hat_i86.c revision 7240:c4957ab6a78e
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#pragma ident	"%Z%%M%	%I%	%E% SMI"
27
28/*
29 * VM - Hardware Address Translation management for i386 and amd64
30 *
31 * Implementation of the interfaces described in <common/vm/hat.h>
32 *
33 * Nearly all the details of how the hardware is managed should not be
34 * visible outside this layer except for misc. machine specific functions
35 * that work in conjunction with this code.
36 *
37 * Routines used only inside of i86pc/vm start with hati_ for HAT Internal.
38 */
39
40#include <sys/machparam.h>
41#include <sys/machsystm.h>
42#include <sys/mman.h>
43#include <sys/types.h>
44#include <sys/systm.h>
45#include <sys/cpuvar.h>
46#include <sys/thread.h>
47#include <sys/proc.h>
48#include <sys/cpu.h>
49#include <sys/kmem.h>
50#include <sys/disp.h>
51#include <sys/shm.h>
52#include <sys/sysmacros.h>
53#include <sys/machparam.h>
54#include <sys/vmem.h>
55#include <sys/vmsystm.h>
56#include <sys/promif.h>
57#include <sys/var.h>
58#include <sys/x86_archext.h>
59#include <sys/atomic.h>
60#include <sys/bitmap.h>
61#include <sys/controlregs.h>
62#include <sys/bootconf.h>
63#include <sys/bootsvcs.h>
64#include <sys/bootinfo.h>
65#include <sys/archsystm.h>
66
67#include <vm/seg_kmem.h>
68#include <vm/hat_i86.h>
69#include <vm/as.h>
70#include <vm/seg.h>
71#include <vm/page.h>
72#include <vm/seg_kp.h>
73#include <vm/seg_kpm.h>
74#include <vm/vm_dep.h>
75#ifdef __xpv
76#include <sys/hypervisor.h>
77#endif
78#include <vm/kboot_mmu.h>
79#include <vm/seg_spt.h>
80
81#include <sys/cmn_err.h>
82
83/*
84 * Basic parameters for hat operation.
85 */
86struct hat_mmu_info mmu;
87
88/*
89 * The page that is the kernel's top level pagetable.
90 *
91 * For 32 bit PAE support on i86pc, the kernel hat will use the 1st 4 entries
92 * on this 4K page for its top level page table. The remaining groups of
93 * 4 entries are used for per processor copies of user VLP pagetables for
94 * running threads.  See hat_switch() and reload_pae32() for details.
95 *
96 * vlp_page[0..3] - level==2 PTEs for kernel HAT
97 * vlp_page[4..7] - level==2 PTEs for user thread on cpu 0
98 * vlp_page[8..11]  - level==2 PTE for user thread on cpu 1
99 * etc...
100 */
101static x86pte_t *vlp_page;
102
103/*
104 * forward declaration of internal utility routines
105 */
106static x86pte_t hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected,
107	x86pte_t new);
108
109/*
110 * The kernel address space exists in all HATs. To implement this the
111 * kernel reserves a fixed number of entries in the topmost level(s) of page
112 * tables. The values are setup during startup and then copied to every user
113 * hat created by hat_alloc(). This means that kernelbase must be:
114 *
115 *	  4Meg aligned for 32 bit kernels
116 *	512Gig aligned for x86_64 64 bit kernel
117 *
118 * The hat_kernel_range_ts describe what needs to be copied from kernel hat
119 * to each user hat.
120 */
121typedef struct hat_kernel_range {
122	level_t		hkr_level;
123	uintptr_t	hkr_start_va;
124	uintptr_t	hkr_end_va;	/* zero means to end of memory */
125} hat_kernel_range_t;
126#define	NUM_KERNEL_RANGE 2
127static hat_kernel_range_t kernel_ranges[NUM_KERNEL_RANGE];
128static int num_kernel_ranges;
129
130uint_t use_boot_reserve = 1;	/* cleared after early boot process */
131uint_t can_steal_post_boot = 0;	/* set late in boot to enable stealing */
132
133/*
134 * enable_1gpg: controls 1g page support for user applications.
135 * By default, 1g pages are exported to user applications. enable_1gpg can
136 * be set to 0 to not export.
137 */
138int	enable_1gpg = 1;
139
140/*
141 * AMD shanghai processors provide better management of 1gb ptes in its tlb.
142 * By default, 1g page suppport will be disabled for pre-shanghai AMD
143 * processors that don't have optimal tlb support for the 1g page size.
144 * chk_optimal_1gtlb can be set to 0 to force 1g page support on sub-optimal
145 * processors.
146 */
147int	chk_optimal_1gtlb = 1;
148
149
150#ifdef DEBUG
151uint_t	map1gcnt;
152#endif
153
154
155/*
156 * A cpuset for all cpus. This is used for kernel address cross calls, since
157 * the kernel addresses apply to all cpus.
158 */
159cpuset_t khat_cpuset;
160
161/*
162 * management stuff for hat structures
163 */
164kmutex_t	hat_list_lock;
165kcondvar_t	hat_list_cv;
166kmem_cache_t	*hat_cache;
167kmem_cache_t	*hat_hash_cache;
168kmem_cache_t	*vlp_hash_cache;
169
170/*
171 * Simple statistics
172 */
173struct hatstats hatstat;
174
175/*
176 * Some earlier hypervisor versions do not emulate cmpxchg of PTEs
177 * correctly.  For such hypervisors we must set PT_USER for kernel
178 * entries ourselves (normally the emulation would set PT_USER for
179 * kernel entries and PT_USER|PT_GLOBAL for user entries).  pt_kern is
180 * thus set appropriately.  Note that dboot/kbm is OK, as only the full
181 * HAT uses cmpxchg() and the other paths (hypercall etc.) were never
182 * incorrect.
183 */
184int pt_kern;
185
186/*
187 * useful stuff for atomic access/clearing/setting REF/MOD/RO bits in page_t's.
188 */
189extern void atomic_orb(uchar_t *addr, uchar_t val);
190extern void atomic_andb(uchar_t *addr, uchar_t val);
191
192#define	PP_GETRM(pp, rmmask)    (pp->p_nrm & rmmask)
193#define	PP_ISMOD(pp)		PP_GETRM(pp, P_MOD)
194#define	PP_ISREF(pp)		PP_GETRM(pp, P_REF)
195#define	PP_ISRO(pp)		PP_GETRM(pp, P_RO)
196
197#define	PP_SETRM(pp, rm)	atomic_orb(&(pp->p_nrm), rm)
198#define	PP_SETMOD(pp)		PP_SETRM(pp, P_MOD)
199#define	PP_SETREF(pp)		PP_SETRM(pp, P_REF)
200#define	PP_SETRO(pp)		PP_SETRM(pp, P_RO)
201
202#define	PP_CLRRM(pp, rm)	atomic_andb(&(pp->p_nrm), ~(rm))
203#define	PP_CLRMOD(pp)   	PP_CLRRM(pp, P_MOD)
204#define	PP_CLRREF(pp)   	PP_CLRRM(pp, P_REF)
205#define	PP_CLRRO(pp)    	PP_CLRRM(pp, P_RO)
206#define	PP_CLRALL(pp)		PP_CLRRM(pp, P_MOD | P_REF | P_RO)
207
208/*
209 * kmem cache constructor for struct hat
210 */
211/*ARGSUSED*/
212static int
213hati_constructor(void *buf, void *handle, int kmflags)
214{
215	hat_t	*hat = buf;
216
217	mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
218	bzero(hat->hat_pages_mapped,
219	    sizeof (pgcnt_t) * (mmu.max_page_level + 1));
220	hat->hat_ism_pgcnt = 0;
221	hat->hat_stats = 0;
222	hat->hat_flags = 0;
223	CPUSET_ZERO(hat->hat_cpus);
224	hat->hat_htable = NULL;
225	hat->hat_ht_hash = NULL;
226	return (0);
227}
228
229/*
230 * Allocate a hat structure for as. We also create the top level
231 * htable and initialize it to contain the kernel hat entries.
232 */
233hat_t *
234hat_alloc(struct as *as)
235{
236	hat_t			*hat;
237	htable_t		*ht;	/* top level htable */
238	uint_t			use_vlp;
239	uint_t			r;
240	hat_kernel_range_t	*rp;
241	uintptr_t		va;
242	uintptr_t		eva;
243	uint_t			start;
244	uint_t			cnt;
245	htable_t		*src;
246
247	/*
248	 * Once we start creating user process HATs we can enable
249	 * the htable_steal() code.
250	 */
251	if (can_steal_post_boot == 0)
252		can_steal_post_boot = 1;
253
254	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
255	hat = kmem_cache_alloc(hat_cache, KM_SLEEP);
256	hat->hat_as = as;
257	mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
258	ASSERT(hat->hat_flags == 0);
259
260#if defined(__xpv)
261	/*
262	 * No VLP stuff on the hypervisor due to the 64-bit split top level
263	 * page tables.  On 32-bit it's not needed as the hypervisor takes
264	 * care of copying the top level PTEs to a below 4Gig page.
265	 */
266	use_vlp = 0;
267#else	/* __xpv */
268	/* 32 bit processes uses a VLP style hat when running with PAE */
269#if defined(__amd64)
270	use_vlp = (ttoproc(curthread)->p_model == DATAMODEL_ILP32);
271#elif defined(__i386)
272	use_vlp = mmu.pae_hat;
273#endif
274#endif	/* __xpv */
275	if (use_vlp) {
276		hat->hat_flags = HAT_VLP;
277		bzero(hat->hat_vlp_ptes, VLP_SIZE);
278	}
279
280	/*
281	 * Allocate the htable hash
282	 */
283	if ((hat->hat_flags & HAT_VLP)) {
284		hat->hat_num_hash = mmu.vlp_hash_cnt;
285		hat->hat_ht_hash = kmem_cache_alloc(vlp_hash_cache, KM_SLEEP);
286	} else {
287		hat->hat_num_hash = mmu.hash_cnt;
288		hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_SLEEP);
289	}
290	bzero(hat->hat_ht_hash, hat->hat_num_hash * sizeof (htable_t *));
291
292	/*
293	 * Initialize Kernel HAT entries at the top of the top level page
294	 * tables for the new hat.
295	 */
296	hat->hat_htable = NULL;
297	hat->hat_ht_cached = NULL;
298	XPV_DISALLOW_MIGRATE();
299	ht = htable_create(hat, (uintptr_t)0, TOP_LEVEL(hat), NULL);
300	hat->hat_htable = ht;
301
302#if defined(__amd64)
303	if (hat->hat_flags & HAT_VLP)
304		goto init_done;
305#endif
306
307	for (r = 0; r < num_kernel_ranges; ++r) {
308		rp = &kernel_ranges[r];
309		for (va = rp->hkr_start_va; va != rp->hkr_end_va;
310		    va += cnt * LEVEL_SIZE(rp->hkr_level)) {
311
312			if (rp->hkr_level == TOP_LEVEL(hat))
313				ht = hat->hat_htable;
314			else
315				ht = htable_create(hat, va, rp->hkr_level,
316				    NULL);
317
318			start = htable_va2entry(va, ht);
319			cnt = HTABLE_NUM_PTES(ht) - start;
320			eva = va +
321			    ((uintptr_t)cnt << LEVEL_SHIFT(rp->hkr_level));
322			if (rp->hkr_end_va != 0 &&
323			    (eva > rp->hkr_end_va || eva == 0))
324				cnt = htable_va2entry(rp->hkr_end_va, ht) -
325				    start;
326
327#if defined(__i386) && !defined(__xpv)
328			if (ht->ht_flags & HTABLE_VLP) {
329				bcopy(&vlp_page[start],
330				    &hat->hat_vlp_ptes[start],
331				    cnt * sizeof (x86pte_t));
332				continue;
333			}
334#endif
335			src = htable_lookup(kas.a_hat, va, rp->hkr_level);
336			ASSERT(src != NULL);
337			x86pte_copy(src, ht, start, cnt);
338			htable_release(src);
339		}
340	}
341
342init_done:
343
344#if defined(__xpv)
345	/*
346	 * Pin top level page tables after initializing them
347	 */
348	xen_pin(hat->hat_htable->ht_pfn, mmu.max_level);
349#if defined(__amd64)
350	xen_pin(hat->hat_user_ptable, mmu.max_level);
351#endif
352#endif
353	XPV_ALLOW_MIGRATE();
354
355	/*
356	 * Put it at the start of the global list of all hats (used by stealing)
357	 *
358	 * kas.a_hat is not in the list but is instead used to find the
359	 * first and last items in the list.
360	 *
361	 * - kas.a_hat->hat_next points to the start of the user hats.
362	 *   The list ends where hat->hat_next == NULL
363	 *
364	 * - kas.a_hat->hat_prev points to the last of the user hats.
365	 *   The list begins where hat->hat_prev == NULL
366	 */
367	mutex_enter(&hat_list_lock);
368	hat->hat_prev = NULL;
369	hat->hat_next = kas.a_hat->hat_next;
370	if (hat->hat_next)
371		hat->hat_next->hat_prev = hat;
372	else
373		kas.a_hat->hat_prev = hat;
374	kas.a_hat->hat_next = hat;
375	mutex_exit(&hat_list_lock);
376
377	return (hat);
378}
379
380/*
381 * process has finished executing but as has not been cleaned up yet.
382 */
383/*ARGSUSED*/
384void
385hat_free_start(hat_t *hat)
386{
387	ASSERT(AS_WRITE_HELD(hat->hat_as, &hat->hat_as->a_lock));
388
389	/*
390	 * If the hat is currently a stealing victim, wait for the stealing
391	 * to finish.  Once we mark it as HAT_FREEING, htable_steal()
392	 * won't look at its pagetables anymore.
393	 */
394	mutex_enter(&hat_list_lock);
395	while (hat->hat_flags & HAT_VICTIM)
396		cv_wait(&hat_list_cv, &hat_list_lock);
397	hat->hat_flags |= HAT_FREEING;
398	mutex_exit(&hat_list_lock);
399}
400
401/*
402 * An address space is being destroyed, so we destroy the associated hat.
403 */
404void
405hat_free_end(hat_t *hat)
406{
407	kmem_cache_t *cache;
408
409	ASSERT(hat->hat_flags & HAT_FREEING);
410
411	/*
412	 * must not be running on the given hat
413	 */
414	ASSERT(CPU->cpu_current_hat != hat);
415
416	/*
417	 * Remove it from the list of HATs
418	 */
419	mutex_enter(&hat_list_lock);
420	if (hat->hat_prev)
421		hat->hat_prev->hat_next = hat->hat_next;
422	else
423		kas.a_hat->hat_next = hat->hat_next;
424	if (hat->hat_next)
425		hat->hat_next->hat_prev = hat->hat_prev;
426	else
427		kas.a_hat->hat_prev = hat->hat_prev;
428	mutex_exit(&hat_list_lock);
429	hat->hat_next = hat->hat_prev = NULL;
430
431#if defined(__xpv)
432	/*
433	 * On the hypervisor, unpin top level page table(s)
434	 */
435	xen_unpin(hat->hat_htable->ht_pfn);
436#if defined(__amd64)
437	xen_unpin(hat->hat_user_ptable);
438#endif
439#endif
440
441	/*
442	 * Make a pass through the htables freeing them all up.
443	 */
444	htable_purge_hat(hat);
445
446	/*
447	 * Decide which kmem cache the hash table came from, then free it.
448	 */
449	if (hat->hat_flags & HAT_VLP)
450		cache = vlp_hash_cache;
451	else
452		cache = hat_hash_cache;
453	kmem_cache_free(cache, hat->hat_ht_hash);
454	hat->hat_ht_hash = NULL;
455
456	hat->hat_flags = 0;
457	kmem_cache_free(hat_cache, hat);
458}
459
460/*
461 * round kernelbase down to a supported value to use for _userlimit
462 *
463 * userlimit must be aligned down to an entry in the top level htable.
464 * The one exception is for 32 bit HAT's running PAE.
465 */
466uintptr_t
467hat_kernelbase(uintptr_t va)
468{
469#if defined(__i386)
470	va &= LEVEL_MASK(1);
471#endif
472	if (IN_VA_HOLE(va))
473		panic("_userlimit %p will fall in VA hole\n", (void *)va);
474	return (va);
475}
476
477/*
478 *
479 */
480static void
481set_max_page_level()
482{
483	level_t lvl;
484
485	if (!kbm_largepage_support) {
486		lvl = 0;
487	} else {
488		if (x86_feature & X86_1GPG) {
489			lvl = 2;
490			if (chk_optimal_1gtlb &&
491			    cpuid_opteron_erratum(CPU, 6671130)) {
492				lvl = 1;
493			}
494			if (plat_mnode_xcheck(LEVEL_SIZE(2) >>
495			    LEVEL_SHIFT(0))) {
496				lvl = 1;
497			}
498		} else {
499			lvl = 1;
500		}
501	}
502	mmu.max_page_level = lvl;
503
504	if ((lvl == 2) && (enable_1gpg == 0))
505		mmu.umax_page_level = 1;
506	else
507		mmu.umax_page_level = lvl;
508}
509
510/*
511 * Initialize hat data structures based on processor MMU information.
512 */
513void
514mmu_init(void)
515{
516	uint_t max_htables;
517	uint_t pa_bits;
518	uint_t va_bits;
519	int i;
520
521	/*
522	 * If CPU enabled the page table global bit, use it for the kernel
523	 * This is bit 7 in CR4 (PGE - Page Global Enable).
524	 */
525	if ((x86_feature & X86_PGE) != 0 && (getcr4() & CR4_PGE) != 0)
526		mmu.pt_global = PT_GLOBAL;
527
528	/*
529	 * Detect NX and PAE usage.
530	 */
531	mmu.pae_hat = kbm_pae_support;
532	if (kbm_nx_support)
533		mmu.pt_nx = PT_NX;
534	else
535		mmu.pt_nx = 0;
536
537	/*
538	 * Use CPU info to set various MMU parameters
539	 */
540	cpuid_get_addrsize(CPU, &pa_bits, &va_bits);
541
542	if (va_bits < sizeof (void *) * NBBY) {
543		mmu.hole_start = (1ul << (va_bits - 1));
544		mmu.hole_end = 0ul - mmu.hole_start - 1;
545	} else {
546		mmu.hole_end = 0;
547		mmu.hole_start = mmu.hole_end - 1;
548	}
549#if defined(OPTERON_ERRATUM_121)
550	/*
551	 * If erratum 121 has already been detected at this time, hole_start
552	 * contains the value to be subtracted from mmu.hole_start.
553	 */
554	ASSERT(hole_start == 0 || opteron_erratum_121 != 0);
555	hole_start = mmu.hole_start - hole_start;
556#else
557	hole_start = mmu.hole_start;
558#endif
559	hole_end = mmu.hole_end;
560
561	mmu.highest_pfn = mmu_btop((1ull << pa_bits) - 1);
562	if (mmu.pae_hat == 0 && pa_bits > 32)
563		mmu.highest_pfn = PFN_4G - 1;
564
565	if (mmu.pae_hat) {
566		mmu.pte_size = 8;	/* 8 byte PTEs */
567		mmu.pte_size_shift = 3;
568	} else {
569		mmu.pte_size = 4;	/* 4 byte PTEs */
570		mmu.pte_size_shift = 2;
571	}
572
573	if (mmu.pae_hat && (x86_feature & X86_PAE) == 0)
574		panic("Processor does not support PAE");
575
576	if ((x86_feature & X86_CX8) == 0)
577		panic("Processor does not support cmpxchg8b instruction");
578
579#if defined(__amd64)
580
581	mmu.num_level = 4;
582	mmu.max_level = 3;
583	mmu.ptes_per_table = 512;
584	mmu.top_level_count = 512;
585
586	mmu.level_shift[0] = 12;
587	mmu.level_shift[1] = 21;
588	mmu.level_shift[2] = 30;
589	mmu.level_shift[3] = 39;
590
591#elif defined(__i386)
592
593	if (mmu.pae_hat) {
594		mmu.num_level = 3;
595		mmu.max_level = 2;
596		mmu.ptes_per_table = 512;
597		mmu.top_level_count = 4;
598
599		mmu.level_shift[0] = 12;
600		mmu.level_shift[1] = 21;
601		mmu.level_shift[2] = 30;
602
603	} else {
604		mmu.num_level = 2;
605		mmu.max_level = 1;
606		mmu.ptes_per_table = 1024;
607		mmu.top_level_count = 1024;
608
609		mmu.level_shift[0] = 12;
610		mmu.level_shift[1] = 22;
611	}
612
613#endif	/* __i386 */
614
615	for (i = 0; i < mmu.num_level; ++i) {
616		mmu.level_size[i] = 1UL << mmu.level_shift[i];
617		mmu.level_offset[i] = mmu.level_size[i] - 1;
618		mmu.level_mask[i] = ~mmu.level_offset[i];
619	}
620
621	set_max_page_level();
622
623	mmu_page_sizes = mmu.max_page_level + 1;
624	mmu_exported_page_sizes = mmu.umax_page_level + 1;
625
626	/* restrict legacy applications from using pagesizes 1g and above */
627	mmu_legacy_page_sizes =
628	    (mmu_exported_page_sizes > 2) ? 2 : mmu_exported_page_sizes;
629
630
631	for (i = 0; i <= mmu.max_page_level; ++i) {
632		mmu.pte_bits[i] = PT_VALID | pt_kern;
633		if (i > 0)
634			mmu.pte_bits[i] |= PT_PAGESIZE;
635	}
636
637	/*
638	 * NOTE Legacy 32 bit PAE mode only has the P_VALID bit at top level.
639	 */
640	for (i = 1; i < mmu.num_level; ++i)
641		mmu.ptp_bits[i] = PT_PTPBITS;
642
643#if defined(__i386)
644	mmu.ptp_bits[2] = PT_VALID;
645#endif
646
647	/*
648	 * Compute how many hash table entries to have per process for htables.
649	 * We start with 1 page's worth of entries.
650	 *
651	 * If physical memory is small, reduce the amount need to cover it.
652	 */
653	max_htables = physmax / mmu.ptes_per_table;
654	mmu.hash_cnt = MMU_PAGESIZE / sizeof (htable_t *);
655	while (mmu.hash_cnt > 16 && mmu.hash_cnt >= max_htables)
656		mmu.hash_cnt >>= 1;
657	mmu.vlp_hash_cnt = mmu.hash_cnt;
658
659#if defined(__amd64)
660	/*
661	 * If running in 64 bits and physical memory is large,
662	 * increase the size of the cache to cover all of memory for
663	 * a 64 bit process.
664	 */
665#define	HASH_MAX_LENGTH 4
666	while (mmu.hash_cnt * HASH_MAX_LENGTH < max_htables)
667		mmu.hash_cnt <<= 1;
668#endif
669}
670
671
672/*
673 * initialize hat data structures
674 */
675void
676hat_init()
677{
678#if defined(__i386)
679	/*
680	 * _userlimit must be aligned correctly
681	 */
682	if ((_userlimit & LEVEL_MASK(1)) != _userlimit) {
683		prom_printf("hat_init(): _userlimit=%p, not aligned at %p\n",
684		    (void *)_userlimit, (void *)LEVEL_SIZE(1));
685		halt("hat_init(): Unable to continue");
686	}
687#endif
688
689	cv_init(&hat_list_cv, NULL, CV_DEFAULT, NULL);
690
691	/*
692	 * initialize kmem caches
693	 */
694	htable_init();
695	hment_init();
696
697	hat_cache = kmem_cache_create("hat_t",
698	    sizeof (hat_t), 0, hati_constructor, NULL, NULL,
699	    NULL, 0, 0);
700
701	hat_hash_cache = kmem_cache_create("HatHash",
702	    mmu.hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL,
703	    NULL, 0, 0);
704
705	/*
706	 * VLP hats can use a smaller hash table size on large memroy machines
707	 */
708	if (mmu.hash_cnt == mmu.vlp_hash_cnt) {
709		vlp_hash_cache = hat_hash_cache;
710	} else {
711		vlp_hash_cache = kmem_cache_create("HatVlpHash",
712		    mmu.vlp_hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL,
713		    NULL, 0, 0);
714	}
715
716	/*
717	 * Set up the kernel's hat
718	 */
719	AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER);
720	kas.a_hat = kmem_cache_alloc(hat_cache, KM_NOSLEEP);
721	mutex_init(&kas.a_hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
722	kas.a_hat->hat_as = &kas;
723	kas.a_hat->hat_flags = 0;
724	AS_LOCK_EXIT(&kas, &kas.a_lock);
725
726	CPUSET_ZERO(khat_cpuset);
727	CPUSET_ADD(khat_cpuset, CPU->cpu_id);
728
729	/*
730	 * The kernel hat's next pointer serves as the head of the hat list .
731	 * The kernel hat's prev pointer tracks the last hat on the list for
732	 * htable_steal() to use.
733	 */
734	kas.a_hat->hat_next = NULL;
735	kas.a_hat->hat_prev = NULL;
736
737	/*
738	 * Allocate an htable hash bucket for the kernel
739	 * XX64 - tune for 64 bit procs
740	 */
741	kas.a_hat->hat_num_hash = mmu.hash_cnt;
742	kas.a_hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_NOSLEEP);
743	bzero(kas.a_hat->hat_ht_hash, mmu.hash_cnt * sizeof (htable_t *));
744
745	/*
746	 * zero out the top level and cached htable pointers
747	 */
748	kas.a_hat->hat_ht_cached = NULL;
749	kas.a_hat->hat_htable = NULL;
750
751	/*
752	 * Pre-allocate hrm_hashtab before enabling the collection of
753	 * refmod statistics.  Allocating on the fly would mean us
754	 * running the risk of suffering recursive mutex enters or
755	 * deadlocks.
756	 */
757	hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *),
758	    KM_SLEEP);
759}
760
761/*
762 * Prepare CPU specific pagetables for VLP processes on 64 bit kernels.
763 *
764 * Each CPU has a set of 2 pagetables that are reused for any 32 bit
765 * process it runs. They are the top level pagetable, hci_vlp_l3ptes, and
766 * the next to top level table for the bottom 512 Gig, hci_vlp_l2ptes.
767 */
768/*ARGSUSED*/
769static void
770hat_vlp_setup(struct cpu *cpu)
771{
772#if defined(__amd64) && !defined(__xpv)
773	struct hat_cpu_info *hci = cpu->cpu_hat_info;
774	pfn_t pfn;
775
776	/*
777	 * allocate the level==2 page table for the bottom most
778	 * 512Gig of address space (this is where 32 bit apps live)
779	 */
780	ASSERT(hci != NULL);
781	hci->hci_vlp_l2ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP);
782
783	/*
784	 * Allocate a top level pagetable and copy the kernel's
785	 * entries into it. Then link in hci_vlp_l2ptes in the 1st entry.
786	 */
787	hci->hci_vlp_l3ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP);
788	hci->hci_vlp_pfn =
789	    hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l3ptes);
790	ASSERT(hci->hci_vlp_pfn != PFN_INVALID);
791	bcopy(vlp_page, hci->hci_vlp_l3ptes, MMU_PAGESIZE);
792
793	pfn = hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l2ptes);
794	ASSERT(pfn != PFN_INVALID);
795	hci->hci_vlp_l3ptes[0] = MAKEPTP(pfn, 2);
796#endif /* __amd64 && !__xpv */
797}
798
799/*ARGSUSED*/
800static void
801hat_vlp_teardown(cpu_t *cpu)
802{
803#if defined(__amd64) && !defined(__xpv)
804	struct hat_cpu_info *hci;
805
806	if ((hci = cpu->cpu_hat_info) == NULL)
807		return;
808	if (hci->hci_vlp_l2ptes)
809		kmem_free(hci->hci_vlp_l2ptes, MMU_PAGESIZE);
810	if (hci->hci_vlp_l3ptes)
811		kmem_free(hci->hci_vlp_l3ptes, MMU_PAGESIZE);
812#endif
813}
814
815#define	NEXT_HKR(r, l, s, e) {			\
816	kernel_ranges[r].hkr_level = l;		\
817	kernel_ranges[r].hkr_start_va = s;	\
818	kernel_ranges[r].hkr_end_va = e;	\
819	++r;					\
820}
821
822/*
823 * Finish filling in the kernel hat.
824 * Pre fill in all top level kernel page table entries for the kernel's
825 * part of the address range.  From this point on we can't use any new
826 * kernel large pages if they need PTE's at max_level
827 *
828 * create the kmap mappings.
829 */
830void
831hat_init_finish(void)
832{
833	size_t		size;
834	uint_t		r = 0;
835	uintptr_t	va;
836	hat_kernel_range_t *rp;
837
838
839	/*
840	 * We are now effectively running on the kernel hat.
841	 * Clearing use_boot_reserve shuts off using the pre-allocated boot
842	 * reserve for all HAT allocations.  From here on, the reserves are
843	 * only used when avoiding recursion in kmem_alloc().
844	 */
845	use_boot_reserve = 0;
846	htable_adjust_reserve();
847
848	/*
849	 * User HATs are initialized with copies of all kernel mappings in
850	 * higher level page tables. Ensure that those entries exist.
851	 */
852#if defined(__amd64)
853
854	NEXT_HKR(r, 3, kernelbase, 0);
855#if defined(__xpv)
856	NEXT_HKR(r, 3, HYPERVISOR_VIRT_START, HYPERVISOR_VIRT_END);
857#endif
858
859#elif defined(__i386)
860
861#if !defined(__xpv)
862	if (mmu.pae_hat) {
863		va = kernelbase;
864		if ((va & LEVEL_MASK(2)) != va) {
865			va = P2ROUNDUP(va, LEVEL_SIZE(2));
866			NEXT_HKR(r, 1, kernelbase, va);
867		}
868		if (va != 0)
869			NEXT_HKR(r, 2, va, 0);
870	} else
871#endif /* __xpv */
872		NEXT_HKR(r, 1, kernelbase, 0);
873
874#endif /* __i386 */
875
876	num_kernel_ranges = r;
877
878	/*
879	 * Create all the kernel pagetables that will have entries
880	 * shared to user HATs.
881	 */
882	for (r = 0; r < num_kernel_ranges; ++r) {
883		rp = &kernel_ranges[r];
884		for (va = rp->hkr_start_va; va != rp->hkr_end_va;
885		    va += LEVEL_SIZE(rp->hkr_level)) {
886			htable_t *ht;
887
888			if (IN_HYPERVISOR_VA(va))
889				continue;
890
891			/* can/must skip if a page mapping already exists */
892			if (rp->hkr_level <= mmu.max_page_level &&
893			    (ht = htable_getpage(kas.a_hat, va, NULL)) !=
894			    NULL) {
895				htable_release(ht);
896				continue;
897			}
898
899			(void) htable_create(kas.a_hat, va, rp->hkr_level - 1,
900			    NULL);
901		}
902	}
903
904	/*
905	 * 32 bit PAE metal kernels use only 4 of the 512 entries in the
906	 * page holding the top level pagetable. We use the remainder for
907	 * the "per CPU" page tables for VLP processes.
908	 * Map the top level kernel pagetable into the kernel to make
909	 * it easy to use bcopy access these tables.
910	 */
911	if (mmu.pae_hat) {
912		vlp_page = vmem_alloc(heap_arena, MMU_PAGESIZE, VM_SLEEP);
913		hat_devload(kas.a_hat, (caddr_t)vlp_page, MMU_PAGESIZE,
914		    kas.a_hat->hat_htable->ht_pfn,
915#if !defined(__xpv)
916		    PROT_WRITE |
917#endif
918		    PROT_READ | HAT_NOSYNC | HAT_UNORDERED_OK,
919		    HAT_LOAD | HAT_LOAD_NOCONSIST);
920	}
921	hat_vlp_setup(CPU);
922
923	/*
924	 * Create kmap (cached mappings of kernel PTEs)
925	 * for 32 bit we map from segmap_start .. ekernelheap
926	 * for 64 bit we map from segmap_start .. segmap_start + segmapsize;
927	 */
928#if defined(__i386)
929	size = (uintptr_t)ekernelheap - segmap_start;
930#elif defined(__amd64)
931	size = segmapsize;
932#endif
933	hat_kmap_init((uintptr_t)segmap_start, size);
934}
935
936/*
937 * On 32 bit PAE mode, PTE's are 64 bits, but ordinary atomic memory references
938 * are 32 bit, so for safety we must use cas64() to install these.
939 */
940#ifdef __i386
941static void
942reload_pae32(hat_t *hat, cpu_t *cpu)
943{
944	x86pte_t *src;
945	x86pte_t *dest;
946	x86pte_t pte;
947	int i;
948
949	/*
950	 * Load the 4 entries of the level 2 page table into this
951	 * cpu's range of the vlp_page and point cr3 at them.
952	 */
953	ASSERT(mmu.pae_hat);
954	src = hat->hat_vlp_ptes;
955	dest = vlp_page + (cpu->cpu_id + 1) * VLP_NUM_PTES;
956	for (i = 0; i < VLP_NUM_PTES; ++i) {
957		for (;;) {
958			pte = dest[i];
959			if (pte == src[i])
960				break;
961			if (cas64(dest + i, pte, src[i]) != src[i])
962				break;
963		}
964	}
965}
966#endif
967
968/*
969 * Switch to a new active hat, maintaining bit masks to track active CPUs.
970 *
971 * On the 32-bit PAE hypervisor, %cr3 is a 64-bit value, on metal it
972 * remains a 32-bit value.
973 */
974void
975hat_switch(hat_t *hat)
976{
977	uint64_t	newcr3;
978	cpu_t		*cpu = CPU;
979	hat_t		*old = cpu->cpu_current_hat;
980
981	/*
982	 * set up this information first, so we don't miss any cross calls
983	 */
984	if (old != NULL) {
985		if (old == hat)
986			return;
987		if (old != kas.a_hat)
988			CPUSET_ATOMIC_DEL(old->hat_cpus, cpu->cpu_id);
989	}
990
991	/*
992	 * Add this CPU to the active set for this HAT.
993	 */
994	if (hat != kas.a_hat) {
995		CPUSET_ATOMIC_ADD(hat->hat_cpus, cpu->cpu_id);
996	}
997	cpu->cpu_current_hat = hat;
998
999	/*
1000	 * now go ahead and load cr3
1001	 */
1002	if (hat->hat_flags & HAT_VLP) {
1003#if defined(__amd64)
1004		x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes;
1005
1006		VLP_COPY(hat->hat_vlp_ptes, vlpptep);
1007		newcr3 = MAKECR3(cpu->cpu_hat_info->hci_vlp_pfn);
1008#elif defined(__i386)
1009		reload_pae32(hat, cpu);
1010		newcr3 = MAKECR3(kas.a_hat->hat_htable->ht_pfn) +
1011		    (cpu->cpu_id + 1) * VLP_SIZE;
1012#endif
1013	} else {
1014		newcr3 = MAKECR3((uint64_t)hat->hat_htable->ht_pfn);
1015	}
1016#ifdef __xpv
1017	{
1018		struct mmuext_op t[2];
1019		uint_t retcnt;
1020		uint_t opcnt = 1;
1021
1022		t[0].cmd = MMUEXT_NEW_BASEPTR;
1023		t[0].arg1.mfn = mmu_btop(pa_to_ma(newcr3));
1024#if defined(__amd64)
1025		/*
1026		 * There's an interesting problem here, as to what to
1027		 * actually specify when switching to the kernel hat.
1028		 * For now we'll reuse the kernel hat again.
1029		 */
1030		t[1].cmd = MMUEXT_NEW_USER_BASEPTR;
1031		if (hat == kas.a_hat)
1032			t[1].arg1.mfn = mmu_btop(pa_to_ma(newcr3));
1033		else
1034			t[1].arg1.mfn = pfn_to_mfn(hat->hat_user_ptable);
1035		++opcnt;
1036#endif	/* __amd64 */
1037		if (HYPERVISOR_mmuext_op(t, opcnt, &retcnt, DOMID_SELF) < 0)
1038			panic("HYPERVISOR_mmu_update() failed");
1039		ASSERT(retcnt == opcnt);
1040
1041	}
1042#else
1043	setcr3(newcr3);
1044#endif
1045	ASSERT(cpu == CPU);
1046}
1047
1048/*
1049 * Utility to return a valid x86pte_t from protections, pfn, and level number
1050 */
1051static x86pte_t
1052hati_mkpte(pfn_t pfn, uint_t attr, level_t level, uint_t flags)
1053{
1054	x86pte_t	pte;
1055	uint_t		cache_attr = attr & HAT_ORDER_MASK;
1056
1057	pte = MAKEPTE(pfn, level);
1058
1059	if (attr & PROT_WRITE)
1060		PTE_SET(pte, PT_WRITABLE);
1061
1062	if (attr & PROT_USER)
1063		PTE_SET(pte, PT_USER);
1064
1065	if (!(attr & PROT_EXEC))
1066		PTE_SET(pte, mmu.pt_nx);
1067
1068	/*
1069	 * Set the software bits used track ref/mod sync's and hments.
1070	 * If not using REF/MOD, set them to avoid h/w rewriting PTEs.
1071	 */
1072	if (flags & HAT_LOAD_NOCONSIST)
1073		PTE_SET(pte, PT_NOCONSIST | PT_REF | PT_MOD);
1074	else if (attr & HAT_NOSYNC)
1075		PTE_SET(pte, PT_NOSYNC | PT_REF | PT_MOD);
1076
1077	/*
1078	 * Set the caching attributes in the PTE. The combination
1079	 * of attributes are poorly defined, so we pay attention
1080	 * to them in the given order.
1081	 *
1082	 * The test for HAT_STRICTORDER is different because it's defined
1083	 * as "0" - which was a stupid thing to do, but is too late to change!
1084	 */
1085	if (cache_attr == HAT_STRICTORDER) {
1086		PTE_SET(pte, PT_NOCACHE);
1087	/*LINTED [Lint hates empty ifs, but it's the obvious way to do this] */
1088	} else if (cache_attr & (HAT_UNORDERED_OK | HAT_STORECACHING_OK)) {
1089		/* nothing to set */;
1090	} else if (cache_attr & (HAT_MERGING_OK | HAT_LOADCACHING_OK)) {
1091		PTE_SET(pte, PT_NOCACHE);
1092		if (x86_feature & X86_PAT)
1093			PTE_SET(pte, (level == 0) ? PT_PAT_4K : PT_PAT_LARGE);
1094		else
1095			PTE_SET(pte, PT_WRITETHRU);
1096	} else {
1097		panic("hati_mkpte(): bad caching attributes: %x\n", cache_attr);
1098	}
1099
1100	return (pte);
1101}
1102
1103/*
1104 * Duplicate address translations of the parent to the child.
1105 * This function really isn't used anymore.
1106 */
1107/*ARGSUSED*/
1108int
1109hat_dup(hat_t *old, hat_t *new, caddr_t addr, size_t len, uint_t flag)
1110{
1111	ASSERT((uintptr_t)addr < kernelbase);
1112	ASSERT(new != kas.a_hat);
1113	ASSERT(old != kas.a_hat);
1114	return (0);
1115}
1116
1117/*
1118 * Allocate any hat resources required for a process being swapped in.
1119 */
1120/*ARGSUSED*/
1121void
1122hat_swapin(hat_t *hat)
1123{
1124	/* do nothing - we let everything fault back in */
1125}
1126
1127/*
1128 * Unload all translations associated with an address space of a process
1129 * that is being swapped out.
1130 */
1131void
1132hat_swapout(hat_t *hat)
1133{
1134	uintptr_t	vaddr = (uintptr_t)0;
1135	uintptr_t	eaddr = _userlimit;
1136	htable_t	*ht = NULL;
1137	level_t		l;
1138
1139	XPV_DISALLOW_MIGRATE();
1140	/*
1141	 * We can't just call hat_unload(hat, 0, _userlimit...)  here, because
1142	 * seg_spt and shared pagetables can't be swapped out.
1143	 * Take a look at segspt_shmswapout() - it's a big no-op.
1144	 *
1145	 * Instead we'll walk through all the address space and unload
1146	 * any mappings which we are sure are not shared, not locked.
1147	 */
1148	ASSERT(IS_PAGEALIGNED(vaddr));
1149	ASSERT(IS_PAGEALIGNED(eaddr));
1150	ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1151	if ((uintptr_t)hat->hat_as->a_userlimit < eaddr)
1152		eaddr = (uintptr_t)hat->hat_as->a_userlimit;
1153
1154	while (vaddr < eaddr) {
1155		(void) htable_walk(hat, &ht, &vaddr, eaddr);
1156		if (ht == NULL)
1157			break;
1158
1159		ASSERT(!IN_VA_HOLE(vaddr));
1160
1161		/*
1162		 * If the page table is shared skip its entire range.
1163		 */
1164		l = ht->ht_level;
1165		if (ht->ht_flags & HTABLE_SHARED_PFN) {
1166			vaddr = ht->ht_vaddr + LEVEL_SIZE(l + 1);
1167			htable_release(ht);
1168			ht = NULL;
1169			continue;
1170		}
1171
1172		/*
1173		 * If the page table has no locked entries, unload this one.
1174		 */
1175		if (ht->ht_lock_cnt == 0)
1176			hat_unload(hat, (caddr_t)vaddr, LEVEL_SIZE(l),
1177			    HAT_UNLOAD_UNMAP);
1178
1179		/*
1180		 * If we have a level 0 page table with locked entries,
1181		 * skip the entire page table, otherwise skip just one entry.
1182		 */
1183		if (ht->ht_lock_cnt > 0 && l == 0)
1184			vaddr = ht->ht_vaddr + LEVEL_SIZE(1);
1185		else
1186			vaddr += LEVEL_SIZE(l);
1187	}
1188	if (ht)
1189		htable_release(ht);
1190
1191	/*
1192	 * We're in swapout because the system is low on memory, so
1193	 * go back and flush all the htables off the cached list.
1194	 */
1195	htable_purge_hat(hat);
1196	XPV_ALLOW_MIGRATE();
1197}
1198
1199/*
1200 * returns number of bytes that have valid mappings in hat.
1201 */
1202size_t
1203hat_get_mapped_size(hat_t *hat)
1204{
1205	size_t total = 0;
1206	int l;
1207
1208	for (l = 0; l <= mmu.max_page_level; l++)
1209		total += (hat->hat_pages_mapped[l] << LEVEL_SHIFT(l));
1210	total += hat->hat_ism_pgcnt;
1211
1212	return (total);
1213}
1214
1215/*
1216 * enable/disable collection of stats for hat.
1217 */
1218int
1219hat_stats_enable(hat_t *hat)
1220{
1221	atomic_add_32(&hat->hat_stats, 1);
1222	return (1);
1223}
1224
1225void
1226hat_stats_disable(hat_t *hat)
1227{
1228	atomic_add_32(&hat->hat_stats, -1);
1229}
1230
1231/*
1232 * Utility to sync the ref/mod bits from a page table entry to the page_t
1233 * We must be holding the mapping list lock when this is called.
1234 */
1235static void
1236hati_sync_pte_to_page(page_t *pp, x86pte_t pte, level_t level)
1237{
1238	uint_t	rm = 0;
1239	pgcnt_t	pgcnt;
1240
1241	if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC)
1242		return;
1243
1244	if (PTE_GET(pte, PT_REF))
1245		rm |= P_REF;
1246
1247	if (PTE_GET(pte, PT_MOD))
1248		rm |= P_MOD;
1249
1250	if (rm == 0)
1251		return;
1252
1253	/*
1254	 * sync to all constituent pages of a large page
1255	 */
1256	ASSERT(x86_hm_held(pp));
1257	pgcnt = page_get_pagecnt(level);
1258	ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt));
1259	for (; pgcnt > 0; --pgcnt) {
1260		/*
1261		 * hat_page_demote() can't decrease
1262		 * pszc below this mapping size
1263		 * since this large mapping existed after we
1264		 * took mlist lock.
1265		 */
1266		ASSERT(pp->p_szc >= level);
1267		hat_page_setattr(pp, rm);
1268		++pp;
1269	}
1270}
1271
1272/*
1273 * This the set of PTE bits for PFN, permissions and caching
1274 * that are allowed to change on a HAT_LOAD_REMAP
1275 */
1276#define	PT_REMAP_BITS							\
1277	(PT_PADDR | PT_NX | PT_WRITABLE | PT_WRITETHRU |		\
1278	PT_NOCACHE | PT_PAT_4K | PT_PAT_LARGE | PT_IGNORE | PT_REF | PT_MOD)
1279
1280#define	REMAPASSERT(EX)	if (!(EX)) panic("hati_pte_map: " #EX)
1281/*
1282 * Do the low-level work to get a mapping entered into a HAT's pagetables
1283 * and in the mapping list of the associated page_t.
1284 */
1285static int
1286hati_pte_map(
1287	htable_t	*ht,
1288	uint_t		entry,
1289	page_t		*pp,
1290	x86pte_t	pte,
1291	int		flags,
1292	void		*pte_ptr)
1293{
1294	hat_t		*hat = ht->ht_hat;
1295	x86pte_t	old_pte;
1296	level_t		l = ht->ht_level;
1297	hment_t		*hm;
1298	uint_t		is_consist;
1299	int		rv = 0;
1300
1301	/*
1302	 * Is this a consistant (ie. need mapping list lock) mapping?
1303	 */
1304	is_consist = (pp != NULL && (flags & HAT_LOAD_NOCONSIST) == 0);
1305
1306	/*
1307	 * Track locked mapping count in the htable.  Do this first,
1308	 * as we track locking even if there already is a mapping present.
1309	 */
1310	if ((flags & HAT_LOAD_LOCK) != 0 && hat != kas.a_hat)
1311		HTABLE_LOCK_INC(ht);
1312
1313	/*
1314	 * Acquire the page's mapping list lock and get an hment to use.
1315	 * Note that hment_prepare() might return NULL.
1316	 */
1317	if (is_consist) {
1318		x86_hm_enter(pp);
1319		hm = hment_prepare(ht, entry, pp);
1320	}
1321
1322	/*
1323	 * Set the new pte, retrieving the old one at the same time.
1324	 */
1325	old_pte = x86pte_set(ht, entry, pte, pte_ptr);
1326
1327	/*
1328	 * did we get a large page / page table collision?
1329	 */
1330	if (old_pte == LPAGE_ERROR) {
1331		rv = -1;
1332		goto done;
1333	}
1334
1335	/*
1336	 * If the mapping didn't change there is nothing more to do.
1337	 */
1338	if (PTE_EQUIV(pte, old_pte))
1339		goto done;
1340
1341	/*
1342	 * Install a new mapping in the page's mapping list
1343	 */
1344	if (!PTE_ISVALID(old_pte)) {
1345		if (is_consist) {
1346			hment_assign(ht, entry, pp, hm);
1347			x86_hm_exit(pp);
1348		} else {
1349			ASSERT(flags & HAT_LOAD_NOCONSIST);
1350		}
1351#if defined(__amd64)
1352		if (ht->ht_flags & HTABLE_VLP) {
1353			cpu_t *cpu = CPU;
1354			x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes;
1355			VLP_COPY(hat->hat_vlp_ptes, vlpptep);
1356		}
1357#endif
1358		HTABLE_INC(ht->ht_valid_cnt);
1359		PGCNT_INC(hat, l);
1360		return (rv);
1361	}
1362
1363	/*
1364	 * Remap's are more complicated:
1365	 *  - HAT_LOAD_REMAP must be specified if changing the pfn.
1366	 *    We also require that NOCONSIST be specified.
1367	 *  - Otherwise only permission or caching bits may change.
1368	 */
1369	if (!PTE_ISPAGE(old_pte, l))
1370		panic("non-null/page mapping pte=" FMT_PTE, old_pte);
1371
1372	if (PTE2PFN(old_pte, l) != PTE2PFN(pte, l)) {
1373		REMAPASSERT(flags & HAT_LOAD_REMAP);
1374		REMAPASSERT(flags & HAT_LOAD_NOCONSIST);
1375		REMAPASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST);
1376		REMAPASSERT(pf_is_memory(PTE2PFN(old_pte, l)) ==
1377		    pf_is_memory(PTE2PFN(pte, l)));
1378		REMAPASSERT(!is_consist);
1379	}
1380
1381	/*
1382	 * We only let remaps change the certain bits in the PTE.
1383	 */
1384	if (PTE_GET(old_pte, ~PT_REMAP_BITS) != PTE_GET(pte, ~PT_REMAP_BITS))
1385		panic("remap bits changed: old_pte="FMT_PTE", pte="FMT_PTE"\n",
1386		    old_pte, pte);
1387
1388	/*
1389	 * We don't create any mapping list entries on a remap, so release
1390	 * any allocated hment after we drop the mapping list lock.
1391	 */
1392done:
1393	if (is_consist) {
1394		x86_hm_exit(pp);
1395		if (hm != NULL)
1396			hment_free(hm);
1397	}
1398	return (rv);
1399}
1400
1401/*
1402 * Internal routine to load a single page table entry. This only fails if
1403 * we attempt to overwrite a page table link with a large page.
1404 */
1405static int
1406hati_load_common(
1407	hat_t		*hat,
1408	uintptr_t	va,
1409	page_t		*pp,
1410	uint_t		attr,
1411	uint_t		flags,
1412	level_t		level,
1413	pfn_t		pfn)
1414{
1415	htable_t	*ht;
1416	uint_t		entry;
1417	x86pte_t	pte;
1418	int		rv = 0;
1419
1420	/*
1421	 * The number 16 is arbitrary and here to catch a recursion problem
1422	 * early before we blow out the kernel stack.
1423	 */
1424	++curthread->t_hatdepth;
1425	ASSERT(curthread->t_hatdepth < 16);
1426
1427	ASSERT(hat == kas.a_hat ||
1428	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1429
1430	if (flags & HAT_LOAD_SHARE)
1431		hat->hat_flags |= HAT_SHARED;
1432
1433	/*
1434	 * Find the page table that maps this page if it already exists.
1435	 */
1436	ht = htable_lookup(hat, va, level);
1437
1438	/*
1439	 * We must have HAT_LOAD_NOCONSIST if page_t is NULL.
1440	 */
1441	if (pp == NULL)
1442		flags |= HAT_LOAD_NOCONSIST;
1443
1444	if (ht == NULL) {
1445		ht = htable_create(hat, va, level, NULL);
1446		ASSERT(ht != NULL);
1447	}
1448	entry = htable_va2entry(va, ht);
1449
1450	/*
1451	 * a bunch of paranoid error checking
1452	 */
1453	ASSERT(ht->ht_busy > 0);
1454	if (ht->ht_vaddr > va || va > HTABLE_LAST_PAGE(ht))
1455		panic("hati_load_common: bad htable %p, va %p",
1456		    (void *)ht, (void *)va);
1457	ASSERT(ht->ht_level == level);
1458
1459	/*
1460	 * construct the new PTE
1461	 */
1462	if (hat == kas.a_hat)
1463		attr &= ~PROT_USER;
1464	pte = hati_mkpte(pfn, attr, level, flags);
1465	if (hat == kas.a_hat && va >= kernelbase)
1466		PTE_SET(pte, mmu.pt_global);
1467
1468	/*
1469	 * establish the mapping
1470	 */
1471	rv = hati_pte_map(ht, entry, pp, pte, flags, NULL);
1472
1473	/*
1474	 * release the htable and any reserves
1475	 */
1476	htable_release(ht);
1477	--curthread->t_hatdepth;
1478	return (rv);
1479}
1480
1481/*
1482 * special case of hat_memload to deal with some kernel addrs for performance
1483 */
1484static void
1485hat_kmap_load(
1486	caddr_t		addr,
1487	page_t		*pp,
1488	uint_t		attr,
1489	uint_t		flags)
1490{
1491	uintptr_t	va = (uintptr_t)addr;
1492	x86pte_t	pte;
1493	pfn_t		pfn = page_pptonum(pp);
1494	pgcnt_t		pg_off = mmu_btop(va - mmu.kmap_addr);
1495	htable_t	*ht;
1496	uint_t		entry;
1497	void		*pte_ptr;
1498
1499	/*
1500	 * construct the requested PTE
1501	 */
1502	attr &= ~PROT_USER;
1503	attr |= HAT_STORECACHING_OK;
1504	pte = hati_mkpte(pfn, attr, 0, flags);
1505	PTE_SET(pte, mmu.pt_global);
1506
1507	/*
1508	 * Figure out the pte_ptr and htable and use common code to finish up
1509	 */
1510	if (mmu.pae_hat)
1511		pte_ptr = mmu.kmap_ptes + pg_off;
1512	else
1513		pte_ptr = (x86pte32_t *)mmu.kmap_ptes + pg_off;
1514	ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) >>
1515	    LEVEL_SHIFT(1)];
1516	entry = htable_va2entry(va, ht);
1517	++curthread->t_hatdepth;
1518	ASSERT(curthread->t_hatdepth < 16);
1519	(void) hati_pte_map(ht, entry, pp, pte, flags, pte_ptr);
1520	--curthread->t_hatdepth;
1521}
1522
1523/*
1524 * hat_memload() - load a translation to the given page struct
1525 *
1526 * Flags for hat_memload/hat_devload/hat_*attr.
1527 *
1528 * 	HAT_LOAD	Default flags to load a translation to the page.
1529 *
1530 * 	HAT_LOAD_LOCK	Lock down mapping resources; hat_map(), hat_memload(),
1531 *			and hat_devload().
1532 *
1533 *	HAT_LOAD_NOCONSIST Do not add mapping to page_t mapping list.
1534 *			sets PT_NOCONSIST
1535 *
1536 *	HAT_LOAD_SHARE	A flag to hat_memload() to indicate h/w page tables
1537 *			that map some user pages (not kas) is shared by more
1538 *			than one process (eg. ISM).
1539 *
1540 *	HAT_LOAD_REMAP	Reload a valid pte with a different page frame.
1541 *
1542 *	HAT_NO_KALLOC	Do not kmem_alloc while creating the mapping; at this
1543 *			point, it's setting up mapping to allocate internal
1544 *			hat layer data structures.  This flag forces hat layer
1545 *			to tap its reserves in order to prevent infinite
1546 *			recursion.
1547 *
1548 * The following is a protection attribute (like PROT_READ, etc.)
1549 *
1550 *	HAT_NOSYNC	set PT_NOSYNC - this mapping's ref/mod bits
1551 *			are never cleared.
1552 *
1553 * Installing new valid PTE's and creation of the mapping list
1554 * entry are controlled under the same lock. It's derived from the
1555 * page_t being mapped.
1556 */
1557static uint_t supported_memload_flags =
1558	HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_ADV | HAT_LOAD_NOCONSIST |
1559	HAT_LOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_REMAP | HAT_LOAD_TEXT;
1560
1561void
1562hat_memload(
1563	hat_t		*hat,
1564	caddr_t		addr,
1565	page_t		*pp,
1566	uint_t		attr,
1567	uint_t		flags)
1568{
1569	uintptr_t	va = (uintptr_t)addr;
1570	level_t		level = 0;
1571	pfn_t		pfn = page_pptonum(pp);
1572
1573	XPV_DISALLOW_MIGRATE();
1574	ASSERT(IS_PAGEALIGNED(va));
1575	ASSERT(hat == kas.a_hat || va < _userlimit);
1576	ASSERT(hat == kas.a_hat ||
1577	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1578	ASSERT((flags & supported_memload_flags) == flags);
1579
1580	ASSERT(!IN_VA_HOLE(va));
1581	ASSERT(!PP_ISFREE(pp));
1582
1583	/*
1584	 * kernel address special case for performance.
1585	 */
1586	if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) {
1587		ASSERT(hat == kas.a_hat);
1588		hat_kmap_load(addr, pp, attr, flags);
1589		XPV_ALLOW_MIGRATE();
1590		return;
1591	}
1592
1593	/*
1594	 * This is used for memory with normal caching enabled, so
1595	 * always set HAT_STORECACHING_OK.
1596	 */
1597	attr |= HAT_STORECACHING_OK;
1598	if (hati_load_common(hat, va, pp, attr, flags, level, pfn) != 0)
1599		panic("unexpected hati_load_common() failure");
1600	XPV_ALLOW_MIGRATE();
1601}
1602
1603/* ARGSUSED */
1604void
1605hat_memload_region(struct hat *hat, caddr_t addr, struct page *pp,
1606    uint_t attr, uint_t flags, hat_region_cookie_t rcookie)
1607{
1608	hat_memload(hat, addr, pp, attr, flags);
1609}
1610
1611/*
1612 * Load the given array of page structs using large pages when possible
1613 */
1614void
1615hat_memload_array(
1616	hat_t		*hat,
1617	caddr_t		addr,
1618	size_t		len,
1619	page_t		**pages,
1620	uint_t		attr,
1621	uint_t		flags)
1622{
1623	uintptr_t	va = (uintptr_t)addr;
1624	uintptr_t	eaddr = va + len;
1625	level_t		level;
1626	size_t		pgsize;
1627	pgcnt_t		pgindx = 0;
1628	pfn_t		pfn;
1629	pgcnt_t		i;
1630
1631	XPV_DISALLOW_MIGRATE();
1632	ASSERT(IS_PAGEALIGNED(va));
1633	ASSERT(hat == kas.a_hat || va + len <= _userlimit);
1634	ASSERT(hat == kas.a_hat ||
1635	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1636	ASSERT((flags & supported_memload_flags) == flags);
1637
1638	/*
1639	 * memload is used for memory with full caching enabled, so
1640	 * set HAT_STORECACHING_OK.
1641	 */
1642	attr |= HAT_STORECACHING_OK;
1643
1644	/*
1645	 * handle all pages using largest possible pagesize
1646	 */
1647	while (va < eaddr) {
1648		/*
1649		 * decide what level mapping to use (ie. pagesize)
1650		 */
1651		pfn = page_pptonum(pages[pgindx]);
1652		for (level = mmu.max_page_level; ; --level) {
1653			pgsize = LEVEL_SIZE(level);
1654			if (level == 0)
1655				break;
1656
1657			if (!IS_P2ALIGNED(va, pgsize) ||
1658			    (eaddr - va) < pgsize ||
1659			    !IS_P2ALIGNED(pfn_to_pa(pfn), pgsize))
1660				continue;
1661
1662			/*
1663			 * To use a large mapping of this size, all the
1664			 * pages we are passed must be sequential subpages
1665			 * of the large page.
1666			 * hat_page_demote() can't change p_szc because
1667			 * all pages are locked.
1668			 */
1669			if (pages[pgindx]->p_szc >= level) {
1670				for (i = 0; i < mmu_btop(pgsize); ++i) {
1671					if (pfn + i !=
1672					    page_pptonum(pages[pgindx + i]))
1673						break;
1674					ASSERT(pages[pgindx + i]->p_szc >=
1675					    level);
1676					ASSERT(pages[pgindx] + i ==
1677					    pages[pgindx + i]);
1678				}
1679				if (i == mmu_btop(pgsize)) {
1680#ifdef DEBUG
1681					if (level == 2)
1682						map1gcnt++;
1683#endif
1684					break;
1685				}
1686			}
1687		}
1688
1689		/*
1690		 * Load this page mapping. If the load fails, try a smaller
1691		 * pagesize.
1692		 */
1693		ASSERT(!IN_VA_HOLE(va));
1694		while (hati_load_common(hat, va, pages[pgindx], attr,
1695		    flags, level, pfn) != 0) {
1696			if (level == 0)
1697				panic("unexpected hati_load_common() failure");
1698			--level;
1699			pgsize = LEVEL_SIZE(level);
1700		}
1701
1702		/*
1703		 * move to next page
1704		 */
1705		va += pgsize;
1706		pgindx += mmu_btop(pgsize);
1707	}
1708	XPV_ALLOW_MIGRATE();
1709}
1710
1711/* ARGSUSED */
1712void
1713hat_memload_array_region(struct hat *hat, caddr_t addr, size_t len,
1714    struct page **pps, uint_t attr, uint_t flags,
1715    hat_region_cookie_t rcookie)
1716{
1717	hat_memload_array(hat, addr, len, pps, attr, flags);
1718}
1719
1720/*
1721 * void hat_devload(hat, addr, len, pf, attr, flags)
1722 *	load/lock the given page frame number
1723 *
1724 * Advisory ordering attributes. Apply only to device mappings.
1725 *
1726 * HAT_STRICTORDER: the CPU must issue the references in order, as the
1727 *	programmer specified.  This is the default.
1728 * HAT_UNORDERED_OK: the CPU may reorder the references (this is all kinds
1729 *	of reordering; store or load with store or load).
1730 * HAT_MERGING_OK: merging and batching: the CPU may merge individual stores
1731 *	to consecutive locations (for example, turn two consecutive byte
1732 *	stores into one halfword store), and it may batch individual loads
1733 *	(for example, turn two consecutive byte loads into one halfword load).
1734 *	This also implies re-ordering.
1735 * HAT_LOADCACHING_OK: the CPU may cache the data it fetches and reuse it
1736 *	until another store occurs.  The default is to fetch new data
1737 *	on every load.  This also implies merging.
1738 * HAT_STORECACHING_OK: the CPU may keep the data in the cache and push it to
1739 *	the device (perhaps with other data) at a later time.  The default is
1740 *	to push the data right away.  This also implies load caching.
1741 *
1742 * Equivalent of hat_memload(), but can be used for device memory where
1743 * there are no page_t's and we support additional flags (write merging, etc).
1744 * Note that we can have large page mappings with this interface.
1745 */
1746int supported_devload_flags = HAT_LOAD | HAT_LOAD_LOCK |
1747	HAT_LOAD_NOCONSIST | HAT_STRICTORDER | HAT_UNORDERED_OK |
1748	HAT_MERGING_OK | HAT_LOADCACHING_OK | HAT_STORECACHING_OK;
1749
1750void
1751hat_devload(
1752	hat_t		*hat,
1753	caddr_t		addr,
1754	size_t		len,
1755	pfn_t		pfn,
1756	uint_t		attr,
1757	int		flags)
1758{
1759	uintptr_t	va = ALIGN2PAGE(addr);
1760	uintptr_t	eva = va + len;
1761	level_t		level;
1762	size_t		pgsize;
1763	page_t		*pp;
1764	int		f;	/* per PTE copy of flags  - maybe modified */
1765	uint_t		a;	/* per PTE copy of attr */
1766
1767	XPV_DISALLOW_MIGRATE();
1768	ASSERT(IS_PAGEALIGNED(va));
1769	ASSERT(hat == kas.a_hat || eva <= _userlimit);
1770	ASSERT(hat == kas.a_hat ||
1771	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1772	ASSERT((flags & supported_devload_flags) == flags);
1773
1774	/*
1775	 * handle all pages
1776	 */
1777	while (va < eva) {
1778
1779		/*
1780		 * decide what level mapping to use (ie. pagesize)
1781		 */
1782		for (level = mmu.max_page_level; ; --level) {
1783			pgsize = LEVEL_SIZE(level);
1784			if (level == 0)
1785				break;
1786			if (IS_P2ALIGNED(va, pgsize) &&
1787			    (eva - va) >= pgsize &&
1788			    IS_P2ALIGNED(pfn, mmu_btop(pgsize))) {
1789#ifdef DEBUG
1790				if (level == 2)
1791					map1gcnt++;
1792#endif
1793				break;
1794			}
1795		}
1796
1797		/*
1798		 * If this is just memory then allow caching (this happens
1799		 * for the nucleus pages) - though HAT_PLAT_NOCACHE can be used
1800		 * to override that. If we don't have a page_t then make sure
1801		 * NOCONSIST is set.
1802		 */
1803		a = attr;
1804		f = flags;
1805		if (!pf_is_memory(pfn))
1806			f |= HAT_LOAD_NOCONSIST;
1807		else if (!(a & HAT_PLAT_NOCACHE))
1808			a |= HAT_STORECACHING_OK;
1809
1810		if (f & HAT_LOAD_NOCONSIST)
1811			pp = NULL;
1812		else
1813			pp = page_numtopp_nolock(pfn);
1814
1815		/*
1816		 * load this page mapping
1817		 */
1818		ASSERT(!IN_VA_HOLE(va));
1819		while (hati_load_common(hat, va, pp, a, f, level, pfn) != 0) {
1820			if (level == 0)
1821				panic("unexpected hati_load_common() failure");
1822			--level;
1823			pgsize = LEVEL_SIZE(level);
1824		}
1825
1826		/*
1827		 * move to next page
1828		 */
1829		va += pgsize;
1830		pfn += mmu_btop(pgsize);
1831	}
1832	XPV_ALLOW_MIGRATE();
1833}
1834
1835/*
1836 * void hat_unlock(hat, addr, len)
1837 *	unlock the mappings to a given range of addresses
1838 *
1839 * Locks are tracked by ht_lock_cnt in the htable.
1840 */
1841void
1842hat_unlock(hat_t *hat, caddr_t addr, size_t len)
1843{
1844	uintptr_t	vaddr = (uintptr_t)addr;
1845	uintptr_t	eaddr = vaddr + len;
1846	htable_t	*ht = NULL;
1847
1848	/*
1849	 * kernel entries are always locked, we don't track lock counts
1850	 */
1851	ASSERT(hat == kas.a_hat || eaddr <= _userlimit);
1852	ASSERT(IS_PAGEALIGNED(vaddr));
1853	ASSERT(IS_PAGEALIGNED(eaddr));
1854	if (hat == kas.a_hat)
1855		return;
1856	if (eaddr > _userlimit)
1857		panic("hat_unlock() address out of range - above _userlimit");
1858
1859	XPV_DISALLOW_MIGRATE();
1860	ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1861	while (vaddr < eaddr) {
1862		(void) htable_walk(hat, &ht, &vaddr, eaddr);
1863		if (ht == NULL)
1864			break;
1865
1866		ASSERT(!IN_VA_HOLE(vaddr));
1867
1868		if (ht->ht_lock_cnt < 1)
1869			panic("hat_unlock(): lock_cnt < 1, "
1870			    "htable=%p, vaddr=%p\n", (void *)ht, (void *)vaddr);
1871		HTABLE_LOCK_DEC(ht);
1872
1873		vaddr += LEVEL_SIZE(ht->ht_level);
1874	}
1875	if (ht)
1876		htable_release(ht);
1877	XPV_ALLOW_MIGRATE();
1878}
1879
1880/* ARGSUSED */
1881void
1882hat_unlock_region(struct hat *hat, caddr_t addr, size_t len,
1883    hat_region_cookie_t rcookie)
1884{
1885	panic("No shared region support on x86");
1886}
1887
1888#if !defined(__xpv)
1889/*
1890 * Cross call service routine to demap a virtual page on
1891 * the current CPU or flush all mappings in TLB.
1892 */
1893/*ARGSUSED*/
1894static int
1895hati_demap_func(xc_arg_t a1, xc_arg_t a2, xc_arg_t a3)
1896{
1897	hat_t	*hat = (hat_t *)a1;
1898	caddr_t	addr = (caddr_t)a2;
1899
1900	/*
1901	 * If the target hat isn't the kernel and this CPU isn't operating
1902	 * in the target hat, we can ignore the cross call.
1903	 */
1904	if (hat != kas.a_hat && hat != CPU->cpu_current_hat)
1905		return (0);
1906
1907	/*
1908	 * For a normal address, we just flush one page mapping
1909	 */
1910	if ((uintptr_t)addr != DEMAP_ALL_ADDR) {
1911		mmu_tlbflush_entry(addr);
1912		return (0);
1913	}
1914
1915	/*
1916	 * Otherwise we reload cr3 to effect a complete TLB flush.
1917	 *
1918	 * A reload of cr3 on a VLP process also means we must also recopy in
1919	 * the pte values from the struct hat
1920	 */
1921	if (hat->hat_flags & HAT_VLP) {
1922#if defined(__amd64)
1923		x86pte_t *vlpptep = CPU->cpu_hat_info->hci_vlp_l2ptes;
1924
1925		VLP_COPY(hat->hat_vlp_ptes, vlpptep);
1926#elif defined(__i386)
1927		reload_pae32(hat, CPU);
1928#endif
1929	}
1930	reload_cr3();
1931	return (0);
1932}
1933
1934/*
1935 * Flush all TLB entries, including global (ie. kernel) ones.
1936 */
1937static void
1938flush_all_tlb_entries(void)
1939{
1940	ulong_t cr4 = getcr4();
1941
1942	if (cr4 & CR4_PGE) {
1943		setcr4(cr4 & ~(ulong_t)CR4_PGE);
1944		setcr4(cr4);
1945
1946		/*
1947		 * 32 bit PAE also needs to always reload_cr3()
1948		 */
1949		if (mmu.max_level == 2)
1950			reload_cr3();
1951	} else {
1952		reload_cr3();
1953	}
1954}
1955
1956#define	TLB_CPU_HALTED	(01ul)
1957#define	TLB_INVAL_ALL	(02ul)
1958#define	CAS_TLB_INFO(cpu, old, new)	\
1959	caslong((ulong_t *)&(cpu)->cpu_m.mcpu_tlb_info, (old), (new))
1960
1961/*
1962 * Record that a CPU is going idle
1963 */
1964void
1965tlb_going_idle(void)
1966{
1967	atomic_or_long((ulong_t *)&CPU->cpu_m.mcpu_tlb_info, TLB_CPU_HALTED);
1968}
1969
1970/*
1971 * Service a delayed TLB flush if coming out of being idle.
1972 */
1973void
1974tlb_service(void)
1975{
1976	ulong_t flags = getflags();
1977	ulong_t tlb_info;
1978	ulong_t found;
1979
1980	/*
1981	 * Be sure interrupts are off while doing this so that
1982	 * higher level interrupts correctly wait for flushes to finish.
1983	 */
1984	if (flags & PS_IE)
1985		flags = intr_clear();
1986
1987	/*
1988	 * We only have to do something if coming out of being idle.
1989	 */
1990	tlb_info = CPU->cpu_m.mcpu_tlb_info;
1991	if (tlb_info & TLB_CPU_HALTED) {
1992		ASSERT(CPU->cpu_current_hat == kas.a_hat);
1993
1994		/*
1995		 * Atomic clear and fetch of old state.
1996		 */
1997		while ((found = CAS_TLB_INFO(CPU, tlb_info, 0)) != tlb_info) {
1998			ASSERT(found & TLB_CPU_HALTED);
1999			tlb_info = found;
2000			SMT_PAUSE();
2001		}
2002		if (tlb_info & TLB_INVAL_ALL)
2003			flush_all_tlb_entries();
2004	}
2005
2006	/*
2007	 * Restore interrupt enable control bit.
2008	 */
2009	if (flags & PS_IE)
2010		sti();
2011}
2012#endif /* !__xpv */
2013
2014/*
2015 * Internal routine to do cross calls to invalidate a range of pages on
2016 * all CPUs using a given hat.
2017 */
2018void
2019hat_tlb_inval(hat_t *hat, uintptr_t va)
2020{
2021	extern int	flushes_require_xcalls;	/* from mp_startup.c */
2022	cpuset_t	justme;
2023	cpuset_t	cpus_to_shootdown;
2024#ifndef __xpv
2025	cpuset_t	check_cpus;
2026	cpu_t		*cpup;
2027	int		c;
2028#endif
2029
2030	/*
2031	 * If the hat is being destroyed, there are no more users, so
2032	 * demap need not do anything.
2033	 */
2034	if (hat->hat_flags & HAT_FREEING)
2035		return;
2036
2037	/*
2038	 * If demapping from a shared pagetable, we best demap the
2039	 * entire set of user TLBs, since we don't know what addresses
2040	 * these were shared at.
2041	 */
2042	if (hat->hat_flags & HAT_SHARED) {
2043		hat = kas.a_hat;
2044		va = DEMAP_ALL_ADDR;
2045	}
2046
2047	/*
2048	 * if not running with multiple CPUs, don't use cross calls
2049	 */
2050	if (panicstr || !flushes_require_xcalls) {
2051#ifdef __xpv
2052		if (va == DEMAP_ALL_ADDR)
2053			xen_flush_tlb();
2054		else
2055			xen_flush_va((caddr_t)va);
2056#else
2057		(void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)va, NULL);
2058#endif
2059		return;
2060	}
2061
2062
2063	/*
2064	 * Determine CPUs to shootdown. Kernel changes always do all CPUs.
2065	 * Otherwise it's just CPUs currently executing in this hat.
2066	 */
2067	kpreempt_disable();
2068	CPUSET_ONLY(justme, CPU->cpu_id);
2069	if (hat == kas.a_hat)
2070		cpus_to_shootdown = khat_cpuset;
2071	else
2072		cpus_to_shootdown = hat->hat_cpus;
2073
2074#ifndef __xpv
2075	/*
2076	 * If any CPUs in the set are idle, just request a delayed flush
2077	 * and avoid waking them up.
2078	 */
2079	check_cpus = cpus_to_shootdown;
2080	for (c = 0; c < NCPU && !CPUSET_ISNULL(check_cpus); ++c) {
2081		ulong_t tlb_info;
2082
2083		if (!CPU_IN_SET(check_cpus, c))
2084			continue;
2085		CPUSET_DEL(check_cpus, c);
2086		cpup = cpu[c];
2087		if (cpup == NULL)
2088			continue;
2089
2090		tlb_info = cpup->cpu_m.mcpu_tlb_info;
2091		while (tlb_info == TLB_CPU_HALTED) {
2092			(void) CAS_TLB_INFO(cpup, TLB_CPU_HALTED,
2093			    TLB_CPU_HALTED | TLB_INVAL_ALL);
2094			SMT_PAUSE();
2095			tlb_info = cpup->cpu_m.mcpu_tlb_info;
2096		}
2097		if (tlb_info == (TLB_CPU_HALTED | TLB_INVAL_ALL)) {
2098			HATSTAT_INC(hs_tlb_inval_delayed);
2099			CPUSET_DEL(cpus_to_shootdown, c);
2100		}
2101	}
2102#endif
2103
2104	if (CPUSET_ISNULL(cpus_to_shootdown) ||
2105	    CPUSET_ISEQUAL(cpus_to_shootdown, justme)) {
2106
2107#ifdef __xpv
2108		if (va == DEMAP_ALL_ADDR)
2109			xen_flush_tlb();
2110		else
2111			xen_flush_va((caddr_t)va);
2112#else
2113		(void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)va, NULL);
2114#endif
2115
2116	} else {
2117
2118		CPUSET_ADD(cpus_to_shootdown, CPU->cpu_id);
2119#ifdef __xpv
2120		if (va == DEMAP_ALL_ADDR)
2121			xen_gflush_tlb(cpus_to_shootdown);
2122		else
2123			xen_gflush_va((caddr_t)va, cpus_to_shootdown);
2124#else
2125		xc_call((xc_arg_t)hat, (xc_arg_t)va, NULL, X_CALL_HIPRI,
2126		    cpus_to_shootdown, hati_demap_func);
2127#endif
2128
2129	}
2130	kpreempt_enable();
2131}
2132
2133/*
2134 * Interior routine for HAT_UNLOADs from hat_unload_callback(),
2135 * hat_kmap_unload() OR from hat_steal() code.  This routine doesn't
2136 * handle releasing of the htables.
2137 */
2138void
2139hat_pte_unmap(
2140	htable_t	*ht,
2141	uint_t		entry,
2142	uint_t		flags,
2143	x86pte_t	old_pte,
2144	void		*pte_ptr)
2145{
2146	hat_t		*hat = ht->ht_hat;
2147	hment_t		*hm = NULL;
2148	page_t		*pp = NULL;
2149	level_t		l = ht->ht_level;
2150	pfn_t		pfn;
2151
2152	/*
2153	 * We always track the locking counts, even if nothing is unmapped
2154	 */
2155	if ((flags & HAT_UNLOAD_UNLOCK) != 0 && hat != kas.a_hat) {
2156		ASSERT(ht->ht_lock_cnt > 0);
2157		HTABLE_LOCK_DEC(ht);
2158	}
2159
2160	/*
2161	 * Figure out which page's mapping list lock to acquire using the PFN
2162	 * passed in "old" PTE. We then attempt to invalidate the PTE.
2163	 * If another thread, probably a hat_pageunload, has asynchronously
2164	 * unmapped/remapped this address we'll loop here.
2165	 */
2166	ASSERT(ht->ht_busy > 0);
2167	while (PTE_ISVALID(old_pte)) {
2168		pfn = PTE2PFN(old_pte, l);
2169		if (PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST) {
2170			pp = NULL;
2171		} else {
2172#ifdef __xpv
2173			if (pfn == PFN_INVALID)
2174				panic("Invalid PFN, but not PT_NOCONSIST");
2175#endif
2176			pp = page_numtopp_nolock(pfn);
2177			if (pp == NULL) {
2178				panic("no page_t, not NOCONSIST: old_pte="
2179				    FMT_PTE " ht=%lx entry=0x%x pte_ptr=%lx",
2180				    old_pte, (uintptr_t)ht, entry,
2181				    (uintptr_t)pte_ptr);
2182			}
2183			x86_hm_enter(pp);
2184		}
2185
2186		/*
2187		 * If freeing the address space, check that the PTE
2188		 * hasn't changed, as the mappings are no longer in use by
2189		 * any thread, invalidation is unnecessary.
2190		 * If not freeing, do a full invalidate.
2191		 *
2192		 * On the hypervisor we must always remove mappings, as a
2193		 * writable mapping left behind could cause a page table
2194		 * allocation to fail.
2195		 */
2196#if !defined(__xpv)
2197		if (hat->hat_flags & HAT_FREEING)
2198			old_pte = x86pte_get(ht, entry);
2199		else
2200#endif
2201			old_pte = x86pte_inval(ht, entry, old_pte, pte_ptr);
2202
2203		/*
2204		 * If the page hadn't changed we've unmapped it and can proceed
2205		 */
2206		if (PTE_ISVALID(old_pte) && PTE2PFN(old_pte, l) == pfn)
2207			break;
2208
2209		/*
2210		 * Otherwise, we'll have to retry with the current old_pte.
2211		 * Drop the hment lock, since the pfn may have changed.
2212		 */
2213		if (pp != NULL) {
2214			x86_hm_exit(pp);
2215			pp = NULL;
2216		} else {
2217			ASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST);
2218		}
2219	}
2220
2221	/*
2222	 * If the old mapping wasn't valid, there's nothing more to do
2223	 */
2224	if (!PTE_ISVALID(old_pte)) {
2225		if (pp != NULL)
2226			x86_hm_exit(pp);
2227		return;
2228	}
2229
2230	/*
2231	 * Take care of syncing any MOD/REF bits and removing the hment.
2232	 */
2233	if (pp != NULL) {
2234		if (!(flags & HAT_UNLOAD_NOSYNC))
2235			hati_sync_pte_to_page(pp, old_pte, l);
2236		hm = hment_remove(pp, ht, entry);
2237		x86_hm_exit(pp);
2238		if (hm != NULL)
2239			hment_free(hm);
2240	}
2241
2242	/*
2243	 * Handle book keeping in the htable and hat
2244	 */
2245	ASSERT(ht->ht_valid_cnt > 0);
2246	HTABLE_DEC(ht->ht_valid_cnt);
2247	PGCNT_DEC(hat, l);
2248}
2249
2250/*
2251 * very cheap unload implementation to special case some kernel addresses
2252 */
2253static void
2254hat_kmap_unload(caddr_t addr, size_t len, uint_t flags)
2255{
2256	uintptr_t	va = (uintptr_t)addr;
2257	uintptr_t	eva = va + len;
2258	pgcnt_t		pg_index;
2259	htable_t	*ht;
2260	uint_t		entry;
2261	x86pte_t	*pte_ptr;
2262	x86pte_t	old_pte;
2263
2264	for (; va < eva; va += MMU_PAGESIZE) {
2265		/*
2266		 * Get the PTE
2267		 */
2268		pg_index = mmu_btop(va - mmu.kmap_addr);
2269		pte_ptr = PT_INDEX_PTR(mmu.kmap_ptes, pg_index);
2270		old_pte = GET_PTE(pte_ptr);
2271
2272		/*
2273		 * get the htable / entry
2274		 */
2275		ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr)
2276		    >> LEVEL_SHIFT(1)];
2277		entry = htable_va2entry(va, ht);
2278
2279		/*
2280		 * use mostly common code to unmap it.
2281		 */
2282		hat_pte_unmap(ht, entry, flags, old_pte, pte_ptr);
2283	}
2284}
2285
2286
2287/*
2288 * unload a range of virtual address space (no callback)
2289 */
2290void
2291hat_unload(hat_t *hat, caddr_t addr, size_t len, uint_t flags)
2292{
2293	uintptr_t va = (uintptr_t)addr;
2294
2295	XPV_DISALLOW_MIGRATE();
2296	ASSERT(hat == kas.a_hat || va + len <= _userlimit);
2297
2298	/*
2299	 * special case for performance.
2300	 */
2301	if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) {
2302		ASSERT(hat == kas.a_hat);
2303		hat_kmap_unload(addr, len, flags);
2304	} else {
2305		hat_unload_callback(hat, addr, len, flags, NULL);
2306	}
2307	XPV_ALLOW_MIGRATE();
2308}
2309
2310/*
2311 * Do the callbacks for ranges being unloaded.
2312 */
2313typedef struct range_info {
2314	uintptr_t	rng_va;
2315	ulong_t		rng_cnt;
2316	level_t		rng_level;
2317} range_info_t;
2318
2319static void
2320handle_ranges(hat_callback_t *cb, uint_t cnt, range_info_t *range)
2321{
2322	/*
2323	 * do callbacks to upper level VM system
2324	 */
2325	while (cb != NULL && cnt > 0) {
2326		--cnt;
2327		cb->hcb_start_addr = (caddr_t)range[cnt].rng_va;
2328		cb->hcb_end_addr = cb->hcb_start_addr;
2329		cb->hcb_end_addr +=
2330		    range[cnt].rng_cnt << LEVEL_SIZE(range[cnt].rng_level);
2331		cb->hcb_function(cb);
2332	}
2333}
2334
2335/*
2336 * Unload a given range of addresses (has optional callback)
2337 *
2338 * Flags:
2339 * define	HAT_UNLOAD		0x00
2340 * define	HAT_UNLOAD_NOSYNC	0x02
2341 * define	HAT_UNLOAD_UNLOCK	0x04
2342 * define	HAT_UNLOAD_OTHER	0x08 - not used
2343 * define	HAT_UNLOAD_UNMAP	0x10 - same as HAT_UNLOAD
2344 */
2345#define	MAX_UNLOAD_CNT (8)
2346void
2347hat_unload_callback(
2348	hat_t		*hat,
2349	caddr_t		addr,
2350	size_t		len,
2351	uint_t		flags,
2352	hat_callback_t	*cb)
2353{
2354	uintptr_t	vaddr = (uintptr_t)addr;
2355	uintptr_t	eaddr = vaddr + len;
2356	htable_t	*ht = NULL;
2357	uint_t		entry;
2358	uintptr_t	contig_va = (uintptr_t)-1L;
2359	range_info_t	r[MAX_UNLOAD_CNT];
2360	uint_t		r_cnt = 0;
2361	x86pte_t	old_pte;
2362
2363	XPV_DISALLOW_MIGRATE();
2364	ASSERT(hat == kas.a_hat || eaddr <= _userlimit);
2365	ASSERT(IS_PAGEALIGNED(vaddr));
2366	ASSERT(IS_PAGEALIGNED(eaddr));
2367
2368	/*
2369	 * Special case a single page being unloaded for speed. This happens
2370	 * quite frequently, COW faults after a fork() for example.
2371	 */
2372	if (cb == NULL && len == MMU_PAGESIZE) {
2373		ht = htable_getpte(hat, vaddr, &entry, &old_pte, 0);
2374		if (ht != NULL) {
2375			if (PTE_ISVALID(old_pte))
2376				hat_pte_unmap(ht, entry, flags, old_pte, NULL);
2377			htable_release(ht);
2378		}
2379		XPV_ALLOW_MIGRATE();
2380		return;
2381	}
2382
2383	while (vaddr < eaddr) {
2384		old_pte = htable_walk(hat, &ht, &vaddr, eaddr);
2385		if (ht == NULL)
2386			break;
2387
2388		ASSERT(!IN_VA_HOLE(vaddr));
2389
2390		if (vaddr < (uintptr_t)addr)
2391			panic("hat_unload_callback(): unmap inside large page");
2392
2393		/*
2394		 * We'll do the call backs for contiguous ranges
2395		 */
2396		if (vaddr != contig_va ||
2397		    (r_cnt > 0 && r[r_cnt - 1].rng_level != ht->ht_level)) {
2398			if (r_cnt == MAX_UNLOAD_CNT) {
2399				handle_ranges(cb, r_cnt, r);
2400				r_cnt = 0;
2401			}
2402			r[r_cnt].rng_va = vaddr;
2403			r[r_cnt].rng_cnt = 0;
2404			r[r_cnt].rng_level = ht->ht_level;
2405			++r_cnt;
2406		}
2407
2408		/*
2409		 * Unload one mapping from the page tables.
2410		 */
2411		entry = htable_va2entry(vaddr, ht);
2412		hat_pte_unmap(ht, entry, flags, old_pte, NULL);
2413		ASSERT(ht->ht_level <= mmu.max_page_level);
2414		vaddr += LEVEL_SIZE(ht->ht_level);
2415		contig_va = vaddr;
2416		++r[r_cnt - 1].rng_cnt;
2417	}
2418	if (ht)
2419		htable_release(ht);
2420
2421	/*
2422	 * handle last range for callbacks
2423	 */
2424	if (r_cnt > 0)
2425		handle_ranges(cb, r_cnt, r);
2426	XPV_ALLOW_MIGRATE();
2427}
2428
2429/*
2430 * synchronize mapping with software data structures
2431 *
2432 * This interface is currently only used by the working set monitor
2433 * driver.
2434 */
2435/*ARGSUSED*/
2436void
2437hat_sync(hat_t *hat, caddr_t addr, size_t len, uint_t flags)
2438{
2439	uintptr_t	vaddr = (uintptr_t)addr;
2440	uintptr_t	eaddr = vaddr + len;
2441	htable_t	*ht = NULL;
2442	uint_t		entry;
2443	x86pte_t	pte;
2444	x86pte_t	save_pte;
2445	x86pte_t	new;
2446	page_t		*pp;
2447
2448	ASSERT(!IN_VA_HOLE(vaddr));
2449	ASSERT(IS_PAGEALIGNED(vaddr));
2450	ASSERT(IS_PAGEALIGNED(eaddr));
2451	ASSERT(hat == kas.a_hat || eaddr <= _userlimit);
2452
2453	XPV_DISALLOW_MIGRATE();
2454	for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) {
2455try_again:
2456		pte = htable_walk(hat, &ht, &vaddr, eaddr);
2457		if (ht == NULL)
2458			break;
2459		entry = htable_va2entry(vaddr, ht);
2460
2461		if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC ||
2462		    PTE_GET(pte, PT_REF | PT_MOD) == 0)
2463			continue;
2464
2465		/*
2466		 * We need to acquire the mapping list lock to protect
2467		 * against hat_pageunload(), hat_unload(), etc.
2468		 */
2469		pp = page_numtopp_nolock(PTE2PFN(pte, ht->ht_level));
2470		if (pp == NULL)
2471			break;
2472		x86_hm_enter(pp);
2473		save_pte = pte;
2474		pte = x86pte_get(ht, entry);
2475		if (pte != save_pte) {
2476			x86_hm_exit(pp);
2477			goto try_again;
2478		}
2479		if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC ||
2480		    PTE_GET(pte, PT_REF | PT_MOD) == 0) {
2481			x86_hm_exit(pp);
2482			continue;
2483		}
2484
2485		/*
2486		 * Need to clear ref or mod bits. We may compete with
2487		 * hardware updating the R/M bits and have to try again.
2488		 */
2489		if (flags == HAT_SYNC_ZERORM) {
2490			new = pte;
2491			PTE_CLR(new, PT_REF | PT_MOD);
2492			pte = hati_update_pte(ht, entry, pte, new);
2493			if (pte != 0) {
2494				x86_hm_exit(pp);
2495				goto try_again;
2496			}
2497		} else {
2498			/*
2499			 * sync the PTE to the page_t
2500			 */
2501			hati_sync_pte_to_page(pp, save_pte, ht->ht_level);
2502		}
2503		x86_hm_exit(pp);
2504	}
2505	if (ht)
2506		htable_release(ht);
2507	XPV_ALLOW_MIGRATE();
2508}
2509
2510/*
2511 * void	hat_map(hat, addr, len, flags)
2512 */
2513/*ARGSUSED*/
2514void
2515hat_map(hat_t *hat, caddr_t addr, size_t len, uint_t flags)
2516{
2517	/* does nothing */
2518}
2519
2520/*
2521 * uint_t hat_getattr(hat, addr, *attr)
2522 *	returns attr for <hat,addr> in *attr.  returns 0 if there was a
2523 *	mapping and *attr is valid, nonzero if there was no mapping and
2524 *	*attr is not valid.
2525 */
2526uint_t
2527hat_getattr(hat_t *hat, caddr_t addr, uint_t *attr)
2528{
2529	uintptr_t	vaddr = ALIGN2PAGE(addr);
2530	htable_t	*ht = NULL;
2531	x86pte_t	pte;
2532
2533	ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2534
2535	if (IN_VA_HOLE(vaddr))
2536		return ((uint_t)-1);
2537
2538	ht = htable_getpte(hat, vaddr, NULL, &pte, mmu.max_page_level);
2539	if (ht == NULL)
2540		return ((uint_t)-1);
2541
2542	if (!PTE_ISVALID(pte) || !PTE_ISPAGE(pte, ht->ht_level)) {
2543		htable_release(ht);
2544		return ((uint_t)-1);
2545	}
2546
2547	*attr = PROT_READ;
2548	if (PTE_GET(pte, PT_WRITABLE))
2549		*attr |= PROT_WRITE;
2550	if (PTE_GET(pte, PT_USER))
2551		*attr |= PROT_USER;
2552	if (!PTE_GET(pte, mmu.pt_nx))
2553		*attr |= PROT_EXEC;
2554	if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC)
2555		*attr |= HAT_NOSYNC;
2556	htable_release(ht);
2557	return (0);
2558}
2559
2560/*
2561 * hat_updateattr() applies the given attribute change to an existing mapping
2562 */
2563#define	HAT_LOAD_ATTR		1
2564#define	HAT_SET_ATTR		2
2565#define	HAT_CLR_ATTR		3
2566
2567static void
2568hat_updateattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr, int what)
2569{
2570	uintptr_t	vaddr = (uintptr_t)addr;
2571	uintptr_t	eaddr = (uintptr_t)addr + len;
2572	htable_t	*ht = NULL;
2573	uint_t		entry;
2574	x86pte_t	oldpte, newpte;
2575	page_t		*pp;
2576
2577	XPV_DISALLOW_MIGRATE();
2578	ASSERT(IS_PAGEALIGNED(vaddr));
2579	ASSERT(IS_PAGEALIGNED(eaddr));
2580	ASSERT(hat == kas.a_hat ||
2581	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
2582	for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) {
2583try_again:
2584		oldpte = htable_walk(hat, &ht, &vaddr, eaddr);
2585		if (ht == NULL)
2586			break;
2587		if (PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOCONSIST)
2588			continue;
2589
2590		pp = page_numtopp_nolock(PTE2PFN(oldpte, ht->ht_level));
2591		if (pp == NULL)
2592			continue;
2593		x86_hm_enter(pp);
2594
2595		newpte = oldpte;
2596		/*
2597		 * We found a page table entry in the desired range,
2598		 * figure out the new attributes.
2599		 */
2600		if (what == HAT_SET_ATTR || what == HAT_LOAD_ATTR) {
2601			if ((attr & PROT_WRITE) &&
2602			    !PTE_GET(oldpte, PT_WRITABLE))
2603				newpte |= PT_WRITABLE;
2604
2605			if ((attr & HAT_NOSYNC) &&
2606			    PTE_GET(oldpte, PT_SOFTWARE) < PT_NOSYNC)
2607				newpte |= PT_NOSYNC;
2608
2609			if ((attr & PROT_EXEC) && PTE_GET(oldpte, mmu.pt_nx))
2610				newpte &= ~mmu.pt_nx;
2611		}
2612
2613		if (what == HAT_LOAD_ATTR) {
2614			if (!(attr & PROT_WRITE) &&
2615			    PTE_GET(oldpte, PT_WRITABLE))
2616				newpte &= ~PT_WRITABLE;
2617
2618			if (!(attr & HAT_NOSYNC) &&
2619			    PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC)
2620				newpte &= ~PT_SOFTWARE;
2621
2622			if (!(attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx))
2623				newpte |= mmu.pt_nx;
2624		}
2625
2626		if (what == HAT_CLR_ATTR) {
2627			if ((attr & PROT_WRITE) && PTE_GET(oldpte, PT_WRITABLE))
2628				newpte &= ~PT_WRITABLE;
2629
2630			if ((attr & HAT_NOSYNC) &&
2631			    PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC)
2632				newpte &= ~PT_SOFTWARE;
2633
2634			if ((attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx))
2635				newpte |= mmu.pt_nx;
2636		}
2637
2638		/*
2639		 * Ensure NOSYNC/NOCONSIST mappings have REF and MOD set.
2640		 * x86pte_set() depends on this.
2641		 */
2642		if (PTE_GET(newpte, PT_SOFTWARE) >= PT_NOSYNC)
2643			newpte |= PT_REF | PT_MOD;
2644
2645		/*
2646		 * what about PROT_READ or others? this code only handles:
2647		 * EXEC, WRITE, NOSYNC
2648		 */
2649
2650		/*
2651		 * If new PTE really changed, update the table.
2652		 */
2653		if (newpte != oldpte) {
2654			entry = htable_va2entry(vaddr, ht);
2655			oldpte = hati_update_pte(ht, entry, oldpte, newpte);
2656			if (oldpte != 0) {
2657				x86_hm_exit(pp);
2658				goto try_again;
2659			}
2660		}
2661		x86_hm_exit(pp);
2662	}
2663	if (ht)
2664		htable_release(ht);
2665	XPV_ALLOW_MIGRATE();
2666}
2667
2668/*
2669 * Various wrappers for hat_updateattr()
2670 */
2671void
2672hat_setattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
2673{
2674	ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2675	hat_updateattr(hat, addr, len, attr, HAT_SET_ATTR);
2676}
2677
2678void
2679hat_clrattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
2680{
2681	ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2682	hat_updateattr(hat, addr, len, attr, HAT_CLR_ATTR);
2683}
2684
2685void
2686hat_chgattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
2687{
2688	ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2689	hat_updateattr(hat, addr, len, attr, HAT_LOAD_ATTR);
2690}
2691
2692void
2693hat_chgprot(hat_t *hat, caddr_t addr, size_t len, uint_t vprot)
2694{
2695	ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2696	hat_updateattr(hat, addr, len, vprot & HAT_PROT_MASK, HAT_LOAD_ATTR);
2697}
2698
2699/*
2700 * size_t hat_getpagesize(hat, addr)
2701 *	returns pagesize in bytes for <hat, addr>. returns -1 of there is
2702 *	no mapping. This is an advisory call.
2703 */
2704ssize_t
2705hat_getpagesize(hat_t *hat, caddr_t addr)
2706{
2707	uintptr_t	vaddr = ALIGN2PAGE(addr);
2708	htable_t	*ht;
2709	size_t		pagesize;
2710
2711	ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2712	if (IN_VA_HOLE(vaddr))
2713		return (-1);
2714	ht = htable_getpage(hat, vaddr, NULL);
2715	if (ht == NULL)
2716		return (-1);
2717	pagesize = LEVEL_SIZE(ht->ht_level);
2718	htable_release(ht);
2719	return (pagesize);
2720}
2721
2722
2723
2724/*
2725 * pfn_t hat_getpfnum(hat, addr)
2726 *	returns pfn for <hat, addr> or PFN_INVALID if mapping is invalid.
2727 */
2728pfn_t
2729hat_getpfnum(hat_t *hat, caddr_t addr)
2730{
2731	uintptr_t	vaddr = ALIGN2PAGE(addr);
2732	htable_t	*ht;
2733	uint_t		entry;
2734	pfn_t		pfn = PFN_INVALID;
2735
2736	ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2737	if (khat_running == 0)
2738		return (PFN_INVALID);
2739
2740	if (IN_VA_HOLE(vaddr))
2741		return (PFN_INVALID);
2742
2743	XPV_DISALLOW_MIGRATE();
2744	/*
2745	 * A very common use of hat_getpfnum() is from the DDI for kernel pages.
2746	 * Use the kmap_ptes (which also covers the 32 bit heap) to speed
2747	 * this up.
2748	 */
2749	if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) {
2750		x86pte_t pte;
2751		pgcnt_t pg_index;
2752
2753		pg_index = mmu_btop(vaddr - mmu.kmap_addr);
2754		pte = GET_PTE(PT_INDEX_PTR(mmu.kmap_ptes, pg_index));
2755		if (PTE_ISVALID(pte))
2756			/*LINTED [use of constant 0 causes a lint warning] */
2757			pfn = PTE2PFN(pte, 0);
2758		XPV_ALLOW_MIGRATE();
2759		return (pfn);
2760	}
2761
2762	ht = htable_getpage(hat, vaddr, &entry);
2763	if (ht == NULL) {
2764		XPV_ALLOW_MIGRATE();
2765		return (PFN_INVALID);
2766	}
2767	ASSERT(vaddr >= ht->ht_vaddr);
2768	ASSERT(vaddr <= HTABLE_LAST_PAGE(ht));
2769	pfn = PTE2PFN(x86pte_get(ht, entry), ht->ht_level);
2770	if (ht->ht_level > 0)
2771		pfn += mmu_btop(vaddr & LEVEL_OFFSET(ht->ht_level));
2772	htable_release(ht);
2773	XPV_ALLOW_MIGRATE();
2774	return (pfn);
2775}
2776
2777/*
2778 * hat_getkpfnum() is an obsolete DDI routine, and its use is discouraged.
2779 * Use hat_getpfnum(kas.a_hat, ...) instead.
2780 *
2781 * We'd like to return PFN_INVALID if the mappings have underlying page_t's
2782 * but can't right now due to the fact that some software has grown to use
2783 * this interface incorrectly. So for now when the interface is misused,
2784 * return a warning to the user that in the future it won't work in the
2785 * way they're abusing it, and carry on.
2786 *
2787 * Note that hat_getkpfnum() is never supported on amd64.
2788 */
2789#if !defined(__amd64)
2790pfn_t
2791hat_getkpfnum(caddr_t addr)
2792{
2793	pfn_t	pfn;
2794	int badcaller = 0;
2795
2796	if (khat_running == 0)
2797		panic("hat_getkpfnum(): called too early\n");
2798	if ((uintptr_t)addr < kernelbase)
2799		return (PFN_INVALID);
2800
2801	XPV_DISALLOW_MIGRATE();
2802	if (segkpm && IS_KPM_ADDR(addr)) {
2803		badcaller = 1;
2804		pfn = hat_kpm_va2pfn(addr);
2805	} else {
2806		pfn = hat_getpfnum(kas.a_hat, addr);
2807		badcaller = pf_is_memory(pfn);
2808	}
2809
2810	if (badcaller)
2811		hat_getkpfnum_badcall(caller());
2812	XPV_ALLOW_MIGRATE();
2813	return (pfn);
2814}
2815#endif /* __amd64 */
2816
2817/*
2818 * int hat_probe(hat, addr)
2819 *	return 0 if no valid mapping is present.  Faster version
2820 *	of hat_getattr in certain architectures.
2821 */
2822int
2823hat_probe(hat_t *hat, caddr_t addr)
2824{
2825	uintptr_t	vaddr = ALIGN2PAGE(addr);
2826	uint_t		entry;
2827	htable_t	*ht;
2828	pgcnt_t		pg_off;
2829
2830	ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2831	ASSERT(hat == kas.a_hat ||
2832	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
2833	if (IN_VA_HOLE(vaddr))
2834		return (0);
2835
2836	/*
2837	 * Most common use of hat_probe is from segmap. We special case it
2838	 * for performance.
2839	 */
2840	if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) {
2841		pg_off = mmu_btop(vaddr - mmu.kmap_addr);
2842		if (mmu.pae_hat)
2843			return (PTE_ISVALID(mmu.kmap_ptes[pg_off]));
2844		else
2845			return (PTE_ISVALID(
2846			    ((x86pte32_t *)mmu.kmap_ptes)[pg_off]));
2847	}
2848
2849	ht = htable_getpage(hat, vaddr, &entry);
2850	htable_release(ht);
2851	return (ht != NULL);
2852}
2853
2854/*
2855 * Find out if the segment for hat_share()/hat_unshare() is DISM or locked ISM.
2856 */
2857static int
2858is_it_dism(hat_t *hat, caddr_t va)
2859{
2860	struct seg *seg;
2861	struct shm_data *shmd;
2862	struct spt_data *sptd;
2863
2864	seg = as_findseg(hat->hat_as, va, 0);
2865	ASSERT(seg != NULL);
2866	ASSERT(seg->s_base <= va);
2867	shmd = (struct shm_data *)seg->s_data;
2868	ASSERT(shmd != NULL);
2869	sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2870	ASSERT(sptd != NULL);
2871	if (sptd->spt_flags & SHM_PAGEABLE)
2872		return (1);
2873	return (0);
2874}
2875
2876/*
2877 * Simple implementation of ISM. hat_share() is similar to hat_memload_array(),
2878 * except that we use the ism_hat's existing mappings to determine the pages
2879 * and protections to use for this hat. If we find a full properly aligned
2880 * and sized pagetable, we will attempt to share the pagetable itself.
2881 */
2882/*ARGSUSED*/
2883int
2884hat_share(
2885	hat_t		*hat,
2886	caddr_t		addr,
2887	hat_t		*ism_hat,
2888	caddr_t		src_addr,
2889	size_t		len,	/* almost useless value, see below.. */
2890	uint_t		ismszc)
2891{
2892	uintptr_t	vaddr_start = (uintptr_t)addr;
2893	uintptr_t	vaddr;
2894	uintptr_t	eaddr = vaddr_start + len;
2895	uintptr_t	ism_addr_start = (uintptr_t)src_addr;
2896	uintptr_t	ism_addr = ism_addr_start;
2897	uintptr_t	e_ism_addr = ism_addr + len;
2898	htable_t	*ism_ht = NULL;
2899	htable_t	*ht;
2900	x86pte_t	pte;
2901	page_t		*pp;
2902	pfn_t		pfn;
2903	level_t		l;
2904	pgcnt_t		pgcnt;
2905	uint_t		prot;
2906	int		is_dism;
2907	int		flags;
2908
2909	/*
2910	 * We might be asked to share an empty DISM hat by as_dup()
2911	 */
2912	ASSERT(hat != kas.a_hat);
2913	ASSERT(eaddr <= _userlimit);
2914	if (!(ism_hat->hat_flags & HAT_SHARED)) {
2915		ASSERT(hat_get_mapped_size(ism_hat) == 0);
2916		return (0);
2917	}
2918	XPV_DISALLOW_MIGRATE();
2919
2920	/*
2921	 * The SPT segment driver often passes us a size larger than there are
2922	 * valid mappings. That's because it rounds the segment size up to a
2923	 * large pagesize, even if the actual memory mapped by ism_hat is less.
2924	 */
2925	ASSERT(IS_PAGEALIGNED(vaddr_start));
2926	ASSERT(IS_PAGEALIGNED(ism_addr_start));
2927	ASSERT(ism_hat->hat_flags & HAT_SHARED);
2928	is_dism = is_it_dism(hat, addr);
2929	while (ism_addr < e_ism_addr) {
2930		/*
2931		 * use htable_walk to get the next valid ISM mapping
2932		 */
2933		pte = htable_walk(ism_hat, &ism_ht, &ism_addr, e_ism_addr);
2934		if (ism_ht == NULL)
2935			break;
2936
2937		/*
2938		 * First check to see if we already share the page table.
2939		 */
2940		l = ism_ht->ht_level;
2941		vaddr = vaddr_start + (ism_addr - ism_addr_start);
2942		ht = htable_lookup(hat, vaddr, l);
2943		if (ht != NULL) {
2944			if (ht->ht_flags & HTABLE_SHARED_PFN)
2945				goto shared;
2946			htable_release(ht);
2947			goto not_shared;
2948		}
2949
2950		/*
2951		 * Can't ever share top table.
2952		 */
2953		if (l == mmu.max_level)
2954			goto not_shared;
2955
2956		/*
2957		 * Avoid level mismatches later due to DISM faults.
2958		 */
2959		if (is_dism && l > 0)
2960			goto not_shared;
2961
2962		/*
2963		 * addresses and lengths must align
2964		 * table must be fully populated
2965		 * no lower level page tables
2966		 */
2967		if (ism_addr != ism_ht->ht_vaddr ||
2968		    (vaddr & LEVEL_OFFSET(l + 1)) != 0)
2969			goto not_shared;
2970
2971		/*
2972		 * The range of address space must cover a full table.
2973		 */
2974		if (e_ism_addr - ism_addr < LEVEL_SIZE(l + 1))
2975			goto not_shared;
2976
2977		/*
2978		 * All entries in the ISM page table must be leaf PTEs.
2979		 */
2980		if (l > 0) {
2981			int e;
2982
2983			/*
2984			 * We know the 0th is from htable_walk() above.
2985			 */
2986			for (e = 1; e < HTABLE_NUM_PTES(ism_ht); ++e) {
2987				x86pte_t pte;
2988				pte = x86pte_get(ism_ht, e);
2989				if (!PTE_ISPAGE(pte, l))
2990					goto not_shared;
2991			}
2992		}
2993
2994		/*
2995		 * share the page table
2996		 */
2997		ht = htable_create(hat, vaddr, l, ism_ht);
2998shared:
2999		ASSERT(ht->ht_flags & HTABLE_SHARED_PFN);
3000		ASSERT(ht->ht_shares == ism_ht);
3001		hat->hat_ism_pgcnt +=
3002		    (ism_ht->ht_valid_cnt - ht->ht_valid_cnt) <<
3003		    (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT);
3004		ht->ht_valid_cnt = ism_ht->ht_valid_cnt;
3005		htable_release(ht);
3006		ism_addr = ism_ht->ht_vaddr + LEVEL_SIZE(l + 1);
3007		htable_release(ism_ht);
3008		ism_ht = NULL;
3009		continue;
3010
3011not_shared:
3012		/*
3013		 * Unable to share the page table. Instead we will
3014		 * create new mappings from the values in the ISM mappings.
3015		 * Figure out what level size mappings to use;
3016		 */
3017		for (l = ism_ht->ht_level; l > 0; --l) {
3018			if (LEVEL_SIZE(l) <= eaddr - vaddr &&
3019			    (vaddr & LEVEL_OFFSET(l)) == 0)
3020				break;
3021		}
3022
3023		/*
3024		 * The ISM mapping might be larger than the share area,
3025		 * be careful to truncate it if needed.
3026		 */
3027		if (eaddr - vaddr >= LEVEL_SIZE(ism_ht->ht_level)) {
3028			pgcnt = mmu_btop(LEVEL_SIZE(ism_ht->ht_level));
3029		} else {
3030			pgcnt = mmu_btop(eaddr - vaddr);
3031			l = 0;
3032		}
3033
3034		pfn = PTE2PFN(pte, ism_ht->ht_level);
3035		ASSERT(pfn != PFN_INVALID);
3036		while (pgcnt > 0) {
3037			/*
3038			 * Make a new pte for the PFN for this level.
3039			 * Copy protections for the pte from the ISM pte.
3040			 */
3041			pp = page_numtopp_nolock(pfn);
3042			ASSERT(pp != NULL);
3043
3044			prot = PROT_USER | PROT_READ | HAT_UNORDERED_OK;
3045			if (PTE_GET(pte, PT_WRITABLE))
3046				prot |= PROT_WRITE;
3047			if (!PTE_GET(pte, PT_NX))
3048				prot |= PROT_EXEC;
3049
3050			flags = HAT_LOAD;
3051			if (!is_dism)
3052				flags |= HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST;
3053			while (hati_load_common(hat, vaddr, pp, prot, flags,
3054			    l, pfn) != 0) {
3055				if (l == 0)
3056					panic("hati_load_common() failure");
3057				--l;
3058			}
3059
3060			vaddr += LEVEL_SIZE(l);
3061			ism_addr += LEVEL_SIZE(l);
3062			pfn += mmu_btop(LEVEL_SIZE(l));
3063			pgcnt -= mmu_btop(LEVEL_SIZE(l));
3064		}
3065	}
3066	if (ism_ht != NULL)
3067		htable_release(ism_ht);
3068	XPV_ALLOW_MIGRATE();
3069	return (0);
3070}
3071
3072
3073/*
3074 * hat_unshare() is similar to hat_unload_callback(), but
3075 * we have to look for empty shared pagetables. Note that
3076 * hat_unshare() is always invoked against an entire segment.
3077 */
3078/*ARGSUSED*/
3079void
3080hat_unshare(hat_t *hat, caddr_t addr, size_t len, uint_t ismszc)
3081{
3082	uint64_t	vaddr = (uintptr_t)addr;
3083	uintptr_t	eaddr = vaddr + len;
3084	htable_t	*ht = NULL;
3085	uint_t		need_demaps = 0;
3086	int		flags = HAT_UNLOAD_UNMAP;
3087	level_t		l;
3088
3089	ASSERT(hat != kas.a_hat);
3090	ASSERT(eaddr <= _userlimit);
3091	ASSERT(IS_PAGEALIGNED(vaddr));
3092	ASSERT(IS_PAGEALIGNED(eaddr));
3093	XPV_DISALLOW_MIGRATE();
3094
3095	/*
3096	 * First go through and remove any shared pagetables.
3097	 *
3098	 * Note that it's ok to delay the TLB shootdown till the entire range is
3099	 * finished, because if hat_pageunload() were to unload a shared
3100	 * pagetable page, its hat_tlb_inval() will do a global TLB invalidate.
3101	 */
3102	l = mmu.max_page_level;
3103	if (l == mmu.max_level)
3104		--l;
3105	for (; l >= 0; --l) {
3106		for (vaddr = (uintptr_t)addr; vaddr < eaddr;
3107		    vaddr = (vaddr & LEVEL_MASK(l + 1)) + LEVEL_SIZE(l + 1)) {
3108			ASSERT(!IN_VA_HOLE(vaddr));
3109			/*
3110			 * find a pagetable that maps the current address
3111			 */
3112			ht = htable_lookup(hat, vaddr, l);
3113			if (ht == NULL)
3114				continue;
3115			if (ht->ht_flags & HTABLE_SHARED_PFN) {
3116				/*
3117				 * clear page count, set valid_cnt to 0,
3118				 * let htable_release() finish the job
3119				 */
3120				hat->hat_ism_pgcnt -= ht->ht_valid_cnt <<
3121				    (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT);
3122				ht->ht_valid_cnt = 0;
3123				need_demaps = 1;
3124			}
3125			htable_release(ht);
3126		}
3127	}
3128
3129	/*
3130	 * flush the TLBs - since we're probably dealing with MANY mappings
3131	 * we do just one CR3 reload.
3132	 */
3133	if (!(hat->hat_flags & HAT_FREEING) && need_demaps)
3134		hat_tlb_inval(hat, DEMAP_ALL_ADDR);
3135
3136	/*
3137	 * Now go back and clean up any unaligned mappings that
3138	 * couldn't share pagetables.
3139	 */
3140	if (!is_it_dism(hat, addr))
3141		flags |= HAT_UNLOAD_UNLOCK;
3142	hat_unload(hat, addr, len, flags);
3143	XPV_ALLOW_MIGRATE();
3144}
3145
3146
3147/*
3148 * hat_reserve() does nothing
3149 */
3150/*ARGSUSED*/
3151void
3152hat_reserve(struct as *as, caddr_t addr, size_t len)
3153{
3154}
3155
3156
3157/*
3158 * Called when all mappings to a page should have write permission removed.
3159 * Mostly stolem from hat_pagesync()
3160 */
3161static void
3162hati_page_clrwrt(struct page *pp)
3163{
3164	hment_t		*hm = NULL;
3165	htable_t	*ht;
3166	uint_t		entry;
3167	x86pte_t	old;
3168	x86pte_t	new;
3169	uint_t		pszc = 0;
3170
3171	XPV_DISALLOW_MIGRATE();
3172next_size:
3173	/*
3174	 * walk thru the mapping list clearing write permission
3175	 */
3176	x86_hm_enter(pp);
3177	while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) {
3178		if (ht->ht_level < pszc)
3179			continue;
3180		old = x86pte_get(ht, entry);
3181
3182		for (;;) {
3183			/*
3184			 * Is this mapping of interest?
3185			 */
3186			if (PTE2PFN(old, ht->ht_level) != pp->p_pagenum ||
3187			    PTE_GET(old, PT_WRITABLE) == 0)
3188				break;
3189
3190			/*
3191			 * Clear ref/mod writable bits. This requires cross
3192			 * calls to ensure any executing TLBs see cleared bits.
3193			 */
3194			new = old;
3195			PTE_CLR(new, PT_REF | PT_MOD | PT_WRITABLE);
3196			old = hati_update_pte(ht, entry, old, new);
3197			if (old != 0)
3198				continue;
3199
3200			break;
3201		}
3202	}
3203	x86_hm_exit(pp);
3204	while (pszc < pp->p_szc) {
3205		page_t *tpp;
3206		pszc++;
3207		tpp = PP_GROUPLEADER(pp, pszc);
3208		if (pp != tpp) {
3209			pp = tpp;
3210			goto next_size;
3211		}
3212	}
3213	XPV_ALLOW_MIGRATE();
3214}
3215
3216/*
3217 * void hat_page_setattr(pp, flag)
3218 * void hat_page_clrattr(pp, flag)
3219 *	used to set/clr ref/mod bits.
3220 */
3221void
3222hat_page_setattr(struct page *pp, uint_t flag)
3223{
3224	vnode_t		*vp = pp->p_vnode;
3225	kmutex_t	*vphm = NULL;
3226	page_t		**listp;
3227	int		noshuffle;
3228
3229	noshuffle = flag & P_NSH;
3230	flag &= ~P_NSH;
3231
3232	if (PP_GETRM(pp, flag) == flag)
3233		return;
3234
3235	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp) &&
3236	    !noshuffle) {
3237		vphm = page_vnode_mutex(vp);
3238		mutex_enter(vphm);
3239	}
3240
3241	PP_SETRM(pp, flag);
3242
3243	if (vphm != NULL) {
3244
3245		/*
3246		 * Some File Systems examine v_pages for NULL w/o
3247		 * grabbing the vphm mutex. Must not let it become NULL when
3248		 * pp is the only page on the list.
3249		 */
3250		if (pp->p_vpnext != pp) {
3251			page_vpsub(&vp->v_pages, pp);
3252			if (vp->v_pages != NULL)
3253				listp = &vp->v_pages->p_vpprev->p_vpnext;
3254			else
3255				listp = &vp->v_pages;
3256			page_vpadd(listp, pp);
3257		}
3258		mutex_exit(vphm);
3259	}
3260}
3261
3262void
3263hat_page_clrattr(struct page *pp, uint_t flag)
3264{
3265	vnode_t		*vp = pp->p_vnode;
3266	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
3267
3268	/*
3269	 * Caller is expected to hold page's io lock for VMODSORT to work
3270	 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod
3271	 * bit is cleared.
3272	 * We don't have assert to avoid tripping some existing third party
3273	 * code. The dirty page is moved back to top of the v_page list
3274	 * after IO is done in pvn_write_done().
3275	 */
3276	PP_CLRRM(pp, flag);
3277
3278	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
3279
3280		/*
3281		 * VMODSORT works by removing write permissions and getting
3282		 * a fault when a page is made dirty. At this point
3283		 * we need to remove write permission from all mappings
3284		 * to this page.
3285		 */
3286		hati_page_clrwrt(pp);
3287	}
3288}
3289
3290/*
3291 *	If flag is specified, returns 0 if attribute is disabled
3292 *	and non zero if enabled.  If flag specifes multiple attributs
3293 *	then returns 0 if ALL atriibutes are disabled.  This is an advisory
3294 *	call.
3295 */
3296uint_t
3297hat_page_getattr(struct page *pp, uint_t flag)
3298{
3299	return (PP_GETRM(pp, flag));
3300}
3301
3302
3303/*
3304 * common code used by hat_pageunload() and hment_steal()
3305 */
3306hment_t *
3307hati_page_unmap(page_t *pp, htable_t *ht, uint_t entry)
3308{
3309	x86pte_t old_pte;
3310	pfn_t pfn = pp->p_pagenum;
3311	hment_t *hm;
3312
3313	/*
3314	 * We need to acquire a hold on the htable in order to
3315	 * do the invalidate. We know the htable must exist, since
3316	 * unmap's don't release the htable until after removing any
3317	 * hment. Having x86_hm_enter() keeps that from proceeding.
3318	 */
3319	htable_acquire(ht);
3320
3321	/*
3322	 * Invalidate the PTE and remove the hment.
3323	 */
3324	old_pte = x86pte_inval(ht, entry, 0, NULL);
3325	if (PTE2PFN(old_pte, ht->ht_level) != pfn) {
3326		panic("x86pte_inval() failure found PTE = " FMT_PTE
3327		    " pfn being unmapped is %lx ht=0x%lx entry=0x%x",
3328		    old_pte, pfn, (uintptr_t)ht, entry);
3329	}
3330
3331	/*
3332	 * Clean up all the htable information for this mapping
3333	 */
3334	ASSERT(ht->ht_valid_cnt > 0);
3335	HTABLE_DEC(ht->ht_valid_cnt);
3336	PGCNT_DEC(ht->ht_hat, ht->ht_level);
3337
3338	/*
3339	 * sync ref/mod bits to the page_t
3340	 */
3341	if (PTE_GET(old_pte, PT_SOFTWARE) < PT_NOSYNC)
3342		hati_sync_pte_to_page(pp, old_pte, ht->ht_level);
3343
3344	/*
3345	 * Remove the mapping list entry for this page.
3346	 */
3347	hm = hment_remove(pp, ht, entry);
3348
3349	/*
3350	 * drop the mapping list lock so that we might free the
3351	 * hment and htable.
3352	 */
3353	x86_hm_exit(pp);
3354	htable_release(ht);
3355	return (hm);
3356}
3357
3358extern int	vpm_enable;
3359/*
3360 * Unload all translations to a page. If the page is a subpage of a large
3361 * page, the large page mappings are also removed.
3362 *
3363 * The forceflags are unused.
3364 */
3365
3366/*ARGSUSED*/
3367static int
3368hati_pageunload(struct page *pp, uint_t pg_szcd, uint_t forceflag)
3369{
3370	page_t		*cur_pp = pp;
3371	hment_t		*hm;
3372	hment_t		*prev;
3373	htable_t	*ht;
3374	uint_t		entry;
3375	level_t		level;
3376
3377	XPV_DISALLOW_MIGRATE();
3378#if defined(__amd64)
3379	/*
3380	 * clear the vpm ref.
3381	 */
3382	if (vpm_enable) {
3383		pp->p_vpmref = 0;
3384	}
3385#endif
3386	/*
3387	 * The loop with next_size handles pages with multiple pagesize mappings
3388	 */
3389next_size:
3390	for (;;) {
3391
3392		/*
3393		 * Get a mapping list entry
3394		 */
3395		x86_hm_enter(cur_pp);
3396		for (prev = NULL; ; prev = hm) {
3397			hm = hment_walk(cur_pp, &ht, &entry, prev);
3398			if (hm == NULL) {
3399				x86_hm_exit(cur_pp);
3400
3401				/*
3402				 * If not part of a larger page, we're done.
3403				 */
3404				if (cur_pp->p_szc <= pg_szcd) {
3405					XPV_ALLOW_MIGRATE();
3406					return (0);
3407				}
3408
3409				/*
3410				 * Else check the next larger page size.
3411				 * hat_page_demote() may decrease p_szc
3412				 * but that's ok we'll just take an extra
3413				 * trip discover there're no larger mappings
3414				 * and return.
3415				 */
3416				++pg_szcd;
3417				cur_pp = PP_GROUPLEADER(cur_pp, pg_szcd);
3418				goto next_size;
3419			}
3420
3421			/*
3422			 * If this mapping size matches, remove it.
3423			 */
3424			level = ht->ht_level;
3425			if (level == pg_szcd)
3426				break;
3427		}
3428
3429		/*
3430		 * Remove the mapping list entry for this page.
3431		 * Note this does the x86_hm_exit() for us.
3432		 */
3433		hm = hati_page_unmap(cur_pp, ht, entry);
3434		if (hm != NULL)
3435			hment_free(hm);
3436	}
3437}
3438
3439int
3440hat_pageunload(struct page *pp, uint_t forceflag)
3441{
3442	ASSERT(PAGE_EXCL(pp));
3443	return (hati_pageunload(pp, 0, forceflag));
3444}
3445
3446/*
3447 * Unload all large mappings to pp and reduce by 1 p_szc field of every large
3448 * page level that included pp.
3449 *
3450 * pp must be locked EXCL. Even though no other constituent pages are locked
3451 * it's legal to unload large mappings to pp because all constituent pages of
3452 * large locked mappings have to be locked SHARED.  therefore if we have EXCL
3453 * lock on one of constituent pages none of the large mappings to pp are
3454 * locked.
3455 *
3456 * Change (always decrease) p_szc field starting from the last constituent
3457 * page and ending with root constituent page so that root's pszc always shows
3458 * the area where hat_page_demote() may be active.
3459 *
3460 * This mechanism is only used for file system pages where it's not always
3461 * possible to get EXCL locks on all constituent pages to demote the size code
3462 * (as is done for anonymous or kernel large pages).
3463 */
3464void
3465hat_page_demote(page_t *pp)
3466{
3467	uint_t		pszc;
3468	uint_t		rszc;
3469	uint_t		szc;
3470	page_t		*rootpp;
3471	page_t		*firstpp;
3472	page_t		*lastpp;
3473	pgcnt_t		pgcnt;
3474
3475	ASSERT(PAGE_EXCL(pp));
3476	ASSERT(!PP_ISFREE(pp));
3477	ASSERT(page_szc_lock_assert(pp));
3478
3479	if (pp->p_szc == 0)
3480		return;
3481
3482	rootpp = PP_GROUPLEADER(pp, 1);
3483	(void) hati_pageunload(rootpp, 1, HAT_FORCE_PGUNLOAD);
3484
3485	/*
3486	 * all large mappings to pp are gone
3487	 * and no new can be setup since pp is locked exclusively.
3488	 *
3489	 * Lock the root to make sure there's only one hat_page_demote()
3490	 * outstanding within the area of this root's pszc.
3491	 *
3492	 * Second potential hat_page_demote() is already eliminated by upper
3493	 * VM layer via page_szc_lock() but we don't rely on it and use our
3494	 * own locking (so that upper layer locking can be changed without
3495	 * assumptions that hat depends on upper layer VM to prevent multiple
3496	 * hat_page_demote() to be issued simultaneously to the same large
3497	 * page).
3498	 */
3499again:
3500	pszc = pp->p_szc;
3501	if (pszc == 0)
3502		return;
3503	rootpp = PP_GROUPLEADER(pp, pszc);
3504	x86_hm_enter(rootpp);
3505	/*
3506	 * If root's p_szc is different from pszc we raced with another
3507	 * hat_page_demote().  Drop the lock and try to find the root again.
3508	 * If root's p_szc is greater than pszc previous hat_page_demote() is
3509	 * not done yet.  Take and release mlist lock of root's root to wait
3510	 * for previous hat_page_demote() to complete.
3511	 */
3512	if ((rszc = rootpp->p_szc) != pszc) {
3513		x86_hm_exit(rootpp);
3514		if (rszc > pszc) {
3515			/* p_szc of a locked non free page can't increase */
3516			ASSERT(pp != rootpp);
3517
3518			rootpp = PP_GROUPLEADER(rootpp, rszc);
3519			x86_hm_enter(rootpp);
3520			x86_hm_exit(rootpp);
3521		}
3522		goto again;
3523	}
3524	ASSERT(pp->p_szc == pszc);
3525
3526	/*
3527	 * Decrement by 1 p_szc of every constituent page of a region that
3528	 * covered pp. For example if original szc is 3 it gets changed to 2
3529	 * everywhere except in region 2 that covered pp. Region 2 that
3530	 * covered pp gets demoted to 1 everywhere except in region 1 that
3531	 * covered pp. The region 1 that covered pp is demoted to region
3532	 * 0. It's done this way because from region 3 we removed level 3
3533	 * mappings, from region 2 that covered pp we removed level 2 mappings
3534	 * and from region 1 that covered pp we removed level 1 mappings.  All
3535	 * changes are done from from high pfn's to low pfn's so that roots
3536	 * are changed last allowing one to know the largest region where
3537	 * hat_page_demote() is stil active by only looking at the root page.
3538	 *
3539	 * This algorithm is implemented in 2 while loops. First loop changes
3540	 * p_szc of pages to the right of pp's level 1 region and second
3541	 * loop changes p_szc of pages of level 1 region that covers pp
3542	 * and all pages to the left of level 1 region that covers pp.
3543	 * In the first loop p_szc keeps dropping with every iteration
3544	 * and in the second loop it keeps increasing with every iteration.
3545	 *
3546	 * First loop description: Demote pages to the right of pp outside of
3547	 * level 1 region that covers pp.  In every iteration of the while
3548	 * loop below find the last page of szc region and the first page of
3549	 * (szc - 1) region that is immediately to the right of (szc - 1)
3550	 * region that covers pp.  From last such page to first such page
3551	 * change every page's szc to szc - 1. Decrement szc and continue
3552	 * looping until szc is 1. If pp belongs to the last (szc - 1) region
3553	 * of szc region skip to the next iteration.
3554	 */
3555	szc = pszc;
3556	while (szc > 1) {
3557		lastpp = PP_GROUPLEADER(pp, szc);
3558		pgcnt = page_get_pagecnt(szc);
3559		lastpp += pgcnt - 1;
3560		firstpp = PP_GROUPLEADER(pp, (szc - 1));
3561		pgcnt = page_get_pagecnt(szc - 1);
3562		if (lastpp - firstpp < pgcnt) {
3563			szc--;
3564			continue;
3565		}
3566		firstpp += pgcnt;
3567		while (lastpp != firstpp) {
3568			ASSERT(lastpp->p_szc == pszc);
3569			lastpp->p_szc = szc - 1;
3570			lastpp--;
3571		}
3572		firstpp->p_szc = szc - 1;
3573		szc--;
3574	}
3575
3576	/*
3577	 * Second loop description:
3578	 * First iteration changes p_szc to 0 of every
3579	 * page of level 1 region that covers pp.
3580	 * Subsequent iterations find last page of szc region
3581	 * immediately to the left of szc region that covered pp
3582	 * and first page of (szc + 1) region that covers pp.
3583	 * From last to first page change p_szc of every page to szc.
3584	 * Increment szc and continue looping until szc is pszc.
3585	 * If pp belongs to the fist szc region of (szc + 1) region
3586	 * skip to the next iteration.
3587	 *
3588	 */
3589	szc = 0;
3590	while (szc < pszc) {
3591		firstpp = PP_GROUPLEADER(pp, (szc + 1));
3592		if (szc == 0) {
3593			pgcnt = page_get_pagecnt(1);
3594			lastpp = firstpp + (pgcnt - 1);
3595		} else {
3596			lastpp = PP_GROUPLEADER(pp, szc);
3597			if (firstpp == lastpp) {
3598				szc++;
3599				continue;
3600			}
3601			lastpp--;
3602			pgcnt = page_get_pagecnt(szc);
3603		}
3604		while (lastpp != firstpp) {
3605			ASSERT(lastpp->p_szc == pszc);
3606			lastpp->p_szc = szc;
3607			lastpp--;
3608		}
3609		firstpp->p_szc = szc;
3610		if (firstpp == rootpp)
3611			break;
3612		szc++;
3613	}
3614	x86_hm_exit(rootpp);
3615}
3616
3617/*
3618 * get hw stats from hardware into page struct and reset hw stats
3619 * returns attributes of page
3620 * Flags for hat_pagesync, hat_getstat, hat_sync
3621 *
3622 * define	HAT_SYNC_ZERORM		0x01
3623 *
3624 * Additional flags for hat_pagesync
3625 *
3626 * define	HAT_SYNC_STOPON_REF	0x02
3627 * define	HAT_SYNC_STOPON_MOD	0x04
3628 * define	HAT_SYNC_STOPON_RM	0x06
3629 * define	HAT_SYNC_STOPON_SHARED	0x08
3630 */
3631uint_t
3632hat_pagesync(struct page *pp, uint_t flags)
3633{
3634	hment_t		*hm = NULL;
3635	htable_t	*ht;
3636	uint_t		entry;
3637	x86pte_t	old, save_old;
3638	x86pte_t	new;
3639	uchar_t		nrmbits = P_REF|P_MOD|P_RO;
3640	extern ulong_t	po_share;
3641	page_t		*save_pp = pp;
3642	uint_t		pszc = 0;
3643
3644	ASSERT(PAGE_LOCKED(pp) || panicstr);
3645
3646	if (PP_ISRO(pp) && (flags & HAT_SYNC_STOPON_MOD))
3647		return (pp->p_nrm & nrmbits);
3648
3649	if ((flags & HAT_SYNC_ZERORM) == 0) {
3650
3651		if ((flags & HAT_SYNC_STOPON_REF) != 0 && PP_ISREF(pp))
3652			return (pp->p_nrm & nrmbits);
3653
3654		if ((flags & HAT_SYNC_STOPON_MOD) != 0 && PP_ISMOD(pp))
3655			return (pp->p_nrm & nrmbits);
3656
3657		if ((flags & HAT_SYNC_STOPON_SHARED) != 0 &&
3658		    hat_page_getshare(pp) > po_share) {
3659			if (PP_ISRO(pp))
3660				PP_SETREF(pp);
3661			return (pp->p_nrm & nrmbits);
3662		}
3663	}
3664
3665	XPV_DISALLOW_MIGRATE();
3666next_size:
3667	/*
3668	 * walk thru the mapping list syncing (and clearing) ref/mod bits.
3669	 */
3670	x86_hm_enter(pp);
3671	while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) {
3672		if (ht->ht_level < pszc)
3673			continue;
3674		old = x86pte_get(ht, entry);
3675try_again:
3676
3677		ASSERT(PTE2PFN(old, ht->ht_level) == pp->p_pagenum);
3678
3679		if (PTE_GET(old, PT_REF | PT_MOD) == 0)
3680			continue;
3681
3682		save_old = old;
3683		if ((flags & HAT_SYNC_ZERORM) != 0) {
3684
3685			/*
3686			 * Need to clear ref or mod bits. Need to demap
3687			 * to make sure any executing TLBs see cleared bits.
3688			 */
3689			new = old;
3690			PTE_CLR(new, PT_REF | PT_MOD);
3691			old = hati_update_pte(ht, entry, old, new);
3692			if (old != 0)
3693				goto try_again;
3694
3695			old = save_old;
3696		}
3697
3698		/*
3699		 * Sync the PTE
3700		 */
3701		if (!(flags & HAT_SYNC_ZERORM) &&
3702		    PTE_GET(old, PT_SOFTWARE) <= PT_NOSYNC)
3703			hati_sync_pte_to_page(pp, old, ht->ht_level);
3704
3705		/*
3706		 * can stop short if we found a ref'd or mod'd page
3707		 */
3708		if ((flags & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp) ||
3709		    (flags & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)) {
3710			x86_hm_exit(pp);
3711			goto done;
3712		}
3713	}
3714	x86_hm_exit(pp);
3715	while (pszc < pp->p_szc) {
3716		page_t *tpp;
3717		pszc++;
3718		tpp = PP_GROUPLEADER(pp, pszc);
3719		if (pp != tpp) {
3720			pp = tpp;
3721			goto next_size;
3722		}
3723	}
3724done:
3725	XPV_ALLOW_MIGRATE();
3726	return (save_pp->p_nrm & nrmbits);
3727}
3728
3729/*
3730 * returns approx number of mappings to this pp.  A return of 0 implies
3731 * there are no mappings to the page.
3732 */
3733ulong_t
3734hat_page_getshare(page_t *pp)
3735{
3736	uint_t cnt;
3737	cnt = hment_mapcnt(pp);
3738#if defined(__amd64)
3739	if (vpm_enable && pp->p_vpmref) {
3740		cnt += 1;
3741	}
3742#endif
3743	return (cnt);
3744}
3745
3746/*
3747 * Return 1 the number of mappings exceeds sh_thresh. Return 0
3748 * otherwise.
3749 */
3750int
3751hat_page_checkshare(page_t *pp, ulong_t sh_thresh)
3752{
3753	return (hat_page_getshare(pp) > sh_thresh);
3754}
3755
3756/*
3757 * hat_softlock isn't supported anymore
3758 */
3759/*ARGSUSED*/
3760faultcode_t
3761hat_softlock(
3762	hat_t *hat,
3763	caddr_t addr,
3764	size_t *len,
3765	struct page **page_array,
3766	uint_t flags)
3767{
3768	return (FC_NOSUPPORT);
3769}
3770
3771
3772
3773/*
3774 * Routine to expose supported HAT features to platform independent code.
3775 */
3776/*ARGSUSED*/
3777int
3778hat_supported(enum hat_features feature, void *arg)
3779{
3780	switch (feature) {
3781
3782	case HAT_SHARED_PT:	/* this is really ISM */
3783		return (1);
3784
3785	case HAT_DYNAMIC_ISM_UNMAP:
3786		return (0);
3787
3788	case HAT_VMODSORT:
3789		return (1);
3790
3791	case HAT_SHARED_REGIONS:
3792		return (0);
3793
3794	default:
3795		panic("hat_supported() - unknown feature");
3796	}
3797	return (0);
3798}
3799
3800/*
3801 * Called when a thread is exiting and has been switched to the kernel AS
3802 */
3803void
3804hat_thread_exit(kthread_t *thd)
3805{
3806	ASSERT(thd->t_procp->p_as == &kas);
3807	XPV_DISALLOW_MIGRATE();
3808	hat_switch(thd->t_procp->p_as->a_hat);
3809	XPV_ALLOW_MIGRATE();
3810}
3811
3812/*
3813 * Setup the given brand new hat structure as the new HAT on this cpu's mmu.
3814 */
3815/*ARGSUSED*/
3816void
3817hat_setup(hat_t *hat, int flags)
3818{
3819	XPV_DISALLOW_MIGRATE();
3820	kpreempt_disable();
3821
3822	hat_switch(hat);
3823
3824	kpreempt_enable();
3825	XPV_ALLOW_MIGRATE();
3826}
3827
3828/*
3829 * Prepare for a CPU private mapping for the given address.
3830 *
3831 * The address can only be used from a single CPU and can be remapped
3832 * using hat_mempte_remap().  Return the address of the PTE.
3833 *
3834 * We do the htable_create() if necessary and increment the valid count so
3835 * the htable can't disappear.  We also hat_devload() the page table into
3836 * kernel so that the PTE is quickly accessed.
3837 */
3838hat_mempte_t
3839hat_mempte_setup(caddr_t addr)
3840{
3841	uintptr_t	va = (uintptr_t)addr;
3842	htable_t	*ht;
3843	uint_t		entry;
3844	x86pte_t	oldpte;
3845	hat_mempte_t	p;
3846
3847	ASSERT(IS_PAGEALIGNED(va));
3848	ASSERT(!IN_VA_HOLE(va));
3849	++curthread->t_hatdepth;
3850	XPV_DISALLOW_MIGRATE();
3851	ht = htable_getpte(kas.a_hat, va, &entry, &oldpte, 0);
3852	if (ht == NULL) {
3853		ht = htable_create(kas.a_hat, va, 0, NULL);
3854		entry = htable_va2entry(va, ht);
3855		ASSERT(ht->ht_level == 0);
3856		oldpte = x86pte_get(ht, entry);
3857	}
3858	if (PTE_ISVALID(oldpte))
3859		panic("hat_mempte_setup(): address already mapped"
3860		    "ht=%p, entry=%d, pte=" FMT_PTE, (void *)ht, entry, oldpte);
3861
3862	/*
3863	 * increment ht_valid_cnt so that the pagetable can't disappear
3864	 */
3865	HTABLE_INC(ht->ht_valid_cnt);
3866
3867	/*
3868	 * return the PTE physical address to the caller.
3869	 */
3870	htable_release(ht);
3871	XPV_ALLOW_MIGRATE();
3872	p = PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry);
3873	--curthread->t_hatdepth;
3874	return (p);
3875}
3876
3877/*
3878 * Release a CPU private mapping for the given address.
3879 * We decrement the htable valid count so it might be destroyed.
3880 */
3881/*ARGSUSED1*/
3882void
3883hat_mempte_release(caddr_t addr, hat_mempte_t pte_pa)
3884{
3885	htable_t	*ht;
3886
3887	XPV_DISALLOW_MIGRATE();
3888	/*
3889	 * invalidate any left over mapping and decrement the htable valid count
3890	 */
3891#ifdef __xpv
3892	if (HYPERVISOR_update_va_mapping((uintptr_t)addr, 0,
3893	    UVMF_INVLPG | UVMF_LOCAL))
3894		panic("HYPERVISOR_update_va_mapping() failed");
3895#else
3896	{
3897		x86pte_t *pteptr;
3898
3899		pteptr = x86pte_mapin(mmu_btop(pte_pa),
3900		    (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL);
3901		if (mmu.pae_hat)
3902			*pteptr = 0;
3903		else
3904			*(x86pte32_t *)pteptr = 0;
3905		mmu_tlbflush_entry(addr);
3906		x86pte_mapout();
3907	}
3908#endif
3909
3910	ht = htable_getpte(kas.a_hat, ALIGN2PAGE(addr), NULL, NULL, 0);
3911	if (ht == NULL)
3912		panic("hat_mempte_release(): invalid address");
3913	ASSERT(ht->ht_level == 0);
3914	HTABLE_DEC(ht->ht_valid_cnt);
3915	htable_release(ht);
3916	XPV_ALLOW_MIGRATE();
3917}
3918
3919/*
3920 * Apply a temporary CPU private mapping to a page. We flush the TLB only
3921 * on this CPU, so this ought to have been called with preemption disabled.
3922 */
3923void
3924hat_mempte_remap(
3925	pfn_t		pfn,
3926	caddr_t		addr,
3927	hat_mempte_t	pte_pa,
3928	uint_t		attr,
3929	uint_t		flags)
3930{
3931	uintptr_t	va = (uintptr_t)addr;
3932	x86pte_t	pte;
3933
3934	/*
3935	 * Remap the given PTE to the new page's PFN. Invalidate only
3936	 * on this CPU.
3937	 */
3938#ifdef DEBUG
3939	htable_t	*ht;
3940	uint_t		entry;
3941
3942	ASSERT(IS_PAGEALIGNED(va));
3943	ASSERT(!IN_VA_HOLE(va));
3944	ht = htable_getpte(kas.a_hat, va, &entry, NULL, 0);
3945	ASSERT(ht != NULL);
3946	ASSERT(ht->ht_level == 0);
3947	ASSERT(ht->ht_valid_cnt > 0);
3948	ASSERT(ht->ht_pfn == mmu_btop(pte_pa));
3949	htable_release(ht);
3950#endif
3951	XPV_DISALLOW_MIGRATE();
3952	pte = hati_mkpte(pfn, attr, 0, flags);
3953#ifdef __xpv
3954	if (HYPERVISOR_update_va_mapping(va, pte, UVMF_INVLPG | UVMF_LOCAL))
3955		panic("HYPERVISOR_update_va_mapping() failed");
3956#else
3957	{
3958		x86pte_t *pteptr;
3959
3960		pteptr = x86pte_mapin(mmu_btop(pte_pa),
3961		    (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL);
3962		if (mmu.pae_hat)
3963			*(x86pte_t *)pteptr = pte;
3964		else
3965			*(x86pte32_t *)pteptr = (x86pte32_t)pte;
3966		mmu_tlbflush_entry(addr);
3967		x86pte_mapout();
3968	}
3969#endif
3970	XPV_ALLOW_MIGRATE();
3971}
3972
3973
3974
3975/*
3976 * Hat locking functions
3977 * XXX - these two functions are currently being used by hatstats
3978 * 	they can be removed by using a per-as mutex for hatstats.
3979 */
3980void
3981hat_enter(hat_t *hat)
3982{
3983	mutex_enter(&hat->hat_mutex);
3984}
3985
3986void
3987hat_exit(hat_t *hat)
3988{
3989	mutex_exit(&hat->hat_mutex);
3990}
3991
3992/*
3993 * HAT part of cpu initialization.
3994 */
3995void
3996hat_cpu_online(struct cpu *cpup)
3997{
3998	if (cpup != CPU) {
3999		x86pte_cpu_init(cpup);
4000		hat_vlp_setup(cpup);
4001	}
4002	CPUSET_ATOMIC_ADD(khat_cpuset, cpup->cpu_id);
4003}
4004
4005/*
4006 * HAT part of cpu deletion.
4007 * (currently, we only call this after the cpu is safely passivated.)
4008 */
4009void
4010hat_cpu_offline(struct cpu *cpup)
4011{
4012	ASSERT(cpup != CPU);
4013
4014	CPUSET_ATOMIC_DEL(khat_cpuset, cpup->cpu_id);
4015	x86pte_cpu_fini(cpup);
4016	hat_vlp_teardown(cpup);
4017}
4018
4019/*
4020 * Function called after all CPUs are brought online.
4021 * Used to remove low address boot mappings.
4022 */
4023void
4024clear_boot_mappings(uintptr_t low, uintptr_t high)
4025{
4026	uintptr_t vaddr = low;
4027	htable_t *ht = NULL;
4028	level_t level;
4029	uint_t entry;
4030	x86pte_t pte;
4031
4032	/*
4033	 * On 1st CPU we can unload the prom mappings, basically we blow away
4034	 * all virtual mappings under _userlimit.
4035	 */
4036	while (vaddr < high) {
4037		pte = htable_walk(kas.a_hat, &ht, &vaddr, high);
4038		if (ht == NULL)
4039			break;
4040
4041		level = ht->ht_level;
4042		entry = htable_va2entry(vaddr, ht);
4043		ASSERT(level <= mmu.max_page_level);
4044		ASSERT(PTE_ISPAGE(pte, level));
4045
4046		/*
4047		 * Unload the mapping from the page tables.
4048		 */
4049		(void) x86pte_inval(ht, entry, 0, NULL);
4050		ASSERT(ht->ht_valid_cnt > 0);
4051		HTABLE_DEC(ht->ht_valid_cnt);
4052		PGCNT_DEC(ht->ht_hat, ht->ht_level);
4053
4054		vaddr += LEVEL_SIZE(ht->ht_level);
4055	}
4056	if (ht)
4057		htable_release(ht);
4058}
4059
4060/*
4061 * Atomically update a new translation for a single page.  If the
4062 * currently installed PTE doesn't match the value we expect to find,
4063 * it's not updated and we return the PTE we found.
4064 *
4065 * If activating nosync or NOWRITE and the page was modified we need to sync
4066 * with the page_t. Also sync with page_t if clearing ref/mod bits.
4067 */
4068static x86pte_t
4069hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, x86pte_t new)
4070{
4071	page_t		*pp;
4072	uint_t		rm = 0;
4073	x86pte_t	replaced;
4074
4075	if (PTE_GET(expected, PT_SOFTWARE) < PT_NOSYNC &&
4076	    PTE_GET(expected, PT_MOD | PT_REF) &&
4077	    (PTE_GET(new, PT_NOSYNC) || !PTE_GET(new, PT_WRITABLE) ||
4078	    !PTE_GET(new, PT_MOD | PT_REF))) {
4079
4080		ASSERT(!pfn_is_foreign(PTE2PFN(expected, ht->ht_level)));
4081		pp = page_numtopp_nolock(PTE2PFN(expected, ht->ht_level));
4082		ASSERT(pp != NULL);
4083		if (PTE_GET(expected, PT_MOD))
4084			rm |= P_MOD;
4085		if (PTE_GET(expected, PT_REF))
4086			rm |= P_REF;
4087		PTE_CLR(new, PT_MOD | PT_REF);
4088	}
4089
4090	replaced = x86pte_update(ht, entry, expected, new);
4091	if (replaced != expected)
4092		return (replaced);
4093
4094	if (rm) {
4095		/*
4096		 * sync to all constituent pages of a large page
4097		 */
4098		pgcnt_t pgcnt = page_get_pagecnt(ht->ht_level);
4099		ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt));
4100		while (pgcnt-- > 0) {
4101			/*
4102			 * hat_page_demote() can't decrease
4103			 * pszc below this mapping size
4104			 * since large mapping existed after we
4105			 * took mlist lock.
4106			 */
4107			ASSERT(pp->p_szc >= ht->ht_level);
4108			hat_page_setattr(pp, rm);
4109			++pp;
4110		}
4111	}
4112
4113	return (0);
4114}
4115
4116/* ARGSUSED */
4117void
4118hat_join_srd(struct hat *hat, vnode_t *evp)
4119{
4120}
4121
4122/* ARGSUSED */
4123hat_region_cookie_t
4124hat_join_region(struct hat *hat,
4125    caddr_t r_saddr,
4126    size_t r_size,
4127    void *r_obj,
4128    u_offset_t r_objoff,
4129    uchar_t r_perm,
4130    uchar_t r_pgszc,
4131    hat_rgn_cb_func_t r_cb_function,
4132    uint_t flags)
4133{
4134	panic("No shared region support on x86");
4135	return (HAT_INVALID_REGION_COOKIE);
4136}
4137
4138/* ARGSUSED */
4139void
4140hat_leave_region(struct hat *hat, hat_region_cookie_t rcookie, uint_t flags)
4141{
4142	panic("No shared region support on x86");
4143}
4144
4145/* ARGSUSED */
4146void
4147hat_dup_region(struct hat *hat, hat_region_cookie_t rcookie)
4148{
4149	panic("No shared region support on x86");
4150}
4151
4152
4153/*
4154 * Kernel Physical Mapping (kpm) facility
4155 *
4156 * Most of the routines needed to support segkpm are almost no-ops on the
4157 * x86 platform.  We map in the entire segment when it is created and leave
4158 * it mapped in, so there is no additional work required to set up and tear
4159 * down individual mappings.  All of these routines were created to support
4160 * SPARC platforms that have to avoid aliasing in their virtually indexed
4161 * caches.
4162 *
4163 * Most of the routines have sanity checks in them (e.g. verifying that the
4164 * passed-in page is locked).  We don't actually care about most of these
4165 * checks on x86, but we leave them in place to identify problems in the
4166 * upper levels.
4167 */
4168
4169/*
4170 * Map in a locked page and return the vaddr.
4171 */
4172/*ARGSUSED*/
4173caddr_t
4174hat_kpm_mapin(struct page *pp, struct kpme *kpme)
4175{
4176	caddr_t		vaddr;
4177
4178#ifdef DEBUG
4179	if (kpm_enable == 0) {
4180		cmn_err(CE_WARN, "hat_kpm_mapin: kpm_enable not set\n");
4181		return ((caddr_t)NULL);
4182	}
4183
4184	if (pp == NULL || PAGE_LOCKED(pp) == 0) {
4185		cmn_err(CE_WARN, "hat_kpm_mapin: pp zero or not locked\n");
4186		return ((caddr_t)NULL);
4187	}
4188#endif
4189
4190	vaddr = hat_kpm_page2va(pp, 1);
4191
4192	return (vaddr);
4193}
4194
4195/*
4196 * Mapout a locked page.
4197 */
4198/*ARGSUSED*/
4199void
4200hat_kpm_mapout(struct page *pp, struct kpme *kpme, caddr_t vaddr)
4201{
4202#ifdef DEBUG
4203	if (kpm_enable == 0) {
4204		cmn_err(CE_WARN, "hat_kpm_mapout: kpm_enable not set\n");
4205		return;
4206	}
4207
4208	if (IS_KPM_ADDR(vaddr) == 0) {
4209		cmn_err(CE_WARN, "hat_kpm_mapout: no kpm address\n");
4210		return;
4211	}
4212
4213	if (pp == NULL || PAGE_LOCKED(pp) == 0) {
4214		cmn_err(CE_WARN, "hat_kpm_mapout: page zero or not locked\n");
4215		return;
4216	}
4217#endif
4218}
4219
4220/*
4221 * Return the kpm virtual address for a specific pfn
4222 */
4223caddr_t
4224hat_kpm_pfn2va(pfn_t pfn)
4225{
4226	uintptr_t vaddr = (uintptr_t)kpm_vbase + mmu_ptob(pfn);
4227
4228	ASSERT(!pfn_is_foreign(pfn));
4229	return ((caddr_t)vaddr);
4230}
4231
4232/*
4233 * Return the kpm virtual address for the page at pp.
4234 */
4235/*ARGSUSED*/
4236caddr_t
4237hat_kpm_page2va(struct page *pp, int checkswap)
4238{
4239	return (hat_kpm_pfn2va(pp->p_pagenum));
4240}
4241
4242/*
4243 * Return the page frame number for the kpm virtual address vaddr.
4244 */
4245pfn_t
4246hat_kpm_va2pfn(caddr_t vaddr)
4247{
4248	pfn_t		pfn;
4249
4250	ASSERT(IS_KPM_ADDR(vaddr));
4251
4252	pfn = (pfn_t)btop(vaddr - kpm_vbase);
4253
4254	return (pfn);
4255}
4256
4257
4258/*
4259 * Return the page for the kpm virtual address vaddr.
4260 */
4261page_t *
4262hat_kpm_vaddr2page(caddr_t vaddr)
4263{
4264	pfn_t		pfn;
4265
4266	ASSERT(IS_KPM_ADDR(vaddr));
4267
4268	pfn = hat_kpm_va2pfn(vaddr);
4269
4270	return (page_numtopp_nolock(pfn));
4271}
4272
4273/*
4274 * hat_kpm_fault is called from segkpm_fault when we take a page fault on a
4275 * KPM page.  This should never happen on x86
4276 */
4277int
4278hat_kpm_fault(hat_t *hat, caddr_t vaddr)
4279{
4280	panic("pagefault in seg_kpm.  hat: 0x%p  vaddr: 0x%p",
4281	    (void *)hat, (void *)vaddr);
4282
4283	return (0);
4284}
4285
4286/*ARGSUSED*/
4287void
4288hat_kpm_mseghash_clear(int nentries)
4289{}
4290
4291/*ARGSUSED*/
4292void
4293hat_kpm_mseghash_update(pgcnt_t inx, struct memseg *msp)
4294{}
4295
4296#ifdef __xpv
4297/*
4298 * There are specific Hypervisor calls to establish and remove mappings
4299 * to grant table references and the privcmd driver. We have to ensure
4300 * that a page table actually exists.
4301 */
4302void
4303hat_prepare_mapping(hat_t *hat, caddr_t addr)
4304{
4305	ASSERT(IS_P2ALIGNED((uintptr_t)addr, MMU_PAGESIZE));
4306	XPV_DISALLOW_MIGRATE();
4307	(void) htable_create(hat, (uintptr_t)addr, 0, NULL);
4308	XPV_ALLOW_MIGRATE();
4309}
4310
4311void
4312hat_release_mapping(hat_t *hat, caddr_t addr)
4313{
4314	htable_t *ht;
4315
4316	ASSERT(IS_P2ALIGNED((uintptr_t)addr, MMU_PAGESIZE));
4317	XPV_DISALLOW_MIGRATE();
4318	ht = htable_lookup(hat, (uintptr_t)addr, 0);
4319	ASSERT(ht != NULL);
4320	ASSERT(ht->ht_busy >= 2);
4321	htable_release(ht);
4322	htable_release(ht);
4323	XPV_ALLOW_MIGRATE();
4324									}
4325#endif
4326