fakebop.c revision 9160:1517e6edbc6f
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27/*
28 * This file contains the functionality that mimics the boot operations
29 * on SPARC systems or the old boot.bin/multiboot programs on x86 systems.
30 * The x86 kernel now does everything on its own.
31 */
32
33#include <sys/types.h>
34#include <sys/bootconf.h>
35#include <sys/bootsvcs.h>
36#include <sys/bootinfo.h>
37#include <sys/multiboot.h>
38#include <sys/bootvfs.h>
39#include <sys/bootprops.h>
40#include <sys/varargs.h>
41#include <sys/param.h>
42#include <sys/machparam.h>
43#include <sys/archsystm.h>
44#include <sys/boot_console.h>
45#include <sys/cmn_err.h>
46#include <sys/systm.h>
47#include <sys/promif.h>
48#include <sys/archsystm.h>
49#include <sys/x86_archext.h>
50#include <sys/kobj.h>
51#include <sys/privregs.h>
52#include <sys/sysmacros.h>
53#include <sys/ctype.h>
54#include <sys/fastboot.h>
55#ifdef __xpv
56#include <sys/hypervisor.h>
57#include <net/if.h>
58#endif
59#include <vm/kboot_mmu.h>
60#include <vm/hat_pte.h>
61#include <sys/dmar_acpi.h>
62#include <sys/kobj.h>
63#include <sys/kobj_lex.h>
64#include "acpi_fw.h"
65
66static int have_console = 0;	/* set once primitive console is initialized */
67static char *boot_args = "";
68
69/*
70 * Debugging macros
71 */
72static uint_t kbm_debug = 0;
73#define	DBG_MSG(s)	{ if (kbm_debug) bop_printf(NULL, "%s", s); }
74#define	DBG(x)		{ if (kbm_debug)			\
75	bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x));	\
76	}
77
78#define	PUT_STRING(s) {				\
79	char *cp;				\
80	for (cp = (s); *cp; ++cp)		\
81		bcons_putchar(*cp);		\
82	}
83
84struct xboot_info *xbootp;	/* boot info from "glue" code in low memory */
85bootops_t bootop;	/* simple bootops we'll pass on to kernel */
86struct bsys_mem bm;
87
88static uintptr_t next_virt;	/* next available virtual address */
89static paddr_t next_phys;	/* next available physical address from dboot */
90static paddr_t high_phys = -(paddr_t)1;	/* last used physical address */
91
92/*
93 * buffer for vsnprintf for console I/O
94 */
95#define	BUFFERSIZE	256
96static char buffer[BUFFERSIZE];
97/*
98 * stuff to store/report/manipulate boot property settings.
99 */
100typedef struct bootprop {
101	struct bootprop *bp_next;
102	char *bp_name;
103	uint_t bp_vlen;
104	char *bp_value;
105} bootprop_t;
106
107static bootprop_t *bprops = NULL;
108static char *curr_page = NULL;		/* ptr to avail bprop memory */
109static int curr_space = 0;		/* amount of memory at curr_page */
110
111#ifdef __xpv
112start_info_t *xen_info;
113shared_info_t *HYPERVISOR_shared_info;
114#endif
115
116/*
117 * some allocator statistics
118 */
119static ulong_t total_bop_alloc_scratch = 0;
120static ulong_t total_bop_alloc_kernel = 0;
121
122static void build_firmware_properties(void);
123
124static int early_allocation = 1;
125
126int force_fastreboot = 0;
127int fastreboot_onpanic = 0;
128int post_fastreboot = 0;
129#ifdef	__xpv
130int fastreboot_capable = 0;
131#else
132int fastreboot_capable = 1;
133#endif
134
135/*
136 * Information saved from current boot for fast reboot.
137 * If the information size exceeds what we have allocated, fast reboot
138 * will not be supported.
139 */
140multiboot_info_t saved_mbi;
141mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT];
142struct sol_netinfo saved_drives[FASTBOOT_SAVED_DRIVES_COUNT];
143char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
144int saved_cmdline_len = 0;
145size_t saved_file_size[FASTBOOT_MAX_FILES_MAP];
146
147/*
148 * Turn off fastreboot_onpanic to avoid panic loop.
149 */
150char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
151static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0";
152
153/*
154 * Pointers to where System Resource Affinity Table (SRAT) and
155 * System Locality Information Table (SLIT) are mapped into virtual memory
156 */
157struct srat	*srat_ptr = NULL;
158struct slit	*slit_ptr = NULL;
159
160
161/*
162 * Allocate aligned physical memory at boot time. This allocator allocates
163 * from the highest possible addresses. This avoids exhausting memory that
164 * would be useful for DMA buffers.
165 */
166paddr_t
167do_bop_phys_alloc(uint64_t size, uint64_t align)
168{
169	paddr_t	pa = 0;
170	paddr_t	start;
171	paddr_t	end;
172	struct memlist	*ml = (struct memlist *)xbootp->bi_phys_install;
173
174	/*
175	 * Be careful if high memory usage is limited in startup.c
176	 * Since there are holes in the low part of the physical address
177	 * space we can treat physmem as a pfn (not just a pgcnt) and
178	 * get a conservative upper limit.
179	 */
180	if (physmem != 0 && high_phys > pfn_to_pa(physmem))
181		high_phys = pfn_to_pa(physmem);
182
183	/*
184	 * find the lowest or highest available memory in physinstalled
185	 * On 32 bit avoid physmem above 4Gig if PAE isn't enabled
186	 */
187#if defined(__i386)
188	if (xbootp->bi_use_pae == 0 && high_phys > FOUR_GIG)
189		high_phys = FOUR_GIG;
190#endif
191
192	/*
193	 * find the highest available memory in physinstalled
194	 */
195	size = P2ROUNDUP(size, align);
196	for (; ml; ml = ml->next) {
197		start = P2ROUNDUP(ml->address, align);
198		end = P2ALIGN(ml->address + ml->size, align);
199		if (start < next_phys)
200			start = P2ROUNDUP(next_phys, align);
201		if (end > high_phys)
202			end = P2ALIGN(high_phys, align);
203
204		if (end <= start)
205			continue;
206		if (end - start < size)
207			continue;
208
209		/*
210		 * Early allocations need to use low memory, since
211		 * physmem might be further limited by bootenv.rc
212		 */
213		if (early_allocation) {
214			if (pa == 0 || start < pa)
215				pa = start;
216		} else {
217			if (end - size > pa)
218				pa = end - size;
219		}
220	}
221	if (pa != 0) {
222		if (early_allocation)
223			next_phys = pa + size;
224		else
225			high_phys = pa;
226		return (pa);
227	}
228	bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64
229	    ") Out of memory\n", size, align);
230	/*NOTREACHED*/
231}
232
233static uintptr_t
234alloc_vaddr(size_t size, paddr_t align)
235{
236	uintptr_t rv;
237
238	next_virt = P2ROUNDUP(next_virt, (uintptr_t)align);
239	rv = (uintptr_t)next_virt;
240	next_virt += size;
241	return (rv);
242}
243
244/*
245 * Allocate virtual memory. The size is always rounded up to a multiple
246 * of base pagesize.
247 */
248
249/*ARGSUSED*/
250static caddr_t
251do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
252{
253	paddr_t a = align;	/* same type as pa for masking */
254	uint_t pgsize;
255	paddr_t pa;
256	uintptr_t va;
257	ssize_t s;		/* the aligned size */
258	uint_t level;
259	uint_t is_kernel = (virthint != 0);
260
261	if (a < MMU_PAGESIZE)
262		a = MMU_PAGESIZE;
263	else if (!ISP2(a))
264		prom_panic("do_bsys_alloc() incorrect alignment");
265	size = P2ROUNDUP(size, MMU_PAGESIZE);
266
267	/*
268	 * Use the next aligned virtual address if we weren't given one.
269	 */
270	if (virthint == NULL) {
271		virthint = (caddr_t)alloc_vaddr(size, a);
272		total_bop_alloc_scratch += size;
273	} else {
274		total_bop_alloc_kernel += size;
275	}
276
277	/*
278	 * allocate the physical memory
279	 */
280	pa = do_bop_phys_alloc(size, a);
281
282	/*
283	 * Add the mappings to the page tables, try large pages first.
284	 */
285	va = (uintptr_t)virthint;
286	s = size;
287	level = 1;
288	pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG;
289	if (xbootp->bi_use_largepage && a == pgsize) {
290		while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) &&
291		    s >= pgsize) {
292			kbm_map(va, pa, level, is_kernel);
293			va += pgsize;
294			pa += pgsize;
295			s -= pgsize;
296		}
297	}
298
299	/*
300	 * Map remaining pages use small mappings
301	 */
302	level = 0;
303	pgsize = MMU_PAGESIZE;
304	while (s > 0) {
305		kbm_map(va, pa, level, is_kernel);
306		va += pgsize;
307		pa += pgsize;
308		s -= pgsize;
309	}
310	return (virthint);
311}
312
313/*
314 * Free virtual memory - we'll just ignore these.
315 */
316/*ARGSUSED*/
317static void
318do_bsys_free(bootops_t *bop, caddr_t virt, size_t size)
319{
320	bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n",
321	    (void *)virt, size);
322}
323
324/*
325 * Old interface
326 */
327/*ARGSUSED*/
328static caddr_t
329do_bsys_ealloc(
330	bootops_t *bop,
331	caddr_t virthint,
332	size_t size,
333	int align,
334	int flags)
335{
336	prom_panic("unsupported call to BOP_EALLOC()\n");
337	return (0);
338}
339
340
341static void
342bsetprop(char *name, int nlen, void *value, int vlen)
343{
344	uint_t size;
345	uint_t need_size;
346	bootprop_t *b;
347
348	/*
349	 * align the size to 16 byte boundary
350	 */
351	size = sizeof (bootprop_t) + nlen + 1 + vlen;
352	size = (size + 0xf) & ~0xf;
353	if (size > curr_space) {
354		need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK;
355		curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE);
356		curr_space = need_size;
357	}
358
359	/*
360	 * use a bootprop_t at curr_page and link into list
361	 */
362	b = (bootprop_t *)curr_page;
363	curr_page += sizeof (bootprop_t);
364	curr_space -=  sizeof (bootprop_t);
365	b->bp_next = bprops;
366	bprops = b;
367
368	/*
369	 * follow by name and ending zero byte
370	 */
371	b->bp_name = curr_page;
372	bcopy(name, curr_page, nlen);
373	curr_page += nlen;
374	*curr_page++ = 0;
375	curr_space -= nlen + 1;
376
377	/*
378	 * copy in value, but no ending zero byte
379	 */
380	b->bp_value = curr_page;
381	b->bp_vlen = vlen;
382	if (vlen > 0) {
383		bcopy(value, curr_page, vlen);
384		curr_page += vlen;
385		curr_space -= vlen;
386	}
387
388	/*
389	 * align new values of curr_page, curr_space
390	 */
391	while (curr_space & 0xf) {
392		++curr_page;
393		--curr_space;
394	}
395}
396
397static void
398bsetprops(char *name, char *value)
399{
400	bsetprop(name, strlen(name), value, strlen(value) + 1);
401}
402
403static void
404bsetprop64(char *name, uint64_t value)
405{
406	bsetprop(name, strlen(name), (void *)&value, sizeof (value));
407}
408
409static void
410bsetpropsi(char *name, int value)
411{
412	char prop_val[32];
413
414	(void) snprintf(prop_val, sizeof (prop_val), "%d", value);
415	bsetprops(name, prop_val);
416}
417
418/*
419 * to find the size of the buffer to allocate
420 */
421/*ARGSUSED*/
422int
423do_bsys_getproplen(bootops_t *bop, const char *name)
424{
425	bootprop_t *b;
426
427	for (b = bprops; b; b = b->bp_next) {
428		if (strcmp(name, b->bp_name) != 0)
429			continue;
430		return (b->bp_vlen);
431	}
432	return (-1);
433}
434
435/*
436 * get the value associated with this name
437 */
438/*ARGSUSED*/
439int
440do_bsys_getprop(bootops_t *bop, const char *name, void *value)
441{
442	bootprop_t *b;
443
444	for (b = bprops; b; b = b->bp_next) {
445		if (strcmp(name, b->bp_name) != 0)
446			continue;
447		bcopy(b->bp_value, value, b->bp_vlen);
448		return (0);
449	}
450	return (-1);
451}
452
453/*
454 * get the name of the next property in succession from the standalone
455 */
456/*ARGSUSED*/
457static char *
458do_bsys_nextprop(bootops_t *bop, char *name)
459{
460	bootprop_t *b;
461
462	/*
463	 * A null name is a special signal for the 1st boot property
464	 */
465	if (name == NULL || strlen(name) == 0) {
466		if (bprops == NULL)
467			return (NULL);
468		return (bprops->bp_name);
469	}
470
471	for (b = bprops; b; b = b->bp_next) {
472		if (name != b->bp_name)
473			continue;
474		b = b->bp_next;
475		if (b == NULL)
476			return (NULL);
477		return (b->bp_name);
478	}
479	return (NULL);
480}
481
482/*
483 * Parse numeric value from a string. Understands decimal, hex, octal, - and ~
484 */
485static int
486parse_value(char *p, uint64_t *retval)
487{
488	int adjust = 0;
489	uint64_t tmp = 0;
490	int digit;
491	int radix = 10;
492
493	*retval = 0;
494	if (*p == '-' || *p == '~')
495		adjust = *p++;
496
497	if (*p == '0') {
498		++p;
499		if (*p == 0)
500			return (0);
501		if (*p == 'x' || *p == 'X') {
502			radix = 16;
503			++p;
504		} else {
505			radix = 8;
506			++p;
507		}
508	}
509	while (*p) {
510		if ('0' <= *p && *p <= '9')
511			digit = *p - '0';
512		else if ('a' <= *p && *p <= 'f')
513			digit = 10 + *p - 'a';
514		else if ('A' <= *p && *p <= 'F')
515			digit = 10 + *p - 'A';
516		else
517			return (-1);
518		if (digit >= radix)
519			return (-1);
520		tmp = tmp * radix + digit;
521		++p;
522	}
523	if (adjust == '-')
524		tmp = -tmp;
525	else if (adjust == '~')
526		tmp = ~tmp;
527	*retval = tmp;
528	return (0);
529}
530
531/*
532 * 2nd part of building the table of boot properties. This includes:
533 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
534 *
535 * lines look like one of:
536 * ^$
537 * ^# comment till end of line
538 * setprop name 'value'
539 * setprop name value
540 * setprop name "value"
541 *
542 * we do single character I/O since this is really just looking at memory
543 */
544void
545boot_prop_finish(void)
546{
547	int fd;
548	char *line;
549	int c;
550	int bytes_read;
551	char *name;
552	int n_len;
553	char *value;
554	int v_len;
555	char *inputdev;	/* these override the command line if serial ports */
556	char *outputdev;
557	char *consoledev;
558	uint64_t lvalue;
559	int use_xencons = 0;
560
561#ifdef __xpv
562	if (!DOMAIN_IS_INITDOMAIN(xen_info))
563		use_xencons = 1;
564#endif /* __xpv */
565
566	DBG_MSG("Opening /boot/solaris/bootenv.rc\n");
567	fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0);
568	DBG(fd);
569
570	line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
571	while (fd >= 0) {
572
573		/*
574		 * get a line
575		 */
576		for (c = 0; ; ++c) {
577			bytes_read = BRD_READ(bfs_ops, fd, line + c, 1);
578			if (bytes_read == 0) {
579				if (c == 0)
580					goto done;
581				break;
582			}
583			if (line[c] == '\n')
584				break;
585		}
586		line[c] = 0;
587
588		/*
589		 * ignore comment lines
590		 */
591		c = 0;
592		while (ISSPACE(line[c]))
593			++c;
594		if (line[c] == '#' || line[c] == 0)
595			continue;
596
597		/*
598		 * must have "setprop " or "setprop\t"
599		 */
600		if (strncmp(line + c, "setprop ", 8) != 0 &&
601		    strncmp(line + c, "setprop\t", 8) != 0)
602			continue;
603		c += 8;
604		while (ISSPACE(line[c]))
605			++c;
606		if (line[c] == 0)
607			continue;
608
609		/*
610		 * gather up the property name
611		 */
612		name = line + c;
613		n_len = 0;
614		while (line[c] && !ISSPACE(line[c]))
615			++n_len, ++c;
616
617		/*
618		 * gather up the value, if any
619		 */
620		value = "";
621		v_len = 0;
622		while (ISSPACE(line[c]))
623			++c;
624		if (line[c] != 0) {
625			value = line + c;
626			while (line[c] && !ISSPACE(line[c]))
627				++v_len, ++c;
628		}
629
630		if (v_len >= 2 && value[0] == value[v_len - 1] &&
631		    (value[0] == '\'' || value[0] == '"')) {
632			++value;
633			v_len -= 2;
634		}
635		name[n_len] = 0;
636		if (v_len > 0)
637			value[v_len] = 0;
638		else
639			continue;
640
641		/*
642		 * ignore "boot-file" property, it's now meaningless
643		 */
644		if (strcmp(name, "boot-file") == 0)
645			continue;
646		if (strcmp(name, "boot-args") == 0 &&
647		    strlen(boot_args) > 0)
648			continue;
649
650		/*
651		 * If a property was explicitly set on the command line
652		 * it will override a setting in bootenv.rc
653		 */
654		if (do_bsys_getproplen(NULL, name) > 0)
655			continue;
656
657		bsetprop(name, n_len, value, v_len + 1);
658	}
659done:
660	if (fd >= 0)
661		BRD_CLOSE(bfs_ops, fd);
662
663	/*
664	 * Check if we have to limit the boot time allocator
665	 */
666	if (do_bsys_getproplen(NULL, "physmem") != -1 &&
667	    do_bsys_getprop(NULL, "physmem", line) >= 0 &&
668	    parse_value(line, &lvalue) != -1) {
669		if (0 < lvalue && (lvalue < physmem || physmem == 0)) {
670			physmem = (pgcnt_t)lvalue;
671			DBG(physmem);
672		}
673	}
674	early_allocation = 0;
675
676	/*
677	 * check to see if we have to override the default value of the console
678	 */
679	if (!use_xencons) {
680		inputdev = line;
681		v_len = do_bsys_getproplen(NULL, "input-device");
682		if (v_len > 0)
683			(void) do_bsys_getprop(NULL, "input-device", inputdev);
684		else
685			v_len = 0;
686		inputdev[v_len] = 0;
687
688		outputdev = inputdev + v_len + 1;
689		v_len = do_bsys_getproplen(NULL, "output-device");
690		if (v_len > 0)
691			(void) do_bsys_getprop(NULL, "output-device",
692			    outputdev);
693		else
694			v_len = 0;
695		outputdev[v_len] = 0;
696
697		consoledev = outputdev + v_len + 1;
698		v_len = do_bsys_getproplen(NULL, "console");
699		if (v_len > 0)
700			(void) do_bsys_getprop(NULL, "console", consoledev);
701		else
702			v_len = 0;
703		consoledev[v_len] = 0;
704		bcons_init2(inputdev, outputdev, consoledev);
705	} else {
706		/*
707		 * Ensure console property exists
708		 * If not create it as "hypervisor"
709		 */
710		v_len = do_bsys_getproplen(NULL, "console");
711		if (v_len < 0)
712			bsetprops("console", "hypervisor");
713		inputdev = outputdev = consoledev = "hypervisor";
714		bcons_init2(inputdev, outputdev, consoledev);
715	}
716
717	if (strstr((char *)xbootp->bi_cmdline, "prom_debug") || kbm_debug) {
718		value = line;
719		bop_printf(NULL, "\nBoot properties:\n");
720		name = "";
721		while ((name = do_bsys_nextprop(NULL, name)) != NULL) {
722			bop_printf(NULL, "\t0x%p %s = ", (void *)name, name);
723			(void) do_bsys_getprop(NULL, name, value);
724			v_len = do_bsys_getproplen(NULL, name);
725			bop_printf(NULL, "len=%d ", v_len);
726			value[v_len] = 0;
727			bop_printf(NULL, "%s\n", value);
728		}
729	}
730}
731
732/*
733 * print formatted output
734 */
735/*PRINTFLIKE2*/
736/*ARGSUSED*/
737void
738bop_printf(bootops_t *bop, const char *fmt, ...)
739{
740	va_list	ap;
741
742	if (have_console == 0)
743		return;
744
745	va_start(ap, fmt);
746	(void) vsnprintf(buffer, BUFFERSIZE, fmt, ap);
747	va_end(ap);
748	PUT_STRING(buffer);
749}
750
751/*
752 * Another panic() variant; this one can be used even earlier during boot than
753 * prom_panic().
754 */
755/*PRINTFLIKE1*/
756void
757bop_panic(const char *fmt, ...)
758{
759	va_list ap;
760
761	va_start(ap, fmt);
762	bop_printf(NULL, fmt, ap);
763	va_end(ap);
764
765	bop_printf(NULL, "\nPress any key to reboot.\n");
766	(void) bcons_getchar();
767	bop_printf(NULL, "Resetting...\n");
768	pc_reset();
769}
770
771/*
772 * Do a real mode interrupt BIOS call
773 */
774typedef struct bios_regs {
775	unsigned short ax, bx, cx, dx, si, di, bp, es, ds;
776} bios_regs_t;
777typedef int (*bios_func_t)(int, bios_regs_t *);
778
779/*ARGSUSED*/
780static void
781do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp)
782{
783#if defined(__xpv)
784	prom_panic("unsupported call to BOP_DOINT()\n");
785#else	/* __xpv */
786	static int firsttime = 1;
787	bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000;
788	bios_regs_t br;
789
790	/*
791	 * The first time we do this, we have to copy the pre-packaged
792	 * low memory bios call code image into place.
793	 */
794	if (firsttime) {
795		extern char bios_image[];
796		extern uint32_t bios_size;
797
798		bcopy(bios_image, (void *)bios_func, bios_size);
799		firsttime = 0;
800	}
801
802	br.ax = rp->eax.word.ax;
803	br.bx = rp->ebx.word.bx;
804	br.cx = rp->ecx.word.cx;
805	br.dx = rp->edx.word.dx;
806	br.bp = rp->ebp.word.bp;
807	br.si = rp->esi.word.si;
808	br.di = rp->edi.word.di;
809	br.ds = rp->ds;
810	br.es = rp->es;
811
812	DBG_MSG("Doing BIOS call...");
813	DBG(br.ax);
814	DBG(br.bx);
815	DBG(br.dx);
816	rp->eflags = bios_func(intnum, &br);
817	DBG_MSG("done\n");
818
819	rp->eax.word.ax = br.ax;
820	rp->ebx.word.bx = br.bx;
821	rp->ecx.word.cx = br.cx;
822	rp->edx.word.dx = br.dx;
823	rp->ebp.word.bp = br.bp;
824	rp->esi.word.si = br.si;
825	rp->edi.word.di = br.di;
826	rp->ds = br.ds;
827	rp->es = br.es;
828#endif /* __xpv */
829}
830
831static struct boot_syscalls bop_sysp = {
832	bcons_getchar,
833	bcons_putchar,
834	bcons_ischar,
835};
836
837static char *whoami;
838
839#define	BUFLEN	64
840
841#if defined(__xpv)
842
843static char namebuf[32];
844
845static void
846xen_parse_props(char *s, char *prop_map[], int n_prop)
847{
848	char **prop_name = prop_map;
849	char *cp = s, *scp;
850
851	do {
852		scp = cp;
853		while ((*cp != NULL) && (*cp != ':'))
854			cp++;
855
856		if ((scp != cp) && (*prop_name != NULL)) {
857			*cp = NULL;
858			bsetprops(*prop_name, scp);
859		}
860
861		cp++;
862		prop_name++;
863		n_prop--;
864	} while (n_prop > 0);
865}
866
867#define	VBDPATHLEN	64
868
869/*
870 * parse the 'xpv-root' property to create properties used by
871 * ufs_mountroot.
872 */
873static void
874xen_vbdroot_props(char *s)
875{
876	char vbdpath[VBDPATHLEN] = "/xpvd/xdf@";
877	const char lnamefix[] = "/dev/dsk/c0d";
878	char *pnp;
879	char *prop_p;
880	char mi;
881	short minor;
882	long addr = 0;
883
884	pnp = vbdpath + strlen(vbdpath);
885	prop_p = s + strlen(lnamefix);
886	while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p'))
887		addr = addr * 10 + *prop_p++ - '0';
888	(void) snprintf(pnp, VBDPATHLEN, "%lx", addr);
889	pnp = vbdpath + strlen(vbdpath);
890	if (*prop_p == 's')
891		mi = 'a';
892	else if (*prop_p == 'p')
893		mi = 'q';
894	else
895		ASSERT(0); /* shouldn't be here */
896	prop_p++;
897	ASSERT(*prop_p != '\0');
898	if (ISDIGIT(*prop_p)) {
899		minor = *prop_p - '0';
900		prop_p++;
901		if (ISDIGIT(*prop_p)) {
902			minor = minor * 10 + *prop_p - '0';
903		}
904	} else {
905		/* malformed root path, use 0 as default */
906		minor = 0;
907	}
908	ASSERT(minor < 16); /* at most 16 partitions */
909	mi += minor;
910	*pnp++ = ':';
911	*pnp++ = mi;
912	*pnp++ = '\0';
913	bsetprops("fstype", "ufs");
914	bsetprops("bootpath", vbdpath);
915
916	DBG_MSG("VBD bootpath set to ");
917	DBG_MSG(vbdpath);
918	DBG_MSG("\n");
919}
920
921/*
922 * parse the xpv-nfsroot property to create properties used by
923 * nfs_mountroot.
924 */
925static void
926xen_nfsroot_props(char *s)
927{
928	char *prop_map[] = {
929		BP_SERVER_IP,	/* server IP address */
930		BP_SERVER_NAME,	/* server hostname */
931		BP_SERVER_PATH,	/* root path */
932	};
933	int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
934
935	bsetprop("fstype", 6, "nfs", 4);
936
937	xen_parse_props(s, prop_map, n_prop);
938
939	/*
940	 * If a server name wasn't specified, use a default.
941	 */
942	if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1)
943		bsetprops(BP_SERVER_NAME, "unknown");
944}
945
946/*
947 * Extract our IP address, etc. from the "xpv-ip" property.
948 */
949static void
950xen_ip_props(char *s)
951{
952	char *prop_map[] = {
953		BP_HOST_IP,		/* IP address */
954		NULL,			/* NFS server IP address (ignored in */
955					/* favour of xpv-nfsroot) */
956		BP_ROUTER_IP,		/* IP gateway */
957		BP_SUBNET_MASK,		/* IP subnet mask */
958		"xpv-hostname",		/* hostname (ignored) */
959		BP_NETWORK_INTERFACE,	/* interface name */
960		"xpv-hcp",		/* host configuration protocol */
961	};
962	int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
963	char ifname[IFNAMSIZ];
964
965	xen_parse_props(s, prop_map, n_prop);
966
967	/*
968	 * A Linux dom0 administrator expects all interfaces to be
969	 * called "ethX", which is not the case here.
970	 *
971	 * If the interface name specified is "eth0", presume that
972	 * this is really intended to be "xnf0" (the first domU ->
973	 * dom0 interface for this domain).
974	 */
975	if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) &&
976	    (strcmp("eth0", ifname) == 0)) {
977		bsetprops(BP_NETWORK_INTERFACE, "xnf0");
978		bop_printf(NULL,
979		    "network interface name 'eth0' replaced with 'xnf0'\n");
980	}
981}
982
983#else	/* __xpv */
984
985static void
986setup_rarp_props(struct sol_netinfo *sip)
987{
988	char buf[BUFLEN];	/* to hold ip/mac addrs */
989	uint8_t *val;
990
991	val = (uint8_t *)&sip->sn_ciaddr;
992	(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
993	    val[0], val[1], val[2], val[3]);
994	bsetprops(BP_HOST_IP, buf);
995
996	val = (uint8_t *)&sip->sn_siaddr;
997	(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
998	    val[0], val[1], val[2], val[3]);
999	bsetprops(BP_SERVER_IP, buf);
1000
1001	if (sip->sn_giaddr != 0) {
1002		val = (uint8_t *)&sip->sn_giaddr;
1003		(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1004		    val[0], val[1], val[2], val[3]);
1005		bsetprops(BP_ROUTER_IP, buf);
1006	}
1007
1008	if (sip->sn_netmask != 0) {
1009		val = (uint8_t *)&sip->sn_netmask;
1010		(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1011		    val[0], val[1], val[2], val[3]);
1012		bsetprops(BP_SUBNET_MASK, buf);
1013	}
1014
1015	if (sip->sn_mactype != 4 || sip->sn_maclen != 6) {
1016		bop_printf(NULL, "unsupported mac type %d, mac len %d\n",
1017		    sip->sn_mactype, sip->sn_maclen);
1018	} else {
1019		val = sip->sn_macaddr;
1020		(void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x",
1021		    val[0], val[1], val[2], val[3], val[4], val[5]);
1022		bsetprops(BP_BOOT_MAC, buf);
1023	}
1024}
1025
1026#endif	/* __xpv */
1027
1028static void
1029build_panic_cmdline(const char *cmd, int cmdlen)
1030{
1031	int proplen;
1032	size_t arglen;
1033
1034	arglen = sizeof (fastreboot_onpanic_args);
1035	/*
1036	 * If we allready have fastreboot-onpanic set to zero,
1037	 * don't add them again.
1038	 */
1039	if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 &&
1040	    proplen <=  sizeof (fastreboot_onpanic_cmdline)) {
1041		(void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC,
1042		    fastreboot_onpanic_cmdline);
1043		if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline))
1044			arglen = 1;
1045	}
1046
1047	/*
1048	 * construct fastreboot_onpanic_cmdline
1049	 */
1050	if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) {
1051		DBG_MSG("Command line too long: clearing "
1052		    FASTREBOOT_ONPANIC "\n");
1053		fastreboot_onpanic = 0;
1054	} else {
1055		bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen);
1056		if (arglen != 1)
1057			bcopy(fastreboot_onpanic_args,
1058			    fastreboot_onpanic_cmdline + cmdlen, arglen);
1059		else
1060			fastreboot_onpanic_cmdline[cmdlen] = 0;
1061	}
1062}
1063
1064
1065#ifndef	__xpv
1066/*
1067 * Construct boot command line for Fast Reboot
1068 */
1069static void
1070build_fastboot_cmdline(void)
1071{
1072	saved_cmdline_len =  strlen(xbootp->bi_cmdline) + 1;
1073	if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) {
1074		DBG(saved_cmdline_len);
1075		DBG_MSG("Command line too long: clearing fastreboot_capable\n");
1076		fastreboot_capable = 0;
1077	} else {
1078		bcopy((void *)(xbootp->bi_cmdline), (void *)saved_cmdline,
1079		    saved_cmdline_len);
1080		saved_cmdline[saved_cmdline_len - 1] = '\0';
1081		build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1);
1082	}
1083}
1084
1085/*
1086 * Save memory layout, disk drive information, unix and boot archive sizes for
1087 * Fast Reboot.
1088 */
1089static void
1090save_boot_info(multiboot_info_t *mbi)
1091{
1092	mb_module_t *mbp;
1093	int i;
1094
1095	bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t));
1096	if (mbi->mmap_length > sizeof (saved_mmap)) {
1097		DBG_MSG("mbi->mmap_length too big: clearing "
1098		    "fastreboot_capable\n");
1099		fastreboot_capable = 0;
1100	} else {
1101		bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap,
1102		    mbi->mmap_length);
1103	}
1104
1105	if (mbi->drives_length > sizeof (saved_drives)) {
1106		DBG(mbi->drives_length);
1107		DBG_MSG("mbi->drives_length too big: clearing "
1108		    "fastreboot_capable\n");
1109		fastreboot_capable = 0;
1110	} else {
1111		bcopy((void *)(uintptr_t)mbi->drives_addr, (void *)saved_drives,
1112		    mbi->drives_length);
1113	}
1114
1115	/*
1116	 * Current file sizes.  Used by fastboot.c to figure out how much
1117	 * memory to reserve for panic reboot.
1118	 */
1119	saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE;
1120	for (i = 0, mbp = (mb_module_t *)(uintptr_t)mbi->mods_addr;
1121	    i < mbi->mods_count; i++, mbp += sizeof (mb_module_t)) {
1122		saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] +=
1123		    mbp->mod_end - mbp->mod_start;
1124	}
1125
1126}
1127#endif	/* __xpv */
1128
1129
1130/*
1131 * 1st pass at building the table of boot properties. This includes:
1132 * - values set on the command line: -B a=x,b=y,c=z ....
1133 * - known values we just compute (ie. from xbootp)
1134 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
1135 *
1136 * the grub command line looked like:
1137 * kernel boot-file [-B prop=value[,prop=value]...] [boot-args]
1138 *
1139 * whoami is the same as boot-file
1140 */
1141static void
1142build_boot_properties(void)
1143{
1144	char *name;
1145	int name_len;
1146	char *value;
1147	int value_len;
1148	struct boot_modules *bm;
1149	char *propbuf;
1150	int quoted = 0;
1151	int boot_arg_len;
1152#ifndef __xpv
1153	static int stdout_val = 0;
1154	uchar_t boot_device;
1155	char str[3];
1156	multiboot_info_t *mbi;
1157	int netboot;
1158	struct sol_netinfo *sip;
1159#endif
1160
1161	/*
1162	 * These have to be done first, so that kobj_mount_root() works
1163	 */
1164	DBG_MSG("Building boot properties\n");
1165	propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0);
1166	DBG((uintptr_t)propbuf);
1167	if (xbootp->bi_module_cnt > 0) {
1168		bm = xbootp->bi_modules;
1169		bsetprop64("ramdisk_start", (uint64_t)(uintptr_t)bm->bm_addr);
1170		bsetprop64("ramdisk_end", (uint64_t)(uintptr_t)bm->bm_addr +
1171		    bm->bm_size);
1172	}
1173
1174	DBG_MSG("Parsing command line for boot properties\n");
1175	value = xbootp->bi_cmdline;
1176
1177	/*
1178	 * allocate memory to collect boot_args into
1179	 */
1180	boot_arg_len = strlen(xbootp->bi_cmdline) + 1;
1181	boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE);
1182	boot_args[0] = 0;
1183	boot_arg_len = 0;
1184
1185#ifdef __xpv
1186	/*
1187	 * Xen puts a lot of device information in front of the kernel name
1188	 * let's grab them and make them boot properties.  The first
1189	 * string w/o an "=" in it will be the boot-file property.
1190	 */
1191	(void) strcpy(namebuf, "xpv-");
1192	for (;;) {
1193		/*
1194		 * get to next property
1195		 */
1196		while (ISSPACE(*value))
1197			++value;
1198		name = value;
1199		/*
1200		 * look for an "="
1201		 */
1202		while (*value && !ISSPACE(*value) && *value != '=') {
1203			value++;
1204		}
1205		if (*value != '=') { /* no "=" in the property */
1206			value = name;
1207			break;
1208		}
1209		name_len = value - name;
1210		value_len = 0;
1211		/*
1212		 * skip over the "="
1213		 */
1214		value++;
1215		while (value[value_len] && !ISSPACE(value[value_len])) {
1216			++value_len;
1217		}
1218		/*
1219		 * build property name with "xpv-" prefix
1220		 */
1221		if (name_len + 4 > 32) { /* skip if name too long */
1222			value += value_len;
1223			continue;
1224		}
1225		bcopy(name, &namebuf[4], name_len);
1226		name_len += 4;
1227		namebuf[name_len] = 0;
1228		bcopy(value, propbuf, value_len);
1229		propbuf[value_len] = 0;
1230		bsetprops(namebuf, propbuf);
1231
1232		/*
1233		 * xpv-root is set to the logical disk name of the xen
1234		 * VBD when booting from a disk-based filesystem.
1235		 */
1236		if (strcmp(namebuf, "xpv-root") == 0)
1237			xen_vbdroot_props(propbuf);
1238		/*
1239		 * While we're here, if we have a "xpv-nfsroot" property
1240		 * then we need to set "fstype" to "nfs" so we mount
1241		 * our root from the nfs server.  Also parse the xpv-nfsroot
1242		 * property to create the properties that nfs_mountroot will
1243		 * need to find the root and mount it.
1244		 */
1245		if (strcmp(namebuf, "xpv-nfsroot") == 0)
1246			xen_nfsroot_props(propbuf);
1247
1248		if (strcmp(namebuf, "xpv-ip") == 0)
1249			xen_ip_props(propbuf);
1250		value += value_len;
1251	}
1252#endif
1253
1254	while (ISSPACE(*value))
1255		++value;
1256	/*
1257	 * value now points at the boot-file
1258	 */
1259	value_len = 0;
1260	while (value[value_len] && !ISSPACE(value[value_len]))
1261		++value_len;
1262	if (value_len > 0) {
1263		whoami = propbuf;
1264		bcopy(value, whoami, value_len);
1265		whoami[value_len] = 0;
1266		bsetprops("boot-file", whoami);
1267		/*
1268		 * strip leading path stuff from whoami, so running from
1269		 * PXE/miniroot makes sense.
1270		 */
1271		if (strstr(whoami, "/platform/") != NULL)
1272			whoami = strstr(whoami, "/platform/");
1273		bsetprops("whoami", whoami);
1274	}
1275
1276	/*
1277	 * Values forcibly set boot properties on the command line via -B.
1278	 * Allow use of quotes in values. Other stuff goes on kernel
1279	 * command line.
1280	 */
1281	name = value + value_len;
1282	while (*name != 0) {
1283		/*
1284		 * anything not " -B" is copied to the command line
1285		 */
1286		if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') {
1287			boot_args[boot_arg_len++] = *name;
1288			boot_args[boot_arg_len] = 0;
1289			++name;
1290			continue;
1291		}
1292
1293		/*
1294		 * skip the " -B" and following white space
1295		 */
1296		name += 3;
1297		while (ISSPACE(*name))
1298			++name;
1299		while (*name && !ISSPACE(*name)) {
1300			value = strstr(name, "=");
1301			if (value == NULL)
1302				break;
1303			name_len = value - name;
1304			++value;
1305			value_len = 0;
1306			quoted = 0;
1307			for (; ; ++value_len) {
1308				if (!value[value_len])
1309					break;
1310
1311				/*
1312				 * is this value quoted?
1313				 */
1314				if (value_len == 0 &&
1315				    (value[0] == '\'' || value[0] == '"')) {
1316					quoted = value[0];
1317					++value_len;
1318				}
1319
1320				/*
1321				 * In the quote accept any character,
1322				 * but look for ending quote.
1323				 */
1324				if (quoted) {
1325					if (value[value_len] == quoted)
1326						quoted = 0;
1327					continue;
1328				}
1329
1330				/*
1331				 * a comma or white space ends the value
1332				 */
1333				if (value[value_len] == ',' ||
1334				    ISSPACE(value[value_len]))
1335					break;
1336			}
1337
1338			if (value_len == 0) {
1339				bsetprop(name, name_len, "true", 5);
1340			} else {
1341				char *v = value;
1342				int l = value_len;
1343				if (v[0] == v[l - 1] &&
1344				    (v[0] == '\'' || v[0] == '"')) {
1345					++v;
1346					l -= 2;
1347				}
1348				bcopy(v, propbuf, l);
1349				propbuf[l] = '\0';
1350				bsetprop(name, name_len, propbuf,
1351				    l + 1);
1352			}
1353			name = value + value_len;
1354			while (*name == ',')
1355				++name;
1356		}
1357	}
1358
1359	/*
1360	 * set boot-args property
1361	 * 1275 name is bootargs, so set
1362	 * that too
1363	 */
1364	bsetprops("boot-args", boot_args);
1365	bsetprops("bootargs", boot_args);
1366
1367#ifndef __xpv
1368	/*
1369	 * set the BIOS boot device from GRUB
1370	 */
1371	netboot = 0;
1372	mbi = xbootp->bi_mb_info;
1373
1374	/*
1375	 * Build boot command line for Fast Reboot
1376	 */
1377	build_fastboot_cmdline();
1378
1379	/*
1380	 * Save various boot information for Fast Reboot
1381	 */
1382	save_boot_info(mbi);
1383
1384	if (mbi != NULL && mbi->flags & 0x2) {
1385		boot_device = mbi->boot_device >> 24;
1386		if (boot_device == 0x20)
1387			netboot++;
1388		str[0] = (boot_device >> 4) + '0';
1389		str[1] = (boot_device & 0xf) + '0';
1390		str[2] = 0;
1391		bsetprops("bios-boot-device", str);
1392	} else {
1393		netboot = 1;
1394	}
1395
1396	/*
1397	 * In the netboot case, drives_info is overloaded with the dhcp ack.
1398	 * This is not multiboot compliant and requires special pxegrub!
1399	 */
1400	if (netboot && mbi->drives_length != 0) {
1401		sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr;
1402		if (sip->sn_infotype == SN_TYPE_BOOTP)
1403			bsetprop("bootp-response", sizeof ("bootp-response"),
1404			    (void *)(uintptr_t)mbi->drives_addr,
1405			    mbi->drives_length);
1406		else if (sip->sn_infotype == SN_TYPE_RARP)
1407			setup_rarp_props(sip);
1408	}
1409	bsetprop("stdout", strlen("stdout"),
1410	    &stdout_val, sizeof (stdout_val));
1411#endif /* __xpv */
1412
1413	/*
1414	 * more conjured up values for made up things....
1415	 */
1416#if defined(__xpv)
1417	bsetprops("mfg-name", "i86xpv");
1418	bsetprops("impl-arch-name", "i86xpv");
1419#else
1420	bsetprops("mfg-name", "i86pc");
1421	bsetprops("impl-arch-name", "i86pc");
1422#endif
1423
1424	/*
1425	 * Build firmware-provided system properties
1426	 */
1427	build_firmware_properties();
1428
1429	/*
1430	 * XXPV
1431	 *
1432	 * Find out what these are:
1433	 * - cpuid_feature_ecx_include
1434	 * - cpuid_feature_ecx_exclude
1435	 * - cpuid_feature_edx_include
1436	 * - cpuid_feature_edx_exclude
1437	 *
1438	 * Find out what these are in multiboot:
1439	 * - netdev-path
1440	 * - fstype
1441	 */
1442}
1443
1444#ifdef __xpv
1445/*
1446 * Under the Hypervisor, memory usable for DMA may be scarce. One
1447 * very likely large pool of DMA friendly memory is occupied by
1448 * the boot_archive, as it was loaded by grub into low MFNs.
1449 *
1450 * Here we free up that memory by copying the boot archive to what are
1451 * likely higher MFN pages and then swapping the mfn/pfn mappings.
1452 */
1453#define	PFN_2GIG	0x80000
1454static void
1455relocate_boot_archive(void)
1456{
1457	mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);
1458	struct boot_modules *bm = xbootp->bi_modules;
1459	uintptr_t va;
1460	pfn_t va_pfn;
1461	mfn_t va_mfn;
1462	caddr_t copy;
1463	pfn_t copy_pfn;
1464	mfn_t copy_mfn;
1465	size_t	len;
1466	int slop;
1467	int total = 0;
1468	int relocated = 0;
1469	int mmu_update_return;
1470	mmu_update_t t[2];
1471	x86pte_t pte;
1472
1473	/*
1474	 * If all MFN's are below 2Gig, don't bother doing this.
1475	 */
1476	if (max_mfn < PFN_2GIG)
1477		return;
1478	if (xbootp->bi_module_cnt < 1) {
1479		DBG_MSG("no boot_archive!");
1480		return;
1481	}
1482
1483	DBG_MSG("moving boot_archive to high MFN memory\n");
1484	va = (uintptr_t)bm->bm_addr;
1485	len = bm->bm_size;
1486	slop = va & MMU_PAGEOFFSET;
1487	if (slop) {
1488		va += MMU_PAGESIZE - slop;
1489		len -= MMU_PAGESIZE - slop;
1490	}
1491	len = P2ALIGN(len, MMU_PAGESIZE);
1492
1493	/*
1494	 * Go through all boot_archive pages, swapping any low MFN pages
1495	 * with memory at next_phys.
1496	 */
1497	while (len != 0) {
1498		++total;
1499		va_pfn = mmu_btop(va - ONE_GIG);
1500		va_mfn = mfn_list[va_pfn];
1501		if (mfn_list[va_pfn] < PFN_2GIG) {
1502			copy = kbm_remap_window(next_phys, 1);
1503			bcopy((void *)va, copy, MMU_PAGESIZE);
1504			copy_pfn = mmu_btop(next_phys);
1505			copy_mfn = mfn_list[copy_pfn];
1506
1507			pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID;
1508			if (HYPERVISOR_update_va_mapping(va, pte,
1509			    UVMF_INVLPG | UVMF_LOCAL))
1510				bop_panic("relocate_boot_archive():  "
1511				    "HYPERVISOR_update_va_mapping() failed");
1512
1513			mfn_list[va_pfn] = copy_mfn;
1514			mfn_list[copy_pfn] = va_mfn;
1515
1516			t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE;
1517			t[0].val = va_pfn;
1518			t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE;
1519			t[1].val = copy_pfn;
1520			if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return,
1521			    DOMID_SELF) != 0 || mmu_update_return != 2)
1522				bop_panic("relocate_boot_archive():  "
1523				    "HYPERVISOR_mmu_update() failed");
1524
1525			next_phys += MMU_PAGESIZE;
1526			++relocated;
1527		}
1528		len -= MMU_PAGESIZE;
1529		va += MMU_PAGESIZE;
1530	}
1531	DBG_MSG("Relocated pages:\n");
1532	DBG(relocated);
1533	DBG_MSG("Out of total pages:\n");
1534	DBG(total);
1535}
1536#endif /* __xpv */
1537
1538#if !defined(__xpv)
1539/*
1540 * Install a temporary IDT that lets us catch errors in the boot time code.
1541 * We shouldn't get any faults at all while this is installed, so we'll
1542 * just generate a traceback and exit.
1543 */
1544#ifdef __amd64
1545static const int bcode_sel = B64CODE_SEL;
1546#else
1547static const int bcode_sel = B32CODE_SEL;
1548#endif
1549
1550/*
1551 * simple description of a stack frame (args are 32 bit only currently)
1552 */
1553typedef struct bop_frame {
1554	struct bop_frame *old_frame;
1555	pc_t retaddr;
1556	long arg[1];
1557} bop_frame_t;
1558
1559void
1560bop_traceback(bop_frame_t *frame)
1561{
1562	pc_t pc;
1563	int cnt;
1564	int a;
1565	char *ksym;
1566	ulong_t off;
1567
1568	bop_printf(NULL, "Stack traceback:\n");
1569	for (cnt = 0; cnt < 30; ++cnt) {	/* up to 30 frames */
1570		pc = frame->retaddr;
1571		if (pc == 0)
1572			break;
1573		ksym = kobj_getsymname(pc, &off);
1574		if (ksym)
1575			bop_printf(NULL, "  %s+%lx", ksym, off);
1576		else
1577			bop_printf(NULL, "  0x%lx", pc);
1578
1579		frame = frame->old_frame;
1580		if (frame == 0) {
1581			bop_printf(NULL, "\n");
1582			break;
1583		}
1584		for (a = 0; a < 6; ++a) {	/* try for 6 args */
1585#if defined(__i386)
1586			if ((void *)&frame->arg[a] == (void *)frame->old_frame)
1587				break;
1588			if (a == 0)
1589				bop_printf(NULL, "(");
1590			else
1591				bop_printf(NULL, ",");
1592			bop_printf(NULL, "0x%lx", frame->arg[a]);
1593#endif
1594		}
1595		bop_printf(NULL, ")\n");
1596	}
1597}
1598
1599struct trapframe {
1600	ulong_t frame_ptr;	/* %[er]bp pushed by our code */
1601	ulong_t error_code;	/* optional */
1602	ulong_t inst_ptr;
1603	ulong_t code_seg;
1604	ulong_t flags_reg;
1605#ifdef __amd64
1606	ulong_t stk_ptr;
1607	ulong_t stk_seg;
1608#endif
1609};
1610
1611void
1612bop_trap(struct trapframe *tf)
1613{
1614	bop_frame_t fakeframe;
1615	static int depth = 0;
1616
1617	/*
1618	 * Check for an infinite loop of traps.
1619	 */
1620	if (++depth > 2)
1621		bop_panic("Nested trap");
1622
1623	/*
1624	 * adjust the tf for optional error_code by detecting the code selector
1625	 */
1626	if (tf->code_seg != bcode_sel)
1627		tf = (struct trapframe *)((uintptr_t)tf - sizeof (ulong_t));
1628
1629	bop_printf(NULL, "Unexpected trap\n");
1630	bop_printf(NULL, "instruction pointer  0x%lx\n", tf->inst_ptr);
1631	bop_printf(NULL, "error code, optional 0x%lx\n",
1632	    tf->error_code & 0xffffffff);
1633	bop_printf(NULL, "code segment         0x%lx\n", tf->code_seg & 0xffff);
1634	bop_printf(NULL, "flags register       0x%lx\n", tf->flags_reg);
1635#ifdef __amd64
1636	bop_printf(NULL, "return %%rsp         0x%lx\n", tf->stk_ptr);
1637	bop_printf(NULL, "return %%ss          0x%lx\n", tf->stk_seg & 0xffff);
1638#endif
1639	fakeframe.old_frame = (bop_frame_t *)tf->frame_ptr;
1640	fakeframe.retaddr = (pc_t)tf->inst_ptr;
1641	bop_printf(NULL, "Attempting stack backtrace:\n");
1642	bop_traceback(&fakeframe);
1643	bop_panic("unexpected trap in early boot");
1644}
1645
1646extern void bop_trap_handler(void);
1647
1648static gate_desc_t *bop_idt;
1649
1650static desctbr_t bop_idt_info;
1651
1652static void
1653bop_idt_init(void)
1654{
1655	int t;
1656
1657	bop_idt = (gate_desc_t *)
1658	    do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
1659	bzero(bop_idt, MMU_PAGESIZE);
1660	for (t = 0; t < NIDT; ++t) {
1661		/*
1662		 * Note that since boot runs without a TSS, the
1663		 * double fault handler cannot use an alternate stack
1664		 * (64-bit) or a task gate (32-bit).
1665		 */
1666		set_gatesegd(&bop_idt[t], &bop_trap_handler, bcode_sel,
1667		    SDT_SYSIGT, TRP_KPL, 0);
1668	}
1669	bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1;
1670	bop_idt_info.dtr_base = (uintptr_t)bop_idt;
1671	wr_idtr(&bop_idt_info);
1672}
1673#endif	/* !defined(__xpv) */
1674
1675/*
1676 * This is where we enter the kernel. It dummies up the boot_ops and
1677 * boot_syscalls vectors and jumps off to _kobj_boot()
1678 */
1679void
1680_start(struct xboot_info *xbp)
1681{
1682	bootops_t *bops = &bootop;
1683	extern void _kobj_boot();
1684
1685	/*
1686	 * 1st off - initialize the console for any error messages
1687	 */
1688	xbootp = xbp;
1689#ifdef __xpv
1690	HYPERVISOR_shared_info = (void *)xbootp->bi_shared_info;
1691	xen_info = xbootp->bi_xen_start_info;
1692#endif
1693	bcons_init((void *)xbootp->bi_cmdline);
1694	have_console = 1;
1695
1696#ifndef __xpv
1697	if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) ==
1698	    FASTBOOT_MAGIC) {
1699		post_fastreboot = 1;
1700		*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0;
1701	}
1702#endif
1703
1704	/*
1705	 * enable debugging
1706	 */
1707	if (strstr((char *)xbootp->bi_cmdline, "kbm_debug"))
1708		kbm_debug = 1;
1709
1710	DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: ");
1711	DBG_MSG((char *)xbootp->bi_cmdline);
1712	DBG_MSG("\n\n\n");
1713
1714	/*
1715	 * physavail is no longer used by startup
1716	 */
1717	bm.physinstalled = xbp->bi_phys_install;
1718	bm.pcimem = xbp->bi_pcimem;
1719	bm.physavail = NULL;
1720
1721	/*
1722	 * initialize the boot time allocator
1723	 */
1724	next_phys = xbootp->bi_next_paddr;
1725	DBG(next_phys);
1726	next_virt = (uintptr_t)xbootp->bi_next_vaddr;
1727	DBG(next_virt);
1728	DBG_MSG("Initializing boot time memory management...");
1729#ifdef __xpv
1730	{
1731		xen_platform_parameters_t p;
1732
1733		/* This call shouldn't fail, dboot already did it once. */
1734		(void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p);
1735		mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start);
1736		DBG(xen_virt_start);
1737	}
1738#endif
1739	kbm_init(xbootp);
1740	DBG_MSG("done\n");
1741
1742	/*
1743	 * Fill in the bootops vector
1744	 */
1745	bops->bsys_version = BO_VERSION;
1746	bops->boot_mem = &bm;
1747	bops->bsys_alloc = do_bsys_alloc;
1748	bops->bsys_free = do_bsys_free;
1749	bops->bsys_getproplen = do_bsys_getproplen;
1750	bops->bsys_getprop = do_bsys_getprop;
1751	bops->bsys_nextprop = do_bsys_nextprop;
1752	bops->bsys_printf = bop_printf;
1753	bops->bsys_doint = do_bsys_doint;
1754
1755	/*
1756	 * BOP_EALLOC() is no longer needed
1757	 */
1758	bops->bsys_ealloc = do_bsys_ealloc;
1759
1760#ifdef __xpv
1761	/*
1762	 * On domain 0 we need to free up some physical memory that is
1763	 * usable for DMA. Since GRUB loaded the boot_archive, it is
1764	 * sitting in low MFN memory. We'll relocated the boot archive
1765	 * pages to high PFN memory.
1766	 */
1767	if (DOMAIN_IS_INITDOMAIN(xen_info))
1768		relocate_boot_archive();
1769#endif
1770
1771#ifndef __xpv
1772	/*
1773	 * Install an IDT to catch early pagefaults (shouldn't have any).
1774	 * Also needed for kmdb.
1775	 */
1776	bop_idt_init();
1777#endif
1778
1779	/*
1780	 * Start building the boot properties from the command line
1781	 */
1782	DBG_MSG("Initializing boot properties:\n");
1783	build_boot_properties();
1784
1785	if (strstr((char *)xbootp->bi_cmdline, "prom_debug") || kbm_debug) {
1786		char *name;
1787		char *value;
1788		char *cp;
1789		int len;
1790
1791		value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
1792		bop_printf(NULL, "\nBoot properties:\n");
1793		name = "";
1794		while ((name = do_bsys_nextprop(NULL, name)) != NULL) {
1795			bop_printf(NULL, "\t0x%p %s = ", (void *)name, name);
1796			(void) do_bsys_getprop(NULL, name, value);
1797			len = do_bsys_getproplen(NULL, name);
1798			bop_printf(NULL, "len=%d ", len);
1799			value[len] = 0;
1800			for (cp = value; *cp; ++cp) {
1801				if (' ' <= *cp && *cp <= '~')
1802					bop_printf(NULL, "%c", *cp);
1803				else
1804					bop_printf(NULL, "-0x%x-", *cp);
1805			}
1806			bop_printf(NULL, "\n");
1807		}
1808	}
1809
1810	/*
1811	 * jump into krtld...
1812	 */
1813	_kobj_boot(&bop_sysp, NULL, bops, NULL);
1814}
1815
1816
1817/*ARGSUSED*/
1818static caddr_t
1819no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
1820{
1821	panic("Attempt to bsys_alloc() too late\n");
1822	return (NULL);
1823}
1824
1825/*ARGSUSED*/
1826static void
1827no_more_free(bootops_t *bop, caddr_t virt, size_t size)
1828{
1829	panic("Attempt to bsys_free() too late\n");
1830}
1831
1832void
1833bop_no_more_mem(void)
1834{
1835	DBG(total_bop_alloc_scratch);
1836	DBG(total_bop_alloc_kernel);
1837	bootops->bsys_alloc = no_more_alloc;
1838	bootops->bsys_free = no_more_free;
1839}
1840
1841
1842#ifndef __xpv
1843/*
1844 * Set ACPI firmware properties
1845 */
1846
1847static caddr_t
1848vmap_phys(size_t length, paddr_t pa)
1849{
1850	paddr_t	start, end;
1851	caddr_t	va;
1852	size_t	len, page;
1853
1854	start = P2ALIGN(pa, MMU_PAGESIZE);
1855	end = P2ROUNDUP(pa + length, MMU_PAGESIZE);
1856	len = end - start;
1857	va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE);
1858	for (page = 0; page < len; page += MMU_PAGESIZE)
1859		kbm_map((uintptr_t)va + page, start + page, 0, 0);
1860	return (va + (pa & MMU_PAGEOFFSET));
1861}
1862
1863static uint8_t
1864checksum_table(uint8_t *tp, size_t len)
1865{
1866	uint8_t sum = 0;
1867
1868	while (len-- > 0)
1869		sum += *tp++;
1870
1871	return (sum);
1872}
1873
1874static int
1875valid_rsdp(struct rsdp *rp)
1876{
1877
1878	/* validate the V1.x checksum */
1879	if (checksum_table((uint8_t *)&rp->v1, sizeof (struct rsdp_v1)) != 0)
1880		return (0);
1881
1882	/* If pre-ACPI 2.0, this is a valid RSDP */
1883	if (rp->v1.revision < 2)
1884		return (1);
1885
1886	/* validate the V2.x checksum */
1887	if (checksum_table((uint8_t *)rp, sizeof (struct rsdp)) != 0)
1888		return (0);
1889
1890	return (1);
1891}
1892
1893/*
1894 * Scan memory range for an RSDP;
1895 * see ACPI 3.0 Spec, 5.2.5.1
1896 */
1897static struct rsdp *
1898scan_rsdp(paddr_t start, paddr_t end)
1899{
1900	size_t len  = end - start + 1;
1901	caddr_t ptr;
1902
1903	ptr = vmap_phys(len, start);
1904	while (len > 0) {
1905		if (strncmp(ptr, ACPI_RSDP_SIG, ACPI_RSDP_SIG_LEN) == 0)
1906			if (valid_rsdp((struct rsdp *)ptr))
1907				return ((struct rsdp *)ptr);
1908		ptr += 16;
1909		len -= 16;
1910	}
1911
1912	return (NULL);
1913}
1914
1915/*
1916 * Refer to ACPI 3.0 Spec, section 5.2.5.1 to understand this function
1917 */
1918static struct rsdp *
1919find_rsdp() {
1920	struct rsdp *rsdp;
1921	uint16_t *ebda_seg;
1922	paddr_t  ebda_addr;
1923
1924	/*
1925	 * Get the EBDA segment and scan the first 1K
1926	 */
1927	ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t), ACPI_EBDA_SEG_ADDR);
1928	ebda_addr = *ebda_seg << 4;
1929	rsdp = scan_rsdp(ebda_addr, ebda_addr + ACPI_EBDA_LEN - 1);
1930	if (rsdp == NULL)
1931		/* if EBDA doesn't contain RSDP, look in BIOS memory */
1932		rsdp = scan_rsdp(0xe0000, 0xfffff);
1933	return (rsdp);
1934}
1935
1936static struct table_header *
1937map_fw_table(paddr_t table_addr)
1938{
1939	struct table_header *tp;
1940	size_t len = MAX(sizeof (struct table_header), MMU_PAGESIZE);
1941
1942	/*
1943	 * Map at least a page; if the table is larger than this, remap it
1944	 */
1945	tp = (struct table_header *)vmap_phys(len, table_addr);
1946	if (tp->len > len)
1947		tp = (struct table_header *)vmap_phys(tp->len, table_addr);
1948	return (tp);
1949}
1950
1951static struct table_header *
1952find_fw_table(char *signature)
1953{
1954	static int revision = 0;
1955	static struct xsdt *xsdt;
1956	static int len;
1957	paddr_t xsdt_addr;
1958	struct rsdp *rsdp;
1959	struct table_header *tp;
1960	paddr_t table_addr;
1961	int	n;
1962
1963	if (strlen(signature) != ACPI_TABLE_SIG_LEN)
1964		return (NULL);
1965
1966	/*
1967	 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help
1968	 * understand this code.  If we haven't already found the RSDT/XSDT,
1969	 * revision will be 0. Find the RSDP and check the revision
1970	 * to find out whether to use the RSDT or XSDT.  If revision is
1971	 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2,
1972	 * use the XSDT.  If the XSDT address is 0, though, fall back to
1973	 * revision 1 and use the RSDT.
1974	 */
1975	if (revision == 0) {
1976		if ((rsdp = (struct rsdp *)find_rsdp()) != NULL) {
1977			revision = rsdp->v1.revision;
1978			switch (revision) {
1979			case 2:
1980				/*
1981				 * Use the XSDT unless BIOS is buggy and
1982				 * claims to be rev 2 but has a null XSDT
1983				 * address
1984				 */
1985				xsdt_addr = rsdp->xsdt;
1986				if (xsdt_addr != 0)
1987					break;
1988				/* FALLTHROUGH */
1989			case 0:
1990				/* treat RSDP rev 0 as revision 1 internally */
1991				revision = 1;
1992				/* FALLTHROUGH */
1993			case 1:
1994				/* use the RSDT for rev 0/1 */
1995				xsdt_addr = rsdp->v1.rsdt;
1996				break;
1997			default:
1998				/* unknown revision */
1999				revision = 0;
2000				break;
2001			}
2002		}
2003		if (revision == 0)
2004			return (NULL);
2005
2006		/* cache the XSDT info */
2007		xsdt = (struct xsdt *)map_fw_table(xsdt_addr);
2008		len = (xsdt->hdr.len - sizeof (xsdt->hdr)) /
2009		    ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t));
2010	}
2011
2012	/*
2013	 * Scan the table headers looking for a signature match
2014	 */
2015	for (n = 0; n < len; n++) {
2016		table_addr = (revision == 1) ? xsdt->p.r[n] : xsdt->p.x[n];
2017		if (table_addr == 0)
2018			continue;
2019		tp = map_fw_table(table_addr);
2020		if (strncmp(tp->sig, signature, ACPI_TABLE_SIG_LEN) == 0) {
2021			return (tp);
2022		}
2023	}
2024	return (NULL);
2025}
2026
2027static void
2028process_madt(struct madt *tp)
2029{
2030	struct madt_processor *cpu, *end;
2031	uint32_t cpu_count = 0;
2032	uint8_t cpu_apicid_array[UINT8_MAX + 1];
2033
2034	if (tp != NULL) {
2035		/*
2036		 * Determine number of CPUs and keep track of "final" APIC ID
2037		 * for each CPU by walking through ACPI MADT processor list
2038		 */
2039		end = (struct madt_processor *)(tp->hdr.len + (uintptr_t)tp);
2040		cpu = tp->list;
2041		while (cpu < end) {
2042			if (cpu->type == MADT_PROCESSOR) {
2043				if (cpu->flags & 1) {
2044					if (cpu_count < UINT8_MAX)
2045						cpu_apicid_array[cpu_count] =
2046						    cpu->apic_id;
2047					cpu_count++;
2048				}
2049			}
2050
2051			cpu = (struct madt_processor *)
2052			    (cpu->len + (uintptr_t)cpu);
2053		}
2054
2055		/*
2056		 * Make boot property for array of "final" APIC IDs for each
2057		 * CPU
2058		 */
2059		bsetprop(BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY),
2060		    cpu_apicid_array, cpu_count * sizeof (uint8_t));
2061	}
2062
2063	/*
2064	 * User-set boot-ncpus overrides firmware count
2065	 */
2066	if (do_bsys_getproplen(NULL, "boot-ncpus") >= 0)
2067		return;
2068
2069	/*
2070	 * Set boot property for boot-ncpus to number of CPUs given in MADT
2071	 * if user hasn't set the property already
2072	 */
2073	if (tp != NULL)
2074		bsetpropsi("boot-ncpus", cpu_count);
2075}
2076
2077static void
2078process_srat(struct srat *tp)
2079{
2080	struct srat_item *item, *end;
2081	int i;
2082	int proc_num, mem_num;
2083#pragma pack(1)
2084	struct {
2085		uint32_t domain;
2086		uint32_t apic_id;
2087		uint32_t sapic_id;
2088	} processor;
2089	struct {
2090		uint32_t domain;
2091		uint32_t x2apic_id;
2092	} x2apic;
2093	struct {
2094		uint32_t domain;
2095		uint64_t addr;
2096		uint64_t length;
2097		uint32_t flags;
2098	} memory;
2099#pragma pack()
2100	char prop_name[30];
2101
2102	if (tp == NULL)
2103		return;
2104
2105	proc_num = mem_num = 0;
2106	end = (struct srat_item *)(tp->hdr.len + (uintptr_t)tp);
2107	item = tp->list;
2108	while (item < end) {
2109		switch (item->type) {
2110		case SRAT_PROCESSOR:
2111			if (!(item->i.p.flags & SRAT_ENABLED))
2112				break;
2113			processor.domain = item->i.p.domain1;
2114			for (i = 0; i < 3; i++)
2115				processor.domain +=
2116				    item->i.p.domain2[i] << ((i + 1) * 8);
2117			processor.apic_id = item->i.p.apic_id;
2118			processor.sapic_id = item->i.p.local_sapic_eid;
2119			(void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2120			    proc_num);
2121			bsetprop(prop_name, strlen(prop_name), &processor,
2122			    sizeof (processor));
2123			proc_num++;
2124			break;
2125		case SRAT_MEMORY:
2126			if (!(item->i.m.flags & SRAT_ENABLED))
2127				break;
2128			memory.domain = item->i.m.domain;
2129			memory.addr = item->i.m.base_addr;
2130			memory.length = item->i.m.len;
2131			memory.flags = item->i.m.flags;
2132			(void) snprintf(prop_name, 30, "acpi-srat-memory-%d",
2133			    mem_num);
2134			bsetprop(prop_name, strlen(prop_name), &memory,
2135			    sizeof (memory));
2136			mem_num++;
2137			break;
2138		case SRAT_X2APIC:
2139			if (!(item->i.xp.flags & SRAT_ENABLED))
2140				break;
2141			x2apic.domain = item->i.xp.domain;
2142			x2apic.x2apic_id = item->i.xp.x2apic_id;
2143			(void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2144			    proc_num);
2145			bsetprop(prop_name, strlen(prop_name), &x2apic,
2146			    sizeof (x2apic));
2147			proc_num++;
2148			break;
2149		}
2150
2151		item = (struct srat_item *)
2152		    (item->len + (caddr_t)item);
2153	}
2154}
2155
2156static void
2157process_slit(struct slit *tp)
2158{
2159
2160	/*
2161	 * Check the number of localities; if it's too huge, we just
2162	 * return and locality enumeration code will handle this later,
2163	 * if possible.
2164	 *
2165	 * Note that the size of the table is the square of the
2166	 * number of localities; if the number of localities exceeds
2167	 * UINT16_MAX, the table size may overflow an int when being
2168	 * passed to bsetprop() below.
2169	 */
2170	if (tp->number >= SLIT_LOCALITIES_MAX)
2171		return;
2172
2173	bsetprop(SLIT_NUM_PROPNAME, strlen(SLIT_NUM_PROPNAME), &tp->number,
2174	    sizeof (tp->number));
2175	bsetprop(SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->entry,
2176	    tp->number * tp->number);
2177}
2178
2179static void
2180process_dmar(struct dmar *tp)
2181{
2182	bsetprop(DMAR_TABLE_PROPNAME, strlen(DMAR_TABLE_PROPNAME),
2183	    tp, tp->hdr.len);
2184}
2185
2186#else /* __xpv */
2187static void
2188enumerate_xen_cpus()
2189{
2190	processorid_t	id, max_id;
2191
2192	/*
2193	 * User-set boot-ncpus overrides enumeration
2194	 */
2195	if (do_bsys_getproplen(NULL, "boot-ncpus") >= 0)
2196		return;
2197
2198	/*
2199	 * Probe every possible virtual CPU id and remember the
2200	 * highest id present; the count of CPUs is one greater
2201	 * than this.  This tacitly assumes at least cpu 0 is present.
2202	 */
2203	max_id = 0;
2204	for (id = 0; id < MAX_VIRT_CPUS; id++)
2205		if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0)
2206			max_id = id;
2207
2208	bsetpropsi("boot-ncpus", max_id+1);
2209
2210}
2211#endif /* __xpv */
2212
2213static void
2214build_firmware_properties(void)
2215{
2216#ifndef __xpv
2217	struct table_header *tp;
2218
2219	if ((tp = find_fw_table("APIC")) != NULL)
2220		process_madt((struct madt *)tp);
2221
2222	if ((srat_ptr = (struct srat *)find_fw_table("SRAT")) != NULL)
2223		process_srat(srat_ptr);
2224
2225	if (slit_ptr = (struct slit *)find_fw_table("SLIT"))
2226		process_slit(slit_ptr);
2227
2228	if (tp = find_fw_table("DMAR"))
2229		process_dmar((struct dmar *)tp);
2230#else /* __xpv */
2231	enumerate_xen_cpus();
2232#endif /* __xpv */
2233}
2234
2235/*
2236 * fake up a boot property for deferred early console output
2237 * this is used by both graphical boot and the (developer only)
2238 * USB serial console
2239 */
2240void *
2241defcons_init(size_t size)
2242{
2243	static char *p = NULL;
2244
2245	p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE);
2246	*p = 0;
2247	bsetprop("deferred-console-buf", strlen("deferred-console-buf") + 1,
2248	    &p, sizeof (p));
2249	return (p);
2250}
2251
2252/*ARGSUSED*/
2253int
2254boot_compinfo(int fd, struct compinfo *cbp)
2255{
2256	cbp->iscmp = 0;
2257	cbp->blksize = MAXBSIZE;
2258	return (0);
2259}
2260
2261#define	BP_MAX_STRLEN	32
2262
2263/*
2264 * Get value for given boot property
2265 */
2266int
2267bootprop_getval(const char *prop_name, u_longlong_t *prop_value)
2268{
2269	int		boot_prop_len;
2270	char		str[BP_MAX_STRLEN];
2271	u_longlong_t	value;
2272
2273	boot_prop_len = BOP_GETPROPLEN(bootops, prop_name);
2274	if (boot_prop_len < 0 || boot_prop_len > sizeof (str) ||
2275	    BOP_GETPROP(bootops, prop_name, str) < 0 ||
2276	    kobj_getvalue(str, &value) == -1)
2277		return (-1);
2278
2279	if (prop_value)
2280		*prop_value = value;
2281
2282	return (0);
2283}
2284