doesn't matter what lock we return (see comment in
9490	 * front of this routine).
9491	 *
9492	 * 2) If pp's not root but rootpp is the root of a rootpp->p_szc size
9493	 * large page we have the right lock since any previous potential
9494	 * hat_page_demote() is done demoting from greater than current root's
9495	 * p_szc because hat_page_demote() changes root's p_szc last. No
9496	 * further hat_page_demote() can start or be in progress since it
9497	 * would need the same lock we currently hold.
9498	 *
9499	 * 3) If rootpp's p_szc increased since previous iteration it doesn't
9500	 * matter what lock we return (see comment in front of this routine).
9501	 */
9502	if (pp == rootpp || (rszc = rootpp->p_szc) == pszc ||
9503	    rszc >= prev_rszc) {
9504		return (mtx);
9505	}
9506
9507	/*
9508	 * hat_page_demote() could have decreased root's p_szc.
9509	 * In this case pp's p_szc must also be smaller than pszc.
9510	 * Retry.
9511	 */
9512	if (rszc < pszc) {
9513		szc = pp->p_szc;
9514		if (szc < pszc) {
9515			mutex_exit(mtx);
9516			pszc = szc;
9517			goto again;
9518		}
9519		/*
9520		 * pp's p_szc increased after it was decreased.
9521		 * page cannot be mapped. Return current lock. The caller
9522		 * will drop it right away.
9523		 */
9524		return (mtx);
9525	}
9526
9527	/*
9528	 * root's p_szc is greater than pp's p_szc.
9529	 * hat_page_demote() is not done with all pages
9530	 * yet. Wait for it to complete.
9531	 */
9532	mutex_exit(mtx);
9533	rootpp = PP_GROUPLEADER(rootpp, rszc);
9534	mtx = SFMMU_MLSPL_MTX(type, rootpp);
9535	mutex_enter(mtx);
9536	mutex_exit(mtx);
9537	prev_rszc = rszc;
9538	goto again;
9539}
9540
9541static int
9542sfmmu_mlspl_held(struct page *pp, int type)
9543{
9544	kmutex_t	*mtx;
9545
9546	ASSERT(pp != NULL);
9547	/* The lock lives in the root page */
9548	pp = PP_PAGEROOT(pp);
9549	ASSERT(pp != NULL);
9550
9551	mtx = SFMMU_MLSPL_MTX(type, pp);
9552	return (MUTEX_HELD(mtx));
9553}
9554
9555static uint_t
9556sfmmu_get_free_hblk(struct hme_blk **hmeblkpp, uint_t critical)
9557{
9558	struct  hme_blk *hblkp;
9559
9560	if (freehblkp != NULL) {
9561		mutex_enter(&freehblkp_lock);
9562		if (freehblkp != NULL) {
9563			/*
9564			 * If the current thread is owning hblk_reserve,
9565			 * let it succede even if freehblkcnt is really low.
9566			 */
9567			if (freehblkcnt <= HBLK_RESERVE_MIN && !critical) {
9568				SFMMU_STAT(sf_get_free_throttle);
9569				mutex_exit(&freehblkp_lock);
9570				return (0);
9571			}
9572			freehblkcnt--;
9573			*hmeblkpp = freehblkp;
9574			hblkp = *hmeblkpp;
9575			freehblkp = hblkp->hblk_next;
9576			mutex_exit(&freehblkp_lock);
9577			hblkp->hblk_next = NULL;
9578			SFMMU_STAT(sf_get_free_success);
9579			return (1);
9580		}
9581		mutex_exit(&freehblkp_lock);
9582	}
9583	SFMMU_STAT(sf_get_free_fail);
9584	return (0);
9585}
9586
9587static uint_t
9588sfmmu_put_free_hblk(struct hme_blk *hmeblkp, uint_t critical)
9589{
9590	struct  hme_blk *hblkp;
9591
9592	/*
9593	 * If the current thread is mapping into kernel space,
9594	 * let it succede even if freehblkcnt is max
9595	 * so that it will avoid freeing it to kmem.
9596	 * This will prevent stack overflow due to
9597	 * possible recursion since kmem_cache_free()
9598	 * might require creation of a slab which
9599	 * in turn needs an hmeblk to map that slab;
9600	 * let's break this vicious chain at the first
9601	 * opportunity.
9602	 */
9603	if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
9604		mutex_enter(&freehblkp_lock);
9605		if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
9606			SFMMU_STAT(sf_put_free_success);
9607			freehblkcnt++;
9608			hmeblkp->hblk_next = freehblkp;
9609			freehblkp = hmeblkp;
9610			mutex_exit(&freehblkp_lock);
9611			return (1);
9612		}
9613		mutex_exit(&freehblkp_lock);
9614	}
9615
9616	/*
9617	 * Bring down freehblkcnt to HBLK_RESERVE_CNT. We are here
9618	 * only if freehblkcnt is at least HBLK_RESERVE_CNT *and*
9619	 * we are not in the process of mapping into kernel space.
9620	 */
9621	ASSERT(!critical);
9622	while (freehblkcnt > HBLK_RESERVE_CNT) {
9623		mutex_enter(&freehblkp_lock);
9624		if (freehblkcnt > HBLK_RESERVE_CNT) {
9625			freehblkcnt--;
9626			hblkp = freehblkp;
9627			freehblkp = hblkp->hblk_next;
9628			mutex_exit(&freehblkp_lock);
9629			ASSERT(get_hblk_cache(hblkp) == sfmmu8_cache);
9630			kmem_cache_free(sfmmu8_cache, hblkp);
9631			continue;
9632		}
9633		mutex_exit(&freehblkp_lock);
9634	}
9635	SFMMU_STAT(sf_put_free_fail);
9636	return (0);
9637}
9638
9639static void
9640sfmmu_hblk_swap(struct hme_blk *new)
9641{
9642	struct hme_blk *old, *hblkp, *prev;
9643	uint64_t hblkpa, prevpa, newpa;
9644	caddr_t	base, vaddr, endaddr;
9645	struct hmehash_bucket *hmebp;
9646	struct sf_hment *osfhme, *nsfhme;
9647	page_t *pp;
9648	kmutex_t *pml;
9649	tte_t tte;
9650
9651#ifdef	DEBUG
9652	hmeblk_tag		hblktag;
9653	struct hme_blk		*found;
9654#endif
9655	old = HBLK_RESERVE;
9656
9657	/*
9658	 * save pa before bcopy clobbers it
9659	 */
9660	newpa = new->hblk_nextpa;
9661
9662	base = (caddr_t)get_hblk_base(old);
9663	endaddr = base + get_hblk_span(old);
9664
9665	/*
9666	 * acquire hash bucket lock.
9667	 */
9668	hmebp = sfmmu_tteload_acquire_hashbucket(ksfmmup, base, TTE8K);
9669
9670	/*
9671	 * copy contents from old to new
9672	 */
9673	bcopy((void *)old, (void *)new, HME8BLK_SZ);
9674
9675	/*
9676	 * add new to hash chain
9677	 */
9678	sfmmu_hblk_hash_add(hmebp, new, newpa);
9679
9680	/*
9681	 * search hash chain for hblk_reserve; this needs to be performed
9682	 * after adding new, otherwise prevpa and prev won't correspond
9683	 * to the hblk which is prior to old in hash chain when we call
9684	 * sfmmu_hblk_hash_rm to remove old later.
9685	 */
9686	for (prevpa = 0, prev = NULL,
9687	    hblkpa = hmebp->hmeh_nextpa, hblkp = hmebp->hmeblkp;
9688	    hblkp != NULL && hblkp != old;
9689	    prevpa = hblkpa, prev = hblkp,
9690	    hblkpa = hblkp->hblk_nextpa, hblkp = hblkp->hblk_next);
9691
9692	if (hblkp != old)
9693		panic("sfmmu_hblk_swap: hblk_reserve not found");
9694
9695	/*
9696	 * p_mapping list is still pointing to hments in hblk_reserve;
9697	 * fix up p_mapping list so that they point to hments in new.
9698	 *
9699	 * Since all these mappings are created by hblk_reserve_thread
9700	 * on the way and it's using at least one of the buffers from each of
9701	 * the newly minted slabs, there is no danger of any of these
9702	 * mappings getting unloaded by another thread.
9703	 *
9704	 * tsbmiss could only modify ref/mod bits of hments in old/new.
9705	 * Since all of these hments hold mappings established by segkmem
9706	 * and mappings in segkmem are setup with HAT_NOSYNC, ref/mod bits
9707	 * have no meaning for the mappings in hblk_reserve.  hments in
9708	 * old and new are identical except for ref/mod bits.
9709	 */
9710	for (vaddr = base; vaddr < endaddr; vaddr += TTEBYTES(TTE8K)) {
9711
9712		HBLKTOHME(osfhme, old, vaddr);
9713		sfmmu_copytte(&osfhme->hme_tte, &tte);
9714
9715		if (TTE_IS_VALID(&tte)) {
9716			if ((pp = osfhme->hme_page) == NULL)
9717				panic("sfmmu_hblk_swap: page not mapped");
9718
9719			pml = sfmmu_mlist_enter(pp);
9720
9721			if (pp != osfhme->hme_page)
9722				panic("sfmmu_hblk_swap: mapping changed");
9723
9724			HBLKTOHME(nsfhme, new, vaddr);
9725
9726			HME_ADD(nsfhme, pp);
9727			HME_SUB(osfhme, pp);
9728
9729			sfmmu_mlist_exit(pml);
9730		}
9731	}
9732
9733	/*
9734	 * remove old from hash chain
9735	 */
9736	sfmmu_hblk_hash_rm(hmebp, old, prevpa, prev);
9737
9738#ifdef	DEBUG
9739
9740	hblktag.htag_id = ksfmmup;
9741	hblktag.htag_bspage = HME_HASH_BSPAGE(base, HME_HASH_SHIFT(TTE8K));
9742	hblktag.htag_rehash = HME_HASH_REHASH(TTE8K);
9743	HME_HASH_FAST_SEARCH(hmebp, hblktag, found);
9744
9745	if (found != new)
9746		panic("sfmmu_hblk_swap: new hblk not found");
9747#endif
9748
9749	SFMMU_HASH_UNLOCK(hmebp);
9750
9751	/*
9752	 * Reset hblk_reserve
9753	 */
9754	bzero((void *)old, HME8BLK_SZ);
9755	old->hblk_nextpa = va_to_pa((caddr_t)old);
9756}
9757
9758/*
9759 * Grab the mlist mutex for both pages passed in.
9760 *
9761 * low and high will be returned as pointers to the mutexes for these pages.
9762 * low refers to the mutex residing in the lower bin of the mlist hash, while
9763 * high refers to the mutex residing in the higher bin of the mlist hash.  This
9764 * is due to the locking order restrictions on the same thread grabbing
9765 * multiple mlist mutexes.  The low lock must be acquired before the high lock.
9766 *
9767 * If both pages hash to the same mutex, only grab that single mutex, and
9768 * high will be returned as NULL
9769 * If the pages hash to different bins in the hash, grab the lower addressed
9770 * lock first and then the higher addressed lock in order to follow the locking
9771 * rules involved with the same thread grabbing multiple mlist mutexes.
9772 * low and high will both have non-NULL values.
9773 */
9774static void
9775sfmmu_mlist_reloc_enter(struct page *targ, struct page *repl,
9776    kmutex_t **low, kmutex_t **high)
9777{
9778	kmutex_t	*mml_targ, *mml_repl;
9779
9780	/*
9781	 * no need to do the dance around szc as in sfmmu_mlist_enter()
9782	 * because this routine is only called by hat_page_relocate() and all
9783	 * targ and repl pages are already locked EXCL so szc can't change.
9784	 */
9785
9786	mml_targ = MLIST_HASH(PP_PAGEROOT(targ));
9787	mml_repl = MLIST_HASH(PP_PAGEROOT(repl));
9788
9789	if (mml_targ == mml_repl) {
9790		*low = mml_targ;
9791		*high = NULL;
9792	} else {
9793		if (mml_targ < mml_repl) {
9794			*low = mml_targ;
9795			*high = mml_repl;
9796		} else {
9797			*low = mml_repl;
9798			*high = mml_targ;
9799		}
9800	}
9801
9802	mutex_enter(*low);
9803	if (*high)
9804		mutex_enter(*high);
9805}
9806
9807static void
9808sfmmu_mlist_reloc_exit(kmutex_t *low, kmutex_t *high)
9809{
9810	if (high)
9811		mutex_exit(high);
9812	mutex_exit(low);
9813}
9814
9815static hatlock_t *
9816sfmmu_hat_enter(sfmmu_t *sfmmup)
9817{
9818	hatlock_t	*hatlockp;
9819
9820	if (sfmmup != ksfmmup) {
9821		hatlockp = TSB_HASH(sfmmup);
9822		mutex_enter(HATLOCK_MUTEXP(hatlockp));
9823		return (hatlockp);
9824	}
9825	return (NULL);
9826}
9827
9828static hatlock_t *
9829sfmmu_hat_tryenter(sfmmu_t *sfmmup)
9830{
9831	hatlock_t	*hatlockp;
9832
9833	if (sfmmup != ksfmmup) {
9834		hatlockp = TSB_HASH(sfmmup);
9835		if (mutex_tryenter(HATLOCK_MUTEXP(hatlockp)) == 0)
9836			return (NULL);
9837		return (hatlockp);
9838	}
9839	return (NULL);
9840}
9841
9842static void
9843sfmmu_hat_exit(hatlock_t *hatlockp)
9844{
9845	if (hatlockp != NULL)
9846		mutex_exit(HATLOCK_MUTEXP(hatlockp));
9847}
9848
9849static void
9850sfmmu_hat_lock_all(void)
9851{
9852	int i;
9853	for (i = 0; i < SFMMU_NUM_LOCK; i++)
9854		mutex_enter(HATLOCK_MUTEXP(&hat_lock[i]));
9855}
9856
9857static void
9858sfmmu_hat_unlock_all(void)
9859{
9860	int i;
9861	for (i = SFMMU_NUM_LOCK - 1; i >= 0; i--)
9862		mutex_exit(HATLOCK_MUTEXP(&hat_lock[i]));
9863}
9864
9865int
9866sfmmu_hat_lock_held(sfmmu_t *sfmmup)
9867{
9868	ASSERT(sfmmup != ksfmmup);
9869	return (MUTEX_HELD(HATLOCK_MUTEXP(TSB_HASH(sfmmup))));
9870}
9871
9872/*
9873 * Locking primitives to provide consistency between ISM unmap
9874 * and other operations.  Since ISM unmap can take a long time, we
9875 * use HAT_ISMBUSY flag (protected by the hatlock) to avoid creating
9876 * contention on the hatlock buckets while ISM segments are being
9877 * unmapped.  The tradeoff is that the flags don't prevent priority
9878 * inversion from occurring, so we must request kernel priority in
9879 * case we have to sleep to keep from getting buried while holding
9880 * the HAT_ISMBUSY flag set, which in turn could block other kernel
9881 * threads from running (for example, in sfmmu_uvatopfn()).
9882 */
9883static void
9884sfmmu_ismhat_enter(sfmmu_t *sfmmup, int hatlock_held)
9885{
9886	hatlock_t *hatlockp;
9887
9888	THREAD_KPRI_REQUEST();
9889	if (!hatlock_held)
9890		hatlockp = sfmmu_hat_enter(sfmmup);
9891	while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY))
9892		cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
9893	SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY);
9894	if (!hatlock_held)
9895		sfmmu_hat_exit(hatlockp);
9896}
9897
9898static void
9899sfmmu_ismhat_exit(sfmmu_t *sfmmup, int hatlock_held)
9900{
9901	hatlock_t *hatlockp;
9902
9903	if (!hatlock_held)
9904		hatlockp = sfmmu_hat_enter(sfmmup);
9905	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
9906	SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY);
9907	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
9908	if (!hatlock_held)
9909		sfmmu_hat_exit(hatlockp);
9910	THREAD_KPRI_RELEASE();
9911}
9912
9913/*
9914 *
9915 * Algorithm:
9916 *
9917 * (1) if segkmem is not ready, allocate hblk from an array of pre-alloc'ed
9918 *	hblks.
9919 *
9920 * (2) if we are allocating an hblk for mapping a slab in sfmmu_cache,
9921 *
9922 * 		(a) try to return an hblk from reserve pool of free hblks;
9923 *		(b) if the reserve pool is empty, acquire hblk_reserve_lock
9924 *		    and return hblk_reserve.
9925 *
9926 * (3) call kmem_cache_alloc() to allocate hblk;
9927 *
9928 *		(a) if hblk_reserve_lock is held by the current thread,
9929 *		    atomically replace hblk_reserve by the hblk that is
9930 *		    returned by kmem_cache_alloc; release hblk_reserve_lock
9931 *		    and call kmem_cache_alloc() again.
9932 *		(b) if reserve pool is not full, add the hblk that is
9933 *		    returned by kmem_cache_alloc to reserve pool and
9934 *		    call kmem_cache_alloc again.
9935 *
9936 */
9937static struct hme_blk *
9938sfmmu_hblk_alloc(sfmmu_t *sfmmup, caddr_t vaddr,
9939	struct hmehash_bucket *hmebp, uint_t size, hmeblk_tag hblktag,
9940	uint_t flags)
9941{
9942	struct hme_blk *hmeblkp = NULL;
9943	struct hme_blk *newhblkp;
9944	struct hme_blk *shw_hblkp = NULL;
9945	struct kmem_cache *sfmmu_cache = NULL;
9946	uint64_t hblkpa;
9947	ulong_t index;
9948	uint_t owner;		/* set to 1 if using hblk_reserve */
9949	uint_t forcefree;
9950	int sleep;
9951
9952	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
9953
9954	/*
9955	 * If segkmem is not created yet, allocate from static hmeblks
9956	 * created at the end of startup_modules().  See the block comment
9957	 * in startup_modules() describing how we estimate the number of
9958	 * static hmeblks that will be needed during re-map.
9959	 */
9960	if (!hblk_alloc_dynamic) {
9961
9962		if (size == TTE8K) {
9963			index = nucleus_hblk8.index;
9964			if (index >= nucleus_hblk8.len) {
9965				/*
9966				 * If we panic here, see startup_modules() to
9967				 * make sure that we are calculating the
9968				 * number of hblk8's that we need correctly.
9969				 */
9970				panic("no nucleus hblk8 to allocate");
9971			}
9972			hmeblkp =
9973			    (struct hme_blk *)&nucleus_hblk8.list[index];
9974			nucleus_hblk8.index++;
9975			SFMMU_STAT(sf_hblk8_nalloc);
9976		} else {
9977			index = nucleus_hblk1.index;
9978			if (nucleus_hblk1.index >= nucleus_hblk1.len) {
9979				/*
9980				 * If we panic here, see startup_modules()
9981				 * and H8TOH1; most likely you need to
9982				 * update the calculation of the number
9983				 * of hblk1's the kernel needs to boot.
9984				 */
9985				panic("no nucleus hblk1 to allocate");
9986			}
9987			hmeblkp =
9988			    (struct hme_blk *)&nucleus_hblk1.list[index];
9989			nucleus_hblk1.index++;
9990			SFMMU_STAT(sf_hblk1_nalloc);
9991		}
9992
9993		goto hblk_init;
9994	}
9995
9996	SFMMU_HASH_UNLOCK(hmebp);
9997
9998	if (sfmmup != KHATID) {
9999		if (mmu_page_sizes == max_mmu_page_sizes) {
10000			if (size < TTE256M)
10001				shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
10002				    size, flags);
10003		} else {
10004			if (size < TTE4M)
10005				shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
10006				    size, flags);
10007		}
10008	}
10009
10010fill_hblk:
10011	owner = (hblk_reserve_thread == curthread) ? 1 : 0;
10012
10013	if (owner && size == TTE8K) {
10014
10015		/*
10016		 * We are really in a tight spot. We already own
10017		 * hblk_reserve and we need another hblk.  In anticipation
10018		 * of this kind of scenario, we specifically set aside
10019		 * HBLK_RESERVE_MIN number of hblks to be used exclusively
10020		 * by owner of hblk_reserve.
10021		 */
10022		SFMMU_STAT(sf_hblk_recurse_cnt);
10023
10024		if (!sfmmu_get_free_hblk(&hmeblkp, 1))
10025			panic("sfmmu_hblk_alloc: reserve list is empty");
10026
10027		goto hblk_verify;
10028	}
10029
10030	ASSERT(!owner);
10031
10032	if ((flags & HAT_NO_KALLOC) == 0) {
10033
10034		sfmmu_cache = ((size == TTE8K) ? sfmmu8_cache : sfmmu1_cache);
10035		sleep = ((sfmmup == KHATID) ? KM_NOSLEEP : KM_SLEEP);
10036
10037		if ((hmeblkp = kmem_cache_alloc(sfmmu_cache, sleep)) == NULL) {
10038			hmeblkp = sfmmu_hblk_steal(size);
10039		} else {
10040			/*
10041			 * if we are the owner of hblk_reserve,
10042			 * swap hblk_reserve with hmeblkp and
10043			 * start a fresh life.  Hope things go
10044			 * better this time.
10045			 */
10046			if (hblk_reserve_thread == curthread) {
10047				ASSERT(sfmmu_cache == sfmmu8_cache);
10048				sfmmu_hblk_swap(hmeblkp);
10049				hblk_reserve_thread = NULL;
10050				mutex_exit(&hblk_reserve_lock);
10051				goto fill_hblk;
10052			}
10053			/*
10054			 * let's donate this hblk to our reserve list if
10055			 * we are not mapping kernel range
10056			 */
10057			if (size == TTE8K && sfmmup != KHATID)
10058				if (sfmmu_put_free_hblk(hmeblkp, 0))
10059					goto fill_hblk;
10060		}
10061	} else {
10062		/*
10063		 * We are here to map the slab in sfmmu8_cache; let's
10064		 * check if we could tap our reserve list; if successful,
10065		 * this will avoid the pain of going thru sfmmu_hblk_swap
10066		 */
10067		SFMMU_STAT(sf_hblk_slab_cnt);
10068		if (!sfmmu_get_free_hblk(&hmeblkp, 0)) {
10069			/*
10070			 * let's start hblk_reserve dance
10071			 */
10072			SFMMU_STAT(sf_hblk_reserve_cnt);
10073			owner = 1;
10074			mutex_enter(&hblk_reserve_lock);
10075			hmeblkp = HBLK_RESERVE;
10076			hblk_reserve_thread = curthread;
10077		}
10078	}
10079
10080hblk_verify:
10081	ASSERT(hmeblkp != NULL);
10082	set_hblk_sz(hmeblkp, size);
10083	ASSERT(hmeblkp->hblk_nextpa == va_to_pa((caddr_t)hmeblkp));
10084	SFMMU_HASH_LOCK(hmebp);
10085	HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
10086	if (newhblkp != NULL) {
10087		SFMMU_HASH_UNLOCK(hmebp);
10088		if (hmeblkp != HBLK_RESERVE) {
10089			/*
10090			 * This is really tricky!
10091			 *
10092			 * vmem_alloc(vmem_seg_arena)
10093			 *  vmem_alloc(vmem_internal_arena)
10094			 *   segkmem_alloc(heap_arena)
10095			 *    vmem_alloc(heap_arena)
10096			 *    page_create()
10097			 *    hat_memload()
10098			 *	kmem_cache_free()
10099			 *	 kmem_cache_alloc()
10100			 *	  kmem_slab_create()
10101			 *	   vmem_alloc(kmem_internal_arena)
10102			 *	    segkmem_alloc(heap_arena)
10103			 *		vmem_alloc(heap_arena)
10104			 *		page_create()
10105			 *		hat_memload()
10106			 *		  kmem_cache_free()
10107			 *		...
10108			 *
10109			 * Thus, hat_memload() could call kmem_cache_free
10110			 * for enough number of times that we could easily
10111			 * hit the bottom of the stack or run out of reserve
10112			 * list of vmem_seg structs.  So, we must donate
10113			 * this hblk to reserve list if it's allocated
10114			 * from sfmmu8_cache *and* mapping kernel range.
10115			 * We don't need to worry about freeing hmeblk1's
10116			 * to kmem since they don't map any kmem slabs.
10117			 *
10118			 * Note: When segkmem supports largepages, we must
10119			 * free hmeblk1's to reserve list as well.
10120			 */
10121			forcefree = (sfmmup == KHATID) ? 1 : 0;
10122			if (size == TTE8K &&
10123			    sfmmu_put_free_hblk(hmeblkp, forcefree)) {
10124				goto re_verify;
10125			}
10126			ASSERT(sfmmup != KHATID);
10127			kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp);
10128		} else {
10129			/*
10130			 * Hey! we don't need hblk_reserve any more.
10131			 */
10132			ASSERT(owner);
10133			hblk_reserve_thread = NULL;
10134			mutex_exit(&hblk_reserve_lock);
10135			owner = 0;
10136		}
10137re_verify:
10138		/*
10139		 * let's check if the goodies are still present
10140		 */
10141		SFMMU_HASH_LOCK(hmebp);
10142		HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
10143		if (newhblkp != NULL) {
10144			/*
10145			 * return newhblkp if it's not hblk_reserve;
10146			 * if newhblkp is hblk_reserve, return it
10147			 * _only if_ we are the owner of hblk_reserve.
10148			 */
10149			if (newhblkp != HBLK_RESERVE || owner) {
10150				return (newhblkp);
10151			} else {
10152				/*
10153				 * we just hit hblk_reserve in the hash and
10154				 * we are not the owner of that;
10155				 *
10156				 * block until hblk_reserve_thread completes
10157				 * swapping hblk_reserve and try the dance
10158				 * once again.
10159				 */
10160				SFMMU_HASH_UNLOCK(hmebp);
10161				mutex_enter(&hblk_reserve_lock);
10162				mutex_exit(&hblk_reserve_lock);
10163				SFMMU_STAT(sf_hblk_reserve_hit);
10164				goto fill_hblk;
10165			}
10166		} else {
10167			/*
10168			 * it's no more! try the dance once again.
10169			 */
10170			SFMMU_HASH_UNLOCK(hmebp);
10171			goto fill_hblk;
10172		}
10173	}
10174
10175hblk_init:
10176	set_hblk_sz(hmeblkp, size);
10177	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
10178	hmeblkp->hblk_next = (struct hme_blk *)NULL;
10179	hmeblkp->hblk_tag = hblktag;
10180	hmeblkp->hblk_shadow = shw_hblkp;
10181	hblkpa = hmeblkp->hblk_nextpa;
10182	hmeblkp->hblk_nextpa = 0;
10183
10184	ASSERT(get_hblk_ttesz(hmeblkp) == size);
10185	ASSERT(get_hblk_span(hmeblkp) == HMEBLK_SPAN(size));
10186	ASSERT(hmeblkp->hblk_hmecnt == 0);
10187	ASSERT(hmeblkp->hblk_vcnt == 0);
10188	ASSERT(hmeblkp->hblk_lckcnt == 0);
10189	ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
10190	sfmmu_hblk_hash_add(hmebp, hmeblkp, hblkpa);
10191	return (hmeblkp);
10192}
10193
10194/*
10195 * This function performs any cleanup required on the hme_blk
10196 * and returns it to the free list.
10197 */
10198/* ARGSUSED */
10199static void
10200sfmmu_hblk_free(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
10201	uint64_t hblkpa, struct hme_blk **listp)
10202{
10203	int shw_size, vshift;
10204	struct hme_blk *shw_hblkp;
10205	uint_t		shw_mask, newshw_mask;
10206	uintptr_t	vaddr;
10207	int		size;
10208	uint_t		critical;
10209
10210	ASSERT(hmeblkp);
10211	ASSERT(!hmeblkp->hblk_hmecnt);
10212	ASSERT(!hmeblkp->hblk_vcnt);
10213	ASSERT(!hmeblkp->hblk_lckcnt);
10214	ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
10215	ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
10216
10217	critical = (hblktosfmmu(hmeblkp) == KHATID) ? 1 : 0;
10218
10219	size = get_hblk_ttesz(hmeblkp);
10220	shw_hblkp = hmeblkp->hblk_shadow;
10221	if (shw_hblkp) {
10222		ASSERT(hblktosfmmu(hmeblkp) != KHATID);
10223		if (mmu_page_sizes == max_mmu_page_sizes) {
10224			ASSERT(size < TTE256M);
10225		} else {
10226			ASSERT(size < TTE4M);
10227		}
10228
10229		shw_size = get_hblk_ttesz(shw_hblkp);
10230		vaddr = get_hblk_base(hmeblkp);
10231		vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
10232		ASSERT(vshift < 8);
10233		/*
10234		 * Atomically clear shadow mask bit
10235		 */
10236		do {
10237			shw_mask = shw_hblkp->hblk_shw_mask;
10238			ASSERT(shw_mask & (1 << vshift));
10239			newshw_mask = shw_mask & ~(1 << vshift);
10240			newshw_mask = cas32(&shw_hblkp->hblk_shw_mask,
10241				shw_mask, newshw_mask);
10242		} while (newshw_mask != shw_mask);
10243		hmeblkp->hblk_shadow = NULL;
10244	}
10245	hmeblkp->hblk_next = NULL;
10246	hmeblkp->hblk_nextpa = hblkpa;
10247	hmeblkp->hblk_shw_bit = 0;
10248
10249	if (hmeblkp->hblk_nuc_bit == 0) {
10250
10251		if (size == TTE8K && sfmmu_put_free_hblk(hmeblkp, critical))
10252			return;
10253
10254		hmeblkp->hblk_next = *listp;
10255		*listp = hmeblkp;
10256	}
10257}
10258
10259static void
10260sfmmu_hblks_list_purge(struct hme_blk **listp)
10261{
10262	struct hme_blk	*hmeblkp;
10263
10264	while ((hmeblkp = *listp) != NULL) {
10265		*listp = hmeblkp->hblk_next;
10266		kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp);
10267	}
10268}
10269
10270#define	BUCKETS_TO_SEARCH_BEFORE_UNLOAD	30
10271
10272static uint_t sfmmu_hblk_steal_twice;
10273static uint_t sfmmu_hblk_steal_count, sfmmu_hblk_steal_unload_count;
10274
10275/*
10276 * Steal a hmeblk
10277 * Enough hmeblks were allocated at startup (nucleus hmeblks) and also
10278 * hmeblks were added dynamically. We should never ever not be able to
10279 * find one. Look for an unused/unlocked hmeblk in user hash table.
10280 */
10281static struct hme_blk *
10282sfmmu_hblk_steal(int size)
10283{
10284	static struct hmehash_bucket *uhmehash_steal_hand = NULL;
10285	struct hmehash_bucket *hmebp;
10286	struct hme_blk *hmeblkp = NULL, *pr_hblk;
10287	uint64_t hblkpa, prevpa;
10288	int i;
10289
10290	for (;;) {
10291		hmebp = (uhmehash_steal_hand == NULL) ? uhme_hash :
10292			uhmehash_steal_hand;
10293		ASSERT(hmebp >= uhme_hash && hmebp <= &uhme_hash[UHMEHASH_SZ]);
10294
10295		for (i = 0; hmeblkp == NULL && i <= UHMEHASH_SZ +
10296		    BUCKETS_TO_SEARCH_BEFORE_UNLOAD; i++) {
10297			SFMMU_HASH_LOCK(hmebp);
10298			hmeblkp = hmebp->hmeblkp;
10299			hblkpa = hmebp->hmeh_nextpa;
10300			prevpa = 0;
10301			pr_hblk = NULL;
10302			while (hmeblkp) {
10303				/*
10304				 * check if it is a hmeblk that is not locked
10305				 * and not shared. skip shadow hmeblks with
10306				 * shadow_mask set i.e valid count non zero.
10307				 */
10308				if ((get_hblk_ttesz(hmeblkp) == size) &&
10309				    (hmeblkp->hblk_shw_bit == 0 ||
10310					hmeblkp->hblk_vcnt == 0) &&
10311				    (hmeblkp->hblk_lckcnt == 0)) {
10312					/*
10313					 * there is a high probability that we
10314					 * will find a free one. search some
10315					 * buckets for a free hmeblk initially
10316					 * before unloading a valid hmeblk.
10317					 */
10318					if ((hmeblkp->hblk_vcnt == 0 &&
10319					    hmeblkp->hblk_hmecnt == 0) || (i >=
10320					    BUCKETS_TO_SEARCH_BEFORE_UNLOAD)) {
10321						if (sfmmu_steal_this_hblk(hmebp,
10322						    hmeblkp, hblkpa, prevpa,
10323						    pr_hblk)) {
10324							/*
10325							 * Hblk is unloaded
10326							 * successfully
10327							 */
10328							break;
10329						}
10330					}
10331				}
10332				pr_hblk = hmeblkp;
10333				prevpa = hblkpa;
10334				hblkpa = hmeblkp->hblk_nextpa;
10335				hmeblkp = hmeblkp->hblk_next;
10336			}
10337
10338			SFMMU_HASH_UNLOCK(hmebp);
10339			if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
10340				hmebp = uhme_hash;
10341		}
10342		uhmehash_steal_hand = hmebp;
10343
10344		if (hmeblkp != NULL)
10345			break;
10346
10347		/*
10348		 * in the worst case, look for a free one in the kernel
10349		 * hash table.
10350		 */
10351		for (i = 0, hmebp = khme_hash; i <= KHMEHASH_SZ; i++) {
10352			SFMMU_HASH_LOCK(hmebp);
10353			hmeblkp = hmebp->hmeblkp;
10354			hblkpa = hmebp->hmeh_nextpa;
10355			prevpa = 0;
10356			pr_hblk = NULL;
10357			while (hmeblkp) {
10358				/*
10359				 * check if it is free hmeblk
10360				 */
10361				if ((get_hblk_ttesz(hmeblkp) == size) &&
10362				    (hmeblkp->hblk_lckcnt == 0) &&
10363				    (hmeblkp->hblk_vcnt == 0) &&
10364				    (hmeblkp->hblk_hmecnt == 0)) {
10365					if (sfmmu_steal_this_hblk(hmebp,
10366					    hmeblkp, hblkpa, prevpa, pr_hblk)) {
10367						break;
10368					} else {
10369						/*
10370						 * Cannot fail since we have
10371						 * hash lock.
10372						 */
10373						panic("fail to steal?");
10374					}
10375				}
10376
10377				pr_hblk = hmeblkp;
10378				prevpa = hblkpa;
10379				hblkpa = hmeblkp->hblk_nextpa;
10380				hmeblkp = hmeblkp->hblk_next;
10381			}
10382
10383			SFMMU_HASH_UNLOCK(hmebp);
10384			if (hmebp++ == &khme_hash[KHMEHASH_SZ])
10385				hmebp = khme_hash;
10386		}
10387
10388		if (hmeblkp != NULL)
10389			break;
10390		sfmmu_hblk_steal_twice++;
10391	}
10392	return (hmeblkp);
10393}
10394
10395/*
10396 * This routine does real work to prepare a hblk to be "stolen" by
10397 * unloading the mappings, updating shadow counts ....
10398 * It returns 1 if the block is ready to be reused (stolen), or 0
10399 * means the block cannot be stolen yet- pageunload is still working
10400 * on this hblk.
10401 */
10402static int
10403sfmmu_steal_this_hblk(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
10404	uint64_t hblkpa, uint64_t prevpa, struct hme_blk *pr_hblk)
10405{
10406	int shw_size, vshift;
10407	struct hme_blk *shw_hblkp;
10408	uintptr_t vaddr;
10409	uint_t shw_mask, newshw_mask;
10410
10411	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
10412
10413	/*
10414	 * check if the hmeblk is free, unload if necessary
10415	 */
10416	if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
10417		sfmmu_t *sfmmup;
10418		demap_range_t dmr;
10419
10420		sfmmup = hblktosfmmu(hmeblkp);
10421		DEMAP_RANGE_INIT(sfmmup, &dmr);
10422		(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
10423		    (caddr_t)get_hblk_base(hmeblkp),
10424		    get_hblk_endaddr(hmeblkp), &dmr, HAT_UNLOAD);
10425		DEMAP_RANGE_FLUSH(&dmr);
10426		if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
10427			/*
10428			 * Pageunload is working on the same hblk.
10429			 */
10430			return (0);
10431		}
10432
10433		sfmmu_hblk_steal_unload_count++;
10434	}
10435
10436	ASSERT(hmeblkp->hblk_lckcnt == 0);
10437	ASSERT(hmeblkp->hblk_vcnt == 0 && hmeblkp->hblk_hmecnt == 0);
10438
10439	sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk);
10440	hmeblkp->hblk_nextpa = hblkpa;
10441
10442	shw_hblkp = hmeblkp->hblk_shadow;
10443	if (shw_hblkp) {
10444		shw_size = get_hblk_ttesz(shw_hblkp);
10445		vaddr = get_hblk_base(hmeblkp);
10446		vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
10447		ASSERT(vshift < 8);
10448		/*
10449		 * Atomically clear shadow mask bit
10450		 */
10451		do {
10452			shw_mask = shw_hblkp->hblk_shw_mask;
10453			ASSERT(shw_mask & (1 << vshift));
10454			newshw_mask = shw_mask & ~(1 << vshift);
10455			newshw_mask = cas32(&shw_hblkp->hblk_shw_mask,
10456				shw_mask, newshw_mask);
10457		} while (newshw_mask != shw_mask);
10458		hmeblkp->hblk_shadow = NULL;
10459	}
10460
10461	/*
10462	 * remove shadow bit if we are stealing an unused shadow hmeblk.
10463	 * sfmmu_hblk_alloc needs it that way, will set shadow bit later if
10464	 * we are indeed allocating a shadow hmeblk.
10465	 */
10466	hmeblkp->hblk_shw_bit = 0;
10467
10468	sfmmu_hblk_steal_count++;
10469	SFMMU_STAT(sf_steal_count);
10470
10471	return (1);
10472}
10473
10474struct hme_blk *
10475sfmmu_hmetohblk(struct sf_hment *sfhme)
10476{
10477	struct hme_blk *hmeblkp;
10478	struct sf_hment *sfhme0;
10479	struct hme_blk *hblk_dummy = 0;
10480
10481	/*
10482	 * No dummy sf_hments, please.
10483	 */
10484	ASSERT(sfhme->hme_tte.ll != 0);
10485
10486	sfhme0 = sfhme - sfhme->hme_tte.tte_hmenum;
10487	hmeblkp = (struct hme_blk *)((uintptr_t)sfhme0 -
10488		(uintptr_t)&hblk_dummy->hblk_hme[0]);
10489
10490	return (hmeblkp);
10491}
10492
10493/*
10494 * On swapin, get appropriately sized TSB(s) and clear the HAT_SWAPPED flag.
10495 * If we can't get appropriately sized TSB(s), try for 8K TSB(s) using
10496 * KM_SLEEP allocation.
10497 *
10498 * Return 0 on success, -1 otherwise.
10499 */
10500static void
10501sfmmu_tsb_swapin(sfmmu_t *sfmmup, hatlock_t *hatlockp)
10502{
10503	struct tsb_info *tsbinfop, *next;
10504	tsb_replace_rc_t rc;
10505	boolean_t gotfirst = B_FALSE;
10506
10507	ASSERT(sfmmup != ksfmmup);
10508	ASSERT(sfmmu_hat_lock_held(sfmmup));
10509
10510	while (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPIN)) {
10511		cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
10512	}
10513
10514	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
10515		SFMMU_FLAGS_SET(sfmmup, HAT_SWAPIN);
10516	} else {
10517		return;
10518	}
10519
10520	ASSERT(sfmmup->sfmmu_tsb != NULL);
10521
10522	/*
10523	 * Loop over all tsbinfo's replacing them with ones that actually have
10524	 * a TSB.  If any of the replacements ever fail, bail out of the loop.
10525	 */
10526	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL; tsbinfop = next) {
10527		ASSERT(tsbinfop->tsb_flags & TSB_SWAPPED);
10528		next = tsbinfop->tsb_next;
10529		rc = sfmmu_replace_tsb(sfmmup, tsbinfop, tsbinfop->tsb_szc,
10530		    hatlockp, TSB_SWAPIN);
10531		if (rc != TSB_SUCCESS) {
10532			break;
10533		}
10534		gotfirst = B_TRUE;
10535	}
10536
10537	switch (rc) {
10538	case TSB_SUCCESS:
10539		SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
10540		cv_broadcast(&sfmmup->sfmmu_tsb_cv);
10541		return;
10542	case TSB_ALLOCFAIL:
10543		break;
10544	default:
10545		panic("sfmmu_replace_tsb returned unrecognized failure code "
10546		    "%d", rc);
10547	}
10548
10549	/*
10550	 * In this case, we failed to get one of our TSBs.  If we failed to
10551	 * get the first TSB, get one of minimum size (8KB).  Walk the list
10552	 * and throw away the tsbinfos, starting where the allocation failed;
10553	 * we can get by with just one TSB as long as we don't leave the
10554	 * SWAPPED tsbinfo structures lying around.
10555	 */
10556	tsbinfop = sfmmup->sfmmu_tsb;
10557	next = tsbinfop->tsb_next;
10558	tsbinfop->tsb_next = NULL;
10559
10560	sfmmu_hat_exit(hatlockp);
10561	for (tsbinfop = next; tsbinfop != NULL; tsbinfop = next) {
10562		next = tsbinfop->tsb_next;
10563		sfmmu_tsbinfo_free(tsbinfop);
10564	}
10565	hatlockp = sfmmu_hat_enter(sfmmup);
10566
10567	/*
10568	 * If we don't have any TSBs, get a single 8K TSB for 8K, 64K and 512K
10569	 * pages.
10570	 */
10571	if (!gotfirst) {
10572		tsbinfop = sfmmup->sfmmu_tsb;
10573		rc = sfmmu_replace_tsb(sfmmup, tsbinfop, TSB_MIN_SZCODE,
10574		    hatlockp, TSB_SWAPIN | TSB_FORCEALLOC);
10575		ASSERT(rc == TSB_SUCCESS);
10576	}
10577
10578	SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
10579	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
10580}
10581
10582/*
10583 * Handle exceptions for low level tsb_handler.
10584 *
10585 * There are many scenarios that could land us here:
10586 *
10587 * If the context is invalid we land here. The context can be invalid
10588 * for 3 reasons: 1) we couldn't allocate a new context and now need to
10589 * perform a wrap around operation in order to allocate a new context.
10590 * 2) Context was invalidated to change pagesize programming 3) ISMs or
10591 * TSBs configuration is changeing for this process and we are forced into
10592 * here to do a syncronization operation. If the context is valid we can
10593 * be here from window trap hanlder. In this case just call trap to handle
10594 * the fault.
10595 *
10596 * Note that the process will run in INVALID_CONTEXT before
10597 * faulting into here and subsequently loading the MMU registers
10598 * (including the TSB base register) associated with this process.
10599 * For this reason, the trap handlers must all test for
10600 * INVALID_CONTEXT before attempting to access any registers other
10601 * than the context registers.
10602 */
10603void
10604sfmmu_tsbmiss_exception(struct regs *rp, uintptr_t tagaccess, uint_t traptype)
10605{
10606	sfmmu_t *sfmmup;
10607	uint_t ctxnum;
10608	klwp_id_t lwp;
10609	char lwp_save_state;
10610	hatlock_t *hatlockp;
10611	struct tsb_info *tsbinfop;
10612
10613	SFMMU_STAT(sf_tsb_exceptions);
10614	SFMMU_MMU_STAT(mmu_tsb_exceptions);
10615	sfmmup = astosfmmu(curthread->t_procp->p_as);
10616	ctxnum = tagaccess & TAGACC_CTX_MASK;
10617
10618	ASSERT(sfmmup != ksfmmup && ctxnum != KCONTEXT);
10619	ASSERT(sfmmup->sfmmu_ismhat == 0);
10620	/*
10621	 * First, make sure we come out of here with a valid ctx,
10622	 * since if we don't get one we'll simply loop on the
10623	 * faulting instruction.
10624	 *
10625	 * If the ISM mappings are changing, the TSB is being relocated, or
10626	 * the process is swapped out we serialize behind the controlling
10627	 * thread with the sfmmu_flags and sfmmu_tsb_cv condition variable.
10628	 * Otherwise we synchronize with the context stealer or the thread
10629	 * that required us to change out our MMU registers (such
10630	 * as a thread changing out our TSB while we were running) by
10631	 * locking the HAT and grabbing the rwlock on the context as a
10632	 * reader temporarily.
10633	 */
10634	ASSERT(!SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED) ||
10635	    ctxnum == INVALID_CONTEXT);
10636
10637	if (ctxnum == INVALID_CONTEXT) {
10638		/*
10639		 * Must set lwp state to LWP_SYS before
10640		 * trying to acquire any adaptive lock
10641		 */
10642		lwp = ttolwp(curthread);
10643		ASSERT(lwp);
10644		lwp_save_state = lwp->lwp_state;
10645		lwp->lwp_state = LWP_SYS;
10646
10647		hatlockp = sfmmu_hat_enter(sfmmup);
10648retry:
10649		for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
10650		    tsbinfop = tsbinfop->tsb_next) {
10651			if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) {
10652				cv_wait(&sfmmup->sfmmu_tsb_cv,
10653				    HATLOCK_MUTEXP(hatlockp));
10654				goto retry;
10655			}
10656		}
10657
10658		/*
10659		 * Wait for ISM maps to be updated.
10660		 */
10661		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) {
10662			cv_wait(&sfmmup->sfmmu_tsb_cv,
10663			    HATLOCK_MUTEXP(hatlockp));
10664			goto retry;
10665		}
10666
10667		/*
10668		 * If we're swapping in, get TSB(s).  Note that we must do
10669		 * this before we get a ctx or load the MMU state.  Once
10670		 * we swap in we have to recheck to make sure the TSB(s) and
10671		 * ISM mappings didn't change while we slept.
10672		 */
10673		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
10674			sfmmu_tsb_swapin(sfmmup, hatlockp);
10675			goto retry;
10676		}
10677
10678		sfmmu_get_ctx(sfmmup);
10679
10680		sfmmu_hat_exit(hatlockp);
10681		/*
10682		 * Must restore lwp_state if not calling
10683		 * trap() for further processing. Restore
10684		 * it anyway.
10685		 */
10686		lwp->lwp_state = lwp_save_state;
10687		if (sfmmup->sfmmu_ttecnt[TTE8K] != 0 ||
10688		    sfmmup->sfmmu_ttecnt[TTE64K] != 0 ||
10689		    sfmmup->sfmmu_ttecnt[TTE512K] != 0 ||
10690		    sfmmup->sfmmu_ttecnt[TTE4M] != 0 ||
10691		    sfmmup->sfmmu_ttecnt[TTE32M] != 0 ||
10692		    sfmmup->sfmmu_ttecnt[TTE256M] != 0) {
10693			return;
10694		}
10695		if (traptype == T_DATA_PROT) {
10696			traptype = T_DATA_MMU_MISS;
10697		}
10698	}
10699	trap(rp, (caddr_t)tagaccess, traptype, 0);
10700}
10701
10702/*
10703 * sfmmu_vatopfn_suspended is called from GET_TTE when TL=0 and
10704 * TTE_SUSPENDED bit set in tte we block on aquiring a page lock
10705 * rather than spinning to avoid send mondo timeouts with
10706 * interrupts enabled. When the lock is acquired it is immediately
10707 * released and we return back to sfmmu_vatopfn just after
10708 * the GET_TTE call.
10709 */
10710void
10711sfmmu_vatopfn_suspended(caddr_t vaddr, sfmmu_t *sfmmu, tte_t *ttep)
10712{
10713	struct page	**pp;
10714
10715	(void) as_pagelock(sfmmu->sfmmu_as, &pp, vaddr, TTE_CSZ(ttep), S_WRITE);
10716	as_pageunlock(sfmmu->sfmmu_as, pp, vaddr, TTE_CSZ(ttep), S_WRITE);
10717}
10718
10719/*
10720 * sfmmu_tsbmiss_suspended is called from GET_TTE when TL>0 and
10721 * TTE_SUSPENDED bit set in tte. We do this so that we can handle
10722 * cross traps which cannot be handled while spinning in the
10723 * trap handlers. Simply enter and exit the kpr_suspendlock spin
10724 * mutex, which is held by the holder of the suspend bit, and then
10725 * retry the trapped instruction after unwinding.
10726 */
10727/*ARGSUSED*/
10728void
10729sfmmu_tsbmiss_suspended(struct regs *rp, uintptr_t tagacc, uint_t traptype)
10730{
10731	ASSERT(curthread != kreloc_thread);
10732	mutex_enter(&kpr_suspendlock);
10733	mutex_exit(&kpr_suspendlock);
10734}
10735
10736/*
10737 * Special routine to flush out ism mappings- TSBs, TLBs and D-caches.
10738 * This routine may be called with all cpu's captured. Therefore, the
10739 * caller is responsible for holding all locks and disabling kernel
10740 * preemption.
10741 */
10742/* ARGSUSED */
10743static void
10744sfmmu_ismtlbcache_demap(caddr_t addr, sfmmu_t *ism_sfmmup,
10745	struct hme_blk *hmeblkp, pfn_t pfnum, int cache_flush_flag)
10746{
10747	cpuset_t 	cpuset;
10748	caddr_t 	va;
10749	ism_ment_t	*ment;
10750	sfmmu_t		*sfmmup;
10751#ifdef VAC
10752	int 		vcolor;
10753#endif
10754	int		ttesz;
10755
10756	/*
10757	 * Walk the ism_hat's mapping list and flush the page
10758	 * from every hat sharing this ism_hat. This routine
10759	 * may be called while all cpu's have been captured.
10760	 * Therefore we can't attempt to grab any locks. For now
10761	 * this means we will protect the ism mapping list under
10762	 * a single lock which will be grabbed by the caller.
10763	 * If hat_share/unshare scalibility becomes a performance
10764	 * problem then we may need to re-think ism mapping list locking.
10765	 */
10766	ASSERT(ism_sfmmup->sfmmu_ismhat);
10767	ASSERT(MUTEX_HELD(&ism_mlist_lock));
10768	addr = addr - ISMID_STARTADDR;
10769	for (ment = ism_sfmmup->sfmmu_iment; ment; ment = ment->iment_next) {
10770
10771		sfmmup = ment->iment_hat;
10772
10773		va = ment->iment_base_va;
10774		va = (caddr_t)((uintptr_t)va  + (uintptr_t)addr);
10775
10776		/*
10777		 * Flush TSB of ISM mappings.
10778		 */
10779		ttesz = get_hblk_ttesz(hmeblkp);
10780		if (ttesz == TTE8K || ttesz == TTE4M) {
10781			sfmmu_unload_tsb(sfmmup, va, ttesz);
10782		} else {
10783			caddr_t sva = va;
10784			caddr_t eva;
10785			ASSERT(addr == (caddr_t)get_hblk_base(hmeblkp));
10786			eva = sva + get_hblk_span(hmeblkp);
10787			sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz);
10788		}
10789
10790		cpuset = sfmmup->sfmmu_cpusran;
10791		CPUSET_AND(cpuset, cpu_ready_set);
10792		CPUSET_DEL(cpuset, CPU->cpu_id);
10793
10794		SFMMU_XCALL_STATS(sfmmup);
10795		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)va,
10796		    (uint64_t)sfmmup);
10797
10798		vtag_flushpage(va, (uint64_t)sfmmup);
10799
10800#ifdef VAC
10801		/*
10802		 * Flush D$
10803		 * When flushing D$ we must flush all
10804		 * cpu's. See sfmmu_cache_flush().
10805		 */
10806		if (cache_flush_flag == CACHE_FLUSH) {
10807			cpuset = cpu_ready_set;
10808			CPUSET_DEL(cpuset, CPU->cpu_id);
10809
10810			SFMMU_XCALL_STATS(sfmmup);
10811			vcolor = addr_to_vcolor(va);
10812			xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
10813			vac_flushpage(pfnum, vcolor);
10814		}
10815#endif	/* VAC */
10816	}
10817}
10818
10819/*
10820 * Demaps the TSB, CPU caches, and flushes all TLBs on all CPUs of
10821 * a particular virtual address and ctx.  If noflush is set we do not
10822 * flush the TLB/TSB.  This function may or may not be called with the
10823 * HAT lock held.
10824 */
10825static void
10826sfmmu_tlbcache_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
10827	pfn_t pfnum, int tlb_noflush, int cpu_flag, int cache_flush_flag,
10828	int hat_lock_held)
10829{
10830#ifdef VAC
10831	int vcolor;
10832#endif
10833	cpuset_t cpuset;
10834	hatlock_t *hatlockp;
10835
10836#if defined(lint) && !defined(VAC)
10837	pfnum = pfnum;
10838	cpu_flag = cpu_flag;
10839	cache_flush_flag = cache_flush_flag;
10840#endif
10841	/*
10842	 * There is no longer a need to protect against ctx being
10843	 * stolen here since we don't store the ctx in the TSB anymore.
10844	 */
10845#ifdef VAC
10846	vcolor = addr_to_vcolor(addr);
10847#endif
10848
10849	/*
10850	 * We must hold the hat lock during the flush of TLB,
10851	 * to avoid a race with sfmmu_invalidate_ctx(), where
10852	 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
10853	 * causing TLB demap routine to skip flush on that MMU.
10854	 * If the context on a MMU has already been set to
10855	 * INVALID_CONTEXT, we just get an extra flush on
10856	 * that MMU.
10857	 */
10858	if (!hat_lock_held && !tlb_noflush)
10859		hatlockp = sfmmu_hat_enter(sfmmup);
10860
10861	kpreempt_disable();
10862	if (!tlb_noflush) {
10863		/*
10864		 * Flush the TSB and TLB.
10865		 */
10866		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp);
10867
10868		cpuset = sfmmup->sfmmu_cpusran;
10869		CPUSET_AND(cpuset, cpu_ready_set);
10870		CPUSET_DEL(cpuset, CPU->cpu_id);
10871
10872		SFMMU_XCALL_STATS(sfmmup);
10873
10874		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
10875		    (uint64_t)sfmmup);
10876
10877		vtag_flushpage(addr, (uint64_t)sfmmup);
10878	}
10879
10880	if (!hat_lock_held && !tlb_noflush)
10881		sfmmu_hat_exit(hatlockp);
10882
10883#ifdef VAC
10884	/*
10885	 * Flush the D$
10886	 *
10887	 * Even if the ctx is stolen, we need to flush the
10888	 * cache. Our ctx stealer only flushes the TLBs.
10889	 */
10890	if (cache_flush_flag == CACHE_FLUSH) {
10891		if (cpu_flag & FLUSH_ALL_CPUS) {
10892			cpuset = cpu_ready_set;
10893		} else {
10894			cpuset = sfmmup->sfmmu_cpusran;
10895			CPUSET_AND(cpuset, cpu_ready_set);
10896		}
10897		CPUSET_DEL(cpuset, CPU->cpu_id);
10898		SFMMU_XCALL_STATS(sfmmup);
10899		xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
10900		vac_flushpage(pfnum, vcolor);
10901	}
10902#endif	/* VAC */
10903	kpreempt_enable();
10904}
10905
10906/*
10907 * Demaps the TSB and flushes all TLBs on all cpus for a particular virtual
10908 * address and ctx.  If noflush is set we do not currently do anything.
10909 * This function may or may not be called with the HAT lock held.
10910 */
10911static void
10912sfmmu_tlb_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
10913	int tlb_noflush, int hat_lock_held)
10914{
10915	cpuset_t cpuset;
10916	hatlock_t *hatlockp;
10917
10918	/*
10919	 * If the process is exiting we have nothing to do.
10920	 */
10921	if (tlb_noflush)
10922		return;
10923
10924	/*
10925	 * Flush TSB.
10926	 */
10927	if (!hat_lock_held)
10928		hatlockp = sfmmu_hat_enter(sfmmup);
10929	SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp);
10930
10931	kpreempt_disable();
10932
10933	cpuset = sfmmup->sfmmu_cpusran;
10934	CPUSET_AND(cpuset, cpu_ready_set);
10935	CPUSET_DEL(cpuset, CPU->cpu_id);
10936
10937	SFMMU_XCALL_STATS(sfmmup);
10938	xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr, (uint64_t)sfmmup);
10939
10940	vtag_flushpage(addr, (uint64_t)sfmmup);
10941
10942	if (!hat_lock_held)
10943		sfmmu_hat_exit(hatlockp);
10944
10945	kpreempt_enable();
10946
10947}
10948
10949/*
10950 * Special case of sfmmu_tlb_demap for MMU_PAGESIZE hblks. Use the xcall
10951 * call handler that can flush a range of pages to save on xcalls.
10952 */
10953static int sfmmu_xcall_save;
10954
10955static void
10956sfmmu_tlb_range_demap(demap_range_t *dmrp)
10957{
10958	sfmmu_t *sfmmup = dmrp->dmr_sfmmup;
10959	hatlock_t *hatlockp;
10960	cpuset_t cpuset;
10961	uint64_t sfmmu_pgcnt;
10962	pgcnt_t pgcnt = 0;
10963	int pgunload = 0;
10964	int dirtypg = 0;
10965	caddr_t addr = dmrp->dmr_addr;
10966	caddr_t eaddr;
10967	uint64_t bitvec = dmrp->dmr_bitvec;
10968
10969	ASSERT(bitvec & 1);
10970
10971	/*
10972	 * Flush TSB and calculate number of pages to flush.
10973	 */
10974	while (bitvec != 0) {
10975		dirtypg = 0;
10976		/*
10977		 * Find the first page to flush and then count how many
10978		 * pages there are after it that also need to be flushed.
10979		 * This way the number of TSB flushes is minimized.
10980		 */
10981		while ((bitvec & 1) == 0) {
10982			pgcnt++;
10983			addr += MMU_PAGESIZE;
10984			bitvec >>= 1;
10985		}
10986		while (bitvec & 1) {
10987			dirtypg++;
10988			bitvec >>= 1;
10989		}
10990		eaddr = addr + ptob(dirtypg);
10991		hatlockp = sfmmu_hat_enter(sfmmup);
10992		sfmmu_unload_tsb_range(sfmmup, addr, eaddr, TTE8K);
10993		sfmmu_hat_exit(hatlockp);
10994		pgunload += dirtypg;
10995		addr = eaddr;
10996		pgcnt += dirtypg;
10997	}
10998
10999	ASSERT((pgcnt<<MMU_PAGESHIFT) <= dmrp->dmr_endaddr - dmrp->dmr_addr);
11000	if (sfmmup->sfmmu_free == 0) {
11001		addr = dmrp->dmr_addr;
11002		bitvec = dmrp->dmr_bitvec;
11003
11004		/*
11005		 * make sure it has SFMMU_PGCNT_SHIFT bits only,
11006		 * as it will be used to pack argument for xt_some
11007		 */
11008		ASSERT((pgcnt > 0) &&
11009		    (pgcnt <= (1 << SFMMU_PGCNT_SHIFT)));
11010
11011		/*
11012		 * Encode pgcnt as (pgcnt -1 ), and pass (pgcnt - 1) in
11013		 * the low 6 bits of sfmmup. This is doable since pgcnt
11014		 * always >= 1.
11015		 */
11016		ASSERT(!((uint64_t)sfmmup & SFMMU_PGCNT_MASK));
11017		sfmmu_pgcnt = (uint64_t)sfmmup |
11018		    ((pgcnt - 1) & SFMMU_PGCNT_MASK);
11019
11020		/*
11021		 * We must hold the hat lock during the flush of TLB,
11022		 * to avoid a race with sfmmu_invalidate_ctx(), where
11023		 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
11024		 * causing TLB demap routine to skip flush on that MMU.
11025		 * If the context on a MMU has already been set to
11026		 * INVALID_CONTEXT, we just get an extra flush on
11027		 * that MMU.
11028		 */
11029		hatlockp = sfmmu_hat_enter(sfmmup);
11030		kpreempt_disable();
11031
11032		cpuset = sfmmup->sfmmu_cpusran;
11033		CPUSET_AND(cpuset, cpu_ready_set);
11034		CPUSET_DEL(cpuset, CPU->cpu_id);
11035
11036		SFMMU_XCALL_STATS(sfmmup);
11037		xt_some(cpuset, vtag_flush_pgcnt_tl1, (uint64_t)addr,
11038		    sfmmu_pgcnt);
11039
11040		for (; bitvec != 0; bitvec >>= 1) {
11041			if (bitvec & 1)
11042				vtag_flushpage(addr, (uint64_t)sfmmup);
11043			addr += MMU_PAGESIZE;
11044		}
11045		kpreempt_enable();
11046		sfmmu_hat_exit(hatlockp);
11047
11048		sfmmu_xcall_save += (pgunload-1);
11049	}
11050	dmrp->dmr_bitvec = 0;
11051}
11052
11053/*
11054 * In cases where we need to synchronize with TLB/TSB miss trap
11055 * handlers, _and_ need to flush the TLB, it's a lot easier to
11056 * throw away the context from the process than to do a
11057 * special song and dance to keep things consistent for the
11058 * handlers.
11059 *
11060 * Since the process suddenly ends up without a context and our caller
11061 * holds the hat lock, threads that fault after this function is called
11062 * will pile up on the lock.  We can then do whatever we need to
11063 * atomically from the context of the caller.  The first blocked thread
11064 * to resume executing will get the process a new context, and the
11065 * process will resume executing.
11066 *
11067 * One added advantage of this approach is that on MMUs that
11068 * support a "flush all" operation, we will delay the flush until
11069 * cnum wrap-around, and then flush the TLB one time.  This
11070 * is rather rare, so it's a lot less expensive than making 8000
11071 * x-calls to flush the TLB 8000 times.
11072 *
11073 * A per-process (PP) lock is used to synchronize ctx allocations in
11074 * resume() and ctx invalidations here.
11075 */
11076static void
11077sfmmu_invalidate_ctx(sfmmu_t *sfmmup)
11078{
11079	cpuset_t cpuset;
11080	int cnum, currcnum;
11081	mmu_ctx_t *mmu_ctxp;
11082	int i;
11083	uint_t pstate_save;
11084
11085	SFMMU_STAT(sf_ctx_inv);
11086
11087	ASSERT(sfmmu_hat_lock_held(sfmmup));
11088	ASSERT(sfmmup != ksfmmup);
11089
11090	kpreempt_disable();
11091
11092	mmu_ctxp = CPU_MMU_CTXP(CPU);
11093	ASSERT(mmu_ctxp);
11094	ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
11095	ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
11096
11097	currcnum = sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum;
11098
11099	pstate_save = sfmmu_disable_intrs();
11100
11101	lock_set(&sfmmup->sfmmu_ctx_lock);	/* acquire PP lock */
11102	/* set HAT cnum invalid across all context domains. */
11103	for (i = 0; i < max_mmu_ctxdoms; i++) {
11104
11105		cnum = 	sfmmup->sfmmu_ctxs[i].cnum;
11106		if (cnum == INVALID_CONTEXT) {
11107			continue;
11108		}
11109
11110		sfmmup->sfmmu_ctxs[i].cnum = INVALID_CONTEXT;
11111	}
11112	membar_enter();	/* make sure globally visible to all CPUs */
11113	lock_clear(&sfmmup->sfmmu_ctx_lock);	/* release PP lock */
11114
11115	sfmmu_enable_intrs(pstate_save);
11116
11117	cpuset = sfmmup->sfmmu_cpusran;
11118	CPUSET_DEL(cpuset, CPU->cpu_id);
11119	CPUSET_AND(cpuset, cpu_ready_set);
11120	if (!CPUSET_ISNULL(cpuset)) {
11121		SFMMU_XCALL_STATS(sfmmup);
11122		xt_some(cpuset, sfmmu_raise_tsb_exception,
11123		    (uint64_t)sfmmup, INVALID_CONTEXT);
11124		xt_sync(cpuset);
11125		SFMMU_STAT(sf_tsb_raise_exception);
11126		SFMMU_MMU_STAT(mmu_tsb_raise_exception);
11127	}
11128
11129	/*
11130	 * If the hat to-be-invalidated is the same as the current
11131	 * process on local CPU we need to invalidate
11132	 * this CPU context as well.
11133	 */
11134	if ((sfmmu_getctx_sec() == currcnum) &&
11135	    (currcnum != INVALID_CONTEXT)) {
11136		sfmmu_setctx_sec(INVALID_CONTEXT);
11137		sfmmu_clear_utsbinfo();
11138	}
11139
11140	kpreempt_enable();
11141
11142	/*
11143	 * we hold the hat lock, so nobody should allocate a context
11144	 * for us yet
11145	 */
11146	ASSERT(sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum == INVALID_CONTEXT);
11147}
11148
11149#ifdef VAC
11150/*
11151 * We need to flush the cache in all cpus.  It is possible that
11152 * a process referenced a page as cacheable but has sinced exited
11153 * and cleared the mapping list.  We still to flush it but have no
11154 * state so all cpus is the only alternative.
11155 */
11156void
11157sfmmu_cache_flush(pfn_t pfnum, int vcolor)
11158{
11159	cpuset_t cpuset;
11160
11161	kpreempt_disable();
11162	cpuset = cpu_ready_set;
11163	CPUSET_DEL(cpuset, CPU->cpu_id);
11164	SFMMU_XCALL_STATS(NULL);	/* account to any ctx */
11165	xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
11166	xt_sync(cpuset);
11167	vac_flushpage(pfnum, vcolor);
11168	kpreempt_enable();
11169}
11170
11171void
11172sfmmu_cache_flushcolor(int vcolor, pfn_t pfnum)
11173{
11174	cpuset_t cpuset;
11175
11176	ASSERT(vcolor >= 0);
11177
11178	kpreempt_disable();
11179	cpuset = cpu_ready_set;
11180	CPUSET_DEL(cpuset, CPU->cpu_id);
11181	SFMMU_XCALL_STATS(NULL);	/* account to any ctx */
11182	xt_some(cpuset, vac_flushcolor_tl1, vcolor, pfnum);
11183	xt_sync(cpuset);
11184	vac_flushcolor(vcolor, pfnum);
11185	kpreempt_enable();
11186}
11187#endif	/* VAC */
11188
11189/*
11190 * We need to prevent processes from accessing the TSB using a cached physical
11191 * address.  It's alright if they try to access the TSB via virtual address
11192 * since they will just fault on that virtual address once the mapping has
11193 * been suspended.
11194 */
11195#pragma weak sendmondo_in_recover
11196
11197/* ARGSUSED */
11198static int
11199sfmmu_tsb_pre_relocator(caddr_t va, uint_t tsbsz, uint_t flags, void *tsbinfo)
11200{
11201	hatlock_t *hatlockp;
11202	struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
11203	sfmmu_t *sfmmup = tsbinfop->tsb_sfmmu;
11204	extern uint32_t sendmondo_in_recover;
11205
11206	if (flags != HAT_PRESUSPEND)
11207		return (0);
11208
11209	hatlockp = sfmmu_hat_enter(sfmmup);
11210
11211	tsbinfop->tsb_flags |= TSB_RELOC_FLAG;
11212
11213	/*
11214	 * For Cheetah+ Erratum 25:
11215	 * Wait for any active recovery to finish.  We can't risk
11216	 * relocating the TSB of the thread running mondo_recover_proc()
11217	 * since, if we did that, we would deadlock.  The scenario we are
11218	 * trying to avoid is as follows:
11219	 *
11220	 * THIS CPU			RECOVER CPU
11221	 * --------			-----------
11222	 *				Begins recovery, walking through TSB
11223	 * hat_pagesuspend() TSB TTE
11224	 *				TLB miss on TSB TTE, spins at TL1
11225	 * xt_sync()
11226	 *	send_mondo_timeout()
11227	 *	mondo_recover_proc()
11228	 *	((deadlocked))
11229	 *
11230	 * The second half of the workaround is that mondo_recover_proc()
11231	 * checks to see if the tsb_info has the RELOC flag set, and if it
11232	 * does, it skips over that TSB without ever touching tsbinfop->tsb_va
11233	 * and hence avoiding the TLB miss that could result in a deadlock.
11234	 */
11235	if (&sendmondo_in_recover) {
11236		membar_enter();	/* make sure RELOC flag visible */
11237		while (sendmondo_in_recover) {
11238			drv_usecwait(1);
11239			membar_consumer();
11240		}
11241	}
11242
11243	sfmmu_invalidate_ctx(sfmmup);
11244	sfmmu_hat_exit(hatlockp);
11245
11246	return (0);
11247}
11248
11249/* ARGSUSED */
11250static int
11251sfmmu_tsb_post_relocator(caddr_t va, uint_t tsbsz, uint_t flags,
11252	void *tsbinfo, pfn_t newpfn)
11253{
11254	hatlock_t *hatlockp;
11255	struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
11256	sfmmu_t	*sfmmup = tsbinfop->tsb_sfmmu;
11257
11258	if (flags != HAT_POSTUNSUSPEND)
11259		return (0);
11260
11261	hatlockp = sfmmu_hat_enter(sfmmup);
11262
11263	SFMMU_STAT(sf_tsb_reloc);
11264
11265	/*
11266	 * The process may have swapped out while we were relocating one
11267	 * of its TSBs.  If so, don't bother doing the setup since the
11268	 * process can't be using the memory anymore.
11269	 */
11270	if ((tsbinfop->tsb_flags & TSB_SWAPPED) == 0) {
11271		ASSERT(va == tsbinfop->tsb_va);
11272		sfmmu_tsbinfo_setup_phys(tsbinfop, newpfn);
11273		sfmmu_setup_tsbinfo(sfmmup);
11274
11275		if (tsbinfop->tsb_flags & TSB_FLUSH_NEEDED) {
11276			sfmmu_inv_tsb(tsbinfop->tsb_va,
11277			    TSB_BYTES(tsbinfop->tsb_szc));
11278			tsbinfop->tsb_flags &= ~TSB_FLUSH_NEEDED;
11279		}
11280	}
11281
11282	membar_exit();
11283	tsbinfop->tsb_flags &= ~TSB_RELOC_FLAG;
11284	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
11285
11286	sfmmu_hat_exit(hatlockp);
11287
11288	return (0);
11289}
11290
11291/*
11292 * Allocate and initialize a tsb_info structure.  Note that we may or may not
11293 * allocate a TSB here, depending on the flags passed in.
11294 */
11295static int
11296sfmmu_tsbinfo_alloc(struct tsb_info **tsbinfopp, int tsb_szc, int tte_sz_mask,
11297	uint_t flags, sfmmu_t *sfmmup)
11298{
11299	int err;
11300
11301	*tsbinfopp = (struct tsb_info *)kmem_cache_alloc(
11302	    sfmmu_tsbinfo_cache, KM_SLEEP);
11303
11304	if ((err = sfmmu_init_tsbinfo(*tsbinfopp, tte_sz_mask,
11305	    tsb_szc, flags, sfmmup)) != 0) {
11306		kmem_cache_free(sfmmu_tsbinfo_cache, *tsbinfopp);
11307		SFMMU_STAT(sf_tsb_allocfail);
11308		*tsbinfopp = NULL;
11309		return (err);
11310	}
11311	SFMMU_STAT(sf_tsb_alloc);
11312
11313	/*
11314	 * Bump the TSB size counters for this TSB size.
11315	 */
11316	(*(((int *)&sfmmu_tsbsize_stat) + tsb_szc))++;
11317	return (0);
11318}
11319
11320static void
11321sfmmu_tsb_free(struct tsb_info *tsbinfo)
11322{
11323	caddr_t tsbva = tsbinfo->tsb_va;
11324	uint_t tsb_size = TSB_BYTES(tsbinfo->tsb_szc);
11325	struct kmem_cache *kmem_cachep = tsbinfo->tsb_cache;
11326	vmem_t	*vmp = tsbinfo->tsb_vmp;
11327
11328	/*
11329	 * If we allocated this TSB from relocatable kernel memory, then we
11330	 * need to uninstall the callback handler.
11331	 */
11332	if (tsbinfo->tsb_cache != sfmmu_tsb8k_cache) {
11333		uintptr_t slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
11334		caddr_t slab_vaddr = (caddr_t)((uintptr_t)tsbva & slab_mask);
11335		page_t **ppl;
11336		int ret;
11337
11338		ret = as_pagelock(&kas, &ppl, slab_vaddr, PAGESIZE, S_WRITE);
11339		ASSERT(ret == 0);
11340		hat_delete_callback(tsbva, (uint_t)tsb_size, (void *)tsbinfo,
11341		    0, NULL);
11342		as_pageunlock(&kas, ppl, slab_vaddr, PAGESIZE, S_WRITE);
11343	}
11344
11345	if (kmem_cachep != NULL) {
11346		kmem_cache_free(kmem_cachep, tsbva);
11347	} else {
11348		vmem_xfree(vmp, (void *)tsbva, tsb_size);
11349	}
11350	tsbinfo->tsb_va = (caddr_t)0xbad00bad;
11351	atomic_add_64(&tsb_alloc_bytes, -(int64_t)tsb_size);
11352}
11353
11354static void
11355sfmmu_tsbinfo_free(struct tsb_info *tsbinfo)
11356{
11357	if ((tsbinfo->tsb_flags & TSB_SWAPPED) == 0) {
11358		sfmmu_tsb_free(tsbinfo);
11359	}
11360	kmem_cache_free(sfmmu_tsbinfo_cache, tsbinfo);
11361
11362}
11363
11364/*
11365 * Setup all the references to physical memory for this tsbinfo.
11366 * The underlying page(s) must be locked.
11367 */
11368static void
11369sfmmu_tsbinfo_setup_phys(struct tsb_info *tsbinfo, pfn_t pfn)
11370{
11371	ASSERT(pfn != PFN_INVALID);
11372	ASSERT(pfn == va_to_pfn(tsbinfo->tsb_va));
11373
11374#ifndef sun4v
11375	if (tsbinfo->tsb_szc == 0) {
11376		sfmmu_memtte(&tsbinfo->tsb_tte, pfn,
11377		    PROT_WRITE|PROT_READ, TTE8K);
11378	} else {
11379		/*
11380		 * Round down PA and use a large mapping; the handlers will
11381		 * compute the TSB pointer at the correct offset into the
11382		 * big virtual page.  NOTE: this assumes all TSBs larger
11383		 * than 8K must come from physically contiguous slabs of
11384		 * size tsb_slab_size.
11385		 */
11386		sfmmu_memtte(&tsbinfo->tsb_tte, pfn & ~tsb_slab_mask,
11387		    PROT_WRITE|PROT_READ, tsb_slab_ttesz);
11388	}
11389	tsbinfo->tsb_pa = ptob(pfn);
11390
11391	TTE_SET_LOCKED(&tsbinfo->tsb_tte); /* lock the tte into dtlb */
11392	TTE_SET_MOD(&tsbinfo->tsb_tte);    /* enable writes */
11393
11394	ASSERT(TTE_IS_PRIVILEGED(&tsbinfo->tsb_tte));
11395	ASSERT(TTE_IS_LOCKED(&tsbinfo->tsb_tte));
11396#else /* sun4v */
11397	tsbinfo->tsb_pa = ptob(pfn);
11398#endif /* sun4v */
11399}
11400
11401
11402/*
11403 * Returns zero on success, ENOMEM if over the high water mark,
11404 * or EAGAIN if the caller needs to retry with a smaller TSB
11405 * size (or specify TSB_FORCEALLOC if the allocation can't fail).
11406 *
11407 * This call cannot fail to allocate a TSB if TSB_FORCEALLOC
11408 * is specified and the TSB requested is PAGESIZE, though it
11409 * may sleep waiting for memory if sufficient memory is not
11410 * available.
11411 */
11412static int
11413sfmmu_init_tsbinfo(struct tsb_info *tsbinfo, int tteszmask,
11414    int tsbcode, uint_t flags, sfmmu_t *sfmmup)
11415{
11416	caddr_t vaddr = NULL;
11417	caddr_t slab_vaddr;
11418	uintptr_t slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
11419	int tsbbytes = TSB_BYTES(tsbcode);
11420	int lowmem = 0;
11421	struct kmem_cache *kmem_cachep = NULL;
11422	vmem_t *vmp = NULL;
11423	lgrp_id_t lgrpid = LGRP_NONE;
11424	pfn_t pfn;
11425	uint_t cbflags = HAC_SLEEP;
11426	page_t **pplist;
11427	int ret;
11428
11429	if (flags & (TSB_FORCEALLOC | TSB_SWAPIN | TSB_GROW | TSB_SHRINK))
11430		flags |= TSB_ALLOC;
11431
11432	ASSERT((flags & TSB_FORCEALLOC) == 0 || tsbcode == TSB_MIN_SZCODE);
11433
11434	tsbinfo->tsb_sfmmu = sfmmup;
11435
11436	/*
11437	 * If not allocating a TSB, set up the tsbinfo, set TSB_SWAPPED, and
11438	 * return.
11439	 */
11440	if ((flags & TSB_ALLOC) == 0) {
11441		tsbinfo->tsb_szc = tsbcode;
11442		tsbinfo->tsb_ttesz_mask = tteszmask;
11443		tsbinfo->tsb_va = (caddr_t)0xbadbadbeef;
11444		tsbinfo->tsb_pa = -1;
11445		tsbinfo->tsb_tte.ll = 0;
11446		tsbinfo->tsb_next = NULL;
11447		tsbinfo->tsb_flags = TSB_SWAPPED;
11448		tsbinfo->tsb_cache = NULL;
11449		tsbinfo->tsb_vmp = NULL;
11450		return (0);
11451	}
11452
11453#ifdef DEBUG
11454	/*
11455	 * For debugging:
11456	 * Randomly force allocation failures every tsb_alloc_mtbf
11457	 * tries if TSB_FORCEALLOC is not specified.  This will
11458	 * return ENOMEM if tsb_alloc_mtbf is odd, or EAGAIN if
11459	 * it is even, to allow testing of both failure paths...
11460	 */
11461	if (tsb_alloc_mtbf && ((flags & TSB_FORCEALLOC) == 0) &&
11462	    (tsb_alloc_count++ == tsb_alloc_mtbf)) {
11463		tsb_alloc_count = 0;
11464		tsb_alloc_fail_mtbf++;
11465		return ((tsb_alloc_mtbf & 1)? ENOMEM : EAGAIN);
11466	}
11467#endif	/* DEBUG */
11468
11469	/*
11470	 * Enforce high water mark if we are not doing a forced allocation
11471	 * and are not shrinking a process' TSB.
11472	 */
11473	if ((flags & TSB_SHRINK) == 0 &&
11474	    (tsbbytes + tsb_alloc_bytes) > tsb_alloc_hiwater) {
11475		if ((flags & TSB_FORCEALLOC) == 0)
11476			return (ENOMEM);
11477		lowmem = 1;
11478	}
11479
11480	/*
11481	 * Allocate from the correct location based upon the size of the TSB
11482	 * compared to the base page size, and what memory conditions dictate.
11483	 * Note we always do nonblocking allocations from the TSB arena since
11484	 * we don't want memory fragmentation to cause processes to block
11485	 * indefinitely waiting for memory; until the kernel algorithms that
11486	 * coalesce large pages are improved this is our best option.
11487	 *
11488	 * Algorithm:
11489	 *	If allocating a "large" TSB (>8K), allocate from the
11490	 *		appropriate kmem_tsb_default_arena vmem arena
11491	 *	else if low on memory or the TSB_FORCEALLOC flag is set or
11492	 *	tsb_forceheap is set
11493	 *		Allocate from kernel heap via sfmmu_tsb8k_cache with
11494	 *		KM_SLEEP (never fails)
11495	 *	else
11496	 *		Allocate from appropriate sfmmu_tsb_cache with
11497	 *		KM_NOSLEEP
11498	 *	endif
11499	 */
11500	if (tsb_lgrp_affinity)
11501		lgrpid = lgrp_home_id(curthread);
11502	if (lgrpid == LGRP_NONE)
11503		lgrpid = 0;	/* use lgrp of boot CPU */
11504
11505	if (tsbbytes > MMU_PAGESIZE) {
11506		vmp = kmem_tsb_default_arena[lgrpid];
11507		vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes, 0, 0,
11508		    NULL, NULL, VM_NOSLEEP);
11509#ifdef	DEBUG
11510	} else if (lowmem || (flags & TSB_FORCEALLOC) || tsb_forceheap) {
11511#else	/* !DEBUG */
11512	} else if (lowmem || (flags & TSB_FORCEALLOC)) {
11513#endif	/* DEBUG */
11514		kmem_cachep = sfmmu_tsb8k_cache;
11515		vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_SLEEP);
11516		ASSERT(vaddr != NULL);
11517	} else {
11518		kmem_cachep = sfmmu_tsb_cache[lgrpid];
11519		vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_NOSLEEP);
11520	}
11521
11522	tsbinfo->tsb_cache = kmem_cachep;
11523	tsbinfo->tsb_vmp = vmp;
11524
11525	if (vaddr == NULL) {
11526		return (EAGAIN);
11527	}
11528
11529	atomic_add_64(&tsb_alloc_bytes, (int64_t)tsbbytes);
11530	kmem_cachep = tsbinfo->tsb_cache;
11531
11532	/*
11533	 * If we are allocating from outside the cage, then we need to
11534	 * register a relocation callback handler.  Note that for now
11535	 * since pseudo mappings always hang off of the slab's root page,
11536	 * we need only lock the first 8K of the TSB slab.  This is a bit
11537	 * hacky but it is good for performance.
11538	 */
11539	if (kmem_cachep != sfmmu_tsb8k_cache) {
11540		slab_vaddr = (caddr_t)((uintptr_t)vaddr & slab_mask);
11541		ret = as_pagelock(&kas, &pplist, slab_vaddr, PAGESIZE, S_WRITE);
11542		ASSERT(ret == 0);
11543		ret = hat_add_callback(sfmmu_tsb_cb_id, vaddr, (uint_t)tsbbytes,
11544		    cbflags, (void *)tsbinfo, &pfn, NULL);
11545
11546		/*
11547		 * Need to free up resources if we could not successfully
11548		 * add the callback function and return an error condition.
11549		 */
11550		if (ret != 0) {
11551			if (kmem_cachep) {
11552				kmem_cache_free(kmem_cachep, vaddr);
11553			} else {
11554				vmem_xfree(vmp, (void *)vaddr, tsbbytes);
11555			}
11556			as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE,
11557			    S_WRITE);
11558			return (EAGAIN);
11559		}
11560	} else {
11561		/*
11562		 * Since allocation of 8K TSBs from heap is rare and occurs
11563		 * during memory pressure we allocate them from permanent
11564		 * memory rather than using callbacks to get the PFN.
11565		 */
11566		pfn = hat_getpfnum(kas.a_hat, vaddr);
11567	}
11568
11569	tsbinfo->tsb_va = vaddr;
11570	tsbinfo->tsb_szc = tsbcode;
11571	tsbinfo->tsb_ttesz_mask = tteszmask;
11572	tsbinfo->tsb_next = NULL;
11573	tsbinfo->tsb_flags = 0;
11574
11575	sfmmu_tsbinfo_setup_phys(tsbinfo, pfn);
11576
11577	if (kmem_cachep != sfmmu_tsb8k_cache) {
11578		as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE, S_WRITE);
11579	}
11580
11581	sfmmu_inv_tsb(vaddr, tsbbytes);
11582	return (0);
11583}
11584
11585/*
11586 * Initialize per cpu tsb and per cpu tsbmiss_area
11587 */
11588void
11589sfmmu_init_tsbs(void)
11590{
11591	int i;
11592	struct tsbmiss	*tsbmissp;
11593	struct kpmtsbm	*kpmtsbmp;
11594#ifndef sun4v
11595	extern int	dcache_line_mask;
11596#endif /* sun4v */
11597	extern uint_t	vac_colors;
11598
11599	/*
11600	 * Init. tsb miss area.
11601	 */
11602	tsbmissp = tsbmiss_area;
11603
11604	for (i = 0; i < NCPU; tsbmissp++, i++) {
11605		/*
11606		 * initialize the tsbmiss area.
11607		 * Do this for all possible CPUs as some may be added
11608		 * while the system is running. There is no cost to this.
11609		 */
11610		tsbmissp->ksfmmup = ksfmmup;
11611#ifndef sun4v
11612		tsbmissp->dcache_line_mask = (uint16_t)dcache_line_mask;
11613#endif /* sun4v */
11614		tsbmissp->khashstart =
11615		    (struct hmehash_bucket *)va_to_pa((caddr_t)khme_hash);
11616		tsbmissp->uhashstart =
11617		    (struct hmehash_bucket *)va_to_pa((caddr_t)uhme_hash);
11618		tsbmissp->khashsz = khmehash_num;
11619		tsbmissp->uhashsz = uhmehash_num;
11620	}
11621
11622	sfmmu_tsb_cb_id = hat_register_callback('T'<<16 | 'S' << 8 | 'B',
11623	    sfmmu_tsb_pre_relocator, sfmmu_tsb_post_relocator, NULL, 0);
11624
11625	if (kpm_enable == 0)
11626		return;
11627
11628	/* -- Begin KPM specific init -- */
11629
11630	if (kpm_smallpages) {
11631		/*
11632		 * If we're using base pagesize pages for seg_kpm
11633		 * mappings, we use the kernel TSB since we can't afford
11634		 * to allocate a second huge TSB for these mappings.
11635		 */
11636		kpm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
11637		kpm_tsbsz = ktsb_szcode;
11638		kpmsm_tsbbase = kpm_tsbbase;
11639		kpmsm_tsbsz = kpm_tsbsz;
11640	} else {
11641		/*
11642		 * In VAC conflict case, just put the entries in the
11643		 * kernel 8K indexed TSB for now so we can find them.
11644		 * This could really be changed in the future if we feel
11645		 * the need...
11646		 */
11647		kpmsm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
11648		kpmsm_tsbsz = ktsb_szcode;
11649		kpm_tsbbase = ktsb_phys? ktsb4m_pbase : (uint64_t)ktsb4m_base;
11650		kpm_tsbsz = ktsb4m_szcode;
11651	}
11652
11653	kpmtsbmp = kpmtsbm_area;
11654	for (i = 0; i < NCPU; kpmtsbmp++, i++) {
11655		/*
11656		 * Initialize the kpmtsbm area.
11657		 * Do this for all possible CPUs as some may be added
11658		 * while the system is running. There is no cost to this.
11659		 */
11660		kpmtsbmp->vbase = kpm_vbase;
11661		kpmtsbmp->vend = kpm_vbase + kpm_size * vac_colors;
11662		kpmtsbmp->sz_shift = kpm_size_shift;
11663		kpmtsbmp->kpmp_shift = kpmp_shift;
11664		kpmtsbmp->kpmp2pshft = (uchar_t)kpmp2pshft;
11665		if (kpm_smallpages == 0) {
11666			kpmtsbmp->kpmp_table_sz = kpmp_table_sz;
11667			kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_table);
11668		} else {
11669			kpmtsbmp->kpmp_table_sz = kpmp_stable_sz;
11670			kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_stable);
11671		}
11672		kpmtsbmp->msegphashpa = va_to_pa(memseg_phash);
11673		kpmtsbmp->flags = KPMTSBM_ENABLE_FLAG;
11674#ifdef	DEBUG
11675		kpmtsbmp->flags |= (kpm_tsbmtl) ?  KPMTSBM_TLTSBM_FLAG : 0;
11676#endif	/* DEBUG */
11677		if (ktsb_phys)
11678			kpmtsbmp->flags |= KPMTSBM_TSBPHYS_FLAG;
11679	}
11680
11681	/* -- End KPM specific init -- */
11682}
11683
11684/* Avoid using sfmmu_tsbinfo_alloc() to avoid kmem_alloc - no real reason */
11685struct tsb_info ktsb_info[2];
11686
11687/*
11688 * Called from hat_kern_setup() to setup the tsb_info for ksfmmup.
11689 */
11690void
11691sfmmu_init_ktsbinfo()
11692{
11693	ASSERT(ksfmmup != NULL);
11694	ASSERT(ksfmmup->sfmmu_tsb == NULL);
11695	/*
11696	 * Allocate tsbinfos for kernel and copy in data
11697	 * to make debug easier and sun4v setup easier.
11698	 */
11699	ktsb_info[0].tsb_sfmmu = ksfmmup;
11700	ktsb_info[0].tsb_szc = ktsb_szcode;
11701	ktsb_info[0].tsb_ttesz_mask = TSB8K|TSB64K|TSB512K;
11702	ktsb_info[0].tsb_va = ktsb_base;
11703	ktsb_info[0].tsb_pa = ktsb_pbase;
11704	ktsb_info[0].tsb_flags = 0;
11705	ktsb_info[0].tsb_tte.ll = 0;
11706	ktsb_info[0].tsb_cache = NULL;
11707
11708	ktsb_info[1].tsb_sfmmu = ksfmmup;
11709	ktsb_info[1].tsb_szc = ktsb4m_szcode;
11710	ktsb_info[1].tsb_ttesz_mask = TSB4M;
11711	ktsb_info[1].tsb_va = ktsb4m_base;
11712	ktsb_info[1].tsb_pa = ktsb4m_pbase;
11713	ktsb_info[1].tsb_flags = 0;
11714	ktsb_info[1].tsb_tte.ll = 0;
11715	ktsb_info[1].tsb_cache = NULL;
11716
11717	/* Link them into ksfmmup. */
11718	ktsb_info[0].tsb_next = &ktsb_info[1];
11719	ktsb_info[1].tsb_next = NULL;
11720	ksfmmup->sfmmu_tsb = &ktsb_info[0];
11721
11722	sfmmu_setup_tsbinfo(ksfmmup);
11723}
11724
11725/*
11726 * Cache the last value returned from va_to_pa().  If the VA specified
11727 * in the current call to cached_va_to_pa() maps to the same Page (as the
11728 * previous call to cached_va_to_pa()), then compute the PA using
11729 * cached info, else call va_to_pa().
11730 *
11731 * Note: this function is neither MT-safe nor consistent in the presence
11732 * of multiple, interleaved threads.  This function was created to enable
11733 * an optimization used during boot (at a point when there's only one thread
11734 * executing on the "boot CPU", and before startup_vm() has been called).
11735 */
11736static uint64_t
11737cached_va_to_pa(void *vaddr)
11738{
11739	static uint64_t prev_vaddr_base = 0;
11740	static uint64_t prev_pfn = 0;
11741
11742	if ((((uint64_t)vaddr) & MMU_PAGEMASK) == prev_vaddr_base) {
11743		return (prev_pfn | ((uint64_t)vaddr & MMU_PAGEOFFSET));
11744	} else {
11745		uint64_t pa = va_to_pa(vaddr);
11746
11747		if (pa != ((uint64_t)-1)) {
11748			/*
11749			 * Computed physical address is valid.  Cache its
11750			 * related info for the next cached_va_to_pa() call.
11751			 */
11752			prev_pfn = pa & MMU_PAGEMASK;
11753			prev_vaddr_base = ((uint64_t)vaddr) & MMU_PAGEMASK;
11754		}
11755
11756		return (pa);
11757	}
11758}
11759
11760/*
11761 * Carve up our nucleus hblk region.  We may allocate more hblks than
11762 * asked due to rounding errors but we are guaranteed to have at least
11763 * enough space to allocate the requested number of hblk8's and hblk1's.
11764 */
11765void
11766sfmmu_init_nucleus_hblks(caddr_t addr, size_t size, int nhblk8, int nhblk1)
11767{
11768	struct hme_blk *hmeblkp;
11769	size_t hme8blk_sz, hme1blk_sz;
11770	size_t i;
11771	size_t hblk8_bound;
11772	ulong_t j = 0, k = 0;
11773
11774	ASSERT(addr != NULL && size != 0);
11775
11776	/* Need to use proper structure alignment */
11777	hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
11778	hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
11779
11780	nucleus_hblk8.list = (void *)addr;
11781	nucleus_hblk8.index = 0;
11782
11783	/*
11784	 * Use as much memory as possible for hblk8's since we
11785	 * expect all bop_alloc'ed memory to be allocated in 8k chunks.
11786	 * We need to hold back enough space for the hblk1's which
11787	 * we'll allocate next.
11788	 */
11789	hblk8_bound = size - (nhblk1 * hme1blk_sz) - hme8blk_sz;
11790	for (i = 0; i <= hblk8_bound; i += hme8blk_sz, j++) {
11791		hmeblkp = (struct hme_blk *)addr;
11792		addr += hme8blk_sz;
11793		hmeblkp->hblk_nuc_bit = 1;
11794		hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
11795	}
11796	nucleus_hblk8.len = j;
11797	ASSERT(j >= nhblk8);
11798	SFMMU_STAT_ADD(sf_hblk8_ncreate, j);
11799
11800	nucleus_hblk1.list = (void *)addr;
11801	nucleus_hblk1.index = 0;
11802	for (; i <= (size - hme1blk_sz); i += hme1blk_sz, k++) {
11803		hmeblkp = (struct hme_blk *)addr;
11804		addr += hme1blk_sz;
11805		hmeblkp->hblk_nuc_bit = 1;
11806		hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
11807	}
11808	ASSERT(k >= nhblk1);
11809	nucleus_hblk1.len = k;
11810	SFMMU_STAT_ADD(sf_hblk1_ncreate, k);
11811}
11812
11813/*
11814 * This function is currently not supported on this platform. For what
11815 * it's supposed to do, see hat.c and hat_srmmu.c
11816 */
11817/* ARGSUSED */
11818faultcode_t
11819hat_softlock(struct hat *hat, caddr_t addr, size_t *lenp, page_t **ppp,
11820    uint_t flags)
11821{
11822	ASSERT(hat->sfmmu_xhat_provider == NULL);
11823	return (FC_NOSUPPORT);
11824}
11825
11826/*
11827 * Searchs the mapping list of the page for a mapping of the same size. If not
11828 * found the corresponding bit is cleared in the p_index field. When large
11829 * pages are more prevalent in the system, we can maintain the mapping list
11830 * in order and we don't have to traverse the list each time. Just check the
11831 * next and prev entries, and if both are of different size, we clear the bit.
11832 */
11833static void
11834sfmmu_rm_large_mappings(page_t *pp, int ttesz)
11835{
11836	struct sf_hment *sfhmep;
11837	struct hme_blk *hmeblkp;
11838	int	index;
11839	pgcnt_t	npgs;
11840
11841	ASSERT(ttesz > TTE8K);
11842
11843	ASSERT(sfmmu_mlist_held(pp));
11844
11845	ASSERT(PP_ISMAPPED_LARGE(pp));
11846
11847	/*
11848	 * Traverse mapping list looking for another mapping of same size.
11849	 * since we only want to clear index field if all mappings of
11850	 * that size are gone.
11851	 */
11852
11853	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
11854		hmeblkp = sfmmu_hmetohblk(sfhmep);
11855		if (hmeblkp->hblk_xhat_bit)
11856			continue;
11857		if (hme_size(sfhmep) == ttesz) {
11858			/*
11859			 * another mapping of the same size. don't clear index.
11860			 */
11861			return;
11862		}
11863	}
11864
11865	/*
11866	 * Clear the p_index bit for large page.
11867	 */
11868	index = PAGESZ_TO_INDEX(ttesz);
11869	npgs = TTEPAGES(ttesz);
11870	while (npgs-- > 0) {
11871		ASSERT(pp->p_index & index);
11872		pp->p_index &= ~index;
11873		pp = PP_PAGENEXT(pp);
11874	}
11875}
11876
11877/*
11878 * return supported features
11879 */
11880/* ARGSUSED */
11881int
11882hat_supported(enum hat_features feature, void *arg)
11883{
11884	switch (feature) {
11885	case    HAT_SHARED_PT:
11886	case	HAT_DYNAMIC_ISM_UNMAP:
11887	case	HAT_VMODSORT:
11888		return (1);
11889	default:
11890		return (0);
11891	}
11892}
11893
11894void
11895hat_enter(struct hat *hat)
11896{
11897	hatlock_t	*hatlockp;
11898
11899	if (hat != ksfmmup) {
11900		hatlockp = TSB_HASH(hat);
11901		mutex_enter(HATLOCK_MUTEXP(hatlockp));
11902	}
11903}
11904
11905void
11906hat_exit(struct hat *hat)
11907{
11908	hatlock_t	*hatlockp;
11909
11910	if (hat != ksfmmup) {
11911		hatlockp = TSB_HASH(hat);
11912		mutex_exit(HATLOCK_MUTEXP(hatlockp));
11913	}
11914}
11915
11916/*ARGSUSED*/
11917void
11918hat_reserve(struct as *as, caddr_t addr, size_t len)
11919{
11920}
11921
11922static void
11923hat_kstat_init(void)
11924{
11925	kstat_t *ksp;
11926
11927	ksp = kstat_create("unix", 0, "sfmmu_global_stat", "hat",
11928		KSTAT_TYPE_RAW, sizeof (struct sfmmu_global_stat),
11929		KSTAT_FLAG_VIRTUAL);
11930	if (ksp) {
11931		ksp->ks_data = (void *) &sfmmu_global_stat;
11932		kstat_install(ksp);
11933	}
11934	ksp = kstat_create("unix", 0, "sfmmu_tsbsize_stat", "hat",
11935		KSTAT_TYPE_RAW, sizeof (struct sfmmu_tsbsize_stat),
11936		KSTAT_FLAG_VIRTUAL);
11937	if (ksp) {
11938		ksp->ks_data = (void *) &sfmmu_tsbsize_stat;
11939		kstat_install(ksp);
11940	}
11941	ksp = kstat_create("unix", 0, "sfmmu_percpu_stat", "hat",
11942		KSTAT_TYPE_RAW, sizeof (struct sfmmu_percpu_stat) * NCPU,
11943		KSTAT_FLAG_WRITABLE);
11944	if (ksp) {
11945		ksp->ks_update = sfmmu_kstat_percpu_update;
11946		kstat_install(ksp);
11947	}
11948}
11949
11950/* ARGSUSED */
11951static int
11952sfmmu_kstat_percpu_update(kstat_t *ksp, int rw)
11953{
11954	struct sfmmu_percpu_stat *cpu_kstat = ksp->ks_data;
11955	struct tsbmiss *tsbm = tsbmiss_area;
11956	struct kpmtsbm *kpmtsbm = kpmtsbm_area;
11957	int i;
11958
11959	ASSERT(cpu_kstat);
11960	if (rw == KSTAT_READ) {
11961		for (i = 0; i < NCPU; cpu_kstat++, tsbm++, kpmtsbm++, i++) {
11962			cpu_kstat->sf_itlb_misses = tsbm->itlb_misses;
11963			cpu_kstat->sf_dtlb_misses = tsbm->dtlb_misses;
11964			cpu_kstat->sf_utsb_misses = tsbm->utsb_misses -
11965				tsbm->uprot_traps;
11966			cpu_kstat->sf_ktsb_misses = tsbm->ktsb_misses +
11967				kpmtsbm->kpm_tsb_misses - tsbm->kprot_traps;
11968
11969			if (tsbm->itlb_misses > 0 && tsbm->dtlb_misses > 0) {
11970				cpu_kstat->sf_tsb_hits =
11971				(tsbm->itlb_misses + tsbm->dtlb_misses) -
11972				(tsbm->utsb_misses + tsbm->ktsb_misses +
11973				kpmtsbm->kpm_tsb_misses);
11974			} else {
11975				cpu_kstat->sf_tsb_hits = 0;
11976			}
11977			cpu_kstat->sf_umod_faults = tsbm->uprot_traps;
11978			cpu_kstat->sf_kmod_faults = tsbm->kprot_traps;
11979		}
11980	} else {
11981		/* KSTAT_WRITE is used to clear stats */
11982		for (i = 0; i < NCPU; tsbm++, kpmtsbm++, i++) {
11983			tsbm->itlb_misses = 0;
11984			tsbm->dtlb_misses = 0;
11985			tsbm->utsb_misses = 0;
11986			tsbm->ktsb_misses = 0;
11987			tsbm->uprot_traps = 0;
11988			tsbm->kprot_traps = 0;
11989			kpmtsbm->kpm_dtlb_misses = 0;
11990			kpmtsbm->kpm_tsb_misses = 0;
11991		}
11992	}
11993	return (0);
11994}
11995
11996#ifdef	DEBUG
11997
11998tte_t  *gorig[NCPU], *gcur[NCPU], *gnew[NCPU];
11999
12000/*
12001 * A tte checker. *orig_old is the value we read before cas.
12002 *	*cur is the value returned by cas.
12003 *	*new is the desired value when we do the cas.
12004 *
12005 *	*hmeblkp is currently unused.
12006 */
12007
12008/* ARGSUSED */
12009void
12010chk_tte(tte_t *orig_old, tte_t *cur, tte_t *new, struct hme_blk *hmeblkp)
12011{
12012	pfn_t i, j, k;
12013	int cpuid = CPU->cpu_id;
12014
12015	gorig[cpuid] = orig_old;
12016	gcur[cpuid] = cur;
12017	gnew[cpuid] = new;
12018
12019#ifdef lint
12020	hmeblkp = hmeblkp;
12021#endif
12022
12023	if (TTE_IS_VALID(orig_old)) {
12024		if (TTE_IS_VALID(cur)) {
12025			i = TTE_TO_TTEPFN(orig_old);
12026			j = TTE_TO_TTEPFN(cur);
12027			k = TTE_TO_TTEPFN(new);
12028			if (i != j) {
12029				/* remap error? */
12030				panic("chk_tte: bad pfn, 0x%lx, 0x%lx", i, j);
12031			}
12032
12033			if (i != k) {
12034				/* remap error? */
12035				panic("chk_tte: bad pfn2, 0x%lx, 0x%lx", i, k);
12036			}
12037		} else {
12038			if (TTE_IS_VALID(new)) {
12039				panic("chk_tte: invalid cur? ");
12040			}
12041
12042			i = TTE_TO_TTEPFN(orig_old);
12043			k = TTE_TO_TTEPFN(new);
12044			if (i != k) {
12045				panic("chk_tte: bad pfn3, 0x%lx, 0x%lx", i, k);
12046			}
12047		}
12048	} else {
12049		if (TTE_IS_VALID(cur)) {
12050			j = TTE_TO_TTEPFN(cur);
12051			if (TTE_IS_VALID(new)) {
12052				k = TTE_TO_TTEPFN(new);
12053				if (j != k) {
12054					panic("chk_tte: bad pfn4, 0x%lx, 0x%lx",
12055					    j, k);
12056				}
12057			} else {
12058				panic("chk_tte: why here?");
12059			}
12060		} else {
12061			if (!TTE_IS_VALID(new)) {
12062				panic("chk_tte: why here2 ?");
12063			}
12064		}
12065	}
12066}
12067
12068#endif /* DEBUG */
12069
12070extern void prefetch_tsbe_read(struct tsbe *);
12071extern void prefetch_tsbe_write(struct tsbe *);
12072
12073
12074/*
12075 * We want to prefetch 7 cache lines ahead for our read prefetch.  This gives
12076 * us optimal performance on Cheetah+.  You can only have 8 outstanding
12077 * prefetches at any one time, so we opted for 7 read prefetches and 1 write
12078 * prefetch to make the most utilization of the prefetch capability.
12079 */
12080#define	TSBE_PREFETCH_STRIDE (7)
12081
12082void
12083sfmmu_copy_tsb(struct tsb_info *old_tsbinfo, struct tsb_info *new_tsbinfo)
12084{
12085	int old_bytes = TSB_BYTES(old_tsbinfo->tsb_szc);
12086	int new_bytes = TSB_BYTES(new_tsbinfo->tsb_szc);
12087	int old_entries = TSB_ENTRIES(old_tsbinfo->tsb_szc);
12088	int new_entries = TSB_ENTRIES(new_tsbinfo->tsb_szc);
12089	struct tsbe *old;
12090	struct tsbe *new;
12091	struct tsbe *new_base = (struct tsbe *)new_tsbinfo->tsb_va;
12092	uint64_t va;
12093	int new_offset;
12094	int i;
12095	int vpshift;
12096	int last_prefetch;
12097
12098	if (old_bytes == new_bytes) {
12099		bcopy(old_tsbinfo->tsb_va, new_tsbinfo->tsb_va, new_bytes);
12100	} else {
12101
12102		/*
12103		 * A TSBE is 16 bytes which means there are four TSBE's per
12104		 * P$ line (64 bytes), thus every 4 TSBE's we prefetch.
12105		 */
12106		old = (struct tsbe *)old_tsbinfo->tsb_va;
12107		last_prefetch = old_entries - (4*(TSBE_PREFETCH_STRIDE+1));
12108		for (i = 0; i < old_entries; i++, old++) {
12109			if (((i & (4-1)) == 0) && (i < last_prefetch))
12110				prefetch_tsbe_read(old);
12111			if (!old->tte_tag.tag_invalid) {
12112				/*
12113				 * We have a valid TTE to remap.  Check the
12114				 * size.  We won't remap 64K or 512K TTEs
12115				 * because they span more than one TSB entry
12116				 * and are indexed using an 8K virt. page.
12117				 * Ditto for 32M and 256M TTEs.
12118				 */
12119				if (TTE_CSZ(&old->tte_data) == TTE64K ||
12120				    TTE_CSZ(&old->tte_data) == TTE512K)
12121					continue;
12122				if (mmu_page_sizes == max_mmu_page_sizes) {
12123				    if (TTE_CSZ(&old->tte_data) == TTE32M ||
12124					TTE_CSZ(&old->tte_data) == TTE256M)
12125					    continue;
12126				}
12127
12128				/* clear the lower 22 bits of the va */
12129				va = *(uint64_t *)old << 22;
12130				/* turn va into a virtual pfn */
12131				va >>= 22 - TSB_START_SIZE;
12132				/*
12133				 * or in bits from the offset in the tsb
12134				 * to get the real virtual pfn. These
12135				 * correspond to bits [21:13] in the va
12136				 */
12137				vpshift =
12138				    TTE_BSZS_SHIFT(TTE_CSZ(&old->tte_data)) &
12139				    0x1ff;
12140				va |= (i << vpshift);
12141				va >>= vpshift;
12142				new_offset = va & (new_entries - 1);
12143				new = new_base + new_offset;
12144				prefetch_tsbe_write(new);
12145				*new = *old;
12146			}
12147		}
12148	}
12149}
12150
12151/*
12152 * unused in sfmmu
12153 */
12154void
12155hat_dump(void)
12156{
12157}
12158
12159/*
12160 * Called when a thread is exiting and we have switched to the kernel address
12161 * space.  Perform the same VM initialization resume() uses when switching
12162 * processes.
12163 *
12164 * Note that sfmmu_load_mmustate() is currently a no-op for kernel threads, but
12165 * we call it anyway in case the semantics change in the future.
12166 */
12167/*ARGSUSED*/
12168void
12169hat_thread_exit(kthread_t *thd)
12170{
12171	uint64_t pgsz_cnum;
12172	uint_t pstate_save;
12173
12174	ASSERT(thd->t_procp->p_as == &kas);
12175
12176	pgsz_cnum = KCONTEXT;
12177#ifdef sun4u
12178	pgsz_cnum |= (ksfmmup->sfmmu_cext << CTXREG_EXT_SHIFT);
12179#endif
12180	/*
12181	 * Note that sfmmu_load_mmustate() is currently a no-op for
12182	 * kernel threads. We need to disable interrupts here,
12183	 * simply because otherwise sfmmu_load_mmustate() would panic
12184	 * if the caller does not disable interrupts.
12185	 */
12186	pstate_save = sfmmu_disable_intrs();
12187	sfmmu_setctx_sec(pgsz_cnum);
12188	sfmmu_load_mmustate(ksfmmup);
12189	sfmmu_enable_intrs(pstate_save);
12190}
12191