strsubr.c revision 8348:4137e18bfaf0
150479Speter/*
239224Sabial * CDDL HEADER START
339224Sabial *
439224Sabial * The contents of this file are subject to the terms of the
539224Sabial * Common Development and Distribution License (the "License").
639224Sabial * You may not use this file except in compliance with the License.
739224Sabial *
839224Sabial * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
939224Sabial * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
22/*	  All Rights Reserved  	*/
23
24
25/*
26 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
27 * Use is subject to license terms.
28 */
29
30#include <sys/types.h>
31#include <sys/sysmacros.h>
32#include <sys/param.h>
33#include <sys/errno.h>
34#include <sys/signal.h>
35#include <sys/proc.h>
36#include <sys/conf.h>
37#include <sys/cred.h>
38#include <sys/user.h>
39#include <sys/vnode.h>
40#include <sys/file.h>
41#include <sys/session.h>
42#include <sys/stream.h>
43#include <sys/strsubr.h>
44#include <sys/stropts.h>
45#include <sys/poll.h>
46#include <sys/systm.h>
47#include <sys/cpuvar.h>
48#include <sys/uio.h>
49#include <sys/cmn_err.h>
50#include <sys/priocntl.h>
51#include <sys/procset.h>
52#include <sys/vmem.h>
53#include <sys/bitmap.h>
54#include <sys/kmem.h>
55#include <sys/siginfo.h>
56#include <sys/vtrace.h>
57#include <sys/callb.h>
58#include <sys/debug.h>
59#include <sys/modctl.h>
60#include <sys/vmsystm.h>
61#include <vm/page.h>
62#include <sys/atomic.h>
63#include <sys/suntpi.h>
64#include <sys/strlog.h>
65#include <sys/promif.h>
66#include <sys/project.h>
67#include <sys/vm.h>
68#include <sys/taskq.h>
69#include <sys/sunddi.h>
70#include <sys/sunldi_impl.h>
71#include <sys/strsun.h>
72#include <sys/isa_defs.h>
73#include <sys/multidata.h>
74#include <sys/pattr.h>
75#include <sys/strft.h>
76#include <sys/fs/snode.h>
77#include <sys/zone.h>
78#include <sys/open.h>
79#include <sys/sunldi.h>
80#include <sys/sad.h>
81#include <sys/netstack.h>
82
83#define	O_SAMESTR(q)	(((q)->q_next) && \
84	(((q)->q_flag & QREADR) == ((q)->q_next->q_flag & QREADR)))
85
86/*
87 * WARNING:
88 * The variables and routines in this file are private, belonging
89 * to the STREAMS subsystem. These should not be used by modules
90 * or drivers. Compatibility will not be guaranteed.
91 */
92
93/*
94 * Id value used to distinguish between different multiplexor links.
95 */
96static int32_t lnk_id = 0;
97
98#define	STREAMS_LOPRI MINCLSYSPRI
99static pri_t streams_lopri = STREAMS_LOPRI;
100
101#define	STRSTAT(x)	(str_statistics.x.value.ui64++)
102typedef struct str_stat {
103	kstat_named_t	sqenables;
104	kstat_named_t	stenables;
105	kstat_named_t	syncqservice;
106	kstat_named_t	freebs;
107	kstat_named_t	qwr_outer;
108	kstat_named_t	rservice;
109	kstat_named_t	strwaits;
110	kstat_named_t	taskqfails;
111	kstat_named_t	bufcalls;
112	kstat_named_t	qhelps;
113	kstat_named_t	qremoved;
114	kstat_named_t	sqremoved;
115	kstat_named_t	bcwaits;
116	kstat_named_t	sqtoomany;
117} str_stat_t;
118
119static str_stat_t str_statistics = {
120	{ "sqenables",		KSTAT_DATA_UINT64 },
121	{ "stenables",		KSTAT_DATA_UINT64 },
122	{ "syncqservice",	KSTAT_DATA_UINT64 },
123	{ "freebs",		KSTAT_DATA_UINT64 },
124	{ "qwr_outer",		KSTAT_DATA_UINT64 },
125	{ "rservice",		KSTAT_DATA_UINT64 },
126	{ "strwaits",		KSTAT_DATA_UINT64 },
127	{ "taskqfails",		KSTAT_DATA_UINT64 },
128	{ "bufcalls",		KSTAT_DATA_UINT64 },
129	{ "qhelps",		KSTAT_DATA_UINT64 },
130	{ "qremoved",		KSTAT_DATA_UINT64 },
131	{ "sqremoved",		KSTAT_DATA_UINT64 },
132	{ "bcwaits",		KSTAT_DATA_UINT64 },
133	{ "sqtoomany",		KSTAT_DATA_UINT64 },
134};
135
136static kstat_t *str_kstat;
137
138/*
139 * qrunflag was used previously to control background scheduling of queues. It
140 * is not used anymore, but kept here in case some module still wants to access
141 * it via qready() and setqsched macros.
142 */
143char qrunflag;			/*  Unused */
144
145/*
146 * Most of the streams scheduling is done via task queues. Task queues may fail
147 * for non-sleep dispatches, so there are two backup threads servicing failed
148 * requests for queues and syncqs. Both of these threads also service failed
149 * dispatches freebs requests. Queues are put in the list specified by `qhead'
150 * and `qtail' pointers, syncqs use `sqhead' and `sqtail' pointers and freebs
151 * requests are put into `freebs_list' which has no tail pointer. All three
152 * lists are protected by a single `service_queue' lock and use
153 * `services_to_run' condition variable for signaling background threads. Use of
154 * a single lock should not be a problem because it is only used under heavy
155 * loads when task queues start to fail and at that time it may be a good idea
156 * to throttle scheduling requests.
157 *
158 * NOTE: queues and syncqs should be scheduled by two separate threads because
159 * queue servicing may be blocked waiting for a syncq which may be also
160 * scheduled for background execution. This may create a deadlock when only one
161 * thread is used for both.
162 */
163
164static taskq_t *streams_taskq;		/* Used for most STREAMS scheduling */
165
166static kmutex_t service_queue;		/* protects all of servicing vars */
167static kcondvar_t services_to_run;	/* wake up background service thread */
168static kcondvar_t syncqs_to_run;	/* wake up background service thread */
169
170/*
171 * List of queues scheduled for background processing dueue to lack of resources
172 * in the task queues. Protected by service_queue lock;
173 */
174static struct queue *qhead;
175static struct queue *qtail;
176
177/*
178 * Same list for syncqs
179 */
180static syncq_t *sqhead;
181static syncq_t *sqtail;
182
183static mblk_t *freebs_list;	/* list of buffers to free */
184
185/*
186 * Backup threads for servicing queues and syncqs
187 */
188kthread_t *streams_qbkgrnd_thread;
189kthread_t *streams_sqbkgrnd_thread;
190
191/*
192 * Bufcalls related variables.
193 */
194struct bclist	strbcalls;	/* list of waiting bufcalls */
195kmutex_t	strbcall_lock;	/* protects bufcall list (strbcalls) */
196kcondvar_t	strbcall_cv;	/* Signaling when a bufcall is added */
197kmutex_t	bcall_monitor;	/* sleep/wakeup style monitor */
198kcondvar_t	bcall_cv;	/* wait 'till executing bufcall completes */
199kthread_t	*bc_bkgrnd_thread; /* Thread to service bufcall requests */
200
201kmutex_t	strresources;	/* protects global resources */
202kmutex_t	muxifier;	/* single-threads multiplexor creation */
203
204static void	*str_stack_init(netstackid_t stackid, netstack_t *ns);
205static void	str_stack_shutdown(netstackid_t stackid, void *arg);
206static void	str_stack_fini(netstackid_t stackid, void *arg);
207
208extern void	time_to_wait(clock_t *, clock_t);
209
210/*
211 * run_queues is no longer used, but is kept in case some 3-d party
212 * module/driver decides to use it.
213 */
214int run_queues = 0;
215
216/*
217 * sq_max_size is the depth of the syncq (in number of messages) before
218 * qfill_syncq() starts QFULL'ing destination queues. As its primary
219 * consumer - IP is no longer D_MTPERMOD, but there may be other
220 * modules/drivers depend on this syncq flow control, we prefer to
221 * choose a large number as the default value. For potential
222 * performance gain, this value is tunable in /etc/system.
223 */
224int sq_max_size = 10000;
225
226/*
227 * the number of ciputctrl structures per syncq and stream we create when
228 * needed.
229 */
230int n_ciputctrl;
231int max_n_ciputctrl = 16;
232/*
233 * if n_ciputctrl is < min_n_ciputctrl don't even create ciputctrl_cache.
234 */
235int min_n_ciputctrl = 2;
236
237/*
238 * Per-driver/module syncqs
239 * ========================
240 *
241 * For drivers/modules that use PERMOD or outer syncqs we keep a list of
242 * perdm structures, new entries being added (and new syncqs allocated) when
243 * setq() encounters a module/driver with a streamtab that it hasn't seen
244 * before.
245 * The reason for this mechanism is that some modules and drivers share a
246 * common streamtab and it is necessary for those modules and drivers to also
247 * share a common PERMOD syncq.
248 *
249 * perdm_list --> dm_str == streamtab_1
250 *                dm_sq == syncq_1
251 *                dm_ref
252 *                dm_next --> dm_str == streamtab_2
253 *                            dm_sq == syncq_2
254 *                            dm_ref
255 *                            dm_next --> ... NULL
256 *
257 * The dm_ref field is incremented for each new driver/module that takes
258 * a reference to the perdm structure and hence shares the syncq.
259 * References are held in the fmodsw_impl_t structure for each STREAMS module
260 * or the dev_impl array (indexed by device major number) for each driver.
261 *
262 * perdm_list -> [dm_ref == 1] -> [dm_ref == 2] -> [dm_ref == 1] -> NULL
263 *		     ^                 ^ ^               ^
264 *                   |  ______________/  |               |
265 *                   | /                 |               |
266 * dev_impl:     ...|x|y|...          module A	      module B
267 *
268 * When a module/driver is unloaded the reference count is decremented and,
269 * when it falls to zero, the perdm structure is removed from the list and
270 * the syncq is freed (see rele_dm()).
271 */
272perdm_t *perdm_list = NULL;
273static krwlock_t perdm_rwlock;
274cdevsw_impl_t *devimpl;
275
276extern struct qinit strdata;
277extern struct qinit stwdata;
278
279static void runservice(queue_t *);
280static void streams_bufcall_service(void);
281static void streams_qbkgrnd_service(void);
282static void streams_sqbkgrnd_service(void);
283static syncq_t *new_syncq(void);
284static void free_syncq(syncq_t *);
285static void outer_insert(syncq_t *, syncq_t *);
286static void outer_remove(syncq_t *, syncq_t *);
287static void write_now(syncq_t *);
288static void clr_qfull(queue_t *);
289static void runbufcalls(void);
290static void sqenable(syncq_t *);
291static void sqfill_events(syncq_t *, queue_t *, mblk_t *, void (*)());
292static void wait_q_syncq(queue_t *);
293static void backenable_insertedq(queue_t *);
294
295static void queue_service(queue_t *);
296static void stream_service(stdata_t *);
297static void syncq_service(syncq_t *);
298static void qwriter_outer_service(syncq_t *);
299static void mblk_free(mblk_t *);
300#ifdef DEBUG
301static int qprocsareon(queue_t *);
302#endif
303
304static void set_nfsrv_ptr(queue_t *, queue_t *, queue_t *, queue_t *);
305static void reset_nfsrv_ptr(queue_t *, queue_t *);
306void set_qfull(queue_t *);
307
308static void sq_run_events(syncq_t *);
309static int propagate_syncq(queue_t *);
310
311static void	blocksq(syncq_t *, ushort_t, int);
312static void	unblocksq(syncq_t *, ushort_t, int);
313static int	dropsq(syncq_t *, uint16_t);
314static void	emptysq(syncq_t *);
315static sqlist_t *sqlist_alloc(struct stdata *, int);
316static void	sqlist_free(sqlist_t *);
317static sqlist_t	*sqlist_build(queue_t *, struct stdata *, boolean_t);
318static void	sqlist_insert(sqlist_t *, syncq_t *);
319static void	sqlist_insertall(sqlist_t *, queue_t *);
320
321static void	strsetuio(stdata_t *);
322
323struct kmem_cache *stream_head_cache;
324struct kmem_cache *queue_cache;
325struct kmem_cache *syncq_cache;
326struct kmem_cache *qband_cache;
327struct kmem_cache *linkinfo_cache;
328struct kmem_cache *ciputctrl_cache = NULL;
329
330static linkinfo_t *linkinfo_list;
331
332/* global esballoc throttling queue */
333static esb_queue_t	system_esbq;
334
335/*
336 * esballoc tunable parameters.
337 */
338int		esbq_max_qlen = 0x16;	/* throttled queue length */
339clock_t		esbq_timeout = 0x8;	/* timeout to process esb queue */
340
341/*
342 * routines to handle esballoc queuing.
343 */
344static void esballoc_process_queue(esb_queue_t *);
345static void esballoc_enqueue_mblk(mblk_t *);
346static void esballoc_timer(void *);
347static void esballoc_set_timer(esb_queue_t *, clock_t);
348static void esballoc_mblk_free(mblk_t *);
349
350/*
351 *  Qinit structure and Module_info structures
352 *	for passthru read and write queues
353 */
354
355static void pass_wput(queue_t *, mblk_t *);
356static queue_t *link_addpassthru(stdata_t *);
357static void link_rempassthru(queue_t *);
358
359struct  module_info passthru_info = {
360	0,
361	"passthru",
362	0,
363	INFPSZ,
364	STRHIGH,
365	STRLOW
366};
367
368struct  qinit passthru_rinit = {
369	(int (*)())putnext,
370	NULL,
371	NULL,
372	NULL,
373	NULL,
374	&passthru_info,
375	NULL
376};
377
378struct  qinit passthru_winit = {
379	(int (*)()) pass_wput,
380	NULL,
381	NULL,
382	NULL,
383	NULL,
384	&passthru_info,
385	NULL
386};
387
388/*
389 * Special form of assertion: verify that X implies Y i.e. when X is true Y
390 * should also be true.
391 */
392#define	IMPLY(X, Y)	ASSERT(!(X) || (Y))
393
394/*
395 * Logical equivalence. Verify that both X and Y are either TRUE or FALSE.
396 */
397#define	EQUIV(X, Y)	{ IMPLY(X, Y); IMPLY(Y, X); }
398
399/*
400 * Verify correctness of list head/tail pointers.
401 */
402#define	LISTCHECK(head, tail, link) {				\
403	EQUIV(head, tail);					\
404	IMPLY(tail != NULL, tail->link == NULL);		\
405}
406
407/*
408 * Enqueue a list element `el' in the end of a list denoted by `head' and `tail'
409 * using a `link' field.
410 */
411#define	ENQUEUE(el, head, tail, link) {				\
412	ASSERT(el->link == NULL);				\
413	LISTCHECK(head, tail, link);				\
414	if (head == NULL)					\
415		head = el;					\
416	else							\
417		tail->link = el;				\
418	tail = el;						\
419}
420
421/*
422 * Dequeue the first element of the list denoted by `head' and `tail' pointers
423 * using a `link' field and put result into `el'.
424 */
425#define	DQ(el, head, tail, link) {				\
426	LISTCHECK(head, tail, link);				\
427	el = head;						\
428	if (head != NULL) {					\
429		head = head->link;				\
430		if (head == NULL)				\
431			tail = NULL;				\
432		el->link = NULL;				\
433	}							\
434}
435
436/*
437 * Remove `el' from the list using `chase' and `curr' pointers and return result
438 * in `succeed'.
439 */
440#define	RMQ(el, head, tail, link, chase, curr, succeed) {	\
441	LISTCHECK(head, tail, link);				\
442	chase = NULL;						\
443	succeed = 0;						\
444	for (curr = head; (curr != el) && (curr != NULL); curr = curr->link) \
445		chase = curr;					\
446	if (curr != NULL) {					\
447		succeed = 1;					\
448		ASSERT(curr == el);				\
449		if (chase != NULL)				\
450			chase->link = curr->link;		\
451		else						\
452			head = curr->link;			\
453		curr->link = NULL;				\
454		if (curr == tail)				\
455			tail = chase;				\
456	}							\
457	LISTCHECK(head, tail, link);				\
458}
459
460/* Handling of delayed messages on the inner syncq. */
461
462/*
463 * DEBUG versions should use function versions (to simplify tracing) and
464 * non-DEBUG kernels should use macro versions.
465 */
466
467/*
468 * Put a queue on the syncq list of queues.
469 * Assumes SQLOCK held.
470 */
471#define	SQPUT_Q(sq, qp)							\
472{									\
473	ASSERT(MUTEX_HELD(SQLOCK(sq)));					\
474	if (!(qp->q_sqflags & Q_SQQUEUED)) {				\
475		/* The queue should not be linked anywhere */		\
476		ASSERT((qp->q_sqprev == NULL) && (qp->q_sqnext == NULL)); \
477		/* Head and tail may only be NULL simultaneously */	\
478		EQUIV(sq->sq_head, sq->sq_tail);			\
479		/* Queue may be only enqueyed on its syncq */		\
480		ASSERT(sq == qp->q_syncq);				\
481		/* Check the correctness of SQ_MESSAGES flag */		\
482		EQUIV(sq->sq_head, (sq->sq_flags & SQ_MESSAGES));	\
483		/* Sanity check first/last elements of the list */	\
484		IMPLY(sq->sq_head != NULL, sq->sq_head->q_sqprev == NULL);\
485		IMPLY(sq->sq_tail != NULL, sq->sq_tail->q_sqnext == NULL);\
486		/*							\
487		 * Sanity check of priority field: empty queue should	\
488		 * have zero priority					\
489		 * and nqueues equal to zero.				\
490		 */							\
491		IMPLY(sq->sq_head == NULL, sq->sq_pri == 0);		\
492		/* Sanity check of sq_nqueues field */			\
493		EQUIV(sq->sq_head, sq->sq_nqueues);			\
494		if (sq->sq_head == NULL) {				\
495			sq->sq_head = sq->sq_tail = qp;			\
496			sq->sq_flags |= SQ_MESSAGES;			\
497		} else if (qp->q_spri == 0) {				\
498			qp->q_sqprev = sq->sq_tail;			\
499			sq->sq_tail->q_sqnext = qp;			\
500			sq->sq_tail = qp;				\
501		} else {						\
502			/*						\
503			 * Put this queue in priority order: higher	\
504			 * priority gets closer to the head.		\
505			 */						\
506			queue_t **qpp = &sq->sq_tail;			\
507			queue_t *qnext = NULL;				\
508									\
509			while (*qpp != NULL && qp->q_spri > (*qpp)->q_spri) { \
510				qnext = *qpp;				\
511				qpp = &(*qpp)->q_sqprev;		\
512			}						\
513			qp->q_sqnext = qnext;				\
514			qp->q_sqprev = *qpp;				\
515			if (*qpp != NULL) {				\
516				(*qpp)->q_sqnext = qp;			\
517			} else {					\
518				sq->sq_head = qp;			\
519				sq->sq_pri = sq->sq_head->q_spri;	\
520			}						\
521			*qpp = qp;					\
522		}							\
523		qp->q_sqflags |= Q_SQQUEUED;				\
524		qp->q_sqtstamp = lbolt;					\
525		sq->sq_nqueues++;					\
526	}								\
527}
528
529/*
530 * Remove a queue from the syncq list
531 * Assumes SQLOCK held.
532 */
533#define	SQRM_Q(sq, qp)							\
534	{								\
535		ASSERT(MUTEX_HELD(SQLOCK(sq)));				\
536		ASSERT(qp->q_sqflags & Q_SQQUEUED);			\
537		ASSERT(sq->sq_head != NULL && sq->sq_tail != NULL);	\
538		ASSERT((sq->sq_flags & SQ_MESSAGES) != 0);		\
539		/* Check that the queue is actually in the list */	\
540		ASSERT(qp->q_sqnext != NULL || sq->sq_tail == qp);	\
541		ASSERT(qp->q_sqprev != NULL || sq->sq_head == qp);	\
542		ASSERT(sq->sq_nqueues != 0);				\
543		if (qp->q_sqprev == NULL) {				\
544			/* First queue on list, make head q_sqnext */	\
545			sq->sq_head = qp->q_sqnext;			\
546		} else {						\
547			/* Make prev->next == next */			\
548			qp->q_sqprev->q_sqnext = qp->q_sqnext;		\
549		}							\
550		if (qp->q_sqnext == NULL) {				\
551			/* Last queue on list, make tail sqprev */	\
552			sq->sq_tail = qp->q_sqprev;			\
553		} else {						\
554			/* Make next->prev == prev */			\
555			qp->q_sqnext->q_sqprev = qp->q_sqprev;		\
556		}							\
557		/* clear out references on this queue */		\
558		qp->q_sqprev = qp->q_sqnext = NULL;			\
559		qp->q_sqflags &= ~Q_SQQUEUED;				\
560		/* If there is nothing queued, clear SQ_MESSAGES */	\
561		if (sq->sq_head != NULL) {				\
562			sq->sq_pri = sq->sq_head->q_spri;		\
563		} else	{						\
564			sq->sq_flags &= ~SQ_MESSAGES;			\
565			sq->sq_pri = 0;					\
566		}							\
567		sq->sq_nqueues--;					\
568		ASSERT(sq->sq_head != NULL || sq->sq_evhead != NULL ||	\
569		    (sq->sq_flags & SQ_QUEUED) == 0);			\
570	}
571
572/* Hide the definition from the header file. */
573#ifdef SQPUT_MP
574#undef SQPUT_MP
575#endif
576
577/*
578 * Put a message on the queue syncq.
579 * Assumes QLOCK held.
580 */
581#define	SQPUT_MP(qp, mp)						\
582	{								\
583		ASSERT(MUTEX_HELD(QLOCK(qp)));				\
584		ASSERT(qp->q_sqhead == NULL ||				\
585		    (qp->q_sqtail != NULL &&				\
586		    qp->q_sqtail->b_next == NULL));			\
587		qp->q_syncqmsgs++;					\
588		ASSERT(qp->q_syncqmsgs != 0);	/* Wraparound */	\
589		if (qp->q_sqhead == NULL) {				\
590			qp->q_sqhead = qp->q_sqtail = mp;		\
591		} else {						\
592			qp->q_sqtail->b_next = mp;			\
593			qp->q_sqtail = mp;				\
594		}							\
595		ASSERT(qp->q_syncqmsgs > 0);				\
596		set_qfull(qp);						\
597	}
598
599#define	SQ_PUTCOUNT_SETFAST_LOCKED(sq) {				\
600		ASSERT(MUTEX_HELD(SQLOCK(sq)));				\
601		if ((sq)->sq_ciputctrl != NULL) {			\
602			int i;						\
603			int nlocks = (sq)->sq_nciputctrl;		\
604			ciputctrl_t *cip = (sq)->sq_ciputctrl;		\
605			ASSERT((sq)->sq_type & SQ_CIPUT);		\
606			for (i = 0; i <= nlocks; i++) {			\
607				ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \
608				cip[i].ciputctrl_count |= SQ_FASTPUT;	\
609			}						\
610		}							\
611	}
612
613
614#define	SQ_PUTCOUNT_CLRFAST_LOCKED(sq) {				\
615		ASSERT(MUTEX_HELD(SQLOCK(sq)));				\
616		if ((sq)->sq_ciputctrl != NULL) {			\
617			int i;						\
618			int nlocks = (sq)->sq_nciputctrl;		\
619			ciputctrl_t *cip = (sq)->sq_ciputctrl;		\
620			ASSERT((sq)->sq_type & SQ_CIPUT);		\
621			for (i = 0; i <= nlocks; i++) {			\
622				ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \
623				cip[i].ciputctrl_count &= ~SQ_FASTPUT;	\
624			}						\
625		}							\
626	}
627
628/*
629 * Run service procedures for all queues in the stream head.
630 */
631#define	STR_SERVICE(stp, q) {						\
632	ASSERT(MUTEX_HELD(&stp->sd_qlock));				\
633	while (stp->sd_qhead != NULL) {					\
634		DQ(q, stp->sd_qhead, stp->sd_qtail, q_link);		\
635		ASSERT(stp->sd_nqueues > 0);				\
636		stp->sd_nqueues--;					\
637		ASSERT(!(q->q_flag & QINSERVICE));			\
638		mutex_exit(&stp->sd_qlock);				\
639		queue_service(q);					\
640		mutex_enter(&stp->sd_qlock);				\
641	}								\
642	ASSERT(stp->sd_nqueues == 0);					\
643	ASSERT((stp->sd_qhead == NULL) && (stp->sd_qtail == NULL));	\
644}
645
646/*
647 * constructor/destructor routines for the stream head cache
648 */
649/* ARGSUSED */
650static int
651stream_head_constructor(void *buf, void *cdrarg, int kmflags)
652{
653	stdata_t *stp = buf;
654
655	mutex_init(&stp->sd_lock, NULL, MUTEX_DEFAULT, NULL);
656	mutex_init(&stp->sd_reflock, NULL, MUTEX_DEFAULT, NULL);
657	mutex_init(&stp->sd_qlock, NULL, MUTEX_DEFAULT, NULL);
658	cv_init(&stp->sd_monitor, NULL, CV_DEFAULT, NULL);
659	cv_init(&stp->sd_iocmonitor, NULL, CV_DEFAULT, NULL);
660	cv_init(&stp->sd_refmonitor, NULL, CV_DEFAULT, NULL);
661	cv_init(&stp->sd_qcv, NULL, CV_DEFAULT, NULL);
662	cv_init(&stp->sd_zcopy_wait, NULL, CV_DEFAULT, NULL);
663	stp->sd_wrq = NULL;
664
665	return (0);
666}
667
668/* ARGSUSED */
669static void
670stream_head_destructor(void *buf, void *cdrarg)
671{
672	stdata_t *stp = buf;
673
674	mutex_destroy(&stp->sd_lock);
675	mutex_destroy(&stp->sd_reflock);
676	mutex_destroy(&stp->sd_qlock);
677	cv_destroy(&stp->sd_monitor);
678	cv_destroy(&stp->sd_iocmonitor);
679	cv_destroy(&stp->sd_refmonitor);
680	cv_destroy(&stp->sd_qcv);
681	cv_destroy(&stp->sd_zcopy_wait);
682}
683
684/*
685 * constructor/destructor routines for the queue cache
686 */
687/* ARGSUSED */
688static int
689queue_constructor(void *buf, void *cdrarg, int kmflags)
690{
691	queinfo_t *qip = buf;
692	queue_t *qp = &qip->qu_rqueue;
693	queue_t *wqp = &qip->qu_wqueue;
694	syncq_t	*sq = &qip->qu_syncq;
695
696	qp->q_first = NULL;
697	qp->q_link = NULL;
698	qp->q_count = 0;
699	qp->q_mblkcnt = 0;
700	qp->q_sqhead = NULL;
701	qp->q_sqtail = NULL;
702	qp->q_sqnext = NULL;
703	qp->q_sqprev = NULL;
704	qp->q_sqflags = 0;
705	qp->q_rwcnt = 0;
706	qp->q_spri = 0;
707
708	mutex_init(QLOCK(qp), NULL, MUTEX_DEFAULT, NULL);
709	cv_init(&qp->q_wait, NULL, CV_DEFAULT, NULL);
710
711	wqp->q_first = NULL;
712	wqp->q_link = NULL;
713	wqp->q_count = 0;
714	wqp->q_mblkcnt = 0;
715	wqp->q_sqhead = NULL;
716	wqp->q_sqtail = NULL;
717	wqp->q_sqnext = NULL;
718	wqp->q_sqprev = NULL;
719	wqp->q_sqflags = 0;
720	wqp->q_rwcnt = 0;
721	wqp->q_spri = 0;
722
723	mutex_init(QLOCK(wqp), NULL, MUTEX_DEFAULT, NULL);
724	cv_init(&wqp->q_wait, NULL, CV_DEFAULT, NULL);
725
726	sq->sq_head = NULL;
727	sq->sq_tail = NULL;
728	sq->sq_evhead = NULL;
729	sq->sq_evtail = NULL;
730	sq->sq_callbpend = NULL;
731	sq->sq_outer = NULL;
732	sq->sq_onext = NULL;
733	sq->sq_oprev = NULL;
734	sq->sq_next = NULL;
735	sq->sq_svcflags = 0;
736	sq->sq_servcount = 0;
737	sq->sq_needexcl = 0;
738	sq->sq_nqueues = 0;
739	sq->sq_pri = 0;
740
741	mutex_init(&sq->sq_lock, NULL, MUTEX_DEFAULT, NULL);
742	cv_init(&sq->sq_wait, NULL, CV_DEFAULT, NULL);
743	cv_init(&sq->sq_exitwait, NULL, CV_DEFAULT, NULL);
744
745	return (0);
746}
747
748/* ARGSUSED */
749static void
750queue_destructor(void *buf, void *cdrarg)
751{
752	queinfo_t *qip = buf;
753	queue_t *qp = &qip->qu_rqueue;
754	queue_t *wqp = &qip->qu_wqueue;
755	syncq_t	*sq = &qip->qu_syncq;
756
757	ASSERT(qp->q_sqhead == NULL);
758	ASSERT(wqp->q_sqhead == NULL);
759	ASSERT(qp->q_sqnext == NULL);
760	ASSERT(wqp->q_sqnext == NULL);
761	ASSERT(qp->q_rwcnt == 0);
762	ASSERT(wqp->q_rwcnt == 0);
763
764	mutex_destroy(&qp->q_lock);
765	cv_destroy(&qp->q_wait);
766
767	mutex_destroy(&wqp->q_lock);
768	cv_destroy(&wqp->q_wait);
769
770	mutex_destroy(&sq->sq_lock);
771	cv_destroy(&sq->sq_wait);
772	cv_destroy(&sq->sq_exitwait);
773}
774
775/*
776 * constructor/destructor routines for the syncq cache
777 */
778/* ARGSUSED */
779static int
780syncq_constructor(void *buf, void *cdrarg, int kmflags)
781{
782	syncq_t	*sq = buf;
783
784	bzero(buf, sizeof (syncq_t));
785
786	mutex_init(&sq->sq_lock, NULL, MUTEX_DEFAULT, NULL);
787	cv_init(&sq->sq_wait, NULL, CV_DEFAULT, NULL);
788	cv_init(&sq->sq_exitwait, NULL, CV_DEFAULT, NULL);
789
790	return (0);
791}
792
793/* ARGSUSED */
794static void
795syncq_destructor(void *buf, void *cdrarg)
796{
797	syncq_t	*sq = buf;
798
799	ASSERT(sq->sq_head == NULL);
800	ASSERT(sq->sq_tail == NULL);
801	ASSERT(sq->sq_evhead == NULL);
802	ASSERT(sq->sq_evtail == NULL);
803	ASSERT(sq->sq_callbpend == NULL);
804	ASSERT(sq->sq_callbflags == 0);
805	ASSERT(sq->sq_outer == NULL);
806	ASSERT(sq->sq_onext == NULL);
807	ASSERT(sq->sq_oprev == NULL);
808	ASSERT(sq->sq_next == NULL);
809	ASSERT(sq->sq_needexcl == 0);
810	ASSERT(sq->sq_svcflags == 0);
811	ASSERT(sq->sq_servcount == 0);
812	ASSERT(sq->sq_nqueues == 0);
813	ASSERT(sq->sq_pri == 0);
814	ASSERT(sq->sq_count == 0);
815	ASSERT(sq->sq_rmqcount == 0);
816	ASSERT(sq->sq_cancelid == 0);
817	ASSERT(sq->sq_ciputctrl == NULL);
818	ASSERT(sq->sq_nciputctrl == 0);
819	ASSERT(sq->sq_type == 0);
820	ASSERT(sq->sq_flags == 0);
821
822	mutex_destroy(&sq->sq_lock);
823	cv_destroy(&sq->sq_wait);
824	cv_destroy(&sq->sq_exitwait);
825}
826
827/* ARGSUSED */
828static int
829ciputctrl_constructor(void *buf, void *cdrarg, int kmflags)
830{
831	ciputctrl_t *cip = buf;
832	int i;
833
834	for (i = 0; i < n_ciputctrl; i++) {
835		cip[i].ciputctrl_count = SQ_FASTPUT;
836		mutex_init(&cip[i].ciputctrl_lock, NULL, MUTEX_DEFAULT, NULL);
837	}
838
839	return (0);
840}
841
842/* ARGSUSED */
843static void
844ciputctrl_destructor(void *buf, void *cdrarg)
845{
846	ciputctrl_t *cip = buf;
847	int i;
848
849	for (i = 0; i < n_ciputctrl; i++) {
850		ASSERT(cip[i].ciputctrl_count & SQ_FASTPUT);
851		mutex_destroy(&cip[i].ciputctrl_lock);
852	}
853}
854
855/*
856 * Init routine run from main at boot time.
857 */
858void
859strinit(void)
860{
861	int ncpus = ((boot_max_ncpus == -1) ? max_ncpus : boot_max_ncpus);
862
863	stream_head_cache = kmem_cache_create("stream_head_cache",
864	    sizeof (stdata_t), 0,
865	    stream_head_constructor, stream_head_destructor, NULL,
866	    NULL, NULL, 0);
867
868	queue_cache = kmem_cache_create("queue_cache", sizeof (queinfo_t), 0,
869	    queue_constructor, queue_destructor, NULL, NULL, NULL, 0);
870
871	syncq_cache = kmem_cache_create("syncq_cache", sizeof (syncq_t), 0,
872	    syncq_constructor, syncq_destructor, NULL, NULL, NULL, 0);
873
874	qband_cache = kmem_cache_create("qband_cache",
875	    sizeof (qband_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
876
877	linkinfo_cache = kmem_cache_create("linkinfo_cache",
878	    sizeof (linkinfo_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
879
880	n_ciputctrl = ncpus;
881	n_ciputctrl = 1 << highbit(n_ciputctrl - 1);
882	ASSERT(n_ciputctrl >= 1);
883	n_ciputctrl = MIN(n_ciputctrl, max_n_ciputctrl);
884	if (n_ciputctrl >= min_n_ciputctrl) {
885		ciputctrl_cache = kmem_cache_create("ciputctrl_cache",
886		    sizeof (ciputctrl_t) * n_ciputctrl,
887		    sizeof (ciputctrl_t), ciputctrl_constructor,
888		    ciputctrl_destructor, NULL, NULL, NULL, 0);
889	}
890
891	streams_taskq = system_taskq;
892
893	if (streams_taskq == NULL)
894		panic("strinit: no memory for streams taskq!");
895
896	bc_bkgrnd_thread = thread_create(NULL, 0,
897	    streams_bufcall_service, NULL, 0, &p0, TS_RUN, streams_lopri);
898
899	streams_qbkgrnd_thread = thread_create(NULL, 0,
900	    streams_qbkgrnd_service, NULL, 0, &p0, TS_RUN, streams_lopri);
901
902	streams_sqbkgrnd_thread = thread_create(NULL, 0,
903	    streams_sqbkgrnd_service, NULL, 0, &p0, TS_RUN, streams_lopri);
904
905	/*
906	 * Create STREAMS kstats.
907	 */
908	str_kstat = kstat_create("streams", 0, "strstat",
909	    "net", KSTAT_TYPE_NAMED,
910	    sizeof (str_statistics) / sizeof (kstat_named_t),
911	    KSTAT_FLAG_VIRTUAL);
912
913	if (str_kstat != NULL) {
914		str_kstat->ks_data = &str_statistics;
915		kstat_install(str_kstat);
916	}
917
918	/*
919	 * TPI support routine initialisation.
920	 */
921	tpi_init();
922
923	/*
924	 * Handle to have autopush and persistent link information per
925	 * zone.
926	 * Note: uses shutdown hook instead of destroy hook so that the
927	 * persistent links can be torn down before the destroy hooks
928	 * in the TCP/IP stack are called.
929	 */
930	netstack_register(NS_STR, str_stack_init, str_stack_shutdown,
931	    str_stack_fini);
932}
933
934void
935str_sendsig(vnode_t *vp, int event, uchar_t band, int error)
936{
937	struct stdata *stp;
938
939	ASSERT(vp->v_stream);
940	stp = vp->v_stream;
941	/* Have to hold sd_lock to prevent siglist from changing */
942	mutex_enter(&stp->sd_lock);
943	if (stp->sd_sigflags & event)
944		strsendsig(stp->sd_siglist, event, band, error);
945	mutex_exit(&stp->sd_lock);
946}
947
948/*
949 * Send the "sevent" set of signals to a process.
950 * This might send more than one signal if the process is registered
951 * for multiple events. The caller should pass in an sevent that only
952 * includes the events for which the process has registered.
953 */
954static void
955dosendsig(proc_t *proc, int events, int sevent, k_siginfo_t *info,
956	uchar_t band, int error)
957{
958	ASSERT(MUTEX_HELD(&proc->p_lock));
959
960	info->si_band = 0;
961	info->si_errno = 0;
962
963	if (sevent & S_ERROR) {
964		sevent &= ~S_ERROR;
965		info->si_code = POLL_ERR;
966		info->si_errno = error;
967		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
968		    "strsendsig:proc %p info %p", proc, info);
969		sigaddq(proc, NULL, info, KM_NOSLEEP);
970		info->si_errno = 0;
971	}
972	if (sevent & S_HANGUP) {
973		sevent &= ~S_HANGUP;
974		info->si_code = POLL_HUP;
975		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
976		    "strsendsig:proc %p info %p", proc, info);
977		sigaddq(proc, NULL, info, KM_NOSLEEP);
978	}
979	if (sevent & S_HIPRI) {
980		sevent &= ~S_HIPRI;
981		info->si_code = POLL_PRI;
982		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
983		    "strsendsig:proc %p info %p", proc, info);
984		sigaddq(proc, NULL, info, KM_NOSLEEP);
985	}
986	if (sevent & S_RDBAND) {
987		sevent &= ~S_RDBAND;
988		if (events & S_BANDURG)
989			sigtoproc(proc, NULL, SIGURG);
990		else
991			sigtoproc(proc, NULL, SIGPOLL);
992	}
993	if (sevent & S_WRBAND) {
994		sevent &= ~S_WRBAND;
995		sigtoproc(proc, NULL, SIGPOLL);
996	}
997	if (sevent & S_INPUT) {
998		sevent &= ~S_INPUT;
999		info->si_code = POLL_IN;
1000		info->si_band = band;
1001		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
1002		    "strsendsig:proc %p info %p", proc, info);
1003		sigaddq(proc, NULL, info, KM_NOSLEEP);
1004		info->si_band = 0;
1005	}
1006	if (sevent & S_OUTPUT) {
1007		sevent &= ~S_OUTPUT;
1008		info->si_code = POLL_OUT;
1009		info->si_band = band;
1010		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
1011		    "strsendsig:proc %p info %p", proc, info);
1012		sigaddq(proc, NULL, info, KM_NOSLEEP);
1013		info->si_band = 0;
1014	}
1015	if (sevent & S_MSG) {
1016		sevent &= ~S_MSG;
1017		info->si_code = POLL_MSG;
1018		info->si_band = band;
1019		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
1020		    "strsendsig:proc %p info %p", proc, info);
1021		sigaddq(proc, NULL, info, KM_NOSLEEP);
1022		info->si_band = 0;
1023	}
1024	if (sevent & S_RDNORM) {
1025		sevent &= ~S_RDNORM;
1026		sigtoproc(proc, NULL, SIGPOLL);
1027	}
1028	if (sevent != 0) {
1029		panic("strsendsig: unknown event(s) %x", sevent);
1030	}
1031}
1032
1033/*
1034 * Send SIGPOLL/SIGURG signal to all processes and process groups
1035 * registered on the given signal list that want a signal for at
1036 * least one of the specified events.
1037 *
1038 * Must be called with exclusive access to siglist (caller holding sd_lock).
1039 *
1040 * strioctl(I_SETSIG/I_ESETSIG) will only change siglist when holding
1041 * sd_lock and the ioctl code maintains a PID_HOLD on the pid structure
1042 * while it is in the siglist.
1043 *
1044 * For performance reasons (MP scalability) the code drops pidlock
1045 * when sending signals to a single process.
1046 * When sending to a process group the code holds
1047 * pidlock to prevent the membership in the process group from changing
1048 * while walking the p_pglink list.
1049 */
1050void
1051strsendsig(strsig_t *siglist, int event, uchar_t band, int error)
1052{
1053	strsig_t *ssp;
1054	k_siginfo_t info;
1055	struct pid *pidp;
1056	proc_t  *proc;
1057
1058	info.si_signo = SIGPOLL;
1059	info.si_errno = 0;
1060	for (ssp = siglist; ssp; ssp = ssp->ss_next) {
1061		int sevent;
1062
1063		sevent = ssp->ss_events & event;
1064		if (sevent == 0)
1065			continue;
1066
1067		if ((pidp = ssp->ss_pidp) == NULL) {
1068			/* pid was released but still on event list */
1069			continue;
1070		}
1071
1072
1073		if (ssp->ss_pid > 0) {
1074			/*
1075			 * XXX This unfortunately still generates
1076			 * a signal when a fd is closed but
1077			 * the proc is active.
1078			 */
1079			ASSERT(ssp->ss_pid == pidp->pid_id);
1080
1081			mutex_enter(&pidlock);
1082			proc = prfind_zone(pidp->pid_id, ALL_ZONES);
1083			if (proc == NULL) {
1084				mutex_exit(&pidlock);
1085				continue;
1086			}
1087			mutex_enter(&proc->p_lock);
1088			mutex_exit(&pidlock);
1089			dosendsig(proc, ssp->ss_events, sevent, &info,
1090			    band, error);
1091			mutex_exit(&proc->p_lock);
1092		} else {
1093			/*
1094			 * Send to process group. Hold pidlock across
1095			 * calls to dosendsig().
1096			 */
1097			pid_t pgrp = -ssp->ss_pid;
1098
1099			mutex_enter(&pidlock);
1100			proc = pgfind_zone(pgrp, ALL_ZONES);
1101			while (proc != NULL) {
1102				mutex_enter(&proc->p_lock);
1103				dosendsig(proc, ssp->ss_events, sevent,
1104				    &info, band, error);
1105				mutex_exit(&proc->p_lock);
1106				proc = proc->p_pglink;
1107			}
1108			mutex_exit(&pidlock);
1109		}
1110	}
1111}
1112
1113/*
1114 * Attach a stream device or module.
1115 * qp is a read queue; the new queue goes in so its next
1116 * read ptr is the argument, and the write queue corresponding
1117 * to the argument points to this queue. Return 0 on success,
1118 * or a non-zero errno on failure.
1119 */
1120int
1121qattach(queue_t *qp, dev_t *devp, int oflag, cred_t *crp, fmodsw_impl_t *fp,
1122    boolean_t is_insert)
1123{
1124	major_t			major;
1125	cdevsw_impl_t		*dp;
1126	struct streamtab	*str;
1127	queue_t			*rq;
1128	queue_t			*wrq;
1129	uint32_t		qflag;
1130	uint32_t		sqtype;
1131	perdm_t			*dmp;
1132	int			error;
1133	int			sflag;
1134
1135	rq = allocq();
1136	wrq = _WR(rq);
1137	STREAM(rq) = STREAM(wrq) = STREAM(qp);
1138
1139	if (fp != NULL) {
1140		str = fp->f_str;
1141		qflag = fp->f_qflag;
1142		sqtype = fp->f_sqtype;
1143		dmp = fp->f_dmp;
1144		IMPLY((qflag & (QPERMOD | QMTOUTPERIM)), dmp != NULL);
1145		sflag = MODOPEN;
1146
1147		/*
1148		 * stash away a pointer to the module structure so we can
1149		 * unref it in qdetach.
1150		 */
1151		rq->q_fp = fp;
1152	} else {
1153		ASSERT(!is_insert);
1154
1155		major = getmajor(*devp);
1156		dp = &devimpl[major];
1157
1158		str = dp->d_str;
1159		ASSERT(str == STREAMSTAB(major));
1160
1161		qflag = dp->d_qflag;
1162		ASSERT(qflag & QISDRV);
1163		sqtype = dp->d_sqtype;
1164
1165		/* create perdm_t if needed */
1166		if (NEED_DM(dp->d_dmp, qflag))
1167			dp->d_dmp = hold_dm(str, qflag, sqtype);
1168
1169		dmp = dp->d_dmp;
1170		sflag = 0;
1171	}
1172
1173	TRACE_2(TR_FAC_STREAMS_FR, TR_QATTACH_FLAGS,
1174	    "qattach:qflag == %X(%X)", qflag, *devp);
1175
1176	/* setq might sleep in allocator - avoid holding locks. */
1177	setq(rq, str->st_rdinit, str->st_wrinit, dmp, qflag, sqtype, B_FALSE);
1178
1179	/*
1180	 * Before calling the module's open routine, set up the q_next
1181	 * pointer for inserting a module in the middle of a stream.
1182	 *
1183	 * Note that we can always set _QINSERTING and set up q_next
1184	 * pointer for both inserting and pushing a module.  Then there
1185	 * is no need for the is_insert parameter.  In insertq(), called
1186	 * by qprocson(), assume that q_next of the new module always points
1187	 * to the correct queue and use it for insertion.  Everything should
1188	 * work out fine.  But in the first release of _I_INSERT, we
1189	 * distinguish between inserting and pushing to make sure that
1190	 * pushing a module follows the same code path as before.
1191	 */
1192	if (is_insert) {
1193		rq->q_flag |= _QINSERTING;
1194		rq->q_next = qp;
1195	}
1196
1197	/*
1198	 * If there is an outer perimeter get exclusive access during
1199	 * the open procedure.  Bump up the reference count on the queue.
1200	 */
1201	entersq(rq->q_syncq, SQ_OPENCLOSE);
1202	error = (*rq->q_qinfo->qi_qopen)(rq, devp, oflag, sflag, crp);
1203	if (error != 0)
1204		goto failed;
1205	leavesq(rq->q_syncq, SQ_OPENCLOSE);
1206	ASSERT(qprocsareon(rq));
1207	return (0);
1208
1209failed:
1210	rq->q_flag &= ~_QINSERTING;
1211	if (backq(wrq) != NULL && backq(wrq)->q_next == wrq)
1212		qprocsoff(rq);
1213	leavesq(rq->q_syncq, SQ_OPENCLOSE);
1214	rq->q_next = wrq->q_next = NULL;
1215	qdetach(rq, 0, 0, crp, B_FALSE);
1216	return (error);
1217}
1218
1219/*
1220 * Handle second open of stream. For modules, set the
1221 * last argument to MODOPEN and do not pass any open flags.
1222 * Ignore dummydev since this is not the first open.
1223 */
1224int
1225qreopen(queue_t *qp, dev_t *devp, int flag, cred_t *crp)
1226{
1227	int	error;
1228	dev_t dummydev;
1229	queue_t *wqp = _WR(qp);
1230
1231	ASSERT(qp->q_flag & QREADR);
1232	entersq(qp->q_syncq, SQ_OPENCLOSE);
1233
1234	dummydev = *devp;
1235	if (error = ((*qp->q_qinfo->qi_qopen)(qp, &dummydev,
1236	    (wqp->q_next ? 0 : flag), (wqp->q_next ? MODOPEN : 0), crp))) {
1237		leavesq(qp->q_syncq, SQ_OPENCLOSE);
1238		mutex_enter(&STREAM(qp)->sd_lock);
1239		qp->q_stream->sd_flag |= STREOPENFAIL;
1240		mutex_exit(&STREAM(qp)->sd_lock);
1241		return (error);
1242	}
1243	leavesq(qp->q_syncq, SQ_OPENCLOSE);
1244
1245	/*
1246	 * successful open should have done qprocson()
1247	 */
1248	ASSERT(qprocsareon(_RD(qp)));
1249	return (0);
1250}
1251
1252/*
1253 * Detach a stream module or device.
1254 * If clmode == 1 then the module or driver was opened and its
1255 * close routine must be called. If clmode == 0, the module
1256 * or driver was never opened or the open failed, and so its close
1257 * should not be called.
1258 */
1259void
1260qdetach(queue_t *qp, int clmode, int flag, cred_t *crp, boolean_t is_remove)
1261{
1262	queue_t *wqp = _WR(qp);
1263	ASSERT(STREAM(qp)->sd_flag & (STRCLOSE|STWOPEN|STRPLUMB));
1264
1265	if (STREAM_NEEDSERVICE(STREAM(qp)))
1266		stream_runservice(STREAM(qp));
1267
1268	if (clmode) {
1269		/*
1270		 * Make sure that all the messages on the write side syncq are
1271		 * processed and nothing is left. Since we are closing, no new
1272		 * messages may appear there.
1273		 */
1274		wait_q_syncq(wqp);
1275
1276		entersq(qp->q_syncq, SQ_OPENCLOSE);
1277		if (is_remove) {
1278			mutex_enter(QLOCK(qp));
1279			qp->q_flag |= _QREMOVING;
1280			mutex_exit(QLOCK(qp));
1281		}
1282		(*qp->q_qinfo->qi_qclose)(qp, flag, crp);
1283		/*
1284		 * Check that qprocsoff() was actually called.
1285		 */
1286		ASSERT((qp->q_flag & QWCLOSE) && (wqp->q_flag & QWCLOSE));
1287
1288		leavesq(qp->q_syncq, SQ_OPENCLOSE);
1289	} else {
1290		disable_svc(qp);
1291	}
1292
1293	/*
1294	 * Allow any threads blocked in entersq to proceed and discover
1295	 * the QWCLOSE is set.
1296	 * Note: This assumes that all users of entersq check QWCLOSE.
1297	 * Currently runservice is the only entersq that can happen
1298	 * after removeq has finished.
1299	 * Removeq will have discarded all messages destined to the closing
1300	 * pair of queues from the syncq.
1301	 * NOTE: Calling a function inside an assert is unconventional.
1302	 * However, it does not cause any problem since flush_syncq() does
1303	 * not change any state except when it returns non-zero i.e.
1304	 * when the assert will trigger.
1305	 */
1306	ASSERT(flush_syncq(qp->q_syncq, qp) == 0);
1307	ASSERT(flush_syncq(wqp->q_syncq, wqp) == 0);
1308	ASSERT((qp->q_flag & QPERMOD) ||
1309	    ((qp->q_syncq->sq_head == NULL) &&
1310	    (wqp->q_syncq->sq_head == NULL)));
1311
1312	/* release any fmodsw_impl_t structure held on behalf of the queue */
1313	ASSERT(qp->q_fp != NULL || qp->q_flag & QISDRV);
1314	if (qp->q_fp != NULL)
1315		fmodsw_rele(qp->q_fp);
1316
1317	/* freeq removes us from the outer perimeter if any */
1318	freeq(qp);
1319}
1320
1321/* Prevent service procedures from being called */
1322void
1323disable_svc(queue_t *qp)
1324{
1325	queue_t *wqp = _WR(qp);
1326
1327	ASSERT(qp->q_flag & QREADR);
1328	mutex_enter(QLOCK(qp));
1329	qp->q_flag |= QWCLOSE;
1330	mutex_exit(QLOCK(qp));
1331	mutex_enter(QLOCK(wqp));
1332	wqp->q_flag |= QWCLOSE;
1333	mutex_exit(QLOCK(wqp));
1334}
1335
1336/* allow service procedures to be called again */
1337void
1338enable_svc(queue_t *qp)
1339{
1340	queue_t *wqp = _WR(qp);
1341
1342	ASSERT(qp->q_flag & QREADR);
1343	mutex_enter(QLOCK(qp));
1344	qp->q_flag &= ~QWCLOSE;
1345	mutex_exit(QLOCK(qp));
1346	mutex_enter(QLOCK(wqp));
1347	wqp->q_flag &= ~QWCLOSE;
1348	mutex_exit(QLOCK(wqp));
1349}
1350
1351/*
1352 * Remove queue from qhead/qtail if it is enabled.
1353 * Only reset QENAB if the queue was removed from the runlist.
1354 * A queue goes through 3 stages:
1355 *	It is on the service list and QENAB is set.
1356 *	It is removed from the service list but QENAB is still set.
1357 *	QENAB gets changed to QINSERVICE.
1358 *	QINSERVICE is reset (when the service procedure is done)
1359 * Thus we can not reset QENAB unless we actually removed it from the service
1360 * queue.
1361 */
1362void
1363remove_runlist(queue_t *qp)
1364{
1365	if (qp->q_flag & QENAB && qhead != NULL) {
1366		queue_t *q_chase;
1367		queue_t *q_curr;
1368		int removed;
1369
1370		mutex_enter(&service_queue);
1371		RMQ(qp, qhead, qtail, q_link, q_chase, q_curr, removed);
1372		mutex_exit(&service_queue);
1373		if (removed) {
1374			STRSTAT(qremoved);
1375			qp->q_flag &= ~QENAB;
1376		}
1377	}
1378}
1379
1380
1381/*
1382 * wait for any pending service processing to complete.
1383 * The removal of queues from the runlist is not atomic with the
1384 * clearing of the QENABLED flag and setting the INSERVICE flag.
1385 * consequently it is possible for remove_runlist in strclose
1386 * to not find the queue on the runlist but for it to be QENABLED
1387 * and not yet INSERVICE -> hence wait_svc needs to check QENABLED
1388 * as well as INSERVICE.
1389 */
1390void
1391wait_svc(queue_t *qp)
1392{
1393	queue_t *wqp = _WR(qp);
1394
1395	ASSERT(qp->q_flag & QREADR);
1396
1397	/*
1398	 * Try to remove queues from qhead/qtail list.
1399	 */
1400	if (qhead != NULL) {
1401		remove_runlist(qp);
1402		remove_runlist(wqp);
1403	}
1404	/*
1405	 * Wait till the syncqs associated with the queue
1406	 * will dissapear from background processing list.
1407	 * This only needs to be done for non-PERMOD perimeters since
1408	 * for PERMOD perimeters the syncq may be shared and will only be freed
1409	 * when the last module/driver is unloaded.
1410	 * If for PERMOD perimeters queue was on the syncq list, removeq()
1411	 * should call propagate_syncq() or drain_syncq() for it. Both of these
1412	 * function remove the queue from its syncq list, so sqthread will not
1413	 * try to access the queue.
1414	 */
1415	if (!(qp->q_flag & QPERMOD)) {
1416		syncq_t *rsq = qp->q_syncq;
1417		syncq_t *wsq = wqp->q_syncq;
1418
1419		/*
1420		 * Disable rsq and wsq and wait for any background processing of
1421		 * syncq to complete.
1422		 */
1423		wait_sq_svc(rsq);
1424		if (wsq != rsq)
1425			wait_sq_svc(wsq);
1426	}
1427
1428	mutex_enter(QLOCK(qp));
1429	while (qp->q_flag & (QINSERVICE|QENAB))
1430		cv_wait(&qp->q_wait, QLOCK(qp));
1431	mutex_exit(QLOCK(qp));
1432	mutex_enter(QLOCK(wqp));
1433	while (wqp->q_flag & (QINSERVICE|QENAB))
1434		cv_wait(&wqp->q_wait, QLOCK(wqp));
1435	mutex_exit(QLOCK(wqp));
1436}
1437
1438/*
1439 * Put ioctl data from userland buffer `arg' into the mblk chain `bp'.
1440 * `flag' must always contain either K_TO_K or U_TO_K; STR_NOSIG may
1441 * also be set, and is passed through to allocb_cred_wait().
1442 *
1443 * Returns errno on failure, zero on success.
1444 */
1445int
1446putiocd(mblk_t *bp, char *arg, int flag, cred_t *cr)
1447{
1448	mblk_t *tmp;
1449	ssize_t  count;
1450	int error = 0;
1451
1452	ASSERT((flag & (U_TO_K | K_TO_K)) == U_TO_K ||
1453	    (flag & (U_TO_K | K_TO_K)) == K_TO_K);
1454
1455	if (bp->b_datap->db_type == M_IOCTL) {
1456		count = ((struct iocblk *)bp->b_rptr)->ioc_count;
1457	} else {
1458		ASSERT(bp->b_datap->db_type == M_COPYIN);
1459		count = ((struct copyreq *)bp->b_rptr)->cq_size;
1460	}
1461	/*
1462	 * strdoioctl validates ioc_count, so if this assert fails it
1463	 * cannot be due to user error.
1464	 */
1465	ASSERT(count >= 0);
1466
1467	if ((tmp = allocb_cred_wait(count, (flag & STR_NOSIG), &error, cr)) ==
1468	    NULL) {
1469		return (error);
1470	}
1471	error = strcopyin(arg, tmp->b_wptr, count, flag & (U_TO_K|K_TO_K));
1472	if (error != 0) {
1473		freeb(tmp);
1474		return (error);
1475	}
1476	DB_CPID(tmp) = curproc->p_pid;
1477	tmp->b_wptr += count;
1478	bp->b_cont = tmp;
1479
1480	return (0);
1481}
1482
1483/*
1484 * Copy ioctl data to user-land. Return non-zero errno on failure,
1485 * 0 for success.
1486 */
1487int
1488getiocd(mblk_t *bp, char *arg, int copymode)
1489{
1490	ssize_t count;
1491	size_t  n;
1492	int	error;
1493
1494	if (bp->b_datap->db_type == M_IOCACK)
1495		count = ((struct iocblk *)bp->b_rptr)->ioc_count;
1496	else {
1497		ASSERT(bp->b_datap->db_type == M_COPYOUT);
1498		count = ((struct copyreq *)bp->b_rptr)->cq_size;
1499	}
1500	ASSERT(count >= 0);
1501
1502	for (bp = bp->b_cont; bp && count;
1503	    count -= n, bp = bp->b_cont, arg += n) {
1504		n = MIN(count, bp->b_wptr - bp->b_rptr);
1505		error = strcopyout(bp->b_rptr, arg, n, copymode);
1506		if (error)
1507			return (error);
1508	}
1509	ASSERT(count == 0);
1510	return (0);
1511}
1512
1513/*
1514 * Allocate a linkinfo entry given the write queue of the
1515 * bottom module of the top stream and the write queue of the
1516 * stream head of the bottom stream.
1517 */
1518linkinfo_t *
1519alloclink(queue_t *qup, queue_t *qdown, file_t *fpdown)
1520{
1521	linkinfo_t *linkp;
1522
1523	linkp = kmem_cache_alloc(linkinfo_cache, KM_SLEEP);
1524
1525	linkp->li_lblk.l_qtop = qup;
1526	linkp->li_lblk.l_qbot = qdown;
1527	linkp->li_fpdown = fpdown;
1528
1529	mutex_enter(&strresources);
1530	linkp->li_next = linkinfo_list;
1531	linkp->li_prev = NULL;
1532	if (linkp->li_next)
1533		linkp->li_next->li_prev = linkp;
1534	linkinfo_list = linkp;
1535	linkp->li_lblk.l_index = ++lnk_id;
1536	ASSERT(lnk_id != 0);	/* this should never wrap in practice */
1537	mutex_exit(&strresources);
1538
1539	return (linkp);
1540}
1541
1542/*
1543 * Free a linkinfo entry.
1544 */
1545void
1546lbfree(linkinfo_t *linkp)
1547{
1548	mutex_enter(&strresources);
1549	if (linkp->li_next)
1550		linkp->li_next->li_prev = linkp->li_prev;
1551	if (linkp->li_prev)
1552		linkp->li_prev->li_next = linkp->li_next;
1553	else
1554		linkinfo_list = linkp->li_next;
1555	mutex_exit(&strresources);
1556
1557	kmem_cache_free(linkinfo_cache, linkp);
1558}
1559
1560/*
1561 * Check for a potential linking cycle.
1562 * Return 1 if a link will result in a cycle,
1563 * and 0 otherwise.
1564 */
1565int
1566linkcycle(stdata_t *upstp, stdata_t *lostp, str_stack_t *ss)
1567{
1568	struct mux_node *np;
1569	struct mux_edge *ep;
1570	int i;
1571	major_t lomaj;
1572	major_t upmaj;
1573	/*
1574	 * if the lower stream is a pipe/FIFO, return, since link
1575	 * cycles can not happen on pipes/FIFOs
1576	 */
1577	if (lostp->sd_vnode->v_type == VFIFO)
1578		return (0);
1579
1580	for (i = 0; i < ss->ss_devcnt; i++) {
1581		np = &ss->ss_mux_nodes[i];
1582		MUX_CLEAR(np);
1583	}
1584	lomaj = getmajor(lostp->sd_vnode->v_rdev);
1585	upmaj = getmajor(upstp->sd_vnode->v_rdev);
1586	np = &ss->ss_mux_nodes[lomaj];
1587	for (;;) {
1588		if (!MUX_DIDVISIT(np)) {
1589			if (np->mn_imaj == upmaj)
1590				return (1);
1591			if (np->mn_outp == NULL) {
1592				MUX_VISIT(np);
1593				if (np->mn_originp == NULL)
1594					return (0);
1595				np = np->mn_originp;
1596				continue;
1597			}
1598			MUX_VISIT(np);
1599			np->mn_startp = np->mn_outp;
1600		} else {
1601			if (np->mn_startp == NULL) {
1602				if (np->mn_originp == NULL)
1603					return (0);
1604				else {
1605					np = np->mn_originp;
1606					continue;
1607				}
1608			}
1609			/*
1610			 * If ep->me_nodep is a FIFO (me_nodep == NULL),
1611			 * ignore the edge and move on. ep->me_nodep gets
1612			 * set to NULL in mux_addedge() if it is a FIFO.
1613			 *
1614			 */
1615			ep = np->mn_startp;
1616			np->mn_startp = ep->me_nextp;
1617			if (ep->me_nodep == NULL)
1618				continue;
1619			ep->me_nodep->mn_originp = np;
1620			np = ep->me_nodep;
1621		}
1622	}
1623}
1624
1625/*
1626 * Find linkinfo entry corresponding to the parameters.
1627 */
1628linkinfo_t *
1629findlinks(stdata_t *stp, int index, int type, str_stack_t *ss)
1630{
1631	linkinfo_t *linkp;
1632	struct mux_edge *mep;
1633	struct mux_node *mnp;
1634	queue_t *qup;
1635
1636	mutex_enter(&strresources);
1637	if ((type & LINKTYPEMASK) == LINKNORMAL) {
1638		qup = getendq(stp->sd_wrq);
1639		for (linkp = linkinfo_list; linkp; linkp = linkp->li_next) {
1640			if ((qup == linkp->li_lblk.l_qtop) &&
1641			    (!index || (index == linkp->li_lblk.l_index))) {
1642				mutex_exit(&strresources);
1643				return (linkp);
1644			}
1645		}
1646	} else {
1647		ASSERT((type & LINKTYPEMASK) == LINKPERSIST);
1648		mnp = &ss->ss_mux_nodes[getmajor(stp->sd_vnode->v_rdev)];
1649		mep = mnp->mn_outp;
1650		while (mep) {
1651			if ((index == 0) || (index == mep->me_muxid))
1652				break;
1653			mep = mep->me_nextp;
1654		}
1655		if (!mep) {
1656			mutex_exit(&strresources);
1657			return (NULL);
1658		}
1659		for (linkp = linkinfo_list; linkp; linkp = linkp->li_next) {
1660			if ((!linkp->li_lblk.l_qtop) &&
1661			    (mep->me_muxid == linkp->li_lblk.l_index)) {
1662				mutex_exit(&strresources);
1663				return (linkp);
1664			}
1665		}
1666	}
1667	mutex_exit(&strresources);
1668	return (NULL);
1669}
1670
1671/*
1672 * Given a queue ptr, follow the chain of q_next pointers until you reach the
1673 * last queue on the chain and return it.
1674 */
1675queue_t *
1676getendq(queue_t *q)
1677{
1678	ASSERT(q != NULL);
1679	while (_SAMESTR(q))
1680		q = q->q_next;
1681	return (q);
1682}
1683
1684/*
1685 * wait for the syncq count to drop to zero.
1686 * sq could be either outer or inner.
1687 */
1688
1689static void
1690wait_syncq(syncq_t *sq)
1691{
1692	uint16_t count;
1693
1694	mutex_enter(SQLOCK(sq));
1695	count = sq->sq_count;
1696	SQ_PUTLOCKS_ENTER(sq);
1697	SUM_SQ_PUTCOUNTS(sq, count);
1698	while (count != 0) {
1699		sq->sq_flags |= SQ_WANTWAKEUP;
1700		SQ_PUTLOCKS_EXIT(sq);
1701		cv_wait(&sq->sq_wait, SQLOCK(sq));
1702		count = sq->sq_count;
1703		SQ_PUTLOCKS_ENTER(sq);
1704		SUM_SQ_PUTCOUNTS(sq, count);
1705	}
1706	SQ_PUTLOCKS_EXIT(sq);
1707	mutex_exit(SQLOCK(sq));
1708}
1709
1710/*
1711 * Wait while there are any messages for the queue in its syncq.
1712 */
1713static void
1714wait_q_syncq(queue_t *q)
1715{
1716	if ((q->q_sqflags & Q_SQQUEUED) || (q->q_syncqmsgs > 0)) {
1717		syncq_t *sq = q->q_syncq;
1718
1719		mutex_enter(SQLOCK(sq));
1720		while ((q->q_sqflags & Q_SQQUEUED) || (q->q_syncqmsgs > 0)) {
1721			sq->sq_flags |= SQ_WANTWAKEUP;
1722			cv_wait(&sq->sq_wait, SQLOCK(sq));
1723		}
1724		mutex_exit(SQLOCK(sq));
1725	}
1726}
1727
1728
1729int
1730mlink_file(vnode_t *vp, int cmd, struct file *fpdown, cred_t *crp, int *rvalp,
1731    int lhlink)
1732{
1733	struct stdata *stp;
1734	struct strioctl strioc;
1735	struct linkinfo *linkp;
1736	struct stdata *stpdown;
1737	struct streamtab *str;
1738	queue_t *passq;
1739	syncq_t *passyncq;
1740	queue_t *rq;
1741	cdevsw_impl_t *dp;
1742	uint32_t qflag;
1743	uint32_t sqtype;
1744	perdm_t *dmp;
1745	int error = 0;
1746	netstack_t *ns;
1747	str_stack_t *ss;
1748
1749	stp = vp->v_stream;
1750	TRACE_1(TR_FAC_STREAMS_FR,
1751	    TR_I_LINK, "I_LINK/I_PLINK:stp %p", stp);
1752	/*
1753	 * Test for invalid upper stream
1754	 */
1755	if (stp->sd_flag & STRHUP) {
1756		return (ENXIO);
1757	}
1758	if (vp->v_type == VFIFO) {
1759		return (EINVAL);
1760	}
1761	if (stp->sd_strtab == NULL) {
1762		return (EINVAL);
1763	}
1764	if (!stp->sd_strtab->st_muxwinit) {
1765		return (EINVAL);
1766	}
1767	if (fpdown == NULL) {
1768		return (EBADF);
1769	}
1770	ns = netstack_find_by_cred(crp);
1771	ASSERT(ns != NULL);
1772	ss = ns->netstack_str;
1773	ASSERT(ss != NULL);
1774
1775	if (getmajor(stp->sd_vnode->v_rdev) >= ss->ss_devcnt) {
1776		netstack_rele(ss->ss_netstack);
1777		return (EINVAL);
1778	}
1779	mutex_enter(&muxifier);
1780	if (stp->sd_flag & STPLEX) {
1781		mutex_exit(&muxifier);
1782		netstack_rele(ss->ss_netstack);
1783		return (ENXIO);
1784	}
1785
1786	/*
1787	 * Test for invalid lower stream.
1788	 * The check for the v_type != VFIFO and having a major
1789	 * number not >= devcnt is done to avoid problems with
1790	 * adding mux_node entry past the end of mux_nodes[].
1791	 * For FIFO's we don't add an entry so this isn't a
1792	 * problem.
1793	 */
1794	if (((stpdown = fpdown->f_vnode->v_stream) == NULL) ||
1795	    (stpdown == stp) || (stpdown->sd_flag &
1796	    (STPLEX|STRHUP|STRDERR|STWRERR|IOCWAIT|STRPLUMB)) ||
1797	    ((stpdown->sd_vnode->v_type != VFIFO) &&
1798	    (getmajor(stpdown->sd_vnode->v_rdev) >= ss->ss_devcnt)) ||
1799	    linkcycle(stp, stpdown, ss)) {
1800		mutex_exit(&muxifier);
1801		netstack_rele(ss->ss_netstack);
1802		return (EINVAL);
1803	}
1804	TRACE_1(TR_FAC_STREAMS_FR,
1805	    TR_STPDOWN, "stpdown:%p", stpdown);
1806	rq = getendq(stp->sd_wrq);
1807	if (cmd == I_PLINK)
1808		rq = NULL;
1809
1810	linkp = alloclink(rq, stpdown->sd_wrq, fpdown);
1811
1812	strioc.ic_cmd = cmd;
1813	strioc.ic_timout = INFTIM;
1814	strioc.ic_len = sizeof (struct linkblk);
1815	strioc.ic_dp = (char *)&linkp->li_lblk;
1816
1817	/*
1818	 * STRPLUMB protects plumbing changes and should be set before
1819	 * link_addpassthru()/link_rempassthru() are called, so it is set here
1820	 * and cleared in the end of mlink when passthru queue is removed.
1821	 * Setting of STRPLUMB prevents reopens of the stream while passthru
1822	 * queue is in-place (it is not a proper module and doesn't have open
1823	 * entry point).
1824	 *
1825	 * STPLEX prevents any threads from entering the stream from above. It
1826	 * can't be set before the call to link_addpassthru() because putnext
1827	 * from below may cause stream head I/O routines to be called and these
1828	 * routines assert that STPLEX is not set. After link_addpassthru()
1829	 * nothing may come from below since the pass queue syncq is blocked.
1830	 * Note also that STPLEX should be cleared before the call to
1831	 * link_remmpassthru() since when messages start flowing to the stream
1832	 * head (e.g. because of message propagation from the pass queue) stream
1833	 * head I/O routines may be called with STPLEX flag set.
1834	 *
1835	 * When STPLEX is set, nothing may come into the stream from above and
1836	 * it is safe to do a setq which will change stream head. So, the
1837	 * correct sequence of actions is:
1838	 *
1839	 * 1) Set STRPLUMB
1840	 * 2) Call link_addpassthru()
1841	 * 3) Set STPLEX
1842	 * 4) Call setq and update the stream state
1843	 * 5) Clear STPLEX
1844	 * 6) Call link_rempassthru()
1845	 * 7) Clear STRPLUMB
1846	 *
1847	 * The same sequence applies to munlink() code.
1848	 */
1849	mutex_enter(&stpdown->sd_lock);
1850	stpdown->sd_flag |= STRPLUMB;
1851	mutex_exit(&stpdown->sd_lock);
1852	/*
1853	 * Add passthru queue below lower mux. This will block
1854	 * syncqs of lower muxs read queue during I_LINK/I_UNLINK.
1855	 */
1856	passq = link_addpassthru(stpdown);
1857
1858	mutex_enter(&stpdown->sd_lock);
1859	stpdown->sd_flag |= STPLEX;
1860	mutex_exit(&stpdown->sd_lock);
1861
1862	rq = _RD(stpdown->sd_wrq);
1863	/*
1864	 * There may be messages in the streamhead's syncq due to messages
1865	 * that arrived before link_addpassthru() was done. To avoid
1866	 * background processing of the syncq happening simultaneous with
1867	 * setq processing, we disable the streamhead syncq and wait until
1868	 * existing background thread finishes working on it.
1869	 */
1870	wait_sq_svc(rq->q_syncq);
1871	passyncq = passq->q_syncq;
1872	if (!(passyncq->sq_flags & SQ_BLOCKED))
1873		blocksq(passyncq, SQ_BLOCKED, 0);
1874
1875	ASSERT((rq->q_flag & QMT_TYPEMASK) == QMTSAFE);
1876	ASSERT(rq->q_syncq == SQ(rq) && _WR(rq)->q_syncq == SQ(rq));
1877	rq->q_ptr = _WR(rq)->q_ptr = NULL;
1878
1879	/* setq might sleep in allocator - avoid holding locks. */
1880	/* Note: we are holding muxifier here. */
1881
1882	str = stp->sd_strtab;
1883	dp = &devimpl[getmajor(vp->v_rdev)];
1884	ASSERT(dp->d_str == str);
1885
1886	qflag = dp->d_qflag;
1887	sqtype = dp->d_sqtype;
1888
1889	/* create perdm_t if needed */
1890	if (NEED_DM(dp->d_dmp, qflag))
1891		dp->d_dmp = hold_dm(str, qflag, sqtype);
1892
1893	dmp = dp->d_dmp;
1894
1895	setq(rq, str->st_muxrinit, str->st_muxwinit, dmp, qflag, sqtype,
1896	    B_TRUE);
1897
1898	/*
1899	 * XXX Remove any "odd" messages from the queue.
1900	 * Keep only M_DATA, M_PROTO, M_PCPROTO.
1901	 */
1902	error = strdoioctl(stp, &strioc, FNATIVE,
1903	    K_TO_K | STR_NOERROR | STR_NOSIG, crp, rvalp);
1904	if (error != 0) {
1905		lbfree(linkp);
1906
1907		if (!(passyncq->sq_flags & SQ_BLOCKED))
1908			blocksq(passyncq, SQ_BLOCKED, 0);
1909		/*
1910		 * Restore the stream head queue and then remove
1911		 * the passq. Turn off STPLEX before we turn on
1912		 * the stream by removing the passq.
1913		 */
1914		rq->q_ptr = _WR(rq)->q_ptr = stpdown;
1915		setq(rq, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO,
1916		    B_TRUE);
1917
1918		mutex_enter(&stpdown->sd_lock);
1919		stpdown->sd_flag &= ~STPLEX;
1920		mutex_exit(&stpdown->sd_lock);
1921
1922		link_rempassthru(passq);
1923
1924		mutex_enter(&stpdown->sd_lock);
1925		stpdown->sd_flag &= ~STRPLUMB;
1926		/* Wakeup anyone waiting for STRPLUMB to clear. */
1927		cv_broadcast(&stpdown->sd_monitor);
1928		mutex_exit(&stpdown->sd_lock);
1929
1930		mutex_exit(&muxifier);
1931		netstack_rele(ss->ss_netstack);
1932		return (error);
1933	}
1934	mutex_enter(&fpdown->f_tlock);
1935	fpdown->f_count++;
1936	mutex_exit(&fpdown->f_tlock);
1937
1938	/*
1939	 * if we've made it here the linkage is all set up so we should also
1940	 * set up the layered driver linkages
1941	 */
1942
1943	ASSERT((cmd == I_LINK) || (cmd == I_PLINK));
1944	if (cmd == I_LINK) {
1945		ldi_mlink_fp(stp, fpdown, lhlink, LINKNORMAL);
1946	} else {
1947		ldi_mlink_fp(stp, fpdown, lhlink, LINKPERSIST);
1948	}
1949
1950	link_rempassthru(passq);
1951
1952	mux_addedge(stp, stpdown, linkp->li_lblk.l_index, ss);
1953
1954	/*
1955	 * Mark the upper stream as having dependent links
1956	 * so that strclose can clean it up.
1957	 */
1958	if (cmd == I_LINK) {
1959		mutex_enter(&stp->sd_lock);
1960		stp->sd_flag |= STRHASLINKS;
1961		mutex_exit(&stp->sd_lock);
1962	}
1963	/*
1964	 * Wake up any other processes that may have been
1965	 * waiting on the lower stream. These will all
1966	 * error out.
1967	 */
1968	mutex_enter(&stpdown->sd_lock);
1969	/* The passthru module is removed so we may release STRPLUMB */
1970	stpdown->sd_flag &= ~STRPLUMB;
1971	cv_broadcast(&rq->q_wait);
1972	cv_broadcast(&_WR(rq)->q_wait);
1973	cv_broadcast(&stpdown->sd_monitor);
1974	mutex_exit(&stpdown->sd_lock);
1975	mutex_exit(&muxifier);
1976	*rvalp = linkp->li_lblk.l_index;
1977	netstack_rele(ss->ss_netstack);
1978	return (0);
1979}
1980
1981int
1982mlink(vnode_t *vp, int cmd, int arg, cred_t *crp, int *rvalp, int lhlink)
1983{
1984	int		ret;
1985	struct file	*fpdown;
1986
1987	fpdown = getf(arg);
1988	ret = mlink_file(vp, cmd, fpdown, crp, rvalp, lhlink);
1989	if (fpdown != NULL)
1990		releasef(arg);
1991	return (ret);
1992}
1993
1994/*
1995 * Unlink a multiplexor link. Stp is the controlling stream for the
1996 * link, and linkp points to the link's entry in the linkinfo list.
1997 * The muxifier lock must be held on entry and is dropped on exit.
1998 *
1999 * NOTE : Currently it is assumed that mux would process all the messages
2000 * sitting on it's queue before ACKing the UNLINK. It is the responsibility
2001 * of the mux to handle all the messages that arrive before UNLINK.
2002 * If the mux has to send down messages on its lower stream before
2003 * ACKing I_UNLINK, then it *should* know to handle messages even
2004 * after the UNLINK is acked (actually it should be able to handle till we
2005 * re-block the read side of the pass queue here). If the mux does not
2006 * open up the lower stream, any messages that arrive during UNLINK
2007 * will be put in the stream head. In the case of lower stream opening
2008 * up, some messages might land in the stream head depending on when
2009 * the message arrived and when the read side of the pass queue was
2010 * re-blocked.
2011 */
2012int
2013munlink(stdata_t *stp, linkinfo_t *linkp, int flag, cred_t *crp, int *rvalp,
2014    str_stack_t *ss)
2015{
2016	struct strioctl strioc;
2017	struct stdata *stpdown;
2018	queue_t *rq, *wrq;
2019	queue_t	*passq;
2020	syncq_t *passyncq;
2021	int error = 0;
2022	file_t *fpdown;
2023
2024	ASSERT(MUTEX_HELD(&muxifier));
2025
2026	stpdown = linkp->li_fpdown->f_vnode->v_stream;
2027
2028	/*
2029	 * See the comment in mlink() concerning STRPLUMB/STPLEX flags.
2030	 */
2031	mutex_enter(&stpdown->sd_lock);
2032	stpdown->sd_flag |= STRPLUMB;
2033	mutex_exit(&stpdown->sd_lock);
2034
2035	/*
2036	 * Add passthru queue below lower mux. This will block
2037	 * syncqs of lower muxs read queue during I_LINK/I_UNLINK.
2038	 */
2039	passq = link_addpassthru(stpdown);
2040
2041	if ((flag & LINKTYPEMASK) == LINKNORMAL)
2042		strioc.ic_cmd = I_UNLINK;
2043	else
2044		strioc.ic_cmd = I_PUNLINK;
2045	strioc.ic_timout = INFTIM;
2046	strioc.ic_len = sizeof (struct linkblk);
2047	strioc.ic_dp = (char *)&linkp->li_lblk;
2048
2049	error = strdoioctl(stp, &strioc, FNATIVE,
2050	    K_TO_K | STR_NOERROR | STR_NOSIG, crp, rvalp);
2051
2052	/*
2053	 * If there was an error and this is not called via strclose,
2054	 * return to the user. Otherwise, pretend there was no error
2055	 * and close the link.
2056	 */
2057	if (error) {
2058		if (flag & LINKCLOSE) {
2059			cmn_err(CE_WARN, "KERNEL: munlink: could not perform "
2060			    "unlink ioctl, closing anyway (%d)\n", error);
2061		} else {
2062			link_rempassthru(passq);
2063			mutex_enter(&stpdown->sd_lock);
2064			stpdown->sd_flag &= ~STRPLUMB;
2065			cv_broadcast(&stpdown->sd_monitor);
2066			mutex_exit(&stpdown->sd_lock);
2067			mutex_exit(&muxifier);
2068			return (error);
2069		}
2070	}
2071
2072	mux_rmvedge(stp, linkp->li_lblk.l_index, ss);
2073	fpdown = linkp->li_fpdown;
2074	lbfree(linkp);
2075
2076	/*
2077	 * We go ahead and drop muxifier here--it's a nasty global lock that
2078	 * can slow others down. It's okay to since attempts to mlink() this
2079	 * stream will be stopped because STPLEX is still set in the stdata
2080	 * structure, and munlink() is stopped because mux_rmvedge() and
2081	 * lbfree() have removed it from mux_nodes[] and linkinfo_list,
2082	 * respectively.  Note that we defer the closef() of fpdown until
2083	 * after we drop muxifier since strclose() can call munlinkall().
2084	 */
2085	mutex_exit(&muxifier);
2086
2087	wrq = stpdown->sd_wrq;
2088	rq = _RD(wrq);
2089
2090	/*
2091	 * Get rid of outstanding service procedure runs, before we make
2092	 * it a stream head, since a stream head doesn't have any service
2093	 * procedure.
2094	 */
2095	disable_svc(rq);
2096	wait_svc(rq);
2097
2098	/*
2099	 * Since we don't disable the syncq for QPERMOD, we wait for whatever
2100	 * is queued up to be finished. mux should take care that nothing is
2101	 * send down to this queue. We should do it now as we're going to block
2102	 * passyncq if it was unblocked.
2103	 */
2104	if (wrq->q_flag & QPERMOD) {
2105		syncq_t	*sq = wrq->q_syncq;
2106
2107		mutex_enter(SQLOCK(sq));
2108		while (wrq->q_sqflags & Q_SQQUEUED) {
2109			sq->sq_flags |= SQ_WANTWAKEUP;
2110			cv_wait(&sq->sq_wait, SQLOCK(sq));
2111		}
2112		mutex_exit(SQLOCK(sq));
2113	}
2114	passyncq = passq->q_syncq;
2115	if (!(passyncq->sq_flags & SQ_BLOCKED)) {
2116
2117		syncq_t *sq, *outer;
2118
2119		/*
2120		 * Messages could be flowing from underneath. We will
2121		 * block the read side of the passq. This would be
2122		 * sufficient for QPAIR and QPERQ muxes to ensure
2123		 * that no data is flowing up into this queue
2124		 * and hence no thread active in this instance of
2125		 * lower mux. But for QPERMOD and QMTOUTPERIM there
2126		 * could be messages on the inner and outer/inner
2127		 * syncqs respectively. We will wait for them to drain.
2128		 * Because passq is blocked messages end up in the syncq
2129		 * And qfill_syncq could possibly end up setting QFULL
2130		 * which will access the rq->q_flag. Hence, we have to
2131		 * acquire the QLOCK in setq.
2132		 *
2133		 * XXX Messages can also flow from top into this
2134		 * queue though the unlink is over (Ex. some instance
2135		 * in putnext() called from top that has still not
2136		 * accessed this queue. And also putq(lowerq) ?).
2137		 * Solution : How about blocking the l_qtop queue ?
2138		 * Do we really care about such pure D_MP muxes ?
2139		 */
2140
2141		blocksq(passyncq, SQ_BLOCKED, 0);
2142
2143		sq = rq->q_syncq;
2144		if ((outer = sq->sq_outer) != NULL) {
2145
2146			/*
2147			 * We have to just wait for the outer sq_count
2148			 * drop to zero. As this does not prevent new
2149			 * messages to enter the outer perimeter, this
2150			 * is subject to starvation.
2151			 *
2152			 * NOTE :Because of blocksq above, messages could
2153			 * be in the inner syncq only because of some
2154			 * thread holding the outer perimeter exclusively.
2155			 * Hence it would be sufficient to wait for the
2156			 * exclusive holder of the outer perimeter to drain
2157			 * the inner and outer syncqs. But we will not depend
2158			 * on this feature and hence check the inner syncqs
2159			 * separately.
2160			 */
2161			wait_syncq(outer);
2162		}
2163
2164
2165		/*
2166		 * There could be messages destined for
2167		 * this queue. Let the exclusive holder
2168		 * drain it.
2169		 */
2170
2171		wait_syncq(sq);
2172		ASSERT((rq->q_flag & QPERMOD) ||
2173		    ((rq->q_syncq->sq_head == NULL) &&
2174		    (_WR(rq)->q_syncq->sq_head == NULL)));
2175	}
2176
2177	/*
2178	 * We haven't taken care of QPERMOD case yet. QPERMOD is a special
2179	 * case as we don't disable its syncq or remove it off the syncq
2180	 * service list.
2181	 */
2182	if (rq->q_flag & QPERMOD) {
2183		syncq_t	*sq = rq->q_syncq;
2184
2185		mutex_enter(SQLOCK(sq));
2186		while (rq->q_sqflags & Q_SQQUEUED) {
2187			sq->sq_flags |= SQ_WANTWAKEUP;
2188			cv_wait(&sq->sq_wait, SQLOCK(sq));
2189		}
2190		mutex_exit(SQLOCK(sq));
2191	}
2192
2193	/*
2194	 * flush_syncq changes states only when there is some messages to
2195	 * free. ie when it returns non-zero value to return.
2196	 */
2197	ASSERT(flush_syncq(rq->q_syncq, rq) == 0);
2198	ASSERT(flush_syncq(wrq->q_syncq, wrq) == 0);
2199
2200	/*
2201	 * No body else should know about this queue now.
2202	 * If the mux did not process the messages before
2203	 * acking the I_UNLINK, free them now.
2204	 */
2205
2206	flushq(rq, FLUSHALL);
2207	flushq(_WR(rq), FLUSHALL);
2208
2209	/*
2210	 * Convert the mux lower queue into a stream head queue.
2211	 * Turn off STPLEX before we turn on the stream by removing the passq.
2212	 */
2213	rq->q_ptr = wrq->q_ptr = stpdown;
2214	setq(rq, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_TRUE);
2215
2216	ASSERT((rq->q_flag & QMT_TYPEMASK) == QMTSAFE);
2217	ASSERT(rq->q_syncq == SQ(rq) && _WR(rq)->q_syncq == SQ(rq));
2218
2219	enable_svc(rq);
2220
2221	/*
2222	 * Now it is a proper stream, so STPLEX is cleared. But STRPLUMB still
2223	 * needs to be set to prevent reopen() of the stream - such reopen may
2224	 * try to call non-existent pass queue open routine and panic.
2225	 */
2226	mutex_enter(&stpdown->sd_lock);
2227	stpdown->sd_flag &= ~STPLEX;
2228	mutex_exit(&stpdown->sd_lock);
2229
2230	ASSERT(((flag & LINKTYPEMASK) == LINKNORMAL) ||
2231	    ((flag & LINKTYPEMASK) == LINKPERSIST));
2232
2233	/* clean up the layered driver linkages */
2234	if ((flag & LINKTYPEMASK) == LINKNORMAL) {
2235		ldi_munlink_fp(stp, fpdown, LINKNORMAL);
2236	} else {
2237		ldi_munlink_fp(stp, fpdown, LINKPERSIST);
2238	}
2239
2240	link_rempassthru(passq);
2241
2242	/*
2243	 * Now all plumbing changes are finished and STRPLUMB is no
2244	 * longer needed.
2245	 */
2246	mutex_enter(&stpdown->sd_lock);
2247	stpdown->sd_flag &= ~STRPLUMB;
2248	cv_broadcast(&stpdown->sd_monitor);
2249	mutex_exit(&stpdown->sd_lock);
2250
2251	(void) closef(fpdown);
2252	return (0);
2253}
2254
2255/*
2256 * Unlink all multiplexor links for which stp is the controlling stream.
2257 * Return 0, or a non-zero errno on failure.
2258 */
2259int
2260munlinkall(stdata_t *stp, int flag, cred_t *crp, int *rvalp, str_stack_t *ss)
2261{
2262	linkinfo_t *linkp;
2263	int error = 0;
2264
2265	mutex_enter(&muxifier);
2266	while (linkp = findlinks(stp, 0, flag, ss)) {
2267		/*
2268		 * munlink() releases the muxifier lock.
2269		 */
2270		if (error = munlink(stp, linkp, flag, crp, rvalp, ss))
2271			return (error);
2272		mutex_enter(&muxifier);
2273	}
2274	mutex_exit(&muxifier);
2275	return (0);
2276}
2277
2278/*
2279 * A multiplexor link has been made. Add an
2280 * edge to the directed graph.
2281 */
2282void
2283mux_addedge(stdata_t *upstp, stdata_t *lostp, int muxid, str_stack_t *ss)
2284{
2285	struct mux_node *np;
2286	struct mux_edge *ep;
2287	major_t upmaj;
2288	major_t lomaj;
2289
2290	upmaj = getmajor(upstp->sd_vnode->v_rdev);
2291	lomaj = getmajor(lostp->sd_vnode->v_rdev);
2292	np = &ss->ss_mux_nodes[upmaj];
2293	if (np->mn_outp) {
2294		ep = np->mn_outp;
2295		while (ep->me_nextp)
2296			ep = ep->me_nextp;
2297		ep->me_nextp = kmem_alloc(sizeof (struct mux_edge), KM_SLEEP);
2298		ep = ep->me_nextp;
2299	} else {
2300		np->mn_outp = kmem_alloc(sizeof (struct mux_edge), KM_SLEEP);
2301		ep = np->mn_outp;
2302	}
2303	ep->me_nextp = NULL;
2304	ep->me_muxid = muxid;
2305	/*
2306	 * Save the dev_t for the purposes of str_stack_shutdown.
2307	 * str_stack_shutdown assumes that the device allows reopen, since
2308	 * this dev_t is the one after any cloning by xx_open().
2309	 * Would prefer finding the dev_t from before any cloning,
2310	 * but specfs doesn't retain that.
2311	 */
2312	ep->me_dev = upstp->sd_vnode->v_rdev;
2313	if (lostp->sd_vnode->v_type == VFIFO)
2314		ep->me_nodep = NULL;
2315	else
2316		ep->me_nodep = &ss->ss_mux_nodes[lomaj];
2317}
2318
2319/*
2320 * A multiplexor link has been removed. Remove the
2321 * edge in the directed graph.
2322 */
2323void
2324mux_rmvedge(stdata_t *upstp, int muxid, str_stack_t *ss)
2325{
2326	struct mux_node *np;
2327	struct mux_edge *ep;
2328	struct mux_edge *pep = NULL;
2329	major_t upmaj;
2330
2331	upmaj = getmajor(upstp->sd_vnode->v_rdev);
2332	np = &ss->ss_mux_nodes[upmaj];
2333	ASSERT(np->mn_outp != NULL);
2334	ep = np->mn_outp;
2335	while (ep) {
2336		if (ep->me_muxid == muxid) {
2337			if (pep)
2338				pep->me_nextp = ep->me_nextp;
2339			else
2340				np->mn_outp = ep->me_nextp;
2341			kmem_free(ep, sizeof (struct mux_edge));
2342			return;
2343		}
2344		pep = ep;
2345		ep = ep->me_nextp;
2346	}
2347	ASSERT(0);	/* should not reach here */
2348}
2349
2350/*
2351 * Translate the device flags (from conf.h) to the corresponding
2352 * qflag and sq_flag (type) values.
2353 */
2354int
2355devflg_to_qflag(struct streamtab *stp, uint32_t devflag, uint32_t *qflagp,
2356	uint32_t *sqtypep)
2357{
2358	uint32_t qflag = 0;
2359	uint32_t sqtype = 0;
2360
2361	if (devflag & _D_OLD)
2362		goto bad;
2363
2364	/* Inner perimeter presence and scope */
2365	switch (devflag & D_MTINNER_MASK) {
2366	case D_MP:
2367		qflag |= QMTSAFE;
2368		sqtype |= SQ_CI;
2369		break;
2370	case D_MTPERQ|D_MP:
2371		qflag |= QPERQ;
2372		break;
2373	case D_MTQPAIR|D_MP:
2374		qflag |= QPAIR;
2375		break;
2376	case D_MTPERMOD|D_MP:
2377		qflag |= QPERMOD;
2378		break;
2379	default:
2380		goto bad;
2381	}
2382
2383	/* Outer perimeter */
2384	if (devflag & D_MTOUTPERIM) {
2385		switch (devflag & D_MTINNER_MASK) {
2386		case D_MP:
2387		case D_MTPERQ|D_MP:
2388		case D_MTQPAIR|D_MP:
2389			break;
2390		default:
2391			goto bad;
2392		}
2393		qflag |= QMTOUTPERIM;
2394	}
2395
2396	/* Inner perimeter modifiers */
2397	if (devflag & D_MTINNER_MOD) {
2398		switch (devflag & D_MTINNER_MASK) {
2399		case D_MP:
2400			goto bad;
2401		default:
2402			break;
2403		}
2404		if (devflag & D_MTPUTSHARED)
2405			sqtype |= SQ_CIPUT;
2406		if (devflag & _D_MTOCSHARED) {
2407			/*
2408			 * The code in putnext assumes that it has the
2409			 * highest concurrency by not checking sq_count.
2410			 * Thus _D_MTOCSHARED can only be supported when
2411			 * D_MTPUTSHARED is set.
2412			 */
2413			if (!(devflag & D_MTPUTSHARED))
2414				goto bad;
2415			sqtype |= SQ_CIOC;
2416		}
2417		if (devflag & _D_MTCBSHARED) {
2418			/*
2419			 * The code in putnext assumes that it has the
2420			 * highest concurrency by not checking sq_count.
2421			 * Thus _D_MTCBSHARED can only be supported when
2422			 * D_MTPUTSHARED is set.
2423			 */
2424			if (!(devflag & D_MTPUTSHARED))
2425				goto bad;
2426			sqtype |= SQ_CICB;
2427		}
2428		if (devflag & _D_MTSVCSHARED) {
2429			/*
2430			 * The code in putnext assumes that it has the
2431			 * highest concurrency by not checking sq_count.
2432			 * Thus _D_MTSVCSHARED can only be supported when
2433			 * D_MTPUTSHARED is set. Also _D_MTSVCSHARED is
2434			 * supported only for QPERMOD.
2435			 */
2436			if (!(devflag & D_MTPUTSHARED) || !(qflag & QPERMOD))
2437				goto bad;
2438			sqtype |= SQ_CISVC;
2439		}
2440	}
2441
2442	/* Default outer perimeter concurrency */
2443	sqtype |= SQ_CO;
2444
2445	/* Outer perimeter modifiers */
2446	if (devflag & D_MTOCEXCL) {
2447		if (!(devflag & D_MTOUTPERIM)) {
2448			/* No outer perimeter */
2449			goto bad;
2450		}
2451		sqtype &= ~SQ_COOC;
2452	}
2453
2454	/* Synchronous Streams extended qinit structure */
2455	if (devflag & D_SYNCSTR)
2456		qflag |= QSYNCSTR;
2457
2458	/*
2459	 * Private flag used by a transport module to indicate
2460	 * to sockfs that it supports direct-access mode without
2461	 * having to go through STREAMS or the transport can use
2462	 * sodirect_t sharing to bypass STREAMS for receive-side
2463	 * M_DATA processing.
2464	 */
2465	if (devflag & (_D_DIRECT|_D_SODIRECT)) {
2466		/* Reject unless the module is fully-MT (no perimeter) */
2467		if ((qflag & QMT_TYPEMASK) != QMTSAFE)
2468			goto bad;
2469		if (devflag & _D_DIRECT)
2470			qflag |= _QDIRECT;
2471		if (devflag & _D_SODIRECT)
2472			qflag |= _QSODIRECT;
2473	}
2474
2475	*qflagp = qflag;
2476	*sqtypep = sqtype;
2477	return (0);
2478
2479bad:
2480	cmn_err(CE_WARN,
2481	    "stropen: bad MT flags (0x%x) in driver '%s'",
2482	    (int)(qflag & D_MTSAFETY_MASK),
2483	    stp->st_rdinit->qi_minfo->mi_idname);
2484
2485	return (EINVAL);
2486}
2487
2488/*
2489 * Set the interface values for a pair of queues (qinit structure,
2490 * packet sizes, water marks).
2491 * setq assumes that the caller does not have a claim (entersq or claimq)
2492 * on the queue.
2493 */
2494void
2495setq(queue_t *rq, struct qinit *rinit, struct qinit *winit,
2496    perdm_t *dmp, uint32_t qflag, uint32_t sqtype, boolean_t lock_needed)
2497{
2498	queue_t *wq;
2499	syncq_t	*sq, *outer;
2500
2501	ASSERT(rq->q_flag & QREADR);
2502	ASSERT((qflag & QMT_TYPEMASK) != 0);
2503	IMPLY((qflag & (QPERMOD | QMTOUTPERIM)), dmp != NULL);
2504
2505	wq = _WR(rq);
2506	rq->q_qinfo = rinit;
2507	rq->q_hiwat = rinit->qi_minfo->mi_hiwat;
2508	rq->q_lowat = rinit->qi_minfo->mi_lowat;
2509	rq->q_minpsz = rinit->qi_minfo->mi_minpsz;
2510	rq->q_maxpsz = rinit->qi_minfo->mi_maxpsz;
2511	wq->q_qinfo = winit;
2512	wq->q_hiwat = winit->qi_minfo->mi_hiwat;
2513	wq->q_lowat = winit->qi_minfo->mi_lowat;
2514	wq->q_minpsz = winit->qi_minfo->mi_minpsz;
2515	wq->q_maxpsz = winit->qi_minfo->mi_maxpsz;
2516
2517	/* Remove old syncqs */
2518	sq = rq->q_syncq;
2519	outer = sq->sq_outer;
2520	if (outer != NULL) {
2521		ASSERT(wq->q_syncq->sq_outer == outer);
2522		outer_remove(outer, rq->q_syncq);
2523		if (wq->q_syncq != rq->q_syncq)
2524			outer_remove(outer, wq->q_syncq);
2525	}
2526	ASSERT(sq->sq_outer == NULL);
2527	ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
2528
2529	if (sq != SQ(rq)) {
2530		if (!(rq->q_flag & QPERMOD))
2531			free_syncq(sq);
2532		if (wq->q_syncq == rq->q_syncq)
2533			wq->q_syncq = NULL;
2534		rq->q_syncq = NULL;
2535	}
2536	if (wq->q_syncq != NULL && wq->q_syncq != sq &&
2537	    wq->q_syncq != SQ(rq)) {
2538		free_syncq(wq->q_syncq);
2539		wq->q_syncq = NULL;
2540	}
2541	ASSERT(rq->q_syncq == NULL || (rq->q_syncq->sq_head == NULL &&
2542	    rq->q_syncq->sq_tail == NULL));
2543	ASSERT(wq->q_syncq == NULL || (wq->q_syncq->sq_head == NULL &&
2544	    wq->q_syncq->sq_tail == NULL));
2545
2546	if (!(rq->q_flag & QPERMOD) &&
2547	    rq->q_syncq != NULL && rq->q_syncq->sq_ciputctrl != NULL) {
2548		ASSERT(rq->q_syncq->sq_nciputctrl == n_ciputctrl - 1);
2549		SUMCHECK_CIPUTCTRL_COUNTS(rq->q_syncq->sq_ciputctrl,
2550		    rq->q_syncq->sq_nciputctrl, 0);
2551		ASSERT(ciputctrl_cache != NULL);
2552		kmem_cache_free(ciputctrl_cache, rq->q_syncq->sq_ciputctrl);
2553		rq->q_syncq->sq_ciputctrl = NULL;
2554		rq->q_syncq->sq_nciputctrl = 0;
2555	}
2556
2557	if (!(wq->q_flag & QPERMOD) &&
2558	    wq->q_syncq != NULL && wq->q_syncq->sq_ciputctrl != NULL) {
2559		ASSERT(wq->q_syncq->sq_nciputctrl == n_ciputctrl - 1);
2560		SUMCHECK_CIPUTCTRL_COUNTS(wq->q_syncq->sq_ciputctrl,
2561		    wq->q_syncq->sq_nciputctrl, 0);
2562		ASSERT(ciputctrl_cache != NULL);
2563		kmem_cache_free(ciputctrl_cache, wq->q_syncq->sq_ciputctrl);
2564		wq->q_syncq->sq_ciputctrl = NULL;
2565		wq->q_syncq->sq_nciputctrl = 0;
2566	}
2567
2568	sq = SQ(rq);
2569	ASSERT(sq->sq_head == NULL && sq->sq_tail == NULL);
2570	ASSERT(sq->sq_outer == NULL);
2571	ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
2572
2573	/*
2574	 * Create syncqs based on qflag and sqtype. Set the SQ_TYPES_IN_FLAGS
2575	 * bits in sq_flag based on the sqtype.
2576	 */
2577	ASSERT((sq->sq_flags & ~SQ_TYPES_IN_FLAGS) == 0);
2578
2579	rq->q_syncq = wq->q_syncq = sq;
2580	sq->sq_type = sqtype;
2581	sq->sq_flags = (sqtype & SQ_TYPES_IN_FLAGS);
2582
2583	/*
2584	 *  We are making sq_svcflags zero,
2585	 *  resetting SQ_DISABLED in case it was set by
2586	 *  wait_svc() in the munlink path.
2587	 *
2588	 */
2589	ASSERT((sq->sq_svcflags & SQ_SERVICE) == 0);
2590	sq->sq_svcflags = 0;
2591
2592	/*
2593	 * We need to acquire the lock here for the mlink and munlink case,
2594	 * where canputnext, backenable, etc can access the q_flag.
2595	 */
2596	if (lock_needed) {
2597		mutex_enter(QLOCK(rq));
2598		rq->q_flag = (rq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2599		mutex_exit(QLOCK(rq));
2600		mutex_enter(QLOCK(wq));
2601		wq->q_flag = (wq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2602		mutex_exit(QLOCK(wq));
2603	} else {
2604		rq->q_flag = (rq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2605		wq->q_flag = (wq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2606	}
2607
2608	if (qflag & QPERQ) {
2609		/* Allocate a separate syncq for the write side */
2610		sq = new_syncq();
2611		sq->sq_type = rq->q_syncq->sq_type;
2612		sq->sq_flags = rq->q_syncq->sq_flags;
2613		ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
2614		    sq->sq_oprev == NULL);
2615		wq->q_syncq = sq;
2616	}
2617	if (qflag & QPERMOD) {
2618		sq = dmp->dm_sq;
2619
2620		/*
2621		 * Assert that we do have an inner perimeter syncq and that it
2622		 * does not have an outer perimeter associated with it.
2623		 */
2624		ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
2625		    sq->sq_oprev == NULL);
2626		rq->q_syncq = wq->q_syncq = sq;
2627	}
2628	if (qflag & QMTOUTPERIM) {
2629		outer = dmp->dm_sq;
2630
2631		ASSERT(outer->sq_outer == NULL);
2632		outer_insert(outer, rq->q_syncq);
2633		if (wq->q_syncq != rq->q_syncq)
2634			outer_insert(outer, wq->q_syncq);
2635	}
2636	ASSERT((rq->q_syncq->sq_flags & SQ_TYPES_IN_FLAGS) ==
2637	    (rq->q_syncq->sq_type & SQ_TYPES_IN_FLAGS));
2638	ASSERT((wq->q_syncq->sq_flags & SQ_TYPES_IN_FLAGS) ==
2639	    (wq->q_syncq->sq_type & SQ_TYPES_IN_FLAGS));
2640	ASSERT((rq->q_flag & QMT_TYPEMASK) == (qflag & QMT_TYPEMASK));
2641
2642	/*
2643	 * Initialize struio() types.
2644	 */
2645	rq->q_struiot =
2646	    (rq->q_flag & QSYNCSTR) ? rinit->qi_struiot : STRUIOT_NONE;
2647	wq->q_struiot =
2648	    (wq->q_flag & QSYNCSTR) ? winit->qi_struiot : STRUIOT_NONE;
2649}
2650
2651perdm_t *
2652hold_dm(struct streamtab *str, uint32_t qflag, uint32_t sqtype)
2653{
2654	syncq_t	*sq;
2655	perdm_t	**pp;
2656	perdm_t	*p;
2657	perdm_t	*dmp;
2658
2659	ASSERT(str != NULL);
2660	ASSERT(qflag & (QPERMOD | QMTOUTPERIM));
2661
2662	rw_enter(&perdm_rwlock, RW_READER);
2663	for (p = perdm_list; p != NULL; p = p->dm_next) {
2664		if (p->dm_str == str) {	/* found one */
2665			atomic_add_32(&(p->dm_ref), 1);
2666			rw_exit(&perdm_rwlock);
2667			return (p);
2668		}
2669	}
2670	rw_exit(&perdm_rwlock);
2671
2672	sq = new_syncq();
2673	if (qflag & QPERMOD) {
2674		sq->sq_type = sqtype | SQ_PERMOD;
2675		sq->sq_flags = sqtype & SQ_TYPES_IN_FLAGS;
2676	} else {
2677		ASSERT(qflag & QMTOUTPERIM);
2678		sq->sq_onext = sq->sq_oprev = sq;
2679	}
2680
2681	dmp = kmem_alloc(sizeof (perdm_t), KM_SLEEP);
2682	dmp->dm_sq = sq;
2683	dmp->dm_str = str;
2684	dmp->dm_ref = 1;
2685	dmp->dm_next = NULL;
2686
2687	rw_enter(&perdm_rwlock, RW_WRITER);
2688	for (pp = &perdm_list; (p = *pp) != NULL; pp = &(p->dm_next)) {
2689		if (p->dm_str == str) {	/* already present */
2690			p->dm_ref++;
2691			rw_exit(&perdm_rwlock);
2692			free_syncq(sq);
2693			kmem_free(dmp, sizeof (perdm_t));
2694			return (p);
2695		}
2696	}
2697
2698	*pp = dmp;
2699	rw_exit(&perdm_rwlock);
2700	return (dmp);
2701}
2702
2703void
2704rele_dm(perdm_t *dmp)
2705{
2706	perdm_t **pp;
2707	perdm_t *p;
2708
2709	rw_enter(&perdm_rwlock, RW_WRITER);
2710	ASSERT(dmp->dm_ref > 0);
2711
2712	if (--dmp->dm_ref > 0) {
2713		rw_exit(&perdm_rwlock);
2714		return;
2715	}
2716
2717	for (pp = &perdm_list; (p = *pp) != NULL; pp = &(p->dm_next))
2718		if (p == dmp)
2719			break;
2720	ASSERT(p == dmp);
2721	*pp = p->dm_next;
2722	rw_exit(&perdm_rwlock);
2723
2724	/*
2725	 * Wait for any background processing that relies on the
2726	 * syncq to complete before it is freed.
2727	 */
2728	wait_sq_svc(p->dm_sq);
2729	free_syncq(p->dm_sq);
2730	kmem_free(p, sizeof (perdm_t));
2731}
2732
2733/*
2734 * Make a protocol message given control and data buffers.
2735 * n.b., this can block; be careful of what locks you hold when calling it.
2736 *
2737 * If sd_maxblk is less than *iosize this routine can fail part way through
2738 * (due to an allocation failure). In this case on return *iosize will contain
2739 * the amount that was consumed. Otherwise *iosize will not be modified
2740 * i.e. it will contain the amount that was consumed.
2741 */
2742int
2743strmakemsg(
2744	struct strbuf *mctl,
2745	ssize_t *iosize,
2746	struct uio *uiop,
2747	stdata_t *stp,
2748	int32_t flag,
2749	mblk_t **mpp)
2750{
2751	mblk_t *mpctl = NULL;
2752	mblk_t *mpdata = NULL;
2753	int error;
2754
2755	ASSERT(uiop != NULL);
2756
2757	*mpp = NULL;
2758	/* Create control part, if any */
2759	if ((mctl != NULL) && (mctl->len >= 0)) {
2760		error = strmakectl(mctl, flag, uiop->uio_fmode, &mpctl);
2761		if (error)
2762			return (error);
2763	}
2764	/* Create data part, if any */
2765	if (*iosize >= 0) {
2766		error = strmakedata(iosize, uiop, stp, flag, &mpdata);
2767		if (error) {
2768			freemsg(mpctl);
2769			return (error);
2770		}
2771	}
2772	if (mpctl != NULL) {
2773		if (mpdata != NULL)
2774			linkb(mpctl, mpdata);
2775		*mpp = mpctl;
2776	} else {
2777		*mpp = mpdata;
2778	}
2779	return (0);
2780}
2781
2782/*
2783 * Make the control part of a protocol message given a control buffer.
2784 * n.b., this can block; be careful of what locks you hold when calling it.
2785 */
2786int
2787strmakectl(
2788	struct strbuf *mctl,
2789	int32_t flag,
2790	int32_t fflag,
2791	mblk_t **mpp)
2792{
2793	mblk_t *bp = NULL;
2794	unsigned char msgtype;
2795	int error = 0;
2796
2797	*mpp = NULL;
2798	/*
2799	 * Create control part of message, if any.
2800	 */
2801	if ((mctl != NULL) && (mctl->len >= 0)) {
2802		caddr_t base;
2803		int ctlcount;
2804		int allocsz;
2805
2806		if (flag & RS_HIPRI)
2807			msgtype = M_PCPROTO;
2808		else
2809			msgtype = M_PROTO;
2810
2811		ctlcount = mctl->len;
2812		base = mctl->buf;
2813
2814		/*
2815		 * Give modules a better chance to reuse M_PROTO/M_PCPROTO
2816		 * blocks by increasing the size to something more usable.
2817		 */
2818		allocsz = MAX(ctlcount, 64);
2819
2820		/*
2821		 * Range checking has already been done; simply try
2822		 * to allocate a message block for the ctl part.
2823		 */
2824		while (!(bp = allocb(allocsz, BPRI_MED))) {
2825			if (fflag & (FNDELAY|FNONBLOCK))
2826				return (EAGAIN);
2827			if (error = strwaitbuf(allocsz, BPRI_MED))
2828				return (error);
2829		}
2830
2831		bp->b_datap->db_type = msgtype;
2832		if (copyin(base, bp->b_wptr, ctlcount)) {
2833			freeb(bp);
2834			return (EFAULT);
2835		}
2836		bp->b_wptr += ctlcount;
2837	}
2838	*mpp = bp;
2839	return (0);
2840}
2841
2842/*
2843 * Make a protocol message given data buffers.
2844 * n.b., this can block; be careful of what locks you hold when calling it.
2845 *
2846 * If sd_maxblk is less than *iosize this routine can fail part way through
2847 * (due to an allocation failure). In this case on return *iosize will contain
2848 * the amount that was consumed. Otherwise *iosize will not be modified
2849 * i.e. it will contain the amount that was consumed.
2850 */
2851int
2852strmakedata(
2853	ssize_t   *iosize,
2854	struct uio *uiop,
2855	stdata_t *stp,
2856	int32_t flag,
2857	mblk_t **mpp)
2858{
2859	mblk_t *mp = NULL;
2860	mblk_t *bp;
2861	int wroff = (int)stp->sd_wroff;
2862	int tail_len = (int)stp->sd_tail;
2863	int extra = wroff + tail_len;
2864	int error = 0;
2865	ssize_t maxblk;
2866	ssize_t count = *iosize;
2867	cred_t *cr = CRED();
2868
2869	*mpp = NULL;
2870	if (count < 0)
2871		return (0);
2872
2873	maxblk = stp->sd_maxblk;
2874	if (maxblk == INFPSZ)
2875		maxblk = count;
2876
2877	/*
2878	 * Create data part of message, if any.
2879	 */
2880	do {
2881		ssize_t size;
2882		dblk_t  *dp;
2883
2884		ASSERT(uiop);
2885
2886		size = MIN(count, maxblk);
2887
2888		while ((bp = allocb_cred(size + extra, cr)) == NULL) {
2889			error = EAGAIN;
2890			if ((uiop->uio_fmode & (FNDELAY|FNONBLOCK)) ||
2891			    (error = strwaitbuf(size + extra, BPRI_MED)) != 0) {
2892				if (count == *iosize) {
2893					freemsg(mp);
2894					return (error);
2895				} else {
2896					*iosize -= count;
2897					*mpp = mp;
2898					return (0);
2899				}
2900			}
2901		}
2902		dp = bp->b_datap;
2903		dp->db_cpid = curproc->p_pid;
2904		ASSERT(wroff <= dp->db_lim - bp->b_wptr);
2905		bp->b_wptr = bp->b_rptr = bp->b_rptr + wroff;
2906
2907		if (flag & STRUIO_POSTPONE) {
2908			/*
2909			 * Setup the stream uio portion of the
2910			 * dblk for subsequent use by struioget().
2911			 */
2912			dp->db_struioflag = STRUIO_SPEC;
2913			dp->db_cksumstart = 0;
2914			dp->db_cksumstuff = 0;
2915			dp->db_cksumend = size;
2916			*(long long *)dp->db_struioun.data = 0ll;
2917			bp->b_wptr += size;
2918		} else {
2919			if (stp->sd_copyflag & STRCOPYCACHED)
2920				uiop->uio_extflg |= UIO_COPY_CACHED;
2921
2922			if (size != 0) {
2923				error = uiomove(bp->b_wptr, size, UIO_WRITE,
2924				    uiop);
2925				if (error != 0) {
2926					freeb(bp);
2927					freemsg(mp);
2928					return (error);
2929				}
2930			}
2931			bp->b_wptr += size;
2932
2933			if (stp->sd_wputdatafunc != NULL) {
2934				mblk_t *newbp;
2935
2936				newbp = (stp->sd_wputdatafunc)(stp->sd_vnode,
2937				    bp, NULL, NULL, NULL, NULL);
2938				if (newbp == NULL) {
2939					freeb(bp);
2940					freemsg(mp);
2941					return (ECOMM);
2942				}
2943				bp = newbp;
2944			}
2945		}
2946
2947		count -= size;
2948
2949		if (mp == NULL)
2950			mp = bp;
2951		else
2952			linkb(mp, bp);
2953	} while (count > 0);
2954
2955	*mpp = mp;
2956	return (0);
2957}
2958
2959/*
2960 * Wait for a buffer to become available. Return non-zero errno
2961 * if not able to wait, 0 if buffer is probably there.
2962 */
2963int
2964strwaitbuf(size_t size, int pri)
2965{
2966	bufcall_id_t id;
2967
2968	mutex_enter(&bcall_monitor);
2969	if ((id = bufcall(size, pri, (void (*)(void *))cv_broadcast,
2970	    &ttoproc(curthread)->p_flag_cv)) == 0) {
2971		mutex_exit(&bcall_monitor);
2972		return (ENOSR);
2973	}
2974	if (!cv_wait_sig(&(ttoproc(curthread)->p_flag_cv), &bcall_monitor)) {
2975		unbufcall(id);
2976		mutex_exit(&bcall_monitor);
2977		return (EINTR);
2978	}
2979	unbufcall(id);
2980	mutex_exit(&bcall_monitor);
2981	return (0);
2982}
2983
2984/*
2985 * This function waits for a read or write event to happen on a stream.
2986 * fmode can specify FNDELAY and/or FNONBLOCK.
2987 * The timeout is in ms with -1 meaning infinite.
2988 * The flag values work as follows:
2989 *	READWAIT	Check for read side errors, send M_READ
2990 *	GETWAIT		Check for read side errors, no M_READ
2991 *	WRITEWAIT	Check for write side errors.
2992 *	NOINTR		Do not return error if nonblocking or timeout.
2993 * 	STR_NOERROR	Ignore all errors except STPLEX.
2994 *	STR_NOSIG	Ignore/hold signals during the duration of the call.
2995 *	STR_PEEK	Pass through the strgeterr().
2996 */
2997int
2998strwaitq(stdata_t *stp, int flag, ssize_t count, int fmode, clock_t timout,
2999    int *done)
3000{
3001	int slpflg, errs;
3002	int error;
3003	kcondvar_t *sleepon;
3004	mblk_t *mp;
3005	ssize_t *rd_count;
3006	clock_t rval;
3007
3008	ASSERT(MUTEX_HELD(&stp->sd_lock));
3009	if ((flag & READWAIT) || (flag & GETWAIT)) {
3010		slpflg = RSLEEP;
3011		sleepon = &_RD(stp->sd_wrq)->q_wait;
3012		errs = STRDERR|STPLEX;
3013	} else {
3014		slpflg = WSLEEP;
3015		sleepon = &stp->sd_wrq->q_wait;
3016		errs = STWRERR|STRHUP|STPLEX;
3017	}
3018	if (flag & STR_NOERROR)
3019		errs = STPLEX;
3020
3021	if (stp->sd_wakeq & slpflg) {
3022		/*
3023		 * A strwakeq() is pending, no need to sleep.
3024		 */
3025		stp->sd_wakeq &= ~slpflg;
3026		*done = 0;
3027		return (0);
3028	}
3029
3030	if (fmode & (FNDELAY|FNONBLOCK)) {
3031		if (!(flag & NOINTR))
3032			error = EAGAIN;
3033		else
3034			error = 0;
3035		*done = 1;
3036		return (error);
3037	}
3038
3039	if (stp->sd_flag & errs) {
3040		/*
3041		 * Check for errors before going to sleep since the
3042		 * caller might not have checked this while holding
3043		 * sd_lock.
3044		 */
3045		error = strgeterr(stp, errs, (flag & STR_PEEK));
3046		if (error != 0) {
3047			*done = 1;
3048			return (error);
3049		}
3050	}
3051
3052	/*
3053	 * If any module downstream has requested read notification
3054	 * by setting SNDMREAD flag using M_SETOPTS, send a message
3055	 * down stream.
3056	 */
3057	if ((flag & READWAIT) && (stp->sd_flag & SNDMREAD)) {
3058		mutex_exit(&stp->sd_lock);
3059		if (!(mp = allocb_wait(sizeof (ssize_t), BPRI_MED,
3060		    (flag & STR_NOSIG), &error))) {
3061			mutex_enter(&stp->sd_lock);
3062			*done = 1;
3063			return (error);
3064		}
3065		mp->b_datap->db_type = M_READ;
3066		rd_count = (ssize_t *)mp->b_wptr;
3067		*rd_count = count;
3068		mp->b_wptr += sizeof (ssize_t);
3069		/*
3070		 * Send the number of bytes requested by the
3071		 * read as the argument to M_READ.
3072		 */
3073		stream_willservice(stp);
3074		putnext(stp->sd_wrq, mp);
3075		stream_runservice(stp);
3076		mutex_enter(&stp->sd_lock);
3077
3078		/*
3079		 * If any data arrived due to inline processing
3080		 * of putnext(), don't sleep.
3081		 */
3082		if (_RD(stp->sd_wrq)->q_first != NULL) {
3083			*done = 0;
3084			return (0);
3085		}
3086	}
3087
3088	stp->sd_flag |= slpflg;
3089	TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_WAIT2,
3090	    "strwaitq sleeps (2):%p, %X, %lX, %X, %p",
3091	    stp, flag, count, fmode, done);
3092
3093	rval = str_cv_wait(sleepon, &stp->sd_lock, timout, flag & STR_NOSIG);
3094	if (rval > 0) {
3095		/* EMPTY */
3096		TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_WAKE2,
3097		    "strwaitq awakes(2):%X, %X, %X, %X, %X",
3098		    stp, flag, count, fmode, done);
3099	} else if (rval == 0) {
3100		TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_INTR2,
3101		    "strwaitq interrupt #2:%p, %X, %lX, %X, %p",
3102		    stp, flag, count, fmode, done);
3103		stp->sd_flag &= ~slpflg;
3104		cv_broadcast(sleepon);
3105		if (!(flag & NOINTR))
3106			error = EINTR;
3107		else
3108			error = 0;
3109		*done = 1;
3110		return (error);
3111	} else {
3112		/* timeout */
3113		TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_TIME,
3114		    "strwaitq timeout:%p, %X, %lX, %X, %p",
3115		    stp, flag, count, fmode, done);
3116		*done = 1;
3117		if (!(flag & NOINTR))
3118			return (ETIME);
3119		else
3120			return (0);
3121	}
3122	/*
3123	 * If the caller implements delayed errors (i.e. queued after data)
3124	 * we can not check for errors here since data as well as an
3125	 * error might have arrived at the stream head. We return to
3126	 * have the caller check the read queue before checking for errors.
3127	 */
3128	if ((stp->sd_flag & errs) && !(flag & STR_DELAYERR)) {
3129		error = strgeterr(stp, errs, (flag & STR_PEEK));
3130		if (error != 0) {
3131			*done = 1;
3132			return (error);
3133		}
3134	}
3135	*done = 0;
3136	return (0);
3137}
3138
3139/*
3140 * Perform job control discipline access checks.
3141 * Return 0 for success and the errno for failure.
3142 */
3143
3144#define	cantsend(p, t, sig) \
3145	(sigismember(&(p)->p_ignore, sig) || signal_is_blocked((t), sig))
3146
3147int
3148straccess(struct stdata *stp, enum jcaccess mode)
3149{
3150	extern kcondvar_t lbolt_cv;	/* XXX: should be in a header file */
3151	kthread_t *t = curthread;
3152	proc_t *p = ttoproc(t);
3153	sess_t *sp;
3154
3155	ASSERT(mutex_owned(&stp->sd_lock));
3156
3157	if (stp->sd_sidp == NULL || stp->sd_vnode->v_type == VFIFO)
3158		return (0);
3159
3160	mutex_enter(&p->p_lock);		/* protects p_pgidp */
3161
3162	for (;;) {
3163		mutex_enter(&p->p_splock);	/* protects p->p_sessp */
3164		sp = p->p_sessp;
3165		mutex_enter(&sp->s_lock);	/* protects sp->* */
3166
3167		/*
3168		 * If this is not the calling process's controlling terminal
3169		 * or if the calling process is already in the foreground
3170		 * then allow access.
3171		 */
3172		if (sp->s_dev != stp->sd_vnode->v_rdev ||
3173		    p->p_pgidp == stp->sd_pgidp) {
3174			mutex_exit(&sp->s_lock);
3175			mutex_exit(&p->p_splock);
3176			mutex_exit(&p->p_lock);
3177			return (0);
3178		}
3179
3180		/*
3181		 * Check to see if controlling terminal has been deallocated.
3182		 */
3183		if (sp->s_vp == NULL) {
3184			if (!cantsend(p, t, SIGHUP))
3185				sigtoproc(p, t, SIGHUP);
3186			mutex_exit(&sp->s_lock);
3187			mutex_exit(&p->p_splock);
3188			mutex_exit(&p->p_lock);
3189			return (EIO);
3190		}
3191
3192		mutex_exit(&sp->s_lock);
3193		mutex_exit(&p->p_splock);
3194
3195		if (mode == JCGETP) {
3196			mutex_exit(&p->p_lock);
3197			return (0);
3198		}
3199
3200		if (mode == JCREAD) {
3201			if (p->p_detached || cantsend(p, t, SIGTTIN)) {
3202				mutex_exit(&p->p_lock);
3203				return (EIO);
3204			}
3205			mutex_exit(&p->p_lock);
3206			mutex_exit(&stp->sd_lock);
3207			pgsignal(p->p_pgidp, SIGTTIN);
3208			mutex_enter(&stp->sd_lock);
3209			mutex_enter(&p->p_lock);
3210		} else {  /* mode == JCWRITE or JCSETP */
3211			if ((mode == JCWRITE && !(stp->sd_flag & STRTOSTOP)) ||
3212			    cantsend(p, t, SIGTTOU)) {
3213				mutex_exit(&p->p_lock);
3214				return (0);
3215			}
3216			if (p->p_detached) {
3217				mutex_exit(&p->p_lock);
3218				return (EIO);
3219			}
3220			mutex_exit(&p->p_lock);
3221			mutex_exit(&stp->sd_lock);
3222			pgsignal(p->p_pgidp, SIGTTOU);
3223			mutex_enter(&stp->sd_lock);
3224			mutex_enter(&p->p_lock);
3225		}
3226
3227		/*
3228		 * We call cv_wait_sig_swap() to cause the appropriate
3229		 * action for the jobcontrol signal to take place.
3230		 * If the signal is being caught, we will take the
3231		 * EINTR error return.  Otherwise, the default action
3232		 * of causing the process to stop will take place.
3233		 * In this case, we rely on the periodic cv_broadcast() on
3234		 * &lbolt_cv to wake us up to loop around and test again.
3235		 * We can't get here if the signal is ignored or
3236		 * if the current thread is blocking the signal.
3237		 */
3238		mutex_exit(&stp->sd_lock);
3239		if (!cv_wait_sig_swap(&lbolt_cv, &p->p_lock)) {
3240			mutex_exit(&p->p_lock);
3241			mutex_enter(&stp->sd_lock);
3242			return (EINTR);
3243		}
3244		mutex_exit(&p->p_lock);
3245		mutex_enter(&stp->sd_lock);
3246		mutex_enter(&p->p_lock);
3247	}
3248}
3249
3250/*
3251 * Return size of message of block type (bp->b_datap->db_type)
3252 */
3253size_t
3254xmsgsize(mblk_t *bp)
3255{
3256	unsigned char type;
3257	size_t count = 0;
3258
3259	type = bp->b_datap->db_type;
3260
3261	for (; bp; bp = bp->b_cont) {
3262		if (type != bp->b_datap->db_type)
3263			break;
3264		ASSERT(bp->b_wptr >= bp->b_rptr);
3265		count += bp->b_wptr - bp->b_rptr;
3266	}
3267	return (count);
3268}
3269
3270/*
3271 * Allocate a stream head.
3272 */
3273struct stdata *
3274shalloc(queue_t *qp)
3275{
3276	stdata_t *stp;
3277
3278	stp = kmem_cache_alloc(stream_head_cache, KM_SLEEP);
3279
3280	stp->sd_wrq = _WR(qp);
3281	stp->sd_strtab = NULL;
3282	stp->sd_iocid = 0;
3283	stp->sd_mate = NULL;
3284	stp->sd_freezer = NULL;
3285	stp->sd_refcnt = 0;
3286	stp->sd_wakeq = 0;
3287	stp->sd_anchor = 0;
3288	stp->sd_struiowrq = NULL;
3289	stp->sd_struiordq = NULL;
3290	stp->sd_struiodnak = 0;
3291	stp->sd_struionak = NULL;
3292	stp->sd_t_audit_data = NULL;
3293	stp->sd_rput_opt = 0;
3294	stp->sd_wput_opt = 0;
3295	stp->sd_read_opt = 0;
3296	stp->sd_rprotofunc = strrput_proto;
3297	stp->sd_rmiscfunc = strrput_misc;
3298	stp->sd_rderrfunc = stp->sd_wrerrfunc = NULL;
3299	stp->sd_rputdatafunc = stp->sd_wputdatafunc = NULL;
3300	stp->sd_ciputctrl = NULL;
3301	stp->sd_nciputctrl = 0;
3302	stp->sd_qhead = NULL;
3303	stp->sd_qtail = NULL;
3304	stp->sd_servid = NULL;
3305	stp->sd_nqueues = 0;
3306	stp->sd_svcflags = 0;
3307	stp->sd_copyflag = 0;
3308
3309	return (stp);
3310}
3311
3312/*
3313 * Free a stream head.
3314 */
3315void
3316shfree(stdata_t *stp)
3317{
3318	ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
3319
3320	stp->sd_wrq = NULL;
3321
3322	mutex_enter(&stp->sd_qlock);
3323	while (stp->sd_svcflags & STRS_SCHEDULED) {
3324		STRSTAT(strwaits);
3325		cv_wait(&stp->sd_qcv, &stp->sd_qlock);
3326	}
3327	mutex_exit(&stp->sd_qlock);
3328
3329	if (stp->sd_ciputctrl != NULL) {
3330		ASSERT(stp->sd_nciputctrl == n_ciputctrl - 1);
3331		SUMCHECK_CIPUTCTRL_COUNTS(stp->sd_ciputctrl,
3332		    stp->sd_nciputctrl, 0);
3333		ASSERT(ciputctrl_cache != NULL);
3334		kmem_cache_free(ciputctrl_cache, stp->sd_ciputctrl);
3335		stp->sd_ciputctrl = NULL;
3336		stp->sd_nciputctrl = 0;
3337	}
3338	ASSERT(stp->sd_qhead == NULL);
3339	ASSERT(stp->sd_qtail == NULL);
3340	ASSERT(stp->sd_nqueues == 0);
3341	kmem_cache_free(stream_head_cache, stp);
3342}
3343
3344/*
3345 * Allocate a pair of queues and a syncq for the pair
3346 */
3347queue_t *
3348allocq(void)
3349{
3350	queinfo_t *qip;
3351	queue_t *qp, *wqp;
3352	syncq_t	*sq;
3353
3354	qip = kmem_cache_alloc(queue_cache, KM_SLEEP);
3355
3356	qp = &qip->qu_rqueue;
3357	wqp = &qip->qu_wqueue;
3358	sq = &qip->qu_syncq;
3359
3360	qp->q_last	= NULL;
3361	qp->q_next	= NULL;
3362	qp->q_ptr	= NULL;
3363	qp->q_flag	= QUSE | QREADR;
3364	qp->q_bandp	= NULL;
3365	qp->q_stream	= NULL;
3366	qp->q_syncq	= sq;
3367	qp->q_nband	= 0;
3368	qp->q_nfsrv	= NULL;
3369	qp->q_draining	= 0;
3370	qp->q_syncqmsgs	= 0;
3371	qp->q_spri	= 0;
3372	qp->q_qtstamp	= 0;
3373	qp->q_sqtstamp	= 0;
3374	qp->q_fp	= NULL;
3375
3376	wqp->q_last	= NULL;
3377	wqp->q_next	= NULL;
3378	wqp->q_ptr	= NULL;
3379	wqp->q_flag	= QUSE;
3380	wqp->q_bandp	= NULL;
3381	wqp->q_stream	= NULL;
3382	wqp->q_syncq	= sq;
3383	wqp->q_nband	= 0;
3384	wqp->q_nfsrv	= NULL;
3385	wqp->q_draining	= 0;
3386	wqp->q_syncqmsgs = 0;
3387	wqp->q_qtstamp	= 0;
3388	wqp->q_sqtstamp	= 0;
3389	wqp->q_spri	= 0;
3390
3391	sq->sq_count	= 0;
3392	sq->sq_rmqcount	= 0;
3393	sq->sq_flags	= 0;
3394	sq->sq_type	= 0;
3395	sq->sq_callbflags = 0;
3396	sq->sq_cancelid	= 0;
3397	sq->sq_ciputctrl = NULL;
3398	sq->sq_nciputctrl = 0;
3399	sq->sq_needexcl = 0;
3400	sq->sq_svcflags = 0;
3401
3402	return (qp);
3403}
3404
3405/*
3406 * Free a pair of queues and the "attached" syncq.
3407 * Discard any messages left on the syncq(s), remove the syncq(s) from the
3408 * outer perimeter, and free the syncq(s) if they are not the "attached" syncq.
3409 */
3410void
3411freeq(queue_t *qp)
3412{
3413	qband_t *qbp, *nqbp;
3414	syncq_t *sq, *outer;
3415	queue_t *wqp = _WR(qp);
3416
3417	ASSERT(qp->q_flag & QREADR);
3418
3419	/*
3420	 * If a previously dispatched taskq job is scheduled to run
3421	 * sync_service() or a service routine is scheduled for the
3422	 * queues about to be freed, wait here until all service is
3423	 * done on the queue and all associated queues and syncqs.
3424	 */
3425	wait_svc(qp);
3426
3427	(void) flush_syncq(qp->q_syncq, qp);
3428	(void) flush_syncq(wqp->q_syncq, wqp);
3429	ASSERT(qp->q_syncqmsgs == 0 && wqp->q_syncqmsgs == 0);
3430
3431	/*
3432	 * Flush the queues before q_next is set to NULL This is needed
3433	 * in order to backenable any downstream queue before we go away.
3434	 * Note: we are already removed from the stream so that the
3435	 * backenabling will not cause any messages to be delivered to our
3436	 * put procedures.
3437	 */
3438	flushq(qp, FLUSHALL);
3439	flushq(wqp, FLUSHALL);
3440
3441	/* Tidy up - removeq only does a half-remove from stream */
3442	qp->q_next = wqp->q_next = NULL;
3443	ASSERT(!(qp->q_flag & QENAB));
3444	ASSERT(!(wqp->q_flag & QENAB));
3445
3446	outer = qp->q_syncq->sq_outer;
3447	if (outer != NULL) {
3448		outer_remove(outer, qp->q_syncq);
3449		if (wqp->q_syncq != qp->q_syncq)
3450			outer_remove(outer, wqp->q_syncq);
3451	}
3452	/*
3453	 * Free any syncqs that are outside what allocq returned.
3454	 */
3455	if (qp->q_syncq != SQ(qp) && !(qp->q_flag & QPERMOD))
3456		free_syncq(qp->q_syncq);
3457	if (qp->q_syncq != wqp->q_syncq && wqp->q_syncq != SQ(qp))
3458		free_syncq(wqp->q_syncq);
3459
3460	ASSERT((qp->q_sqflags & (Q_SQQUEUED | Q_SQDRAINING)) == 0);
3461	ASSERT((wqp->q_sqflags & (Q_SQQUEUED | Q_SQDRAINING)) == 0);
3462	ASSERT(MUTEX_NOT_HELD(QLOCK(qp)));
3463	ASSERT(MUTEX_NOT_HELD(QLOCK(wqp)));
3464	sq = SQ(qp);
3465	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
3466	ASSERT(sq->sq_head == NULL && sq->sq_tail == NULL);
3467	ASSERT(sq->sq_outer == NULL);
3468	ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
3469	ASSERT(sq->sq_callbpend == NULL);
3470	ASSERT(sq->sq_needexcl == 0);
3471
3472	if (sq->sq_ciputctrl != NULL) {
3473		ASSERT(sq->sq_nciputctrl == n_ciputctrl - 1);
3474		SUMCHECK_CIPUTCTRL_COUNTS(sq->sq_ciputctrl,
3475		    sq->sq_nciputctrl, 0);
3476		ASSERT(ciputctrl_cache != NULL);
3477		kmem_cache_free(ciputctrl_cache, sq->sq_ciputctrl);
3478		sq->sq_ciputctrl = NULL;
3479		sq->sq_nciputctrl = 0;
3480	}
3481
3482	ASSERT(qp->q_first == NULL && wqp->q_first == NULL);
3483	ASSERT(qp->q_count == 0 && wqp->q_count == 0);
3484	ASSERT(qp->q_mblkcnt == 0 && wqp->q_mblkcnt == 0);
3485
3486	qp->q_flag &= ~QUSE;
3487	wqp->q_flag &= ~QUSE;
3488
3489	/* NOTE: Uncomment the assert below once bugid 1159635 is fixed. */
3490	/* ASSERT((qp->q_flag & QWANTW) == 0 && (wqp->q_flag & QWANTW) == 0); */
3491
3492	qbp = qp->q_bandp;
3493	while (qbp) {
3494		nqbp = qbp->qb_next;
3495		freeband(qbp);
3496		qbp = nqbp;
3497	}
3498	qbp = wqp->q_bandp;
3499	while (qbp) {
3500		nqbp = qbp->qb_next;
3501		freeband(qbp);
3502		qbp = nqbp;
3503	}
3504	kmem_cache_free(queue_cache, qp);
3505}
3506
3507/*
3508 * Allocate a qband structure.
3509 */
3510qband_t *
3511allocband(void)
3512{
3513	qband_t *qbp;
3514
3515	qbp = kmem_cache_alloc(qband_cache, KM_NOSLEEP);
3516	if (qbp == NULL)
3517		return (NULL);
3518
3519	qbp->qb_next	= NULL;
3520	qbp->qb_count	= 0;
3521	qbp->qb_mblkcnt	= 0;
3522	qbp->qb_first	= NULL;
3523	qbp->qb_last	= NULL;
3524	qbp->qb_flag	= 0;
3525
3526	return (qbp);
3527}
3528
3529/*
3530 * Free a qband structure.
3531 */
3532void
3533freeband(qband_t *qbp)
3534{
3535	kmem_cache_free(qband_cache, qbp);
3536}
3537
3538/*
3539 * Just like putnextctl(9F), except that allocb_wait() is used.
3540 *
3541 * Consolidation Private, and of course only callable from the stream head or
3542 * routines that may block.
3543 */
3544int
3545putnextctl_wait(queue_t *q, int type)
3546{
3547	mblk_t *bp;
3548	int error;
3549
3550	if ((datamsg(type) && (type != M_DELAY)) ||
3551	    (bp = allocb_wait(0, BPRI_HI, 0, &error)) == NULL)
3552		return (0);
3553
3554	bp->b_datap->db_type = (unsigned char)type;
3555	putnext(q, bp);
3556	return (1);
3557}
3558
3559/*
3560 * run any possible bufcalls.
3561 */
3562void
3563runbufcalls(void)
3564{
3565	strbufcall_t *bcp;
3566
3567	mutex_enter(&bcall_monitor);
3568	mutex_enter(&strbcall_lock);
3569
3570	if (strbcalls.bc_head) {
3571		size_t count;
3572		int nevent;
3573
3574		/*
3575		 * count how many events are on the list
3576		 * now so we can check to avoid looping
3577		 * in low memory situations
3578		 */
3579		nevent = 0;
3580		for (bcp = strbcalls.bc_head; bcp; bcp = bcp->bc_next)
3581			nevent++;
3582
3583		/*
3584		 * get estimate of available memory from kmem_avail().
3585		 * awake all bufcall functions waiting for
3586		 * memory whose request could be satisfied
3587		 * by 'count' memory and let 'em fight for it.
3588		 */
3589		count = kmem_avail();
3590		while ((bcp = strbcalls.bc_head) != NULL && nevent) {
3591			STRSTAT(bufcalls);
3592			--nevent;
3593			if (bcp->bc_size <= count) {
3594				bcp->bc_executor = curthread;
3595				mutex_exit(&strbcall_lock);
3596				(*bcp->bc_func)(bcp->bc_arg);
3597				mutex_enter(&strbcall_lock);
3598				bcp->bc_executor = NULL;
3599				cv_broadcast(&bcall_cv);
3600				strbcalls.bc_head = bcp->bc_next;
3601				kmem_free(bcp, sizeof (strbufcall_t));
3602			} else {
3603				/*
3604				 * too big, try again later - note
3605				 * that nevent was decremented above
3606				 * so we won't retry this one on this
3607				 * iteration of the loop
3608				 */
3609				if (bcp->bc_next != NULL) {
3610					strbcalls.bc_head = bcp->bc_next;
3611					bcp->bc_next = NULL;
3612					strbcalls.bc_tail->bc_next = bcp;
3613					strbcalls.bc_tail = bcp;
3614				}
3615			}
3616		}
3617		if (strbcalls.bc_head == NULL)
3618			strbcalls.bc_tail = NULL;
3619	}
3620
3621	mutex_exit(&strbcall_lock);
3622	mutex_exit(&bcall_monitor);
3623}
3624
3625
3626/*
3627 * actually run queue's service routine.
3628 */
3629static void
3630runservice(queue_t *q)
3631{
3632	qband_t *qbp;
3633
3634	ASSERT(q->q_qinfo->qi_srvp);
3635again:
3636	entersq(q->q_syncq, SQ_SVC);
3637	TRACE_1(TR_FAC_STREAMS_FR, TR_QRUNSERVICE_START,
3638	    "runservice starts:%p", q);
3639
3640	if (!(q->q_flag & QWCLOSE))
3641		(*q->q_qinfo->qi_srvp)(q);
3642
3643	TRACE_1(TR_FAC_STREAMS_FR, TR_QRUNSERVICE_END,
3644	    "runservice ends:(%p)", q);
3645
3646	leavesq(q->q_syncq, SQ_SVC);
3647
3648	mutex_enter(QLOCK(q));
3649	if (q->q_flag & QENAB) {
3650		q->q_flag &= ~QENAB;
3651		mutex_exit(QLOCK(q));
3652		goto again;
3653	}
3654	q->q_flag &= ~QINSERVICE;
3655	q->q_flag &= ~QBACK;
3656	for (qbp = q->q_bandp; qbp; qbp = qbp->qb_next)
3657		qbp->qb_flag &= ~QB_BACK;
3658	/*
3659	 * Wakeup thread waiting for the service procedure
3660	 * to be run (strclose and qdetach).
3661	 */
3662	cv_broadcast(&q->q_wait);
3663
3664	mutex_exit(QLOCK(q));
3665}
3666
3667/*
3668 * Background processing of bufcalls.
3669 */
3670void
3671streams_bufcall_service(void)
3672{
3673	callb_cpr_t	cprinfo;
3674
3675	CALLB_CPR_INIT(&cprinfo, &strbcall_lock, callb_generic_cpr,
3676	    "streams_bufcall_service");
3677
3678	mutex_enter(&strbcall_lock);
3679
3680	for (;;) {
3681		if (strbcalls.bc_head != NULL && kmem_avail() > 0) {
3682			mutex_exit(&strbcall_lock);
3683			runbufcalls();
3684			mutex_enter(&strbcall_lock);
3685		}
3686		if (strbcalls.bc_head != NULL) {
3687			clock_t wt, tick;
3688
3689			STRSTAT(bcwaits);
3690			/* Wait for memory to become available */
3691			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3692			tick = SEC_TO_TICK(60);
3693			time_to_wait(&wt, tick);
3694			(void) cv_timedwait(&memavail_cv, &strbcall_lock, wt);
3695			CALLB_CPR_SAFE_END(&cprinfo, &strbcall_lock);
3696		}
3697
3698		/* Wait for new work to arrive */
3699		if (strbcalls.bc_head == NULL) {
3700			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3701			cv_wait(&strbcall_cv, &strbcall_lock);
3702			CALLB_CPR_SAFE_END(&cprinfo, &strbcall_lock);
3703		}
3704	}
3705}
3706
3707/*
3708 * Background processing of streams background tasks which failed
3709 * taskq_dispatch.
3710 */
3711static void
3712streams_qbkgrnd_service(void)
3713{
3714	callb_cpr_t cprinfo;
3715	queue_t *q;
3716
3717	CALLB_CPR_INIT(&cprinfo, &service_queue, callb_generic_cpr,
3718	    "streams_bkgrnd_service");
3719
3720	mutex_enter(&service_queue);
3721
3722	for (;;) {
3723		/*
3724		 * Wait for work to arrive.
3725		 */
3726		while ((freebs_list == NULL) && (qhead == NULL)) {
3727			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3728			cv_wait(&services_to_run, &service_queue);
3729			CALLB_CPR_SAFE_END(&cprinfo, &service_queue);
3730		}
3731		/*
3732		 * Handle all pending freebs requests to free memory.
3733		 */
3734		while (freebs_list != NULL) {
3735			mblk_t *mp = freebs_list;
3736			freebs_list = mp->b_next;
3737			mutex_exit(&service_queue);
3738			mblk_free(mp);
3739			mutex_enter(&service_queue);
3740		}
3741		/*
3742		 * Run pending queues.
3743		 */
3744		while (qhead != NULL) {
3745			DQ(q, qhead, qtail, q_link);
3746			ASSERT(q != NULL);
3747			mutex_exit(&service_queue);
3748			queue_service(q);
3749			mutex_enter(&service_queue);
3750		}
3751		ASSERT(qhead == NULL && qtail == NULL);
3752	}
3753}
3754
3755/*
3756 * Background processing of streams background tasks which failed
3757 * taskq_dispatch.
3758 */
3759static void
3760streams_sqbkgrnd_service(void)
3761{
3762	callb_cpr_t cprinfo;
3763	syncq_t *sq;
3764
3765	CALLB_CPR_INIT(&cprinfo, &service_queue, callb_generic_cpr,
3766	    "streams_sqbkgrnd_service");
3767
3768	mutex_enter(&service_queue);
3769
3770	for (;;) {
3771		/*
3772		 * Wait for work to arrive.
3773		 */
3774		while (sqhead == NULL) {
3775			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3776			cv_wait(&syncqs_to_run, &service_queue);
3777			CALLB_CPR_SAFE_END(&cprinfo, &service_queue);
3778		}
3779
3780		/*
3781		 * Run pending syncqs.
3782		 */
3783		while (sqhead != NULL) {
3784			DQ(sq, sqhead, sqtail, sq_next);
3785			ASSERT(sq != NULL);
3786			ASSERT(sq->sq_svcflags & SQ_BGTHREAD);
3787			mutex_exit(&service_queue);
3788			syncq_service(sq);
3789			mutex_enter(&service_queue);
3790		}
3791	}
3792}
3793
3794/*
3795 * Disable the syncq and wait for background syncq processing to complete.
3796 * If the syncq is placed on the sqhead/sqtail queue, try to remove it from the
3797 * list.
3798 */
3799void
3800wait_sq_svc(syncq_t *sq)
3801{
3802	mutex_enter(SQLOCK(sq));
3803	sq->sq_svcflags |= SQ_DISABLED;
3804	if (sq->sq_svcflags & SQ_BGTHREAD) {
3805		syncq_t *sq_chase;
3806		syncq_t *sq_curr;
3807		int removed;
3808
3809		ASSERT(sq->sq_servcount == 1);
3810		mutex_enter(&service_queue);
3811		RMQ(sq, sqhead, sqtail, sq_next, sq_chase, sq_curr, removed);
3812		mutex_exit(&service_queue);
3813		if (removed) {
3814			sq->sq_svcflags &= ~SQ_BGTHREAD;
3815			sq->sq_servcount = 0;
3816			STRSTAT(sqremoved);
3817			goto done;
3818		}
3819	}
3820	while (sq->sq_servcount != 0) {
3821		sq->sq_flags |= SQ_WANTWAKEUP;
3822		cv_wait(&sq->sq_wait, SQLOCK(sq));
3823	}
3824done:
3825	mutex_exit(SQLOCK(sq));
3826}
3827
3828/*
3829 * Put a syncq on the list of syncq's to be serviced by the sqthread.
3830 * Add the argument to the end of the sqhead list and set the flag
3831 * indicating this syncq has been enabled.  If it has already been
3832 * enabled, don't do anything.
3833 * This routine assumes that SQLOCK is held.
3834 * NOTE that the lock order is to have the SQLOCK first,
3835 * so if the service_syncq lock is held, we need to release it
3836 * before aquiring the SQLOCK (mostly relevant for the background
3837 * thread, and this seems to be common among the STREAMS global locks).
3838 * Note the the sq_svcflags are protected by the SQLOCK.
3839 */
3840void
3841sqenable(syncq_t *sq)
3842{
3843	/*
3844	 * This is probably not important except for where I believe it
3845	 * is being called.  At that point, it should be held (and it
3846	 * is a pain to release it just for this routine, so don't do
3847	 * it).
3848	 */
3849	ASSERT(MUTEX_HELD(SQLOCK(sq)));
3850
3851	IMPLY(sq->sq_servcount == 0, sq->sq_next == NULL);
3852	IMPLY(sq->sq_next != NULL, sq->sq_svcflags & SQ_BGTHREAD);
3853
3854	/*
3855	 * Do not put on list if background thread is scheduled or
3856	 * syncq is disabled.
3857	 */
3858	if (sq->sq_svcflags & (SQ_DISABLED | SQ_BGTHREAD))
3859		return;
3860
3861	/*
3862	 * Check whether we should enable sq at all.
3863	 * Non PERMOD syncqs may be drained by at most one thread.
3864	 * PERMOD syncqs may be drained by several threads but we limit the
3865	 * total amount to the lesser of
3866	 *	Number of queues on the squeue and
3867	 *	Number of CPUs.
3868	 */
3869	if (sq->sq_servcount != 0) {
3870		if (((sq->sq_type & SQ_PERMOD) == 0) ||
3871		    (sq->sq_servcount >= MIN(sq->sq_nqueues, ncpus_online))) {
3872			STRSTAT(sqtoomany);
3873			return;
3874		}
3875	}
3876
3877	sq->sq_tstamp = lbolt;
3878	STRSTAT(sqenables);
3879
3880	/* Attempt a taskq dispatch */
3881	sq->sq_servid = (void *)taskq_dispatch(streams_taskq,
3882	    (task_func_t *)syncq_service, sq, TQ_NOSLEEP | TQ_NOQUEUE);
3883	if (sq->sq_servid != NULL) {
3884		sq->sq_servcount++;
3885		return;
3886	}
3887
3888	/*
3889	 * This taskq dispatch failed, but a previous one may have succeeded.
3890	 * Don't try to schedule on the background thread whilst there is
3891	 * outstanding taskq processing.
3892	 */
3893	if (sq->sq_servcount != 0)
3894		return;
3895
3896	/*
3897	 * System is low on resources and can't perform a non-sleeping
3898	 * dispatch. Schedule the syncq for a background thread and mark the
3899	 * syncq to avoid any further taskq dispatch attempts.
3900	 */
3901	mutex_enter(&service_queue);
3902	STRSTAT(taskqfails);
3903	ENQUEUE(sq, sqhead, sqtail, sq_next);
3904	sq->sq_svcflags |= SQ_BGTHREAD;
3905	sq->sq_servcount = 1;
3906	cv_signal(&syncqs_to_run);
3907	mutex_exit(&service_queue);
3908}
3909
3910/*
3911 * Note: fifo_close() depends on the mblk_t on the queue being freed
3912 * asynchronously. The asynchronous freeing of messages breaks the
3913 * recursive call chain of fifo_close() while there are I_SENDFD type of
3914 * messages refering other file pointers on the queue. Then when
3915 * closing pipes it can avoid stack overflow in case of daisy-chained
3916 * pipes, and also avoid deadlock in case of fifonode_t pairs (which
3917 * share the same fifolock_t).
3918 */
3919
3920void
3921freebs_enqueue(mblk_t *mp, dblk_t *dbp)
3922{
3923	esb_queue_t *eqp = &system_esbq;
3924
3925	ASSERT(dbp->db_mblk == mp);
3926
3927	/*
3928	 * Check data sanity. The dblock should have non-empty free function.
3929	 * It is better to panic here then later when the dblock is freed
3930	 * asynchronously when the context is lost.
3931	 */
3932	if (dbp->db_frtnp->free_func == NULL) {
3933		panic("freebs_enqueue: dblock %p has a NULL free callback",
3934		    (void *)dbp);
3935	}
3936
3937	mutex_enter(&eqp->eq_lock);
3938	/* queue the new mblk on the esballoc queue */
3939	if (eqp->eq_head == NULL) {
3940		eqp->eq_head = eqp->eq_tail = mp;
3941	} else {
3942		eqp->eq_tail->b_next = mp;
3943		eqp->eq_tail = mp;
3944	}
3945	eqp->eq_len++;
3946
3947	/* If we're the first thread to reach the threshold, process */
3948	if (eqp->eq_len >= esbq_max_qlen &&
3949	    !(eqp->eq_flags & ESBQ_PROCESSING))
3950		esballoc_process_queue(eqp);
3951
3952	esballoc_set_timer(eqp, esbq_timeout);
3953	mutex_exit(&eqp->eq_lock);
3954}
3955
3956static void
3957esballoc_process_queue(esb_queue_t *eqp)
3958{
3959	mblk_t	*mp;
3960
3961	ASSERT(MUTEX_HELD(&eqp->eq_lock));
3962
3963	eqp->eq_flags |= ESBQ_PROCESSING;
3964
3965	do {
3966		/*
3967		 * Detach the message chain for processing.
3968		 */
3969		mp = eqp->eq_head;
3970		eqp->eq_tail->b_next = NULL;
3971		eqp->eq_head = eqp->eq_tail = NULL;
3972		eqp->eq_len = 0;
3973		mutex_exit(&eqp->eq_lock);
3974
3975		/*
3976		 * Process the message chain.
3977		 */
3978		esballoc_enqueue_mblk(mp);
3979		mutex_enter(&eqp->eq_lock);
3980	} while ((eqp->eq_len >= esbq_max_qlen) && (eqp->eq_len > 0));
3981
3982	eqp->eq_flags &= ~ESBQ_PROCESSING;
3983}
3984
3985/*
3986 * taskq callback routine to free esballoced mblk's
3987 */
3988static void
3989esballoc_mblk_free(mblk_t *mp)
3990{
3991	mblk_t	*nextmp;
3992
3993	for (; mp != NULL; mp = nextmp) {
3994		nextmp = mp->b_next;
3995		mp->b_next = NULL;
3996		mblk_free(mp);
3997	}
3998}
3999
4000static void
4001esballoc_enqueue_mblk(mblk_t *mp)
4002{
4003
4004	if (taskq_dispatch(system_taskq, (task_func_t *)esballoc_mblk_free, mp,
4005	    TQ_NOSLEEP) == NULL) {
4006		mblk_t *first_mp = mp;
4007		/*
4008		 * System is low on resources and can't perform a non-sleeping
4009		 * dispatch. Schedule for a background thread.
4010		 */
4011		mutex_enter(&service_queue);
4012		STRSTAT(taskqfails);
4013
4014		while (mp->b_next != NULL)
4015			mp = mp->b_next;
4016
4017		mp->b_next = freebs_list;
4018		freebs_list = first_mp;
4019		cv_signal(&services_to_run);
4020		mutex_exit(&service_queue);
4021	}
4022}
4023
4024static void
4025esballoc_timer(void *arg)
4026{
4027	esb_queue_t *eqp = arg;
4028
4029	mutex_enter(&eqp->eq_lock);
4030	eqp->eq_flags &= ~ESBQ_TIMER;
4031
4032	if (!(eqp->eq_flags & ESBQ_PROCESSING) &&
4033	    eqp->eq_len > 0)
4034		esballoc_process_queue(eqp);
4035
4036	esballoc_set_timer(eqp, esbq_timeout);
4037	mutex_exit(&eqp->eq_lock);
4038}
4039
4040static void
4041esballoc_set_timer(esb_queue_t *eqp, clock_t eq_timeout)
4042{
4043	ASSERT(MUTEX_HELD(&eqp->eq_lock));
4044
4045	if (eqp->eq_len > 0 && !(eqp->eq_flags & ESBQ_TIMER)) {
4046		(void) timeout(esballoc_timer, eqp, eq_timeout);
4047		eqp->eq_flags |= ESBQ_TIMER;
4048	}
4049}
4050
4051void
4052esballoc_queue_init(void)
4053{
4054	system_esbq.eq_len = 0;
4055	system_esbq.eq_head = system_esbq.eq_tail = NULL;
4056	system_esbq.eq_flags = 0;
4057}
4058
4059/*
4060 * Set the QBACK or QB_BACK flag in the given queue for
4061 * the given priority band.
4062 */
4063void
4064setqback(queue_t *q, unsigned char pri)
4065{
4066	int i;
4067	qband_t *qbp;
4068	qband_t **qbpp;
4069
4070	ASSERT(MUTEX_HELD(QLOCK(q)));
4071	if (pri != 0) {
4072		if (pri > q->q_nband) {
4073			qbpp = &q->q_bandp;
4074			while (*qbpp)
4075				qbpp = &(*qbpp)->qb_next;
4076			while (pri > q->q_nband) {
4077				if ((*qbpp = allocband()) == NULL) {
4078					cmn_err(CE_WARN,
4079					    "setqback: can't allocate qband\n");
4080					return;
4081				}
4082				(*qbpp)->qb_hiwat = q->q_hiwat;
4083				(*qbpp)->qb_lowat = q->q_lowat;
4084				q->q_nband++;
4085				qbpp = &(*qbpp)->qb_next;
4086			}
4087		}
4088		qbp = q->q_bandp;
4089		i = pri;
4090		while (--i)
4091			qbp = qbp->qb_next;
4092		qbp->qb_flag |= QB_BACK;
4093	} else {
4094		q->q_flag |= QBACK;
4095	}
4096}
4097
4098int
4099strcopyin(void *from, void *to, size_t len, int copyflag)
4100{
4101	if (copyflag & U_TO_K) {
4102		ASSERT((copyflag & K_TO_K) == 0);
4103		if (copyin(from, to, len))
4104			return (EFAULT);
4105	} else {
4106		ASSERT(copyflag & K_TO_K);
4107		bcopy(from, to, len);
4108	}
4109	return (0);
4110}
4111
4112int
4113strcopyout(void *from, void *to, size_t len, int copyflag)
4114{
4115	if (copyflag & U_TO_K) {
4116		if (copyout(from, to, len))
4117			return (EFAULT);
4118	} else {
4119		ASSERT(copyflag & K_TO_K);
4120		bcopy(from, to, len);
4121	}
4122	return (0);
4123}
4124
4125/*
4126 * strsignal_nolock() posts a signal to the process(es) at the stream head.
4127 * It assumes that the stream head lock is already held, whereas strsignal()
4128 * acquires the lock first.  This routine was created because a few callers
4129 * release the stream head lock before calling only to re-acquire it after
4130 * it returns.
4131 */
4132void
4133strsignal_nolock(stdata_t *stp, int sig, int32_t band)
4134{
4135	ASSERT(MUTEX_HELD(&stp->sd_lock));
4136	switch (sig) {
4137	case SIGPOLL:
4138		if (stp->sd_sigflags & S_MSG)
4139			strsendsig(stp->sd_siglist, S_MSG, (uchar_t)band, 0);
4140		break;
4141
4142	default:
4143		if (stp->sd_pgidp) {
4144			pgsignal(stp->sd_pgidp, sig);
4145		}
4146		break;
4147	}
4148}
4149
4150void
4151strsignal(stdata_t *stp, int sig, int32_t band)
4152{
4153	TRACE_3(TR_FAC_STREAMS_FR, TR_SENDSIG,
4154	    "strsignal:%p, %X, %X", stp, sig, band);
4155
4156	mutex_enter(&stp->sd_lock);
4157	switch (sig) {
4158	case SIGPOLL:
4159		if (stp->sd_sigflags & S_MSG)
4160			strsendsig(stp->sd_siglist, S_MSG, (uchar_t)band, 0);
4161		break;
4162
4163	default:
4164		if (stp->sd_pgidp) {
4165			pgsignal(stp->sd_pgidp, sig);
4166		}
4167		break;
4168	}
4169	mutex_exit(&stp->sd_lock);
4170}
4171
4172void
4173strhup(stdata_t *stp)
4174{
4175	ASSERT(mutex_owned(&stp->sd_lock));
4176	pollwakeup(&stp->sd_pollist, POLLHUP);
4177	if (stp->sd_sigflags & S_HANGUP)
4178		strsendsig(stp->sd_siglist, S_HANGUP, 0, 0);
4179}
4180
4181/*
4182 * Backenable the first queue upstream from `q' with a service procedure.
4183 */
4184void
4185backenable(queue_t *q, uchar_t pri)
4186{
4187	queue_t	*nq;
4188
4189	/*
4190	 * our presence might not prevent other modules in our own
4191	 * stream from popping/pushing since the caller of getq might not
4192	 * have a claim on the queue (some drivers do a getq on somebody
4193	 * else's queue - they know that the queue itself is not going away
4194	 * but the framework has to guarantee q_next in that stream.)
4195	 */
4196	claimstr(q);
4197
4198	/* find nearest back queue with service proc */
4199	for (nq = backq(q); nq && !nq->q_qinfo->qi_srvp; nq = backq(nq)) {
4200		ASSERT(STRMATED(q->q_stream) || STREAM(q) == STREAM(nq));
4201	}
4202
4203	if (nq) {
4204		kthread_t *freezer;
4205		/*
4206		 * backenable can be called either with no locks held
4207		 * or with the stream frozen (the latter occurs when a module
4208		 * calls rmvq with the stream frozen.) If the stream is frozen
4209		 * by the caller the caller will hold all qlocks in the stream.
4210		 * Note that a frozen stream doesn't freeze a mated stream,
4211		 * so we explicitly check for that.
4212		 */
4213		freezer = STREAM(q)->sd_freezer;
4214		if (freezer != curthread || STREAM(q) != STREAM(nq)) {
4215			mutex_enter(QLOCK(nq));
4216		}
4217#ifdef DEBUG
4218		else {
4219			ASSERT(frozenstr(q));
4220			ASSERT(MUTEX_HELD(QLOCK(q)));
4221			ASSERT(MUTEX_HELD(QLOCK(nq)));
4222		}
4223#endif
4224		setqback(nq, pri);
4225		qenable_locked(nq);
4226		if (freezer != curthread || STREAM(q) != STREAM(nq))
4227			mutex_exit(QLOCK(nq));
4228	}
4229	releasestr(q);
4230}
4231
4232/*
4233 * Return the appropriate errno when one of flags_to_check is set
4234 * in sd_flags. Uses the exported error routines if they are set.
4235 * Will return 0 if non error is set (or if the exported error routines
4236 * do not return an error).
4237 *
4238 * If there is both a read and write error to check we prefer the read error.
4239 * Also, give preference to recorded errno's over the error functions.
4240 * The flags that are handled are:
4241 *	STPLEX		return EINVAL
4242 *	STRDERR		return sd_rerror (and clear if STRDERRNONPERSIST)
4243 *	STWRERR		return sd_werror (and clear if STWRERRNONPERSIST)
4244 *	STRHUP		return sd_werror
4245 *
4246 * If the caller indicates that the operation is a peek a nonpersistent error
4247 * is not cleared.
4248 */
4249int
4250strgeterr(stdata_t *stp, int32_t flags_to_check, int ispeek)
4251{
4252	int32_t sd_flag = stp->sd_flag & flags_to_check;
4253	int error = 0;
4254
4255	ASSERT(MUTEX_HELD(&stp->sd_lock));
4256	ASSERT((flags_to_check & ~(STRDERR|STWRERR|STRHUP|STPLEX)) == 0);
4257	if (sd_flag & STPLEX)
4258		error = EINVAL;
4259	else if (sd_flag & STRDERR) {
4260		error = stp->sd_rerror;
4261		if ((stp->sd_flag & STRDERRNONPERSIST) && !ispeek) {
4262			/*
4263			 * Read errors are non-persistent i.e. discarded once
4264			 * returned to a non-peeking caller,
4265			 */
4266			stp->sd_rerror = 0;
4267			stp->sd_flag &= ~STRDERR;
4268		}
4269		if (error == 0 && stp->sd_rderrfunc != NULL) {
4270			int clearerr = 0;
4271
4272			error = (*stp->sd_rderrfunc)(stp->sd_vnode, ispeek,
4273			    &clearerr);
4274			if (clearerr) {
4275				stp->sd_flag &= ~STRDERR;
4276				stp->sd_rderrfunc = NULL;
4277			}
4278		}
4279	} else if (sd_flag & STWRERR) {
4280		error = stp->sd_werror;
4281		if ((stp->sd_flag & STWRERRNONPERSIST) && !ispeek) {
4282			/*
4283			 * Write errors are non-persistent i.e. discarded once
4284			 * returned to a non-peeking caller,
4285			 */
4286			stp->sd_werror = 0;
4287			stp->sd_flag &= ~STWRERR;
4288		}
4289		if (error == 0 && stp->sd_wrerrfunc != NULL) {
4290			int clearerr = 0;
4291
4292			error = (*stp->sd_wrerrfunc)(stp->sd_vnode, ispeek,
4293			    &clearerr);
4294			if (clearerr) {
4295				stp->sd_flag &= ~STWRERR;
4296				stp->sd_wrerrfunc = NULL;
4297			}
4298		}
4299	} else if (sd_flag & STRHUP) {
4300		/* sd_werror set when STRHUP */
4301		error = stp->sd_werror;
4302	}
4303	return (error);
4304}
4305
4306
4307/*
4308 * single-thread open/close/push/pop
4309 * for twisted streams also
4310 */
4311int
4312strstartplumb(stdata_t *stp, int flag, int cmd)
4313{
4314	int waited = 1;
4315	int error = 0;
4316
4317	if (STRMATED(stp)) {
4318		struct stdata *stmatep = stp->sd_mate;
4319
4320		STRLOCKMATES(stp);
4321		while (waited) {
4322			waited = 0;
4323			while (stmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4324				if ((cmd == I_POP) &&
4325				    (flag & (FNDELAY|FNONBLOCK))) {
4326					STRUNLOCKMATES(stp);
4327					return (EAGAIN);
4328				}
4329				waited = 1;
4330				mutex_exit(&stp->sd_lock);
4331				if (!cv_wait_sig(&stmatep->sd_monitor,
4332				    &stmatep->sd_lock)) {
4333					mutex_exit(&stmatep->sd_lock);
4334					return (EINTR);
4335				}
4336				mutex_exit(&stmatep->sd_lock);
4337				STRLOCKMATES(stp);
4338			}
4339			while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4340				if ((cmd == I_POP) &&
4341				    (flag & (FNDELAY|FNONBLOCK))) {
4342					STRUNLOCKMATES(stp);
4343					return (EAGAIN);
4344				}
4345				waited = 1;
4346				mutex_exit(&stmatep->sd_lock);
4347				if (!cv_wait_sig(&stp->sd_monitor,
4348				    &stp->sd_lock)) {
4349					mutex_exit(&stp->sd_lock);
4350					return (EINTR);
4351				}
4352				mutex_exit(&stp->sd_lock);
4353				STRLOCKMATES(stp);
4354			}
4355			if (stp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
4356				error = strgeterr(stp,
4357				    STRDERR|STWRERR|STRHUP|STPLEX, 0);
4358				if (error != 0) {
4359					STRUNLOCKMATES(stp);
4360					return (error);
4361				}
4362			}
4363		}
4364		stp->sd_flag |= STRPLUMB;
4365		STRUNLOCKMATES(stp);
4366	} else {
4367		mutex_enter(&stp->sd_lock);
4368		while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4369			if (((cmd == I_POP) || (cmd == _I_REMOVE)) &&
4370			    (flag & (FNDELAY|FNONBLOCK))) {
4371				mutex_exit(&stp->sd_lock);
4372				return (EAGAIN);
4373			}
4374			if (!cv_wait_sig(&stp->sd_monitor, &stp->sd_lock)) {
4375				mutex_exit(&stp->sd_lock);
4376				return (EINTR);
4377			}
4378			if (stp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
4379				error = strgeterr(stp,
4380				    STRDERR|STWRERR|STRHUP|STPLEX, 0);
4381				if (error != 0) {
4382					mutex_exit(&stp->sd_lock);
4383					return (error);
4384				}
4385			}
4386		}
4387		stp->sd_flag |= STRPLUMB;
4388		mutex_exit(&stp->sd_lock);
4389	}
4390	return (0);
4391}
4392
4393/*
4394 * Complete the plumbing operation associated with stream `stp'.
4395 */
4396void
4397strendplumb(stdata_t *stp)
4398{
4399	ASSERT(MUTEX_HELD(&stp->sd_lock));
4400	ASSERT(stp->sd_flag & STRPLUMB);
4401	stp->sd_flag &= ~STRPLUMB;
4402	cv_broadcast(&stp->sd_monitor);
4403}
4404
4405/*
4406 * This describes how the STREAMS framework handles synchronization
4407 * during open/push and close/pop.
4408 * The key interfaces for open and close are qprocson and qprocsoff,
4409 * respectively. While the close case in general is harder both open
4410 * have close have significant similarities.
4411 *
4412 * During close the STREAMS framework has to both ensure that there
4413 * are no stale references to the queue pair (and syncq) that
4414 * are being closed and also provide the guarantees that are documented
4415 * in qprocsoff(9F).
4416 * If there are stale references to the queue that is closing it can
4417 * result in kernel memory corruption or kernel panics.
4418 *
4419 * Note that is it up to the module/driver to ensure that it itself
4420 * does not have any stale references to the closing queues once its close
4421 * routine returns. This includes:
4422 *  - Cancelling any timeout/bufcall/qtimeout/qbufcall callback routines
4423 *    associated with the queues. For timeout and bufcall callbacks the
4424 *    module/driver also has to ensure (or wait for) any callbacks that
4425 *    are in progress.
4426 *  - If the module/driver is using esballoc it has to ensure that any
4427 *    esballoc free functions do not refer to a queue that has closed.
4428 *    (Note that in general the close routine can not wait for the esballoc'ed
4429 *    messages to be freed since that can cause a deadlock.)
4430 *  - Cancelling any interrupts that refer to the closing queues and
4431 *    also ensuring that there are no interrupts in progress that will
4432 *    refer to the closing queues once the close routine returns.
4433 *  - For multiplexors removing any driver global state that refers to
4434 *    the closing queue and also ensuring that there are no threads in
4435 *    the multiplexor that has picked up a queue pointer but not yet
4436 *    finished using it.
4437 *
4438 * In addition, a driver/module can only reference the q_next pointer
4439 * in its open, close, put, or service procedures or in a
4440 * qtimeout/qbufcall callback procedure executing "on" the correct
4441 * stream. Thus it can not reference the q_next pointer in an interrupt
4442 * routine or a timeout, bufcall or esballoc callback routine. Likewise
4443 * it can not reference q_next of a different queue e.g. in a mux that
4444 * passes messages from one queues put/service procedure to another queue.
4445 * In all the cases when the driver/module can not access the q_next
4446 * field it must use the *next* versions e.g. canputnext instead of
4447 * canput(q->q_next) and putnextctl instead of putctl(q->q_next, ...).
4448 *
4449 *
4450 * Assuming that the driver/module conforms to the above constraints
4451 * the STREAMS framework has to avoid stale references to q_next for all
4452 * the framework internal cases which include (but are not limited to):
4453 *  - Threads in canput/canputnext/backenable and elsewhere that are
4454 *    walking q_next.
4455 *  - Messages on a syncq that have a reference to the queue through b_queue.
4456 *  - Messages on an outer perimeter (syncq) that have a reference to the
4457 *    queue through b_queue.
4458 *  - Threads that use q_nfsrv (e.g. canput) to find a queue.
4459 *    Note that only canput and bcanput use q_nfsrv without any locking.
4460 *
4461 * The STREAMS framework providing the qprocsoff(9F) guarantees means that
4462 * after qprocsoff returns, the framework has to ensure that no threads can
4463 * enter the put or service routines for the closing read or write-side queue.
4464 * In addition to preventing "direct" entry into the put procedures
4465 * the framework also has to prevent messages being drained from
4466 * the syncq or the outer perimeter.
4467 * XXX Note that currently qdetach does relies on D_MTOCEXCL as the only
4468 * mechanism to prevent qwriter(PERIM_OUTER) from running after
4469 * qprocsoff has returned.
4470 * Note that if a module/driver uses put(9F) on one of its own queues
4471 * it is up to the module/driver to ensure that the put() doesn't
4472 * get called when the queue is closing.
4473 *
4474 *
4475 * The framework aspects of the above "contract" is implemented by
4476 * qprocsoff, removeq, and strlock:
4477 *  - qprocsoff (disable_svc) sets QWCLOSE to prevent runservice from
4478 *    entering the service procedures.
4479 *  - strlock acquires the sd_lock and sd_reflock to prevent putnext,
4480 *    canputnext, backenable etc from dereferencing the q_next that will
4481 *    soon change.
4482 *  - strlock waits for sd_refcnt to be zero to wait for e.g. any canputnext
4483 *    or other q_next walker that uses claimstr/releasestr to finish.
4484 *  - optionally for every syncq in the stream strlock acquires all the
4485 *    sq_lock's and waits for all sq_counts to drop to a value that indicates
4486 *    that no thread executes in the put or service procedures and that no
4487 *    thread is draining into the module/driver. This ensures that no
4488 *    open, close, put, service, or qtimeout/qbufcall callback procedure is
4489 *    currently executing hence no such thread can end up with the old stale
4490 *    q_next value and no canput/backenable can have the old stale
4491 *    q_nfsrv/q_next.
4492 *  - qdetach (wait_svc) makes sure that any scheduled or running threads
4493 *    have either finished or observed the QWCLOSE flag and gone away.
4494 */
4495
4496
4497/*
4498 * Get all the locks necessary to change q_next.
4499 *
4500 * Wait for sd_refcnt to reach 0 and, if sqlist is present, wait for  the
4501 * sq_count of each syncq in the list to drop to sq_rmqcount, indicating that
4502 * the only threads inside the sqncq are threads currently calling removeq().
4503 * Since threads calling removeq() are in the process of removing their queues
4504 * from the stream, we do not need to worry about them accessing a stale q_next
4505 * pointer and thus we do not need to wait for them to exit (in fact, waiting
4506 * for them can cause deadlock).
4507 *
4508 * This routine is subject to starvation since it does not set any flag to
4509 * prevent threads from entering a module in the stream(i.e. sq_count can
4510 * increase on some syncq while it is waiting on some other syncq.)
4511 *
4512 * Assumes that only one thread attempts to call strlock for a given
4513 * stream. If this is not the case the two threads would deadlock.
4514 * This assumption is guaranteed since strlock is only called by insertq
4515 * and removeq and streams plumbing changes are single-threaded for
4516 * a given stream using the STWOPEN, STRCLOSE, and STRPLUMB flags.
4517 *
4518 * For pipes, it is not difficult to atomically designate a pair of streams
4519 * to be mated. Once mated atomically by the framework the twisted pair remain
4520 * configured that way until dismantled atomically by the framework.
4521 * When plumbing takes place on a twisted stream it is necessary to ensure that
4522 * this operation is done exclusively on the twisted stream since two such
4523 * operations, each initiated on different ends of the pipe will deadlock
4524 * waiting for each other to complete.
4525 *
4526 * On entry, no locks should be held.
4527 * The locks acquired and held by strlock depends on a few factors.
4528 * - If sqlist is non-NULL all the syncq locks in the sqlist will be acquired
4529 *   and held on exit and all sq_count are at an acceptable level.
4530 * - In all cases, sd_lock and sd_reflock are acquired and held on exit with
4531 *   sd_refcnt being zero.
4532 */
4533
4534static void
4535strlock(struct stdata *stp, sqlist_t *sqlist)
4536{
4537	syncql_t *sql, *sql2;
4538retry:
4539	/*
4540	 * Wait for any claimstr to go away.
4541	 */
4542	if (STRMATED(stp)) {
4543		struct stdata *stp1, *stp2;
4544
4545		STRLOCKMATES(stp);
4546		/*
4547		 * Note that the selection of locking order is not
4548		 * important, just that they are always aquired in
4549		 * the same order.  To assure this, we choose this
4550		 * order based on the value of the pointer, and since
4551		 * the pointer will not change for the life of this
4552		 * pair, we will always grab the locks in the same
4553		 * order (and hence, prevent deadlocks).
4554		 */
4555		if (&(stp->sd_lock) > &((stp->sd_mate)->sd_lock)) {
4556			stp1 = stp;
4557			stp2 = stp->sd_mate;
4558		} else {
4559			stp2 = stp;
4560			stp1 = stp->sd_mate;
4561		}
4562		mutex_enter(&stp1->sd_reflock);
4563		if (stp1->sd_refcnt > 0) {
4564			STRUNLOCKMATES(stp);
4565			cv_wait(&stp1->sd_refmonitor, &stp1->sd_reflock);
4566			mutex_exit(&stp1->sd_reflock);
4567			goto retry;
4568		}
4569		mutex_enter(&stp2->sd_reflock);
4570		if (stp2->sd_refcnt > 0) {
4571			STRUNLOCKMATES(stp);
4572			mutex_exit(&stp1->sd_reflock);
4573			cv_wait(&stp2->sd_refmonitor, &stp2->sd_reflock);
4574			mutex_exit(&stp2->sd_reflock);
4575			goto retry;
4576		}
4577		STREAM_PUTLOCKS_ENTER(stp1);
4578		STREAM_PUTLOCKS_ENTER(stp2);
4579	} else {
4580		mutex_enter(&stp->sd_lock);
4581		mutex_enter(&stp->sd_reflock);
4582		while (stp->sd_refcnt > 0) {
4583			mutex_exit(&stp->sd_lock);
4584			cv_wait(&stp->sd_refmonitor, &stp->sd_reflock);
4585			if (mutex_tryenter(&stp->sd_lock) == 0) {
4586				mutex_exit(&stp->sd_reflock);
4587				mutex_enter(&stp->sd_lock);
4588				mutex_enter(&stp->sd_reflock);
4589			}
4590		}
4591		STREAM_PUTLOCKS_ENTER(stp);
4592	}
4593
4594	if (sqlist == NULL)
4595		return;
4596
4597	for (sql = sqlist->sqlist_head; sql; sql = sql->sql_next) {
4598		syncq_t *sq = sql->sql_sq;
4599		uint16_t count;
4600
4601		mutex_enter(SQLOCK(sq));
4602		count = sq->sq_count;
4603		ASSERT(sq->sq_rmqcount <= count);
4604		SQ_PUTLOCKS_ENTER(sq);
4605		SUM_SQ_PUTCOUNTS(sq, count);
4606		if (count == sq->sq_rmqcount)
4607			continue;
4608
4609		/* Failed - drop all locks that we have acquired so far */
4610		if (STRMATED(stp)) {
4611			STREAM_PUTLOCKS_EXIT(stp);
4612			STREAM_PUTLOCKS_EXIT(stp->sd_mate);
4613			STRUNLOCKMATES(stp);
4614			mutex_exit(&stp->sd_reflock);
4615			mutex_exit(&stp->sd_mate->sd_reflock);
4616		} else {
4617			STREAM_PUTLOCKS_EXIT(stp);
4618			mutex_exit(&stp->sd_lock);
4619			mutex_exit(&stp->sd_reflock);
4620		}
4621		for (sql2 = sqlist->sqlist_head; sql2 != sql;
4622		    sql2 = sql2->sql_next) {
4623			SQ_PUTLOCKS_EXIT(sql2->sql_sq);
4624			mutex_exit(SQLOCK(sql2->sql_sq));
4625		}
4626
4627		/*
4628		 * The wait loop below may starve when there are many threads
4629		 * claiming the syncq. This is especially a problem with permod
4630		 * syncqs (IP). To lessen the impact of the problem we increment
4631		 * sq_needexcl and clear fastbits so that putnexts will slow
4632		 * down and call sqenable instead of draining right away.
4633		 */
4634		sq->sq_needexcl++;
4635		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
4636		while (count > sq->sq_rmqcount) {
4637			sq->sq_flags |= SQ_WANTWAKEUP;
4638			SQ_PUTLOCKS_EXIT(sq);
4639			cv_wait(&sq->sq_wait, SQLOCK(sq));
4640			count = sq->sq_count;
4641			SQ_PUTLOCKS_ENTER(sq);
4642			SUM_SQ_PUTCOUNTS(sq, count);
4643		}
4644		sq->sq_needexcl--;
4645		if (sq->sq_needexcl == 0)
4646			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
4647		SQ_PUTLOCKS_EXIT(sq);
4648		ASSERT(count == sq->sq_rmqcount);
4649		mutex_exit(SQLOCK(sq));
4650		goto retry;
4651	}
4652}
4653
4654/*
4655 * Drop all the locks that strlock acquired.
4656 */
4657static void
4658strunlock(struct stdata *stp, sqlist_t *sqlist)
4659{
4660	syncql_t *sql;
4661
4662	if (STRMATED(stp)) {
4663		STREAM_PUTLOCKS_EXIT(stp);
4664		STREAM_PUTLOCKS_EXIT(stp->sd_mate);
4665		STRUNLOCKMATES(stp);
4666		mutex_exit(&stp->sd_reflock);
4667		mutex_exit(&stp->sd_mate->sd_reflock);
4668	} else {
4669		STREAM_PUTLOCKS_EXIT(stp);
4670		mutex_exit(&stp->sd_lock);
4671		mutex_exit(&stp->sd_reflock);
4672	}
4673
4674	if (sqlist == NULL)
4675		return;
4676
4677	for (sql = sqlist->sqlist_head; sql; sql = sql->sql_next) {
4678		SQ_PUTLOCKS_EXIT(sql->sql_sq);
4679		mutex_exit(SQLOCK(sql->sql_sq));
4680	}
4681}
4682
4683/*
4684 * When the module has service procedure, we need check if the next
4685 * module which has service procedure is in flow control to trigger
4686 * the backenable.
4687 */
4688static void
4689backenable_insertedq(queue_t *q)
4690{
4691	qband_t	*qbp;
4692
4693	claimstr(q);
4694	if (q->q_qinfo->qi_srvp != NULL && q->q_next != NULL) {
4695		if (q->q_next->q_nfsrv->q_flag & QWANTW)
4696			backenable(q, 0);
4697
4698		qbp = q->q_next->q_nfsrv->q_bandp;
4699		for (; qbp != NULL; qbp = qbp->qb_next)
4700			if ((qbp->qb_flag & QB_WANTW) && qbp->qb_first != NULL)
4701				backenable(q, qbp->qb_first->b_band);
4702	}
4703	releasestr(q);
4704}
4705
4706/*
4707 * Given two read queues, insert a new single one after another.
4708 *
4709 * This routine acquires all the necessary locks in order to change
4710 * q_next and related pointer using strlock().
4711 * It depends on the stream head ensuring that there are no concurrent
4712 * insertq or removeq on the same stream. The stream head ensures this
4713 * using the flags STWOPEN, STRCLOSE, and STRPLUMB.
4714 *
4715 * Note that no syncq locks are held during the q_next change. This is
4716 * applied to all streams since, unlike removeq, there is no problem of stale
4717 * pointers when adding a module to the stream. Thus drivers/modules that do a
4718 * canput(rq->q_next) would never get a closed/freed queue pointer even if we
4719 * applied this optimization to all streams.
4720 */
4721void
4722insertq(struct stdata *stp, queue_t *new)
4723{
4724	queue_t	*after;
4725	queue_t *wafter;
4726	queue_t *wnew = _WR(new);
4727	boolean_t have_fifo = B_FALSE;
4728
4729	if (new->q_flag & _QINSERTING) {
4730		ASSERT(stp->sd_vnode->v_type != VFIFO);
4731		after = new->q_next;
4732		wafter = _WR(new->q_next);
4733	} else {
4734		after = _RD(stp->sd_wrq);
4735		wafter = stp->sd_wrq;
4736	}
4737
4738	TRACE_2(TR_FAC_STREAMS_FR, TR_INSERTQ,
4739	    "insertq:%p, %p", after, new);
4740	ASSERT(after->q_flag & QREADR);
4741	ASSERT(new->q_flag & QREADR);
4742
4743	strlock(stp, NULL);
4744
4745	/* Do we have a FIFO? */
4746	if (wafter->q_next == after) {
4747		have_fifo = B_TRUE;
4748		wnew->q_next = new;
4749	} else {
4750		wnew->q_next = wafter->q_next;
4751	}
4752	new->q_next = after;
4753
4754	set_nfsrv_ptr(new, wnew, after, wafter);
4755	/*
4756	 * set_nfsrv_ptr() needs to know if this is an insertion or not,
4757	 * so only reset this flag after calling it.
4758	 */
4759	new->q_flag &= ~_QINSERTING;
4760
4761	if (have_fifo) {
4762		wafter->q_next = wnew;
4763	} else {
4764		if (wafter->q_next)
4765			_OTHERQ(wafter->q_next)->q_next = new;
4766		wafter->q_next = wnew;
4767	}
4768
4769	set_qend(new);
4770	/* The QEND flag might have to be updated for the upstream guy */
4771	set_qend(after);
4772
4773	ASSERT(_SAMESTR(new) == O_SAMESTR(new));
4774	ASSERT(_SAMESTR(wnew) == O_SAMESTR(wnew));
4775	ASSERT(_SAMESTR(after) == O_SAMESTR(after));
4776	ASSERT(_SAMESTR(wafter) == O_SAMESTR(wafter));
4777	strsetuio(stp);
4778
4779	/*
4780	 * If this was a module insertion, bump the push count.
4781	 */
4782	if (!(new->q_flag & QISDRV))
4783		stp->sd_pushcnt++;
4784
4785	strunlock(stp, NULL);
4786
4787	/* check if the write Q needs backenable */
4788	backenable_insertedq(wnew);
4789
4790	/* check if the read Q needs backenable */
4791	backenable_insertedq(new);
4792}
4793
4794/*
4795 * Given a read queue, unlink it from any neighbors.
4796 *
4797 * This routine acquires all the necessary locks in order to
4798 * change q_next and related pointers and also guard against
4799 * stale references (e.g. through q_next) to the queue that
4800 * is being removed. It also plays part of the role in ensuring
4801 * that the module's/driver's put procedure doesn't get called
4802 * after qprocsoff returns.
4803 *
4804 * Removeq depends on the stream head ensuring that there are
4805 * no concurrent insertq or removeq on the same stream. The
4806 * stream head ensures this using the flags STWOPEN, STRCLOSE and
4807 * STRPLUMB.
4808 *
4809 * The set of locks needed to remove the queue is different in
4810 * different cases:
4811 *
4812 * Acquire sd_lock, sd_reflock, and all the syncq locks in the stream after
4813 * waiting for the syncq reference count to drop to 0 indicating that no
4814 * non-close threads are present anywhere in the stream. This ensures that any
4815 * module/driver can reference q_next in its open, close, put, or service
4816 * procedures.
4817 *
4818 * The sq_rmqcount counter tracks the number of threads inside removeq().
4819 * strlock() ensures that there is either no threads executing inside perimeter
4820 * or there is only a thread calling qprocsoff().
4821 *
4822 * strlock() compares the value of sq_count with the number of threads inside
4823 * removeq() and waits until sq_count is equal to sq_rmqcount. We need to wakeup
4824 * any threads waiting in strlock() when the sq_rmqcount increases.
4825 */
4826
4827void
4828removeq(queue_t *qp)
4829{
4830	queue_t *wqp = _WR(qp);
4831	struct stdata *stp = STREAM(qp);
4832	sqlist_t *sqlist = NULL;
4833	boolean_t isdriver;
4834	int moved;
4835	syncq_t *sq = qp->q_syncq;
4836	syncq_t *wsq = wqp->q_syncq;
4837
4838	ASSERT(stp);
4839
4840	TRACE_2(TR_FAC_STREAMS_FR, TR_REMOVEQ,
4841	    "removeq:%p %p", qp, wqp);
4842	ASSERT(qp->q_flag&QREADR);
4843
4844	/*
4845	 * For queues using Synchronous streams, we must wait for all threads in
4846	 * rwnext() to drain out before proceeding.
4847	 */
4848	if (qp->q_flag & QSYNCSTR) {
4849		/* First, we need wakeup any threads blocked in rwnext() */
4850		mutex_enter(SQLOCK(sq));
4851		if (sq->sq_flags & SQ_WANTWAKEUP) {
4852			sq->sq_flags &= ~SQ_WANTWAKEUP;
4853			cv_broadcast(&sq->sq_wait);
4854		}
4855		mutex_exit(SQLOCK(sq));
4856
4857		if (wsq != sq) {
4858			mutex_enter(SQLOCK(wsq));
4859			if (wsq->sq_flags & SQ_WANTWAKEUP) {
4860				wsq->sq_flags &= ~SQ_WANTWAKEUP;
4861				cv_broadcast(&wsq->sq_wait);
4862			}
4863			mutex_exit(SQLOCK(wsq));
4864		}
4865
4866		mutex_enter(QLOCK(qp));
4867		while (qp->q_rwcnt > 0) {
4868			qp->q_flag |= QWANTRMQSYNC;
4869			cv_wait(&qp->q_wait, QLOCK(qp));
4870		}
4871		mutex_exit(QLOCK(qp));
4872
4873		mutex_enter(QLOCK(wqp));
4874		while (wqp->q_rwcnt > 0) {
4875			wqp->q_flag |= QWANTRMQSYNC;
4876			cv_wait(&wqp->q_wait, QLOCK(wqp));
4877		}
4878		mutex_exit(QLOCK(wqp));
4879	}
4880
4881	mutex_enter(SQLOCK(sq));
4882	sq->sq_rmqcount++;
4883	if (sq->sq_flags & SQ_WANTWAKEUP) {
4884		sq->sq_flags &= ~SQ_WANTWAKEUP;
4885		cv_broadcast(&sq->sq_wait);
4886	}
4887	mutex_exit(SQLOCK(sq));
4888
4889	isdriver = (qp->q_flag & QISDRV);
4890
4891	sqlist = sqlist_build(qp, stp, STRMATED(stp));
4892	strlock(stp, sqlist);
4893
4894	reset_nfsrv_ptr(qp, wqp);
4895
4896	ASSERT(wqp->q_next == NULL || backq(qp)->q_next == qp);
4897	ASSERT(qp->q_next == NULL || backq(wqp)->q_next == wqp);
4898	/* Do we have a FIFO? */
4899	if (wqp->q_next == qp) {
4900		stp->sd_wrq->q_next = _RD(stp->sd_wrq);
4901	} else {
4902		if (wqp->q_next)
4903			backq(qp)->q_next = qp->q_next;
4904		if (qp->q_next)
4905			backq(wqp)->q_next = wqp->q_next;
4906	}
4907
4908	/* The QEND flag might have to be updated for the upstream guy */
4909	if (qp->q_next)
4910		set_qend(qp->q_next);
4911
4912	ASSERT(_SAMESTR(stp->sd_wrq) == O_SAMESTR(stp->sd_wrq));
4913	ASSERT(_SAMESTR(_RD(stp->sd_wrq)) == O_SAMESTR(_RD(stp->sd_wrq)));
4914
4915	/*
4916	 * Move any messages destined for the put procedures to the next
4917	 * syncq in line. Otherwise free them.
4918	 */
4919	moved = 0;
4920	/*
4921	 * Quick check to see whether there are any messages or events.
4922	 */
4923	if (qp->q_syncqmsgs != 0 || (qp->q_syncq->sq_flags & SQ_EVENTS))
4924		moved += propagate_syncq(qp);
4925	if (wqp->q_syncqmsgs != 0 ||
4926	    (wqp->q_syncq->sq_flags & SQ_EVENTS))
4927		moved += propagate_syncq(wqp);
4928
4929	strsetuio(stp);
4930
4931	/*
4932	 * If this was a module removal, decrement the push count.
4933	 */
4934	if (!isdriver)
4935		stp->sd_pushcnt--;
4936
4937	strunlock(stp, sqlist);
4938	sqlist_free(sqlist);
4939
4940	/*
4941	 * Make sure any messages that were propagated are drained.
4942	 * Also clear any QFULL bit caused by messages that were propagated.
4943	 */
4944
4945	if (qp->q_next != NULL) {
4946		clr_qfull(qp);
4947		/*
4948		 * For the driver calling qprocsoff, propagate_syncq
4949		 * frees all the messages instead of putting it in
4950		 * the stream head
4951		 */
4952		if (!isdriver && (moved > 0))
4953			emptysq(qp->q_next->q_syncq);
4954	}
4955	if (wqp->q_next != NULL) {
4956		clr_qfull(wqp);
4957		/*
4958		 * We come here for any pop of a module except for the
4959		 * case of driver being removed. We don't call emptysq
4960		 * if we did not move any messages. This will avoid holding
4961		 * PERMOD syncq locks in emptysq
4962		 */
4963		if (moved > 0)
4964			emptysq(wqp->q_next->q_syncq);
4965	}
4966
4967	mutex_enter(SQLOCK(sq));
4968	sq->sq_rmqcount--;
4969	mutex_exit(SQLOCK(sq));
4970}
4971
4972/*
4973 * Prevent further entry by setting a flag (like SQ_FROZEN, SQ_BLOCKED or
4974 * SQ_WRITER) on a syncq.
4975 * If maxcnt is not -1 it assumes that caller has "maxcnt" claim(s) on the
4976 * sync queue and waits until sq_count reaches maxcnt.
4977 *
4978 * if maxcnt is -1 there's no need to grab sq_putlocks since the caller
4979 * does not care about putnext threads that are in the middle of calling put
4980 * entry points.
4981 *
4982 * This routine is used for both inner and outer syncqs.
4983 */
4984static void
4985blocksq(syncq_t *sq, ushort_t flag, int maxcnt)
4986{
4987	uint16_t count = 0;
4988
4989	mutex_enter(SQLOCK(sq));
4990	/*
4991	 * Wait for SQ_FROZEN/SQ_BLOCKED to be reset.
4992	 * SQ_FROZEN will be set if there is a frozen stream that has a
4993	 * queue which also refers to this "shared" syncq.
4994	 * SQ_BLOCKED will be set if there is "off" queue which also
4995	 * refers to this "shared" syncq.
4996	 */
4997	if (maxcnt != -1) {
4998		count = sq->sq_count;
4999		SQ_PUTLOCKS_ENTER(sq);
5000		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
5001		SUM_SQ_PUTCOUNTS(sq, count);
5002	}
5003	sq->sq_needexcl++;
5004	ASSERT(sq->sq_needexcl != 0);	/* wraparound */
5005
5006	while ((sq->sq_flags & flag) ||
5007	    (maxcnt != -1 && count > (unsigned)maxcnt)) {
5008		sq->sq_flags |= SQ_WANTWAKEUP;
5009		if (maxcnt != -1) {
5010			SQ_PUTLOCKS_EXIT(sq);
5011		}
5012		cv_wait(&sq->sq_wait, SQLOCK(sq));
5013		if (maxcnt != -1) {
5014			count = sq->sq_count;
5015			SQ_PUTLOCKS_ENTER(sq);
5016			SUM_SQ_PUTCOUNTS(sq, count);
5017		}
5018	}
5019	sq->sq_needexcl--;
5020	sq->sq_flags |= flag;
5021	ASSERT(maxcnt == -1 || count == maxcnt);
5022	if (maxcnt != -1) {
5023		if (sq->sq_needexcl == 0) {
5024			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
5025		}
5026		SQ_PUTLOCKS_EXIT(sq);
5027	} else if (sq->sq_needexcl == 0) {
5028		SQ_PUTCOUNT_SETFAST(sq);
5029	}
5030
5031	mutex_exit(SQLOCK(sq));
5032}
5033
5034/*
5035 * Reset a flag that was set with blocksq.
5036 *
5037 * Can not use this routine to reset SQ_WRITER.
5038 *
5039 * If "isouter" is set then the syncq is assumed to be an outer perimeter
5040 * and drain_syncq is not called. Instead we rely on the qwriter_outer thread
5041 * to handle the queued qwriter operations.
5042 *
5043 * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
5044 * sq_putlocks are used.
5045 */
5046static void
5047unblocksq(syncq_t *sq, uint16_t resetflag, int isouter)
5048{
5049	uint16_t flags;
5050
5051	mutex_enter(SQLOCK(sq));
5052	ASSERT(resetflag != SQ_WRITER);
5053	ASSERT(sq->sq_flags & resetflag);
5054	flags = sq->sq_flags & ~resetflag;
5055	sq->sq_flags = flags;
5056	if (flags & (SQ_QUEUED | SQ_WANTWAKEUP)) {
5057		if (flags & SQ_WANTWAKEUP) {
5058			flags &= ~SQ_WANTWAKEUP;
5059			cv_broadcast(&sq->sq_wait);
5060		}
5061		sq->sq_flags = flags;
5062		if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
5063			if (!isouter) {
5064				/* drain_syncq drops SQLOCK */
5065				drain_syncq(sq);
5066				return;
5067			}
5068		}
5069	}
5070	mutex_exit(SQLOCK(sq));
5071}
5072
5073/*
5074 * Reset a flag that was set with blocksq.
5075 * Does not drain the syncq. Use emptysq() for that.
5076 * Returns 1 if SQ_QUEUED is set. Otherwise 0.
5077 *
5078 * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
5079 * sq_putlocks are used.
5080 */
5081static int
5082dropsq(syncq_t *sq, uint16_t resetflag)
5083{
5084	uint16_t flags;
5085
5086	mutex_enter(SQLOCK(sq));
5087	ASSERT(sq->sq_flags & resetflag);
5088	flags = sq->sq_flags & ~resetflag;
5089	if (flags & SQ_WANTWAKEUP) {
5090		flags &= ~SQ_WANTWAKEUP;
5091		cv_broadcast(&sq->sq_wait);
5092	}
5093	sq->sq_flags = flags;
5094	mutex_exit(SQLOCK(sq));
5095	if (flags & SQ_QUEUED)
5096		return (1);
5097	return (0);
5098}
5099
5100/*
5101 * Empty all the messages on a syncq.
5102 *
5103 * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
5104 * sq_putlocks are used.
5105 */
5106static void
5107emptysq(syncq_t *sq)
5108{
5109	uint16_t flags;
5110
5111	mutex_enter(SQLOCK(sq));
5112	flags = sq->sq_flags;
5113	if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
5114		/*
5115		 * To prevent potential recursive invocation of drain_syncq we
5116		 * do not call drain_syncq if count is non-zero.
5117		 */
5118		if (sq->sq_count == 0) {
5119			/* drain_syncq() drops SQLOCK */
5120			drain_syncq(sq);
5121			return;
5122		} else
5123			sqenable(sq);
5124	}
5125	mutex_exit(SQLOCK(sq));
5126}
5127
5128/*
5129 * Ordered insert while removing duplicates.
5130 */
5131static void
5132sqlist_insert(sqlist_t *sqlist, syncq_t *sqp)
5133{
5134	syncql_t *sqlp, **prev_sqlpp, *new_sqlp;
5135
5136	prev_sqlpp = &sqlist->sqlist_head;
5137	while ((sqlp = *prev_sqlpp) != NULL) {
5138		if (sqlp->sql_sq >= sqp) {
5139			if (sqlp->sql_sq == sqp)	/* duplicate */
5140				return;
5141			break;
5142		}
5143		prev_sqlpp = &sqlp->sql_next;
5144	}
5145	new_sqlp = &sqlist->sqlist_array[sqlist->sqlist_index++];
5146	ASSERT((char *)new_sqlp < (char *)sqlist + sqlist->sqlist_size);
5147	new_sqlp->sql_next = sqlp;
5148	new_sqlp->sql_sq = sqp;
5149	*prev_sqlpp = new_sqlp;
5150}
5151
5152/*
5153 * Walk the write side queues until we hit either the driver
5154 * or a twist in the stream (_SAMESTR will return false in both
5155 * these cases) then turn around and walk the read side queues
5156 * back up to the stream head.
5157 */
5158static void
5159sqlist_insertall(sqlist_t *sqlist, queue_t *q)
5160{
5161	while (q != NULL) {
5162		sqlist_insert(sqlist, q->q_syncq);
5163
5164		if (_SAMESTR(q))
5165			q = q->q_next;
5166		else if (!(q->q_flag & QREADR))
5167			q = _RD(q);
5168		else
5169			q = NULL;
5170	}
5171}
5172
5173/*
5174 * Allocate and build a list of all syncqs in a stream and the syncq(s)
5175 * associated with the "q" parameter. The resulting list is sorted in a
5176 * canonical order and is free of duplicates.
5177 * Assumes the passed queue is a _RD(q).
5178 */
5179static sqlist_t *
5180sqlist_build(queue_t *q, struct stdata *stp, boolean_t do_twist)
5181{
5182	sqlist_t *sqlist = sqlist_alloc(stp, KM_SLEEP);
5183
5184	/*
5185	 * start with the current queue/qpair
5186	 */
5187	ASSERT(q->q_flag & QREADR);
5188
5189	sqlist_insert(sqlist, q->q_syncq);
5190	sqlist_insert(sqlist, _WR(q)->q_syncq);
5191
5192	sqlist_insertall(sqlist, stp->sd_wrq);
5193	if (do_twist)
5194		sqlist_insertall(sqlist, stp->sd_mate->sd_wrq);
5195
5196	return (sqlist);
5197}
5198
5199static sqlist_t *
5200sqlist_alloc(struct stdata *stp, int kmflag)
5201{
5202	size_t sqlist_size;
5203	sqlist_t *sqlist;
5204
5205	/*
5206	 * Allocate 2 syncql_t's for each pushed module. Note that
5207	 * the sqlist_t structure already has 4 syncql_t's built in:
5208	 * 2 for the stream head, and 2 for the driver/other stream head.
5209	 */
5210	sqlist_size = 2 * sizeof (syncql_t) * stp->sd_pushcnt +
5211	    sizeof (sqlist_t);
5212	if (STRMATED(stp))
5213		sqlist_size += 2 * sizeof (syncql_t) * stp->sd_mate->sd_pushcnt;
5214	sqlist = kmem_alloc(sqlist_size, kmflag);
5215
5216	sqlist->sqlist_head = NULL;
5217	sqlist->sqlist_size = sqlist_size;
5218	sqlist->sqlist_index = 0;
5219
5220	return (sqlist);
5221}
5222
5223/*
5224 * Free the list created by sqlist_alloc()
5225 */
5226static void
5227sqlist_free(sqlist_t *sqlist)
5228{
5229	kmem_free(sqlist, sqlist->sqlist_size);
5230}
5231
5232/*
5233 * Prevent any new entries into any syncq in this stream.
5234 * Used by freezestr.
5235 */
5236void
5237strblock(queue_t *q)
5238{
5239	struct stdata	*stp;
5240	syncql_t	*sql;
5241	sqlist_t	*sqlist;
5242
5243	q = _RD(q);
5244
5245	stp = STREAM(q);
5246	ASSERT(stp != NULL);
5247
5248	/*
5249	 * Get a sorted list with all the duplicates removed containing
5250	 * all the syncqs referenced by this stream.
5251	 */
5252	sqlist = sqlist_build(q, stp, B_FALSE);
5253	for (sql = sqlist->sqlist_head; sql != NULL; sql = sql->sql_next)
5254		blocksq(sql->sql_sq, SQ_FROZEN, -1);
5255	sqlist_free(sqlist);
5256}
5257
5258/*
5259 * Release the block on new entries into this stream
5260 */
5261void
5262strunblock(queue_t *q)
5263{
5264	struct stdata	*stp;
5265	syncql_t	*sql;
5266	sqlist_t	*sqlist;
5267	int		drain_needed;
5268
5269	q = _RD(q);
5270
5271	/*
5272	 * Get a sorted list with all the duplicates removed containing
5273	 * all the syncqs referenced by this stream.
5274	 * Have to drop the SQ_FROZEN flag on all the syncqs before
5275	 * starting to drain them; otherwise the draining might
5276	 * cause a freezestr in some module on the stream (which
5277	 * would deadlock.)
5278	 */
5279	stp = STREAM(q);
5280	ASSERT(stp != NULL);
5281	sqlist = sqlist_build(q, stp, B_FALSE);
5282	drain_needed = 0;
5283	for (sql = sqlist->sqlist_head; sql != NULL; sql = sql->sql_next)
5284		drain_needed += dropsq(sql->sql_sq, SQ_FROZEN);
5285	if (drain_needed) {
5286		for (sql = sqlist->sqlist_head; sql != NULL;
5287		    sql = sql->sql_next)
5288			emptysq(sql->sql_sq);
5289	}
5290	sqlist_free(sqlist);
5291}
5292
5293#ifdef DEBUG
5294static int
5295qprocsareon(queue_t *rq)
5296{
5297	if (rq->q_next == NULL)
5298		return (0);
5299	return (_WR(rq->q_next)->q_next == _WR(rq));
5300}
5301
5302int
5303qclaimed(queue_t *q)
5304{
5305	uint_t count;
5306
5307	count = q->q_syncq->sq_count;
5308	SUM_SQ_PUTCOUNTS(q->q_syncq, count);
5309	return (count != 0);
5310}
5311
5312/*
5313 * Check if anyone has frozen this stream with freezestr
5314 */
5315int
5316frozenstr(queue_t *q)
5317{
5318	return ((q->q_syncq->sq_flags & SQ_FROZEN) != 0);
5319}
5320#endif /* DEBUG */
5321
5322/*
5323 * Enter a queue.
5324 * Obsoleted interface. Should not be used.
5325 */
5326void
5327enterq(queue_t *q)
5328{
5329	entersq(q->q_syncq, SQ_CALLBACK);
5330}
5331
5332void
5333leaveq(queue_t *q)
5334{
5335	leavesq(q->q_syncq, SQ_CALLBACK);
5336}
5337
5338/*
5339 * Enter a perimeter. c_inner and c_outer specifies which concurrency bits
5340 * to check.
5341 * Wait if SQ_QUEUED is set to preserve ordering between messages and qwriter
5342 * calls and the running of open, close and service procedures.
5343 *
5344 * if c_inner bit is set no need to grab sq_putlocks since we don't care
5345 * if other threads have entered or are entering put entry point.
5346 *
5347 * if c_inner bit is set it might have been posible to use
5348 * sq_putlocks/sq_putcounts instead of SQLOCK/sq_count (e.g. to optimize
5349 * open/close path for IP) but since the count may need to be decremented in
5350 * qwait() we wouldn't know which counter to decrement. Currently counter is
5351 * selected by current cpu_seqid and current CPU can change at any moment. XXX
5352 * in the future we might use curthread id bits to select the counter and this
5353 * would stay constant across routine calls.
5354 */
5355void
5356entersq(syncq_t *sq, int entrypoint)
5357{
5358	uint16_t	count = 0;
5359	uint16_t	flags;
5360	uint16_t	waitflags = SQ_STAYAWAY | SQ_EVENTS | SQ_EXCL;
5361	uint16_t	type;
5362	uint_t		c_inner = entrypoint & SQ_CI;
5363	uint_t		c_outer = entrypoint & SQ_CO;
5364
5365	/*
5366	 * Increment ref count to keep closes out of this queue.
5367	 */
5368	ASSERT(sq);
5369	ASSERT(c_inner && c_outer);
5370	mutex_enter(SQLOCK(sq));
5371	flags = sq->sq_flags;
5372	type = sq->sq_type;
5373	if (!(type & c_inner)) {
5374		/* Make sure all putcounts now use slowlock. */
5375		count = sq->sq_count;
5376		SQ_PUTLOCKS_ENTER(sq);
5377		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
5378		SUM_SQ_PUTCOUNTS(sq, count);
5379		sq->sq_needexcl++;
5380		ASSERT(sq->sq_needexcl != 0);	/* wraparound */
5381		waitflags |= SQ_MESSAGES;
5382	}
5383	/*
5384	 * Wait until we can enter the inner perimeter.
5385	 * If we want exclusive access we wait until sq_count is 0.
5386	 * We have to do this before entering the outer perimeter in order
5387	 * to preserve put/close message ordering.
5388	 */
5389	while ((flags & waitflags) || (!(type & c_inner) && count != 0)) {
5390		sq->sq_flags = flags | SQ_WANTWAKEUP;
5391		if (!(type & c_inner)) {
5392			SQ_PUTLOCKS_EXIT(sq);
5393		}
5394		cv_wait(&sq->sq_wait, SQLOCK(sq));
5395		if (!(type & c_inner)) {
5396			count = sq->sq_count;
5397			SQ_PUTLOCKS_ENTER(sq);
5398			SUM_SQ_PUTCOUNTS(sq, count);
5399		}
5400		flags = sq->sq_flags;
5401	}
5402
5403	if (!(type & c_inner)) {
5404		ASSERT(sq->sq_needexcl > 0);
5405		sq->sq_needexcl--;
5406		if (sq->sq_needexcl == 0) {
5407			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
5408		}
5409	}
5410
5411	/* Check if we need to enter the outer perimeter */
5412	if (!(type & c_outer)) {
5413		/*
5414		 * We have to enter the outer perimeter exclusively before
5415		 * we can increment sq_count to avoid deadlock. This implies
5416		 * that we have to re-check sq_flags and sq_count.
5417		 *
5418		 * is it possible to have c_inner set when c_outer is not set?
5419		 */
5420		if (!(type & c_inner)) {
5421			SQ_PUTLOCKS_EXIT(sq);
5422		}
5423		mutex_exit(SQLOCK(sq));
5424		outer_enter(sq->sq_outer, SQ_GOAWAY);
5425		mutex_enter(SQLOCK(sq));
5426		flags = sq->sq_flags;
5427		/*
5428		 * there should be no need to recheck sq_putcounts
5429		 * because outer_enter() has already waited for them to clear
5430		 * after setting SQ_WRITER.
5431		 */
5432		count = sq->sq_count;
5433#ifdef DEBUG
5434		/*
5435		 * SUMCHECK_SQ_PUTCOUNTS should return the sum instead
5436		 * of doing an ASSERT internally. Others should do
5437		 * something like
5438		 *	 ASSERT(SUMCHECK_SQ_PUTCOUNTS(sq) == 0);
5439		 * without the need to #ifdef DEBUG it.
5440		 */
5441		SUMCHECK_SQ_PUTCOUNTS(sq, 0);
5442#endif
5443		while ((flags & (SQ_EXCL|SQ_BLOCKED|SQ_FROZEN)) ||
5444		    (!(type & c_inner) && count != 0)) {
5445			sq->sq_flags = flags | SQ_WANTWAKEUP;
5446			cv_wait(&sq->sq_wait, SQLOCK(sq));
5447			count = sq->sq_count;
5448			flags = sq->sq_flags;
5449		}
5450	}
5451
5452	sq->sq_count++;
5453	ASSERT(sq->sq_count != 0);	/* Wraparound */
5454	if (!(type & c_inner)) {
5455		/* Exclusive entry */
5456		ASSERT(sq->sq_count == 1);
5457		sq->sq_flags |= SQ_EXCL;
5458		if (type & c_outer) {
5459			SQ_PUTLOCKS_EXIT(sq);
5460		}
5461	}
5462	mutex_exit(SQLOCK(sq));
5463}
5464
5465/*
5466 * leave a syncq. announce to framework that closes may proceed.
5467 * c_inner and c_outer specifies which concurrency bits
5468 * to check.
5469 *
5470 * must never be called from driver or module put entry point.
5471 *
5472 * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
5473 * sq_putlocks are used.
5474 */
5475void
5476leavesq(syncq_t *sq, int entrypoint)
5477{
5478	uint16_t	flags;
5479	uint16_t	type;
5480	uint_t		c_outer = entrypoint & SQ_CO;
5481#ifdef DEBUG
5482	uint_t		c_inner = entrypoint & SQ_CI;
5483#endif
5484
5485	/*
5486	 * decrement ref count, drain the syncq if possible, and wake up
5487	 * any waiting close.
5488	 */
5489	ASSERT(sq);
5490	ASSERT(c_inner && c_outer);
5491	mutex_enter(SQLOCK(sq));
5492	flags = sq->sq_flags;
5493	type = sq->sq_type;
5494	if (flags & (SQ_QUEUED|SQ_WANTWAKEUP|SQ_WANTEXWAKEUP)) {
5495
5496		if (flags & SQ_WANTWAKEUP) {
5497			flags &= ~SQ_WANTWAKEUP;
5498			cv_broadcast(&sq->sq_wait);
5499		}
5500		if (flags & SQ_WANTEXWAKEUP) {
5501			flags &= ~SQ_WANTEXWAKEUP;
5502			cv_broadcast(&sq->sq_exitwait);
5503		}
5504
5505		if ((flags & SQ_QUEUED) && !(flags & SQ_STAYAWAY)) {
5506			/*
5507			 * The syncq needs to be drained. "Exit" the syncq
5508			 * before calling drain_syncq.
5509			 */
5510			ASSERT(sq->sq_count != 0);
5511			sq->sq_count--;
5512			ASSERT((flags & SQ_EXCL) || (type & c_inner));
5513			sq->sq_flags = flags & ~SQ_EXCL;
5514			drain_syncq(sq);
5515			ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
5516			/* Check if we need to exit the outer perimeter */
5517			/* XXX will this ever be true? */
5518			if (!(type & c_outer))
5519				outer_exit(sq->sq_outer);
5520			return;
5521		}
5522	}
5523	ASSERT(sq->sq_count != 0);
5524	sq->sq_count--;
5525	ASSERT((flags & SQ_EXCL) || (type & c_inner));
5526	sq->sq_flags = flags & ~SQ_EXCL;
5527	mutex_exit(SQLOCK(sq));
5528
5529	/* Check if we need to exit the outer perimeter */
5530	if (!(sq->sq_type & c_outer))
5531		outer_exit(sq->sq_outer);
5532}
5533
5534/*
5535 * Prevent q_next from changing in this stream by incrementing sq_count.
5536 *
5537 * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
5538 * sq_putlocks are used.
5539 */
5540void
5541claimq(queue_t *qp)
5542{
5543	syncq_t	*sq = qp->q_syncq;
5544
5545	mutex_enter(SQLOCK(sq));
5546	sq->sq_count++;
5547	ASSERT(sq->sq_count != 0);	/* Wraparound */
5548	mutex_exit(SQLOCK(sq));
5549}
5550
5551/*
5552 * Undo claimq.
5553 *
5554 * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
5555 * sq_putlocks are used.
5556 */
5557void
5558releaseq(queue_t *qp)
5559{
5560	syncq_t	*sq = qp->q_syncq;
5561	uint16_t flags;
5562
5563	mutex_enter(SQLOCK(sq));
5564	ASSERT(sq->sq_count > 0);
5565	sq->sq_count--;
5566
5567	flags = sq->sq_flags;
5568	if (flags & (SQ_WANTWAKEUP|SQ_QUEUED)) {
5569		if (flags & SQ_WANTWAKEUP) {
5570			flags &= ~SQ_WANTWAKEUP;
5571			cv_broadcast(&sq->sq_wait);
5572		}
5573		sq->sq_flags = flags;
5574		if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
5575			/*
5576			 * To prevent potential recursive invocation of
5577			 * drain_syncq we do not call drain_syncq if count is
5578			 * non-zero.
5579			 */
5580			if (sq->sq_count == 0) {
5581				drain_syncq(sq);
5582				return;
5583			} else
5584				sqenable(sq);
5585		}
5586	}
5587	mutex_exit(SQLOCK(sq));
5588}
5589
5590/*
5591 * Prevent q_next from changing in this stream by incrementing sd_refcnt.
5592 */
5593void
5594claimstr(queue_t *qp)
5595{
5596	struct stdata *stp = STREAM(qp);
5597
5598	mutex_enter(&stp->sd_reflock);
5599	stp->sd_refcnt++;
5600	ASSERT(stp->sd_refcnt != 0);	/* Wraparound */
5601	mutex_exit(&stp->sd_reflock);
5602}
5603
5604/*
5605 * Undo claimstr.
5606 */
5607void
5608releasestr(queue_t *qp)
5609{
5610	struct stdata *stp = STREAM(qp);
5611
5612	mutex_enter(&stp->sd_reflock);
5613	ASSERT(stp->sd_refcnt != 0);
5614	if (--stp->sd_refcnt == 0)
5615		cv_broadcast(&stp->sd_refmonitor);
5616	mutex_exit(&stp->sd_reflock);
5617}
5618
5619static syncq_t *
5620new_syncq(void)
5621{
5622	return (kmem_cache_alloc(syncq_cache, KM_SLEEP));
5623}
5624
5625static void
5626free_syncq(syncq_t *sq)
5627{
5628	ASSERT(sq->sq_head == NULL);
5629	ASSERT(sq->sq_outer == NULL);
5630	ASSERT(sq->sq_callbpend == NULL);
5631	ASSERT((sq->sq_onext == NULL && sq->sq_oprev == NULL) ||
5632	    (sq->sq_onext == sq && sq->sq_oprev == sq));
5633
5634	if (sq->sq_ciputctrl != NULL) {
5635		ASSERT(sq->sq_nciputctrl == n_ciputctrl - 1);
5636		SUMCHECK_CIPUTCTRL_COUNTS(sq->sq_ciputctrl,
5637		    sq->sq_nciputctrl, 0);
5638		ASSERT(ciputctrl_cache != NULL);
5639		kmem_cache_free(ciputctrl_cache, sq->sq_ciputctrl);
5640	}
5641
5642	sq->sq_tail = NULL;
5643	sq->sq_evhead = NULL;
5644	sq->sq_evtail = NULL;
5645	sq->sq_ciputctrl = NULL;
5646	sq->sq_nciputctrl = 0;
5647	sq->sq_count = 0;
5648	sq->sq_rmqcount = 0;
5649	sq->sq_callbflags = 0;
5650	sq->sq_cancelid = 0;
5651	sq->sq_next = NULL;
5652	sq->sq_needexcl = 0;
5653	sq->sq_svcflags = 0;
5654	sq->sq_nqueues = 0;
5655	sq->sq_pri = 0;
5656	sq->sq_onext = NULL;
5657	sq->sq_oprev = NULL;
5658	sq->sq_flags = 0;
5659	sq->sq_type = 0;
5660	sq->sq_servcount = 0;
5661
5662	kmem_cache_free(syncq_cache, sq);
5663}
5664
5665/* Outer perimeter code */
5666
5667/*
5668 * The outer syncq uses the fields and flags in the syncq slightly
5669 * differently from the inner syncqs.
5670 *	sq_count	Incremented when there are pending or running
5671 *			writers at the outer perimeter to prevent the set of
5672 *			inner syncqs that belong to the outer perimeter from
5673 *			changing.
5674 *	sq_head/tail	List of deferred qwriter(OUTER) operations.
5675 *
5676 *	SQ_BLOCKED	Set to prevent traversing of sq_next,sq_prev while
5677 *			inner syncqs are added to or removed from the
5678 *			outer perimeter.
5679 *	SQ_QUEUED	sq_head/tail has messages or eventsqueued.
5680 *
5681 *	SQ_WRITER	A thread is currently traversing all the inner syncqs
5682 *			setting the SQ_WRITER flag.
5683 */
5684
5685/*
5686 * Get write access at the outer perimeter.
5687 * Note that read access is done by entersq, putnext, and put by simply
5688 * incrementing sq_count in the inner syncq.
5689 *
5690 * Waits until "flags" is no longer set in the outer to prevent multiple
5691 * threads from having write access at the same time. SQ_WRITER has to be part
5692 * of "flags".
5693 *
5694 * Increases sq_count on the outer syncq to keep away outer_insert/remove
5695 * until the outer_exit is finished.
5696 *
5697 * outer_enter is vulnerable to starvation since it does not prevent new
5698 * threads from entering the inner syncqs while it is waiting for sq_count to
5699 * go to zero.
5700 */
5701void
5702outer_enter(syncq_t *outer, uint16_t flags)
5703{
5704	syncq_t	*sq;
5705	int	wait_needed;
5706	uint16_t	count;
5707
5708	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5709	    outer->sq_oprev != NULL);
5710	ASSERT(flags & SQ_WRITER);
5711
5712retry:
5713	mutex_enter(SQLOCK(outer));
5714	while (outer->sq_flags & flags) {
5715		outer->sq_flags |= SQ_WANTWAKEUP;
5716		cv_wait(&outer->sq_wait, SQLOCK(outer));
5717	}
5718
5719	ASSERT(!(outer->sq_flags & SQ_WRITER));
5720	outer->sq_flags |= SQ_WRITER;
5721	outer->sq_count++;
5722	ASSERT(outer->sq_count != 0);	/* wraparound */
5723	wait_needed = 0;
5724	/*
5725	 * Set SQ_WRITER on all the inner syncqs while holding
5726	 * the SQLOCK on the outer syncq. This ensures that the changing
5727	 * of SQ_WRITER is atomic under the outer SQLOCK.
5728	 */
5729	for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
5730		mutex_enter(SQLOCK(sq));
5731		count = sq->sq_count;
5732		SQ_PUTLOCKS_ENTER(sq);
5733		sq->sq_flags |= SQ_WRITER;
5734		SUM_SQ_PUTCOUNTS(sq, count);
5735		if (count != 0)
5736			wait_needed = 1;
5737		SQ_PUTLOCKS_EXIT(sq);
5738		mutex_exit(SQLOCK(sq));
5739	}
5740	mutex_exit(SQLOCK(outer));
5741
5742	/*
5743	 * Get everybody out of the syncqs sequentially.
5744	 * Note that we don't actually need to aqiure the PUTLOCKS, since
5745	 * we have already cleared the fastbit, and set QWRITER.  By
5746	 * definition, the count can not increase since putnext will
5747	 * take the slowlock path (and the purpose of aquiring the
5748	 * putlocks was to make sure it didn't increase while we were
5749	 * waiting).
5750	 *
5751	 * Note that we still aquire the PUTLOCKS to be safe.
5752	 */
5753	if (wait_needed) {
5754		for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
5755			mutex_enter(SQLOCK(sq));
5756			count = sq->sq_count;
5757			SQ_PUTLOCKS_ENTER(sq);
5758			SUM_SQ_PUTCOUNTS(sq, count);
5759			while (count != 0) {
5760				sq->sq_flags |= SQ_WANTWAKEUP;
5761				SQ_PUTLOCKS_EXIT(sq);
5762				cv_wait(&sq->sq_wait, SQLOCK(sq));
5763				count = sq->sq_count;
5764				SQ_PUTLOCKS_ENTER(sq);
5765				SUM_SQ_PUTCOUNTS(sq, count);
5766			}
5767			SQ_PUTLOCKS_EXIT(sq);
5768			mutex_exit(SQLOCK(sq));
5769		}
5770		/*
5771		 * Verify that none of the flags got set while we
5772		 * were waiting for the sq_counts to drop.
5773		 * If this happens we exit and retry entering the
5774		 * outer perimeter.
5775		 */
5776		mutex_enter(SQLOCK(outer));
5777		if (outer->sq_flags & (flags & ~SQ_WRITER)) {
5778			mutex_exit(SQLOCK(outer));
5779			outer_exit(outer);
5780			goto retry;
5781		}
5782		mutex_exit(SQLOCK(outer));
5783	}
5784}
5785
5786/*
5787 * Drop the write access at the outer perimeter.
5788 * Read access is dropped implicitly (by putnext, put, and leavesq) by
5789 * decrementing sq_count.
5790 */
5791void
5792outer_exit(syncq_t *outer)
5793{
5794	syncq_t	*sq;
5795	int	 drain_needed;
5796	uint16_t flags;
5797
5798	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5799	    outer->sq_oprev != NULL);
5800	ASSERT(MUTEX_NOT_HELD(SQLOCK(outer)));
5801
5802	/*
5803	 * Atomically (from the perspective of threads calling become_writer)
5804	 * drop the write access at the outer perimeter by holding
5805	 * SQLOCK(outer) across all the dropsq calls and the resetting of
5806	 * SQ_WRITER.
5807	 * This defines a locking order between the outer perimeter
5808	 * SQLOCK and the inner perimeter SQLOCKs.
5809	 */
5810	mutex_enter(SQLOCK(outer));
5811	flags = outer->sq_flags;
5812	ASSERT(outer->sq_flags & SQ_WRITER);
5813	if (flags & SQ_QUEUED) {
5814		write_now(outer);
5815		flags = outer->sq_flags;
5816	}
5817
5818	/*
5819	 * sq_onext is stable since sq_count has not yet been decreased.
5820	 * Reset the SQ_WRITER flags in all syncqs.
5821	 * After dropping SQ_WRITER on the outer syncq we empty all the
5822	 * inner syncqs.
5823	 */
5824	drain_needed = 0;
5825	for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext)
5826		drain_needed += dropsq(sq, SQ_WRITER);
5827	ASSERT(!(outer->sq_flags & SQ_QUEUED));
5828	flags &= ~SQ_WRITER;
5829	if (drain_needed) {
5830		outer->sq_flags = flags;
5831		mutex_exit(SQLOCK(outer));
5832		for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext)
5833			emptysq(sq);
5834		mutex_enter(SQLOCK(outer));
5835		flags = outer->sq_flags;
5836	}
5837	if (flags & SQ_WANTWAKEUP) {
5838		flags &= ~SQ_WANTWAKEUP;
5839		cv_broadcast(&outer->sq_wait);
5840	}
5841	outer->sq_flags = flags;
5842	ASSERT(outer->sq_count > 0);
5843	outer->sq_count--;
5844	mutex_exit(SQLOCK(outer));
5845}
5846
5847/*
5848 * Add another syncq to an outer perimeter.
5849 * Block out all other access to the outer perimeter while it is being
5850 * changed using blocksq.
5851 * Assumes that the caller has *not* done an outer_enter.
5852 *
5853 * Vulnerable to starvation in blocksq.
5854 */
5855static void
5856outer_insert(syncq_t *outer, syncq_t *sq)
5857{
5858	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5859	    outer->sq_oprev != NULL);
5860	ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
5861	    sq->sq_oprev == NULL);	/* Can't be in an outer perimeter */
5862
5863	/* Get exclusive access to the outer perimeter list */
5864	blocksq(outer, SQ_BLOCKED, 0);
5865	ASSERT(outer->sq_flags & SQ_BLOCKED);
5866	ASSERT(!(outer->sq_flags & SQ_WRITER));
5867
5868	mutex_enter(SQLOCK(sq));
5869	sq->sq_outer = outer;
5870	outer->sq_onext->sq_oprev = sq;
5871	sq->sq_onext = outer->sq_onext;
5872	outer->sq_onext = sq;
5873	sq->sq_oprev = outer;
5874	mutex_exit(SQLOCK(sq));
5875	unblocksq(outer, SQ_BLOCKED, 1);
5876}
5877
5878/*
5879 * Remove a syncq from an outer perimeter.
5880 * Block out all other access to the outer perimeter while it is being
5881 * changed using blocksq.
5882 * Assumes that the caller has *not* done an outer_enter.
5883 *
5884 * Vulnerable to starvation in blocksq.
5885 */
5886static void
5887outer_remove(syncq_t *outer, syncq_t *sq)
5888{
5889	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5890	    outer->sq_oprev != NULL);
5891	ASSERT(sq->sq_outer == outer);
5892
5893	/* Get exclusive access to the outer perimeter list */
5894	blocksq(outer, SQ_BLOCKED, 0);
5895	ASSERT(outer->sq_flags & SQ_BLOCKED);
5896	ASSERT(!(outer->sq_flags & SQ_WRITER));
5897
5898	mutex_enter(SQLOCK(sq));
5899	sq->sq_outer = NULL;
5900	sq->sq_onext->sq_oprev = sq->sq_oprev;
5901	sq->sq_oprev->sq_onext = sq->sq_onext;
5902	sq->sq_oprev = sq->sq_onext = NULL;
5903	mutex_exit(SQLOCK(sq));
5904	unblocksq(outer, SQ_BLOCKED, 1);
5905}
5906
5907/*
5908 * Queue a deferred qwriter(OUTER) callback for this outer perimeter.
5909 * If this is the first callback for this outer perimeter then add
5910 * this outer perimeter to the list of outer perimeters that
5911 * the qwriter_outer_thread will process.
5912 *
5913 * Increments sq_count in the outer syncq to prevent the membership
5914 * of the outer perimeter (in terms of inner syncqs) to change while
5915 * the callback is pending.
5916 */
5917static void
5918queue_writer(syncq_t *outer, void (*func)(), queue_t *q, mblk_t *mp)
5919{
5920	ASSERT(MUTEX_HELD(SQLOCK(outer)));
5921
5922	mp->b_prev = (mblk_t *)func;
5923	mp->b_queue = q;
5924	mp->b_next = NULL;
5925	outer->sq_count++;	/* Decremented when dequeued */
5926	ASSERT(outer->sq_count != 0);	/* Wraparound */
5927	if (outer->sq_evhead == NULL) {
5928		/* First message. */
5929		outer->sq_evhead = outer->sq_evtail = mp;
5930		outer->sq_flags |= SQ_EVENTS;
5931		mutex_exit(SQLOCK(outer));
5932		STRSTAT(qwr_outer);
5933		(void) taskq_dispatch(streams_taskq,
5934		    (task_func_t *)qwriter_outer_service, outer, TQ_SLEEP);
5935	} else {
5936		ASSERT(outer->sq_flags & SQ_EVENTS);
5937		outer->sq_evtail->b_next = mp;
5938		outer->sq_evtail = mp;
5939		mutex_exit(SQLOCK(outer));
5940	}
5941}
5942
5943/*
5944 * Try and upgrade to write access at the outer perimeter. If this can
5945 * not be done without blocking then queue the callback to be done
5946 * by the qwriter_outer_thread.
5947 *
5948 * This routine can only be called from put or service procedures plus
5949 * asynchronous callback routines that have properly entered to
5950 * queue (with entersq.) Thus qwriter(OUTER) assumes the caller has one claim
5951 * on the syncq associated with q.
5952 */
5953void
5954qwriter_outer(queue_t *q, mblk_t *mp, void (*func)())
5955{
5956	syncq_t	*osq, *sq, *outer;
5957	int	failed;
5958	uint16_t flags;
5959
5960	osq = q->q_syncq;
5961	outer = osq->sq_outer;
5962	if (outer == NULL)
5963		panic("qwriter(PERIM_OUTER): no outer perimeter");
5964	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5965	    outer->sq_oprev != NULL);
5966
5967	mutex_enter(SQLOCK(outer));
5968	flags = outer->sq_flags;
5969	/*
5970	 * If some thread is traversing sq_next, or if we are blocked by
5971	 * outer_insert or outer_remove, or if the we already have queued
5972	 * callbacks, then queue this callback for later processing.
5973	 *
5974	 * Also queue the qwriter for an interrupt thread in order
5975	 * to reduce the time spent running at high IPL.
5976	 * to identify there are events.
5977	 */
5978	if ((flags & SQ_GOAWAY) || (curthread->t_pri >= kpreemptpri)) {
5979		/*
5980		 * Queue the become_writer request.
5981		 * The queueing is atomic under SQLOCK(outer) in order
5982		 * to synchronize with outer_exit.
5983		 * queue_writer will drop the outer SQLOCK
5984		 */
5985		if (flags & SQ_BLOCKED) {
5986			/* Must set SQ_WRITER on inner perimeter */
5987			mutex_enter(SQLOCK(osq));
5988			osq->sq_flags |= SQ_WRITER;
5989			mutex_exit(SQLOCK(osq));
5990		} else {
5991			if (!(flags & SQ_WRITER)) {
5992				/*
5993				 * The outer could have been SQ_BLOCKED thus
5994				 * SQ_WRITER might not be set on the inner.
5995				 */
5996				mutex_enter(SQLOCK(osq));
5997				osq->sq_flags |= SQ_WRITER;
5998				mutex_exit(SQLOCK(osq));
5999			}
6000			ASSERT(osq->sq_flags & SQ_WRITER);
6001		}
6002		queue_writer(outer, func, q, mp);
6003		return;
6004	}
6005	/*
6006	 * We are half-way to exclusive access to the outer perimeter.
6007	 * Prevent any outer_enter, qwriter(OUTER), or outer_insert/remove
6008	 * while the inner syncqs are traversed.
6009	 */
6010	outer->sq_count++;
6011	ASSERT(outer->sq_count != 0);	/* wraparound */
6012	flags |= SQ_WRITER;
6013	/*
6014	 * Check if we can run the function immediately. Mark all
6015	 * syncqs with the writer flag to prevent new entries into
6016	 * put and service procedures.
6017	 *
6018	 * Set SQ_WRITER on all the inner syncqs while holding
6019	 * the SQLOCK on the outer syncq. This ensures that the changing
6020	 * of SQ_WRITER is atomic under the outer SQLOCK.
6021	 */
6022	failed = 0;
6023	for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
6024		uint16_t count;
6025		uint_t	maxcnt = (sq == osq) ? 1 : 0;
6026
6027		mutex_enter(SQLOCK(sq));
6028		count = sq->sq_count;
6029		SQ_PUTLOCKS_ENTER(sq);
6030		SUM_SQ_PUTCOUNTS(sq, count);
6031		if (sq->sq_count > maxcnt)
6032			failed = 1;
6033		sq->sq_flags |= SQ_WRITER;
6034		SQ_PUTLOCKS_EXIT(sq);
6035		mutex_exit(SQLOCK(sq));
6036	}
6037	if (failed) {
6038		/*
6039		 * Some other thread has a read claim on the outer perimeter.
6040		 * Queue the callback for deferred processing.
6041		 *
6042		 * queue_writer will set SQ_QUEUED before we drop SQ_WRITER
6043		 * so that other qwriter(OUTER) calls will queue their
6044		 * callbacks as well. queue_writer increments sq_count so we
6045		 * decrement to compensate for the our increment.
6046		 *
6047		 * Dropping SQ_WRITER enables the writer thread to work
6048		 * on this outer perimeter.
6049		 */
6050		outer->sq_flags = flags;
6051		queue_writer(outer, func, q, mp);
6052		/* queue_writer dropper the lock */
6053		mutex_enter(SQLOCK(outer));
6054		ASSERT(outer->sq_count > 0);
6055		outer->sq_count--;
6056		ASSERT(outer->sq_flags & SQ_WRITER);
6057		flags = outer->sq_flags;
6058		flags &= ~SQ_WRITER;
6059		if (flags & SQ_WANTWAKEUP) {
6060			flags &= ~SQ_WANTWAKEUP;
6061			cv_broadcast(&outer->sq_wait);
6062		}
6063		outer->sq_flags = flags;
6064		mutex_exit(SQLOCK(outer));
6065		return;
6066	} else {
6067		outer->sq_flags = flags;
6068		mutex_exit(SQLOCK(outer));
6069	}
6070
6071	/* Can run it immediately */
6072	(*func)(q, mp);
6073
6074	outer_exit(outer);
6075}
6076
6077/*
6078 * Dequeue all writer callbacks from the outer perimeter and run them.
6079 */
6080static void
6081write_now(syncq_t *outer)
6082{
6083	mblk_t		*mp;
6084	queue_t		*q;
6085	void	(*func)();
6086
6087	ASSERT(MUTEX_HELD(SQLOCK(outer)));
6088	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
6089	    outer->sq_oprev != NULL);
6090	while ((mp = outer->sq_evhead) != NULL) {
6091		/*
6092		 * queues cannot be placed on the queuelist on the outer
6093		 * perimiter.
6094		 */
6095		ASSERT(!(outer->sq_flags & SQ_MESSAGES));
6096		ASSERT((outer->sq_flags & SQ_EVENTS));
6097
6098		outer->sq_evhead = mp->b_next;
6099		if (outer->sq_evhead == NULL) {
6100			outer->sq_evtail = NULL;
6101			outer->sq_flags &= ~SQ_EVENTS;
6102		}
6103		ASSERT(outer->sq_count != 0);
6104		outer->sq_count--;	/* Incremented when enqueued. */
6105		mutex_exit(SQLOCK(outer));
6106		/*
6107		 * Drop the message if the queue is closing.
6108		 * Make sure that the queue is "claimed" when the callback
6109		 * is run in order to satisfy various ASSERTs.
6110		 */
6111		q = mp->b_queue;
6112		func = (void (*)())mp->b_prev;
6113		ASSERT(func != NULL);
6114		mp->b_next = mp->b_prev = NULL;
6115		if (q->q_flag & QWCLOSE) {
6116			freemsg(mp);
6117		} else {
6118			claimq(q);
6119			(*func)(q, mp);
6120			releaseq(q);
6121		}
6122		mutex_enter(SQLOCK(outer));
6123	}
6124	ASSERT(MUTEX_HELD(SQLOCK(outer)));
6125}
6126
6127/*
6128 * The list of messages on the inner syncq is effectively hashed
6129 * by destination queue.  These destination queues are doubly
6130 * linked lists (hopefully) in priority order.  Messages are then
6131 * put on the queue referenced by the q_sqhead/q_sqtail elements.
6132 * Additional messages are linked together by the b_next/b_prev
6133 * elements in the mblk, with (similar to putq()) the first message
6134 * having a NULL b_prev and the last message having a NULL b_next.
6135 *
6136 * Events, such as qwriter callbacks, are put onto a list in FIFO
6137 * order referenced by sq_evhead, and sq_evtail.  This is a singly
6138 * linked list, and messages here MUST be processed in the order queued.
6139 */
6140
6141/*
6142 * Run the events on the syncq event list (sq_evhead).
6143 * Assumes there is only one claim on the syncq, it is
6144 * already exclusive (SQ_EXCL set), and the SQLOCK held.
6145 * Messages here are processed in order, with the SQ_EXCL bit
6146 * held all the way through till the last message is processed.
6147 */
6148void
6149sq_run_events(syncq_t *sq)
6150{
6151	mblk_t		*bp;
6152	queue_t		*qp;
6153	uint16_t	flags = sq->sq_flags;
6154	void		(*func)();
6155
6156	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6157	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6158	    sq->sq_oprev == NULL) ||
6159	    (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6160	    sq->sq_oprev != NULL));
6161
6162	ASSERT(flags & SQ_EXCL);
6163	ASSERT(sq->sq_count == 1);
6164
6165	/*
6166	 * We need to process all of the events on this list.  It
6167	 * is possible that new events will be added while we are
6168	 * away processing a callback, so on every loop, we start
6169	 * back at the beginning of the list.
6170	 */
6171	/*
6172	 * We have to reaccess sq_evhead since there is a
6173	 * possibility of a new entry while we were running
6174	 * the callback.
6175	 */
6176	for (bp = sq->sq_evhead; bp != NULL; bp = sq->sq_evhead) {
6177		ASSERT(bp->b_queue->q_syncq == sq);
6178		ASSERT(sq->sq_flags & SQ_EVENTS);
6179
6180		qp = bp->b_queue;
6181		func = (void (*)())bp->b_prev;
6182		ASSERT(func != NULL);
6183
6184		/*
6185		 * Messages from the event queue must be taken off in
6186		 * FIFO order.
6187		 */
6188		ASSERT(sq->sq_evhead == bp);
6189		sq->sq_evhead = bp->b_next;
6190
6191		if (bp->b_next == NULL) {
6192			/* Deleting last */
6193			ASSERT(sq->sq_evtail == bp);
6194			sq->sq_evtail = NULL;
6195			sq->sq_flags &= ~SQ_EVENTS;
6196		}
6197		bp->b_prev = bp->b_next = NULL;
6198		ASSERT(bp->b_datap->db_ref != 0);
6199
6200		mutex_exit(SQLOCK(sq));
6201
6202		(*func)(qp, bp);
6203
6204		mutex_enter(SQLOCK(sq));
6205		/*
6206		 * re-read the flags, since they could have changed.
6207		 */
6208		flags = sq->sq_flags;
6209		ASSERT(flags & SQ_EXCL);
6210	}
6211	ASSERT(sq->sq_evhead == NULL && sq->sq_evtail == NULL);
6212	ASSERT(!(sq->sq_flags & SQ_EVENTS));
6213
6214	if (flags & SQ_WANTWAKEUP) {
6215		flags &= ~SQ_WANTWAKEUP;
6216		cv_broadcast(&sq->sq_wait);
6217	}
6218	if (flags & SQ_WANTEXWAKEUP) {
6219		flags &= ~SQ_WANTEXWAKEUP;
6220		cv_broadcast(&sq->sq_exitwait);
6221	}
6222	sq->sq_flags = flags;
6223}
6224
6225/*
6226 * Put messages on the event list.
6227 * If we can go exclusive now, do so and process the event list, otherwise
6228 * let the last claim service this list (or wake the sqthread).
6229 * This procedure assumes SQLOCK is held.  To run the event list, it
6230 * must be called with no claims.
6231 */
6232static void
6233sqfill_events(syncq_t *sq, queue_t *q, mblk_t *mp, void (*func)())
6234{
6235	uint16_t count;
6236
6237	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6238	ASSERT(func != NULL);
6239
6240	/*
6241	 * This is a callback.  Add it to the list of callbacks
6242	 * and see about upgrading.
6243	 */
6244	mp->b_prev = (mblk_t *)func;
6245	mp->b_queue = q;
6246	mp->b_next = NULL;
6247	if (sq->sq_evhead == NULL) {
6248		sq->sq_evhead = sq->sq_evtail = mp;
6249		sq->sq_flags |= SQ_EVENTS;
6250	} else {
6251		ASSERT(sq->sq_evtail != NULL);
6252		ASSERT(sq->sq_evtail->b_next == NULL);
6253		ASSERT(sq->sq_flags & SQ_EVENTS);
6254		sq->sq_evtail->b_next = mp;
6255		sq->sq_evtail = mp;
6256	}
6257	/*
6258	 * We have set SQ_EVENTS, so threads will have to
6259	 * unwind out of the perimiter, and new entries will
6260	 * not grab a putlock.  But we still need to know
6261	 * how many threads have already made a claim to the
6262	 * syncq, so grab the putlocks, and sum the counts.
6263	 * If there are no claims on the syncq, we can upgrade
6264	 * to exclusive, and run the event list.
6265	 * NOTE: We hold the SQLOCK, so we can just grab the
6266	 * putlocks.
6267	 */
6268	count = sq->sq_count;
6269	SQ_PUTLOCKS_ENTER(sq);
6270	SUM_SQ_PUTCOUNTS(sq, count);
6271	/*
6272	 * We have no claim, so we need to check if there
6273	 * are no others, then we can upgrade.
6274	 */
6275	/*
6276	 * There are currently no claims on
6277	 * the syncq by this thread (at least on this entry). The thread who has
6278	 * the claim should drain syncq.
6279	 */
6280	if (count > 0) {
6281		/*
6282		 * Can't upgrade - other threads inside.
6283		 */
6284		SQ_PUTLOCKS_EXIT(sq);
6285		mutex_exit(SQLOCK(sq));
6286		return;
6287	}
6288	/*
6289	 * Need to set SQ_EXCL and make a claim on the syncq.
6290	 */
6291	ASSERT((sq->sq_flags & SQ_EXCL) == 0);
6292	sq->sq_flags |= SQ_EXCL;
6293	ASSERT(sq->sq_count == 0);
6294	sq->sq_count++;
6295	SQ_PUTLOCKS_EXIT(sq);
6296
6297	/* Process the events list */
6298	sq_run_events(sq);
6299
6300	/*
6301	 * Release our claim...
6302	 */
6303	sq->sq_count--;
6304
6305	/*
6306	 * And release SQ_EXCL.
6307	 * We don't need to acquire the putlocks to release
6308	 * SQ_EXCL, since we are exclusive, and hold the SQLOCK.
6309	 */
6310	sq->sq_flags &= ~SQ_EXCL;
6311
6312	/*
6313	 * sq_run_events should have released SQ_EXCL
6314	 */
6315	ASSERT(!(sq->sq_flags & SQ_EXCL));
6316
6317	/*
6318	 * If anything happened while we were running the
6319	 * events (or was there before), we need to process
6320	 * them now.  We shouldn't be exclusive sine we
6321	 * released the perimiter above (plus, we asserted
6322	 * for it).
6323	 */
6324	if (!(sq->sq_flags & SQ_STAYAWAY) && (sq->sq_flags & SQ_QUEUED))
6325		drain_syncq(sq);
6326	else
6327		mutex_exit(SQLOCK(sq));
6328}
6329
6330/*
6331 * Perform delayed processing. The caller has to make sure that it is safe
6332 * to enter the syncq (e.g. by checking that none of the SQ_STAYAWAY bits are
6333 * set.)
6334 *
6335 * Assume that the caller has NO claims on the syncq.  However, a claim
6336 * on the syncq does not indicate that a thread is draining the syncq.
6337 * There may be more claims on the syncq than there are threads draining
6338 * (i.e.  #_threads_draining <= sq_count)
6339 *
6340 * drain_syncq has to terminate when one of the SQ_STAYAWAY bits gets set
6341 * in order to preserve qwriter(OUTER) ordering constraints.
6342 *
6343 * sq_putcount only needs to be checked when dispatching the queued
6344 * writer call for CIPUT sync queue, but this is handled in sq_run_events.
6345 */
6346void
6347drain_syncq(syncq_t *sq)
6348{
6349	queue_t		*qp;
6350	uint16_t	count;
6351	uint16_t	type = sq->sq_type;
6352	uint16_t	flags = sq->sq_flags;
6353	boolean_t	bg_service = sq->sq_svcflags & SQ_SERVICE;
6354
6355	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_START,
6356	    "drain_syncq start:%p", sq);
6357	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6358	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6359	    sq->sq_oprev == NULL) ||
6360	    (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6361	    sq->sq_oprev != NULL));
6362
6363	/*
6364	 * Drop SQ_SERVICE flag.
6365	 */
6366	if (bg_service)
6367		sq->sq_svcflags &= ~SQ_SERVICE;
6368
6369	/*
6370	 * If SQ_EXCL is set, someone else is processing this syncq - let him
6371	 * finish the job.
6372	 */
6373	if (flags & SQ_EXCL) {
6374		if (bg_service) {
6375			ASSERT(sq->sq_servcount != 0);
6376			sq->sq_servcount--;
6377		}
6378		mutex_exit(SQLOCK(sq));
6379		return;
6380	}
6381
6382	/*
6383	 * This routine can be called by a background thread if
6384	 * it was scheduled by a hi-priority thread.  SO, if there are
6385	 * NOT messages queued, return (remember, we have the SQLOCK,
6386	 * and it cannot change until we release it). Wakeup any waiters also.
6387	 */
6388	if (!(flags & SQ_QUEUED)) {
6389		if (flags & SQ_WANTWAKEUP) {
6390			flags &= ~SQ_WANTWAKEUP;
6391			cv_broadcast(&sq->sq_wait);
6392		}
6393		if (flags & SQ_WANTEXWAKEUP) {
6394			flags &= ~SQ_WANTEXWAKEUP;
6395			cv_broadcast(&sq->sq_exitwait);
6396		}
6397		sq->sq_flags = flags;
6398		if (bg_service) {
6399			ASSERT(sq->sq_servcount != 0);
6400			sq->sq_servcount--;
6401		}
6402		mutex_exit(SQLOCK(sq));
6403		return;
6404	}
6405
6406	/*
6407	 * If this is not a concurrent put perimiter, we need to
6408	 * become exclusive to drain.  Also, if not CIPUT, we would
6409	 * not have acquired a putlock, so we don't need to check
6410	 * the putcounts.  If not entering with a claim, we test
6411	 * for sq_count == 0.
6412	 */
6413	type = sq->sq_type;
6414	if (!(type & SQ_CIPUT)) {
6415		if (sq->sq_count > 1) {
6416			if (bg_service) {
6417				ASSERT(sq->sq_servcount != 0);
6418				sq->sq_servcount--;
6419			}
6420			mutex_exit(SQLOCK(sq));
6421			return;
6422		}
6423		sq->sq_flags |= SQ_EXCL;
6424	}
6425
6426	/*
6427	 * This is where we make a claim to the syncq.
6428	 * This can either be done by incrementing a putlock, or
6429	 * the sq_count.  But since we already have the SQLOCK
6430	 * here, we just bump the sq_count.
6431	 *
6432	 * Note that after we make a claim, we need to let the code
6433	 * fall through to the end of this routine to clean itself
6434	 * up.  A return in the while loop will put the syncq in a
6435	 * very bad state.
6436	 */
6437	sq->sq_count++;
6438	ASSERT(sq->sq_count != 0);	/* wraparound */
6439
6440	while ((flags = sq->sq_flags) & SQ_QUEUED) {
6441		/*
6442		 * If we are told to stayaway or went exclusive,
6443		 * we are done.
6444		 */
6445		if (flags & (SQ_STAYAWAY)) {
6446			break;
6447		}
6448
6449		/*
6450		 * If there are events to run, do so.
6451		 * We have one claim to the syncq, so if there are
6452		 * more than one, other threads are running.
6453		 */
6454		if (sq->sq_evhead != NULL) {
6455			ASSERT(sq->sq_flags & SQ_EVENTS);
6456
6457			count = sq->sq_count;
6458			SQ_PUTLOCKS_ENTER(sq);
6459			SUM_SQ_PUTCOUNTS(sq, count);
6460			if (count > 1) {
6461				SQ_PUTLOCKS_EXIT(sq);
6462				/* Can't upgrade - other threads inside */
6463				break;
6464			}
6465			ASSERT((flags & SQ_EXCL) == 0);
6466			sq->sq_flags = flags | SQ_EXCL;
6467			SQ_PUTLOCKS_EXIT(sq);
6468			/*
6469			 * we have the only claim, run the events,
6470			 * sq_run_events will clear the SQ_EXCL flag.
6471			 */
6472			sq_run_events(sq);
6473
6474			/*
6475			 * If this is a CIPUT perimiter, we need
6476			 * to drop the SQ_EXCL flag so we can properly
6477			 * continue draining the syncq.
6478			 */
6479			if (type & SQ_CIPUT) {
6480				ASSERT(sq->sq_flags & SQ_EXCL);
6481				sq->sq_flags &= ~SQ_EXCL;
6482			}
6483
6484			/*
6485			 * And go back to the beginning just in case
6486			 * anything changed while we were away.
6487			 */
6488			ASSERT((sq->sq_flags & SQ_EXCL) || (type & SQ_CIPUT));
6489			continue;
6490		}
6491
6492		ASSERT(sq->sq_evhead == NULL);
6493		ASSERT(!(sq->sq_flags & SQ_EVENTS));
6494
6495		/*
6496		 * Find the queue that is not draining.
6497		 *
6498		 * q_draining is protected by QLOCK which we do not hold.
6499		 * But if it was set, then a thread was draining, and if it gets
6500		 * cleared, then it was because the thread has successfully
6501		 * drained the syncq, or a GOAWAY state occured. For the GOAWAY
6502		 * state to happen, a thread needs the SQLOCK which we hold, and
6503		 * if there was such a flag, we whould have already seen it.
6504		 */
6505
6506		for (qp = sq->sq_head;
6507		    qp != NULL && (qp->q_draining ||
6508		    (qp->q_sqflags & Q_SQDRAINING));
6509		    qp = qp->q_sqnext)
6510			;
6511
6512		if (qp == NULL)
6513			break;
6514
6515		/*
6516		 * We have a queue to work on, and we hold the
6517		 * SQLOCK and one claim, call qdrain_syncq.
6518		 * This means we need to release the SQLOCK and
6519		 * aquire the QLOCK (OK since we have a claim).
6520		 * Note that qdrain_syncq will actually dequeue
6521		 * this queue from the sq_head list when it is
6522		 * convinced all the work is done and release
6523		 * the QLOCK before returning.
6524		 */
6525		qp->q_sqflags |= Q_SQDRAINING;
6526		mutex_exit(SQLOCK(sq));
6527		mutex_enter(QLOCK(qp));
6528		qdrain_syncq(sq, qp);
6529		mutex_enter(SQLOCK(sq));
6530
6531		/* The queue is drained */
6532		ASSERT(qp->q_sqflags & Q_SQDRAINING);
6533		qp->q_sqflags &= ~Q_SQDRAINING;
6534		/*
6535		 * NOTE: After this point qp should not be used since it may be
6536		 * closed.
6537		 */
6538	}
6539
6540	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6541	flags = sq->sq_flags;
6542
6543	/*
6544	 * sq->sq_head cannot change because we hold the
6545	 * sqlock. However, a thread CAN decide that it is no longer
6546	 * going to drain that queue.  However, this should be due to
6547	 * a GOAWAY state, and we should see that here.
6548	 *
6549	 * This loop is not very efficient. One solution may be adding a second
6550	 * pointer to the "draining" queue, but it is difficult to do when
6551	 * queues are inserted in the middle due to priority ordering. Another
6552	 * possibility is to yank the queue out of the sq list and put it onto
6553	 * the "draining list" and then put it back if it can't be drained.
6554	 */
6555
6556	ASSERT((sq->sq_head == NULL) || (flags & SQ_GOAWAY) ||
6557	    (type & SQ_CI) || sq->sq_head->q_draining);
6558
6559	/* Drop SQ_EXCL for non-CIPUT perimiters */
6560	if (!(type & SQ_CIPUT))
6561		flags &= ~SQ_EXCL;
6562	ASSERT((flags & SQ_EXCL) == 0);
6563
6564	/* Wake up any waiters. */
6565	if (flags & SQ_WANTWAKEUP) {
6566		flags &= ~SQ_WANTWAKEUP;
6567		cv_broadcast(&sq->sq_wait);
6568	}
6569	if (flags & SQ_WANTEXWAKEUP) {
6570		flags &= ~SQ_WANTEXWAKEUP;
6571		cv_broadcast(&sq->sq_exitwait);
6572	}
6573	sq->sq_flags = flags;
6574
6575	ASSERT(sq->sq_count != 0);
6576	/* Release our claim. */
6577	sq->sq_count--;
6578
6579	if (bg_service) {
6580		ASSERT(sq->sq_servcount != 0);
6581		sq->sq_servcount--;
6582	}
6583
6584	mutex_exit(SQLOCK(sq));
6585
6586	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_END,
6587	    "drain_syncq end:%p", sq);
6588}
6589
6590
6591/*
6592 *
6593 * qdrain_syncq can be called (currently) from only one of two places:
6594 *	drain_syncq
6595 * 	putnext  (or some variation of it).
6596 * and eventually
6597 * 	qwait(_sig)
6598 *
6599 * If called from drain_syncq, we found it in the list
6600 * of queue's needing service, so there is work to be done (or it
6601 * wouldn't be on the list).
6602 *
6603 * If called from some putnext variation, it was because the
6604 * perimiter is open, but messages are blocking a putnext and
6605 * there is not a thread working on it.  Now a thread could start
6606 * working on it while we are getting ready to do so ourself, but
6607 * the thread would set the q_draining flag, and we can spin out.
6608 *
6609 * As for qwait(_sig), I think I shall let it continue to call
6610 * drain_syncq directly (after all, it will get here eventually).
6611 *
6612 * qdrain_syncq has to terminate when:
6613 * - one of the SQ_STAYAWAY bits gets set to preserve qwriter(OUTER) ordering
6614 * - SQ_EVENTS gets set to preserve qwriter(INNER) ordering
6615 *
6616 * ASSUMES:
6617 *	One claim
6618 * 	QLOCK held
6619 * 	SQLOCK not held
6620 *	Will release QLOCK before returning
6621 */
6622void
6623qdrain_syncq(syncq_t *sq, queue_t *q)
6624{
6625	mblk_t		*bp;
6626	boolean_t	do_clr;
6627#ifdef DEBUG
6628	uint16_t	count;
6629#endif
6630
6631	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_START,
6632	    "drain_syncq start:%p", sq);
6633	ASSERT(q->q_syncq == sq);
6634	ASSERT(MUTEX_HELD(QLOCK(q)));
6635	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6636	/*
6637	 * For non-CIPUT perimiters, we should be called with the
6638	 * exclusive bit set already.  For non-CIPUT perimiters we
6639	 * will be doing a concurrent drain, so it better not be set.
6640	 */
6641	ASSERT((sq->sq_flags & (SQ_EXCL|SQ_CIPUT)));
6642	ASSERT(!((sq->sq_type & SQ_CIPUT) && (sq->sq_flags & SQ_EXCL)));
6643	ASSERT((sq->sq_type & SQ_CIPUT) || (sq->sq_flags & SQ_EXCL));
6644	/*
6645	 * All outer pointers are set, or none of them are
6646	 */
6647	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6648	    sq->sq_oprev == NULL) ||
6649	    (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6650	    sq->sq_oprev != NULL));
6651#ifdef DEBUG
6652	count = sq->sq_count;
6653	/*
6654	 * This is OK without the putlocks, because we have one
6655	 * claim either from the sq_count, or a putcount.  We could
6656	 * get an erroneous value from other counts, but ours won't
6657	 * change, so one way or another, we will have at least a
6658	 * value of one.
6659	 */
6660	SUM_SQ_PUTCOUNTS(sq, count);
6661	ASSERT(count >= 1);
6662#endif /* DEBUG */
6663
6664	/*
6665	 * The first thing to do here, is find out if a thread is already
6666	 * draining this queue or the queue is closing. If so, we are done,
6667	 * just return. Also, if there are no messages, we are done as well.
6668	 * Note that we check the q_sqhead since there is s window of
6669	 * opportunity for us to enter here because Q_SQQUEUED was set, but is
6670	 * not anymore.
6671	 */
6672	if (q->q_draining || (q->q_sqhead == NULL)) {
6673		mutex_exit(QLOCK(q));
6674		return;
6675	}
6676
6677	/*
6678	 * If the perimiter is exclusive, there is nothing we can
6679	 * do right now, go away.
6680	 * Note that there is nothing to prevent this case from changing
6681	 * right after this check, but the spin-out will catch it.
6682	 */
6683
6684	/* Tell other threads that we are draining this queue */
6685	q->q_draining = 1;	/* Protected by QLOCK */
6686
6687	for (bp = q->q_sqhead; bp != NULL; bp = q->q_sqhead) {
6688
6689		/*
6690		 * Because we can enter this routine just because
6691		 * a putnext is blocked, we need to spin out if
6692		 * the perimiter wants to go exclusive as well
6693		 * as just blocked. We need to spin out also if
6694		 * events are queued on the syncq.
6695		 * Don't check for SQ_EXCL, because non-CIPUT
6696		 * perimiters would set it, and it can't become
6697		 * exclusive while we hold a claim.
6698		 */
6699		if (sq->sq_flags & (SQ_STAYAWAY | SQ_EVENTS)) {
6700			break;
6701		}
6702
6703#ifdef DEBUG
6704		/*
6705		 * Since we are in qdrain_syncq, we already know the queue,
6706		 * but for sanity, we want to check this against the qp that
6707		 * was passed in by bp->b_queue.
6708		 */
6709
6710		ASSERT(bp->b_queue == q);
6711		ASSERT(bp->b_queue->q_syncq == sq);
6712		bp->b_queue = NULL;
6713
6714		/*
6715		 * We would have the following check in the DEBUG code:
6716		 *
6717		 * if (bp->b_prev != NULL)  {
6718		 *	ASSERT(bp->b_prev == (void (*)())q->q_qinfo->qi_putp);
6719		 * }
6720		 *
6721		 * This can't be done, however, since IP modifies qinfo
6722		 * structure at run-time (switching between IPv4 qinfo and IPv6
6723		 * qinfo), invalidating the check.
6724		 * So the assignment to func is left here, but the ASSERT itself
6725		 * is removed until the whole issue is resolved.
6726		 */
6727#endif
6728		ASSERT(q->q_sqhead == bp);
6729		q->q_sqhead = bp->b_next;
6730		bp->b_prev = bp->b_next = NULL;
6731		ASSERT(q->q_syncqmsgs > 0);
6732		mutex_exit(QLOCK(q));
6733
6734		ASSERT(bp->b_datap->db_ref != 0);
6735
6736		(void) (*q->q_qinfo->qi_putp)(q, bp);
6737
6738		mutex_enter(QLOCK(q));
6739		/*
6740		 * We should decrement q_syncqmsgs only after executing the
6741		 * put procedure to avoid a possible race with putnext().
6742		 * In putnext() though it sees Q_SQQUEUED is set, there is
6743		 * an optimization which allows putnext to call the put
6744		 * procedure directly if (q_syncqmsgs == 0) and thus
6745		 * a message reodering could otherwise occur.
6746		 */
6747		q->q_syncqmsgs--;
6748
6749		/*
6750		 * Clear QFULL in the next service procedure queue if
6751		 * this is the last message destined to that queue.
6752		 *
6753		 * It would make better sense to have some sort of
6754		 * tunable for the low water mark, but these symantics
6755		 * are not yet defined.  So, alas, we use a constant.
6756		 */
6757		do_clr = (q->q_syncqmsgs == 0);
6758		mutex_exit(QLOCK(q));
6759
6760		if (do_clr)
6761			clr_qfull(q);
6762
6763		mutex_enter(QLOCK(q));
6764		/*
6765		 * Always clear SQ_EXCL when CIPUT in order to handle
6766		 * qwriter(INNER).
6767		 */
6768		/*
6769		 * The putp() can call qwriter and get exclusive access
6770		 * IFF this is the only claim.  So, we need to test for
6771		 * this possibility so we can aquire the mutex and clear
6772		 * the bit.
6773		 */
6774		if ((sq->sq_type & SQ_CIPUT) && (sq->sq_flags & SQ_EXCL)) {
6775			mutex_enter(SQLOCK(sq));
6776			sq->sq_flags &= ~SQ_EXCL;
6777			mutex_exit(SQLOCK(sq));
6778		}
6779	}
6780
6781	/*
6782	 * We should either have no queues on the syncq, or we were
6783	 * told to goaway by a waiter (which we will wake up at the
6784	 * end of this function).
6785	 */
6786	ASSERT((q->q_sqhead == NULL) ||
6787	    (sq->sq_flags & (SQ_STAYAWAY | SQ_EVENTS)));
6788
6789	ASSERT(MUTEX_HELD(QLOCK(q)));
6790	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6791
6792	/*
6793	 * Remove the q from the syncq list if all the messages are
6794	 * drained.
6795	 */
6796	if (q->q_sqhead == NULL) {
6797		mutex_enter(SQLOCK(sq));
6798		if (q->q_sqflags & Q_SQQUEUED)
6799			SQRM_Q(sq, q);
6800		mutex_exit(SQLOCK(sq));
6801		/*
6802		 * Since the queue is removed from the list, reset its priority.
6803		 */
6804		q->q_spri = 0;
6805	}
6806
6807	/*
6808	 * Remember, the q_draining flag is used to let another
6809	 * thread know that there is a thread currently draining
6810	 * the messages for a queue.  Since we are now done with
6811	 * this queue (even if there may be messages still there),
6812	 * we need to clear this flag so some thread will work
6813	 * on it if needed.
6814	 */
6815	ASSERT(q->q_draining);
6816	q->q_draining = 0;
6817
6818	/* called with a claim, so OK to drop all locks. */
6819	mutex_exit(QLOCK(q));
6820
6821	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_END,
6822	    "drain_syncq end:%p", sq);
6823}
6824/* END OF QDRAIN_SYNCQ  */
6825
6826
6827/*
6828 * This is the mate to qdrain_syncq, except that it is putting the
6829 * message onto the the queue instead draining.  Since the
6830 * message is destined for the queue that is selected, there is
6831 * no need to identify the function because the message is
6832 * intended for the put routine for the queue.  But this
6833 * routine will do it anyway just in case (but only for debug kernels).
6834 *
6835 * After the message is enqueued on the syncq, it calls putnext_tail()
6836 * which will schedule a background thread to actually process the message.
6837 *
6838 * Assumes that there is a claim on the syncq (sq->sq_count > 0) and
6839 * SQLOCK(sq) and QLOCK(q) are not held.
6840 */
6841void
6842qfill_syncq(syncq_t *sq, queue_t *q, mblk_t *mp)
6843{
6844	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6845	ASSERT(MUTEX_NOT_HELD(QLOCK(q)));
6846	ASSERT(sq->sq_count > 0);
6847	ASSERT(q->q_syncq == sq);
6848	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6849	    sq->sq_oprev == NULL) ||
6850	    (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6851	    sq->sq_oprev != NULL));
6852
6853	mutex_enter(QLOCK(q));
6854
6855#ifdef DEBUG
6856	/*
6857	 * This is used for debug in the qfill_syncq/qdrain_syncq case
6858	 * to trace the queue that the message is intended for.  Note
6859	 * that the original use was to identify the queue and function
6860	 * to call on the drain.  In the new syncq, we have the context
6861	 * of the queue that we are draining, so call it's putproc and
6862	 * don't rely on the saved values.  But for debug this is still
6863	 * usefull information.
6864	 */
6865	mp->b_prev = (mblk_t *)q->q_qinfo->qi_putp;
6866	mp->b_queue = q;
6867	mp->b_next = NULL;
6868#endif
6869	ASSERT(q->q_syncq == sq);
6870	/*
6871	 * Enqueue the message on the list.
6872	 * SQPUT_MP() accesses q_syncqmsgs.  We are already holding QLOCK to
6873	 * protect it.  So its ok to acquire SQLOCK after SQPUT_MP().
6874	 */
6875	SQPUT_MP(q, mp);
6876	mutex_enter(SQLOCK(sq));
6877
6878	/*
6879	 * And queue on syncq for scheduling, if not already queued.
6880	 * Note that we need the SQLOCK for this, and for testing flags
6881	 * at the end to see if we will drain.  So grab it now, and
6882	 * release it before we call qdrain_syncq or return.
6883	 */
6884	if (!(q->q_sqflags & Q_SQQUEUED)) {
6885		q->q_spri = curthread->t_pri;
6886		SQPUT_Q(sq, q);
6887	}
6888#ifdef DEBUG
6889	else {
6890		/*
6891		 * All of these conditions MUST be true!
6892		 */
6893		ASSERT(sq->sq_tail != NULL);
6894		if (sq->sq_tail == sq->sq_head) {
6895			ASSERT((q->q_sqprev == NULL) &&
6896			    (q->q_sqnext == NULL));
6897		} else {
6898			ASSERT((q->q_sqprev != NULL) ||
6899			    (q->q_sqnext != NULL));
6900		}
6901		ASSERT(sq->sq_flags & SQ_QUEUED);
6902		ASSERT(q->q_syncqmsgs != 0);
6903		ASSERT(q->q_sqflags & Q_SQQUEUED);
6904	}
6905#endif
6906	mutex_exit(QLOCK(q));
6907	/*
6908	 * SQLOCK is still held, so sq_count can be safely decremented.
6909	 */
6910	sq->sq_count--;
6911
6912	putnext_tail(sq, q, 0);
6913	/* Should not reference sq or q after this point. */
6914}
6915
6916/*  End of qfill_syncq  */
6917
6918/*
6919 * Remove all messages from a syncq (if qp is NULL) or remove all messages
6920 * that would be put into qp by drain_syncq.
6921 * Used when deleting the syncq (qp == NULL) or when detaching
6922 * a queue (qp != NULL).
6923 * Return non-zero if one or more messages were freed.
6924 *
6925 * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
6926 * sq_putlocks are used.
6927 *
6928 * NOTE: This function assumes that it is called from the close() context and
6929 * that all the queues in the syncq are going aay. For this reason it doesn't
6930 * acquire QLOCK for modifying q_sqhead/q_sqtail fields. This assumption is
6931 * currently valid, but it is useful to rethink this function to behave properly
6932 * in other cases.
6933 */
6934int
6935flush_syncq(syncq_t *sq, queue_t *qp)
6936{
6937	mblk_t		*bp, *mp_head, *mp_next, *mp_prev;
6938	queue_t		*q;
6939	int		ret = 0;
6940
6941	mutex_enter(SQLOCK(sq));
6942
6943	/*
6944	 * Before we leave, we need to make sure there are no
6945	 * events listed for this queue.  All events for this queue
6946	 * will just be freed.
6947	 */
6948	if (qp != NULL && sq->sq_evhead != NULL) {
6949		ASSERT(sq->sq_flags & SQ_EVENTS);
6950
6951		mp_prev = NULL;
6952		for (bp = sq->sq_evhead; bp != NULL; bp = mp_next) {
6953			mp_next = bp->b_next;
6954			if (bp->b_queue == qp) {
6955				/* Delete this message */
6956				if (mp_prev != NULL) {
6957					mp_prev->b_next = mp_next;
6958					/*
6959					 * Update sq_evtail if the last element
6960					 * is removed.
6961					 */
6962					if (bp == sq->sq_evtail) {
6963						ASSERT(mp_next == NULL);
6964						sq->sq_evtail = mp_prev;
6965					}
6966				} else
6967					sq->sq_evhead = mp_next;
6968				if (sq->sq_evhead == NULL)
6969					sq->sq_flags &= ~SQ_EVENTS;
6970				bp->b_prev = bp->b_next = NULL;
6971				freemsg(bp);
6972				ret++;
6973			} else {
6974				mp_prev = bp;
6975			}
6976		}
6977	}
6978
6979	/*
6980	 * Walk sq_head and:
6981	 *	- match qp if qp is set, remove it's messages
6982	 *	- all if qp is not set
6983	 */
6984	q = sq->sq_head;
6985	while (q != NULL) {
6986		ASSERT(q->q_syncq == sq);
6987		if ((qp == NULL) || (qp == q)) {
6988			/*
6989			 * Yank the messages as a list off the queue
6990			 */
6991			mp_head = q->q_sqhead;
6992			/*
6993			 * We do not have QLOCK(q) here (which is safe due to
6994			 * assumptions mentioned above). To obtain the lock we
6995			 * need to release SQLOCK which may allow lots of things
6996			 * to change upon us. This place requires more analysis.
6997			 */
6998			q->q_sqhead = q->q_sqtail = NULL;
6999			ASSERT(mp_head->b_queue &&
7000			    mp_head->b_queue->q_syncq == sq);
7001
7002			/*
7003			 * Free each of the messages.
7004			 */
7005			for (bp = mp_head; bp != NULL; bp = mp_next) {
7006				mp_next = bp->b_next;
7007				bp->b_prev = bp->b_next = NULL;
7008				freemsg(bp);
7009				ret++;
7010			}
7011			/*
7012			 * Now remove the queue from the syncq.
7013			 */
7014			ASSERT(q->q_sqflags & Q_SQQUEUED);
7015			SQRM_Q(sq, q);
7016			q->q_spri = 0;
7017			q->q_syncqmsgs = 0;
7018
7019			/*
7020			 * If qp was specified, we are done with it and are
7021			 * going to drop SQLOCK(sq) and return. We wakeup syncq
7022			 * waiters while we still have the SQLOCK.
7023			 */
7024			if ((qp != NULL) && (sq->sq_flags & SQ_WANTWAKEUP)) {
7025				sq->sq_flags &= ~SQ_WANTWAKEUP;
7026				cv_broadcast(&sq->sq_wait);
7027			}
7028			/* Drop SQLOCK across clr_qfull */
7029			mutex_exit(SQLOCK(sq));
7030
7031			/*
7032			 * We avoid doing the test that drain_syncq does and
7033			 * unconditionally clear qfull for every flushed
7034			 * message. Since flush_syncq is only called during
7035			 * close this should not be a problem.
7036			 */
7037			clr_qfull(q);
7038			if (qp != NULL) {
7039				return (ret);
7040			} else {
7041				mutex_enter(SQLOCK(sq));
7042				/*
7043				 * The head was removed by SQRM_Q above.
7044				 * reread the new head and flush it.
7045				 */
7046				q = sq->sq_head;
7047			}
7048		} else {
7049			q = q->q_sqnext;
7050		}
7051		ASSERT(MUTEX_HELD(SQLOCK(sq)));
7052	}
7053
7054	if (sq->sq_flags & SQ_WANTWAKEUP) {
7055		sq->sq_flags &= ~SQ_WANTWAKEUP;
7056		cv_broadcast(&sq->sq_wait);
7057	}
7058
7059	mutex_exit(SQLOCK(sq));
7060	return (ret);
7061}
7062
7063/*
7064 * Propagate all messages from a syncq to the next syncq that are associated
7065 * with the specified queue. If the queue is attached to a driver or if the
7066 * messages have been added due to a qwriter(PERIM_INNER), free the messages.
7067 *
7068 * Assumes that the stream is strlock()'ed. We don't come here if there
7069 * are no messages to propagate.
7070 *
7071 * NOTE : If the queue is attached to a driver, all the messages are freed
7072 * as there is no point in propagating the messages from the driver syncq
7073 * to the closing stream head which will in turn get freed later.
7074 */
7075static int
7076propagate_syncq(queue_t *qp)
7077{
7078	mblk_t		*bp, *head, *tail, *prev, *next;
7079	syncq_t 	*sq;
7080	queue_t		*nqp;
7081	syncq_t		*nsq;
7082	boolean_t	isdriver;
7083	int 		moved = 0;
7084	uint16_t	flags;
7085	pri_t		priority = curthread->t_pri;
7086#ifdef DEBUG
7087	void		(*func)();
7088#endif
7089
7090	sq = qp->q_syncq;
7091	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7092	/* debug macro */
7093	SQ_PUTLOCKS_HELD(sq);
7094	/*
7095	 * As entersq() does not increment the sq_count for
7096	 * the write side, check sq_count for non-QPERQ
7097	 * perimeters alone.
7098	 */
7099	ASSERT((qp->q_flag & QPERQ) || (sq->sq_count >= 1));
7100
7101	/*
7102	 * propagate_syncq() can be called because of either messages on the
7103	 * queue syncq or because on events on the queue syncq. Do actual
7104	 * message propagations if there are any messages.
7105	 */
7106	if (qp->q_syncqmsgs) {
7107		isdriver = (qp->q_flag & QISDRV);
7108
7109		if (!isdriver) {
7110			nqp = qp->q_next;
7111			nsq = nqp->q_syncq;
7112			ASSERT(MUTEX_HELD(SQLOCK(nsq)));
7113			/* debug macro */
7114			SQ_PUTLOCKS_HELD(nsq);
7115#ifdef DEBUG
7116			func = (void (*)())nqp->q_qinfo->qi_putp;
7117#endif
7118		}
7119
7120		SQRM_Q(sq, qp);
7121		priority = MAX(qp->q_spri, priority);
7122		qp->q_spri = 0;
7123		head = qp->q_sqhead;
7124		tail = qp->q_sqtail;
7125		qp->q_sqhead = qp->q_sqtail = NULL;
7126		qp->q_syncqmsgs = 0;
7127
7128		/*
7129		 * Walk the list of messages, and free them if this is a driver,
7130		 * otherwise reset the b_prev and b_queue value to the new putp.
7131		 * Afterward, we will just add the head to the end of the next
7132		 * syncq, and point the tail to the end of this one.
7133		 */
7134
7135		for (bp = head; bp != NULL; bp = next) {
7136			next = bp->b_next;
7137			if (isdriver) {
7138				bp->b_prev = bp->b_next = NULL;
7139				freemsg(bp);
7140				continue;
7141			}
7142			/* Change the q values for this message */
7143			bp->b_queue = nqp;
7144#ifdef DEBUG
7145			bp->b_prev = (mblk_t *)func;
7146#endif
7147			moved++;
7148		}
7149		/*
7150		 * Attach list of messages to the end of the new queue (if there
7151		 * is a list of messages).
7152		 */
7153
7154		if (!isdriver && head != NULL) {
7155			ASSERT(tail != NULL);
7156			if (nqp->q_sqhead == NULL) {
7157				nqp->q_sqhead = head;
7158			} else {
7159				ASSERT(nqp->q_sqtail != NULL);
7160				nqp->q_sqtail->b_next = head;
7161			}
7162			nqp->q_sqtail = tail;
7163			/*
7164			 * When messages are moved from high priority queue to
7165			 * another queue, the destination queue priority is
7166			 * upgraded.
7167			 */
7168
7169			if (priority > nqp->q_spri)
7170				nqp->q_spri = priority;
7171
7172			SQPUT_Q(nsq, nqp);
7173
7174			nqp->q_syncqmsgs += moved;
7175			ASSERT(nqp->q_syncqmsgs != 0);
7176		}
7177	}
7178
7179	/*
7180	 * Before we leave, we need to make sure there are no
7181	 * events listed for this queue.  All events for this queue
7182	 * will just be freed.
7183	 */
7184	if (sq->sq_evhead != NULL) {
7185		ASSERT(sq->sq_flags & SQ_EVENTS);
7186		prev = NULL;
7187		for (bp = sq->sq_evhead; bp != NULL; bp = next) {
7188			next = bp->b_next;
7189			if (bp->b_queue == qp) {
7190				/* Delete this message */
7191				if (prev != NULL) {
7192					prev->b_next = next;
7193					/*
7194					 * Update sq_evtail if the last element
7195					 * is removed.
7196					 */
7197					if (bp == sq->sq_evtail) {
7198						ASSERT(next == NULL);
7199						sq->sq_evtail = prev;
7200					}
7201				} else
7202					sq->sq_evhead = next;
7203				if (sq->sq_evhead == NULL)
7204					sq->sq_flags &= ~SQ_EVENTS;
7205				bp->b_prev = bp->b_next = NULL;
7206				freemsg(bp);
7207			} else {
7208				prev = bp;
7209			}
7210		}
7211	}
7212
7213	flags = sq->sq_flags;
7214
7215	/* Wake up any waiter before leaving. */
7216	if (flags & SQ_WANTWAKEUP) {
7217		flags &= ~SQ_WANTWAKEUP;
7218		cv_broadcast(&sq->sq_wait);
7219	}
7220	sq->sq_flags = flags;
7221
7222	return (moved);
7223}
7224
7225/*
7226 * Try and upgrade to exclusive access at the inner perimeter. If this can
7227 * not be done without blocking then request will be queued on the syncq
7228 * and drain_syncq will run it later.
7229 *
7230 * This routine can only be called from put or service procedures plus
7231 * asynchronous callback routines that have properly entered to
7232 * queue (with entersq.) Thus qwriter_inner assumes the caller has one claim
7233 * on the syncq associated with q.
7234 */
7235void
7236qwriter_inner(queue_t *q, mblk_t *mp, void (*func)())
7237{
7238	syncq_t	*sq = q->q_syncq;
7239	uint16_t count;
7240
7241	mutex_enter(SQLOCK(sq));
7242	count = sq->sq_count;
7243	SQ_PUTLOCKS_ENTER(sq);
7244	SUM_SQ_PUTCOUNTS(sq, count);
7245	ASSERT(count >= 1);
7246	ASSERT(sq->sq_type & (SQ_CIPUT|SQ_CISVC));
7247
7248	if (count == 1) {
7249		/*
7250		 * Can upgrade. This case also handles nested qwriter calls
7251		 * (when the qwriter callback function calls qwriter). In that
7252		 * case SQ_EXCL is already set.
7253		 */
7254		sq->sq_flags |= SQ_EXCL;
7255		SQ_PUTLOCKS_EXIT(sq);
7256		mutex_exit(SQLOCK(sq));
7257		(*func)(q, mp);
7258		/*
7259		 * Assumes that leavesq, putnext, and drain_syncq will reset
7260		 * SQ_EXCL for SQ_CIPUT/SQ_CISVC queues. We leave SQ_EXCL on
7261		 * until putnext, leavesq, or drain_syncq drops it.
7262		 * That way we handle nested qwriter(INNER) without dropping
7263		 * SQ_EXCL until the outermost qwriter callback routine is
7264		 * done.
7265		 */
7266		return;
7267	}
7268	SQ_PUTLOCKS_EXIT(sq);
7269	sqfill_events(sq, q, mp, func);
7270}
7271
7272/*
7273 * Synchronous callback support functions
7274 */
7275
7276/*
7277 * Allocate a callback parameter structure.
7278 * Assumes that caller initializes the flags and the id.
7279 * Acquires SQLOCK(sq) if non-NULL is returned.
7280 */
7281callbparams_t *
7282callbparams_alloc(syncq_t *sq, void (*func)(void *), void *arg, int kmflags)
7283{
7284	callbparams_t *cbp;
7285	size_t size = sizeof (callbparams_t);
7286
7287	cbp = kmem_alloc(size, kmflags & ~KM_PANIC);
7288
7289	/*
7290	 * Only try tryhard allocation if the caller is ready to panic.
7291	 * Otherwise just fail.
7292	 */
7293	if (cbp == NULL) {
7294		if (kmflags & KM_PANIC)
7295			cbp = kmem_alloc_tryhard(sizeof (callbparams_t),
7296			    &size, kmflags);
7297		else
7298			return (NULL);
7299	}
7300
7301	ASSERT(size >= sizeof (callbparams_t));
7302	cbp->cbp_size = size;
7303	cbp->cbp_sq = sq;
7304	cbp->cbp_func = func;
7305	cbp->cbp_arg = arg;
7306	mutex_enter(SQLOCK(sq));
7307	cbp->cbp_next = sq->sq_callbpend;
7308	sq->sq_callbpend = cbp;
7309	return (cbp);
7310}
7311
7312void
7313callbparams_free(syncq_t *sq, callbparams_t *cbp)
7314{
7315	callbparams_t **pp, *p;
7316
7317	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7318
7319	for (pp = &sq->sq_callbpend; (p = *pp) != NULL; pp = &p->cbp_next) {
7320		if (p == cbp) {
7321			*pp = p->cbp_next;
7322			kmem_free(p, p->cbp_size);
7323			return;
7324		}
7325	}
7326	(void) (STRLOG(0, 0, 0, SL_CONSOLE,
7327	    "callbparams_free: not found\n"));
7328}
7329
7330void
7331callbparams_free_id(syncq_t *sq, callbparams_id_t id, int32_t flag)
7332{
7333	callbparams_t **pp, *p;
7334
7335	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7336
7337	for (pp = &sq->sq_callbpend; (p = *pp) != NULL; pp = &p->cbp_next) {
7338		if (p->cbp_id == id && p->cbp_flags == flag) {
7339			*pp = p->cbp_next;
7340			kmem_free(p, p->cbp_size);
7341			return;
7342		}
7343	}
7344	(void) (STRLOG(0, 0, 0, SL_CONSOLE,
7345	    "callbparams_free_id: not found\n"));
7346}
7347
7348/*
7349 * Callback wrapper function used by once-only callbacks that can be
7350 * cancelled (qtimeout and qbufcall)
7351 * Contains inline version of entersq(sq, SQ_CALLBACK) that can be
7352 * cancelled by the qun* functions.
7353 */
7354void
7355qcallbwrapper(void *arg)
7356{
7357	callbparams_t *cbp = arg;
7358	syncq_t	*sq;
7359	uint16_t count = 0;
7360	uint16_t waitflags = SQ_STAYAWAY | SQ_EVENTS | SQ_EXCL;
7361	uint16_t type;
7362
7363	sq = cbp->cbp_sq;
7364	mutex_enter(SQLOCK(sq));
7365	type = sq->sq_type;
7366	if (!(type & SQ_CICB)) {
7367		count = sq->sq_count;
7368		SQ_PUTLOCKS_ENTER(sq);
7369		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
7370		SUM_SQ_PUTCOUNTS(sq, count);
7371		sq->sq_needexcl++;
7372		ASSERT(sq->sq_needexcl != 0);	/* wraparound */
7373		waitflags |= SQ_MESSAGES;
7374	}
7375	/* Can not handle exlusive entry at outer perimeter */
7376	ASSERT(type & SQ_COCB);
7377
7378	while ((sq->sq_flags & waitflags) || (!(type & SQ_CICB) &&count != 0)) {
7379		if ((sq->sq_callbflags & cbp->cbp_flags) &&
7380		    (sq->sq_cancelid == cbp->cbp_id)) {
7381			/* timeout has been cancelled */
7382			sq->sq_callbflags |= SQ_CALLB_BYPASSED;
7383			callbparams_free(sq, cbp);
7384			if (!(type & SQ_CICB)) {
7385				ASSERT(sq->sq_needexcl > 0);
7386				sq->sq_needexcl--;
7387				if (sq->sq_needexcl == 0) {
7388					SQ_PUTCOUNT_SETFAST_LOCKED(sq);
7389				}
7390				SQ_PUTLOCKS_EXIT(sq);
7391			}
7392			mutex_exit(SQLOCK(sq));
7393			return;
7394		}
7395		sq->sq_flags |= SQ_WANTWAKEUP;
7396		if (!(type & SQ_CICB)) {
7397			SQ_PUTLOCKS_EXIT(sq);
7398		}
7399		cv_wait(&sq->sq_wait, SQLOCK(sq));
7400		if (!(type & SQ_CICB)) {
7401			count = sq->sq_count;
7402			SQ_PUTLOCKS_ENTER(sq);
7403			SUM_SQ_PUTCOUNTS(sq, count);
7404		}
7405	}
7406
7407	sq->sq_count++;
7408	ASSERT(sq->sq_count != 0);	/* Wraparound */
7409	if (!(type & SQ_CICB)) {
7410		ASSERT(count == 0);
7411		sq->sq_flags |= SQ_EXCL;
7412		ASSERT(sq->sq_needexcl > 0);
7413		sq->sq_needexcl--;
7414		if (sq->sq_needexcl == 0) {
7415			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
7416		}
7417		SQ_PUTLOCKS_EXIT(sq);
7418	}
7419
7420	mutex_exit(SQLOCK(sq));
7421
7422	cbp->cbp_func(cbp->cbp_arg);
7423
7424	/*
7425	 * We drop the lock only for leavesq to re-acquire it.
7426	 * Possible optimization is inline of leavesq.
7427	 */
7428	mutex_enter(SQLOCK(sq));
7429	callbparams_free(sq, cbp);
7430	mutex_exit(SQLOCK(sq));
7431	leavesq(sq, SQ_CALLBACK);
7432}
7433
7434/*
7435 * no need to grab sq_putlocks here. See comment in strsubr.h that
7436 * explains when sq_putlocks are used.
7437 *
7438 * sq_count (or one of the sq_putcounts) has already been
7439 * decremented by the caller, and if SQ_QUEUED, we need to call
7440 * drain_syncq (the global syncq drain).
7441 * If putnext_tail is called with the SQ_EXCL bit set, we are in
7442 * one of two states, non-CIPUT perimiter, and we need to clear
7443 * it, or we went exclusive in the put procedure.  In any case,
7444 * we want to clear the bit now, and it is probably easier to do
7445 * this at the beginning of this function (remember, we hold
7446 * the SQLOCK).  Lastly, if there are other messages queued
7447 * on the syncq (and not for our destination), enable the syncq
7448 * for background work.
7449 */
7450
7451/* ARGSUSED */
7452void
7453putnext_tail(syncq_t *sq, queue_t *qp, uint32_t passflags)
7454{
7455	uint16_t	flags = sq->sq_flags;
7456
7457	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7458	ASSERT(MUTEX_NOT_HELD(QLOCK(qp)));
7459
7460	/* Clear SQ_EXCL if set in passflags */
7461	if (passflags & SQ_EXCL) {
7462		flags &= ~SQ_EXCL;
7463	}
7464	if (flags & SQ_WANTWAKEUP) {
7465		flags &= ~SQ_WANTWAKEUP;
7466		cv_broadcast(&sq->sq_wait);
7467	}
7468	if (flags & SQ_WANTEXWAKEUP) {
7469		flags &= ~SQ_WANTEXWAKEUP;
7470		cv_broadcast(&sq->sq_exitwait);
7471	}
7472	sq->sq_flags = flags;
7473
7474	/*
7475	 * We have cleared SQ_EXCL if we were asked to, and started
7476	 * the wakeup process for waiters.  If there are no writers
7477	 * then we need to drain the syncq if we were told to, or
7478	 * enable the background thread to do it.
7479	 */
7480	if (!(flags & (SQ_STAYAWAY|SQ_EXCL))) {
7481		if ((passflags & SQ_QUEUED) ||
7482		    (sq->sq_svcflags & SQ_DISABLED)) {
7483			/* drain_syncq will take care of events in the list */
7484			drain_syncq(sq);
7485			return;
7486		} else if (flags & SQ_QUEUED) {
7487			sqenable(sq);
7488		}
7489	}
7490	/* Drop the SQLOCK on exit */
7491	mutex_exit(SQLOCK(sq));
7492	TRACE_3(TR_FAC_STREAMS_FR, TR_PUTNEXT_END,
7493	    "putnext_end:(%p, %p, %p) done", NULL, qp, sq);
7494}
7495
7496void
7497set_qend(queue_t *q)
7498{
7499	mutex_enter(QLOCK(q));
7500	if (!O_SAMESTR(q))
7501		q->q_flag |= QEND;
7502	else
7503		q->q_flag &= ~QEND;
7504	mutex_exit(QLOCK(q));
7505	q = _OTHERQ(q);
7506	mutex_enter(QLOCK(q));
7507	if (!O_SAMESTR(q))
7508		q->q_flag |= QEND;
7509	else
7510		q->q_flag &= ~QEND;
7511	mutex_exit(QLOCK(q));
7512}
7513
7514/*
7515 * Set QFULL in next service procedure queue (that cares) if not already
7516 * set and if there are already more messages on the syncq than
7517 * sq_max_size.  If sq_max_size is 0, no flow control will be asserted on
7518 * any syncq.
7519 *
7520 * The fq here is the next queue with a service procedure.  This is where
7521 * we would fail canputnext, so this is where we need to set QFULL.
7522 * In the case when fq != q we need to take QLOCK(fq) to set QFULL flag.
7523 *
7524 * We already have QLOCK at this point. To avoid cross-locks with
7525 * freezestr() which grabs all QLOCKs and with strlock() which grabs both
7526 * SQLOCK and sd_reflock, we need to drop respective locks first.
7527 */
7528void
7529set_qfull(queue_t *q)
7530{
7531	queue_t		*fq = NULL;
7532
7533	ASSERT(MUTEX_HELD(QLOCK(q)));
7534	if ((sq_max_size != 0) && (!(q->q_nfsrv->q_flag & QFULL)) &&
7535	    (q->q_syncqmsgs > sq_max_size)) {
7536		if ((fq = q->q_nfsrv) == q) {
7537			fq->q_flag |= QFULL;
7538		} else {
7539			mutex_exit(QLOCK(q));
7540			mutex_enter(QLOCK(fq));
7541			fq->q_flag |= QFULL;
7542			mutex_exit(QLOCK(fq));
7543			mutex_enter(QLOCK(q));
7544		}
7545	}
7546}
7547
7548void
7549clr_qfull(queue_t *q)
7550{
7551	queue_t	*oq = q;
7552
7553	q = q->q_nfsrv;
7554	/* Fast check if there is any work to do before getting the lock. */
7555	if ((q->q_flag & (QFULL|QWANTW)) == 0) {
7556		return;
7557	}
7558
7559	/*
7560	 * Do not reset QFULL (and backenable) if the q_count is the reason
7561	 * for QFULL being set.
7562	 */
7563	mutex_enter(QLOCK(q));
7564	/*
7565	 * If queue is empty i.e q_mblkcnt is zero, queue can not be full.
7566	 * Hence clear the QFULL.
7567	 * If both q_count and q_mblkcnt are less than the hiwat mark,
7568	 * clear the QFULL.
7569	 */
7570	if (q->q_mblkcnt == 0 || ((q->q_count < q->q_hiwat) &&
7571	    (q->q_mblkcnt < q->q_hiwat))) {
7572		q->q_flag &= ~QFULL;
7573		/*
7574		 * A little more confusing, how about this way:
7575		 * if someone wants to write,
7576		 * AND
7577		 *    both counts are less than the lowat mark
7578		 *    OR
7579		 *    the lowat mark is zero
7580		 * THEN
7581		 * backenable
7582		 */
7583		if ((q->q_flag & QWANTW) &&
7584		    (((q->q_count < q->q_lowat) &&
7585		    (q->q_mblkcnt < q->q_lowat)) || q->q_lowat == 0)) {
7586			q->q_flag &= ~QWANTW;
7587			mutex_exit(QLOCK(q));
7588			backenable(oq, 0);
7589		} else
7590			mutex_exit(QLOCK(q));
7591	} else
7592		mutex_exit(QLOCK(q));
7593}
7594
7595/*
7596 * Set the forward service procedure pointer.
7597 *
7598 * Called at insert-time to cache a queue's next forward service procedure in
7599 * q_nfsrv; used by canput() and canputnext().  If the queue to be inserted
7600 * has a service procedure then q_nfsrv points to itself.  If the queue to be
7601 * inserted does not have a service procedure, then q_nfsrv points to the next
7602 * queue forward that has a service procedure.  If the queue is at the logical
7603 * end of the stream (driver for write side, stream head for the read side)
7604 * and does not have a service procedure, then q_nfsrv also points to itself.
7605 */
7606void
7607set_nfsrv_ptr(
7608	queue_t  *rnew,		/* read queue pointer to new module */
7609	queue_t  *wnew,		/* write queue pointer to new module */
7610	queue_t  *prev_rq,	/* read queue pointer to the module above */
7611	queue_t  *prev_wq)	/* write queue pointer to the module above */
7612{
7613	queue_t *qp;
7614
7615	if (prev_wq->q_next == NULL) {
7616		/*
7617		 * Insert the driver, initialize the driver and stream head.
7618		 * In this case, prev_rq/prev_wq should be the stream head.
7619		 * _I_INSERT does not allow inserting a driver.  Make sure
7620		 * that it is not an insertion.
7621		 */
7622		ASSERT(!(rnew->q_flag & _QINSERTING));
7623		wnew->q_nfsrv = wnew;
7624		if (rnew->q_qinfo->qi_srvp)
7625			rnew->q_nfsrv = rnew;
7626		else
7627			rnew->q_nfsrv = prev_rq;
7628		prev_rq->q_nfsrv = prev_rq;
7629		prev_wq->q_nfsrv = prev_wq;
7630	} else {
7631		/*
7632		 * set up read side q_nfsrv pointer.  This MUST be done
7633		 * before setting the write side, because the setting of
7634		 * the write side for a fifo may depend on it.
7635		 *
7636		 * Suppose we have a fifo that only has pipemod pushed.
7637		 * pipemod has no read or write service procedures, so
7638		 * nfsrv for both pipemod queues points to prev_rq (the
7639		 * stream read head).  Now push bufmod (which has only a
7640		 * read service procedure).  Doing the write side first,
7641		 * wnew->q_nfsrv is set to pipemod's writeq nfsrv, which
7642		 * is WRONG; the next queue forward from wnew with a
7643		 * service procedure will be rnew, not the stream read head.
7644		 * Since the downstream queue (which in the case of a fifo
7645		 * is the read queue rnew) can affect upstream queues, it
7646		 * needs to be done first.  Setting up the read side first
7647		 * sets nfsrv for both pipemod queues to rnew and then
7648		 * when the write side is set up, wnew-q_nfsrv will also
7649		 * point to rnew.
7650		 */
7651		if (rnew->q_qinfo->qi_srvp) {
7652			/*
7653			 * use _OTHERQ() because, if this is a pipe, next
7654			 * module may have been pushed from other end and
7655			 * q_next could be a read queue.
7656			 */
7657			qp = _OTHERQ(prev_wq->q_next);
7658			while (qp && qp->q_nfsrv != qp) {
7659				qp->q_nfsrv = rnew;
7660				qp = backq(qp);
7661			}
7662			rnew->q_nfsrv = rnew;
7663		} else
7664			rnew->q_nfsrv = prev_rq->q_nfsrv;
7665
7666		/* set up write side q_nfsrv pointer */
7667		if (wnew->q_qinfo->qi_srvp) {
7668			wnew->q_nfsrv = wnew;
7669
7670			/*
7671			 * For insertion, need to update nfsrv of the modules
7672			 * above which do not have a service routine.
7673			 */
7674			if (rnew->q_flag & _QINSERTING) {
7675				for (qp = prev_wq;
7676				    qp != NULL && qp->q_nfsrv != qp;
7677				    qp = backq(qp)) {
7678					qp->q_nfsrv = wnew->q_nfsrv;
7679				}
7680			}
7681		} else {
7682			if (prev_wq->q_next == prev_rq)
7683				/*
7684				 * Since prev_wq/prev_rq are the middle of a
7685				 * fifo, wnew/rnew will also be the middle of
7686				 * a fifo and wnew's nfsrv is same as rnew's.
7687				 */
7688				wnew->q_nfsrv = rnew->q_nfsrv;
7689			else
7690				wnew->q_nfsrv = prev_wq->q_next->q_nfsrv;
7691		}
7692	}
7693}
7694
7695/*
7696 * Reset the forward service procedure pointer; called at remove-time.
7697 */
7698void
7699reset_nfsrv_ptr(queue_t *rqp, queue_t *wqp)
7700{
7701	queue_t *tmp_qp;
7702
7703	/* Reset the write side q_nfsrv pointer for _I_REMOVE */
7704	if ((rqp->q_flag & _QREMOVING) && (wqp->q_qinfo->qi_srvp != NULL)) {
7705		for (tmp_qp = backq(wqp);
7706		    tmp_qp != NULL && tmp_qp->q_nfsrv == wqp;
7707		    tmp_qp = backq(tmp_qp)) {
7708			tmp_qp->q_nfsrv = wqp->q_nfsrv;
7709		}
7710	}
7711
7712	/* reset the read side q_nfsrv pointer */
7713	if (rqp->q_qinfo->qi_srvp) {
7714		if (wqp->q_next) {	/* non-driver case */
7715			tmp_qp = _OTHERQ(wqp->q_next);
7716			while (tmp_qp && tmp_qp->q_nfsrv == rqp) {
7717				/* Note that rqp->q_next cannot be NULL */
7718				ASSERT(rqp->q_next != NULL);
7719				tmp_qp->q_nfsrv = rqp->q_next->q_nfsrv;
7720				tmp_qp = backq(tmp_qp);
7721			}
7722		}
7723	}
7724}
7725
7726/*
7727 * This routine should be called after all stream geometry changes to update
7728 * the stream head cached struio() rd/wr queue pointers. Note must be called
7729 * with the streamlock()ed.
7730 *
7731 * Note: only enables Synchronous STREAMS for a side of a Stream which has
7732 *	 an explicit synchronous barrier module queue. That is, a queue that
7733 *	 has specified a struio() type.
7734 */
7735static void
7736strsetuio(stdata_t *stp)
7737{
7738	queue_t *wrq;
7739
7740	if (stp->sd_flag & STPLEX) {
7741		/*
7742		 * Not stremahead, but a mux, so no Synchronous STREAMS.
7743		 */
7744		stp->sd_struiowrq = NULL;
7745		stp->sd_struiordq = NULL;
7746		return;
7747	}
7748	/*
7749	 * Scan the write queue(s) while synchronous
7750	 * until we find a qinfo uio type specified.
7751	 */
7752	wrq = stp->sd_wrq->q_next;
7753	while (wrq) {
7754		if (wrq->q_struiot == STRUIOT_NONE) {
7755			wrq = 0;
7756			break;
7757		}
7758		if (wrq->q_struiot != STRUIOT_DONTCARE)
7759			break;
7760		if (! _SAMESTR(wrq)) {
7761			wrq = 0;
7762			break;
7763		}
7764		wrq = wrq->q_next;
7765	}
7766	stp->sd_struiowrq = wrq;
7767	/*
7768	 * Scan the read queue(s) while synchronous
7769	 * until we find a qinfo uio type specified.
7770	 */
7771	wrq = stp->sd_wrq->q_next;
7772	while (wrq) {
7773		if (_RD(wrq)->q_struiot == STRUIOT_NONE) {
7774			wrq = 0;
7775			break;
7776		}
7777		if (_RD(wrq)->q_struiot != STRUIOT_DONTCARE)
7778			break;
7779		if (! _SAMESTR(wrq)) {
7780			wrq = 0;
7781			break;
7782		}
7783		wrq = wrq->q_next;
7784	}
7785	stp->sd_struiordq = wrq ? _RD(wrq) : 0;
7786}
7787
7788/*
7789 * pass_wput, unblocks the passthru queues, so that
7790 * messages can arrive at muxs lower read queue, before
7791 * I_LINK/I_UNLINK is acked/nacked.
7792 */
7793static void
7794pass_wput(queue_t *q, mblk_t *mp)
7795{
7796	syncq_t *sq;
7797
7798	sq = _RD(q)->q_syncq;
7799	if (sq->sq_flags & SQ_BLOCKED)
7800		unblocksq(sq, SQ_BLOCKED, 0);
7801	putnext(q, mp);
7802}
7803
7804/*
7805 * Set up queues for the link/unlink.
7806 * Create a new queue and block it and then insert it
7807 * below the stream head on the lower stream.
7808 * This prevents any messages from arriving during the setq
7809 * as well as while the mux is processing the LINK/I_UNLINK.
7810 * The blocked passq is unblocked once the LINK/I_UNLINK has
7811 * been acked or nacked or if a message is generated and sent
7812 * down muxs write put procedure.
7813 * see pass_wput().
7814 *
7815 * After the new queue is inserted, all messages coming from below are
7816 * blocked. The call to strlock will ensure that all activity in the stream head
7817 * read queue syncq is stopped (sq_count drops to zero).
7818 */
7819static queue_t *
7820link_addpassthru(stdata_t *stpdown)
7821{
7822	queue_t *passq;
7823	sqlist_t sqlist;
7824
7825	passq = allocq();
7826	STREAM(passq) = STREAM(_WR(passq)) = stpdown;
7827	/* setq might sleep in allocator - avoid holding locks. */
7828	setq(passq, &passthru_rinit, &passthru_winit, NULL, QPERQ,
7829	    SQ_CI|SQ_CO, B_FALSE);
7830	claimq(passq);
7831	blocksq(passq->q_syncq, SQ_BLOCKED, 1);
7832	insertq(STREAM(passq), passq);
7833
7834	/*
7835	 * Use strlock() to wait for the stream head sq_count to drop to zero
7836	 * since we are going to change q_ptr in the stream head.  Note that
7837	 * insertq() doesn't wait for any syncq counts to drop to zero.
7838	 */
7839	sqlist.sqlist_head = NULL;
7840	sqlist.sqlist_index = 0;
7841	sqlist.sqlist_size = sizeof (sqlist_t);
7842	sqlist_insert(&sqlist, _RD(stpdown->sd_wrq)->q_syncq);
7843	strlock(stpdown, &sqlist);
7844	strunlock(stpdown, &sqlist);
7845
7846	releaseq(passq);
7847	return (passq);
7848}
7849
7850/*
7851 * Let messages flow up into the mux by removing
7852 * the passq.
7853 */
7854static void
7855link_rempassthru(queue_t *passq)
7856{
7857	claimq(passq);
7858	removeq(passq);
7859	releaseq(passq);
7860	freeq(passq);
7861}
7862
7863/*
7864 * Wait for the condition variable pointed to by `cvp' to be signaled,
7865 * or for `tim' milliseconds to elapse, whichever comes first.  If `tim'
7866 * is negative, then there is no time limit.  If `nosigs' is non-zero,
7867 * then the wait will be non-interruptible.
7868 *
7869 * Returns >0 if signaled, 0 if interrupted, or -1 upon timeout.
7870 */
7871clock_t
7872str_cv_wait(kcondvar_t *cvp, kmutex_t *mp, clock_t tim, int nosigs)
7873{
7874	clock_t ret, now, tick;
7875
7876	if (tim < 0) {
7877		if (nosigs) {
7878			cv_wait(cvp, mp);
7879			ret = 1;
7880		} else {
7881			ret = cv_wait_sig(cvp, mp);
7882		}
7883	} else if (tim > 0) {
7884		/*
7885		 * convert milliseconds to clock ticks
7886		 */
7887		tick = MSEC_TO_TICK_ROUNDUP(tim);
7888		time_to_wait(&now, tick);
7889		if (nosigs) {
7890			ret = cv_timedwait(cvp, mp, now);
7891		} else {
7892			ret = cv_timedwait_sig(cvp, mp, now);
7893		}
7894	} else {
7895		ret = -1;
7896	}
7897	return (ret);
7898}
7899
7900/*
7901 * Wait until the stream head can determine if it is at the mark but
7902 * don't wait forever to prevent a race condition between the "mark" state
7903 * in the stream head and any mark state in the caller/user of this routine.
7904 *
7905 * This is used by sockets and for a socket it would be incorrect
7906 * to return a failure for SIOCATMARK when there is no data in the receive
7907 * queue and the marked urgent data is traveling up the stream.
7908 *
7909 * This routine waits until the mark is known by waiting for one of these
7910 * three events:
7911 *	The stream head read queue becoming non-empty (including an EOF)
7912 *	The STRATMARK flag being set. (Due to a MSGMARKNEXT message.)
7913 *	The STRNOTATMARK flag being set (which indicates that the transport
7914 *	has sent a MSGNOTMARKNEXT message to indicate that it is not at
7915 *	the mark).
7916 *
7917 * The routine returns 1 if the stream is at the mark; 0 if it can
7918 * be determined that the stream is not at the mark.
7919 * If the wait times out and it can't determine
7920 * whether or not the stream might be at the mark the routine will return -1.
7921 *
7922 * Note: This routine should only be used when a mark is pending i.e.,
7923 * in the socket case the SIGURG has been posted.
7924 * Note2: This can not wakeup just because synchronous streams indicate
7925 * that data is available since it is not possible to use the synchronous
7926 * streams interfaces to determine the b_flag value for the data queued below
7927 * the stream head.
7928 */
7929int
7930strwaitmark(vnode_t *vp)
7931{
7932	struct stdata *stp = vp->v_stream;
7933	queue_t *rq = _RD(stp->sd_wrq);
7934	int mark;
7935
7936	mutex_enter(&stp->sd_lock);
7937	while (rq->q_first == NULL &&
7938	    !(stp->sd_flag & (STRATMARK|STRNOTATMARK|STREOF))) {
7939		stp->sd_flag |= RSLEEP;
7940
7941		/* Wait for 100 milliseconds for any state change. */
7942		if (str_cv_wait(&rq->q_wait, &stp->sd_lock, 100, 1) == -1) {
7943			mutex_exit(&stp->sd_lock);
7944			return (-1);
7945		}
7946	}
7947	if (stp->sd_flag & STRATMARK)
7948		mark = 1;
7949	else if (rq->q_first != NULL && (rq->q_first->b_flag & MSGMARK))
7950		mark = 1;
7951	else
7952		mark = 0;
7953
7954	mutex_exit(&stp->sd_lock);
7955	return (mark);
7956}
7957
7958/*
7959 * Set a read side error. If persist is set change the socket error
7960 * to persistent. If errfunc is set install the function as the exported
7961 * error handler.
7962 */
7963void
7964strsetrerror(vnode_t *vp, int error, int persist, errfunc_t errfunc)
7965{
7966	struct stdata *stp = vp->v_stream;
7967
7968	mutex_enter(&stp->sd_lock);
7969	stp->sd_rerror = error;
7970	if (error == 0 && errfunc == NULL)
7971		stp->sd_flag &= ~STRDERR;
7972	else
7973		stp->sd_flag |= STRDERR;
7974	if (persist) {
7975		stp->sd_flag &= ~STRDERRNONPERSIST;
7976	} else {
7977		stp->sd_flag |= STRDERRNONPERSIST;
7978	}
7979	stp->sd_rderrfunc = errfunc;
7980	if (error != 0 || errfunc != NULL) {
7981		cv_broadcast(&_RD(stp->sd_wrq)->q_wait);	/* readers */
7982		cv_broadcast(&stp->sd_wrq->q_wait);		/* writers */
7983		cv_broadcast(&stp->sd_monitor);			/* ioctllers */
7984
7985		mutex_exit(&stp->sd_lock);
7986		pollwakeup(&stp->sd_pollist, POLLERR);
7987		mutex_enter(&stp->sd_lock);
7988
7989		if (stp->sd_sigflags & S_ERROR)
7990			strsendsig(stp->sd_siglist, S_ERROR, 0, error);
7991	}
7992	mutex_exit(&stp->sd_lock);
7993}
7994
7995/*
7996 * Set a write side error. If persist is set change the socket error
7997 * to persistent.
7998 */
7999void
8000strsetwerror(vnode_t *vp, int error, int persist, errfunc_t errfunc)
8001{
8002	struct stdata *stp = vp->v_stream;
8003
8004	mutex_enter(&stp->sd_lock);
8005	stp->sd_werror = error;
8006	if (error == 0 && errfunc == NULL)
8007		stp->sd_flag &= ~STWRERR;
8008	else
8009		stp->sd_flag |= STWRERR;
8010	if (persist) {
8011		stp->sd_flag &= ~STWRERRNONPERSIST;
8012	} else {
8013		stp->sd_flag |= STWRERRNONPERSIST;
8014	}
8015	stp->sd_wrerrfunc = errfunc;
8016	if (error != 0 || errfunc != NULL) {
8017		cv_broadcast(&_RD(stp->sd_wrq)->q_wait);	/* readers */
8018		cv_broadcast(&stp->sd_wrq->q_wait);		/* writers */
8019		cv_broadcast(&stp->sd_monitor);			/* ioctllers */
8020
8021		mutex_exit(&stp->sd_lock);
8022		pollwakeup(&stp->sd_pollist, POLLERR);
8023		mutex_enter(&stp->sd_lock);
8024
8025		if (stp->sd_sigflags & S_ERROR)
8026			strsendsig(stp->sd_siglist, S_ERROR, 0, error);
8027	}
8028	mutex_exit(&stp->sd_lock);
8029}
8030
8031/*
8032 * Make the stream return 0 (EOF) when all data has been read.
8033 * No effect on write side.
8034 */
8035void
8036strseteof(vnode_t *vp, int eof)
8037{
8038	struct stdata *stp = vp->v_stream;
8039
8040	mutex_enter(&stp->sd_lock);
8041	if (!eof) {
8042		stp->sd_flag &= ~STREOF;
8043		mutex_exit(&stp->sd_lock);
8044		return;
8045	}
8046	stp->sd_flag |= STREOF;
8047	if (stp->sd_flag & RSLEEP) {
8048		stp->sd_flag &= ~RSLEEP;
8049		cv_broadcast(&_RD(stp->sd_wrq)->q_wait);
8050	}
8051
8052	mutex_exit(&stp->sd_lock);
8053	pollwakeup(&stp->sd_pollist, POLLIN|POLLRDNORM);
8054	mutex_enter(&stp->sd_lock);
8055
8056	if (stp->sd_sigflags & (S_INPUT|S_RDNORM))
8057		strsendsig(stp->sd_siglist, S_INPUT|S_RDNORM, 0, 0);
8058	mutex_exit(&stp->sd_lock);
8059}
8060
8061void
8062strflushrq(vnode_t *vp, int flag)
8063{
8064	struct stdata *stp = vp->v_stream;
8065
8066	mutex_enter(&stp->sd_lock);
8067	flushq(_RD(stp->sd_wrq), flag);
8068	mutex_exit(&stp->sd_lock);
8069}
8070
8071void
8072strsetrputhooks(vnode_t *vp, uint_t flags,
8073		msgfunc_t protofunc, msgfunc_t miscfunc)
8074{
8075	struct stdata *stp = vp->v_stream;
8076
8077	mutex_enter(&stp->sd_lock);
8078
8079	if (protofunc == NULL)
8080		stp->sd_rprotofunc = strrput_proto;
8081	else
8082		stp->sd_rprotofunc = protofunc;
8083
8084	if (miscfunc == NULL)
8085		stp->sd_rmiscfunc = strrput_misc;
8086	else
8087		stp->sd_rmiscfunc = miscfunc;
8088
8089	if (flags & SH_CONSOL_DATA)
8090		stp->sd_rput_opt |= SR_CONSOL_DATA;
8091	else
8092		stp->sd_rput_opt &= ~SR_CONSOL_DATA;
8093
8094	if (flags & SH_SIGALLDATA)
8095		stp->sd_rput_opt |= SR_SIGALLDATA;
8096	else
8097		stp->sd_rput_opt &= ~SR_SIGALLDATA;
8098
8099	if (flags & SH_IGN_ZEROLEN)
8100		stp->sd_rput_opt |= SR_IGN_ZEROLEN;
8101	else
8102		stp->sd_rput_opt &= ~SR_IGN_ZEROLEN;
8103
8104	mutex_exit(&stp->sd_lock);
8105}
8106
8107void
8108strsetwputhooks(vnode_t *vp, uint_t flags, clock_t closetime)
8109{
8110	struct stdata *stp = vp->v_stream;
8111
8112	mutex_enter(&stp->sd_lock);
8113	stp->sd_closetime = closetime;
8114
8115	if (flags & SH_SIGPIPE)
8116		stp->sd_wput_opt |= SW_SIGPIPE;
8117	else
8118		stp->sd_wput_opt &= ~SW_SIGPIPE;
8119	if (flags & SH_RECHECK_ERR)
8120		stp->sd_wput_opt |= SW_RECHECK_ERR;
8121	else
8122		stp->sd_wput_opt &= ~SW_RECHECK_ERR;
8123
8124	mutex_exit(&stp->sd_lock);
8125}
8126
8127void
8128strsetrwputdatahooks(vnode_t *vp, msgfunc_t rdatafunc, msgfunc_t wdatafunc)
8129{
8130	struct stdata *stp = vp->v_stream;
8131
8132	mutex_enter(&stp->sd_lock);
8133
8134	stp->sd_rputdatafunc = rdatafunc;
8135	stp->sd_wputdatafunc = wdatafunc;
8136
8137	mutex_exit(&stp->sd_lock);
8138}
8139
8140/* Used within framework when the queue is already locked */
8141void
8142qenable_locked(queue_t *q)
8143{
8144	stdata_t *stp = STREAM(q);
8145
8146	ASSERT(MUTEX_HELD(QLOCK(q)));
8147
8148	if (!q->q_qinfo->qi_srvp)
8149		return;
8150
8151	/*
8152	 * Do not place on run queue if already enabled or closing.
8153	 */
8154	if (q->q_flag & (QWCLOSE|QENAB))
8155		return;
8156
8157	/*
8158	 * mark queue enabled and place on run list if it is not already being
8159	 * serviced. If it is serviced, the runservice() function will detect
8160	 * that QENAB is set and call service procedure before clearing
8161	 * QINSERVICE flag.
8162	 */
8163	q->q_flag |= QENAB;
8164	if (q->q_flag & QINSERVICE)
8165		return;
8166
8167	/* Record the time of qenable */
8168	q->q_qtstamp = lbolt;
8169
8170	/*
8171	 * Put the queue in the stp list and schedule it for background
8172	 * processing if it is not already scheduled or if stream head does not
8173	 * intent to process it in the foreground later by setting
8174	 * STRS_WILLSERVICE flag.
8175	 */
8176	mutex_enter(&stp->sd_qlock);
8177	/*
8178	 * If there are already something on the list, stp flags should show
8179	 * intention to drain it.
8180	 */
8181	IMPLY(STREAM_NEEDSERVICE(stp),
8182	    (stp->sd_svcflags & (STRS_WILLSERVICE | STRS_SCHEDULED)));
8183
8184	ENQUEUE(q, stp->sd_qhead, stp->sd_qtail, q_link);
8185	stp->sd_nqueues++;
8186
8187	/*
8188	 * If no one will drain this stream we are the first producer and
8189	 * need to schedule it for background thread.
8190	 */
8191	if (!(stp->sd_svcflags & (STRS_WILLSERVICE | STRS_SCHEDULED))) {
8192		/*
8193		 * No one will service this stream later, so we have to
8194		 * schedule it now.
8195		 */
8196		STRSTAT(stenables);
8197		stp->sd_svcflags |= STRS_SCHEDULED;
8198		stp->sd_servid = (void *)taskq_dispatch(streams_taskq,
8199		    (task_func_t *)stream_service, stp, TQ_NOSLEEP|TQ_NOQUEUE);
8200
8201		if (stp->sd_servid == NULL) {
8202			/*
8203			 * Task queue failed so fail over to the backup
8204			 * servicing thread.
8205			 */
8206			STRSTAT(taskqfails);
8207			/*
8208			 * It is safe to clear STRS_SCHEDULED flag because it
8209			 * was set by this thread above.
8210			 */
8211			stp->sd_svcflags &= ~STRS_SCHEDULED;
8212
8213			/*
8214			 * Failover scheduling is protected by service_queue
8215			 * lock.
8216			 */
8217			mutex_enter(&service_queue);
8218			ASSERT((stp->sd_qhead == q) && (stp->sd_qtail == q));
8219			ASSERT(q->q_link == NULL);
8220			/*
8221			 * Append the queue to qhead/qtail list.
8222			 */
8223			if (qhead == NULL)
8224				qhead = q;
8225			else
8226				qtail->q_link = q;
8227			qtail = q;
8228			/*
8229			 * Clear stp queue list.
8230			 */
8231			stp->sd_qhead = stp->sd_qtail = NULL;
8232			stp->sd_nqueues = 0;
8233			/*
8234			 * Wakeup background queue processing thread.
8235			 */
8236			cv_signal(&services_to_run);
8237			mutex_exit(&service_queue);
8238		}
8239	}
8240	mutex_exit(&stp->sd_qlock);
8241}
8242
8243static void
8244queue_service(queue_t *q)
8245{
8246	/*
8247	 * The queue in the list should have
8248	 * QENAB flag set and should not have
8249	 * QINSERVICE flag set. QINSERVICE is
8250	 * set when the queue is dequeued and
8251	 * qenable_locked doesn't enqueue a
8252	 * queue with QINSERVICE set.
8253	 */
8254
8255	ASSERT(!(q->q_flag & QINSERVICE));
8256	ASSERT((q->q_flag & QENAB));
8257	mutex_enter(QLOCK(q));
8258	q->q_flag &= ~QENAB;
8259	q->q_flag |= QINSERVICE;
8260	mutex_exit(QLOCK(q));
8261	runservice(q);
8262}
8263
8264static void
8265syncq_service(syncq_t *sq)
8266{
8267	STRSTAT(syncqservice);
8268	mutex_enter(SQLOCK(sq));
8269	ASSERT(!(sq->sq_svcflags & SQ_SERVICE));
8270	ASSERT(sq->sq_servcount != 0);
8271	ASSERT(sq->sq_next == NULL);
8272
8273	/* if we came here from the background thread, clear the flag */
8274	if (sq->sq_svcflags & SQ_BGTHREAD)
8275		sq->sq_svcflags &= ~SQ_BGTHREAD;
8276
8277	/* let drain_syncq know that it's being called in the background */
8278	sq->sq_svcflags |= SQ_SERVICE;
8279	drain_syncq(sq);
8280}
8281
8282static void
8283qwriter_outer_service(syncq_t *outer)
8284{
8285	/*
8286	 * Note that SQ_WRITER is used on the outer perimeter
8287	 * to signal that a qwriter(OUTER) is either investigating
8288	 * running or that it is actually running a function.
8289	 */
8290	outer_enter(outer, SQ_BLOCKED|SQ_WRITER);
8291
8292	/*
8293	 * All inner syncq are empty and have SQ_WRITER set
8294	 * to block entering the outer perimeter.
8295	 *
8296	 * We do not need to explicitly call write_now since
8297	 * outer_exit does it for us.
8298	 */
8299	outer_exit(outer);
8300}
8301
8302static void
8303mblk_free(mblk_t *mp)
8304{
8305	dblk_t *dbp = mp->b_datap;
8306	frtn_t *frp = dbp->db_frtnp;
8307
8308	mp->b_next = NULL;
8309	if (dbp->db_fthdr != NULL)
8310		str_ftfree(dbp);
8311
8312	ASSERT(dbp->db_fthdr == NULL);
8313	frp->free_func(frp->free_arg);
8314	ASSERT(dbp->db_mblk == mp);
8315
8316	if (dbp->db_credp != NULL) {
8317		crfree(dbp->db_credp);
8318		dbp->db_credp = NULL;
8319	}
8320	dbp->db_cpid = -1;
8321	dbp->db_struioflag = 0;
8322	dbp->db_struioun.cksum.flags = 0;
8323
8324	kmem_cache_free(dbp->db_cache, dbp);
8325}
8326
8327/*
8328 * Background processing of the stream queue list.
8329 */
8330static void
8331stream_service(stdata_t *stp)
8332{
8333	queue_t *q;
8334
8335	mutex_enter(&stp->sd_qlock);
8336
8337	STR_SERVICE(stp, q);
8338
8339	stp->sd_svcflags &= ~STRS_SCHEDULED;
8340	stp->sd_servid = NULL;
8341	cv_signal(&stp->sd_qcv);
8342	mutex_exit(&stp->sd_qlock);
8343}
8344
8345/*
8346 * Foreground processing of the stream queue list.
8347 */
8348void
8349stream_runservice(stdata_t *stp)
8350{
8351	queue_t *q;
8352
8353	mutex_enter(&stp->sd_qlock);
8354	STRSTAT(rservice);
8355	/*
8356	 * We are going to drain this stream queue list, so qenable_locked will
8357	 * not schedule it until we finish.
8358	 */
8359	stp->sd_svcflags |= STRS_WILLSERVICE;
8360
8361	STR_SERVICE(stp, q);
8362
8363	stp->sd_svcflags &= ~STRS_WILLSERVICE;
8364	mutex_exit(&stp->sd_qlock);
8365	/*
8366	 * Help backup background thread to drain the qhead/qtail list.
8367	 */
8368	while (qhead != NULL) {
8369		STRSTAT(qhelps);
8370		mutex_enter(&service_queue);
8371		DQ(q, qhead, qtail, q_link);
8372		mutex_exit(&service_queue);
8373		if (q != NULL)
8374			queue_service(q);
8375	}
8376}
8377
8378void
8379stream_willservice(stdata_t *stp)
8380{
8381	mutex_enter(&stp->sd_qlock);
8382	stp->sd_svcflags |= STRS_WILLSERVICE;
8383	mutex_exit(&stp->sd_qlock);
8384}
8385
8386/*
8387 * Replace the cred currently in the mblk with a different one.
8388 */
8389void
8390mblk_setcred(mblk_t *mp, cred_t *cr)
8391{
8392	cred_t *ocr = DB_CRED(mp);
8393
8394	ASSERT(cr != NULL);
8395
8396	if (cr != ocr) {
8397		crhold(mp->b_datap->db_credp = cr);
8398		if (ocr != NULL)
8399			crfree(ocr);
8400	}
8401}
8402
8403/*
8404 * Set the cred and pid for each mblk in the message. It is assumed that
8405 * the message passed in does not already have a cred.
8406 */
8407void
8408msg_setcredpid(mblk_t *mp, cred_t *cr, pid_t pid)
8409{
8410	while (mp != NULL) {
8411		ASSERT(DB_CRED(mp) == NULL);
8412		mblk_setcred(mp, cr);
8413		DB_CPID(mp) = pid;
8414		mp = mp->b_cont;
8415	}
8416}
8417
8418int
8419hcksum_assoc(mblk_t *mp,  multidata_t *mmd, pdesc_t *pd,
8420    uint32_t start, uint32_t stuff, uint32_t end, uint32_t value,
8421    uint32_t flags, int km_flags)
8422{
8423	int rc = 0;
8424
8425	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
8426	if (mp->b_datap->db_type == M_DATA) {
8427		/* Associate values for M_DATA type */
8428		DB_CKSUMSTART(mp) = (intptr_t)start;
8429		DB_CKSUMSTUFF(mp) = (intptr_t)stuff;
8430		DB_CKSUMEND(mp) = (intptr_t)end;
8431		DB_CKSUMFLAGS(mp) = flags;
8432		DB_CKSUM16(mp) = (uint16_t)value;
8433
8434	} else {
8435		pattrinfo_t pa_info;
8436
8437		ASSERT(mmd != NULL);
8438
8439		pa_info.type = PATTR_HCKSUM;
8440		pa_info.len = sizeof (pattr_hcksum_t);
8441
8442		if (mmd_addpattr(mmd, pd, &pa_info, B_TRUE, km_flags) != NULL) {
8443			pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf;
8444
8445			hck->hcksum_start_offset = start;
8446			hck->hcksum_stuff_offset = stuff;
8447			hck->hcksum_end_offset = end;
8448			hck->hcksum_cksum_val.inet_cksum = (uint16_t)value;
8449			hck->hcksum_flags = flags;
8450		} else {
8451			rc = -1;
8452		}
8453	}
8454	return (rc);
8455}
8456
8457void
8458hcksum_retrieve(mblk_t *mp, multidata_t *mmd, pdesc_t *pd,
8459    uint32_t *start, uint32_t *stuff, uint32_t *end,
8460    uint32_t *value, uint32_t *flags)
8461{
8462	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
8463	if (mp->b_datap->db_type == M_DATA) {
8464		if (flags != NULL) {
8465			*flags = DB_CKSUMFLAGS(mp) & (HCK_IPV4_HDRCKSUM |
8466			    HCK_PARTIALCKSUM | HCK_FULLCKSUM |
8467			    HCK_FULLCKSUM_OK);
8468			if ((*flags & (HCK_PARTIALCKSUM |
8469			    HCK_FULLCKSUM)) != 0) {
8470				if (value != NULL)
8471					*value = (uint32_t)DB_CKSUM16(mp);
8472				if ((*flags & HCK_PARTIALCKSUM) != 0) {
8473					if (start != NULL)
8474						*start =
8475						    (uint32_t)DB_CKSUMSTART(mp);
8476					if (stuff != NULL)
8477						*stuff =
8478						    (uint32_t)DB_CKSUMSTUFF(mp);
8479					if (end != NULL)
8480						*end =
8481						    (uint32_t)DB_CKSUMEND(mp);
8482				}
8483			}
8484		}
8485	} else {
8486		pattrinfo_t hck_attr = {PATTR_HCKSUM};
8487
8488		ASSERT(mmd != NULL);
8489
8490		/* get hardware checksum attribute */
8491		if (mmd_getpattr(mmd, pd, &hck_attr) != NULL) {
8492			pattr_hcksum_t *hck = (pattr_hcksum_t *)hck_attr.buf;
8493
8494			ASSERT(hck_attr.len >= sizeof (pattr_hcksum_t));
8495			if (flags != NULL)
8496				*flags = hck->hcksum_flags;
8497			if (start != NULL)
8498				*start = hck->hcksum_start_offset;
8499			if (stuff != NULL)
8500				*stuff = hck->hcksum_stuff_offset;
8501			if (end != NULL)
8502				*end = hck->hcksum_end_offset;
8503			if (value != NULL)
8504				*value = (uint32_t)
8505				    hck->hcksum_cksum_val.inet_cksum;
8506		}
8507	}
8508}
8509
8510void
8511lso_info_set(mblk_t *mp, uint32_t mss, uint32_t flags)
8512{
8513	ASSERT(DB_TYPE(mp) == M_DATA);
8514
8515	/* Set the flags */
8516	DB_LSOFLAGS(mp) |= flags;
8517	DB_LSOMSS(mp) = mss;
8518}
8519
8520void
8521lso_info_get(mblk_t *mp, uint32_t *mss, uint32_t *flags)
8522{
8523	ASSERT(DB_TYPE(mp) == M_DATA);
8524
8525	if (flags != NULL) {
8526		*flags = DB_CKSUMFLAGS(mp) & HW_LSO;
8527		if ((*flags != 0) && (mss != NULL))
8528			*mss = (uint32_t)DB_LSOMSS(mp);
8529	}
8530}
8531
8532/*
8533 * Checksum buffer *bp for len bytes with psum partial checksum,
8534 * or 0 if none, and return the 16 bit partial checksum.
8535 */
8536unsigned
8537bcksum(uchar_t *bp, int len, unsigned int psum)
8538{
8539	int odd = len & 1;
8540	extern unsigned int ip_ocsum();
8541
8542	if (((intptr_t)bp & 1) == 0 && !odd) {
8543		/*
8544		 * Bp is 16 bit aligned and len is multiple of 16 bit word.
8545		 */
8546		return (ip_ocsum((ushort_t *)bp, len >> 1, psum));
8547	}
8548	if (((intptr_t)bp & 1) != 0) {
8549		/*
8550		 * Bp isn't 16 bit aligned.
8551		 */
8552		unsigned int tsum;
8553
8554#ifdef _LITTLE_ENDIAN
8555		psum += *bp;
8556#else
8557		psum += *bp << 8;
8558#endif
8559		len--;
8560		bp++;
8561		tsum = ip_ocsum((ushort_t *)bp, len >> 1, 0);
8562		psum += (tsum << 8) & 0xffff | (tsum >> 8);
8563		if (len & 1) {
8564			bp += len - 1;
8565#ifdef _LITTLE_ENDIAN
8566			psum += *bp << 8;
8567#else
8568			psum += *bp;
8569#endif
8570		}
8571	} else {
8572		/*
8573		 * Bp is 16 bit aligned.
8574		 */
8575		psum = ip_ocsum((ushort_t *)bp, len >> 1, psum);
8576		if (odd) {
8577			bp += len - 1;
8578#ifdef _LITTLE_ENDIAN
8579			psum += *bp;
8580#else
8581			psum += *bp << 8;
8582#endif
8583		}
8584	}
8585	/*
8586	 * Normalize psum to 16 bits before returning the new partial
8587	 * checksum. The max psum value before normalization is 0x3FDFE.
8588	 */
8589	return ((psum >> 16) + (psum & 0xFFFF));
8590}
8591
8592boolean_t
8593is_vmloaned_mblk(mblk_t *mp, multidata_t *mmd, pdesc_t *pd)
8594{
8595	boolean_t rc;
8596
8597	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
8598	if (DB_TYPE(mp) == M_DATA) {
8599		rc = (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0);
8600	} else {
8601		pattrinfo_t zcopy_attr = {PATTR_ZCOPY};
8602
8603		ASSERT(mmd != NULL);
8604		rc = (mmd_getpattr(mmd, pd, &zcopy_attr) != NULL);
8605	}
8606	return (rc);
8607}
8608
8609void
8610freemsgchain(mblk_t *mp)
8611{
8612	mblk_t	*next;
8613
8614	while (mp != NULL) {
8615		next = mp->b_next;
8616		mp->b_next = NULL;
8617
8618		freemsg(mp);
8619		mp = next;
8620	}
8621}
8622
8623mblk_t *
8624copymsgchain(mblk_t *mp)
8625{
8626	mblk_t	*nmp = NULL;
8627	mblk_t	**nmpp = &nmp;
8628
8629	for (; mp != NULL; mp = mp->b_next) {
8630		if ((*nmpp = copymsg(mp)) == NULL) {
8631			freemsgchain(nmp);
8632			return (NULL);
8633		}
8634
8635		nmpp = &((*nmpp)->b_next);
8636	}
8637
8638	return (nmp);
8639}
8640
8641/* NOTE: Do not add code after this point. */
8642#undef QLOCK
8643
8644/*
8645 * replacement for QLOCK macro for those that can't use it.
8646 */
8647kmutex_t *
8648QLOCK(queue_t *q)
8649{
8650	return (&(q)->q_lock);
8651}
8652
8653/*
8654 * Dummy runqueues/queuerun functions functions for backwards compatibility.
8655 */
8656#undef runqueues
8657void
8658runqueues(void)
8659{
8660}
8661
8662#undef queuerun
8663void
8664queuerun(void)
8665{
8666}
8667
8668/*
8669 * Initialize the STR stack instance, which tracks autopush and persistent
8670 * links.
8671 */
8672/* ARGSUSED */
8673static void *
8674str_stack_init(netstackid_t stackid, netstack_t *ns)
8675{
8676	str_stack_t	*ss;
8677	int i;
8678
8679	ss = (str_stack_t *)kmem_zalloc(sizeof (*ss), KM_SLEEP);
8680	ss->ss_netstack = ns;
8681
8682	/*
8683	 * set up autopush
8684	 */
8685	sad_initspace(ss);
8686
8687	/*
8688	 * set up mux_node structures.
8689	 */
8690	ss->ss_devcnt = devcnt;	/* In case it should change before free */
8691	ss->ss_mux_nodes = kmem_zalloc((sizeof (struct mux_node) *
8692	    ss->ss_devcnt), KM_SLEEP);
8693	for (i = 0; i < ss->ss_devcnt; i++)
8694		ss->ss_mux_nodes[i].mn_imaj = i;
8695	return (ss);
8696}
8697
8698/*
8699 * Note: run at zone shutdown and not destroy so that the PLINKs are
8700 * gone by the time other cleanup happens from the destroy callbacks.
8701 */
8702static void
8703str_stack_shutdown(netstackid_t stackid, void *arg)
8704{
8705	str_stack_t *ss = (str_stack_t *)arg;
8706	int i;
8707	cred_t *cr;
8708
8709	cr = zone_get_kcred(netstackid_to_zoneid(stackid));
8710	ASSERT(cr != NULL);
8711
8712	/* Undo all the I_PLINKs for this zone */
8713	for (i = 0; i < ss->ss_devcnt; i++) {
8714		struct mux_edge		*ep;
8715		ldi_handle_t		lh;
8716		ldi_ident_t		li;
8717		int			ret;
8718		int			rval;
8719		dev_t			rdev;
8720
8721		ep = ss->ss_mux_nodes[i].mn_outp;
8722		if (ep == NULL)
8723			continue;
8724		ret = ldi_ident_from_major((major_t)i, &li);
8725		if (ret != 0) {
8726			continue;
8727		}
8728		rdev = ep->me_dev;
8729		ret = ldi_open_by_dev(&rdev, OTYP_CHR, FREAD|FWRITE,
8730		    cr, &lh, li);
8731		if (ret != 0) {
8732			ldi_ident_release(li);
8733			continue;
8734		}
8735
8736		ret = ldi_ioctl(lh, I_PUNLINK, (intptr_t)MUXID_ALL, FKIOCTL,
8737		    cr, &rval);
8738		if (ret) {
8739			(void) ldi_close(lh, FREAD|FWRITE, cr);
8740			ldi_ident_release(li);
8741			continue;
8742		}
8743		(void) ldi_close(lh, FREAD|FWRITE, cr);
8744
8745		/* Close layered handles */
8746		ldi_ident_release(li);
8747	}
8748	crfree(cr);
8749
8750	sad_freespace(ss);
8751
8752	kmem_free(ss->ss_mux_nodes, sizeof (struct mux_node) * ss->ss_devcnt);
8753	ss->ss_mux_nodes = NULL;
8754}
8755
8756/*
8757 * Free the structure; str_stack_shutdown did the other cleanup work.
8758 */
8759/* ARGSUSED */
8760static void
8761str_stack_fini(netstackid_t stackid, void *arg)
8762{
8763	str_stack_t	*ss = (str_stack_t *)arg;
8764
8765	kmem_free(ss, sizeof (*ss));
8766}
8767