mp_startup.c revision 7656:2621e50fdf4a
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27#include <sys/types.h>
28#include <sys/thread.h>
29#include <sys/cpuvar.h>
30#include <sys/t_lock.h>
31#include <sys/param.h>
32#include <sys/proc.h>
33#include <sys/disp.h>
34#include <sys/class.h>
35#include <sys/cmn_err.h>
36#include <sys/debug.h>
37#include <sys/asm_linkage.h>
38#include <sys/x_call.h>
39#include <sys/systm.h>
40#include <sys/var.h>
41#include <sys/vtrace.h>
42#include <vm/hat.h>
43#include <vm/as.h>
44#include <vm/seg_kmem.h>
45#include <vm/seg_kp.h>
46#include <sys/segments.h>
47#include <sys/kmem.h>
48#include <sys/stack.h>
49#include <sys/smp_impldefs.h>
50#include <sys/x86_archext.h>
51#include <sys/machsystm.h>
52#include <sys/traptrace.h>
53#include <sys/clock.h>
54#include <sys/cpc_impl.h>
55#include <sys/pg.h>
56#include <sys/cmt.h>
57#include <sys/dtrace.h>
58#include <sys/archsystm.h>
59#include <sys/fp.h>
60#include <sys/reboot.h>
61#include <sys/kdi_machimpl.h>
62#include <vm/hat_i86.h>
63#include <sys/memnode.h>
64#include <sys/pci_cfgspace.h>
65#include <sys/mach_mmu.h>
66#include <sys/sysmacros.h>
67#if defined(__xpv)
68#include <sys/hypervisor.h>
69#endif
70#include <sys/cpu_module.h>
71
72struct cpu	cpus[1];			/* CPU data */
73struct cpu	*cpu[NCPU] = {&cpus[0]};	/* pointers to all CPUs */
74cpu_core_t	cpu_core[NCPU];			/* cpu_core structures */
75
76/*
77 * Useful for disabling MP bring-up on a MP capable system.
78 */
79int use_mp = 1;
80
81/*
82 * to be set by a PSM to indicate what cpus
83 * are sitting around on the system.
84 */
85cpuset_t mp_cpus;
86
87/*
88 * This variable is used by the hat layer to decide whether or not
89 * critical sections are needed to prevent race conditions.  For sun4m,
90 * this variable is set once enough MP initialization has been done in
91 * order to allow cross calls.
92 */
93int flushes_require_xcalls;
94
95cpuset_t cpu_ready_set;		/* initialized in startup() */
96
97static 	void	mp_startup(void);
98
99static void cpu_sep_enable(void);
100static void cpu_sep_disable(void);
101static void cpu_asysc_enable(void);
102static void cpu_asysc_disable(void);
103
104/*
105 * Init CPU info - get CPU type info for processor_info system call.
106 */
107void
108init_cpu_info(struct cpu *cp)
109{
110	processor_info_t *pi = &cp->cpu_type_info;
111	char buf[CPU_IDSTRLEN];
112
113	/*
114	 * Get clock-frequency property for the CPU.
115	 */
116	pi->pi_clock = cpu_freq;
117
118	/*
119	 * Current frequency in Hz.
120	 */
121	cp->cpu_curr_clock = cpu_freq_hz;
122
123	/*
124	 * Supported frequencies.
125	 */
126	cpu_set_supp_freqs(cp, NULL);
127
128	(void) strcpy(pi->pi_processor_type, "i386");
129	if (fpu_exists)
130		(void) strcpy(pi->pi_fputypes, "i387 compatible");
131
132	(void) cpuid_getidstr(cp, buf, sizeof (buf));
133
134	cp->cpu_idstr = kmem_alloc(strlen(buf) + 1, KM_SLEEP);
135	(void) strcpy(cp->cpu_idstr, buf);
136
137	(void) cpuid_getbrandstr(cp, buf, sizeof (buf));
138	cp->cpu_brandstr = kmem_alloc(strlen(buf) + 1, KM_SLEEP);
139	(void) strcpy(cp->cpu_brandstr, buf);
140}
141
142/*
143 * Configure syscall support on this CPU.
144 */
145/*ARGSUSED*/
146void
147init_cpu_syscall(struct cpu *cp)
148{
149	kpreempt_disable();
150
151#if defined(__amd64)
152	if ((x86_feature & (X86_MSR | X86_ASYSC)) == (X86_MSR | X86_ASYSC)) {
153
154#if !defined(__lint)
155		/*
156		 * The syscall instruction imposes a certain ordering on
157		 * segment selectors, so we double-check that ordering
158		 * here.
159		 */
160		ASSERT(KDS_SEL == KCS_SEL + 8);
161		ASSERT(UDS_SEL == U32CS_SEL + 8);
162		ASSERT(UCS_SEL == U32CS_SEL + 16);
163#endif
164		/*
165		 * Turn syscall/sysret extensions on.
166		 */
167		cpu_asysc_enable();
168
169		/*
170		 * Program the magic registers ..
171		 */
172		wrmsr(MSR_AMD_STAR,
173		    ((uint64_t)(U32CS_SEL << 16 | KCS_SEL)) << 32);
174		wrmsr(MSR_AMD_LSTAR, (uint64_t)(uintptr_t)sys_syscall);
175		wrmsr(MSR_AMD_CSTAR, (uint64_t)(uintptr_t)sys_syscall32);
176
177		/*
178		 * This list of flags is masked off the incoming
179		 * %rfl when we enter the kernel.
180		 */
181		wrmsr(MSR_AMD_SFMASK, (uint64_t)(uintptr_t)(PS_IE | PS_T));
182	}
183#endif
184
185	/*
186	 * On 32-bit kernels, we use sysenter/sysexit because it's too
187	 * hard to use syscall/sysret, and it is more portable anyway.
188	 *
189	 * On 64-bit kernels on Nocona machines, the 32-bit syscall
190	 * variant isn't available to 32-bit applications, but sysenter is.
191	 */
192	if ((x86_feature & (X86_MSR | X86_SEP)) == (X86_MSR | X86_SEP)) {
193
194#if !defined(__lint)
195		/*
196		 * The sysenter instruction imposes a certain ordering on
197		 * segment selectors, so we double-check that ordering
198		 * here. See "sysenter" in Intel document 245471-012, "IA-32
199		 * Intel Architecture Software Developer's Manual Volume 2:
200		 * Instruction Set Reference"
201		 */
202		ASSERT(KDS_SEL == KCS_SEL + 8);
203
204		ASSERT32(UCS_SEL == ((KCS_SEL + 16) | 3));
205		ASSERT32(UDS_SEL == UCS_SEL + 8);
206
207		ASSERT64(U32CS_SEL == ((KCS_SEL + 16) | 3));
208		ASSERT64(UDS_SEL == U32CS_SEL + 8);
209#endif
210
211		cpu_sep_enable();
212
213		/*
214		 * resume() sets this value to the base of the threads stack
215		 * via a context handler.
216		 */
217		wrmsr(MSR_INTC_SEP_ESP, 0);
218		wrmsr(MSR_INTC_SEP_EIP, (uint64_t)(uintptr_t)sys_sysenter);
219	}
220
221	kpreempt_enable();
222}
223
224/*
225 * Multiprocessor initialization.
226 *
227 * Allocate and initialize the cpu structure, TRAPTRACE buffer, and the
228 * startup and idle threads for the specified CPU.
229 */
230struct cpu *
231mp_startup_init(int cpun)
232{
233	struct cpu *cp;
234	kthread_id_t tp;
235	caddr_t	sp;
236	proc_t *procp;
237#if !defined(__xpv)
238	extern int idle_cpu_prefer_mwait;
239#endif
240	extern void idle();
241
242#ifdef TRAPTRACE
243	trap_trace_ctl_t *ttc = &trap_trace_ctl[cpun];
244#endif
245
246	ASSERT(cpun < NCPU && cpu[cpun] == NULL);
247
248	cp = kmem_zalloc(sizeof (*cp), KM_SLEEP);
249#if !defined(__xpv)
250	if ((x86_feature & X86_MWAIT) && idle_cpu_prefer_mwait)
251		cp->cpu_m.mcpu_mwait = cpuid_mwait_alloc(CPU);
252#endif
253
254	procp = curthread->t_procp;
255
256	mutex_enter(&cpu_lock);
257	/*
258	 * Initialize the dispatcher first.
259	 */
260	disp_cpu_init(cp);
261	mutex_exit(&cpu_lock);
262
263	cpu_vm_data_init(cp);
264
265	/*
266	 * Allocate and initialize the startup thread for this CPU.
267	 * Interrupt and process switch stacks get allocated later
268	 * when the CPU starts running.
269	 */
270	tp = thread_create(NULL, 0, NULL, NULL, 0, procp,
271	    TS_STOPPED, maxclsyspri);
272
273	/*
274	 * Set state to TS_ONPROC since this thread will start running
275	 * as soon as the CPU comes online.
276	 *
277	 * All the other fields of the thread structure are setup by
278	 * thread_create().
279	 */
280	THREAD_ONPROC(tp, cp);
281	tp->t_preempt = 1;
282	tp->t_bound_cpu = cp;
283	tp->t_affinitycnt = 1;
284	tp->t_cpu = cp;
285	tp->t_disp_queue = cp->cpu_disp;
286
287	/*
288	 * Setup thread to start in mp_startup.
289	 */
290	sp = tp->t_stk;
291	tp->t_pc = (uintptr_t)mp_startup;
292	tp->t_sp = (uintptr_t)(sp - MINFRAME);
293#if defined(__amd64)
294	tp->t_sp -= STACK_ENTRY_ALIGN;		/* fake a call */
295#endif
296
297	cp->cpu_id = cpun;
298	cp->cpu_self = cp;
299	cp->cpu_thread = tp;
300	cp->cpu_lwp = NULL;
301	cp->cpu_dispthread = tp;
302	cp->cpu_dispatch_pri = DISP_PRIO(tp);
303
304	/*
305	 * cpu_base_spl must be set explicitly here to prevent any blocking
306	 * operations in mp_startup from causing the spl of the cpu to drop
307	 * to 0 (allowing device interrupts before we're ready) in resume().
308	 * cpu_base_spl MUST remain at LOCK_LEVEL until the cpu is CPU_READY.
309	 * As an extra bit of security on DEBUG kernels, this is enforced with
310	 * an assertion in mp_startup() -- before cpu_base_spl is set to its
311	 * proper value.
312	 */
313	cp->cpu_base_spl = ipltospl(LOCK_LEVEL);
314
315	/*
316	 * Now, initialize per-CPU idle thread for this CPU.
317	 */
318	tp = thread_create(NULL, PAGESIZE, idle, NULL, 0, procp, TS_ONPROC, -1);
319
320	cp->cpu_idle_thread = tp;
321
322	tp->t_preempt = 1;
323	tp->t_bound_cpu = cp;
324	tp->t_affinitycnt = 1;
325	tp->t_cpu = cp;
326	tp->t_disp_queue = cp->cpu_disp;
327
328	/*
329	 * Bootstrap the CPU's PG data
330	 */
331	pg_cpu_bootstrap(cp);
332
333	/*
334	 * Perform CPC initialization on the new CPU.
335	 */
336	kcpc_hw_init(cp);
337
338	/*
339	 * Allocate virtual addresses for cpu_caddr1 and cpu_caddr2
340	 * for each CPU.
341	 */
342	setup_vaddr_for_ppcopy(cp);
343
344	/*
345	 * Allocate page for new GDT and initialize from current GDT.
346	 */
347#if !defined(__lint)
348	ASSERT((sizeof (*cp->cpu_gdt) * NGDT) <= PAGESIZE);
349#endif
350	cp->cpu_gdt = kmem_zalloc(PAGESIZE, KM_SLEEP);
351	bcopy(CPU->cpu_gdt, cp->cpu_gdt, (sizeof (*cp->cpu_gdt) * NGDT));
352
353#if defined(__i386)
354	/*
355	 * setup kernel %gs.
356	 */
357	set_usegd(&cp->cpu_gdt[GDT_GS], cp, sizeof (struct cpu) -1, SDT_MEMRWA,
358	    SEL_KPL, 0, 1);
359#endif
360
361	/*
362	 * If we have more than one node, each cpu gets a copy of IDT
363	 * local to its node. If this is a Pentium box, we use cpu 0's
364	 * IDT. cpu 0's IDT has been made read-only to workaround the
365	 * cmpxchgl register bug
366	 */
367	if (system_hardware.hd_nodes && x86_type != X86_TYPE_P5) {
368#if !defined(__lint)
369		ASSERT((sizeof (*CPU->cpu_idt) * NIDT) <= PAGESIZE);
370#endif
371		cp->cpu_idt = kmem_zalloc(PAGESIZE, KM_SLEEP);
372		bcopy(CPU->cpu_idt, cp->cpu_idt, PAGESIZE);
373	} else {
374		cp->cpu_idt = CPU->cpu_idt;
375	}
376
377	/*
378	 * Get interrupt priority data from cpu 0.
379	 */
380	cp->cpu_pri_data = CPU->cpu_pri_data;
381
382	/*
383	 * alloc space for cpuid info
384	 */
385	cpuid_alloc_space(cp);
386
387	/*
388	 * alloc space for ucode_info
389	 */
390	ucode_alloc_space(cp);
391
392	hat_cpu_online(cp);
393
394#ifdef TRAPTRACE
395	/*
396	 * If this is a TRAPTRACE kernel, allocate TRAPTRACE buffers
397	 */
398	ttc->ttc_first = (uintptr_t)kmem_zalloc(trap_trace_bufsize, KM_SLEEP);
399	ttc->ttc_next = ttc->ttc_first;
400	ttc->ttc_limit = ttc->ttc_first + trap_trace_bufsize;
401#endif
402	/*
403	 * Record that we have another CPU.
404	 */
405	mutex_enter(&cpu_lock);
406	/*
407	 * Initialize the interrupt threads for this CPU
408	 */
409	cpu_intr_alloc(cp, NINTR_THREADS);
410	/*
411	 * Add CPU to list of available CPUs.  It'll be on the active list
412	 * after mp_startup().
413	 */
414	cpu_add_unit(cp);
415	mutex_exit(&cpu_lock);
416
417	return (cp);
418}
419
420/*
421 * Undo what was done in mp_startup_init
422 */
423static void
424mp_startup_fini(struct cpu *cp, int error)
425{
426	mutex_enter(&cpu_lock);
427
428	/*
429	 * Remove the CPU from the list of available CPUs.
430	 */
431	cpu_del_unit(cp->cpu_id);
432
433	if (error == ETIMEDOUT) {
434		/*
435		 * The cpu was started, but never *seemed* to run any
436		 * code in the kernel; it's probably off spinning in its
437		 * own private world, though with potential references to
438		 * our kmem-allocated IDTs and GDTs (for example).
439		 *
440		 * Worse still, it may actually wake up some time later,
441		 * so rather than guess what it might or might not do, we
442		 * leave the fundamental data structures intact.
443		 */
444		cp->cpu_flags = 0;
445		mutex_exit(&cpu_lock);
446		return;
447	}
448
449	/*
450	 * At this point, the only threads bound to this CPU should
451	 * special per-cpu threads: it's idle thread, it's pause threads,
452	 * and it's interrupt threads.  Clean these up.
453	 */
454	cpu_destroy_bound_threads(cp);
455	cp->cpu_idle_thread = NULL;
456
457	/*
458	 * Free the interrupt stack.
459	 */
460	segkp_release(segkp,
461	    cp->cpu_intr_stack - (INTR_STACK_SIZE - SA(MINFRAME)));
462
463	mutex_exit(&cpu_lock);
464
465#ifdef TRAPTRACE
466	/*
467	 * Discard the trap trace buffer
468	 */
469	{
470		trap_trace_ctl_t *ttc = &trap_trace_ctl[cp->cpu_id];
471
472		kmem_free((void *)ttc->ttc_first, trap_trace_bufsize);
473		ttc->ttc_first = NULL;
474	}
475#endif
476
477	hat_cpu_offline(cp);
478
479	cpuid_free_space(cp);
480
481	ucode_free_space(cp);
482
483	if (cp->cpu_idt != CPU->cpu_idt)
484		kmem_free(cp->cpu_idt, PAGESIZE);
485	cp->cpu_idt = NULL;
486
487	kmem_free(cp->cpu_gdt, PAGESIZE);
488	cp->cpu_gdt = NULL;
489
490	teardown_vaddr_for_ppcopy(cp);
491
492	kcpc_hw_fini(cp);
493
494	cp->cpu_dispthread = NULL;
495	cp->cpu_thread = NULL;	/* discarded by cpu_destroy_bound_threads() */
496
497	cpu_vm_data_destroy(cp);
498
499	mutex_enter(&cpu_lock);
500	disp_cpu_fini(cp);
501	mutex_exit(&cpu_lock);
502
503#if !defined(__xpv)
504	if (cp->cpu_m.mcpu_mwait != NULL)
505		cpuid_mwait_free(cp);
506#endif
507	kmem_free(cp, sizeof (*cp));
508}
509
510/*
511 * Apply workarounds for known errata, and warn about those that are absent.
512 *
513 * System vendors occasionally create configurations which contain different
514 * revisions of the CPUs that are almost but not exactly the same.  At the
515 * time of writing, this meant that their clock rates were the same, their
516 * feature sets were the same, but the required workaround were -not-
517 * necessarily the same.  So, this routine is invoked on -every- CPU soon
518 * after starting to make sure that the resulting system contains the most
519 * pessimal set of workarounds needed to cope with *any* of the CPUs in the
520 * system.
521 *
522 * workaround_errata is invoked early in mlsetup() for CPU 0, and in
523 * mp_startup() for all slave CPUs. Slaves process workaround_errata prior
524 * to acknowledging their readiness to the master, so this routine will
525 * never be executed by multiple CPUs in parallel, thus making updates to
526 * global data safe.
527 *
528 * These workarounds are based on Rev 3.57 of the Revision Guide for
529 * AMD Athlon(tm) 64 and AMD Opteron(tm) Processors, August 2005.
530 */
531
532#if defined(OPTERON_ERRATUM_88)
533int opteron_erratum_88;		/* if non-zero -> at least one cpu has it */
534#endif
535
536#if defined(OPTERON_ERRATUM_91)
537int opteron_erratum_91;		/* if non-zero -> at least one cpu has it */
538#endif
539
540#if defined(OPTERON_ERRATUM_93)
541int opteron_erratum_93;		/* if non-zero -> at least one cpu has it */
542#endif
543
544#if defined(OPTERON_ERRATUM_95)
545int opteron_erratum_95;		/* if non-zero -> at least one cpu has it */
546#endif
547
548#if defined(OPTERON_ERRATUM_100)
549int opteron_erratum_100;	/* if non-zero -> at least one cpu has it */
550#endif
551
552#if defined(OPTERON_ERRATUM_108)
553int opteron_erratum_108;	/* if non-zero -> at least one cpu has it */
554#endif
555
556#if defined(OPTERON_ERRATUM_109)
557int opteron_erratum_109;	/* if non-zero -> at least one cpu has it */
558#endif
559
560#if defined(OPTERON_ERRATUM_121)
561int opteron_erratum_121;	/* if non-zero -> at least one cpu has it */
562#endif
563
564#if defined(OPTERON_ERRATUM_122)
565int opteron_erratum_122;	/* if non-zero -> at least one cpu has it */
566#endif
567
568#if defined(OPTERON_ERRATUM_123)
569int opteron_erratum_123;	/* if non-zero -> at least one cpu has it */
570#endif
571
572#if defined(OPTERON_ERRATUM_131)
573int opteron_erratum_131;	/* if non-zero -> at least one cpu has it */
574#endif
575
576#if defined(OPTERON_WORKAROUND_6336786)
577int opteron_workaround_6336786;	/* non-zero -> WA relevant and applied */
578int opteron_workaround_6336786_UP = 0;	/* Not needed for UP */
579#endif
580
581#if defined(OPTERON_WORKAROUND_6323525)
582int opteron_workaround_6323525;	/* if non-zero -> at least one cpu has it */
583#endif
584
585#if defined(OPTERON_ERRATUM_298)
586int opteron_erratum_298;
587#endif
588
589static void
590workaround_warning(cpu_t *cp, uint_t erratum)
591{
592	cmn_err(CE_WARN, "cpu%d: no workaround for erratum %u",
593	    cp->cpu_id, erratum);
594}
595
596static void
597workaround_applied(uint_t erratum)
598{
599	if (erratum > 1000000)
600		cmn_err(CE_CONT, "?workaround applied for cpu issue #%d\n",
601		    erratum);
602	else
603		cmn_err(CE_CONT, "?workaround applied for cpu erratum #%d\n",
604		    erratum);
605}
606
607static void
608msr_warning(cpu_t *cp, const char *rw, uint_t msr, int error)
609{
610	cmn_err(CE_WARN, "cpu%d: couldn't %smsr 0x%x, error %d",
611	    cp->cpu_id, rw, msr, error);
612}
613
614/*
615 * Determine the number of nodes in an Opteron / Greyhound family system.
616 */
617static uint_t
618opteron_get_nnodes(void)
619{
620	static uint_t nnodes = 0;
621
622#ifdef	DEBUG
623	uint_t family;
624
625	family = cpuid_getfamily(CPU);
626	ASSERT(family == 0xf || family == 0x10);
627#endif	/* DEBUG */
628
629	if (nnodes == 0) {
630		/*
631		 * Obtain the number of nodes in the system from
632		 * bits [6:4] of the Node ID register on node 0.
633		 *
634		 * The actual node count is NodeID[6:4] + 1
635		 *
636		 * The Node ID register is accessed via function 0,
637		 * offset 0x60. Node 0 is device 24.
638		 */
639		nnodes = ((pci_getl_func(0, 24, 0, 0x60) & 0x70) >> 4) + 1;
640	}
641	return (nnodes);
642}
643
644#if defined(__xpv)
645
646/*
647 * On dom0, we can determine the number of physical cpus on the machine.
648 * This number is important when figuring out what workarounds are
649 * appropriate, so compute it now.
650 */
651uint_t
652xen_get_nphyscpus(void)
653{
654	static uint_t nphyscpus = 0;
655
656	ASSERT(DOMAIN_IS_INITDOMAIN(xen_info));
657
658	if (nphyscpus == 0) {
659		xen_sysctl_t op;
660		xen_sysctl_physinfo_t *pi = &op.u.physinfo;
661
662		op.cmd = XEN_SYSCTL_physinfo;
663		op.interface_version = XEN_SYSCTL_INTERFACE_VERSION;
664		if (HYPERVISOR_sysctl(&op) == 0)
665			nphyscpus = pi->threads_per_core *
666			    pi->cores_per_socket * pi->sockets_per_node *
667			    pi->nr_nodes;
668	}
669	return (nphyscpus);
670}
671#endif
672
673uint_t
674do_erratum_298(struct cpu *cpu)
675{
676	static int	osvwrc = -3;
677	extern int	osvw_opteron_erratum(cpu_t *, uint_t);
678
679	/*
680	 * L2 Eviction May Occur During Processor Operation To Set
681	 * Accessed or Dirty Bit.
682	 */
683	if (osvwrc == -3) {
684		osvwrc = osvw_opteron_erratum(cpu, 298);
685	} else {
686		/* osvw return codes should be consistent for all cpus */
687		ASSERT(osvwrc == osvw_opteron_erratum(cpu, 298));
688	}
689
690	switch (osvwrc) {
691	case 0:		/* erratum is not present: do nothing */
692		break;
693	case 1:		/* erratum is present: BIOS workaround applied */
694		/*
695		 * check if workaround is actually in place and issue warning
696		 * if not.
697		 */
698		if (((rdmsr(MSR_AMD_HWCR) & AMD_HWCR_TLBCACHEDIS) == 0) ||
699		    ((rdmsr(MSR_AMD_BU_CFG) & AMD_BU_CFG_E298) == 0)) {
700#if defined(OPTERON_ERRATUM_298)
701			opteron_erratum_298++;
702#else
703			workaround_warning(cpu, 298);
704			return (1);
705#endif
706		}
707		break;
708	case -1:	/* cannot determine via osvw: check cpuid */
709		if ((cpuid_opteron_erratum(cpu, 298) > 0) &&
710		    (((rdmsr(MSR_AMD_HWCR) & AMD_HWCR_TLBCACHEDIS) == 0) ||
711		    ((rdmsr(MSR_AMD_BU_CFG) & AMD_BU_CFG_E298) == 0))) {
712#if defined(OPTERON_ERRATUM_298)
713			opteron_erratum_298++;
714#else
715			workaround_warning(cpu, 298);
716			return (1);
717#endif
718		}
719		break;
720	}
721	return (0);
722}
723
724uint_t
725workaround_errata(struct cpu *cpu)
726{
727	uint_t missing = 0;
728
729	ASSERT(cpu == CPU);
730
731	/*LINTED*/
732	if (cpuid_opteron_erratum(cpu, 88) > 0) {
733		/*
734		 * SWAPGS May Fail To Read Correct GS Base
735		 */
736#if defined(OPTERON_ERRATUM_88)
737		/*
738		 * The workaround is an mfence in the relevant assembler code
739		 */
740		opteron_erratum_88++;
741#else
742		workaround_warning(cpu, 88);
743		missing++;
744#endif
745	}
746
747	if (cpuid_opteron_erratum(cpu, 91) > 0) {
748		/*
749		 * Software Prefetches May Report A Page Fault
750		 */
751#if defined(OPTERON_ERRATUM_91)
752		/*
753		 * fix is in trap.c
754		 */
755		opteron_erratum_91++;
756#else
757		workaround_warning(cpu, 91);
758		missing++;
759#endif
760	}
761
762	if (cpuid_opteron_erratum(cpu, 93) > 0) {
763		/*
764		 * RSM Auto-Halt Restart Returns to Incorrect RIP
765		 */
766#if defined(OPTERON_ERRATUM_93)
767		/*
768		 * fix is in trap.c
769		 */
770		opteron_erratum_93++;
771#else
772		workaround_warning(cpu, 93);
773		missing++;
774#endif
775	}
776
777	/*LINTED*/
778	if (cpuid_opteron_erratum(cpu, 95) > 0) {
779		/*
780		 * RET Instruction May Return to Incorrect EIP
781		 */
782#if defined(OPTERON_ERRATUM_95)
783#if defined(_LP64)
784		/*
785		 * Workaround this by ensuring that 32-bit user code and
786		 * 64-bit kernel code never occupy the same address
787		 * range mod 4G.
788		 */
789		if (_userlimit32 > 0xc0000000ul)
790			*(uintptr_t *)&_userlimit32 = 0xc0000000ul;
791
792		/*LINTED*/
793		ASSERT((uint32_t)COREHEAP_BASE == 0xc0000000u);
794		opteron_erratum_95++;
795#endif	/* _LP64 */
796#else
797		workaround_warning(cpu, 95);
798		missing++;
799#endif
800	}
801
802	if (cpuid_opteron_erratum(cpu, 100) > 0) {
803		/*
804		 * Compatibility Mode Branches Transfer to Illegal Address
805		 */
806#if defined(OPTERON_ERRATUM_100)
807		/*
808		 * fix is in trap.c
809		 */
810		opteron_erratum_100++;
811#else
812		workaround_warning(cpu, 100);
813		missing++;
814#endif
815	}
816
817	/*LINTED*/
818	if (cpuid_opteron_erratum(cpu, 108) > 0) {
819		/*
820		 * CPUID Instruction May Return Incorrect Model Number In
821		 * Some Processors
822		 */
823#if defined(OPTERON_ERRATUM_108)
824		/*
825		 * (Our cpuid-handling code corrects the model number on
826		 * those processors)
827		 */
828#else
829		workaround_warning(cpu, 108);
830		missing++;
831#endif
832	}
833
834	/*LINTED*/
835	if (cpuid_opteron_erratum(cpu, 109) > 0) do {
836		/*
837		 * Certain Reverse REP MOVS May Produce Unpredictable Behaviour
838		 */
839#if defined(OPTERON_ERRATUM_109)
840		/*
841		 * The "workaround" is to print a warning to upgrade the BIOS
842		 */
843		uint64_t value;
844		const uint_t msr = MSR_AMD_PATCHLEVEL;
845		int err;
846
847		if ((err = checked_rdmsr(msr, &value)) != 0) {
848			msr_warning(cpu, "rd", msr, err);
849			workaround_warning(cpu, 109);
850			missing++;
851		}
852		if (value == 0)
853			opteron_erratum_109++;
854#else
855		workaround_warning(cpu, 109);
856		missing++;
857#endif
858	/*CONSTANTCONDITION*/
859	} while (0);
860
861	/*LINTED*/
862	if (cpuid_opteron_erratum(cpu, 121) > 0) {
863		/*
864		 * Sequential Execution Across Non_Canonical Boundary Caused
865		 * Processor Hang
866		 */
867#if defined(OPTERON_ERRATUM_121)
868#if defined(_LP64)
869		/*
870		 * Erratum 121 is only present in long (64 bit) mode.
871		 * Workaround is to include the page immediately before the
872		 * va hole to eliminate the possibility of system hangs due to
873		 * sequential execution across the va hole boundary.
874		 */
875		if (opteron_erratum_121)
876			opteron_erratum_121++;
877		else {
878			if (hole_start) {
879				hole_start -= PAGESIZE;
880			} else {
881				/*
882				 * hole_start not yet initialized by
883				 * mmu_init. Initialize hole_start
884				 * with value to be subtracted.
885				 */
886				hole_start = PAGESIZE;
887			}
888			opteron_erratum_121++;
889		}
890#endif	/* _LP64 */
891#else
892		workaround_warning(cpu, 121);
893		missing++;
894#endif
895	}
896
897	/*LINTED*/
898	if (cpuid_opteron_erratum(cpu, 122) > 0) do {
899		/*
900		 * TLB Flush Filter May Cause Coherency Problem in
901		 * Multiprocessor Systems
902		 */
903#if defined(OPTERON_ERRATUM_122)
904		uint64_t value;
905		const uint_t msr = MSR_AMD_HWCR;
906		int error;
907
908		/*
909		 * Erratum 122 is only present in MP configurations (multi-core
910		 * or multi-processor).
911		 */
912#if defined(__xpv)
913		if (!DOMAIN_IS_INITDOMAIN(xen_info))
914			break;
915		if (!opteron_erratum_122 && xen_get_nphyscpus() == 1)
916			break;
917#else
918		if (!opteron_erratum_122 && opteron_get_nnodes() == 1 &&
919		    cpuid_get_ncpu_per_chip(cpu) == 1)
920			break;
921#endif
922		/* disable TLB Flush Filter */
923
924		if ((error = checked_rdmsr(msr, &value)) != 0) {
925			msr_warning(cpu, "rd", msr, error);
926			workaround_warning(cpu, 122);
927			missing++;
928		} else {
929			value |= (uint64_t)AMD_HWCR_FFDIS;
930			if ((error = checked_wrmsr(msr, value)) != 0) {
931				msr_warning(cpu, "wr", msr, error);
932				workaround_warning(cpu, 122);
933				missing++;
934			}
935		}
936		opteron_erratum_122++;
937#else
938		workaround_warning(cpu, 122);
939		missing++;
940#endif
941	/*CONSTANTCONDITION*/
942	} while (0);
943
944	/*LINTED*/
945	if (cpuid_opteron_erratum(cpu, 123) > 0) do {
946		/*
947		 * Bypassed Reads May Cause Data Corruption of System Hang in
948		 * Dual Core Processors
949		 */
950#if defined(OPTERON_ERRATUM_123)
951		uint64_t value;
952		const uint_t msr = MSR_AMD_PATCHLEVEL;
953		int err;
954
955		/*
956		 * Erratum 123 applies only to multi-core cpus.
957		 */
958		if (cpuid_get_ncpu_per_chip(cpu) < 2)
959			break;
960#if defined(__xpv)
961		if (!DOMAIN_IS_INITDOMAIN(xen_info))
962			break;
963#endif
964		/*
965		 * The "workaround" is to print a warning to upgrade the BIOS
966		 */
967		if ((err = checked_rdmsr(msr, &value)) != 0) {
968			msr_warning(cpu, "rd", msr, err);
969			workaround_warning(cpu, 123);
970			missing++;
971		}
972		if (value == 0)
973			opteron_erratum_123++;
974#else
975		workaround_warning(cpu, 123);
976		missing++;
977
978#endif
979	/*CONSTANTCONDITION*/
980	} while (0);
981
982	/*LINTED*/
983	if (cpuid_opteron_erratum(cpu, 131) > 0) do {
984		/*
985		 * Multiprocessor Systems with Four or More Cores May Deadlock
986		 * Waiting for a Probe Response
987		 */
988#if defined(OPTERON_ERRATUM_131)
989		uint64_t nbcfg;
990		const uint_t msr = MSR_AMD_NB_CFG;
991		const uint64_t wabits =
992		    AMD_NB_CFG_SRQ_HEARTBEAT | AMD_NB_CFG_SRQ_SPR;
993		int error;
994
995		/*
996		 * Erratum 131 applies to any system with four or more cores.
997		 */
998		if (opteron_erratum_131)
999			break;
1000#if defined(__xpv)
1001		if (!DOMAIN_IS_INITDOMAIN(xen_info))
1002			break;
1003		if (xen_get_nphyscpus() < 4)
1004			break;
1005#else
1006		if (opteron_get_nnodes() * cpuid_get_ncpu_per_chip(cpu) < 4)
1007			break;
1008#endif
1009		/*
1010		 * Print a warning if neither of the workarounds for
1011		 * erratum 131 is present.
1012		 */
1013		if ((error = checked_rdmsr(msr, &nbcfg)) != 0) {
1014			msr_warning(cpu, "rd", msr, error);
1015			workaround_warning(cpu, 131);
1016			missing++;
1017		} else if ((nbcfg & wabits) == 0) {
1018			opteron_erratum_131++;
1019		} else {
1020			/* cannot have both workarounds set */
1021			ASSERT((nbcfg & wabits) != wabits);
1022		}
1023#else
1024		workaround_warning(cpu, 131);
1025		missing++;
1026#endif
1027	/*CONSTANTCONDITION*/
1028	} while (0);
1029
1030	/*
1031	 * This isn't really an erratum, but for convenience the
1032	 * detection/workaround code lives here and in cpuid_opteron_erratum.
1033	 */
1034	if (cpuid_opteron_erratum(cpu, 6336786) > 0) {
1035#if defined(OPTERON_WORKAROUND_6336786)
1036		/*
1037		 * Disable C1-Clock ramping on multi-core/multi-processor
1038		 * K8 platforms to guard against TSC drift.
1039		 */
1040		if (opteron_workaround_6336786) {
1041			opteron_workaround_6336786++;
1042#if defined(__xpv)
1043		} else if ((DOMAIN_IS_INITDOMAIN(xen_info) &&
1044		    xen_get_nphyscpus() > 1) ||
1045		    opteron_workaround_6336786_UP) {
1046			/*
1047			 * XXPV	Hmm.  We can't walk the Northbridges on
1048			 *	the hypervisor; so just complain and drive
1049			 *	on.  This probably needs to be fixed in
1050			 *	the hypervisor itself.
1051			 */
1052			opteron_workaround_6336786++;
1053			workaround_warning(cpu, 6336786);
1054#else	/* __xpv */
1055		} else if ((opteron_get_nnodes() *
1056		    cpuid_get_ncpu_per_chip(cpu) > 1) ||
1057		    opteron_workaround_6336786_UP) {
1058
1059			uint_t	node, nnodes;
1060			uint8_t data;
1061
1062			nnodes = opteron_get_nnodes();
1063			for (node = 0; node < nnodes; node++) {
1064				/*
1065				 * Clear PMM7[1:0] (function 3, offset 0x87)
1066				 * Northbridge device is the node id + 24.
1067				 */
1068				data = pci_getb_func(0, node + 24, 3, 0x87);
1069				data &= 0xFC;
1070				pci_putb_func(0, node + 24, 3, 0x87, data);
1071			}
1072			opteron_workaround_6336786++;
1073#endif	/* __xpv */
1074		}
1075#else
1076		workaround_warning(cpu, 6336786);
1077		missing++;
1078#endif
1079	}
1080
1081	/*LINTED*/
1082	/*
1083	 * Mutex primitives don't work as expected.
1084	 */
1085	if (cpuid_opteron_erratum(cpu, 6323525) > 0) {
1086#if defined(OPTERON_WORKAROUND_6323525)
1087		/*
1088		 * This problem only occurs with 2 or more cores. If bit in
1089		 * MSR_AMD_BU_CFG set, then not applicable. The workaround
1090		 * is to patch the semaphone routines with the lfence
1091		 * instruction to provide necessary load memory barrier with
1092		 * possible subsequent read-modify-write ops.
1093		 *
1094		 * It is too early in boot to call the patch routine so
1095		 * set erratum variable to be done in startup_end().
1096		 */
1097		if (opteron_workaround_6323525) {
1098			opteron_workaround_6323525++;
1099#if defined(__xpv)
1100		} else if (x86_feature & X86_SSE2) {
1101			if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1102				/*
1103				 * XXPV	Use dom0_msr here when extended
1104				 *	operations are supported?
1105				 */
1106				if (xen_get_nphyscpus() > 1)
1107					opteron_workaround_6323525++;
1108			} else {
1109				/*
1110				 * We have no way to tell how many physical
1111				 * cpus there are, or even if this processor
1112				 * has the problem, so enable the workaround
1113				 * unconditionally (at some performance cost).
1114				 */
1115				opteron_workaround_6323525++;
1116			}
1117#else	/* __xpv */
1118		} else if ((x86_feature & X86_SSE2) && ((opteron_get_nnodes() *
1119		    cpuid_get_ncpu_per_chip(cpu)) > 1)) {
1120			if ((xrdmsr(MSR_AMD_BU_CFG) & 0x02) == 0)
1121				opteron_workaround_6323525++;
1122#endif	/* __xpv */
1123		}
1124#else
1125		workaround_warning(cpu, 6323525);
1126		missing++;
1127#endif
1128	}
1129
1130	missing += do_erratum_298(cpu);
1131
1132#ifdef __xpv
1133	return (0);
1134#else
1135	return (missing);
1136#endif
1137}
1138
1139void
1140workaround_errata_end()
1141{
1142#if defined(OPTERON_ERRATUM_88)
1143	if (opteron_erratum_88)
1144		workaround_applied(88);
1145#endif
1146#if defined(OPTERON_ERRATUM_91)
1147	if (opteron_erratum_91)
1148		workaround_applied(91);
1149#endif
1150#if defined(OPTERON_ERRATUM_93)
1151	if (opteron_erratum_93)
1152		workaround_applied(93);
1153#endif
1154#if defined(OPTERON_ERRATUM_95)
1155	if (opteron_erratum_95)
1156		workaround_applied(95);
1157#endif
1158#if defined(OPTERON_ERRATUM_100)
1159	if (opteron_erratum_100)
1160		workaround_applied(100);
1161#endif
1162#if defined(OPTERON_ERRATUM_108)
1163	if (opteron_erratum_108)
1164		workaround_applied(108);
1165#endif
1166#if defined(OPTERON_ERRATUM_109)
1167	if (opteron_erratum_109) {
1168		cmn_err(CE_WARN,
1169		    "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)"
1170		    " processor\nerratum 109 was not detected; updating your"
1171		    " system's BIOS to a version\ncontaining this"
1172		    " microcode patch is HIGHLY recommended or erroneous"
1173		    " system\noperation may occur.\n");
1174	}
1175#endif
1176#if defined(OPTERON_ERRATUM_121)
1177	if (opteron_erratum_121)
1178		workaround_applied(121);
1179#endif
1180#if defined(OPTERON_ERRATUM_122)
1181	if (opteron_erratum_122)
1182		workaround_applied(122);
1183#endif
1184#if defined(OPTERON_ERRATUM_123)
1185	if (opteron_erratum_123) {
1186		cmn_err(CE_WARN,
1187		    "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)"
1188		    " processor\nerratum 123 was not detected; updating your"
1189		    " system's BIOS to a version\ncontaining this"
1190		    " microcode patch is HIGHLY recommended or erroneous"
1191		    " system\noperation may occur.\n");
1192	}
1193#endif
1194#if defined(OPTERON_ERRATUM_131)
1195	if (opteron_erratum_131) {
1196		cmn_err(CE_WARN,
1197		    "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)"
1198		    " processor\nerratum 131 was not detected; updating your"
1199		    " system's BIOS to a version\ncontaining this"
1200		    " microcode patch is HIGHLY recommended or erroneous"
1201		    " system\noperation may occur.\n");
1202	}
1203#endif
1204#if defined(OPTERON_WORKAROUND_6336786)
1205	if (opteron_workaround_6336786)
1206		workaround_applied(6336786);
1207#endif
1208#if defined(OPTERON_WORKAROUND_6323525)
1209	if (opteron_workaround_6323525)
1210		workaround_applied(6323525);
1211#endif
1212#if defined(OPTERON_ERRATUM_298)
1213	if (opteron_erratum_298) {
1214		cmn_err(CE_WARN,
1215		    "BIOS microcode patch for AMD 64/Opteron(tm)"
1216		    " processor\nerratum 298 was not detected; updating your"
1217		    " system's BIOS to a version\ncontaining this"
1218		    " microcode patch is HIGHLY recommended or erroneous"
1219		    " system\noperation may occur.\n");
1220	}
1221#endif
1222}
1223
1224static cpuset_t procset;
1225
1226/*
1227 * Start a single cpu, assuming that the kernel context is available
1228 * to successfully start another cpu.
1229 *
1230 * (For example, real mode code is mapped into the right place
1231 * in memory and is ready to be run.)
1232 */
1233int
1234start_cpu(processorid_t who)
1235{
1236	void *ctx;
1237	cpu_t *cp;
1238	int delays;
1239	int error = 0;
1240
1241	ASSERT(who != 0);
1242
1243	/*
1244	 * Check if there's at least a Mbyte of kmem available
1245	 * before attempting to start the cpu.
1246	 */
1247	if (kmem_avail() < 1024 * 1024) {
1248		/*
1249		 * Kick off a reap in case that helps us with
1250		 * later attempts ..
1251		 */
1252		kmem_reap();
1253		return (ENOMEM);
1254	}
1255
1256	cp = mp_startup_init(who);
1257	if ((ctx = mach_cpucontext_alloc(cp)) == NULL ||
1258	    (error = mach_cpu_start(cp, ctx)) != 0) {
1259
1260		/*
1261		 * Something went wrong before we even started it
1262		 */
1263		if (ctx)
1264			cmn_err(CE_WARN,
1265			    "cpu%d: failed to start error %d",
1266			    cp->cpu_id, error);
1267		else
1268			cmn_err(CE_WARN,
1269			    "cpu%d: failed to allocate context", cp->cpu_id);
1270
1271		if (ctx)
1272			mach_cpucontext_free(cp, ctx, error);
1273		else
1274			error = EAGAIN;		/* hmm. */
1275		mp_startup_fini(cp, error);
1276		return (error);
1277	}
1278
1279	for (delays = 0; !CPU_IN_SET(procset, who); delays++) {
1280		if (delays == 500) {
1281			/*
1282			 * After five seconds, things are probably looking
1283			 * a bit bleak - explain the hang.
1284			 */
1285			cmn_err(CE_NOTE, "cpu%d: started, "
1286			    "but not running in the kernel yet", who);
1287		} else if (delays > 2000) {
1288			/*
1289			 * We waited at least 20 seconds, bail ..
1290			 */
1291			error = ETIMEDOUT;
1292			cmn_err(CE_WARN, "cpu%d: timed out", who);
1293			mach_cpucontext_free(cp, ctx, error);
1294			mp_startup_fini(cp, error);
1295			return (error);
1296		}
1297
1298		/*
1299		 * wait at least 10ms, then check again..
1300		 */
1301		delay(USEC_TO_TICK_ROUNDUP(10000));
1302	}
1303
1304	mach_cpucontext_free(cp, ctx, 0);
1305
1306#ifndef __xpv
1307	if (tsc_gethrtime_enable)
1308		tsc_sync_master(who);
1309#endif
1310
1311	if (dtrace_cpu_init != NULL) {
1312		/*
1313		 * DTrace CPU initialization expects cpu_lock to be held.
1314		 */
1315		mutex_enter(&cpu_lock);
1316		(*dtrace_cpu_init)(who);
1317		mutex_exit(&cpu_lock);
1318	}
1319
1320	while (!CPU_IN_SET(cpu_ready_set, who))
1321		delay(1);
1322
1323	return (0);
1324}
1325
1326
1327/*ARGSUSED*/
1328void
1329start_other_cpus(int cprboot)
1330{
1331	uint_t who;
1332	uint_t skipped = 0;
1333	uint_t bootcpuid = 0;
1334
1335	/*
1336	 * Initialize our own cpu_info.
1337	 */
1338	init_cpu_info(CPU);
1339
1340	cmn_err(CE_CONT, "?cpu%d: %s\n", CPU->cpu_id, CPU->cpu_idstr);
1341	cmn_err(CE_CONT, "?cpu%d: %s\n", CPU->cpu_id, CPU->cpu_brandstr);
1342
1343	/*
1344	 * Initialize our syscall handlers
1345	 */
1346	init_cpu_syscall(CPU);
1347
1348	/*
1349	 * Take the boot cpu out of the mp_cpus set because we know
1350	 * it's already running.  Add it to the cpu_ready_set for
1351	 * precisely the same reason.
1352	 */
1353	CPUSET_DEL(mp_cpus, bootcpuid);
1354	CPUSET_ADD(cpu_ready_set, bootcpuid);
1355
1356	/*
1357	 * if only 1 cpu or not using MP, skip the rest of this
1358	 */
1359	if (CPUSET_ISNULL(mp_cpus) || use_mp == 0) {
1360		if (use_mp == 0)
1361			cmn_err(CE_CONT, "?***** Not in MP mode\n");
1362		goto done;
1363	}
1364
1365	/*
1366	 * perform such initialization as is needed
1367	 * to be able to take CPUs on- and off-line.
1368	 */
1369	cpu_pause_init();
1370
1371	xc_init();		/* initialize processor crosscalls */
1372
1373	if (mach_cpucontext_init() != 0)
1374		goto done;
1375
1376	flushes_require_xcalls = 1;
1377
1378	/*
1379	 * We lock our affinity to the master CPU to ensure that all slave CPUs
1380	 * do their TSC syncs with the same CPU.
1381	 */
1382	affinity_set(CPU_CURRENT);
1383
1384	for (who = 0; who < NCPU; who++) {
1385
1386		if (!CPU_IN_SET(mp_cpus, who))
1387			continue;
1388		ASSERT(who != bootcpuid);
1389		if (ncpus >= max_ncpus) {
1390			skipped = who;
1391			continue;
1392		}
1393		if (start_cpu(who) != 0)
1394			CPUSET_DEL(mp_cpus, who);
1395	}
1396
1397	/* Free the space allocated to hold the microcode file */
1398	ucode_cleanup();
1399
1400	affinity_clear();
1401
1402	if (skipped) {
1403		cmn_err(CE_NOTE,
1404		    "System detected %d cpus, but "
1405		    "only %d cpu(s) were enabled during boot.",
1406		    skipped + 1, ncpus);
1407		cmn_err(CE_NOTE,
1408		    "Use \"boot-ncpus\" parameter to enable more CPU(s). "
1409		    "See eeprom(1M).");
1410	}
1411
1412done:
1413	workaround_errata_end();
1414	mach_cpucontext_fini();
1415
1416	cmi_post_mpstartup();
1417}
1418
1419/*
1420 * Dummy functions - no i86pc platforms support dynamic cpu allocation.
1421 */
1422/*ARGSUSED*/
1423int
1424mp_cpu_configure(int cpuid)
1425{
1426	return (ENOTSUP);		/* not supported */
1427}
1428
1429/*ARGSUSED*/
1430int
1431mp_cpu_unconfigure(int cpuid)
1432{
1433	return (ENOTSUP);		/* not supported */
1434}
1435
1436/*
1437 * Startup function for 'other' CPUs (besides boot cpu).
1438 * Called from real_mode_start.
1439 *
1440 * WARNING: until CPU_READY is set, mp_startup and routines called by
1441 * mp_startup should not call routines (e.g. kmem_free) that could call
1442 * hat_unload which requires CPU_READY to be set.
1443 */
1444void
1445mp_startup(void)
1446{
1447	struct cpu *cp = CPU;
1448	uint_t new_x86_feature;
1449
1450	/*
1451	 * We need to get TSC on this proc synced (i.e., any delta
1452	 * from cpu0 accounted for) as soon as we can, because many
1453	 * many things use gethrtime/pc_gethrestime, including
1454	 * interrupts, cmn_err, etc.
1455	 */
1456
1457	/* Let cpu0 continue into tsc_sync_master() */
1458	CPUSET_ATOMIC_ADD(procset, cp->cpu_id);
1459
1460#ifndef __xpv
1461	if (tsc_gethrtime_enable)
1462		tsc_sync_slave();
1463#endif
1464
1465	/*
1466	 * Once this was done from assembly, but it's safer here; if
1467	 * it blocks, we need to be able to swtch() to and from, and
1468	 * since we get here by calling t_pc, we need to do that call
1469	 * before swtch() overwrites it.
1470	 */
1471	(void) (*ap_mlsetup)();
1472
1473	new_x86_feature = cpuid_pass1(cp);
1474
1475#ifndef __xpv
1476	/*
1477	 * Program this cpu's PAT
1478	 */
1479	if (x86_feature & X86_PAT)
1480		pat_sync();
1481#endif
1482
1483	/*
1484	 * Set up TSC_AUX to contain the cpuid for this processor
1485	 * for the rdtscp instruction.
1486	 */
1487	if (x86_feature & X86_TSCP)
1488		(void) wrmsr(MSR_AMD_TSCAUX, cp->cpu_id);
1489
1490	/*
1491	 * Initialize this CPU's syscall handlers
1492	 */
1493	init_cpu_syscall(cp);
1494
1495	/*
1496	 * Enable interrupts with spl set to LOCK_LEVEL. LOCK_LEVEL is the
1497	 * highest level at which a routine is permitted to block on
1498	 * an adaptive mutex (allows for cpu poke interrupt in case
1499	 * the cpu is blocked on a mutex and halts). Setting LOCK_LEVEL blocks
1500	 * device interrupts that may end up in the hat layer issuing cross
1501	 * calls before CPU_READY is set.
1502	 */
1503	splx(ipltospl(LOCK_LEVEL));
1504	sti();
1505
1506	/*
1507	 * Do a sanity check to make sure this new CPU is a sane thing
1508	 * to add to the collection of processors running this system.
1509	 *
1510	 * XXX	Clearly this needs to get more sophisticated, if x86
1511	 * systems start to get built out of heterogenous CPUs; as is
1512	 * likely to happen once the number of processors in a configuration
1513	 * gets large enough.
1514	 */
1515	if ((x86_feature & new_x86_feature) != x86_feature) {
1516		cmn_err(CE_CONT, "?cpu%d: %b\n",
1517		    cp->cpu_id, new_x86_feature, FMT_X86_FEATURE);
1518		cmn_err(CE_WARN, "cpu%d feature mismatch", cp->cpu_id);
1519	}
1520
1521	/*
1522	 * We do not support cpus with mixed monitor/mwait support if the
1523	 * boot cpu supports monitor/mwait.
1524	 */
1525	if ((x86_feature & ~new_x86_feature) & X86_MWAIT)
1526		panic("unsupported mixed cpu monitor/mwait support detected");
1527
1528	/*
1529	 * We could be more sophisticated here, and just mark the CPU
1530	 * as "faulted" but at this point we'll opt for the easier
1531	 * answer of dieing horribly.  Provided the boot cpu is ok,
1532	 * the system can be recovered by booting with use_mp set to zero.
1533	 */
1534	if (workaround_errata(cp) != 0)
1535		panic("critical workaround(s) missing for cpu%d", cp->cpu_id);
1536
1537	cpuid_pass2(cp);
1538	cpuid_pass3(cp);
1539	(void) cpuid_pass4(cp);
1540
1541	init_cpu_info(cp);
1542
1543	mutex_enter(&cpu_lock);
1544	/*
1545	 * Processor group initialization for this CPU is dependent on the
1546	 * cpuid probing, which must be done in the context of the current
1547	 * CPU.
1548	 */
1549	pghw_physid_create(cp);
1550	pg_cpu_init(cp);
1551	pg_cmt_cpu_startup(cp);
1552
1553	cp->cpu_flags |= CPU_RUNNING | CPU_READY | CPU_EXISTS;
1554
1555	cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_idstr);
1556	cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_brandstr);
1557
1558	if (dtrace_cpu_init != NULL) {
1559		(*dtrace_cpu_init)(cp->cpu_id);
1560	}
1561
1562	/*
1563	 * Fill out cpu_ucode_info.  Update microcode if necessary.
1564	 */
1565	ucode_check(cp);
1566
1567	mutex_exit(&cpu_lock);
1568
1569	/*
1570	 * Enable preemption here so that contention for any locks acquired
1571	 * later in mp_startup may be preempted if the thread owning those
1572	 * locks is continously executing on other CPUs (for example, this
1573	 * CPU must be preemptible to allow other CPUs to pause it during their
1574	 * startup phases).  It's safe to enable preemption here because the
1575	 * CPU state is pretty-much fully constructed.
1576	 */
1577	curthread->t_preempt = 0;
1578
1579	/* The base spl should still be at LOCK LEVEL here */
1580	ASSERT(cp->cpu_base_spl == ipltospl(LOCK_LEVEL));
1581	set_base_spl();		/* Restore the spl to its proper value */
1582
1583	/* Enable interrupts */
1584	(void) spl0();
1585	mutex_enter(&cpu_lock);
1586	cpu_enable_intr(cp);
1587	cpu_add_active(cp);
1588	mutex_exit(&cpu_lock);
1589
1590	add_cpunode2devtree(cp->cpu_id, cp->cpu_m.mcpu_cpi);
1591
1592#ifndef __xpv
1593	{
1594		/*
1595		 * Set up the CPU module for this CPU.  This can't be done
1596		 * before this CPU is made CPU_READY, because we may (in
1597		 * heterogeneous systems) need to go load another CPU module.
1598		 * The act of attempting to load a module may trigger a
1599		 * cross-call, which will ASSERT unless this cpu is CPU_READY.
1600		 */
1601		cmi_hdl_t hdl;
1602
1603		if ((hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU),
1604		    cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL) {
1605			if (x86_feature & X86_MCA)
1606				cmi_mca_init(hdl);
1607		}
1608	}
1609#endif /* __xpv */
1610
1611	if (boothowto & RB_DEBUG)
1612		kdi_cpu_init();
1613
1614	/*
1615	 * Setting the bit in cpu_ready_set must be the last operation in
1616	 * processor initialization; the boot CPU will continue to boot once
1617	 * it sees this bit set for all active CPUs.
1618	 */
1619	CPUSET_ATOMIC_ADD(cpu_ready_set, cp->cpu_id);
1620
1621	/*
1622	 * Because mp_startup() gets fired off after init() starts, we
1623	 * can't use the '?' trick to do 'boot -v' printing - so we
1624	 * always direct the 'cpu .. online' messages to the log.
1625	 */
1626	cmn_err(CE_CONT, "!cpu%d initialization complete - online\n",
1627	    cp->cpu_id);
1628
1629	/*
1630	 * Now we are done with the startup thread, so free it up.
1631	 */
1632	thread_exit();
1633	panic("mp_startup: cannot return");
1634	/*NOTREACHED*/
1635}
1636
1637
1638/*
1639 * Start CPU on user request.
1640 */
1641/* ARGSUSED */
1642int
1643mp_cpu_start(struct cpu *cp)
1644{
1645	ASSERT(MUTEX_HELD(&cpu_lock));
1646	return (0);
1647}
1648
1649/*
1650 * Stop CPU on user request.
1651 */
1652/* ARGSUSED */
1653int
1654mp_cpu_stop(struct cpu *cp)
1655{
1656	extern int cbe_psm_timer_mode;
1657	ASSERT(MUTEX_HELD(&cpu_lock));
1658
1659#ifdef __xpv
1660	/*
1661	 * We can't offline vcpu0.
1662	 */
1663	if (cp->cpu_id == 0)
1664		return (EBUSY);
1665#endif
1666
1667	/*
1668	 * If TIMER_PERIODIC mode is used, CPU0 is the one running it;
1669	 * can't stop it.  (This is true only for machines with no TSC.)
1670	 */
1671
1672	if ((cbe_psm_timer_mode == TIMER_PERIODIC) && (cp->cpu_id == 0))
1673		return (EBUSY);
1674
1675	return (0);
1676}
1677
1678/*
1679 * Take the specified CPU out of participation in interrupts.
1680 */
1681int
1682cpu_disable_intr(struct cpu *cp)
1683{
1684	if (psm_disable_intr(cp->cpu_id) != DDI_SUCCESS)
1685		return (EBUSY);
1686
1687	cp->cpu_flags &= ~CPU_ENABLE;
1688	return (0);
1689}
1690
1691/*
1692 * Allow the specified CPU to participate in interrupts.
1693 */
1694void
1695cpu_enable_intr(struct cpu *cp)
1696{
1697	ASSERT(MUTEX_HELD(&cpu_lock));
1698	cp->cpu_flags |= CPU_ENABLE;
1699	psm_enable_intr(cp->cpu_id);
1700}
1701
1702
1703/*ARGSUSED*/
1704void
1705mp_cpu_faulted_enter(struct cpu *cp)
1706{
1707#ifndef __xpv
1708	cmi_hdl_t hdl = cmi_hdl_lookup(CMI_HDL_NATIVE, cmi_ntv_hwchipid(cp),
1709	    cmi_ntv_hwcoreid(cp), cmi_ntv_hwstrandid(cp));
1710
1711	if (hdl != NULL) {
1712		cmi_faulted_enter(hdl);
1713		cmi_hdl_rele(hdl);
1714	}
1715#endif
1716}
1717
1718/*ARGSUSED*/
1719void
1720mp_cpu_faulted_exit(struct cpu *cp)
1721{
1722#ifndef __xpv
1723	cmi_hdl_t hdl = cmi_hdl_lookup(CMI_HDL_NATIVE, cmi_ntv_hwchipid(cp),
1724	    cmi_ntv_hwcoreid(cp), cmi_ntv_hwstrandid(cp));
1725
1726	if (hdl != NULL) {
1727		cmi_faulted_exit(hdl);
1728		cmi_hdl_rele(hdl);
1729	}
1730#endif
1731}
1732
1733/*
1734 * The following two routines are used as context operators on threads belonging
1735 * to processes with a private LDT (see sysi86).  Due to the rarity of such
1736 * processes, these routines are currently written for best code readability and
1737 * organization rather than speed.  We could avoid checking x86_feature at every
1738 * context switch by installing different context ops, depending on the
1739 * x86_feature flags, at LDT creation time -- one for each combination of fast
1740 * syscall feature flags.
1741 */
1742
1743/*ARGSUSED*/
1744void
1745cpu_fast_syscall_disable(void *arg)
1746{
1747	if ((x86_feature & (X86_MSR | X86_SEP)) == (X86_MSR | X86_SEP))
1748		cpu_sep_disable();
1749	if ((x86_feature & (X86_MSR | X86_ASYSC)) == (X86_MSR | X86_ASYSC))
1750		cpu_asysc_disable();
1751}
1752
1753/*ARGSUSED*/
1754void
1755cpu_fast_syscall_enable(void *arg)
1756{
1757	if ((x86_feature & (X86_MSR | X86_SEP)) == (X86_MSR | X86_SEP))
1758		cpu_sep_enable();
1759	if ((x86_feature & (X86_MSR | X86_ASYSC)) == (X86_MSR | X86_ASYSC))
1760		cpu_asysc_enable();
1761}
1762
1763static void
1764cpu_sep_enable(void)
1765{
1766	ASSERT(x86_feature & X86_SEP);
1767	ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
1768
1769	wrmsr(MSR_INTC_SEP_CS, (uint64_t)(uintptr_t)KCS_SEL);
1770}
1771
1772static void
1773cpu_sep_disable(void)
1774{
1775	ASSERT(x86_feature & X86_SEP);
1776	ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
1777
1778	/*
1779	 * Setting the SYSENTER_CS_MSR register to 0 causes software executing
1780	 * the sysenter or sysexit instruction to trigger a #gp fault.
1781	 */
1782	wrmsr(MSR_INTC_SEP_CS, 0);
1783}
1784
1785static void
1786cpu_asysc_enable(void)
1787{
1788	ASSERT(x86_feature & X86_ASYSC);
1789	ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
1790
1791	wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) |
1792	    (uint64_t)(uintptr_t)AMD_EFER_SCE);
1793}
1794
1795static void
1796cpu_asysc_disable(void)
1797{
1798	ASSERT(x86_feature & X86_ASYSC);
1799	ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
1800
1801	/*
1802	 * Turn off the SCE (syscall enable) bit in the EFER register. Software
1803	 * executing syscall or sysret with this bit off will incur a #ud trap.
1804	 */
1805	wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) &
1806	    ~((uint64_t)(uintptr_t)AMD_EFER_SCE));
1807}
1808