strsubr.c revision 11042:2d6e217af1b4
1110560Sgshapiro/*
2285229Sgshapiro * CDDL HEADER START
3110560Sgshapiro *
4110560Sgshapiro * The contents of this file are subject to the terms of the
5110560Sgshapiro * Common Development and Distribution License (the "License").
6110560Sgshapiro * You may not use this file except in compliance with the License.
7110560Sgshapiro *
8110560Sgshapiro * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9110560Sgshapiro * or http://www.opensolaris.org/os/licensing.
10266527Sgshapiro * See the License for the specific language governing permissions
11110560Sgshapiro * and limitations under the License.
12110560Sgshapiro *
13110560Sgshapiro * When distributing Covered Code, include this CDDL HEADER in each
14110560Sgshapiro * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15110560Sgshapiro * If applicable, add the following below this CDDL HEADER, with the
16110560Sgshapiro * fields enclosed by brackets "[]" replaced with your own identifying
17110560Sgshapiro * information: Portions Copyright [yyyy] [name of copyright owner]
18110560Sgshapiro *
19110560Sgshapiro * CDDL HEADER END
20363466Sgshapiro */
21110560Sgshapiro/*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
22285229Sgshapiro/*	  All Rights Reserved  	*/
23110560Sgshapiro
24110560Sgshapiro
25110560Sgshapiro/*
26110560Sgshapiro * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
27110560Sgshapiro * Use is subject to license terms.
28110560Sgshapiro */
29110560Sgshapiro
30110560Sgshapiro#include <sys/types.h>
31110560Sgshapiro#include <sys/sysmacros.h>
32110560Sgshapiro#include <sys/param.h>
33110560Sgshapiro#include <sys/errno.h>
34110560Sgshapiro#include <sys/signal.h>
35285229Sgshapiro#include <sys/proc.h>
36110560Sgshapiro#include <sys/conf.h>
37110560Sgshapiro#include <sys/cred.h>
38112810Sgshapiro#include <sys/user.h>
39110560Sgshapiro#include <sys/vnode.h>
40112810Sgshapiro#include <sys/file.h>
41110560Sgshapiro#include <sys/session.h>
42112810Sgshapiro#include <sys/stream.h>
43110560Sgshapiro#include <sys/strsubr.h>
44285229Sgshapiro#include <sys/stropts.h>
45110560Sgshapiro#include <sys/poll.h>
46110560Sgshapiro#include <sys/systm.h>
47110560Sgshapiro#include <sys/cpuvar.h>
48#include <sys/uio.h>
49#include <sys/cmn_err.h>
50#include <sys/priocntl.h>
51#include <sys/procset.h>
52#include <sys/vmem.h>
53#include <sys/bitmap.h>
54#include <sys/kmem.h>
55#include <sys/siginfo.h>
56#include <sys/vtrace.h>
57#include <sys/callb.h>
58#include <sys/debug.h>
59#include <sys/modctl.h>
60#include <sys/vmsystm.h>
61#include <vm/page.h>
62#include <sys/atomic.h>
63#include <sys/suntpi.h>
64#include <sys/strlog.h>
65#include <sys/promif.h>
66#include <sys/project.h>
67#include <sys/vm.h>
68#include <sys/taskq.h>
69#include <sys/sunddi.h>
70#include <sys/sunldi_impl.h>
71#include <sys/strsun.h>
72#include <sys/isa_defs.h>
73#include <sys/multidata.h>
74#include <sys/pattr.h>
75#include <sys/strft.h>
76#include <sys/fs/snode.h>
77#include <sys/zone.h>
78#include <sys/open.h>
79#include <sys/sunldi.h>
80#include <sys/sad.h>
81#include <sys/netstack.h>
82
83#define	O_SAMESTR(q)	(((q)->q_next) && \
84	(((q)->q_flag & QREADR) == ((q)->q_next->q_flag & QREADR)))
85
86/*
87 * WARNING:
88 * The variables and routines in this file are private, belonging
89 * to the STREAMS subsystem. These should not be used by modules
90 * or drivers. Compatibility will not be guaranteed.
91 */
92
93/*
94 * Id value used to distinguish between different multiplexor links.
95 */
96static int32_t lnk_id = 0;
97
98#define	STREAMS_LOPRI MINCLSYSPRI
99static pri_t streams_lopri = STREAMS_LOPRI;
100
101#define	STRSTAT(x)	(str_statistics.x.value.ui64++)
102typedef struct str_stat {
103	kstat_named_t	sqenables;
104	kstat_named_t	stenables;
105	kstat_named_t	syncqservice;
106	kstat_named_t	freebs;
107	kstat_named_t	qwr_outer;
108	kstat_named_t	rservice;
109	kstat_named_t	strwaits;
110	kstat_named_t	taskqfails;
111	kstat_named_t	bufcalls;
112	kstat_named_t	qhelps;
113	kstat_named_t	qremoved;
114	kstat_named_t	sqremoved;
115	kstat_named_t	bcwaits;
116	kstat_named_t	sqtoomany;
117} str_stat_t;
118
119static str_stat_t str_statistics = {
120	{ "sqenables",		KSTAT_DATA_UINT64 },
121	{ "stenables",		KSTAT_DATA_UINT64 },
122	{ "syncqservice",	KSTAT_DATA_UINT64 },
123	{ "freebs",		KSTAT_DATA_UINT64 },
124	{ "qwr_outer",		KSTAT_DATA_UINT64 },
125	{ "rservice",		KSTAT_DATA_UINT64 },
126	{ "strwaits",		KSTAT_DATA_UINT64 },
127	{ "taskqfails",		KSTAT_DATA_UINT64 },
128	{ "bufcalls",		KSTAT_DATA_UINT64 },
129	{ "qhelps",		KSTAT_DATA_UINT64 },
130	{ "qremoved",		KSTAT_DATA_UINT64 },
131	{ "sqremoved",		KSTAT_DATA_UINT64 },
132	{ "bcwaits",		KSTAT_DATA_UINT64 },
133	{ "sqtoomany",		KSTAT_DATA_UINT64 },
134};
135
136static kstat_t *str_kstat;
137
138/*
139 * qrunflag was used previously to control background scheduling of queues. It
140 * is not used anymore, but kept here in case some module still wants to access
141 * it via qready() and setqsched macros.
142 */
143char qrunflag;			/*  Unused */
144
145/*
146 * Most of the streams scheduling is done via task queues. Task queues may fail
147 * for non-sleep dispatches, so there are two backup threads servicing failed
148 * requests for queues and syncqs. Both of these threads also service failed
149 * dispatches freebs requests. Queues are put in the list specified by `qhead'
150 * and `qtail' pointers, syncqs use `sqhead' and `sqtail' pointers and freebs
151 * requests are put into `freebs_list' which has no tail pointer. All three
152 * lists are protected by a single `service_queue' lock and use
153 * `services_to_run' condition variable for signaling background threads. Use of
154 * a single lock should not be a problem because it is only used under heavy
155 * loads when task queues start to fail and at that time it may be a good idea
156 * to throttle scheduling requests.
157 *
158 * NOTE: queues and syncqs should be scheduled by two separate threads because
159 * queue servicing may be blocked waiting for a syncq which may be also
160 * scheduled for background execution. This may create a deadlock when only one
161 * thread is used for both.
162 */
163
164static taskq_t *streams_taskq;		/* Used for most STREAMS scheduling */
165
166static kmutex_t service_queue;		/* protects all of servicing vars */
167static kcondvar_t services_to_run;	/* wake up background service thread */
168static kcondvar_t syncqs_to_run;	/* wake up background service thread */
169
170/*
171 * List of queues scheduled for background processing due to lack of resources
172 * in the task queues. Protected by service_queue lock;
173 */
174static struct queue *qhead;
175static struct queue *qtail;
176
177/*
178 * Same list for syncqs
179 */
180static syncq_t *sqhead;
181static syncq_t *sqtail;
182
183static mblk_t *freebs_list;	/* list of buffers to free */
184
185/*
186 * Backup threads for servicing queues and syncqs
187 */
188kthread_t *streams_qbkgrnd_thread;
189kthread_t *streams_sqbkgrnd_thread;
190
191/*
192 * Bufcalls related variables.
193 */
194struct bclist	strbcalls;	/* list of waiting bufcalls */
195kmutex_t	strbcall_lock;	/* protects bufcall list (strbcalls) */
196kcondvar_t	strbcall_cv;	/* Signaling when a bufcall is added */
197kmutex_t	bcall_monitor;	/* sleep/wakeup style monitor */
198kcondvar_t	bcall_cv;	/* wait 'till executing bufcall completes */
199kthread_t	*bc_bkgrnd_thread; /* Thread to service bufcall requests */
200
201kmutex_t	strresources;	/* protects global resources */
202kmutex_t	muxifier;	/* single-threads multiplexor creation */
203
204static void	*str_stack_init(netstackid_t stackid, netstack_t *ns);
205static void	str_stack_shutdown(netstackid_t stackid, void *arg);
206static void	str_stack_fini(netstackid_t stackid, void *arg);
207
208extern void	time_to_wait(clock_t *, clock_t);
209
210/*
211 * run_queues is no longer used, but is kept in case some 3rd party
212 * module/driver decides to use it.
213 */
214int run_queues = 0;
215
216/*
217 * sq_max_size is the depth of the syncq (in number of messages) before
218 * qfill_syncq() starts QFULL'ing destination queues. As its primary
219 * consumer - IP is no longer D_MTPERMOD, but there may be other
220 * modules/drivers depend on this syncq flow control, we prefer to
221 * choose a large number as the default value. For potential
222 * performance gain, this value is tunable in /etc/system.
223 */
224int sq_max_size = 10000;
225
226/*
227 * The number of ciputctrl structures per syncq and stream we create when
228 * needed.
229 */
230int n_ciputctrl;
231int max_n_ciputctrl = 16;
232/*
233 * If n_ciputctrl is < min_n_ciputctrl don't even create ciputctrl_cache.
234 */
235int min_n_ciputctrl = 2;
236
237/*
238 * Per-driver/module syncqs
239 * ========================
240 *
241 * For drivers/modules that use PERMOD or outer syncqs we keep a list of
242 * perdm structures, new entries being added (and new syncqs allocated) when
243 * setq() encounters a module/driver with a streamtab that it hasn't seen
244 * before.
245 * The reason for this mechanism is that some modules and drivers share a
246 * common streamtab and it is necessary for those modules and drivers to also
247 * share a common PERMOD syncq.
248 *
249 * perdm_list --> dm_str == streamtab_1
250 *                dm_sq == syncq_1
251 *                dm_ref
252 *                dm_next --> dm_str == streamtab_2
253 *                            dm_sq == syncq_2
254 *                            dm_ref
255 *                            dm_next --> ... NULL
256 *
257 * The dm_ref field is incremented for each new driver/module that takes
258 * a reference to the perdm structure and hence shares the syncq.
259 * References are held in the fmodsw_impl_t structure for each STREAMS module
260 * or the dev_impl array (indexed by device major number) for each driver.
261 *
262 * perdm_list -> [dm_ref == 1] -> [dm_ref == 2] -> [dm_ref == 1] -> NULL
263 *		     ^                 ^ ^               ^
264 *                   |  ______________/  |               |
265 *                   | /                 |               |
266 * dev_impl:     ...|x|y|...          module A	      module B
267 *
268 * When a module/driver is unloaded the reference count is decremented and,
269 * when it falls to zero, the perdm structure is removed from the list and
270 * the syncq is freed (see rele_dm()).
271 */
272perdm_t *perdm_list = NULL;
273static krwlock_t perdm_rwlock;
274cdevsw_impl_t *devimpl;
275
276extern struct qinit strdata;
277extern struct qinit stwdata;
278
279static void runservice(queue_t *);
280static void streams_bufcall_service(void);
281static void streams_qbkgrnd_service(void);
282static void streams_sqbkgrnd_service(void);
283static syncq_t *new_syncq(void);
284static void free_syncq(syncq_t *);
285static void outer_insert(syncq_t *, syncq_t *);
286static void outer_remove(syncq_t *, syncq_t *);
287static void write_now(syncq_t *);
288static void clr_qfull(queue_t *);
289static void runbufcalls(void);
290static void sqenable(syncq_t *);
291static void sqfill_events(syncq_t *, queue_t *, mblk_t *, void (*)());
292static void wait_q_syncq(queue_t *);
293static void backenable_insertedq(queue_t *);
294
295static void queue_service(queue_t *);
296static void stream_service(stdata_t *);
297static void syncq_service(syncq_t *);
298static void qwriter_outer_service(syncq_t *);
299static void mblk_free(mblk_t *);
300#ifdef DEBUG
301static int qprocsareon(queue_t *);
302#endif
303
304static void set_nfsrv_ptr(queue_t *, queue_t *, queue_t *, queue_t *);
305static void reset_nfsrv_ptr(queue_t *, queue_t *);
306void set_qfull(queue_t *);
307
308static void sq_run_events(syncq_t *);
309static int propagate_syncq(queue_t *);
310
311static void	blocksq(syncq_t *, ushort_t, int);
312static void	unblocksq(syncq_t *, ushort_t, int);
313static int	dropsq(syncq_t *, uint16_t);
314static void	emptysq(syncq_t *);
315static sqlist_t *sqlist_alloc(struct stdata *, int);
316static void	sqlist_free(sqlist_t *);
317static sqlist_t	*sqlist_build(queue_t *, struct stdata *, boolean_t);
318static void	sqlist_insert(sqlist_t *, syncq_t *);
319static void	sqlist_insertall(sqlist_t *, queue_t *);
320
321static void	strsetuio(stdata_t *);
322
323struct kmem_cache *stream_head_cache;
324struct kmem_cache *queue_cache;
325struct kmem_cache *syncq_cache;
326struct kmem_cache *qband_cache;
327struct kmem_cache *linkinfo_cache;
328struct kmem_cache *ciputctrl_cache = NULL;
329
330static linkinfo_t *linkinfo_list;
331
332/* Global esballoc throttling queue */
333static esb_queue_t	system_esbq;
334
335/*
336 * esballoc tunable parameters.
337 */
338int		esbq_max_qlen = 0x16;	/* throttled queue length */
339clock_t		esbq_timeout = 0x8;	/* timeout to process esb queue */
340
341/*
342 * Routines to handle esballoc queueing.
343 */
344static void esballoc_process_queue(esb_queue_t *);
345static void esballoc_enqueue_mblk(mblk_t *);
346static void esballoc_timer(void *);
347static void esballoc_set_timer(esb_queue_t *, clock_t);
348static void esballoc_mblk_free(mblk_t *);
349
350/*
351 *  Qinit structure and Module_info structures
352 *	for passthru read and write queues
353 */
354
355static void pass_wput(queue_t *, mblk_t *);
356static queue_t *link_addpassthru(stdata_t *);
357static void link_rempassthru(queue_t *);
358
359struct  module_info passthru_info = {
360	0,
361	"passthru",
362	0,
363	INFPSZ,
364	STRHIGH,
365	STRLOW
366};
367
368struct  qinit passthru_rinit = {
369	(int (*)())putnext,
370	NULL,
371	NULL,
372	NULL,
373	NULL,
374	&passthru_info,
375	NULL
376};
377
378struct  qinit passthru_winit = {
379	(int (*)()) pass_wput,
380	NULL,
381	NULL,
382	NULL,
383	NULL,
384	&passthru_info,
385	NULL
386};
387
388/*
389 * Special form of assertion: verify that X implies Y i.e. when X is true Y
390 * should also be true.
391 */
392#define	IMPLY(X, Y)	ASSERT(!(X) || (Y))
393
394/*
395 * Logical equivalence. Verify that both X and Y are either TRUE or FALSE.
396 */
397#define	EQUIV(X, Y)	{ IMPLY(X, Y); IMPLY(Y, X); }
398
399/*
400 * Verify correctness of list head/tail pointers.
401 */
402#define	LISTCHECK(head, tail, link) {				\
403	EQUIV(head, tail);					\
404	IMPLY(tail != NULL, tail->link == NULL);		\
405}
406
407/*
408 * Enqueue a list element `el' in the end of a list denoted by `head' and `tail'
409 * using a `link' field.
410 */
411#define	ENQUEUE(el, head, tail, link) {				\
412	ASSERT(el->link == NULL);				\
413	LISTCHECK(head, tail, link);				\
414	if (head == NULL)					\
415		head = el;					\
416	else							\
417		tail->link = el;				\
418	tail = el;						\
419}
420
421/*
422 * Dequeue the first element of the list denoted by `head' and `tail' pointers
423 * using a `link' field and put result into `el'.
424 */
425#define	DQ(el, head, tail, link) {				\
426	LISTCHECK(head, tail, link);				\
427	el = head;						\
428	if (head != NULL) {					\
429		head = head->link;				\
430		if (head == NULL)				\
431			tail = NULL;				\
432		el->link = NULL;				\
433	}							\
434}
435
436/*
437 * Remove `el' from the list using `chase' and `curr' pointers and return result
438 * in `succeed'.
439 */
440#define	RMQ(el, head, tail, link, chase, curr, succeed) {	\
441	LISTCHECK(head, tail, link);				\
442	chase = NULL;						\
443	succeed = 0;						\
444	for (curr = head; (curr != el) && (curr != NULL); curr = curr->link) \
445		chase = curr;					\
446	if (curr != NULL) {					\
447		succeed = 1;					\
448		ASSERT(curr == el);				\
449		if (chase != NULL)				\
450			chase->link = curr->link;		\
451		else						\
452			head = curr->link;			\
453		curr->link = NULL;				\
454		if (curr == tail)				\
455			tail = chase;				\
456	}							\
457	LISTCHECK(head, tail, link);				\
458}
459
460/* Handling of delayed messages on the inner syncq. */
461
462/*
463 * DEBUG versions should use function versions (to simplify tracing) and
464 * non-DEBUG kernels should use macro versions.
465 */
466
467/*
468 * Put a queue on the syncq list of queues.
469 * Assumes SQLOCK held.
470 */
471#define	SQPUT_Q(sq, qp)							\
472{									\
473	ASSERT(MUTEX_HELD(SQLOCK(sq)));					\
474	if (!(qp->q_sqflags & Q_SQQUEUED)) {				\
475		/* The queue should not be linked anywhere */		\
476		ASSERT((qp->q_sqprev == NULL) && (qp->q_sqnext == NULL)); \
477		/* Head and tail may only be NULL simultaneously */	\
478		EQUIV(sq->sq_head, sq->sq_tail);			\
479		/* Queue may be only enqueued on its syncq */		\
480		ASSERT(sq == qp->q_syncq);				\
481		/* Check the correctness of SQ_MESSAGES flag */		\
482		EQUIV(sq->sq_head, (sq->sq_flags & SQ_MESSAGES));	\
483		/* Sanity check first/last elements of the list */	\
484		IMPLY(sq->sq_head != NULL, sq->sq_head->q_sqprev == NULL);\
485		IMPLY(sq->sq_tail != NULL, sq->sq_tail->q_sqnext == NULL);\
486		/*							\
487		 * Sanity check of priority field: empty queue should	\
488		 * have zero priority					\
489		 * and nqueues equal to zero.				\
490		 */							\
491		IMPLY(sq->sq_head == NULL, sq->sq_pri == 0);		\
492		/* Sanity check of sq_nqueues field */			\
493		EQUIV(sq->sq_head, sq->sq_nqueues);			\
494		if (sq->sq_head == NULL) {				\
495			sq->sq_head = sq->sq_tail = qp;			\
496			sq->sq_flags |= SQ_MESSAGES;			\
497		} else if (qp->q_spri == 0) {				\
498			qp->q_sqprev = sq->sq_tail;			\
499			sq->sq_tail->q_sqnext = qp;			\
500			sq->sq_tail = qp;				\
501		} else {						\
502			/*						\
503			 * Put this queue in priority order: higher	\
504			 * priority gets closer to the head.		\
505			 */						\
506			queue_t **qpp = &sq->sq_tail;			\
507			queue_t *qnext = NULL;				\
508									\
509			while (*qpp != NULL && qp->q_spri > (*qpp)->q_spri) { \
510				qnext = *qpp;				\
511				qpp = &(*qpp)->q_sqprev;		\
512			}						\
513			qp->q_sqnext = qnext;				\
514			qp->q_sqprev = *qpp;				\
515			if (*qpp != NULL) {				\
516				(*qpp)->q_sqnext = qp;			\
517			} else {					\
518				sq->sq_head = qp;			\
519				sq->sq_pri = sq->sq_head->q_spri;	\
520			}						\
521			*qpp = qp;					\
522		}							\
523		qp->q_sqflags |= Q_SQQUEUED;				\
524		qp->q_sqtstamp = lbolt;					\
525		sq->sq_nqueues++;					\
526	}								\
527}
528
529/*
530 * Remove a queue from the syncq list
531 * Assumes SQLOCK held.
532 */
533#define	SQRM_Q(sq, qp)							\
534	{								\
535		ASSERT(MUTEX_HELD(SQLOCK(sq)));				\
536		ASSERT(qp->q_sqflags & Q_SQQUEUED);			\
537		ASSERT(sq->sq_head != NULL && sq->sq_tail != NULL);	\
538		ASSERT((sq->sq_flags & SQ_MESSAGES) != 0);		\
539		/* Check that the queue is actually in the list */	\
540		ASSERT(qp->q_sqnext != NULL || sq->sq_tail == qp);	\
541		ASSERT(qp->q_sqprev != NULL || sq->sq_head == qp);	\
542		ASSERT(sq->sq_nqueues != 0);				\
543		if (qp->q_sqprev == NULL) {				\
544			/* First queue on list, make head q_sqnext */	\
545			sq->sq_head = qp->q_sqnext;			\
546		} else {						\
547			/* Make prev->next == next */			\
548			qp->q_sqprev->q_sqnext = qp->q_sqnext;		\
549		}							\
550		if (qp->q_sqnext == NULL) {				\
551			/* Last queue on list, make tail sqprev */	\
552			sq->sq_tail = qp->q_sqprev;			\
553		} else {						\
554			/* Make next->prev == prev */			\
555			qp->q_sqnext->q_sqprev = qp->q_sqprev;		\
556		}							\
557		/* clear out references on this queue */		\
558		qp->q_sqprev = qp->q_sqnext = NULL;			\
559		qp->q_sqflags &= ~Q_SQQUEUED;				\
560		/* If there is nothing queued, clear SQ_MESSAGES */	\
561		if (sq->sq_head != NULL) {				\
562			sq->sq_pri = sq->sq_head->q_spri;		\
563		} else	{						\
564			sq->sq_flags &= ~SQ_MESSAGES;			\
565			sq->sq_pri = 0;					\
566		}							\
567		sq->sq_nqueues--;					\
568		ASSERT(sq->sq_head != NULL || sq->sq_evhead != NULL ||	\
569		    (sq->sq_flags & SQ_QUEUED) == 0);			\
570	}
571
572/* Hide the definition from the header file. */
573#ifdef SQPUT_MP
574#undef SQPUT_MP
575#endif
576
577/*
578 * Put a message on the queue syncq.
579 * Assumes QLOCK held.
580 */
581#define	SQPUT_MP(qp, mp)						\
582	{								\
583		ASSERT(MUTEX_HELD(QLOCK(qp)));				\
584		ASSERT(qp->q_sqhead == NULL ||				\
585		    (qp->q_sqtail != NULL &&				\
586		    qp->q_sqtail->b_next == NULL));			\
587		qp->q_syncqmsgs++;					\
588		ASSERT(qp->q_syncqmsgs != 0);	/* Wraparound */	\
589		if (qp->q_sqhead == NULL) {				\
590			qp->q_sqhead = qp->q_sqtail = mp;		\
591		} else {						\
592			qp->q_sqtail->b_next = mp;			\
593			qp->q_sqtail = mp;				\
594		}							\
595		ASSERT(qp->q_syncqmsgs > 0);				\
596		set_qfull(qp);						\
597	}
598
599#define	SQ_PUTCOUNT_SETFAST_LOCKED(sq) {				\
600		ASSERT(MUTEX_HELD(SQLOCK(sq)));				\
601		if ((sq)->sq_ciputctrl != NULL) {			\
602			int i;						\
603			int nlocks = (sq)->sq_nciputctrl;		\
604			ciputctrl_t *cip = (sq)->sq_ciputctrl;		\
605			ASSERT((sq)->sq_type & SQ_CIPUT);		\
606			for (i = 0; i <= nlocks; i++) {			\
607				ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \
608				cip[i].ciputctrl_count |= SQ_FASTPUT;	\
609			}						\
610		}							\
611	}
612
613
614#define	SQ_PUTCOUNT_CLRFAST_LOCKED(sq) {				\
615		ASSERT(MUTEX_HELD(SQLOCK(sq)));				\
616		if ((sq)->sq_ciputctrl != NULL) {			\
617			int i;						\
618			int nlocks = (sq)->sq_nciputctrl;		\
619			ciputctrl_t *cip = (sq)->sq_ciputctrl;		\
620			ASSERT((sq)->sq_type & SQ_CIPUT);		\
621			for (i = 0; i <= nlocks; i++) {			\
622				ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \
623				cip[i].ciputctrl_count &= ~SQ_FASTPUT;	\
624			}						\
625		}							\
626	}
627
628/*
629 * Run service procedures for all queues in the stream head.
630 */
631#define	STR_SERVICE(stp, q) {						\
632	ASSERT(MUTEX_HELD(&stp->sd_qlock));				\
633	while (stp->sd_qhead != NULL) {					\
634		DQ(q, stp->sd_qhead, stp->sd_qtail, q_link);		\
635		ASSERT(stp->sd_nqueues > 0);				\
636		stp->sd_nqueues--;					\
637		ASSERT(!(q->q_flag & QINSERVICE));			\
638		mutex_exit(&stp->sd_qlock);				\
639		queue_service(q);					\
640		mutex_enter(&stp->sd_qlock);				\
641	}								\
642	ASSERT(stp->sd_nqueues == 0);					\
643	ASSERT((stp->sd_qhead == NULL) && (stp->sd_qtail == NULL));	\
644}
645
646/*
647 * Constructor/destructor routines for the stream head cache
648 */
649/* ARGSUSED */
650static int
651stream_head_constructor(void *buf, void *cdrarg, int kmflags)
652{
653	stdata_t *stp = buf;
654
655	mutex_init(&stp->sd_lock, NULL, MUTEX_DEFAULT, NULL);
656	mutex_init(&stp->sd_reflock, NULL, MUTEX_DEFAULT, NULL);
657	mutex_init(&stp->sd_qlock, NULL, MUTEX_DEFAULT, NULL);
658	cv_init(&stp->sd_monitor, NULL, CV_DEFAULT, NULL);
659	cv_init(&stp->sd_iocmonitor, NULL, CV_DEFAULT, NULL);
660	cv_init(&stp->sd_refmonitor, NULL, CV_DEFAULT, NULL);
661	cv_init(&stp->sd_qcv, NULL, CV_DEFAULT, NULL);
662	cv_init(&stp->sd_zcopy_wait, NULL, CV_DEFAULT, NULL);
663	stp->sd_wrq = NULL;
664
665	return (0);
666}
667
668/* ARGSUSED */
669static void
670stream_head_destructor(void *buf, void *cdrarg)
671{
672	stdata_t *stp = buf;
673
674	mutex_destroy(&stp->sd_lock);
675	mutex_destroy(&stp->sd_reflock);
676	mutex_destroy(&stp->sd_qlock);
677	cv_destroy(&stp->sd_monitor);
678	cv_destroy(&stp->sd_iocmonitor);
679	cv_destroy(&stp->sd_refmonitor);
680	cv_destroy(&stp->sd_qcv);
681	cv_destroy(&stp->sd_zcopy_wait);
682}
683
684/*
685 * Constructor/destructor routines for the queue cache
686 */
687/* ARGSUSED */
688static int
689queue_constructor(void *buf, void *cdrarg, int kmflags)
690{
691	queinfo_t *qip = buf;
692	queue_t *qp = &qip->qu_rqueue;
693	queue_t *wqp = &qip->qu_wqueue;
694	syncq_t	*sq = &qip->qu_syncq;
695
696	qp->q_first = NULL;
697	qp->q_link = NULL;
698	qp->q_count = 0;
699	qp->q_mblkcnt = 0;
700	qp->q_sqhead = NULL;
701	qp->q_sqtail = NULL;
702	qp->q_sqnext = NULL;
703	qp->q_sqprev = NULL;
704	qp->q_sqflags = 0;
705	qp->q_rwcnt = 0;
706	qp->q_spri = 0;
707
708	mutex_init(QLOCK(qp), NULL, MUTEX_DEFAULT, NULL);
709	cv_init(&qp->q_wait, NULL, CV_DEFAULT, NULL);
710
711	wqp->q_first = NULL;
712	wqp->q_link = NULL;
713	wqp->q_count = 0;
714	wqp->q_mblkcnt = 0;
715	wqp->q_sqhead = NULL;
716	wqp->q_sqtail = NULL;
717	wqp->q_sqnext = NULL;
718	wqp->q_sqprev = NULL;
719	wqp->q_sqflags = 0;
720	wqp->q_rwcnt = 0;
721	wqp->q_spri = 0;
722
723	mutex_init(QLOCK(wqp), NULL, MUTEX_DEFAULT, NULL);
724	cv_init(&wqp->q_wait, NULL, CV_DEFAULT, NULL);
725
726	sq->sq_head = NULL;
727	sq->sq_tail = NULL;
728	sq->sq_evhead = NULL;
729	sq->sq_evtail = NULL;
730	sq->sq_callbpend = NULL;
731	sq->sq_outer = NULL;
732	sq->sq_onext = NULL;
733	sq->sq_oprev = NULL;
734	sq->sq_next = NULL;
735	sq->sq_svcflags = 0;
736	sq->sq_servcount = 0;
737	sq->sq_needexcl = 0;
738	sq->sq_nqueues = 0;
739	sq->sq_pri = 0;
740
741	mutex_init(&sq->sq_lock, NULL, MUTEX_DEFAULT, NULL);
742	cv_init(&sq->sq_wait, NULL, CV_DEFAULT, NULL);
743	cv_init(&sq->sq_exitwait, NULL, CV_DEFAULT, NULL);
744
745	return (0);
746}
747
748/* ARGSUSED */
749static void
750queue_destructor(void *buf, void *cdrarg)
751{
752	queinfo_t *qip = buf;
753	queue_t *qp = &qip->qu_rqueue;
754	queue_t *wqp = &qip->qu_wqueue;
755	syncq_t	*sq = &qip->qu_syncq;
756
757	ASSERT(qp->q_sqhead == NULL);
758	ASSERT(wqp->q_sqhead == NULL);
759	ASSERT(qp->q_sqnext == NULL);
760	ASSERT(wqp->q_sqnext == NULL);
761	ASSERT(qp->q_rwcnt == 0);
762	ASSERT(wqp->q_rwcnt == 0);
763
764	mutex_destroy(&qp->q_lock);
765	cv_destroy(&qp->q_wait);
766
767	mutex_destroy(&wqp->q_lock);
768	cv_destroy(&wqp->q_wait);
769
770	mutex_destroy(&sq->sq_lock);
771	cv_destroy(&sq->sq_wait);
772	cv_destroy(&sq->sq_exitwait);
773}
774
775/*
776 * Constructor/destructor routines for the syncq cache
777 */
778/* ARGSUSED */
779static int
780syncq_constructor(void *buf, void *cdrarg, int kmflags)
781{
782	syncq_t	*sq = buf;
783
784	bzero(buf, sizeof (syncq_t));
785
786	mutex_init(&sq->sq_lock, NULL, MUTEX_DEFAULT, NULL);
787	cv_init(&sq->sq_wait, NULL, CV_DEFAULT, NULL);
788	cv_init(&sq->sq_exitwait, NULL, CV_DEFAULT, NULL);
789
790	return (0);
791}
792
793/* ARGSUSED */
794static void
795syncq_destructor(void *buf, void *cdrarg)
796{
797	syncq_t	*sq = buf;
798
799	ASSERT(sq->sq_head == NULL);
800	ASSERT(sq->sq_tail == NULL);
801	ASSERT(sq->sq_evhead == NULL);
802	ASSERT(sq->sq_evtail == NULL);
803	ASSERT(sq->sq_callbpend == NULL);
804	ASSERT(sq->sq_callbflags == 0);
805	ASSERT(sq->sq_outer == NULL);
806	ASSERT(sq->sq_onext == NULL);
807	ASSERT(sq->sq_oprev == NULL);
808	ASSERT(sq->sq_next == NULL);
809	ASSERT(sq->sq_needexcl == 0);
810	ASSERT(sq->sq_svcflags == 0);
811	ASSERT(sq->sq_servcount == 0);
812	ASSERT(sq->sq_nqueues == 0);
813	ASSERT(sq->sq_pri == 0);
814	ASSERT(sq->sq_count == 0);
815	ASSERT(sq->sq_rmqcount == 0);
816	ASSERT(sq->sq_cancelid == 0);
817	ASSERT(sq->sq_ciputctrl == NULL);
818	ASSERT(sq->sq_nciputctrl == 0);
819	ASSERT(sq->sq_type == 0);
820	ASSERT(sq->sq_flags == 0);
821
822	mutex_destroy(&sq->sq_lock);
823	cv_destroy(&sq->sq_wait);
824	cv_destroy(&sq->sq_exitwait);
825}
826
827/* ARGSUSED */
828static int
829ciputctrl_constructor(void *buf, void *cdrarg, int kmflags)
830{
831	ciputctrl_t *cip = buf;
832	int i;
833
834	for (i = 0; i < n_ciputctrl; i++) {
835		cip[i].ciputctrl_count = SQ_FASTPUT;
836		mutex_init(&cip[i].ciputctrl_lock, NULL, MUTEX_DEFAULT, NULL);
837	}
838
839	return (0);
840}
841
842/* ARGSUSED */
843static void
844ciputctrl_destructor(void *buf, void *cdrarg)
845{
846	ciputctrl_t *cip = buf;
847	int i;
848
849	for (i = 0; i < n_ciputctrl; i++) {
850		ASSERT(cip[i].ciputctrl_count & SQ_FASTPUT);
851		mutex_destroy(&cip[i].ciputctrl_lock);
852	}
853}
854
855/*
856 * Init routine run from main at boot time.
857 */
858void
859strinit(void)
860{
861	int ncpus = ((boot_max_ncpus == -1) ? max_ncpus : boot_max_ncpus);
862
863	stream_head_cache = kmem_cache_create("stream_head_cache",
864	    sizeof (stdata_t), 0,
865	    stream_head_constructor, stream_head_destructor, NULL,
866	    NULL, NULL, 0);
867
868	queue_cache = kmem_cache_create("queue_cache", sizeof (queinfo_t), 0,
869	    queue_constructor, queue_destructor, NULL, NULL, NULL, 0);
870
871	syncq_cache = kmem_cache_create("syncq_cache", sizeof (syncq_t), 0,
872	    syncq_constructor, syncq_destructor, NULL, NULL, NULL, 0);
873
874	qband_cache = kmem_cache_create("qband_cache",
875	    sizeof (qband_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
876
877	linkinfo_cache = kmem_cache_create("linkinfo_cache",
878	    sizeof (linkinfo_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
879
880	n_ciputctrl = ncpus;
881	n_ciputctrl = 1 << highbit(n_ciputctrl - 1);
882	ASSERT(n_ciputctrl >= 1);
883	n_ciputctrl = MIN(n_ciputctrl, max_n_ciputctrl);
884	if (n_ciputctrl >= min_n_ciputctrl) {
885		ciputctrl_cache = kmem_cache_create("ciputctrl_cache",
886		    sizeof (ciputctrl_t) * n_ciputctrl,
887		    sizeof (ciputctrl_t), ciputctrl_constructor,
888		    ciputctrl_destructor, NULL, NULL, NULL, 0);
889	}
890
891	streams_taskq = system_taskq;
892
893	if (streams_taskq == NULL)
894		panic("strinit: no memory for streams taskq!");
895
896	bc_bkgrnd_thread = thread_create(NULL, 0,
897	    streams_bufcall_service, NULL, 0, &p0, TS_RUN, streams_lopri);
898
899	streams_qbkgrnd_thread = thread_create(NULL, 0,
900	    streams_qbkgrnd_service, NULL, 0, &p0, TS_RUN, streams_lopri);
901
902	streams_sqbkgrnd_thread = thread_create(NULL, 0,
903	    streams_sqbkgrnd_service, NULL, 0, &p0, TS_RUN, streams_lopri);
904
905	/*
906	 * Create STREAMS kstats.
907	 */
908	str_kstat = kstat_create("streams", 0, "strstat",
909	    "net", KSTAT_TYPE_NAMED,
910	    sizeof (str_statistics) / sizeof (kstat_named_t),
911	    KSTAT_FLAG_VIRTUAL);
912
913	if (str_kstat != NULL) {
914		str_kstat->ks_data = &str_statistics;
915		kstat_install(str_kstat);
916	}
917
918	/*
919	 * TPI support routine initialisation.
920	 */
921	tpi_init();
922
923	/*
924	 * Handle to have autopush and persistent link information per
925	 * zone.
926	 * Note: uses shutdown hook instead of destroy hook so that the
927	 * persistent links can be torn down before the destroy hooks
928	 * in the TCP/IP stack are called.
929	 */
930	netstack_register(NS_STR, str_stack_init, str_stack_shutdown,
931	    str_stack_fini);
932}
933
934void
935str_sendsig(vnode_t *vp, int event, uchar_t band, int error)
936{
937	struct stdata *stp;
938
939	ASSERT(vp->v_stream);
940	stp = vp->v_stream;
941	/* Have to hold sd_lock to prevent siglist from changing */
942	mutex_enter(&stp->sd_lock);
943	if (stp->sd_sigflags & event)
944		strsendsig(stp->sd_siglist, event, band, error);
945	mutex_exit(&stp->sd_lock);
946}
947
948/*
949 * Send the "sevent" set of signals to a process.
950 * This might send more than one signal if the process is registered
951 * for multiple events. The caller should pass in an sevent that only
952 * includes the events for which the process has registered.
953 */
954static void
955dosendsig(proc_t *proc, int events, int sevent, k_siginfo_t *info,
956	uchar_t band, int error)
957{
958	ASSERT(MUTEX_HELD(&proc->p_lock));
959
960	info->si_band = 0;
961	info->si_errno = 0;
962
963	if (sevent & S_ERROR) {
964		sevent &= ~S_ERROR;
965		info->si_code = POLL_ERR;
966		info->si_errno = error;
967		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
968		    "strsendsig:proc %p info %p", proc, info);
969		sigaddq(proc, NULL, info, KM_NOSLEEP);
970		info->si_errno = 0;
971	}
972	if (sevent & S_HANGUP) {
973		sevent &= ~S_HANGUP;
974		info->si_code = POLL_HUP;
975		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
976		    "strsendsig:proc %p info %p", proc, info);
977		sigaddq(proc, NULL, info, KM_NOSLEEP);
978	}
979	if (sevent & S_HIPRI) {
980		sevent &= ~S_HIPRI;
981		info->si_code = POLL_PRI;
982		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
983		    "strsendsig:proc %p info %p", proc, info);
984		sigaddq(proc, NULL, info, KM_NOSLEEP);
985	}
986	if (sevent & S_RDBAND) {
987		sevent &= ~S_RDBAND;
988		if (events & S_BANDURG)
989			sigtoproc(proc, NULL, SIGURG);
990		else
991			sigtoproc(proc, NULL, SIGPOLL);
992	}
993	if (sevent & S_WRBAND) {
994		sevent &= ~S_WRBAND;
995		sigtoproc(proc, NULL, SIGPOLL);
996	}
997	if (sevent & S_INPUT) {
998		sevent &= ~S_INPUT;
999		info->si_code = POLL_IN;
1000		info->si_band = band;
1001		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
1002		    "strsendsig:proc %p info %p", proc, info);
1003		sigaddq(proc, NULL, info, KM_NOSLEEP);
1004		info->si_band = 0;
1005	}
1006	if (sevent & S_OUTPUT) {
1007		sevent &= ~S_OUTPUT;
1008		info->si_code = POLL_OUT;
1009		info->si_band = band;
1010		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
1011		    "strsendsig:proc %p info %p", proc, info);
1012		sigaddq(proc, NULL, info, KM_NOSLEEP);
1013		info->si_band = 0;
1014	}
1015	if (sevent & S_MSG) {
1016		sevent &= ~S_MSG;
1017		info->si_code = POLL_MSG;
1018		info->si_band = band;
1019		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
1020		    "strsendsig:proc %p info %p", proc, info);
1021		sigaddq(proc, NULL, info, KM_NOSLEEP);
1022		info->si_band = 0;
1023	}
1024	if (sevent & S_RDNORM) {
1025		sevent &= ~S_RDNORM;
1026		sigtoproc(proc, NULL, SIGPOLL);
1027	}
1028	if (sevent != 0) {
1029		panic("strsendsig: unknown event(s) %x", sevent);
1030	}
1031}
1032
1033/*
1034 * Send SIGPOLL/SIGURG signal to all processes and process groups
1035 * registered on the given signal list that want a signal for at
1036 * least one of the specified events.
1037 *
1038 * Must be called with exclusive access to siglist (caller holding sd_lock).
1039 *
1040 * strioctl(I_SETSIG/I_ESETSIG) will only change siglist when holding
1041 * sd_lock and the ioctl code maintains a PID_HOLD on the pid structure
1042 * while it is in the siglist.
1043 *
1044 * For performance reasons (MP scalability) the code drops pidlock
1045 * when sending signals to a single process.
1046 * When sending to a process group the code holds
1047 * pidlock to prevent the membership in the process group from changing
1048 * while walking the p_pglink list.
1049 */
1050void
1051strsendsig(strsig_t *siglist, int event, uchar_t band, int error)
1052{
1053	strsig_t *ssp;
1054	k_siginfo_t info;
1055	struct pid *pidp;
1056	proc_t  *proc;
1057
1058	info.si_signo = SIGPOLL;
1059	info.si_errno = 0;
1060	for (ssp = siglist; ssp; ssp = ssp->ss_next) {
1061		int sevent;
1062
1063		sevent = ssp->ss_events & event;
1064		if (sevent == 0)
1065			continue;
1066
1067		if ((pidp = ssp->ss_pidp) == NULL) {
1068			/* pid was released but still on event list */
1069			continue;
1070		}
1071
1072
1073		if (ssp->ss_pid > 0) {
1074			/*
1075			 * XXX This unfortunately still generates
1076			 * a signal when a fd is closed but
1077			 * the proc is active.
1078			 */
1079			ASSERT(ssp->ss_pid == pidp->pid_id);
1080
1081			mutex_enter(&pidlock);
1082			proc = prfind_zone(pidp->pid_id, ALL_ZONES);
1083			if (proc == NULL) {
1084				mutex_exit(&pidlock);
1085				continue;
1086			}
1087			mutex_enter(&proc->p_lock);
1088			mutex_exit(&pidlock);
1089			dosendsig(proc, ssp->ss_events, sevent, &info,
1090			    band, error);
1091			mutex_exit(&proc->p_lock);
1092		} else {
1093			/*
1094			 * Send to process group. Hold pidlock across
1095			 * calls to dosendsig().
1096			 */
1097			pid_t pgrp = -ssp->ss_pid;
1098
1099			mutex_enter(&pidlock);
1100			proc = pgfind_zone(pgrp, ALL_ZONES);
1101			while (proc != NULL) {
1102				mutex_enter(&proc->p_lock);
1103				dosendsig(proc, ssp->ss_events, sevent,
1104				    &info, band, error);
1105				mutex_exit(&proc->p_lock);
1106				proc = proc->p_pglink;
1107			}
1108			mutex_exit(&pidlock);
1109		}
1110	}
1111}
1112
1113/*
1114 * Attach a stream device or module.
1115 * qp is a read queue; the new queue goes in so its next
1116 * read ptr is the argument, and the write queue corresponding
1117 * to the argument points to this queue. Return 0 on success,
1118 * or a non-zero errno on failure.
1119 */
1120int
1121qattach(queue_t *qp, dev_t *devp, int oflag, cred_t *crp, fmodsw_impl_t *fp,
1122    boolean_t is_insert)
1123{
1124	major_t			major;
1125	cdevsw_impl_t		*dp;
1126	struct streamtab	*str;
1127	queue_t			*rq;
1128	queue_t			*wrq;
1129	uint32_t		qflag;
1130	uint32_t		sqtype;
1131	perdm_t			*dmp;
1132	int			error;
1133	int			sflag;
1134
1135	rq = allocq();
1136	wrq = _WR(rq);
1137	STREAM(rq) = STREAM(wrq) = STREAM(qp);
1138
1139	if (fp != NULL) {
1140		str = fp->f_str;
1141		qflag = fp->f_qflag;
1142		sqtype = fp->f_sqtype;
1143		dmp = fp->f_dmp;
1144		IMPLY((qflag & (QPERMOD | QMTOUTPERIM)), dmp != NULL);
1145		sflag = MODOPEN;
1146
1147		/*
1148		 * stash away a pointer to the module structure so we can
1149		 * unref it in qdetach.
1150		 */
1151		rq->q_fp = fp;
1152	} else {
1153		ASSERT(!is_insert);
1154
1155		major = getmajor(*devp);
1156		dp = &devimpl[major];
1157
1158		str = dp->d_str;
1159		ASSERT(str == STREAMSTAB(major));
1160
1161		qflag = dp->d_qflag;
1162		ASSERT(qflag & QISDRV);
1163		sqtype = dp->d_sqtype;
1164
1165		/* create perdm_t if needed */
1166		if (NEED_DM(dp->d_dmp, qflag))
1167			dp->d_dmp = hold_dm(str, qflag, sqtype);
1168
1169		dmp = dp->d_dmp;
1170		sflag = 0;
1171	}
1172
1173	TRACE_2(TR_FAC_STREAMS_FR, TR_QATTACH_FLAGS,
1174	    "qattach:qflag == %X(%X)", qflag, *devp);
1175
1176	/* setq might sleep in allocator - avoid holding locks. */
1177	setq(rq, str->st_rdinit, str->st_wrinit, dmp, qflag, sqtype, B_FALSE);
1178
1179	/*
1180	 * Before calling the module's open routine, set up the q_next
1181	 * pointer for inserting a module in the middle of a stream.
1182	 *
1183	 * Note that we can always set _QINSERTING and set up q_next
1184	 * pointer for both inserting and pushing a module.  Then there
1185	 * is no need for the is_insert parameter.  In insertq(), called
1186	 * by qprocson(), assume that q_next of the new module always points
1187	 * to the correct queue and use it for insertion.  Everything should
1188	 * work out fine.  But in the first release of _I_INSERT, we
1189	 * distinguish between inserting and pushing to make sure that
1190	 * pushing a module follows the same code path as before.
1191	 */
1192	if (is_insert) {
1193		rq->q_flag |= _QINSERTING;
1194		rq->q_next = qp;
1195	}
1196
1197	/*
1198	 * If there is an outer perimeter get exclusive access during
1199	 * the open procedure.  Bump up the reference count on the queue.
1200	 */
1201	entersq(rq->q_syncq, SQ_OPENCLOSE);
1202	error = (*rq->q_qinfo->qi_qopen)(rq, devp, oflag, sflag, crp);
1203	if (error != 0)
1204		goto failed;
1205	leavesq(rq->q_syncq, SQ_OPENCLOSE);
1206	ASSERT(qprocsareon(rq));
1207	return (0);
1208
1209failed:
1210	rq->q_flag &= ~_QINSERTING;
1211	if (backq(wrq) != NULL && backq(wrq)->q_next == wrq)
1212		qprocsoff(rq);
1213	leavesq(rq->q_syncq, SQ_OPENCLOSE);
1214	rq->q_next = wrq->q_next = NULL;
1215	qdetach(rq, 0, 0, crp, B_FALSE);
1216	return (error);
1217}
1218
1219/*
1220 * Handle second open of stream. For modules, set the
1221 * last argument to MODOPEN and do not pass any open flags.
1222 * Ignore dummydev since this is not the first open.
1223 */
1224int
1225qreopen(queue_t *qp, dev_t *devp, int flag, cred_t *crp)
1226{
1227	int	error;
1228	dev_t dummydev;
1229	queue_t *wqp = _WR(qp);
1230
1231	ASSERT(qp->q_flag & QREADR);
1232	entersq(qp->q_syncq, SQ_OPENCLOSE);
1233
1234	dummydev = *devp;
1235	if (error = ((*qp->q_qinfo->qi_qopen)(qp, &dummydev,
1236	    (wqp->q_next ? 0 : flag), (wqp->q_next ? MODOPEN : 0), crp))) {
1237		leavesq(qp->q_syncq, SQ_OPENCLOSE);
1238		mutex_enter(&STREAM(qp)->sd_lock);
1239		qp->q_stream->sd_flag |= STREOPENFAIL;
1240		mutex_exit(&STREAM(qp)->sd_lock);
1241		return (error);
1242	}
1243	leavesq(qp->q_syncq, SQ_OPENCLOSE);
1244
1245	/*
1246	 * successful open should have done qprocson()
1247	 */
1248	ASSERT(qprocsareon(_RD(qp)));
1249	return (0);
1250}
1251
1252/*
1253 * Detach a stream module or device.
1254 * If clmode == 1 then the module or driver was opened and its
1255 * close routine must be called. If clmode == 0, the module
1256 * or driver was never opened or the open failed, and so its close
1257 * should not be called.
1258 */
1259void
1260qdetach(queue_t *qp, int clmode, int flag, cred_t *crp, boolean_t is_remove)
1261{
1262	queue_t *wqp = _WR(qp);
1263	ASSERT(STREAM(qp)->sd_flag & (STRCLOSE|STWOPEN|STRPLUMB));
1264
1265	if (STREAM_NEEDSERVICE(STREAM(qp)))
1266		stream_runservice(STREAM(qp));
1267
1268	if (clmode) {
1269		/*
1270		 * Make sure that all the messages on the write side syncq are
1271		 * processed and nothing is left. Since we are closing, no new
1272		 * messages may appear there.
1273		 */
1274		wait_q_syncq(wqp);
1275
1276		entersq(qp->q_syncq, SQ_OPENCLOSE);
1277		if (is_remove) {
1278			mutex_enter(QLOCK(qp));
1279			qp->q_flag |= _QREMOVING;
1280			mutex_exit(QLOCK(qp));
1281		}
1282		(*qp->q_qinfo->qi_qclose)(qp, flag, crp);
1283		/*
1284		 * Check that qprocsoff() was actually called.
1285		 */
1286		ASSERT((qp->q_flag & QWCLOSE) && (wqp->q_flag & QWCLOSE));
1287
1288		leavesq(qp->q_syncq, SQ_OPENCLOSE);
1289	} else {
1290		disable_svc(qp);
1291	}
1292
1293	/*
1294	 * Allow any threads blocked in entersq to proceed and discover
1295	 * the QWCLOSE is set.
1296	 * Note: This assumes that all users of entersq check QWCLOSE.
1297	 * Currently runservice is the only entersq that can happen
1298	 * after removeq has finished.
1299	 * Removeq will have discarded all messages destined to the closing
1300	 * pair of queues from the syncq.
1301	 * NOTE: Calling a function inside an assert is unconventional.
1302	 * However, it does not cause any problem since flush_syncq() does
1303	 * not change any state except when it returns non-zero i.e.
1304	 * when the assert will trigger.
1305	 */
1306	ASSERT(flush_syncq(qp->q_syncq, qp) == 0);
1307	ASSERT(flush_syncq(wqp->q_syncq, wqp) == 0);
1308	ASSERT((qp->q_flag & QPERMOD) ||
1309	    ((qp->q_syncq->sq_head == NULL) &&
1310	    (wqp->q_syncq->sq_head == NULL)));
1311
1312	/* release any fmodsw_impl_t structure held on behalf of the queue */
1313	ASSERT(qp->q_fp != NULL || qp->q_flag & QISDRV);
1314	if (qp->q_fp != NULL)
1315		fmodsw_rele(qp->q_fp);
1316
1317	/* freeq removes us from the outer perimeter if any */
1318	freeq(qp);
1319}
1320
1321/* Prevent service procedures from being called */
1322void
1323disable_svc(queue_t *qp)
1324{
1325	queue_t *wqp = _WR(qp);
1326
1327	ASSERT(qp->q_flag & QREADR);
1328	mutex_enter(QLOCK(qp));
1329	qp->q_flag |= QWCLOSE;
1330	mutex_exit(QLOCK(qp));
1331	mutex_enter(QLOCK(wqp));
1332	wqp->q_flag |= QWCLOSE;
1333	mutex_exit(QLOCK(wqp));
1334}
1335
1336/* Allow service procedures to be called again */
1337void
1338enable_svc(queue_t *qp)
1339{
1340	queue_t *wqp = _WR(qp);
1341
1342	ASSERT(qp->q_flag & QREADR);
1343	mutex_enter(QLOCK(qp));
1344	qp->q_flag &= ~QWCLOSE;
1345	mutex_exit(QLOCK(qp));
1346	mutex_enter(QLOCK(wqp));
1347	wqp->q_flag &= ~QWCLOSE;
1348	mutex_exit(QLOCK(wqp));
1349}
1350
1351/*
1352 * Remove queue from qhead/qtail if it is enabled.
1353 * Only reset QENAB if the queue was removed from the runlist.
1354 * A queue goes through 3 stages:
1355 *	It is on the service list and QENAB is set.
1356 *	It is removed from the service list but QENAB is still set.
1357 *	QENAB gets changed to QINSERVICE.
1358 *	QINSERVICE is reset (when the service procedure is done)
1359 * Thus we can not reset QENAB unless we actually removed it from the service
1360 * queue.
1361 */
1362void
1363remove_runlist(queue_t *qp)
1364{
1365	if (qp->q_flag & QENAB && qhead != NULL) {
1366		queue_t *q_chase;
1367		queue_t *q_curr;
1368		int removed;
1369
1370		mutex_enter(&service_queue);
1371		RMQ(qp, qhead, qtail, q_link, q_chase, q_curr, removed);
1372		mutex_exit(&service_queue);
1373		if (removed) {
1374			STRSTAT(qremoved);
1375			qp->q_flag &= ~QENAB;
1376		}
1377	}
1378}
1379
1380
1381/*
1382 * Wait for any pending service processing to complete.
1383 * The removal of queues from the runlist is not atomic with the
1384 * clearing of the QENABLED flag and setting the INSERVICE flag.
1385 * consequently it is possible for remove_runlist in strclose
1386 * to not find the queue on the runlist but for it to be QENABLED
1387 * and not yet INSERVICE -> hence wait_svc needs to check QENABLED
1388 * as well as INSERVICE.
1389 */
1390void
1391wait_svc(queue_t *qp)
1392{
1393	queue_t *wqp = _WR(qp);
1394
1395	ASSERT(qp->q_flag & QREADR);
1396
1397	/*
1398	 * Try to remove queues from qhead/qtail list.
1399	 */
1400	if (qhead != NULL) {
1401		remove_runlist(qp);
1402		remove_runlist(wqp);
1403	}
1404	/*
1405	 * Wait till the syncqs associated with the queue disappear from the
1406	 * background processing list.
1407	 * This only needs to be done for non-PERMOD perimeters since
1408	 * for PERMOD perimeters the syncq may be shared and will only be freed
1409	 * when the last module/driver is unloaded.
1410	 * If for PERMOD perimeters queue was on the syncq list, removeq()
1411	 * should call propagate_syncq() or drain_syncq() for it. Both of these
1412	 * functions remove the queue from its syncq list, so sqthread will not
1413	 * try to access the queue.
1414	 */
1415	if (!(qp->q_flag & QPERMOD)) {
1416		syncq_t *rsq = qp->q_syncq;
1417		syncq_t *wsq = wqp->q_syncq;
1418
1419		/*
1420		 * Disable rsq and wsq and wait for any background processing of
1421		 * syncq to complete.
1422		 */
1423		wait_sq_svc(rsq);
1424		if (wsq != rsq)
1425			wait_sq_svc(wsq);
1426	}
1427
1428	mutex_enter(QLOCK(qp));
1429	while (qp->q_flag & (QINSERVICE|QENAB))
1430		cv_wait(&qp->q_wait, QLOCK(qp));
1431	mutex_exit(QLOCK(qp));
1432	mutex_enter(QLOCK(wqp));
1433	while (wqp->q_flag & (QINSERVICE|QENAB))
1434		cv_wait(&wqp->q_wait, QLOCK(wqp));
1435	mutex_exit(QLOCK(wqp));
1436}
1437
1438/*
1439 * Put ioctl data from userland buffer `arg' into the mblk chain `bp'.
1440 * `flag' must always contain either K_TO_K or U_TO_K; STR_NOSIG may
1441 * also be set, and is passed through to allocb_cred_wait().
1442 *
1443 * Returns errno on failure, zero on success.
1444 */
1445int
1446putiocd(mblk_t *bp, char *arg, int flag, cred_t *cr)
1447{
1448	mblk_t *tmp;
1449	ssize_t  count;
1450	int error = 0;
1451
1452	ASSERT((flag & (U_TO_K | K_TO_K)) == U_TO_K ||
1453	    (flag & (U_TO_K | K_TO_K)) == K_TO_K);
1454
1455	if (bp->b_datap->db_type == M_IOCTL) {
1456		count = ((struct iocblk *)bp->b_rptr)->ioc_count;
1457	} else {
1458		ASSERT(bp->b_datap->db_type == M_COPYIN);
1459		count = ((struct copyreq *)bp->b_rptr)->cq_size;
1460	}
1461	/*
1462	 * strdoioctl validates ioc_count, so if this assert fails it
1463	 * cannot be due to user error.
1464	 */
1465	ASSERT(count >= 0);
1466
1467	if ((tmp = allocb_cred_wait(count, (flag & STR_NOSIG), &error, cr,
1468	    curproc->p_pid)) == NULL) {
1469		return (error);
1470	}
1471	error = strcopyin(arg, tmp->b_wptr, count, flag & (U_TO_K|K_TO_K));
1472	if (error != 0) {
1473		freeb(tmp);
1474		return (error);
1475	}
1476	DB_CPID(tmp) = curproc->p_pid;
1477	tmp->b_wptr += count;
1478	bp->b_cont = tmp;
1479
1480	return (0);
1481}
1482
1483/*
1484 * Copy ioctl data to user-land. Return non-zero errno on failure,
1485 * 0 for success.
1486 */
1487int
1488getiocd(mblk_t *bp, char *arg, int copymode)
1489{
1490	ssize_t count;
1491	size_t  n;
1492	int	error;
1493
1494	if (bp->b_datap->db_type == M_IOCACK)
1495		count = ((struct iocblk *)bp->b_rptr)->ioc_count;
1496	else {
1497		ASSERT(bp->b_datap->db_type == M_COPYOUT);
1498		count = ((struct copyreq *)bp->b_rptr)->cq_size;
1499	}
1500	ASSERT(count >= 0);
1501
1502	for (bp = bp->b_cont; bp && count;
1503	    count -= n, bp = bp->b_cont, arg += n) {
1504		n = MIN(count, bp->b_wptr - bp->b_rptr);
1505		error = strcopyout(bp->b_rptr, arg, n, copymode);
1506		if (error)
1507			return (error);
1508	}
1509	ASSERT(count == 0);
1510	return (0);
1511}
1512
1513/*
1514 * Allocate a linkinfo entry given the write queue of the
1515 * bottom module of the top stream and the write queue of the
1516 * stream head of the bottom stream.
1517 */
1518linkinfo_t *
1519alloclink(queue_t *qup, queue_t *qdown, file_t *fpdown)
1520{
1521	linkinfo_t *linkp;
1522
1523	linkp = kmem_cache_alloc(linkinfo_cache, KM_SLEEP);
1524
1525	linkp->li_lblk.l_qtop = qup;
1526	linkp->li_lblk.l_qbot = qdown;
1527	linkp->li_fpdown = fpdown;
1528
1529	mutex_enter(&strresources);
1530	linkp->li_next = linkinfo_list;
1531	linkp->li_prev = NULL;
1532	if (linkp->li_next)
1533		linkp->li_next->li_prev = linkp;
1534	linkinfo_list = linkp;
1535	linkp->li_lblk.l_index = ++lnk_id;
1536	ASSERT(lnk_id != 0);	/* this should never wrap in practice */
1537	mutex_exit(&strresources);
1538
1539	return (linkp);
1540}
1541
1542/*
1543 * Free a linkinfo entry.
1544 */
1545void
1546lbfree(linkinfo_t *linkp)
1547{
1548	mutex_enter(&strresources);
1549	if (linkp->li_next)
1550		linkp->li_next->li_prev = linkp->li_prev;
1551	if (linkp->li_prev)
1552		linkp->li_prev->li_next = linkp->li_next;
1553	else
1554		linkinfo_list = linkp->li_next;
1555	mutex_exit(&strresources);
1556
1557	kmem_cache_free(linkinfo_cache, linkp);
1558}
1559
1560/*
1561 * Check for a potential linking cycle.
1562 * Return 1 if a link will result in a cycle,
1563 * and 0 otherwise.
1564 */
1565int
1566linkcycle(stdata_t *upstp, stdata_t *lostp, str_stack_t *ss)
1567{
1568	struct mux_node *np;
1569	struct mux_edge *ep;
1570	int i;
1571	major_t lomaj;
1572	major_t upmaj;
1573	/*
1574	 * if the lower stream is a pipe/FIFO, return, since link
1575	 * cycles can not happen on pipes/FIFOs
1576	 */
1577	if (lostp->sd_vnode->v_type == VFIFO)
1578		return (0);
1579
1580	for (i = 0; i < ss->ss_devcnt; i++) {
1581		np = &ss->ss_mux_nodes[i];
1582		MUX_CLEAR(np);
1583	}
1584	lomaj = getmajor(lostp->sd_vnode->v_rdev);
1585	upmaj = getmajor(upstp->sd_vnode->v_rdev);
1586	np = &ss->ss_mux_nodes[lomaj];
1587	for (;;) {
1588		if (!MUX_DIDVISIT(np)) {
1589			if (np->mn_imaj == upmaj)
1590				return (1);
1591			if (np->mn_outp == NULL) {
1592				MUX_VISIT(np);
1593				if (np->mn_originp == NULL)
1594					return (0);
1595				np = np->mn_originp;
1596				continue;
1597			}
1598			MUX_VISIT(np);
1599			np->mn_startp = np->mn_outp;
1600		} else {
1601			if (np->mn_startp == NULL) {
1602				if (np->mn_originp == NULL)
1603					return (0);
1604				else {
1605					np = np->mn_originp;
1606					continue;
1607				}
1608			}
1609			/*
1610			 * If ep->me_nodep is a FIFO (me_nodep == NULL),
1611			 * ignore the edge and move on. ep->me_nodep gets
1612			 * set to NULL in mux_addedge() if it is a FIFO.
1613			 *
1614			 */
1615			ep = np->mn_startp;
1616			np->mn_startp = ep->me_nextp;
1617			if (ep->me_nodep == NULL)
1618				continue;
1619			ep->me_nodep->mn_originp = np;
1620			np = ep->me_nodep;
1621		}
1622	}
1623}
1624
1625/*
1626 * Find linkinfo entry corresponding to the parameters.
1627 */
1628linkinfo_t *
1629findlinks(stdata_t *stp, int index, int type, str_stack_t *ss)
1630{
1631	linkinfo_t *linkp;
1632	struct mux_edge *mep;
1633	struct mux_node *mnp;
1634	queue_t *qup;
1635
1636	mutex_enter(&strresources);
1637	if ((type & LINKTYPEMASK) == LINKNORMAL) {
1638		qup = getendq(stp->sd_wrq);
1639		for (linkp = linkinfo_list; linkp; linkp = linkp->li_next) {
1640			if ((qup == linkp->li_lblk.l_qtop) &&
1641			    (!index || (index == linkp->li_lblk.l_index))) {
1642				mutex_exit(&strresources);
1643				return (linkp);
1644			}
1645		}
1646	} else {
1647		ASSERT((type & LINKTYPEMASK) == LINKPERSIST);
1648		mnp = &ss->ss_mux_nodes[getmajor(stp->sd_vnode->v_rdev)];
1649		mep = mnp->mn_outp;
1650		while (mep) {
1651			if ((index == 0) || (index == mep->me_muxid))
1652				break;
1653			mep = mep->me_nextp;
1654		}
1655		if (!mep) {
1656			mutex_exit(&strresources);
1657			return (NULL);
1658		}
1659		for (linkp = linkinfo_list; linkp; linkp = linkp->li_next) {
1660			if ((!linkp->li_lblk.l_qtop) &&
1661			    (mep->me_muxid == linkp->li_lblk.l_index)) {
1662				mutex_exit(&strresources);
1663				return (linkp);
1664			}
1665		}
1666	}
1667	mutex_exit(&strresources);
1668	return (NULL);
1669}
1670
1671/*
1672 * Given a queue ptr, follow the chain of q_next pointers until you reach the
1673 * last queue on the chain and return it.
1674 */
1675queue_t *
1676getendq(queue_t *q)
1677{
1678	ASSERT(q != NULL);
1679	while (_SAMESTR(q))
1680		q = q->q_next;
1681	return (q);
1682}
1683
1684/*
1685 * Wait for the syncq count to drop to zero.
1686 * sq could be either outer or inner.
1687 */
1688
1689static void
1690wait_syncq(syncq_t *sq)
1691{
1692	uint16_t count;
1693
1694	mutex_enter(SQLOCK(sq));
1695	count = sq->sq_count;
1696	SQ_PUTLOCKS_ENTER(sq);
1697	SUM_SQ_PUTCOUNTS(sq, count);
1698	while (count != 0) {
1699		sq->sq_flags |= SQ_WANTWAKEUP;
1700		SQ_PUTLOCKS_EXIT(sq);
1701		cv_wait(&sq->sq_wait, SQLOCK(sq));
1702		count = sq->sq_count;
1703		SQ_PUTLOCKS_ENTER(sq);
1704		SUM_SQ_PUTCOUNTS(sq, count);
1705	}
1706	SQ_PUTLOCKS_EXIT(sq);
1707	mutex_exit(SQLOCK(sq));
1708}
1709
1710/*
1711 * Wait while there are any messages for the queue in its syncq.
1712 */
1713static void
1714wait_q_syncq(queue_t *q)
1715{
1716	if ((q->q_sqflags & Q_SQQUEUED) || (q->q_syncqmsgs > 0)) {
1717		syncq_t *sq = q->q_syncq;
1718
1719		mutex_enter(SQLOCK(sq));
1720		while ((q->q_sqflags & Q_SQQUEUED) || (q->q_syncqmsgs > 0)) {
1721			sq->sq_flags |= SQ_WANTWAKEUP;
1722			cv_wait(&sq->sq_wait, SQLOCK(sq));
1723		}
1724		mutex_exit(SQLOCK(sq));
1725	}
1726}
1727
1728
1729int
1730mlink_file(vnode_t *vp, int cmd, struct file *fpdown, cred_t *crp, int *rvalp,
1731    int lhlink)
1732{
1733	struct stdata *stp;
1734	struct strioctl strioc;
1735	struct linkinfo *linkp;
1736	struct stdata *stpdown;
1737	struct streamtab *str;
1738	queue_t *passq;
1739	syncq_t *passyncq;
1740	queue_t *rq;
1741	cdevsw_impl_t *dp;
1742	uint32_t qflag;
1743	uint32_t sqtype;
1744	perdm_t *dmp;
1745	int error = 0;
1746	netstack_t *ns;
1747	str_stack_t *ss;
1748
1749	stp = vp->v_stream;
1750	TRACE_1(TR_FAC_STREAMS_FR,
1751	    TR_I_LINK, "I_LINK/I_PLINK:stp %p", stp);
1752	/*
1753	 * Test for invalid upper stream
1754	 */
1755	if (stp->sd_flag & STRHUP) {
1756		return (ENXIO);
1757	}
1758	if (vp->v_type == VFIFO) {
1759		return (EINVAL);
1760	}
1761	if (stp->sd_strtab == NULL) {
1762		return (EINVAL);
1763	}
1764	if (!stp->sd_strtab->st_muxwinit) {
1765		return (EINVAL);
1766	}
1767	if (fpdown == NULL) {
1768		return (EBADF);
1769	}
1770	ns = netstack_find_by_cred(crp);
1771	ASSERT(ns != NULL);
1772	ss = ns->netstack_str;
1773	ASSERT(ss != NULL);
1774
1775	if (getmajor(stp->sd_vnode->v_rdev) >= ss->ss_devcnt) {
1776		netstack_rele(ss->ss_netstack);
1777		return (EINVAL);
1778	}
1779	mutex_enter(&muxifier);
1780	if (stp->sd_flag & STPLEX) {
1781		mutex_exit(&muxifier);
1782		netstack_rele(ss->ss_netstack);
1783		return (ENXIO);
1784	}
1785
1786	/*
1787	 * Test for invalid lower stream.
1788	 * The check for the v_type != VFIFO and having a major
1789	 * number not >= devcnt is done to avoid problems with
1790	 * adding mux_node entry past the end of mux_nodes[].
1791	 * For FIFO's we don't add an entry so this isn't a
1792	 * problem.
1793	 */
1794	if (((stpdown = fpdown->f_vnode->v_stream) == NULL) ||
1795	    (stpdown == stp) || (stpdown->sd_flag &
1796	    (STPLEX|STRHUP|STRDERR|STWRERR|IOCWAIT|STRPLUMB)) ||
1797	    ((stpdown->sd_vnode->v_type != VFIFO) &&
1798	    (getmajor(stpdown->sd_vnode->v_rdev) >= ss->ss_devcnt)) ||
1799	    linkcycle(stp, stpdown, ss)) {
1800		mutex_exit(&muxifier);
1801		netstack_rele(ss->ss_netstack);
1802		return (EINVAL);
1803	}
1804	TRACE_1(TR_FAC_STREAMS_FR,
1805	    TR_STPDOWN, "stpdown:%p", stpdown);
1806	rq = getendq(stp->sd_wrq);
1807	if (cmd == I_PLINK)
1808		rq = NULL;
1809
1810	linkp = alloclink(rq, stpdown->sd_wrq, fpdown);
1811
1812	strioc.ic_cmd = cmd;
1813	strioc.ic_timout = INFTIM;
1814	strioc.ic_len = sizeof (struct linkblk);
1815	strioc.ic_dp = (char *)&linkp->li_lblk;
1816
1817	/*
1818	 * STRPLUMB protects plumbing changes and should be set before
1819	 * link_addpassthru()/link_rempassthru() are called, so it is set here
1820	 * and cleared in the end of mlink when passthru queue is removed.
1821	 * Setting of STRPLUMB prevents reopens of the stream while passthru
1822	 * queue is in-place (it is not a proper module and doesn't have open
1823	 * entry point).
1824	 *
1825	 * STPLEX prevents any threads from entering the stream from above. It
1826	 * can't be set before the call to link_addpassthru() because putnext
1827	 * from below may cause stream head I/O routines to be called and these
1828	 * routines assert that STPLEX is not set. After link_addpassthru()
1829	 * nothing may come from below since the pass queue syncq is blocked.
1830	 * Note also that STPLEX should be cleared before the call to
1831	 * link_rempassthru() since when messages start flowing to the stream
1832	 * head (e.g. because of message propagation from the pass queue) stream
1833	 * head I/O routines may be called with STPLEX flag set.
1834	 *
1835	 * When STPLEX is set, nothing may come into the stream from above and
1836	 * it is safe to do a setq which will change stream head. So, the
1837	 * correct sequence of actions is:
1838	 *
1839	 * 1) Set STRPLUMB
1840	 * 2) Call link_addpassthru()
1841	 * 3) Set STPLEX
1842	 * 4) Call setq and update the stream state
1843	 * 5) Clear STPLEX
1844	 * 6) Call link_rempassthru()
1845	 * 7) Clear STRPLUMB
1846	 *
1847	 * The same sequence applies to munlink() code.
1848	 */
1849	mutex_enter(&stpdown->sd_lock);
1850	stpdown->sd_flag |= STRPLUMB;
1851	mutex_exit(&stpdown->sd_lock);
1852	/*
1853	 * Add passthru queue below lower mux. This will block
1854	 * syncqs of lower muxs read queue during I_LINK/I_UNLINK.
1855	 */
1856	passq = link_addpassthru(stpdown);
1857
1858	mutex_enter(&stpdown->sd_lock);
1859	stpdown->sd_flag |= STPLEX;
1860	mutex_exit(&stpdown->sd_lock);
1861
1862	rq = _RD(stpdown->sd_wrq);
1863	/*
1864	 * There may be messages in the streamhead's syncq due to messages
1865	 * that arrived before link_addpassthru() was done. To avoid
1866	 * background processing of the syncq happening simultaneous with
1867	 * setq processing, we disable the streamhead syncq and wait until
1868	 * existing background thread finishes working on it.
1869	 */
1870	wait_sq_svc(rq->q_syncq);
1871	passyncq = passq->q_syncq;
1872	if (!(passyncq->sq_flags & SQ_BLOCKED))
1873		blocksq(passyncq, SQ_BLOCKED, 0);
1874
1875	ASSERT((rq->q_flag & QMT_TYPEMASK) == QMTSAFE);
1876	ASSERT(rq->q_syncq == SQ(rq) && _WR(rq)->q_syncq == SQ(rq));
1877	rq->q_ptr = _WR(rq)->q_ptr = NULL;
1878
1879	/* setq might sleep in allocator - avoid holding locks. */
1880	/* Note: we are holding muxifier here. */
1881
1882	str = stp->sd_strtab;
1883	dp = &devimpl[getmajor(vp->v_rdev)];
1884	ASSERT(dp->d_str == str);
1885
1886	qflag = dp->d_qflag;
1887	sqtype = dp->d_sqtype;
1888
1889	/* create perdm_t if needed */
1890	if (NEED_DM(dp->d_dmp, qflag))
1891		dp->d_dmp = hold_dm(str, qflag, sqtype);
1892
1893	dmp = dp->d_dmp;
1894
1895	setq(rq, str->st_muxrinit, str->st_muxwinit, dmp, qflag, sqtype,
1896	    B_TRUE);
1897
1898	/*
1899	 * XXX Remove any "odd" messages from the queue.
1900	 * Keep only M_DATA, M_PROTO, M_PCPROTO.
1901	 */
1902	error = strdoioctl(stp, &strioc, FNATIVE,
1903	    K_TO_K | STR_NOERROR | STR_NOSIG, crp, rvalp);
1904	if (error != 0) {
1905		lbfree(linkp);
1906
1907		if (!(passyncq->sq_flags & SQ_BLOCKED))
1908			blocksq(passyncq, SQ_BLOCKED, 0);
1909		/*
1910		 * Restore the stream head queue and then remove
1911		 * the passq. Turn off STPLEX before we turn on
1912		 * the stream by removing the passq.
1913		 */
1914		rq->q_ptr = _WR(rq)->q_ptr = stpdown;
1915		setq(rq, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO,
1916		    B_TRUE);
1917
1918		mutex_enter(&stpdown->sd_lock);
1919		stpdown->sd_flag &= ~STPLEX;
1920		mutex_exit(&stpdown->sd_lock);
1921
1922		link_rempassthru(passq);
1923
1924		mutex_enter(&stpdown->sd_lock);
1925		stpdown->sd_flag &= ~STRPLUMB;
1926		/* Wakeup anyone waiting for STRPLUMB to clear. */
1927		cv_broadcast(&stpdown->sd_monitor);
1928		mutex_exit(&stpdown->sd_lock);
1929
1930		mutex_exit(&muxifier);
1931		netstack_rele(ss->ss_netstack);
1932		return (error);
1933	}
1934	mutex_enter(&fpdown->f_tlock);
1935	fpdown->f_count++;
1936	mutex_exit(&fpdown->f_tlock);
1937
1938	/*
1939	 * if we've made it here the linkage is all set up so we should also
1940	 * set up the layered driver linkages
1941	 */
1942
1943	ASSERT((cmd == I_LINK) || (cmd == I_PLINK));
1944	if (cmd == I_LINK) {
1945		ldi_mlink_fp(stp, fpdown, lhlink, LINKNORMAL);
1946	} else {
1947		ldi_mlink_fp(stp, fpdown, lhlink, LINKPERSIST);
1948	}
1949
1950	link_rempassthru(passq);
1951
1952	mux_addedge(stp, stpdown, linkp->li_lblk.l_index, ss);
1953
1954	/*
1955	 * Mark the upper stream as having dependent links
1956	 * so that strclose can clean it up.
1957	 */
1958	if (cmd == I_LINK) {
1959		mutex_enter(&stp->sd_lock);
1960		stp->sd_flag |= STRHASLINKS;
1961		mutex_exit(&stp->sd_lock);
1962	}
1963	/*
1964	 * Wake up any other processes that may have been
1965	 * waiting on the lower stream. These will all
1966	 * error out.
1967	 */
1968	mutex_enter(&stpdown->sd_lock);
1969	/* The passthru module is removed so we may release STRPLUMB */
1970	stpdown->sd_flag &= ~STRPLUMB;
1971	cv_broadcast(&rq->q_wait);
1972	cv_broadcast(&_WR(rq)->q_wait);
1973	cv_broadcast(&stpdown->sd_monitor);
1974	mutex_exit(&stpdown->sd_lock);
1975	mutex_exit(&muxifier);
1976	*rvalp = linkp->li_lblk.l_index;
1977	netstack_rele(ss->ss_netstack);
1978	return (0);
1979}
1980
1981int
1982mlink(vnode_t *vp, int cmd, int arg, cred_t *crp, int *rvalp, int lhlink)
1983{
1984	int		ret;
1985	struct file	*fpdown;
1986
1987	fpdown = getf(arg);
1988	ret = mlink_file(vp, cmd, fpdown, crp, rvalp, lhlink);
1989	if (fpdown != NULL)
1990		releasef(arg);
1991	return (ret);
1992}
1993
1994/*
1995 * Unlink a multiplexor link. Stp is the controlling stream for the
1996 * link, and linkp points to the link's entry in the linkinfo list.
1997 * The muxifier lock must be held on entry and is dropped on exit.
1998 *
1999 * NOTE : Currently it is assumed that mux would process all the messages
2000 * sitting on it's queue before ACKing the UNLINK. It is the responsibility
2001 * of the mux to handle all the messages that arrive before UNLINK.
2002 * If the mux has to send down messages on its lower stream before
2003 * ACKing I_UNLINK, then it *should* know to handle messages even
2004 * after the UNLINK is acked (actually it should be able to handle till we
2005 * re-block the read side of the pass queue here). If the mux does not
2006 * open up the lower stream, any messages that arrive during UNLINK
2007 * will be put in the stream head. In the case of lower stream opening
2008 * up, some messages might land in the stream head depending on when
2009 * the message arrived and when the read side of the pass queue was
2010 * re-blocked.
2011 */
2012int
2013munlink(stdata_t *stp, linkinfo_t *linkp, int flag, cred_t *crp, int *rvalp,
2014    str_stack_t *ss)
2015{
2016	struct strioctl strioc;
2017	struct stdata *stpdown;
2018	queue_t *rq, *wrq;
2019	queue_t	*passq;
2020	syncq_t *passyncq;
2021	int error = 0;
2022	file_t *fpdown;
2023
2024	ASSERT(MUTEX_HELD(&muxifier));
2025
2026	stpdown = linkp->li_fpdown->f_vnode->v_stream;
2027
2028	/*
2029	 * See the comment in mlink() concerning STRPLUMB/STPLEX flags.
2030	 */
2031	mutex_enter(&stpdown->sd_lock);
2032	stpdown->sd_flag |= STRPLUMB;
2033	mutex_exit(&stpdown->sd_lock);
2034
2035	/*
2036	 * Add passthru queue below lower mux. This will block
2037	 * syncqs of lower muxs read queue during I_LINK/I_UNLINK.
2038	 */
2039	passq = link_addpassthru(stpdown);
2040
2041	if ((flag & LINKTYPEMASK) == LINKNORMAL)
2042		strioc.ic_cmd = I_UNLINK;
2043	else
2044		strioc.ic_cmd = I_PUNLINK;
2045	strioc.ic_timout = INFTIM;
2046	strioc.ic_len = sizeof (struct linkblk);
2047	strioc.ic_dp = (char *)&linkp->li_lblk;
2048
2049	error = strdoioctl(stp, &strioc, FNATIVE,
2050	    K_TO_K | STR_NOERROR | STR_NOSIG, crp, rvalp);
2051
2052	/*
2053	 * If there was an error and this is not called via strclose,
2054	 * return to the user. Otherwise, pretend there was no error
2055	 * and close the link.
2056	 */
2057	if (error) {
2058		if (flag & LINKCLOSE) {
2059			cmn_err(CE_WARN, "KERNEL: munlink: could not perform "
2060			    "unlink ioctl, closing anyway (%d)\n", error);
2061		} else {
2062			link_rempassthru(passq);
2063			mutex_enter(&stpdown->sd_lock);
2064			stpdown->sd_flag &= ~STRPLUMB;
2065			cv_broadcast(&stpdown->sd_monitor);
2066			mutex_exit(&stpdown->sd_lock);
2067			mutex_exit(&muxifier);
2068			return (error);
2069		}
2070	}
2071
2072	mux_rmvedge(stp, linkp->li_lblk.l_index, ss);
2073	fpdown = linkp->li_fpdown;
2074	lbfree(linkp);
2075
2076	/*
2077	 * We go ahead and drop muxifier here--it's a nasty global lock that
2078	 * can slow others down. It's okay to since attempts to mlink() this
2079	 * stream will be stopped because STPLEX is still set in the stdata
2080	 * structure, and munlink() is stopped because mux_rmvedge() and
2081	 * lbfree() have removed it from mux_nodes[] and linkinfo_list,
2082	 * respectively.  Note that we defer the closef() of fpdown until
2083	 * after we drop muxifier since strclose() can call munlinkall().
2084	 */
2085	mutex_exit(&muxifier);
2086
2087	wrq = stpdown->sd_wrq;
2088	rq = _RD(wrq);
2089
2090	/*
2091	 * Get rid of outstanding service procedure runs, before we make
2092	 * it a stream head, since a stream head doesn't have any service
2093	 * procedure.
2094	 */
2095	disable_svc(rq);
2096	wait_svc(rq);
2097
2098	/*
2099	 * Since we don't disable the syncq for QPERMOD, we wait for whatever
2100	 * is queued up to be finished. mux should take care that nothing is
2101	 * send down to this queue. We should do it now as we're going to block
2102	 * passyncq if it was unblocked.
2103	 */
2104	if (wrq->q_flag & QPERMOD) {
2105		syncq_t	*sq = wrq->q_syncq;
2106
2107		mutex_enter(SQLOCK(sq));
2108		while (wrq->q_sqflags & Q_SQQUEUED) {
2109			sq->sq_flags |= SQ_WANTWAKEUP;
2110			cv_wait(&sq->sq_wait, SQLOCK(sq));
2111		}
2112		mutex_exit(SQLOCK(sq));
2113	}
2114	passyncq = passq->q_syncq;
2115	if (!(passyncq->sq_flags & SQ_BLOCKED)) {
2116
2117		syncq_t *sq, *outer;
2118
2119		/*
2120		 * Messages could be flowing from underneath. We will
2121		 * block the read side of the passq. This would be
2122		 * sufficient for QPAIR and QPERQ muxes to ensure
2123		 * that no data is flowing up into this queue
2124		 * and hence no thread active in this instance of
2125		 * lower mux. But for QPERMOD and QMTOUTPERIM there
2126		 * could be messages on the inner and outer/inner
2127		 * syncqs respectively. We will wait for them to drain.
2128		 * Because passq is blocked messages end up in the syncq
2129		 * And qfill_syncq could possibly end up setting QFULL
2130		 * which will access the rq->q_flag. Hence, we have to
2131		 * acquire the QLOCK in setq.
2132		 *
2133		 * XXX Messages can also flow from top into this
2134		 * queue though the unlink is over (Ex. some instance
2135		 * in putnext() called from top that has still not
2136		 * accessed this queue. And also putq(lowerq) ?).
2137		 * Solution : How about blocking the l_qtop queue ?
2138		 * Do we really care about such pure D_MP muxes ?
2139		 */
2140
2141		blocksq(passyncq, SQ_BLOCKED, 0);
2142
2143		sq = rq->q_syncq;
2144		if ((outer = sq->sq_outer) != NULL) {
2145
2146			/*
2147			 * We have to just wait for the outer sq_count
2148			 * drop to zero. As this does not prevent new
2149			 * messages to enter the outer perimeter, this
2150			 * is subject to starvation.
2151			 *
2152			 * NOTE :Because of blocksq above, messages could
2153			 * be in the inner syncq only because of some
2154			 * thread holding the outer perimeter exclusively.
2155			 * Hence it would be sufficient to wait for the
2156			 * exclusive holder of the outer perimeter to drain
2157			 * the inner and outer syncqs. But we will not depend
2158			 * on this feature and hence check the inner syncqs
2159			 * separately.
2160			 */
2161			wait_syncq(outer);
2162		}
2163
2164
2165		/*
2166		 * There could be messages destined for
2167		 * this queue. Let the exclusive holder
2168		 * drain it.
2169		 */
2170
2171		wait_syncq(sq);
2172		ASSERT((rq->q_flag & QPERMOD) ||
2173		    ((rq->q_syncq->sq_head == NULL) &&
2174		    (_WR(rq)->q_syncq->sq_head == NULL)));
2175	}
2176
2177	/*
2178	 * We haven't taken care of QPERMOD case yet. QPERMOD is a special
2179	 * case as we don't disable its syncq or remove it off the syncq
2180	 * service list.
2181	 */
2182	if (rq->q_flag & QPERMOD) {
2183		syncq_t	*sq = rq->q_syncq;
2184
2185		mutex_enter(SQLOCK(sq));
2186		while (rq->q_sqflags & Q_SQQUEUED) {
2187			sq->sq_flags |= SQ_WANTWAKEUP;
2188			cv_wait(&sq->sq_wait, SQLOCK(sq));
2189		}
2190		mutex_exit(SQLOCK(sq));
2191	}
2192
2193	/*
2194	 * flush_syncq changes states only when there are some messages to
2195	 * free, i.e. when it returns non-zero value to return.
2196	 */
2197	ASSERT(flush_syncq(rq->q_syncq, rq) == 0);
2198	ASSERT(flush_syncq(wrq->q_syncq, wrq) == 0);
2199
2200	/*
2201	 * Nobody else should know about this queue now.
2202	 * If the mux did not process the messages before
2203	 * acking the I_UNLINK, free them now.
2204	 */
2205
2206	flushq(rq, FLUSHALL);
2207	flushq(_WR(rq), FLUSHALL);
2208
2209	/*
2210	 * Convert the mux lower queue into a stream head queue.
2211	 * Turn off STPLEX before we turn on the stream by removing the passq.
2212	 */
2213	rq->q_ptr = wrq->q_ptr = stpdown;
2214	setq(rq, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_TRUE);
2215
2216	ASSERT((rq->q_flag & QMT_TYPEMASK) == QMTSAFE);
2217	ASSERT(rq->q_syncq == SQ(rq) && _WR(rq)->q_syncq == SQ(rq));
2218
2219	enable_svc(rq);
2220
2221	/*
2222	 * Now it is a proper stream, so STPLEX is cleared. But STRPLUMB still
2223	 * needs to be set to prevent reopen() of the stream - such reopen may
2224	 * try to call non-existent pass queue open routine and panic.
2225	 */
2226	mutex_enter(&stpdown->sd_lock);
2227	stpdown->sd_flag &= ~STPLEX;
2228	mutex_exit(&stpdown->sd_lock);
2229
2230	ASSERT(((flag & LINKTYPEMASK) == LINKNORMAL) ||
2231	    ((flag & LINKTYPEMASK) == LINKPERSIST));
2232
2233	/* clean up the layered driver linkages */
2234	if ((flag & LINKTYPEMASK) == LINKNORMAL) {
2235		ldi_munlink_fp(stp, fpdown, LINKNORMAL);
2236	} else {
2237		ldi_munlink_fp(stp, fpdown, LINKPERSIST);
2238	}
2239
2240	link_rempassthru(passq);
2241
2242	/*
2243	 * Now all plumbing changes are finished and STRPLUMB is no
2244	 * longer needed.
2245	 */
2246	mutex_enter(&stpdown->sd_lock);
2247	stpdown->sd_flag &= ~STRPLUMB;
2248	cv_broadcast(&stpdown->sd_monitor);
2249	mutex_exit(&stpdown->sd_lock);
2250
2251	(void) closef(fpdown);
2252	return (0);
2253}
2254
2255/*
2256 * Unlink all multiplexor links for which stp is the controlling stream.
2257 * Return 0, or a non-zero errno on failure.
2258 */
2259int
2260munlinkall(stdata_t *stp, int flag, cred_t *crp, int *rvalp, str_stack_t *ss)
2261{
2262	linkinfo_t *linkp;
2263	int error = 0;
2264
2265	mutex_enter(&muxifier);
2266	while (linkp = findlinks(stp, 0, flag, ss)) {
2267		/*
2268		 * munlink() releases the muxifier lock.
2269		 */
2270		if (error = munlink(stp, linkp, flag, crp, rvalp, ss))
2271			return (error);
2272		mutex_enter(&muxifier);
2273	}
2274	mutex_exit(&muxifier);
2275	return (0);
2276}
2277
2278/*
2279 * A multiplexor link has been made. Add an
2280 * edge to the directed graph.
2281 */
2282void
2283mux_addedge(stdata_t *upstp, stdata_t *lostp, int muxid, str_stack_t *ss)
2284{
2285	struct mux_node *np;
2286	struct mux_edge *ep;
2287	major_t upmaj;
2288	major_t lomaj;
2289
2290	upmaj = getmajor(upstp->sd_vnode->v_rdev);
2291	lomaj = getmajor(lostp->sd_vnode->v_rdev);
2292	np = &ss->ss_mux_nodes[upmaj];
2293	if (np->mn_outp) {
2294		ep = np->mn_outp;
2295		while (ep->me_nextp)
2296			ep = ep->me_nextp;
2297		ep->me_nextp = kmem_alloc(sizeof (struct mux_edge), KM_SLEEP);
2298		ep = ep->me_nextp;
2299	} else {
2300		np->mn_outp = kmem_alloc(sizeof (struct mux_edge), KM_SLEEP);
2301		ep = np->mn_outp;
2302	}
2303	ep->me_nextp = NULL;
2304	ep->me_muxid = muxid;
2305	/*
2306	 * Save the dev_t for the purposes of str_stack_shutdown.
2307	 * str_stack_shutdown assumes that the device allows reopen, since
2308	 * this dev_t is the one after any cloning by xx_open().
2309	 * Would prefer finding the dev_t from before any cloning,
2310	 * but specfs doesn't retain that.
2311	 */
2312	ep->me_dev = upstp->sd_vnode->v_rdev;
2313	if (lostp->sd_vnode->v_type == VFIFO)
2314		ep->me_nodep = NULL;
2315	else
2316		ep->me_nodep = &ss->ss_mux_nodes[lomaj];
2317}
2318
2319/*
2320 * A multiplexor link has been removed. Remove the
2321 * edge in the directed graph.
2322 */
2323void
2324mux_rmvedge(stdata_t *upstp, int muxid, str_stack_t *ss)
2325{
2326	struct mux_node *np;
2327	struct mux_edge *ep;
2328	struct mux_edge *pep = NULL;
2329	major_t upmaj;
2330
2331	upmaj = getmajor(upstp->sd_vnode->v_rdev);
2332	np = &ss->ss_mux_nodes[upmaj];
2333	ASSERT(np->mn_outp != NULL);
2334	ep = np->mn_outp;
2335	while (ep) {
2336		if (ep->me_muxid == muxid) {
2337			if (pep)
2338				pep->me_nextp = ep->me_nextp;
2339			else
2340				np->mn_outp = ep->me_nextp;
2341			kmem_free(ep, sizeof (struct mux_edge));
2342			return;
2343		}
2344		pep = ep;
2345		ep = ep->me_nextp;
2346	}
2347	ASSERT(0);	/* should not reach here */
2348}
2349
2350/*
2351 * Translate the device flags (from conf.h) to the corresponding
2352 * qflag and sq_flag (type) values.
2353 */
2354int
2355devflg_to_qflag(struct streamtab *stp, uint32_t devflag, uint32_t *qflagp,
2356	uint32_t *sqtypep)
2357{
2358	uint32_t qflag = 0;
2359	uint32_t sqtype = 0;
2360
2361	if (devflag & _D_OLD)
2362		goto bad;
2363
2364	/* Inner perimeter presence and scope */
2365	switch (devflag & D_MTINNER_MASK) {
2366	case D_MP:
2367		qflag |= QMTSAFE;
2368		sqtype |= SQ_CI;
2369		break;
2370	case D_MTPERQ|D_MP:
2371		qflag |= QPERQ;
2372		break;
2373	case D_MTQPAIR|D_MP:
2374		qflag |= QPAIR;
2375		break;
2376	case D_MTPERMOD|D_MP:
2377		qflag |= QPERMOD;
2378		break;
2379	default:
2380		goto bad;
2381	}
2382
2383	/* Outer perimeter */
2384	if (devflag & D_MTOUTPERIM) {
2385		switch (devflag & D_MTINNER_MASK) {
2386		case D_MP:
2387		case D_MTPERQ|D_MP:
2388		case D_MTQPAIR|D_MP:
2389			break;
2390		default:
2391			goto bad;
2392		}
2393		qflag |= QMTOUTPERIM;
2394	}
2395
2396	/* Inner perimeter modifiers */
2397	if (devflag & D_MTINNER_MOD) {
2398		switch (devflag & D_MTINNER_MASK) {
2399		case D_MP:
2400			goto bad;
2401		default:
2402			break;
2403		}
2404		if (devflag & D_MTPUTSHARED)
2405			sqtype |= SQ_CIPUT;
2406		if (devflag & _D_MTOCSHARED) {
2407			/*
2408			 * The code in putnext assumes that it has the
2409			 * highest concurrency by not checking sq_count.
2410			 * Thus _D_MTOCSHARED can only be supported when
2411			 * D_MTPUTSHARED is set.
2412			 */
2413			if (!(devflag & D_MTPUTSHARED))
2414				goto bad;
2415			sqtype |= SQ_CIOC;
2416		}
2417		if (devflag & _D_MTCBSHARED) {
2418			/*
2419			 * The code in putnext assumes that it has the
2420			 * highest concurrency by not checking sq_count.
2421			 * Thus _D_MTCBSHARED can only be supported when
2422			 * D_MTPUTSHARED is set.
2423			 */
2424			if (!(devflag & D_MTPUTSHARED))
2425				goto bad;
2426			sqtype |= SQ_CICB;
2427		}
2428		if (devflag & _D_MTSVCSHARED) {
2429			/*
2430			 * The code in putnext assumes that it has the
2431			 * highest concurrency by not checking sq_count.
2432			 * Thus _D_MTSVCSHARED can only be supported when
2433			 * D_MTPUTSHARED is set. Also _D_MTSVCSHARED is
2434			 * supported only for QPERMOD.
2435			 */
2436			if (!(devflag & D_MTPUTSHARED) || !(qflag & QPERMOD))
2437				goto bad;
2438			sqtype |= SQ_CISVC;
2439		}
2440	}
2441
2442	/* Default outer perimeter concurrency */
2443	sqtype |= SQ_CO;
2444
2445	/* Outer perimeter modifiers */
2446	if (devflag & D_MTOCEXCL) {
2447		if (!(devflag & D_MTOUTPERIM)) {
2448			/* No outer perimeter */
2449			goto bad;
2450		}
2451		sqtype &= ~SQ_COOC;
2452	}
2453
2454	/* Synchronous Streams extended qinit structure */
2455	if (devflag & D_SYNCSTR)
2456		qflag |= QSYNCSTR;
2457
2458	/*
2459	 * Private flag used by a transport module to indicate
2460	 * to sockfs that it supports direct-access mode without
2461	 * having to go through STREAMS.
2462	 */
2463	if (devflag & _D_DIRECT) {
2464		/* Reject unless the module is fully-MT (no perimeter) */
2465		if ((qflag & QMT_TYPEMASK) != QMTSAFE)
2466			goto bad;
2467		qflag |= _QDIRECT;
2468	}
2469
2470	*qflagp = qflag;
2471	*sqtypep = sqtype;
2472	return (0);
2473
2474bad:
2475	cmn_err(CE_WARN,
2476	    "stropen: bad MT flags (0x%x) in driver '%s'",
2477	    (int)(qflag & D_MTSAFETY_MASK),
2478	    stp->st_rdinit->qi_minfo->mi_idname);
2479
2480	return (EINVAL);
2481}
2482
2483/*
2484 * Set the interface values for a pair of queues (qinit structure,
2485 * packet sizes, water marks).
2486 * setq assumes that the caller does not have a claim (entersq or claimq)
2487 * on the queue.
2488 */
2489void
2490setq(queue_t *rq, struct qinit *rinit, struct qinit *winit,
2491    perdm_t *dmp, uint32_t qflag, uint32_t sqtype, boolean_t lock_needed)
2492{
2493	queue_t *wq;
2494	syncq_t	*sq, *outer;
2495
2496	ASSERT(rq->q_flag & QREADR);
2497	ASSERT((qflag & QMT_TYPEMASK) != 0);
2498	IMPLY((qflag & (QPERMOD | QMTOUTPERIM)), dmp != NULL);
2499
2500	wq = _WR(rq);
2501	rq->q_qinfo = rinit;
2502	rq->q_hiwat = rinit->qi_minfo->mi_hiwat;
2503	rq->q_lowat = rinit->qi_minfo->mi_lowat;
2504	rq->q_minpsz = rinit->qi_minfo->mi_minpsz;
2505	rq->q_maxpsz = rinit->qi_minfo->mi_maxpsz;
2506	wq->q_qinfo = winit;
2507	wq->q_hiwat = winit->qi_minfo->mi_hiwat;
2508	wq->q_lowat = winit->qi_minfo->mi_lowat;
2509	wq->q_minpsz = winit->qi_minfo->mi_minpsz;
2510	wq->q_maxpsz = winit->qi_minfo->mi_maxpsz;
2511
2512	/* Remove old syncqs */
2513	sq = rq->q_syncq;
2514	outer = sq->sq_outer;
2515	if (outer != NULL) {
2516		ASSERT(wq->q_syncq->sq_outer == outer);
2517		outer_remove(outer, rq->q_syncq);
2518		if (wq->q_syncq != rq->q_syncq)
2519			outer_remove(outer, wq->q_syncq);
2520	}
2521	ASSERT(sq->sq_outer == NULL);
2522	ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
2523
2524	if (sq != SQ(rq)) {
2525		if (!(rq->q_flag & QPERMOD))
2526			free_syncq(sq);
2527		if (wq->q_syncq == rq->q_syncq)
2528			wq->q_syncq = NULL;
2529		rq->q_syncq = NULL;
2530	}
2531	if (wq->q_syncq != NULL && wq->q_syncq != sq &&
2532	    wq->q_syncq != SQ(rq)) {
2533		free_syncq(wq->q_syncq);
2534		wq->q_syncq = NULL;
2535	}
2536	ASSERT(rq->q_syncq == NULL || (rq->q_syncq->sq_head == NULL &&
2537	    rq->q_syncq->sq_tail == NULL));
2538	ASSERT(wq->q_syncq == NULL || (wq->q_syncq->sq_head == NULL &&
2539	    wq->q_syncq->sq_tail == NULL));
2540
2541	if (!(rq->q_flag & QPERMOD) &&
2542	    rq->q_syncq != NULL && rq->q_syncq->sq_ciputctrl != NULL) {
2543		ASSERT(rq->q_syncq->sq_nciputctrl == n_ciputctrl - 1);
2544		SUMCHECK_CIPUTCTRL_COUNTS(rq->q_syncq->sq_ciputctrl,
2545		    rq->q_syncq->sq_nciputctrl, 0);
2546		ASSERT(ciputctrl_cache != NULL);
2547		kmem_cache_free(ciputctrl_cache, rq->q_syncq->sq_ciputctrl);
2548		rq->q_syncq->sq_ciputctrl = NULL;
2549		rq->q_syncq->sq_nciputctrl = 0;
2550	}
2551
2552	if (!(wq->q_flag & QPERMOD) &&
2553	    wq->q_syncq != NULL && wq->q_syncq->sq_ciputctrl != NULL) {
2554		ASSERT(wq->q_syncq->sq_nciputctrl == n_ciputctrl - 1);
2555		SUMCHECK_CIPUTCTRL_COUNTS(wq->q_syncq->sq_ciputctrl,
2556		    wq->q_syncq->sq_nciputctrl, 0);
2557		ASSERT(ciputctrl_cache != NULL);
2558		kmem_cache_free(ciputctrl_cache, wq->q_syncq->sq_ciputctrl);
2559		wq->q_syncq->sq_ciputctrl = NULL;
2560		wq->q_syncq->sq_nciputctrl = 0;
2561	}
2562
2563	sq = SQ(rq);
2564	ASSERT(sq->sq_head == NULL && sq->sq_tail == NULL);
2565	ASSERT(sq->sq_outer == NULL);
2566	ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
2567
2568	/*
2569	 * Create syncqs based on qflag and sqtype. Set the SQ_TYPES_IN_FLAGS
2570	 * bits in sq_flag based on the sqtype.
2571	 */
2572	ASSERT((sq->sq_flags & ~SQ_TYPES_IN_FLAGS) == 0);
2573
2574	rq->q_syncq = wq->q_syncq = sq;
2575	sq->sq_type = sqtype;
2576	sq->sq_flags = (sqtype & SQ_TYPES_IN_FLAGS);
2577
2578	/*
2579	 *  We are making sq_svcflags zero,
2580	 *  resetting SQ_DISABLED in case it was set by
2581	 *  wait_svc() in the munlink path.
2582	 *
2583	 */
2584	ASSERT((sq->sq_svcflags & SQ_SERVICE) == 0);
2585	sq->sq_svcflags = 0;
2586
2587	/*
2588	 * We need to acquire the lock here for the mlink and munlink case,
2589	 * where canputnext, backenable, etc can access the q_flag.
2590	 */
2591	if (lock_needed) {
2592		mutex_enter(QLOCK(rq));
2593		rq->q_flag = (rq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2594		mutex_exit(QLOCK(rq));
2595		mutex_enter(QLOCK(wq));
2596		wq->q_flag = (wq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2597		mutex_exit(QLOCK(wq));
2598	} else {
2599		rq->q_flag = (rq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2600		wq->q_flag = (wq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2601	}
2602
2603	if (qflag & QPERQ) {
2604		/* Allocate a separate syncq for the write side */
2605		sq = new_syncq();
2606		sq->sq_type = rq->q_syncq->sq_type;
2607		sq->sq_flags = rq->q_syncq->sq_flags;
2608		ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
2609		    sq->sq_oprev == NULL);
2610		wq->q_syncq = sq;
2611	}
2612	if (qflag & QPERMOD) {
2613		sq = dmp->dm_sq;
2614
2615		/*
2616		 * Assert that we do have an inner perimeter syncq and that it
2617		 * does not have an outer perimeter associated with it.
2618		 */
2619		ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
2620		    sq->sq_oprev == NULL);
2621		rq->q_syncq = wq->q_syncq = sq;
2622	}
2623	if (qflag & QMTOUTPERIM) {
2624		outer = dmp->dm_sq;
2625
2626		ASSERT(outer->sq_outer == NULL);
2627		outer_insert(outer, rq->q_syncq);
2628		if (wq->q_syncq != rq->q_syncq)
2629			outer_insert(outer, wq->q_syncq);
2630	}
2631	ASSERT((rq->q_syncq->sq_flags & SQ_TYPES_IN_FLAGS) ==
2632	    (rq->q_syncq->sq_type & SQ_TYPES_IN_FLAGS));
2633	ASSERT((wq->q_syncq->sq_flags & SQ_TYPES_IN_FLAGS) ==
2634	    (wq->q_syncq->sq_type & SQ_TYPES_IN_FLAGS));
2635	ASSERT((rq->q_flag & QMT_TYPEMASK) == (qflag & QMT_TYPEMASK));
2636
2637	/*
2638	 * Initialize struio() types.
2639	 */
2640	rq->q_struiot =
2641	    (rq->q_flag & QSYNCSTR) ? rinit->qi_struiot : STRUIOT_NONE;
2642	wq->q_struiot =
2643	    (wq->q_flag & QSYNCSTR) ? winit->qi_struiot : STRUIOT_NONE;
2644}
2645
2646perdm_t *
2647hold_dm(struct streamtab *str, uint32_t qflag, uint32_t sqtype)
2648{
2649	syncq_t	*sq;
2650	perdm_t	**pp;
2651	perdm_t	*p;
2652	perdm_t	*dmp;
2653
2654	ASSERT(str != NULL);
2655	ASSERT(qflag & (QPERMOD | QMTOUTPERIM));
2656
2657	rw_enter(&perdm_rwlock, RW_READER);
2658	for (p = perdm_list; p != NULL; p = p->dm_next) {
2659		if (p->dm_str == str) {	/* found one */
2660			atomic_add_32(&(p->dm_ref), 1);
2661			rw_exit(&perdm_rwlock);
2662			return (p);
2663		}
2664	}
2665	rw_exit(&perdm_rwlock);
2666
2667	sq = new_syncq();
2668	if (qflag & QPERMOD) {
2669		sq->sq_type = sqtype | SQ_PERMOD;
2670		sq->sq_flags = sqtype & SQ_TYPES_IN_FLAGS;
2671	} else {
2672		ASSERT(qflag & QMTOUTPERIM);
2673		sq->sq_onext = sq->sq_oprev = sq;
2674	}
2675
2676	dmp = kmem_alloc(sizeof (perdm_t), KM_SLEEP);
2677	dmp->dm_sq = sq;
2678	dmp->dm_str = str;
2679	dmp->dm_ref = 1;
2680	dmp->dm_next = NULL;
2681
2682	rw_enter(&perdm_rwlock, RW_WRITER);
2683	for (pp = &perdm_list; (p = *pp) != NULL; pp = &(p->dm_next)) {
2684		if (p->dm_str == str) {	/* already present */
2685			p->dm_ref++;
2686			rw_exit(&perdm_rwlock);
2687			free_syncq(sq);
2688			kmem_free(dmp, sizeof (perdm_t));
2689			return (p);
2690		}
2691	}
2692
2693	*pp = dmp;
2694	rw_exit(&perdm_rwlock);
2695	return (dmp);
2696}
2697
2698void
2699rele_dm(perdm_t *dmp)
2700{
2701	perdm_t **pp;
2702	perdm_t *p;
2703
2704	rw_enter(&perdm_rwlock, RW_WRITER);
2705	ASSERT(dmp->dm_ref > 0);
2706
2707	if (--dmp->dm_ref > 0) {
2708		rw_exit(&perdm_rwlock);
2709		return;
2710	}
2711
2712	for (pp = &perdm_list; (p = *pp) != NULL; pp = &(p->dm_next))
2713		if (p == dmp)
2714			break;
2715	ASSERT(p == dmp);
2716	*pp = p->dm_next;
2717	rw_exit(&perdm_rwlock);
2718
2719	/*
2720	 * Wait for any background processing that relies on the
2721	 * syncq to complete before it is freed.
2722	 */
2723	wait_sq_svc(p->dm_sq);
2724	free_syncq(p->dm_sq);
2725	kmem_free(p, sizeof (perdm_t));
2726}
2727
2728/*
2729 * Make a protocol message given control and data buffers.
2730 * n.b., this can block; be careful of what locks you hold when calling it.
2731 *
2732 * If sd_maxblk is less than *iosize this routine can fail part way through
2733 * (due to an allocation failure). In this case on return *iosize will contain
2734 * the amount that was consumed. Otherwise *iosize will not be modified
2735 * i.e. it will contain the amount that was consumed.
2736 */
2737int
2738strmakemsg(
2739	struct strbuf *mctl,
2740	ssize_t *iosize,
2741	struct uio *uiop,
2742	stdata_t *stp,
2743	int32_t flag,
2744	mblk_t **mpp)
2745{
2746	mblk_t *mpctl = NULL;
2747	mblk_t *mpdata = NULL;
2748	int error;
2749
2750	ASSERT(uiop != NULL);
2751
2752	*mpp = NULL;
2753	/* Create control part, if any */
2754	if ((mctl != NULL) && (mctl->len >= 0)) {
2755		error = strmakectl(mctl, flag, uiop->uio_fmode, &mpctl);
2756		if (error)
2757			return (error);
2758	}
2759	/* Create data part, if any */
2760	if (*iosize >= 0) {
2761		error = strmakedata(iosize, uiop, stp, flag, &mpdata);
2762		if (error) {
2763			freemsg(mpctl);
2764			return (error);
2765		}
2766	}
2767	if (mpctl != NULL) {
2768		if (mpdata != NULL)
2769			linkb(mpctl, mpdata);
2770		*mpp = mpctl;
2771	} else {
2772		*mpp = mpdata;
2773	}
2774	return (0);
2775}
2776
2777/*
2778 * Make the control part of a protocol message given a control buffer.
2779 * n.b., this can block; be careful of what locks you hold when calling it.
2780 */
2781int
2782strmakectl(
2783	struct strbuf *mctl,
2784	int32_t flag,
2785	int32_t fflag,
2786	mblk_t **mpp)
2787{
2788	mblk_t *bp = NULL;
2789	unsigned char msgtype;
2790	int error = 0;
2791	cred_t *cr = CRED();
2792
2793	/* We do not support interrupt threads using the stream head to send */
2794	ASSERT(cr != NULL);
2795
2796	*mpp = NULL;
2797	/*
2798	 * Create control part of message, if any.
2799	 */
2800	if ((mctl != NULL) && (mctl->len >= 0)) {
2801		caddr_t base;
2802		int ctlcount;
2803		int allocsz;
2804
2805		if (flag & RS_HIPRI)
2806			msgtype = M_PCPROTO;
2807		else
2808			msgtype = M_PROTO;
2809
2810		ctlcount = mctl->len;
2811		base = mctl->buf;
2812
2813		/*
2814		 * Give modules a better chance to reuse M_PROTO/M_PCPROTO
2815		 * blocks by increasing the size to something more usable.
2816		 */
2817		allocsz = MAX(ctlcount, 64);
2818
2819		/*
2820		 * Range checking has already been done; simply try
2821		 * to allocate a message block for the ctl part.
2822		 */
2823		while ((bp = allocb_cred(allocsz, cr,
2824		    curproc->p_pid)) == NULL) {
2825			if (fflag & (FNDELAY|FNONBLOCK))
2826				return (EAGAIN);
2827			if (error = strwaitbuf(allocsz, BPRI_MED))
2828				return (error);
2829		}
2830
2831		bp->b_datap->db_type = msgtype;
2832		if (copyin(base, bp->b_wptr, ctlcount)) {
2833			freeb(bp);
2834			return (EFAULT);
2835		}
2836		bp->b_wptr += ctlcount;
2837	}
2838	*mpp = bp;
2839	return (0);
2840}
2841
2842/*
2843 * Make a protocol message given data buffers.
2844 * n.b., this can block; be careful of what locks you hold when calling it.
2845 *
2846 * If sd_maxblk is less than *iosize this routine can fail part way through
2847 * (due to an allocation failure). In this case on return *iosize will contain
2848 * the amount that was consumed. Otherwise *iosize will not be modified
2849 * i.e. it will contain the amount that was consumed.
2850 */
2851int
2852strmakedata(
2853	ssize_t   *iosize,
2854	struct uio *uiop,
2855	stdata_t *stp,
2856	int32_t flag,
2857	mblk_t **mpp)
2858{
2859	mblk_t *mp = NULL;
2860	mblk_t *bp;
2861	int wroff = (int)stp->sd_wroff;
2862	int tail_len = (int)stp->sd_tail;
2863	int extra = wroff + tail_len;
2864	int error = 0;
2865	ssize_t maxblk;
2866	ssize_t count = *iosize;
2867	cred_t *cr;
2868
2869	*mpp = NULL;
2870	if (count < 0)
2871		return (0);
2872
2873	/* We do not support interrupt threads using the stream head to send */
2874	cr = CRED();
2875	ASSERT(cr != NULL);
2876
2877	maxblk = stp->sd_maxblk;
2878	if (maxblk == INFPSZ)
2879		maxblk = count;
2880
2881	/*
2882	 * Create data part of message, if any.
2883	 */
2884	do {
2885		ssize_t size;
2886		dblk_t  *dp;
2887
2888		ASSERT(uiop);
2889
2890		size = MIN(count, maxblk);
2891
2892		while ((bp = allocb_cred(size + extra, cr,
2893		    curproc->p_pid)) == NULL) {
2894			error = EAGAIN;
2895			if ((uiop->uio_fmode & (FNDELAY|FNONBLOCK)) ||
2896			    (error = strwaitbuf(size + extra, BPRI_MED)) != 0) {
2897				if (count == *iosize) {
2898					freemsg(mp);
2899					return (error);
2900				} else {
2901					*iosize -= count;
2902					*mpp = mp;
2903					return (0);
2904				}
2905			}
2906		}
2907		dp = bp->b_datap;
2908		dp->db_cpid = curproc->p_pid;
2909		ASSERT(wroff <= dp->db_lim - bp->b_wptr);
2910		bp->b_wptr = bp->b_rptr = bp->b_rptr + wroff;
2911
2912		if (flag & STRUIO_POSTPONE) {
2913			/*
2914			 * Setup the stream uio portion of the
2915			 * dblk for subsequent use by struioget().
2916			 */
2917			dp->db_struioflag = STRUIO_SPEC;
2918			dp->db_cksumstart = 0;
2919			dp->db_cksumstuff = 0;
2920			dp->db_cksumend = size;
2921			*(long long *)dp->db_struioun.data = 0ll;
2922			bp->b_wptr += size;
2923		} else {
2924			if (stp->sd_copyflag & STRCOPYCACHED)
2925				uiop->uio_extflg |= UIO_COPY_CACHED;
2926
2927			if (size != 0) {
2928				error = uiomove(bp->b_wptr, size, UIO_WRITE,
2929				    uiop);
2930				if (error != 0) {
2931					freeb(bp);
2932					freemsg(mp);
2933					return (error);
2934				}
2935			}
2936			bp->b_wptr += size;
2937
2938			if (stp->sd_wputdatafunc != NULL) {
2939				mblk_t *newbp;
2940
2941				newbp = (stp->sd_wputdatafunc)(stp->sd_vnode,
2942				    bp, NULL, NULL, NULL, NULL);
2943				if (newbp == NULL) {
2944					freeb(bp);
2945					freemsg(mp);
2946					return (ECOMM);
2947				}
2948				bp = newbp;
2949			}
2950		}
2951
2952		count -= size;
2953
2954		if (mp == NULL)
2955			mp = bp;
2956		else
2957			linkb(mp, bp);
2958	} while (count > 0);
2959
2960	*mpp = mp;
2961	return (0);
2962}
2963
2964/*
2965 * Wait for a buffer to become available. Return non-zero errno
2966 * if not able to wait, 0 if buffer is probably there.
2967 */
2968int
2969strwaitbuf(size_t size, int pri)
2970{
2971	bufcall_id_t id;
2972
2973	mutex_enter(&bcall_monitor);
2974	if ((id = bufcall(size, pri, (void (*)(void *))cv_broadcast,
2975	    &ttoproc(curthread)->p_flag_cv)) == 0) {
2976		mutex_exit(&bcall_monitor);
2977		return (ENOSR);
2978	}
2979	if (!cv_wait_sig(&(ttoproc(curthread)->p_flag_cv), &bcall_monitor)) {
2980		unbufcall(id);
2981		mutex_exit(&bcall_monitor);
2982		return (EINTR);
2983	}
2984	unbufcall(id);
2985	mutex_exit(&bcall_monitor);
2986	return (0);
2987}
2988
2989/*
2990 * This function waits for a read or write event to happen on a stream.
2991 * fmode can specify FNDELAY and/or FNONBLOCK.
2992 * The timeout is in ms with -1 meaning infinite.
2993 * The flag values work as follows:
2994 *	READWAIT	Check for read side errors, send M_READ
2995 *	GETWAIT		Check for read side errors, no M_READ
2996 *	WRITEWAIT	Check for write side errors.
2997 *	NOINTR		Do not return error if nonblocking or timeout.
2998 * 	STR_NOERROR	Ignore all errors except STPLEX.
2999 *	STR_NOSIG	Ignore/hold signals during the duration of the call.
3000 *	STR_PEEK	Pass through the strgeterr().
3001 */
3002int
3003strwaitq(stdata_t *stp, int flag, ssize_t count, int fmode, clock_t timout,
3004    int *done)
3005{
3006	int slpflg, errs;
3007	int error;
3008	kcondvar_t *sleepon;
3009	mblk_t *mp;
3010	ssize_t *rd_count;
3011	clock_t rval;
3012
3013	ASSERT(MUTEX_HELD(&stp->sd_lock));
3014	if ((flag & READWAIT) || (flag & GETWAIT)) {
3015		slpflg = RSLEEP;
3016		sleepon = &_RD(stp->sd_wrq)->q_wait;
3017		errs = STRDERR|STPLEX;
3018	} else {
3019		slpflg = WSLEEP;
3020		sleepon = &stp->sd_wrq->q_wait;
3021		errs = STWRERR|STRHUP|STPLEX;
3022	}
3023	if (flag & STR_NOERROR)
3024		errs = STPLEX;
3025
3026	if (stp->sd_wakeq & slpflg) {
3027		/*
3028		 * A strwakeq() is pending, no need to sleep.
3029		 */
3030		stp->sd_wakeq &= ~slpflg;
3031		*done = 0;
3032		return (0);
3033	}
3034
3035	if (stp->sd_flag & errs) {
3036		/*
3037		 * Check for errors before going to sleep since the
3038		 * caller might not have checked this while holding
3039		 * sd_lock.
3040		 */
3041		error = strgeterr(stp, errs, (flag & STR_PEEK));
3042		if (error != 0) {
3043			*done = 1;
3044			return (error);
3045		}
3046	}
3047
3048	/*
3049	 * If any module downstream has requested read notification
3050	 * by setting SNDMREAD flag using M_SETOPTS, send a message
3051	 * down stream.
3052	 */
3053	if ((flag & READWAIT) && (stp->sd_flag & SNDMREAD)) {
3054		mutex_exit(&stp->sd_lock);
3055		if (!(mp = allocb_wait(sizeof (ssize_t), BPRI_MED,
3056		    (flag & STR_NOSIG), &error))) {
3057			mutex_enter(&stp->sd_lock);
3058			*done = 1;
3059			return (error);
3060		}
3061		mp->b_datap->db_type = M_READ;
3062		rd_count = (ssize_t *)mp->b_wptr;
3063		*rd_count = count;
3064		mp->b_wptr += sizeof (ssize_t);
3065		/*
3066		 * Send the number of bytes requested by the
3067		 * read as the argument to M_READ.
3068		 */
3069		stream_willservice(stp);
3070		putnext(stp->sd_wrq, mp);
3071		stream_runservice(stp);
3072		mutex_enter(&stp->sd_lock);
3073
3074		/*
3075		 * If any data arrived due to inline processing
3076		 * of putnext(), don't sleep.
3077		 */
3078		if (_RD(stp->sd_wrq)->q_first != NULL) {
3079			*done = 0;
3080			return (0);
3081		}
3082	}
3083
3084	if (fmode & (FNDELAY|FNONBLOCK)) {
3085		if (!(flag & NOINTR))
3086			error = EAGAIN;
3087		else
3088			error = 0;
3089		*done = 1;
3090		return (error);
3091	}
3092
3093	stp->sd_flag |= slpflg;
3094	TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_WAIT2,
3095	    "strwaitq sleeps (2):%p, %X, %lX, %X, %p",
3096	    stp, flag, count, fmode, done);
3097
3098	rval = str_cv_wait(sleepon, &stp->sd_lock, timout, flag & STR_NOSIG);
3099	if (rval > 0) {
3100		/* EMPTY */
3101		TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_WAKE2,
3102		    "strwaitq awakes(2):%X, %X, %X, %X, %X",
3103		    stp, flag, count, fmode, done);
3104	} else if (rval == 0) {
3105		TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_INTR2,
3106		    "strwaitq interrupt #2:%p, %X, %lX, %X, %p",
3107		    stp, flag, count, fmode, done);
3108		stp->sd_flag &= ~slpflg;
3109		cv_broadcast(sleepon);
3110		if (!(flag & NOINTR))
3111			error = EINTR;
3112		else
3113			error = 0;
3114		*done = 1;
3115		return (error);
3116	} else {
3117		/* timeout */
3118		TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_TIME,
3119		    "strwaitq timeout:%p, %X, %lX, %X, %p",
3120		    stp, flag, count, fmode, done);
3121		*done = 1;
3122		if (!(flag & NOINTR))
3123			return (ETIME);
3124		else
3125			return (0);
3126	}
3127	/*
3128	 * If the caller implements delayed errors (i.e. queued after data)
3129	 * we can not check for errors here since data as well as an
3130	 * error might have arrived at the stream head. We return to
3131	 * have the caller check the read queue before checking for errors.
3132	 */
3133	if ((stp->sd_flag & errs) && !(flag & STR_DELAYERR)) {
3134		error = strgeterr(stp, errs, (flag & STR_PEEK));
3135		if (error != 0) {
3136			*done = 1;
3137			return (error);
3138		}
3139	}
3140	*done = 0;
3141	return (0);
3142}
3143
3144/*
3145 * Perform job control discipline access checks.
3146 * Return 0 for success and the errno for failure.
3147 */
3148
3149#define	cantsend(p, t, sig) \
3150	(sigismember(&(p)->p_ignore, sig) || signal_is_blocked((t), sig))
3151
3152int
3153straccess(struct stdata *stp, enum jcaccess mode)
3154{
3155	extern kcondvar_t lbolt_cv;	/* XXX: should be in a header file */
3156	kthread_t *t = curthread;
3157	proc_t *p = ttoproc(t);
3158	sess_t *sp;
3159
3160	ASSERT(mutex_owned(&stp->sd_lock));
3161
3162	if (stp->sd_sidp == NULL || stp->sd_vnode->v_type == VFIFO)
3163		return (0);
3164
3165	mutex_enter(&p->p_lock);		/* protects p_pgidp */
3166
3167	for (;;) {
3168		mutex_enter(&p->p_splock);	/* protects p->p_sessp */
3169		sp = p->p_sessp;
3170		mutex_enter(&sp->s_lock);	/* protects sp->* */
3171
3172		/*
3173		 * If this is not the calling process's controlling terminal
3174		 * or if the calling process is already in the foreground
3175		 * then allow access.
3176		 */
3177		if (sp->s_dev != stp->sd_vnode->v_rdev ||
3178		    p->p_pgidp == stp->sd_pgidp) {
3179			mutex_exit(&sp->s_lock);
3180			mutex_exit(&p->p_splock);
3181			mutex_exit(&p->p_lock);
3182			return (0);
3183		}
3184
3185		/*
3186		 * Check to see if controlling terminal has been deallocated.
3187		 */
3188		if (sp->s_vp == NULL) {
3189			if (!cantsend(p, t, SIGHUP))
3190				sigtoproc(p, t, SIGHUP);
3191			mutex_exit(&sp->s_lock);
3192			mutex_exit(&p->p_splock);
3193			mutex_exit(&p->p_lock);
3194			return (EIO);
3195		}
3196
3197		mutex_exit(&sp->s_lock);
3198		mutex_exit(&p->p_splock);
3199
3200		if (mode == JCGETP) {
3201			mutex_exit(&p->p_lock);
3202			return (0);
3203		}
3204
3205		if (mode == JCREAD) {
3206			if (p->p_detached || cantsend(p, t, SIGTTIN)) {
3207				mutex_exit(&p->p_lock);
3208				return (EIO);
3209			}
3210			mutex_exit(&p->p_lock);
3211			mutex_exit(&stp->sd_lock);
3212			pgsignal(p->p_pgidp, SIGTTIN);
3213			mutex_enter(&stp->sd_lock);
3214			mutex_enter(&p->p_lock);
3215		} else {  /* mode == JCWRITE or JCSETP */
3216			if ((mode == JCWRITE && !(stp->sd_flag & STRTOSTOP)) ||
3217			    cantsend(p, t, SIGTTOU)) {
3218				mutex_exit(&p->p_lock);
3219				return (0);
3220			}
3221			if (p->p_detached) {
3222				mutex_exit(&p->p_lock);
3223				return (EIO);
3224			}
3225			mutex_exit(&p->p_lock);
3226			mutex_exit(&stp->sd_lock);
3227			pgsignal(p->p_pgidp, SIGTTOU);
3228			mutex_enter(&stp->sd_lock);
3229			mutex_enter(&p->p_lock);
3230		}
3231
3232		/*
3233		 * We call cv_wait_sig_swap() to cause the appropriate
3234		 * action for the jobcontrol signal to take place.
3235		 * If the signal is being caught, we will take the
3236		 * EINTR error return.  Otherwise, the default action
3237		 * of causing the process to stop will take place.
3238		 * In this case, we rely on the periodic cv_broadcast() on
3239		 * &lbolt_cv to wake us up to loop around and test again.
3240		 * We can't get here if the signal is ignored or
3241		 * if the current thread is blocking the signal.
3242		 */
3243		mutex_exit(&stp->sd_lock);
3244		if (!cv_wait_sig_swap(&lbolt_cv, &p->p_lock)) {
3245			mutex_exit(&p->p_lock);
3246			mutex_enter(&stp->sd_lock);
3247			return (EINTR);
3248		}
3249		mutex_exit(&p->p_lock);
3250		mutex_enter(&stp->sd_lock);
3251		mutex_enter(&p->p_lock);
3252	}
3253}
3254
3255/*
3256 * Return size of message of block type (bp->b_datap->db_type)
3257 */
3258size_t
3259xmsgsize(mblk_t *bp)
3260{
3261	unsigned char type;
3262	size_t count = 0;
3263
3264	type = bp->b_datap->db_type;
3265
3266	for (; bp; bp = bp->b_cont) {
3267		if (type != bp->b_datap->db_type)
3268			break;
3269		ASSERT(bp->b_wptr >= bp->b_rptr);
3270		count += bp->b_wptr - bp->b_rptr;
3271	}
3272	return (count);
3273}
3274
3275/*
3276 * Allocate a stream head.
3277 */
3278struct stdata *
3279shalloc(queue_t *qp)
3280{
3281	stdata_t *stp;
3282
3283	stp = kmem_cache_alloc(stream_head_cache, KM_SLEEP);
3284
3285	stp->sd_wrq = _WR(qp);
3286	stp->sd_strtab = NULL;
3287	stp->sd_iocid = 0;
3288	stp->sd_mate = NULL;
3289	stp->sd_freezer = NULL;
3290	stp->sd_refcnt = 0;
3291	stp->sd_wakeq = 0;
3292	stp->sd_anchor = 0;
3293	stp->sd_struiowrq = NULL;
3294	stp->sd_struiordq = NULL;
3295	stp->sd_struiodnak = 0;
3296	stp->sd_struionak = NULL;
3297	stp->sd_t_audit_data = NULL;
3298	stp->sd_rput_opt = 0;
3299	stp->sd_wput_opt = 0;
3300	stp->sd_read_opt = 0;
3301	stp->sd_rprotofunc = strrput_proto;
3302	stp->sd_rmiscfunc = strrput_misc;
3303	stp->sd_rderrfunc = stp->sd_wrerrfunc = NULL;
3304	stp->sd_rputdatafunc = stp->sd_wputdatafunc = NULL;
3305	stp->sd_ciputctrl = NULL;
3306	stp->sd_nciputctrl = 0;
3307	stp->sd_qhead = NULL;
3308	stp->sd_qtail = NULL;
3309	stp->sd_servid = NULL;
3310	stp->sd_nqueues = 0;
3311	stp->sd_svcflags = 0;
3312	stp->sd_copyflag = 0;
3313
3314	return (stp);
3315}
3316
3317/*
3318 * Free a stream head.
3319 */
3320void
3321shfree(stdata_t *stp)
3322{
3323	ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
3324
3325	stp->sd_wrq = NULL;
3326
3327	mutex_enter(&stp->sd_qlock);
3328	while (stp->sd_svcflags & STRS_SCHEDULED) {
3329		STRSTAT(strwaits);
3330		cv_wait(&stp->sd_qcv, &stp->sd_qlock);
3331	}
3332	mutex_exit(&stp->sd_qlock);
3333
3334	if (stp->sd_ciputctrl != NULL) {
3335		ASSERT(stp->sd_nciputctrl == n_ciputctrl - 1);
3336		SUMCHECK_CIPUTCTRL_COUNTS(stp->sd_ciputctrl,
3337		    stp->sd_nciputctrl, 0);
3338		ASSERT(ciputctrl_cache != NULL);
3339		kmem_cache_free(ciputctrl_cache, stp->sd_ciputctrl);
3340		stp->sd_ciputctrl = NULL;
3341		stp->sd_nciputctrl = 0;
3342	}
3343	ASSERT(stp->sd_qhead == NULL);
3344	ASSERT(stp->sd_qtail == NULL);
3345	ASSERT(stp->sd_nqueues == 0);
3346	kmem_cache_free(stream_head_cache, stp);
3347}
3348
3349/*
3350 * Allocate a pair of queues and a syncq for the pair
3351 */
3352queue_t *
3353allocq(void)
3354{
3355	queinfo_t *qip;
3356	queue_t *qp, *wqp;
3357	syncq_t	*sq;
3358
3359	qip = kmem_cache_alloc(queue_cache, KM_SLEEP);
3360
3361	qp = &qip->qu_rqueue;
3362	wqp = &qip->qu_wqueue;
3363	sq = &qip->qu_syncq;
3364
3365	qp->q_last	= NULL;
3366	qp->q_next	= NULL;
3367	qp->q_ptr	= NULL;
3368	qp->q_flag	= QUSE | QREADR;
3369	qp->q_bandp	= NULL;
3370	qp->q_stream	= NULL;
3371	qp->q_syncq	= sq;
3372	qp->q_nband	= 0;
3373	qp->q_nfsrv	= NULL;
3374	qp->q_draining	= 0;
3375	qp->q_syncqmsgs	= 0;
3376	qp->q_spri	= 0;
3377	qp->q_qtstamp	= 0;
3378	qp->q_sqtstamp	= 0;
3379	qp->q_fp	= NULL;
3380
3381	wqp->q_last	= NULL;
3382	wqp->q_next	= NULL;
3383	wqp->q_ptr	= NULL;
3384	wqp->q_flag	= QUSE;
3385	wqp->q_bandp	= NULL;
3386	wqp->q_stream	= NULL;
3387	wqp->q_syncq	= sq;
3388	wqp->q_nband	= 0;
3389	wqp->q_nfsrv	= NULL;
3390	wqp->q_draining	= 0;
3391	wqp->q_syncqmsgs = 0;
3392	wqp->q_qtstamp	= 0;
3393	wqp->q_sqtstamp	= 0;
3394	wqp->q_spri	= 0;
3395
3396	sq->sq_count	= 0;
3397	sq->sq_rmqcount	= 0;
3398	sq->sq_flags	= 0;
3399	sq->sq_type	= 0;
3400	sq->sq_callbflags = 0;
3401	sq->sq_cancelid	= 0;
3402	sq->sq_ciputctrl = NULL;
3403	sq->sq_nciputctrl = 0;
3404	sq->sq_needexcl = 0;
3405	sq->sq_svcflags = 0;
3406
3407	return (qp);
3408}
3409
3410/*
3411 * Free a pair of queues and the "attached" syncq.
3412 * Discard any messages left on the syncq(s), remove the syncq(s) from the
3413 * outer perimeter, and free the syncq(s) if they are not the "attached" syncq.
3414 */
3415void
3416freeq(queue_t *qp)
3417{
3418	qband_t *qbp, *nqbp;
3419	syncq_t *sq, *outer;
3420	queue_t *wqp = _WR(qp);
3421
3422	ASSERT(qp->q_flag & QREADR);
3423
3424	/*
3425	 * If a previously dispatched taskq job is scheduled to run
3426	 * sync_service() or a service routine is scheduled for the
3427	 * queues about to be freed, wait here until all service is
3428	 * done on the queue and all associated queues and syncqs.
3429	 */
3430	wait_svc(qp);
3431
3432	(void) flush_syncq(qp->q_syncq, qp);
3433	(void) flush_syncq(wqp->q_syncq, wqp);
3434	ASSERT(qp->q_syncqmsgs == 0 && wqp->q_syncqmsgs == 0);
3435
3436	/*
3437	 * Flush the queues before q_next is set to NULL This is needed
3438	 * in order to backenable any downstream queue before we go away.
3439	 * Note: we are already removed from the stream so that the
3440	 * backenabling will not cause any messages to be delivered to our
3441	 * put procedures.
3442	 */
3443	flushq(qp, FLUSHALL);
3444	flushq(wqp, FLUSHALL);
3445
3446	/* Tidy up - removeq only does a half-remove from stream */
3447	qp->q_next = wqp->q_next = NULL;
3448	ASSERT(!(qp->q_flag & QENAB));
3449	ASSERT(!(wqp->q_flag & QENAB));
3450
3451	outer = qp->q_syncq->sq_outer;
3452	if (outer != NULL) {
3453		outer_remove(outer, qp->q_syncq);
3454		if (wqp->q_syncq != qp->q_syncq)
3455			outer_remove(outer, wqp->q_syncq);
3456	}
3457	/*
3458	 * Free any syncqs that are outside what allocq returned.
3459	 */
3460	if (qp->q_syncq != SQ(qp) && !(qp->q_flag & QPERMOD))
3461		free_syncq(qp->q_syncq);
3462	if (qp->q_syncq != wqp->q_syncq && wqp->q_syncq != SQ(qp))
3463		free_syncq(wqp->q_syncq);
3464
3465	ASSERT((qp->q_sqflags & (Q_SQQUEUED | Q_SQDRAINING)) == 0);
3466	ASSERT((wqp->q_sqflags & (Q_SQQUEUED | Q_SQDRAINING)) == 0);
3467	ASSERT(MUTEX_NOT_HELD(QLOCK(qp)));
3468	ASSERT(MUTEX_NOT_HELD(QLOCK(wqp)));
3469	sq = SQ(qp);
3470	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
3471	ASSERT(sq->sq_head == NULL && sq->sq_tail == NULL);
3472	ASSERT(sq->sq_outer == NULL);
3473	ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
3474	ASSERT(sq->sq_callbpend == NULL);
3475	ASSERT(sq->sq_needexcl == 0);
3476
3477	if (sq->sq_ciputctrl != NULL) {
3478		ASSERT(sq->sq_nciputctrl == n_ciputctrl - 1);
3479		SUMCHECK_CIPUTCTRL_COUNTS(sq->sq_ciputctrl,
3480		    sq->sq_nciputctrl, 0);
3481		ASSERT(ciputctrl_cache != NULL);
3482		kmem_cache_free(ciputctrl_cache, sq->sq_ciputctrl);
3483		sq->sq_ciputctrl = NULL;
3484		sq->sq_nciputctrl = 0;
3485	}
3486
3487	ASSERT(qp->q_first == NULL && wqp->q_first == NULL);
3488	ASSERT(qp->q_count == 0 && wqp->q_count == 0);
3489	ASSERT(qp->q_mblkcnt == 0 && wqp->q_mblkcnt == 0);
3490
3491	qp->q_flag &= ~QUSE;
3492	wqp->q_flag &= ~QUSE;
3493
3494	/* NOTE: Uncomment the assert below once bugid 1159635 is fixed. */
3495	/* ASSERT((qp->q_flag & QWANTW) == 0 && (wqp->q_flag & QWANTW) == 0); */
3496
3497	qbp = qp->q_bandp;
3498	while (qbp) {
3499		nqbp = qbp->qb_next;
3500		freeband(qbp);
3501		qbp = nqbp;
3502	}
3503	qbp = wqp->q_bandp;
3504	while (qbp) {
3505		nqbp = qbp->qb_next;
3506		freeband(qbp);
3507		qbp = nqbp;
3508	}
3509	kmem_cache_free(queue_cache, qp);
3510}
3511
3512/*
3513 * Allocate a qband structure.
3514 */
3515qband_t *
3516allocband(void)
3517{
3518	qband_t *qbp;
3519
3520	qbp = kmem_cache_alloc(qband_cache, KM_NOSLEEP);
3521	if (qbp == NULL)
3522		return (NULL);
3523
3524	qbp->qb_next	= NULL;
3525	qbp->qb_count	= 0;
3526	qbp->qb_mblkcnt	= 0;
3527	qbp->qb_first	= NULL;
3528	qbp->qb_last	= NULL;
3529	qbp->qb_flag	= 0;
3530
3531	return (qbp);
3532}
3533
3534/*
3535 * Free a qband structure.
3536 */
3537void
3538freeband(qband_t *qbp)
3539{
3540	kmem_cache_free(qband_cache, qbp);
3541}
3542
3543/*
3544 * Just like putnextctl(9F), except that allocb_wait() is used.
3545 *
3546 * Consolidation Private, and of course only callable from the stream head or
3547 * routines that may block.
3548 */
3549int
3550putnextctl_wait(queue_t *q, int type)
3551{
3552	mblk_t *bp;
3553	int error;
3554
3555	if ((datamsg(type) && (type != M_DELAY)) ||
3556	    (bp = allocb_wait(0, BPRI_HI, 0, &error)) == NULL)
3557		return (0);
3558
3559	bp->b_datap->db_type = (unsigned char)type;
3560	putnext(q, bp);
3561	return (1);
3562}
3563
3564/*
3565 * Run any possible bufcalls.
3566 */
3567void
3568runbufcalls(void)
3569{
3570	strbufcall_t *bcp;
3571
3572	mutex_enter(&bcall_monitor);
3573	mutex_enter(&strbcall_lock);
3574
3575	if (strbcalls.bc_head) {
3576		size_t count;
3577		int nevent;
3578
3579		/*
3580		 * count how many events are on the list
3581		 * now so we can check to avoid looping
3582		 * in low memory situations
3583		 */
3584		nevent = 0;
3585		for (bcp = strbcalls.bc_head; bcp; bcp = bcp->bc_next)
3586			nevent++;
3587
3588		/*
3589		 * get estimate of available memory from kmem_avail().
3590		 * awake all bufcall functions waiting for
3591		 * memory whose request could be satisfied
3592		 * by 'count' memory and let 'em fight for it.
3593		 */
3594		count = kmem_avail();
3595		while ((bcp = strbcalls.bc_head) != NULL && nevent) {
3596			STRSTAT(bufcalls);
3597			--nevent;
3598			if (bcp->bc_size <= count) {
3599				bcp->bc_executor = curthread;
3600				mutex_exit(&strbcall_lock);
3601				(*bcp->bc_func)(bcp->bc_arg);
3602				mutex_enter(&strbcall_lock);
3603				bcp->bc_executor = NULL;
3604				cv_broadcast(&bcall_cv);
3605				strbcalls.bc_head = bcp->bc_next;
3606				kmem_free(bcp, sizeof (strbufcall_t));
3607			} else {
3608				/*
3609				 * too big, try again later - note
3610				 * that nevent was decremented above
3611				 * so we won't retry this one on this
3612				 * iteration of the loop
3613				 */
3614				if (bcp->bc_next != NULL) {
3615					strbcalls.bc_head = bcp->bc_next;
3616					bcp->bc_next = NULL;
3617					strbcalls.bc_tail->bc_next = bcp;
3618					strbcalls.bc_tail = bcp;
3619				}
3620			}
3621		}
3622		if (strbcalls.bc_head == NULL)
3623			strbcalls.bc_tail = NULL;
3624	}
3625
3626	mutex_exit(&strbcall_lock);
3627	mutex_exit(&bcall_monitor);
3628}
3629
3630
3631/*
3632 * Actually run queue's service routine.
3633 */
3634static void
3635runservice(queue_t *q)
3636{
3637	qband_t *qbp;
3638
3639	ASSERT(q->q_qinfo->qi_srvp);
3640again:
3641	entersq(q->q_syncq, SQ_SVC);
3642	TRACE_1(TR_FAC_STREAMS_FR, TR_QRUNSERVICE_START,
3643	    "runservice starts:%p", q);
3644
3645	if (!(q->q_flag & QWCLOSE))
3646		(*q->q_qinfo->qi_srvp)(q);
3647
3648	TRACE_1(TR_FAC_STREAMS_FR, TR_QRUNSERVICE_END,
3649	    "runservice ends:(%p)", q);
3650
3651	leavesq(q->q_syncq, SQ_SVC);
3652
3653	mutex_enter(QLOCK(q));
3654	if (q->q_flag & QENAB) {
3655		q->q_flag &= ~QENAB;
3656		mutex_exit(QLOCK(q));
3657		goto again;
3658	}
3659	q->q_flag &= ~QINSERVICE;
3660	q->q_flag &= ~QBACK;
3661	for (qbp = q->q_bandp; qbp; qbp = qbp->qb_next)
3662		qbp->qb_flag &= ~QB_BACK;
3663	/*
3664	 * Wakeup thread waiting for the service procedure
3665	 * to be run (strclose and qdetach).
3666	 */
3667	cv_broadcast(&q->q_wait);
3668
3669	mutex_exit(QLOCK(q));
3670}
3671
3672/*
3673 * Background processing of bufcalls.
3674 */
3675void
3676streams_bufcall_service(void)
3677{
3678	callb_cpr_t	cprinfo;
3679
3680	CALLB_CPR_INIT(&cprinfo, &strbcall_lock, callb_generic_cpr,
3681	    "streams_bufcall_service");
3682
3683	mutex_enter(&strbcall_lock);
3684
3685	for (;;) {
3686		if (strbcalls.bc_head != NULL && kmem_avail() > 0) {
3687			mutex_exit(&strbcall_lock);
3688			runbufcalls();
3689			mutex_enter(&strbcall_lock);
3690		}
3691		if (strbcalls.bc_head != NULL) {
3692			clock_t wt, tick;
3693
3694			STRSTAT(bcwaits);
3695			/* Wait for memory to become available */
3696			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3697			tick = SEC_TO_TICK(60);
3698			time_to_wait(&wt, tick);
3699			(void) cv_timedwait(&memavail_cv, &strbcall_lock, wt);
3700			CALLB_CPR_SAFE_END(&cprinfo, &strbcall_lock);
3701		}
3702
3703		/* Wait for new work to arrive */
3704		if (strbcalls.bc_head == NULL) {
3705			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3706			cv_wait(&strbcall_cv, &strbcall_lock);
3707			CALLB_CPR_SAFE_END(&cprinfo, &strbcall_lock);
3708		}
3709	}
3710}
3711
3712/*
3713 * Background processing of streams background tasks which failed
3714 * taskq_dispatch.
3715 */
3716static void
3717streams_qbkgrnd_service(void)
3718{
3719	callb_cpr_t cprinfo;
3720	queue_t *q;
3721
3722	CALLB_CPR_INIT(&cprinfo, &service_queue, callb_generic_cpr,
3723	    "streams_bkgrnd_service");
3724
3725	mutex_enter(&service_queue);
3726
3727	for (;;) {
3728		/*
3729		 * Wait for work to arrive.
3730		 */
3731		while ((freebs_list == NULL) && (qhead == NULL)) {
3732			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3733			cv_wait(&services_to_run, &service_queue);
3734			CALLB_CPR_SAFE_END(&cprinfo, &service_queue);
3735		}
3736		/*
3737		 * Handle all pending freebs requests to free memory.
3738		 */
3739		while (freebs_list != NULL) {
3740			mblk_t *mp = freebs_list;
3741			freebs_list = mp->b_next;
3742			mutex_exit(&service_queue);
3743			mblk_free(mp);
3744			mutex_enter(&service_queue);
3745		}
3746		/*
3747		 * Run pending queues.
3748		 */
3749		while (qhead != NULL) {
3750			DQ(q, qhead, qtail, q_link);
3751			ASSERT(q != NULL);
3752			mutex_exit(&service_queue);
3753			queue_service(q);
3754			mutex_enter(&service_queue);
3755		}
3756		ASSERT(qhead == NULL && qtail == NULL);
3757	}
3758}
3759
3760/*
3761 * Background processing of streams background tasks which failed
3762 * taskq_dispatch.
3763 */
3764static void
3765streams_sqbkgrnd_service(void)
3766{
3767	callb_cpr_t cprinfo;
3768	syncq_t *sq;
3769
3770	CALLB_CPR_INIT(&cprinfo, &service_queue, callb_generic_cpr,
3771	    "streams_sqbkgrnd_service");
3772
3773	mutex_enter(&service_queue);
3774
3775	for (;;) {
3776		/*
3777		 * Wait for work to arrive.
3778		 */
3779		while (sqhead == NULL) {
3780			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3781			cv_wait(&syncqs_to_run, &service_queue);
3782			CALLB_CPR_SAFE_END(&cprinfo, &service_queue);
3783		}
3784
3785		/*
3786		 * Run pending syncqs.
3787		 */
3788		while (sqhead != NULL) {
3789			DQ(sq, sqhead, sqtail, sq_next);
3790			ASSERT(sq != NULL);
3791			ASSERT(sq->sq_svcflags & SQ_BGTHREAD);
3792			mutex_exit(&service_queue);
3793			syncq_service(sq);
3794			mutex_enter(&service_queue);
3795		}
3796	}
3797}
3798
3799/*
3800 * Disable the syncq and wait for background syncq processing to complete.
3801 * If the syncq is placed on the sqhead/sqtail queue, try to remove it from the
3802 * list.
3803 */
3804void
3805wait_sq_svc(syncq_t *sq)
3806{
3807	mutex_enter(SQLOCK(sq));
3808	sq->sq_svcflags |= SQ_DISABLED;
3809	if (sq->sq_svcflags & SQ_BGTHREAD) {
3810		syncq_t *sq_chase;
3811		syncq_t *sq_curr;
3812		int removed;
3813
3814		ASSERT(sq->sq_servcount == 1);
3815		mutex_enter(&service_queue);
3816		RMQ(sq, sqhead, sqtail, sq_next, sq_chase, sq_curr, removed);
3817		mutex_exit(&service_queue);
3818		if (removed) {
3819			sq->sq_svcflags &= ~SQ_BGTHREAD;
3820			sq->sq_servcount = 0;
3821			STRSTAT(sqremoved);
3822			goto done;
3823		}
3824	}
3825	while (sq->sq_servcount != 0) {
3826		sq->sq_flags |= SQ_WANTWAKEUP;
3827		cv_wait(&sq->sq_wait, SQLOCK(sq));
3828	}
3829done:
3830	mutex_exit(SQLOCK(sq));
3831}
3832
3833/*
3834 * Put a syncq on the list of syncq's to be serviced by the sqthread.
3835 * Add the argument to the end of the sqhead list and set the flag
3836 * indicating this syncq has been enabled.  If it has already been
3837 * enabled, don't do anything.
3838 * This routine assumes that SQLOCK is held.
3839 * NOTE that the lock order is to have the SQLOCK first,
3840 * so if the service_syncq lock is held, we need to release it
3841 * before acquiring the SQLOCK (mostly relevant for the background
3842 * thread, and this seems to be common among the STREAMS global locks).
3843 * Note that the sq_svcflags are protected by the SQLOCK.
3844 */
3845void
3846sqenable(syncq_t *sq)
3847{
3848	/*
3849	 * This is probably not important except for where I believe it
3850	 * is being called.  At that point, it should be held (and it
3851	 * is a pain to release it just for this routine, so don't do
3852	 * it).
3853	 */
3854	ASSERT(MUTEX_HELD(SQLOCK(sq)));
3855
3856	IMPLY(sq->sq_servcount == 0, sq->sq_next == NULL);
3857	IMPLY(sq->sq_next != NULL, sq->sq_svcflags & SQ_BGTHREAD);
3858
3859	/*
3860	 * Do not put on list if background thread is scheduled or
3861	 * syncq is disabled.
3862	 */
3863	if (sq->sq_svcflags & (SQ_DISABLED | SQ_BGTHREAD))
3864		return;
3865
3866	/*
3867	 * Check whether we should enable sq at all.
3868	 * Non PERMOD syncqs may be drained by at most one thread.
3869	 * PERMOD syncqs may be drained by several threads but we limit the
3870	 * total amount to the lesser of
3871	 *	Number of queues on the squeue and
3872	 *	Number of CPUs.
3873	 */
3874	if (sq->sq_servcount != 0) {
3875		if (((sq->sq_type & SQ_PERMOD) == 0) ||
3876		    (sq->sq_servcount >= MIN(sq->sq_nqueues, ncpus_online))) {
3877			STRSTAT(sqtoomany);
3878			return;
3879		}
3880	}
3881
3882	sq->sq_tstamp = lbolt;
3883	STRSTAT(sqenables);
3884
3885	/* Attempt a taskq dispatch */
3886	sq->sq_servid = (void *)taskq_dispatch(streams_taskq,
3887	    (task_func_t *)syncq_service, sq, TQ_NOSLEEP | TQ_NOQUEUE);
3888	if (sq->sq_servid != NULL) {
3889		sq->sq_servcount++;
3890		return;
3891	}
3892
3893	/*
3894	 * This taskq dispatch failed, but a previous one may have succeeded.
3895	 * Don't try to schedule on the background thread whilst there is
3896	 * outstanding taskq processing.
3897	 */
3898	if (sq->sq_servcount != 0)
3899		return;
3900
3901	/*
3902	 * System is low on resources and can't perform a non-sleeping
3903	 * dispatch. Schedule the syncq for a background thread and mark the
3904	 * syncq to avoid any further taskq dispatch attempts.
3905	 */
3906	mutex_enter(&service_queue);
3907	STRSTAT(taskqfails);
3908	ENQUEUE(sq, sqhead, sqtail, sq_next);
3909	sq->sq_svcflags |= SQ_BGTHREAD;
3910	sq->sq_servcount = 1;
3911	cv_signal(&syncqs_to_run);
3912	mutex_exit(&service_queue);
3913}
3914
3915/*
3916 * Note: fifo_close() depends on the mblk_t on the queue being freed
3917 * asynchronously. The asynchronous freeing of messages breaks the
3918 * recursive call chain of fifo_close() while there are I_SENDFD type of
3919 * messages referring to other file pointers on the queue. Then when
3920 * closing pipes it can avoid stack overflow in case of daisy-chained
3921 * pipes, and also avoid deadlock in case of fifonode_t pairs (which
3922 * share the same fifolock_t).
3923 */
3924
3925void
3926freebs_enqueue(mblk_t *mp, dblk_t *dbp)
3927{
3928	esb_queue_t *eqp = &system_esbq;
3929
3930	ASSERT(dbp->db_mblk == mp);
3931
3932	/*
3933	 * Check data sanity. The dblock should have non-empty free function.
3934	 * It is better to panic here then later when the dblock is freed
3935	 * asynchronously when the context is lost.
3936	 */
3937	if (dbp->db_frtnp->free_func == NULL) {
3938		panic("freebs_enqueue: dblock %p has a NULL free callback",
3939		    (void *)dbp);
3940	}
3941
3942	mutex_enter(&eqp->eq_lock);
3943	/* queue the new mblk on the esballoc queue */
3944	if (eqp->eq_head == NULL) {
3945		eqp->eq_head = eqp->eq_tail = mp;
3946	} else {
3947		eqp->eq_tail->b_next = mp;
3948		eqp->eq_tail = mp;
3949	}
3950	eqp->eq_len++;
3951
3952	/* If we're the first thread to reach the threshold, process */
3953	if (eqp->eq_len >= esbq_max_qlen &&
3954	    !(eqp->eq_flags & ESBQ_PROCESSING))
3955		esballoc_process_queue(eqp);
3956
3957	esballoc_set_timer(eqp, esbq_timeout);
3958	mutex_exit(&eqp->eq_lock);
3959}
3960
3961static void
3962esballoc_process_queue(esb_queue_t *eqp)
3963{
3964	mblk_t	*mp;
3965
3966	ASSERT(MUTEX_HELD(&eqp->eq_lock));
3967
3968	eqp->eq_flags |= ESBQ_PROCESSING;
3969
3970	do {
3971		/*
3972		 * Detach the message chain for processing.
3973		 */
3974		mp = eqp->eq_head;
3975		eqp->eq_tail->b_next = NULL;
3976		eqp->eq_head = eqp->eq_tail = NULL;
3977		eqp->eq_len = 0;
3978		mutex_exit(&eqp->eq_lock);
3979
3980		/*
3981		 * Process the message chain.
3982		 */
3983		esballoc_enqueue_mblk(mp);
3984		mutex_enter(&eqp->eq_lock);
3985	} while ((eqp->eq_len >= esbq_max_qlen) && (eqp->eq_len > 0));
3986
3987	eqp->eq_flags &= ~ESBQ_PROCESSING;
3988}
3989
3990/*
3991 * taskq callback routine to free esballoced mblk's
3992 */
3993static void
3994esballoc_mblk_free(mblk_t *mp)
3995{
3996	mblk_t	*nextmp;
3997
3998	for (; mp != NULL; mp = nextmp) {
3999		nextmp = mp->b_next;
4000		mp->b_next = NULL;
4001		mblk_free(mp);
4002	}
4003}
4004
4005static void
4006esballoc_enqueue_mblk(mblk_t *mp)
4007{
4008
4009	if (taskq_dispatch(system_taskq, (task_func_t *)esballoc_mblk_free, mp,
4010	    TQ_NOSLEEP) == NULL) {
4011		mblk_t *first_mp = mp;
4012		/*
4013		 * System is low on resources and can't perform a non-sleeping
4014		 * dispatch. Schedule for a background thread.
4015		 */
4016		mutex_enter(&service_queue);
4017		STRSTAT(taskqfails);
4018
4019		while (mp->b_next != NULL)
4020			mp = mp->b_next;
4021
4022		mp->b_next = freebs_list;
4023		freebs_list = first_mp;
4024		cv_signal(&services_to_run);
4025		mutex_exit(&service_queue);
4026	}
4027}
4028
4029static void
4030esballoc_timer(void *arg)
4031{
4032	esb_queue_t *eqp = arg;
4033
4034	mutex_enter(&eqp->eq_lock);
4035	eqp->eq_flags &= ~ESBQ_TIMER;
4036
4037	if (!(eqp->eq_flags & ESBQ_PROCESSING) &&
4038	    eqp->eq_len > 0)
4039		esballoc_process_queue(eqp);
4040
4041	esballoc_set_timer(eqp, esbq_timeout);
4042	mutex_exit(&eqp->eq_lock);
4043}
4044
4045static void
4046esballoc_set_timer(esb_queue_t *eqp, clock_t eq_timeout)
4047{
4048	ASSERT(MUTEX_HELD(&eqp->eq_lock));
4049
4050	if (eqp->eq_len > 0 && !(eqp->eq_flags & ESBQ_TIMER)) {
4051		(void) timeout(esballoc_timer, eqp, eq_timeout);
4052		eqp->eq_flags |= ESBQ_TIMER;
4053	}
4054}
4055
4056void
4057esballoc_queue_init(void)
4058{
4059	system_esbq.eq_len = 0;
4060	system_esbq.eq_head = system_esbq.eq_tail = NULL;
4061	system_esbq.eq_flags = 0;
4062}
4063
4064/*
4065 * Set the QBACK or QB_BACK flag in the given queue for
4066 * the given priority band.
4067 */
4068void
4069setqback(queue_t *q, unsigned char pri)
4070{
4071	int i;
4072	qband_t *qbp;
4073	qband_t **qbpp;
4074
4075	ASSERT(MUTEX_HELD(QLOCK(q)));
4076	if (pri != 0) {
4077		if (pri > q->q_nband) {
4078			qbpp = &q->q_bandp;
4079			while (*qbpp)
4080				qbpp = &(*qbpp)->qb_next;
4081			while (pri > q->q_nband) {
4082				if ((*qbpp = allocband()) == NULL) {
4083					cmn_err(CE_WARN,
4084					    "setqback: can't allocate qband\n");
4085					return;
4086				}
4087				(*qbpp)->qb_hiwat = q->q_hiwat;
4088				(*qbpp)->qb_lowat = q->q_lowat;
4089				q->q_nband++;
4090				qbpp = &(*qbpp)->qb_next;
4091			}
4092		}
4093		qbp = q->q_bandp;
4094		i = pri;
4095		while (--i)
4096			qbp = qbp->qb_next;
4097		qbp->qb_flag |= QB_BACK;
4098	} else {
4099		q->q_flag |= QBACK;
4100	}
4101}
4102
4103int
4104strcopyin(void *from, void *to, size_t len, int copyflag)
4105{
4106	if (copyflag & U_TO_K) {
4107		ASSERT((copyflag & K_TO_K) == 0);
4108		if (copyin(from, to, len))
4109			return (EFAULT);
4110	} else {
4111		ASSERT(copyflag & K_TO_K);
4112		bcopy(from, to, len);
4113	}
4114	return (0);
4115}
4116
4117int
4118strcopyout(void *from, void *to, size_t len, int copyflag)
4119{
4120	if (copyflag & U_TO_K) {
4121		if (copyout(from, to, len))
4122			return (EFAULT);
4123	} else {
4124		ASSERT(copyflag & K_TO_K);
4125		bcopy(from, to, len);
4126	}
4127	return (0);
4128}
4129
4130/*
4131 * strsignal_nolock() posts a signal to the process(es) at the stream head.
4132 * It assumes that the stream head lock is already held, whereas strsignal()
4133 * acquires the lock first.  This routine was created because a few callers
4134 * release the stream head lock before calling only to re-acquire it after
4135 * it returns.
4136 */
4137void
4138strsignal_nolock(stdata_t *stp, int sig, uchar_t band)
4139{
4140	ASSERT(MUTEX_HELD(&stp->sd_lock));
4141	switch (sig) {
4142	case SIGPOLL:
4143		if (stp->sd_sigflags & S_MSG)
4144			strsendsig(stp->sd_siglist, S_MSG, band, 0);
4145		break;
4146	default:
4147		if (stp->sd_pgidp)
4148			pgsignal(stp->sd_pgidp, sig);
4149		break;
4150	}
4151}
4152
4153void
4154strsignal(stdata_t *stp, int sig, int32_t band)
4155{
4156	TRACE_3(TR_FAC_STREAMS_FR, TR_SENDSIG,
4157	    "strsignal:%p, %X, %X", stp, sig, band);
4158
4159	mutex_enter(&stp->sd_lock);
4160	switch (sig) {
4161	case SIGPOLL:
4162		if (stp->sd_sigflags & S_MSG)
4163			strsendsig(stp->sd_siglist, S_MSG, (uchar_t)band, 0);
4164		break;
4165
4166	default:
4167		if (stp->sd_pgidp) {
4168			pgsignal(stp->sd_pgidp, sig);
4169		}
4170		break;
4171	}
4172	mutex_exit(&stp->sd_lock);
4173}
4174
4175void
4176strhup(stdata_t *stp)
4177{
4178	ASSERT(mutex_owned(&stp->sd_lock));
4179	pollwakeup(&stp->sd_pollist, POLLHUP);
4180	if (stp->sd_sigflags & S_HANGUP)
4181		strsendsig(stp->sd_siglist, S_HANGUP, 0, 0);
4182}
4183
4184/*
4185 * Backenable the first queue upstream from `q' with a service procedure.
4186 */
4187void
4188backenable(queue_t *q, uchar_t pri)
4189{
4190	queue_t	*nq;
4191
4192	/*
4193	 * Our presence might not prevent other modules in our own
4194	 * stream from popping/pushing since the caller of getq might not
4195	 * have a claim on the queue (some drivers do a getq on somebody
4196	 * else's queue - they know that the queue itself is not going away
4197	 * but the framework has to guarantee q_next in that stream).
4198	 */
4199	claimstr(q);
4200
4201	/* Find nearest back queue with service proc */
4202	for (nq = backq(q); nq && !nq->q_qinfo->qi_srvp; nq = backq(nq)) {
4203		ASSERT(STRMATED(q->q_stream) || STREAM(q) == STREAM(nq));
4204	}
4205
4206	if (nq) {
4207		kthread_t *freezer;
4208		/*
4209		 * backenable can be called either with no locks held
4210		 * or with the stream frozen (the latter occurs when a module
4211		 * calls rmvq with the stream frozen). If the stream is frozen
4212		 * by the caller the caller will hold all qlocks in the stream.
4213		 * Note that a frozen stream doesn't freeze a mated stream,
4214		 * so we explicitly check for that.
4215		 */
4216		freezer = STREAM(q)->sd_freezer;
4217		if (freezer != curthread || STREAM(q) != STREAM(nq)) {
4218			mutex_enter(QLOCK(nq));
4219		}
4220#ifdef DEBUG
4221		else {
4222			ASSERT(frozenstr(q));
4223			ASSERT(MUTEX_HELD(QLOCK(q)));
4224			ASSERT(MUTEX_HELD(QLOCK(nq)));
4225		}
4226#endif
4227		setqback(nq, pri);
4228		qenable_locked(nq);
4229		if (freezer != curthread || STREAM(q) != STREAM(nq))
4230			mutex_exit(QLOCK(nq));
4231	}
4232	releasestr(q);
4233}
4234
4235/*
4236 * Return the appropriate errno when one of flags_to_check is set
4237 * in sd_flags. Uses the exported error routines if they are set.
4238 * Will return 0 if non error is set (or if the exported error routines
4239 * do not return an error).
4240 *
4241 * If there is both a read and write error to check, we prefer the read error.
4242 * Also, give preference to recorded errno's over the error functions.
4243 * The flags that are handled are:
4244 *	STPLEX		return EINVAL
4245 *	STRDERR		return sd_rerror (and clear if STRDERRNONPERSIST)
4246 *	STWRERR		return sd_werror (and clear if STWRERRNONPERSIST)
4247 *	STRHUP		return sd_werror
4248 *
4249 * If the caller indicates that the operation is a peek, a nonpersistent error
4250 * is not cleared.
4251 */
4252int
4253strgeterr(stdata_t *stp, int32_t flags_to_check, int ispeek)
4254{
4255	int32_t sd_flag = stp->sd_flag & flags_to_check;
4256	int error = 0;
4257
4258	ASSERT(MUTEX_HELD(&stp->sd_lock));
4259	ASSERT((flags_to_check & ~(STRDERR|STWRERR|STRHUP|STPLEX)) == 0);
4260	if (sd_flag & STPLEX)
4261		error = EINVAL;
4262	else if (sd_flag & STRDERR) {
4263		error = stp->sd_rerror;
4264		if ((stp->sd_flag & STRDERRNONPERSIST) && !ispeek) {
4265			/*
4266			 * Read errors are non-persistent i.e. discarded once
4267			 * returned to a non-peeking caller,
4268			 */
4269			stp->sd_rerror = 0;
4270			stp->sd_flag &= ~STRDERR;
4271		}
4272		if (error == 0 && stp->sd_rderrfunc != NULL) {
4273			int clearerr = 0;
4274
4275			error = (*stp->sd_rderrfunc)(stp->sd_vnode, ispeek,
4276			    &clearerr);
4277			if (clearerr) {
4278				stp->sd_flag &= ~STRDERR;
4279				stp->sd_rderrfunc = NULL;
4280			}
4281		}
4282	} else if (sd_flag & STWRERR) {
4283		error = stp->sd_werror;
4284		if ((stp->sd_flag & STWRERRNONPERSIST) && !ispeek) {
4285			/*
4286			 * Write errors are non-persistent i.e. discarded once
4287			 * returned to a non-peeking caller,
4288			 */
4289			stp->sd_werror = 0;
4290			stp->sd_flag &= ~STWRERR;
4291		}
4292		if (error == 0 && stp->sd_wrerrfunc != NULL) {
4293			int clearerr = 0;
4294
4295			error = (*stp->sd_wrerrfunc)(stp->sd_vnode, ispeek,
4296			    &clearerr);
4297			if (clearerr) {
4298				stp->sd_flag &= ~STWRERR;
4299				stp->sd_wrerrfunc = NULL;
4300			}
4301		}
4302	} else if (sd_flag & STRHUP) {
4303		/* sd_werror set when STRHUP */
4304		error = stp->sd_werror;
4305	}
4306	return (error);
4307}
4308
4309
4310/*
4311 * Single-thread open/close/push/pop
4312 * for twisted streams also
4313 */
4314int
4315strstartplumb(stdata_t *stp, int flag, int cmd)
4316{
4317	int waited = 1;
4318	int error = 0;
4319
4320	if (STRMATED(stp)) {
4321		struct stdata *stmatep = stp->sd_mate;
4322
4323		STRLOCKMATES(stp);
4324		while (waited) {
4325			waited = 0;
4326			while (stmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4327				if ((cmd == I_POP) &&
4328				    (flag & (FNDELAY|FNONBLOCK))) {
4329					STRUNLOCKMATES(stp);
4330					return (EAGAIN);
4331				}
4332				waited = 1;
4333				mutex_exit(&stp->sd_lock);
4334				if (!cv_wait_sig(&stmatep->sd_monitor,
4335				    &stmatep->sd_lock)) {
4336					mutex_exit(&stmatep->sd_lock);
4337					return (EINTR);
4338				}
4339				mutex_exit(&stmatep->sd_lock);
4340				STRLOCKMATES(stp);
4341			}
4342			while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4343				if ((cmd == I_POP) &&
4344				    (flag & (FNDELAY|FNONBLOCK))) {
4345					STRUNLOCKMATES(stp);
4346					return (EAGAIN);
4347				}
4348				waited = 1;
4349				mutex_exit(&stmatep->sd_lock);
4350				if (!cv_wait_sig(&stp->sd_monitor,
4351				    &stp->sd_lock)) {
4352					mutex_exit(&stp->sd_lock);
4353					return (EINTR);
4354				}
4355				mutex_exit(&stp->sd_lock);
4356				STRLOCKMATES(stp);
4357			}
4358			if (stp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
4359				error = strgeterr(stp,
4360				    STRDERR|STWRERR|STRHUP|STPLEX, 0);
4361				if (error != 0) {
4362					STRUNLOCKMATES(stp);
4363					return (error);
4364				}
4365			}
4366		}
4367		stp->sd_flag |= STRPLUMB;
4368		STRUNLOCKMATES(stp);
4369	} else {
4370		mutex_enter(&stp->sd_lock);
4371		while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4372			if (((cmd == I_POP) || (cmd == _I_REMOVE)) &&
4373			    (flag & (FNDELAY|FNONBLOCK))) {
4374				mutex_exit(&stp->sd_lock);
4375				return (EAGAIN);
4376			}
4377			if (!cv_wait_sig(&stp->sd_monitor, &stp->sd_lock)) {
4378				mutex_exit(&stp->sd_lock);
4379				return (EINTR);
4380			}
4381			if (stp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
4382				error = strgeterr(stp,
4383				    STRDERR|STWRERR|STRHUP|STPLEX, 0);
4384				if (error != 0) {
4385					mutex_exit(&stp->sd_lock);
4386					return (error);
4387				}
4388			}
4389		}
4390		stp->sd_flag |= STRPLUMB;
4391		mutex_exit(&stp->sd_lock);
4392	}
4393	return (0);
4394}
4395
4396/*
4397 * Complete the plumbing operation associated with stream `stp'.
4398 */
4399void
4400strendplumb(stdata_t *stp)
4401{
4402	ASSERT(MUTEX_HELD(&stp->sd_lock));
4403	ASSERT(stp->sd_flag & STRPLUMB);
4404	stp->sd_flag &= ~STRPLUMB;
4405	cv_broadcast(&stp->sd_monitor);
4406}
4407
4408/*
4409 * This describes how the STREAMS framework handles synchronization
4410 * during open/push and close/pop.
4411 * The key interfaces for open and close are qprocson and qprocsoff,
4412 * respectively. While the close case in general is harder both open
4413 * have close have significant similarities.
4414 *
4415 * During close the STREAMS framework has to both ensure that there
4416 * are no stale references to the queue pair (and syncq) that
4417 * are being closed and also provide the guarantees that are documented
4418 * in qprocsoff(9F).
4419 * If there are stale references to the queue that is closing it can
4420 * result in kernel memory corruption or kernel panics.
4421 *
4422 * Note that is it up to the module/driver to ensure that it itself
4423 * does not have any stale references to the closing queues once its close
4424 * routine returns. This includes:
4425 *  - Cancelling any timeout/bufcall/qtimeout/qbufcall callback routines
4426 *    associated with the queues. For timeout and bufcall callbacks the
4427 *    module/driver also has to ensure (or wait for) any callbacks that
4428 *    are in progress.
4429 *  - If the module/driver is using esballoc it has to ensure that any
4430 *    esballoc free functions do not refer to a queue that has closed.
4431 *    (Note that in general the close routine can not wait for the esballoc'ed
4432 *    messages to be freed since that can cause a deadlock.)
4433 *  - Cancelling any interrupts that refer to the closing queues and
4434 *    also ensuring that there are no interrupts in progress that will
4435 *    refer to the closing queues once the close routine returns.
4436 *  - For multiplexors removing any driver global state that refers to
4437 *    the closing queue and also ensuring that there are no threads in
4438 *    the multiplexor that has picked up a queue pointer but not yet
4439 *    finished using it.
4440 *
4441 * In addition, a driver/module can only reference the q_next pointer
4442 * in its open, close, put, or service procedures or in a
4443 * qtimeout/qbufcall callback procedure executing "on" the correct
4444 * stream. Thus it can not reference the q_next pointer in an interrupt
4445 * routine or a timeout, bufcall or esballoc callback routine. Likewise
4446 * it can not reference q_next of a different queue e.g. in a mux that
4447 * passes messages from one queues put/service procedure to another queue.
4448 * In all the cases when the driver/module can not access the q_next
4449 * field it must use the *next* versions e.g. canputnext instead of
4450 * canput(q->q_next) and putnextctl instead of putctl(q->q_next, ...).
4451 *
4452 *
4453 * Assuming that the driver/module conforms to the above constraints
4454 * the STREAMS framework has to avoid stale references to q_next for all
4455 * the framework internal cases which include (but are not limited to):
4456 *  - Threads in canput/canputnext/backenable and elsewhere that are
4457 *    walking q_next.
4458 *  - Messages on a syncq that have a reference to the queue through b_queue.
4459 *  - Messages on an outer perimeter (syncq) that have a reference to the
4460 *    queue through b_queue.
4461 *  - Threads that use q_nfsrv (e.g. canput) to find a queue.
4462 *    Note that only canput and bcanput use q_nfsrv without any locking.
4463 *
4464 * The STREAMS framework providing the qprocsoff(9F) guarantees means that
4465 * after qprocsoff returns, the framework has to ensure that no threads can
4466 * enter the put or service routines for the closing read or write-side queue.
4467 * In addition to preventing "direct" entry into the put procedures
4468 * the framework also has to prevent messages being drained from
4469 * the syncq or the outer perimeter.
4470 * XXX Note that currently qdetach does relies on D_MTOCEXCL as the only
4471 * mechanism to prevent qwriter(PERIM_OUTER) from running after
4472 * qprocsoff has returned.
4473 * Note that if a module/driver uses put(9F) on one of its own queues
4474 * it is up to the module/driver to ensure that the put() doesn't
4475 * get called when the queue is closing.
4476 *
4477 *
4478 * The framework aspects of the above "contract" is implemented by
4479 * qprocsoff, removeq, and strlock:
4480 *  - qprocsoff (disable_svc) sets QWCLOSE to prevent runservice from
4481 *    entering the service procedures.
4482 *  - strlock acquires the sd_lock and sd_reflock to prevent putnext,
4483 *    canputnext, backenable etc from dereferencing the q_next that will
4484 *    soon change.
4485 *  - strlock waits for sd_refcnt to be zero to wait for e.g. any canputnext
4486 *    or other q_next walker that uses claimstr/releasestr to finish.
4487 *  - optionally for every syncq in the stream strlock acquires all the
4488 *    sq_lock's and waits for all sq_counts to drop to a value that indicates
4489 *    that no thread executes in the put or service procedures and that no
4490 *    thread is draining into the module/driver. This ensures that no
4491 *    open, close, put, service, or qtimeout/qbufcall callback procedure is
4492 *    currently executing hence no such thread can end up with the old stale
4493 *    q_next value and no canput/backenable can have the old stale
4494 *    q_nfsrv/q_next.
4495 *  - qdetach (wait_svc) makes sure that any scheduled or running threads
4496 *    have either finished or observed the QWCLOSE flag and gone away.
4497 */
4498
4499
4500/*
4501 * Get all the locks necessary to change q_next.
4502 *
4503 * Wait for sd_refcnt to reach 0 and, if sqlist is present, wait for the
4504 * sq_count of each syncq in the list to drop to sq_rmqcount, indicating that
4505 * the only threads inside the syncq are threads currently calling removeq().
4506 * Since threads calling removeq() are in the process of removing their queues
4507 * from the stream, we do not need to worry about them accessing a stale q_next
4508 * pointer and thus we do not need to wait for them to exit (in fact, waiting
4509 * for them can cause deadlock).
4510 *
4511 * This routine is subject to starvation since it does not set any flag to
4512 * prevent threads from entering a module in the stream (i.e. sq_count can
4513 * increase on some syncq while it is waiting on some other syncq).
4514 *
4515 * Assumes that only one thread attempts to call strlock for a given
4516 * stream. If this is not the case the two threads would deadlock.
4517 * This assumption is guaranteed since strlock is only called by insertq
4518 * and removeq and streams plumbing changes are single-threaded for
4519 * a given stream using the STWOPEN, STRCLOSE, and STRPLUMB flags.
4520 *
4521 * For pipes, it is not difficult to atomically designate a pair of streams
4522 * to be mated. Once mated atomically by the framework the twisted pair remain
4523 * configured that way until dismantled atomically by the framework.
4524 * When plumbing takes place on a twisted stream it is necessary to ensure that
4525 * this operation is done exclusively on the twisted stream since two such
4526 * operations, each initiated on different ends of the pipe will deadlock
4527 * waiting for each other to complete.
4528 *
4529 * On entry, no locks should be held.
4530 * The locks acquired and held by strlock depends on a few factors.
4531 * - If sqlist is non-NULL all the syncq locks in the sqlist will be acquired
4532 *   and held on exit and all sq_count are at an acceptable level.
4533 * - In all cases, sd_lock and sd_reflock are acquired and held on exit with
4534 *   sd_refcnt being zero.
4535 */
4536
4537static void
4538strlock(struct stdata *stp, sqlist_t *sqlist)
4539{
4540	syncql_t *sql, *sql2;
4541retry:
4542	/*
4543	 * Wait for any claimstr to go away.
4544	 */
4545	if (STRMATED(stp)) {
4546		struct stdata *stp1, *stp2;
4547
4548		STRLOCKMATES(stp);
4549		/*
4550		 * Note that the selection of locking order is not
4551		 * important, just that they are always acquired in
4552		 * the same order.  To assure this, we choose this
4553		 * order based on the value of the pointer, and since
4554		 * the pointer will not change for the life of this
4555		 * pair, we will always grab the locks in the same
4556		 * order (and hence, prevent deadlocks).
4557		 */
4558		if (&(stp->sd_lock) > &((stp->sd_mate)->sd_lock)) {
4559			stp1 = stp;
4560			stp2 = stp->sd_mate;
4561		} else {
4562			stp2 = stp;
4563			stp1 = stp->sd_mate;
4564		}
4565		mutex_enter(&stp1->sd_reflock);
4566		if (stp1->sd_refcnt > 0) {
4567			STRUNLOCKMATES(stp);
4568			cv_wait(&stp1->sd_refmonitor, &stp1->sd_reflock);
4569			mutex_exit(&stp1->sd_reflock);
4570			goto retry;
4571		}
4572		mutex_enter(&stp2->sd_reflock);
4573		if (stp2->sd_refcnt > 0) {
4574			STRUNLOCKMATES(stp);
4575			mutex_exit(&stp1->sd_reflock);
4576			cv_wait(&stp2->sd_refmonitor, &stp2->sd_reflock);
4577			mutex_exit(&stp2->sd_reflock);
4578			goto retry;
4579		}
4580		STREAM_PUTLOCKS_ENTER(stp1);
4581		STREAM_PUTLOCKS_ENTER(stp2);
4582	} else {
4583		mutex_enter(&stp->sd_lock);
4584		mutex_enter(&stp->sd_reflock);
4585		while (stp->sd_refcnt > 0) {
4586			mutex_exit(&stp->sd_lock);
4587			cv_wait(&stp->sd_refmonitor, &stp->sd_reflock);
4588			if (mutex_tryenter(&stp->sd_lock) == 0) {
4589				mutex_exit(&stp->sd_reflock);
4590				mutex_enter(&stp->sd_lock);
4591				mutex_enter(&stp->sd_reflock);
4592			}
4593		}
4594		STREAM_PUTLOCKS_ENTER(stp);
4595	}
4596
4597	if (sqlist == NULL)
4598		return;
4599
4600	for (sql = sqlist->sqlist_head; sql; sql = sql->sql_next) {
4601		syncq_t *sq = sql->sql_sq;
4602		uint16_t count;
4603
4604		mutex_enter(SQLOCK(sq));
4605		count = sq->sq_count;
4606		ASSERT(sq->sq_rmqcount <= count);
4607		SQ_PUTLOCKS_ENTER(sq);
4608		SUM_SQ_PUTCOUNTS(sq, count);
4609		if (count == sq->sq_rmqcount)
4610			continue;
4611
4612		/* Failed - drop all locks that we have acquired so far */
4613		if (STRMATED(stp)) {
4614			STREAM_PUTLOCKS_EXIT(stp);
4615			STREAM_PUTLOCKS_EXIT(stp->sd_mate);
4616			STRUNLOCKMATES(stp);
4617			mutex_exit(&stp->sd_reflock);
4618			mutex_exit(&stp->sd_mate->sd_reflock);
4619		} else {
4620			STREAM_PUTLOCKS_EXIT(stp);
4621			mutex_exit(&stp->sd_lock);
4622			mutex_exit(&stp->sd_reflock);
4623		}
4624		for (sql2 = sqlist->sqlist_head; sql2 != sql;
4625		    sql2 = sql2->sql_next) {
4626			SQ_PUTLOCKS_EXIT(sql2->sql_sq);
4627			mutex_exit(SQLOCK(sql2->sql_sq));
4628		}
4629
4630		/*
4631		 * The wait loop below may starve when there are many threads
4632		 * claiming the syncq. This is especially a problem with permod
4633		 * syncqs (IP). To lessen the impact of the problem we increment
4634		 * sq_needexcl and clear fastbits so that putnexts will slow
4635		 * down and call sqenable instead of draining right away.
4636		 */
4637		sq->sq_needexcl++;
4638		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
4639		while (count > sq->sq_rmqcount) {
4640			sq->sq_flags |= SQ_WANTWAKEUP;
4641			SQ_PUTLOCKS_EXIT(sq);
4642			cv_wait(&sq->sq_wait, SQLOCK(sq));
4643			count = sq->sq_count;
4644			SQ_PUTLOCKS_ENTER(sq);
4645			SUM_SQ_PUTCOUNTS(sq, count);
4646		}
4647		sq->sq_needexcl--;
4648		if (sq->sq_needexcl == 0)
4649			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
4650		SQ_PUTLOCKS_EXIT(sq);
4651		ASSERT(count == sq->sq_rmqcount);
4652		mutex_exit(SQLOCK(sq));
4653		goto retry;
4654	}
4655}
4656
4657/*
4658 * Drop all the locks that strlock acquired.
4659 */
4660static void
4661strunlock(struct stdata *stp, sqlist_t *sqlist)
4662{
4663	syncql_t *sql;
4664
4665	if (STRMATED(stp)) {
4666		STREAM_PUTLOCKS_EXIT(stp);
4667		STREAM_PUTLOCKS_EXIT(stp->sd_mate);
4668		STRUNLOCKMATES(stp);
4669		mutex_exit(&stp->sd_reflock);
4670		mutex_exit(&stp->sd_mate->sd_reflock);
4671	} else {
4672		STREAM_PUTLOCKS_EXIT(stp);
4673		mutex_exit(&stp->sd_lock);
4674		mutex_exit(&stp->sd_reflock);
4675	}
4676
4677	if (sqlist == NULL)
4678		return;
4679
4680	for (sql = sqlist->sqlist_head; sql; sql = sql->sql_next) {
4681		SQ_PUTLOCKS_EXIT(sql->sql_sq);
4682		mutex_exit(SQLOCK(sql->sql_sq));
4683	}
4684}
4685
4686/*
4687 * When the module has service procedure, we need check if the next
4688 * module which has service procedure is in flow control to trigger
4689 * the backenable.
4690 */
4691static void
4692backenable_insertedq(queue_t *q)
4693{
4694	qband_t	*qbp;
4695
4696	claimstr(q);
4697	if (q->q_qinfo->qi_srvp != NULL && q->q_next != NULL) {
4698		if (q->q_next->q_nfsrv->q_flag & QWANTW)
4699			backenable(q, 0);
4700
4701		qbp = q->q_next->q_nfsrv->q_bandp;
4702		for (; qbp != NULL; qbp = qbp->qb_next)
4703			if ((qbp->qb_flag & QB_WANTW) && qbp->qb_first != NULL)
4704				backenable(q, qbp->qb_first->b_band);
4705	}
4706	releasestr(q);
4707}
4708
4709/*
4710 * Given two read queues, insert a new single one after another.
4711 *
4712 * This routine acquires all the necessary locks in order to change
4713 * q_next and related pointer using strlock().
4714 * It depends on the stream head ensuring that there are no concurrent
4715 * insertq or removeq on the same stream. The stream head ensures this
4716 * using the flags STWOPEN, STRCLOSE, and STRPLUMB.
4717 *
4718 * Note that no syncq locks are held during the q_next change. This is
4719 * applied to all streams since, unlike removeq, there is no problem of stale
4720 * pointers when adding a module to the stream. Thus drivers/modules that do a
4721 * canput(rq->q_next) would never get a closed/freed queue pointer even if we
4722 * applied this optimization to all streams.
4723 */
4724void
4725insertq(struct stdata *stp, queue_t *new)
4726{
4727	queue_t	*after;
4728	queue_t *wafter;
4729	queue_t *wnew = _WR(new);
4730	boolean_t have_fifo = B_FALSE;
4731
4732	if (new->q_flag & _QINSERTING) {
4733		ASSERT(stp->sd_vnode->v_type != VFIFO);
4734		after = new->q_next;
4735		wafter = _WR(new->q_next);
4736	} else {
4737		after = _RD(stp->sd_wrq);
4738		wafter = stp->sd_wrq;
4739	}
4740
4741	TRACE_2(TR_FAC_STREAMS_FR, TR_INSERTQ,
4742	    "insertq:%p, %p", after, new);
4743	ASSERT(after->q_flag & QREADR);
4744	ASSERT(new->q_flag & QREADR);
4745
4746	strlock(stp, NULL);
4747
4748	/* Do we have a FIFO? */
4749	if (wafter->q_next == after) {
4750		have_fifo = B_TRUE;
4751		wnew->q_next = new;
4752	} else {
4753		wnew->q_next = wafter->q_next;
4754	}
4755	new->q_next = after;
4756
4757	set_nfsrv_ptr(new, wnew, after, wafter);
4758	/*
4759	 * set_nfsrv_ptr() needs to know if this is an insertion or not,
4760	 * so only reset this flag after calling it.
4761	 */
4762	new->q_flag &= ~_QINSERTING;
4763
4764	if (have_fifo) {
4765		wafter->q_next = wnew;
4766	} else {
4767		if (wafter->q_next)
4768			_OTHERQ(wafter->q_next)->q_next = new;
4769		wafter->q_next = wnew;
4770	}
4771
4772	set_qend(new);
4773	/* The QEND flag might have to be updated for the upstream guy */
4774	set_qend(after);
4775
4776	ASSERT(_SAMESTR(new) == O_SAMESTR(new));
4777	ASSERT(_SAMESTR(wnew) == O_SAMESTR(wnew));
4778	ASSERT(_SAMESTR(after) == O_SAMESTR(after));
4779	ASSERT(_SAMESTR(wafter) == O_SAMESTR(wafter));
4780	strsetuio(stp);
4781
4782	/*
4783	 * If this was a module insertion, bump the push count.
4784	 */
4785	if (!(new->q_flag & QISDRV))
4786		stp->sd_pushcnt++;
4787
4788	strunlock(stp, NULL);
4789
4790	/* check if the write Q needs backenable */
4791	backenable_insertedq(wnew);
4792
4793	/* check if the read Q needs backenable */
4794	backenable_insertedq(new);
4795}
4796
4797/*
4798 * Given a read queue, unlink it from any neighbors.
4799 *
4800 * This routine acquires all the necessary locks in order to
4801 * change q_next and related pointers and also guard against
4802 * stale references (e.g. through q_next) to the queue that
4803 * is being removed. It also plays part of the role in ensuring
4804 * that the module's/driver's put procedure doesn't get called
4805 * after qprocsoff returns.
4806 *
4807 * Removeq depends on the stream head ensuring that there are
4808 * no concurrent insertq or removeq on the same stream. The
4809 * stream head ensures this using the flags STWOPEN, STRCLOSE and
4810 * STRPLUMB.
4811 *
4812 * The set of locks needed to remove the queue is different in
4813 * different cases:
4814 *
4815 * Acquire sd_lock, sd_reflock, and all the syncq locks in the stream after
4816 * waiting for the syncq reference count to drop to 0 indicating that no
4817 * non-close threads are present anywhere in the stream. This ensures that any
4818 * module/driver can reference q_next in its open, close, put, or service
4819 * procedures.
4820 *
4821 * The sq_rmqcount counter tracks the number of threads inside removeq().
4822 * strlock() ensures that there is either no threads executing inside perimeter
4823 * or there is only a thread calling qprocsoff().
4824 *
4825 * strlock() compares the value of sq_count with the number of threads inside
4826 * removeq() and waits until sq_count is equal to sq_rmqcount. We need to wakeup
4827 * any threads waiting in strlock() when the sq_rmqcount increases.
4828 */
4829
4830void
4831removeq(queue_t *qp)
4832{
4833	queue_t *wqp = _WR(qp);
4834	struct stdata *stp = STREAM(qp);
4835	sqlist_t *sqlist = NULL;
4836	boolean_t isdriver;
4837	int moved;
4838	syncq_t *sq = qp->q_syncq;
4839	syncq_t *wsq = wqp->q_syncq;
4840
4841	ASSERT(stp);
4842
4843	TRACE_2(TR_FAC_STREAMS_FR, TR_REMOVEQ,
4844	    "removeq:%p %p", qp, wqp);
4845	ASSERT(qp->q_flag&QREADR);
4846
4847	/*
4848	 * For queues using Synchronous streams, we must wait for all threads in
4849	 * rwnext() to drain out before proceeding.
4850	 */
4851	if (qp->q_flag & QSYNCSTR) {
4852		/* First, we need wakeup any threads blocked in rwnext() */
4853		mutex_enter(SQLOCK(sq));
4854		if (sq->sq_flags & SQ_WANTWAKEUP) {
4855			sq->sq_flags &= ~SQ_WANTWAKEUP;
4856			cv_broadcast(&sq->sq_wait);
4857		}
4858		mutex_exit(SQLOCK(sq));
4859
4860		if (wsq != sq) {
4861			mutex_enter(SQLOCK(wsq));
4862			if (wsq->sq_flags & SQ_WANTWAKEUP) {
4863				wsq->sq_flags &= ~SQ_WANTWAKEUP;
4864				cv_broadcast(&wsq->sq_wait);
4865			}
4866			mutex_exit(SQLOCK(wsq));
4867		}
4868
4869		mutex_enter(QLOCK(qp));
4870		while (qp->q_rwcnt > 0) {
4871			qp->q_flag |= QWANTRMQSYNC;
4872			cv_wait(&qp->q_wait, QLOCK(qp));
4873		}
4874		mutex_exit(QLOCK(qp));
4875
4876		mutex_enter(QLOCK(wqp));
4877		while (wqp->q_rwcnt > 0) {
4878			wqp->q_flag |= QWANTRMQSYNC;
4879			cv_wait(&wqp->q_wait, QLOCK(wqp));
4880		}
4881		mutex_exit(QLOCK(wqp));
4882	}
4883
4884	mutex_enter(SQLOCK(sq));
4885	sq->sq_rmqcount++;
4886	if (sq->sq_flags & SQ_WANTWAKEUP) {
4887		sq->sq_flags &= ~SQ_WANTWAKEUP;
4888		cv_broadcast(&sq->sq_wait);
4889	}
4890	mutex_exit(SQLOCK(sq));
4891
4892	isdriver = (qp->q_flag & QISDRV);
4893
4894	sqlist = sqlist_build(qp, stp, STRMATED(stp));
4895	strlock(stp, sqlist);
4896
4897	reset_nfsrv_ptr(qp, wqp);
4898
4899	ASSERT(wqp->q_next == NULL || backq(qp)->q_next == qp);
4900	ASSERT(qp->q_next == NULL || backq(wqp)->q_next == wqp);
4901	/* Do we have a FIFO? */
4902	if (wqp->q_next == qp) {
4903		stp->sd_wrq->q_next = _RD(stp->sd_wrq);
4904	} else {
4905		if (wqp->q_next)
4906			backq(qp)->q_next = qp->q_next;
4907		if (qp->q_next)
4908			backq(wqp)->q_next = wqp->q_next;
4909	}
4910
4911	/* The QEND flag might have to be updated for the upstream guy */
4912	if (qp->q_next)
4913		set_qend(qp->q_next);
4914
4915	ASSERT(_SAMESTR(stp->sd_wrq) == O_SAMESTR(stp->sd_wrq));
4916	ASSERT(_SAMESTR(_RD(stp->sd_wrq)) == O_SAMESTR(_RD(stp->sd_wrq)));
4917
4918	/*
4919	 * Move any messages destined for the put procedures to the next
4920	 * syncq in line. Otherwise free them.
4921	 */
4922	moved = 0;
4923	/*
4924	 * Quick check to see whether there are any messages or events.
4925	 */
4926	if (qp->q_syncqmsgs != 0 || (qp->q_syncq->sq_flags & SQ_EVENTS))
4927		moved += propagate_syncq(qp);
4928	if (wqp->q_syncqmsgs != 0 ||
4929	    (wqp->q_syncq->sq_flags & SQ_EVENTS))
4930		moved += propagate_syncq(wqp);
4931
4932	strsetuio(stp);
4933
4934	/*
4935	 * If this was a module removal, decrement the push count.
4936	 */
4937	if (!isdriver)
4938		stp->sd_pushcnt--;
4939
4940	strunlock(stp, sqlist);
4941	sqlist_free(sqlist);
4942
4943	/*
4944	 * Make sure any messages that were propagated are drained.
4945	 * Also clear any QFULL bit caused by messages that were propagated.
4946	 */
4947
4948	if (qp->q_next != NULL) {
4949		clr_qfull(qp);
4950		/*
4951		 * For the driver calling qprocsoff, propagate_syncq
4952		 * frees all the messages instead of putting it in
4953		 * the stream head
4954		 */
4955		if (!isdriver && (moved > 0))
4956			emptysq(qp->q_next->q_syncq);
4957	}
4958	if (wqp->q_next != NULL) {
4959		clr_qfull(wqp);
4960		/*
4961		 * We come here for any pop of a module except for the
4962		 * case of driver being removed. We don't call emptysq
4963		 * if we did not move any messages. This will avoid holding
4964		 * PERMOD syncq locks in emptysq
4965		 */
4966		if (moved > 0)
4967			emptysq(wqp->q_next->q_syncq);
4968	}
4969
4970	mutex_enter(SQLOCK(sq));
4971	sq->sq_rmqcount--;
4972	mutex_exit(SQLOCK(sq));
4973}
4974
4975/*
4976 * Prevent further entry by setting a flag (like SQ_FROZEN, SQ_BLOCKED or
4977 * SQ_WRITER) on a syncq.
4978 * If maxcnt is not -1 it assumes that caller has "maxcnt" claim(s) on the
4979 * sync queue and waits until sq_count reaches maxcnt.
4980 *
4981 * If maxcnt is -1 there's no need to grab sq_putlocks since the caller
4982 * does not care about putnext threads that are in the middle of calling put
4983 * entry points.
4984 *
4985 * This routine is used for both inner and outer syncqs.
4986 */
4987static void
4988blocksq(syncq_t *sq, ushort_t flag, int maxcnt)
4989{
4990	uint16_t count = 0;
4991
4992	mutex_enter(SQLOCK(sq));
4993	/*
4994	 * Wait for SQ_FROZEN/SQ_BLOCKED to be reset.
4995	 * SQ_FROZEN will be set if there is a frozen stream that has a
4996	 * queue which also refers to this "shared" syncq.
4997	 * SQ_BLOCKED will be set if there is "off" queue which also
4998	 * refers to this "shared" syncq.
4999	 */
5000	if (maxcnt != -1) {
5001		count = sq->sq_count;
5002		SQ_PUTLOCKS_ENTER(sq);
5003		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
5004		SUM_SQ_PUTCOUNTS(sq, count);
5005	}
5006	sq->sq_needexcl++;
5007	ASSERT(sq->sq_needexcl != 0);	/* wraparound */
5008
5009	while ((sq->sq_flags & flag) ||
5010	    (maxcnt != -1 && count > (unsigned)maxcnt)) {
5011		sq->sq_flags |= SQ_WANTWAKEUP;
5012		if (maxcnt != -1) {
5013			SQ_PUTLOCKS_EXIT(sq);
5014		}
5015		cv_wait(&sq->sq_wait, SQLOCK(sq));
5016		if (maxcnt != -1) {
5017			count = sq->sq_count;
5018			SQ_PUTLOCKS_ENTER(sq);
5019			SUM_SQ_PUTCOUNTS(sq, count);
5020		}
5021	}
5022	sq->sq_needexcl--;
5023	sq->sq_flags |= flag;
5024	ASSERT(maxcnt == -1 || count == maxcnt);
5025	if (maxcnt != -1) {
5026		if (sq->sq_needexcl == 0) {
5027			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
5028		}
5029		SQ_PUTLOCKS_EXIT(sq);
5030	} else if (sq->sq_needexcl == 0) {
5031		SQ_PUTCOUNT_SETFAST(sq);
5032	}
5033
5034	mutex_exit(SQLOCK(sq));
5035}
5036
5037/*
5038 * Reset a flag that was set with blocksq.
5039 *
5040 * Can not use this routine to reset SQ_WRITER.
5041 *
5042 * If "isouter" is set then the syncq is assumed to be an outer perimeter
5043 * and drain_syncq is not called. Instead we rely on the qwriter_outer thread
5044 * to handle the queued qwriter operations.
5045 *
5046 * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
5047 * sq_putlocks are used.
5048 */
5049static void
5050unblocksq(syncq_t *sq, uint16_t resetflag, int isouter)
5051{
5052	uint16_t flags;
5053
5054	mutex_enter(SQLOCK(sq));
5055	ASSERT(resetflag != SQ_WRITER);
5056	ASSERT(sq->sq_flags & resetflag);
5057	flags = sq->sq_flags & ~resetflag;
5058	sq->sq_flags = flags;
5059	if (flags & (SQ_QUEUED | SQ_WANTWAKEUP)) {
5060		if (flags & SQ_WANTWAKEUP) {
5061			flags &= ~SQ_WANTWAKEUP;
5062			cv_broadcast(&sq->sq_wait);
5063		}
5064		sq->sq_flags = flags;
5065		if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
5066			if (!isouter) {
5067				/* drain_syncq drops SQLOCK */
5068				drain_syncq(sq);
5069				return;
5070			}
5071		}
5072	}
5073	mutex_exit(SQLOCK(sq));
5074}
5075
5076/*
5077 * Reset a flag that was set with blocksq.
5078 * Does not drain the syncq. Use emptysq() for that.
5079 * Returns 1 if SQ_QUEUED is set. Otherwise 0.
5080 *
5081 * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
5082 * sq_putlocks are used.
5083 */
5084static int
5085dropsq(syncq_t *sq, uint16_t resetflag)
5086{
5087	uint16_t flags;
5088
5089	mutex_enter(SQLOCK(sq));
5090	ASSERT(sq->sq_flags & resetflag);
5091	flags = sq->sq_flags & ~resetflag;
5092	if (flags & SQ_WANTWAKEUP) {
5093		flags &= ~SQ_WANTWAKEUP;
5094		cv_broadcast(&sq->sq_wait);
5095	}
5096	sq->sq_flags = flags;
5097	mutex_exit(SQLOCK(sq));
5098	if (flags & SQ_QUEUED)
5099		return (1);
5100	return (0);
5101}
5102
5103/*
5104 * Empty all the messages on a syncq.
5105 *
5106 * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
5107 * sq_putlocks are used.
5108 */
5109static void
5110emptysq(syncq_t *sq)
5111{
5112	uint16_t flags;
5113
5114	mutex_enter(SQLOCK(sq));
5115	flags = sq->sq_flags;
5116	if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
5117		/*
5118		 * To prevent potential recursive invocation of drain_syncq we
5119		 * do not call drain_syncq if count is non-zero.
5120		 */
5121		if (sq->sq_count == 0) {
5122			/* drain_syncq() drops SQLOCK */
5123			drain_syncq(sq);
5124			return;
5125		} else
5126			sqenable(sq);
5127	}
5128	mutex_exit(SQLOCK(sq));
5129}
5130
5131/*
5132 * Ordered insert while removing duplicates.
5133 */
5134static void
5135sqlist_insert(sqlist_t *sqlist, syncq_t *sqp)
5136{
5137	syncql_t *sqlp, **prev_sqlpp, *new_sqlp;
5138
5139	prev_sqlpp = &sqlist->sqlist_head;
5140	while ((sqlp = *prev_sqlpp) != NULL) {
5141		if (sqlp->sql_sq >= sqp) {
5142			if (sqlp->sql_sq == sqp)	/* duplicate */
5143				return;
5144			break;
5145		}
5146		prev_sqlpp = &sqlp->sql_next;
5147	}
5148	new_sqlp = &sqlist->sqlist_array[sqlist->sqlist_index++];
5149	ASSERT((char *)new_sqlp < (char *)sqlist + sqlist->sqlist_size);
5150	new_sqlp->sql_next = sqlp;
5151	new_sqlp->sql_sq = sqp;
5152	*prev_sqlpp = new_sqlp;
5153}
5154
5155/*
5156 * Walk the write side queues until we hit either the driver
5157 * or a twist in the stream (_SAMESTR will return false in both
5158 * these cases) then turn around and walk the read side queues
5159 * back up to the stream head.
5160 */
5161static void
5162sqlist_insertall(sqlist_t *sqlist, queue_t *q)
5163{
5164	while (q != NULL) {
5165		sqlist_insert(sqlist, q->q_syncq);
5166
5167		if (_SAMESTR(q))
5168			q = q->q_next;
5169		else if (!(q->q_flag & QREADR))
5170			q = _RD(q);
5171		else
5172			q = NULL;
5173	}
5174}
5175
5176/*
5177 * Allocate and build a list of all syncqs in a stream and the syncq(s)
5178 * associated with the "q" parameter. The resulting list is sorted in a
5179 * canonical order and is free of duplicates.
5180 * Assumes the passed queue is a _RD(q).
5181 */
5182static sqlist_t *
5183sqlist_build(queue_t *q, struct stdata *stp, boolean_t do_twist)
5184{
5185	sqlist_t *sqlist = sqlist_alloc(stp, KM_SLEEP);
5186
5187	/*
5188	 * start with the current queue/qpair
5189	 */
5190	ASSERT(q->q_flag & QREADR);
5191
5192	sqlist_insert(sqlist, q->q_syncq);
5193	sqlist_insert(sqlist, _WR(q)->q_syncq);
5194
5195	sqlist_insertall(sqlist, stp->sd_wrq);
5196	if (do_twist)
5197		sqlist_insertall(sqlist, stp->sd_mate->sd_wrq);
5198
5199	return (sqlist);
5200}
5201
5202static sqlist_t *
5203sqlist_alloc(struct stdata *stp, int kmflag)
5204{
5205	size_t sqlist_size;
5206	sqlist_t *sqlist;
5207
5208	/*
5209	 * Allocate 2 syncql_t's for each pushed module. Note that
5210	 * the sqlist_t structure already has 4 syncql_t's built in:
5211	 * 2 for the stream head, and 2 for the driver/other stream head.
5212	 */
5213	sqlist_size = 2 * sizeof (syncql_t) * stp->sd_pushcnt +
5214	    sizeof (sqlist_t);
5215	if (STRMATED(stp))
5216		sqlist_size += 2 * sizeof (syncql_t) * stp->sd_mate->sd_pushcnt;
5217	sqlist = kmem_alloc(sqlist_size, kmflag);
5218
5219	sqlist->sqlist_head = NULL;
5220	sqlist->sqlist_size = sqlist_size;
5221	sqlist->sqlist_index = 0;
5222
5223	return (sqlist);
5224}
5225
5226/*
5227 * Free the list created by sqlist_alloc()
5228 */
5229static void
5230sqlist_free(sqlist_t *sqlist)
5231{
5232	kmem_free(sqlist, sqlist->sqlist_size);
5233}
5234
5235/*
5236 * Prevent any new entries into any syncq in this stream.
5237 * Used by freezestr.
5238 */
5239void
5240strblock(queue_t *q)
5241{
5242	struct stdata	*stp;
5243	syncql_t	*sql;
5244	sqlist_t	*sqlist;
5245
5246	q = _RD(q);
5247
5248	stp = STREAM(q);
5249	ASSERT(stp != NULL);
5250
5251	/*
5252	 * Get a sorted list with all the duplicates removed containing
5253	 * all the syncqs referenced by this stream.
5254	 */
5255	sqlist = sqlist_build(q, stp, B_FALSE);
5256	for (sql = sqlist->sqlist_head; sql != NULL; sql = sql->sql_next)
5257		blocksq(sql->sql_sq, SQ_FROZEN, -1);
5258	sqlist_free(sqlist);
5259}
5260
5261/*
5262 * Release the block on new entries into this stream
5263 */
5264void
5265strunblock(queue_t *q)
5266{
5267	struct stdata	*stp;
5268	syncql_t	*sql;
5269	sqlist_t	*sqlist;
5270	int		drain_needed;
5271
5272	q = _RD(q);
5273
5274	/*
5275	 * Get a sorted list with all the duplicates removed containing
5276	 * all the syncqs referenced by this stream.
5277	 * Have to drop the SQ_FROZEN flag on all the syncqs before
5278	 * starting to drain them; otherwise the draining might
5279	 * cause a freezestr in some module on the stream (which
5280	 * would deadlock).
5281	 */
5282	stp = STREAM(q);
5283	ASSERT(stp != NULL);
5284	sqlist = sqlist_build(q, stp, B_FALSE);
5285	drain_needed = 0;
5286	for (sql = sqlist->sqlist_head; sql != NULL; sql = sql->sql_next)
5287		drain_needed += dropsq(sql->sql_sq, SQ_FROZEN);
5288	if (drain_needed) {
5289		for (sql = sqlist->sqlist_head; sql != NULL;
5290		    sql = sql->sql_next)
5291			emptysq(sql->sql_sq);
5292	}
5293	sqlist_free(sqlist);
5294}
5295
5296#ifdef DEBUG
5297static int
5298qprocsareon(queue_t *rq)
5299{
5300	if (rq->q_next == NULL)
5301		return (0);
5302	return (_WR(rq->q_next)->q_next == _WR(rq));
5303}
5304
5305int
5306qclaimed(queue_t *q)
5307{
5308	uint_t count;
5309
5310	count = q->q_syncq->sq_count;
5311	SUM_SQ_PUTCOUNTS(q->q_syncq, count);
5312	return (count != 0);
5313}
5314
5315/*
5316 * Check if anyone has frozen this stream with freezestr
5317 */
5318int
5319frozenstr(queue_t *q)
5320{
5321	return ((q->q_syncq->sq_flags & SQ_FROZEN) != 0);
5322}
5323#endif /* DEBUG */
5324
5325/*
5326 * Enter a queue.
5327 * Obsoleted interface. Should not be used.
5328 */
5329void
5330enterq(queue_t *q)
5331{
5332	entersq(q->q_syncq, SQ_CALLBACK);
5333}
5334
5335void
5336leaveq(queue_t *q)
5337{
5338	leavesq(q->q_syncq, SQ_CALLBACK);
5339}
5340
5341/*
5342 * Enter a perimeter. c_inner and c_outer specifies which concurrency bits
5343 * to check.
5344 * Wait if SQ_QUEUED is set to preserve ordering between messages and qwriter
5345 * calls and the running of open, close and service procedures.
5346 *
5347 * If c_inner bit is set no need to grab sq_putlocks since we don't care
5348 * if other threads have entered or are entering put entry point.
5349 *
5350 * If c_inner bit is set it might have been possible to use
5351 * sq_putlocks/sq_putcounts instead of SQLOCK/sq_count (e.g. to optimize
5352 * open/close path for IP) but since the count may need to be decremented in
5353 * qwait() we wouldn't know which counter to decrement. Currently counter is
5354 * selected by current cpu_seqid and current CPU can change at any moment. XXX
5355 * in the future we might use curthread id bits to select the counter and this
5356 * would stay constant across routine calls.
5357 */
5358void
5359entersq(syncq_t *sq, int entrypoint)
5360{
5361	uint16_t	count = 0;
5362	uint16_t	flags;
5363	uint16_t	waitflags = SQ_STAYAWAY | SQ_EVENTS | SQ_EXCL;
5364	uint16_t	type;
5365	uint_t		c_inner = entrypoint & SQ_CI;
5366	uint_t		c_outer = entrypoint & SQ_CO;
5367
5368	/*
5369	 * Increment ref count to keep closes out of this queue.
5370	 */
5371	ASSERT(sq);
5372	ASSERT(c_inner && c_outer);
5373	mutex_enter(SQLOCK(sq));
5374	flags = sq->sq_flags;
5375	type = sq->sq_type;
5376	if (!(type & c_inner)) {
5377		/* Make sure all putcounts now use slowlock. */
5378		count = sq->sq_count;
5379		SQ_PUTLOCKS_ENTER(sq);
5380		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
5381		SUM_SQ_PUTCOUNTS(sq, count);
5382		sq->sq_needexcl++;
5383		ASSERT(sq->sq_needexcl != 0);	/* wraparound */
5384		waitflags |= SQ_MESSAGES;
5385	}
5386	/*
5387	 * Wait until we can enter the inner perimeter.
5388	 * If we want exclusive access we wait until sq_count is 0.
5389	 * We have to do this before entering the outer perimeter in order
5390	 * to preserve put/close message ordering.
5391	 */
5392	while ((flags & waitflags) || (!(type & c_inner) && count != 0)) {
5393		sq->sq_flags = flags | SQ_WANTWAKEUP;
5394		if (!(type & c_inner)) {
5395			SQ_PUTLOCKS_EXIT(sq);
5396		}
5397		cv_wait(&sq->sq_wait, SQLOCK(sq));
5398		if (!(type & c_inner)) {
5399			count = sq->sq_count;
5400			SQ_PUTLOCKS_ENTER(sq);
5401			SUM_SQ_PUTCOUNTS(sq, count);
5402		}
5403		flags = sq->sq_flags;
5404	}
5405
5406	if (!(type & c_inner)) {
5407		ASSERT(sq->sq_needexcl > 0);
5408		sq->sq_needexcl--;
5409		if (sq->sq_needexcl == 0) {
5410			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
5411		}
5412	}
5413
5414	/* Check if we need to enter the outer perimeter */
5415	if (!(type & c_outer)) {
5416		/*
5417		 * We have to enter the outer perimeter exclusively before
5418		 * we can increment sq_count to avoid deadlock. This implies
5419		 * that we have to re-check sq_flags and sq_count.
5420		 *
5421		 * is it possible to have c_inner set when c_outer is not set?
5422		 */
5423		if (!(type & c_inner)) {
5424			SQ_PUTLOCKS_EXIT(sq);
5425		}
5426		mutex_exit(SQLOCK(sq));
5427		outer_enter(sq->sq_outer, SQ_GOAWAY);
5428		mutex_enter(SQLOCK(sq));
5429		flags = sq->sq_flags;
5430		/*
5431		 * there should be no need to recheck sq_putcounts
5432		 * because outer_enter() has already waited for them to clear
5433		 * after setting SQ_WRITER.
5434		 */
5435		count = sq->sq_count;
5436#ifdef DEBUG
5437		/*
5438		 * SUMCHECK_SQ_PUTCOUNTS should return the sum instead
5439		 * of doing an ASSERT internally. Others should do
5440		 * something like
5441		 *	 ASSERT(SUMCHECK_SQ_PUTCOUNTS(sq) == 0);
5442		 * without the need to #ifdef DEBUG it.
5443		 */
5444		SUMCHECK_SQ_PUTCOUNTS(sq, 0);
5445#endif
5446		while ((flags & (SQ_EXCL|SQ_BLOCKED|SQ_FROZEN)) ||
5447		    (!(type & c_inner) && count != 0)) {
5448			sq->sq_flags = flags | SQ_WANTWAKEUP;
5449			cv_wait(&sq->sq_wait, SQLOCK(sq));
5450			count = sq->sq_count;
5451			flags = sq->sq_flags;
5452		}
5453	}
5454
5455	sq->sq_count++;
5456	ASSERT(sq->sq_count != 0);	/* Wraparound */
5457	if (!(type & c_inner)) {
5458		/* Exclusive entry */
5459		ASSERT(sq->sq_count == 1);
5460		sq->sq_flags |= SQ_EXCL;
5461		if (type & c_outer) {
5462			SQ_PUTLOCKS_EXIT(sq);
5463		}
5464	}
5465	mutex_exit(SQLOCK(sq));
5466}
5467
5468/*
5469 * Leave a syncq. Announce to framework that closes may proceed.
5470 * c_inner and c_outer specify which concurrency bits to check.
5471 *
5472 * Must never be called from driver or module put entry point.
5473 *
5474 * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
5475 * sq_putlocks are used.
5476 */
5477void
5478leavesq(syncq_t *sq, int entrypoint)
5479{
5480	uint16_t	flags;
5481	uint16_t	type;
5482	uint_t		c_outer = entrypoint & SQ_CO;
5483#ifdef DEBUG
5484	uint_t		c_inner = entrypoint & SQ_CI;
5485#endif
5486
5487	/*
5488	 * Decrement ref count, drain the syncq if possible, and wake up
5489	 * any waiting close.
5490	 */
5491	ASSERT(sq);
5492	ASSERT(c_inner && c_outer);
5493	mutex_enter(SQLOCK(sq));
5494	flags = sq->sq_flags;
5495	type = sq->sq_type;
5496	if (flags & (SQ_QUEUED|SQ_WANTWAKEUP|SQ_WANTEXWAKEUP)) {
5497
5498		if (flags & SQ_WANTWAKEUP) {
5499			flags &= ~SQ_WANTWAKEUP;
5500			cv_broadcast(&sq->sq_wait);
5501		}
5502		if (flags & SQ_WANTEXWAKEUP) {
5503			flags &= ~SQ_WANTEXWAKEUP;
5504			cv_broadcast(&sq->sq_exitwait);
5505		}
5506
5507		if ((flags & SQ_QUEUED) && !(flags & SQ_STAYAWAY)) {
5508			/*
5509			 * The syncq needs to be drained. "Exit" the syncq
5510			 * before calling drain_syncq.
5511			 */
5512			ASSERT(sq->sq_count != 0);
5513			sq->sq_count--;
5514			ASSERT((flags & SQ_EXCL) || (type & c_inner));
5515			sq->sq_flags = flags & ~SQ_EXCL;
5516			drain_syncq(sq);
5517			ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
5518			/* Check if we need to exit the outer perimeter */
5519			/* XXX will this ever be true? */
5520			if (!(type & c_outer))
5521				outer_exit(sq->sq_outer);
5522			return;
5523		}
5524	}
5525	ASSERT(sq->sq_count != 0);
5526	sq->sq_count--;
5527	ASSERT((flags & SQ_EXCL) || (type & c_inner));
5528	sq->sq_flags = flags & ~SQ_EXCL;
5529	mutex_exit(SQLOCK(sq));
5530
5531	/* Check if we need to exit the outer perimeter */
5532	if (!(sq->sq_type & c_outer))
5533		outer_exit(sq->sq_outer);
5534}
5535
5536/*
5537 * Prevent q_next from changing in this stream by incrementing sq_count.
5538 *
5539 * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
5540 * sq_putlocks are used.
5541 */
5542void
5543claimq(queue_t *qp)
5544{
5545	syncq_t	*sq = qp->q_syncq;
5546
5547	mutex_enter(SQLOCK(sq));
5548	sq->sq_count++;
5549	ASSERT(sq->sq_count != 0);	/* Wraparound */
5550	mutex_exit(SQLOCK(sq));
5551}
5552
5553/*
5554 * Undo claimq.
5555 *
5556 * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
5557 * sq_putlocks are used.
5558 */
5559void
5560releaseq(queue_t *qp)
5561{
5562	syncq_t	*sq = qp->q_syncq;
5563	uint16_t flags;
5564
5565	mutex_enter(SQLOCK(sq));
5566	ASSERT(sq->sq_count > 0);
5567	sq->sq_count--;
5568
5569	flags = sq->sq_flags;
5570	if (flags & (SQ_WANTWAKEUP|SQ_QUEUED)) {
5571		if (flags & SQ_WANTWAKEUP) {
5572			flags &= ~SQ_WANTWAKEUP;
5573			cv_broadcast(&sq->sq_wait);
5574		}
5575		sq->sq_flags = flags;
5576		if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
5577			/*
5578			 * To prevent potential recursive invocation of
5579			 * drain_syncq we do not call drain_syncq if count is
5580			 * non-zero.
5581			 */
5582			if (sq->sq_count == 0) {
5583				drain_syncq(sq);
5584				return;
5585			} else
5586				sqenable(sq);
5587		}
5588	}
5589	mutex_exit(SQLOCK(sq));
5590}
5591
5592/*
5593 * Prevent q_next from changing in this stream by incrementing sd_refcnt.
5594 */
5595void
5596claimstr(queue_t *qp)
5597{
5598	struct stdata *stp = STREAM(qp);
5599
5600	mutex_enter(&stp->sd_reflock);
5601	stp->sd_refcnt++;
5602	ASSERT(stp->sd_refcnt != 0);	/* Wraparound */
5603	mutex_exit(&stp->sd_reflock);
5604}
5605
5606/*
5607 * Undo claimstr.
5608 */
5609void
5610releasestr(queue_t *qp)
5611{
5612	struct stdata *stp = STREAM(qp);
5613
5614	mutex_enter(&stp->sd_reflock);
5615	ASSERT(stp->sd_refcnt != 0);
5616	if (--stp->sd_refcnt == 0)
5617		cv_broadcast(&stp->sd_refmonitor);
5618	mutex_exit(&stp->sd_reflock);
5619}
5620
5621static syncq_t *
5622new_syncq(void)
5623{
5624	return (kmem_cache_alloc(syncq_cache, KM_SLEEP));
5625}
5626
5627static void
5628free_syncq(syncq_t *sq)
5629{
5630	ASSERT(sq->sq_head == NULL);
5631	ASSERT(sq->sq_outer == NULL);
5632	ASSERT(sq->sq_callbpend == NULL);
5633	ASSERT((sq->sq_onext == NULL && sq->sq_oprev == NULL) ||
5634	    (sq->sq_onext == sq && sq->sq_oprev == sq));
5635
5636	if (sq->sq_ciputctrl != NULL) {
5637		ASSERT(sq->sq_nciputctrl == n_ciputctrl - 1);
5638		SUMCHECK_CIPUTCTRL_COUNTS(sq->sq_ciputctrl,
5639		    sq->sq_nciputctrl, 0);
5640		ASSERT(ciputctrl_cache != NULL);
5641		kmem_cache_free(ciputctrl_cache, sq->sq_ciputctrl);
5642	}
5643
5644	sq->sq_tail = NULL;
5645	sq->sq_evhead = NULL;
5646	sq->sq_evtail = NULL;
5647	sq->sq_ciputctrl = NULL;
5648	sq->sq_nciputctrl = 0;
5649	sq->sq_count = 0;
5650	sq->sq_rmqcount = 0;
5651	sq->sq_callbflags = 0;
5652	sq->sq_cancelid = 0;
5653	sq->sq_next = NULL;
5654	sq->sq_needexcl = 0;
5655	sq->sq_svcflags = 0;
5656	sq->sq_nqueues = 0;
5657	sq->sq_pri = 0;
5658	sq->sq_onext = NULL;
5659	sq->sq_oprev = NULL;
5660	sq->sq_flags = 0;
5661	sq->sq_type = 0;
5662	sq->sq_servcount = 0;
5663
5664	kmem_cache_free(syncq_cache, sq);
5665}
5666
5667/* Outer perimeter code */
5668
5669/*
5670 * The outer syncq uses the fields and flags in the syncq slightly
5671 * differently from the inner syncqs.
5672 *	sq_count	Incremented when there are pending or running
5673 *			writers at the outer perimeter to prevent the set of
5674 *			inner syncqs that belong to the outer perimeter from
5675 *			changing.
5676 *	sq_head/tail	List of deferred qwriter(OUTER) operations.
5677 *
5678 *	SQ_BLOCKED	Set to prevent traversing of sq_next,sq_prev while
5679 *			inner syncqs are added to or removed from the
5680 *			outer perimeter.
5681 *	SQ_QUEUED	sq_head/tail has messages or events queued.
5682 *
5683 *	SQ_WRITER	A thread is currently traversing all the inner syncqs
5684 *			setting the SQ_WRITER flag.
5685 */
5686
5687/*
5688 * Get write access at the outer perimeter.
5689 * Note that read access is done by entersq, putnext, and put by simply
5690 * incrementing sq_count in the inner syncq.
5691 *
5692 * Waits until "flags" is no longer set in the outer to prevent multiple
5693 * threads from having write access at the same time. SQ_WRITER has to be part
5694 * of "flags".
5695 *
5696 * Increases sq_count on the outer syncq to keep away outer_insert/remove
5697 * until the outer_exit is finished.
5698 *
5699 * outer_enter is vulnerable to starvation since it does not prevent new
5700 * threads from entering the inner syncqs while it is waiting for sq_count to
5701 * go to zero.
5702 */
5703void
5704outer_enter(syncq_t *outer, uint16_t flags)
5705{
5706	syncq_t	*sq;
5707	int	wait_needed;
5708	uint16_t	count;
5709
5710	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5711	    outer->sq_oprev != NULL);
5712	ASSERT(flags & SQ_WRITER);
5713
5714retry:
5715	mutex_enter(SQLOCK(outer));
5716	while (outer->sq_flags & flags) {
5717		outer->sq_flags |= SQ_WANTWAKEUP;
5718		cv_wait(&outer->sq_wait, SQLOCK(outer));
5719	}
5720
5721	ASSERT(!(outer->sq_flags & SQ_WRITER));
5722	outer->sq_flags |= SQ_WRITER;
5723	outer->sq_count++;
5724	ASSERT(outer->sq_count != 0);	/* wraparound */
5725	wait_needed = 0;
5726	/*
5727	 * Set SQ_WRITER on all the inner syncqs while holding
5728	 * the SQLOCK on the outer syncq. This ensures that the changing
5729	 * of SQ_WRITER is atomic under the outer SQLOCK.
5730	 */
5731	for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
5732		mutex_enter(SQLOCK(sq));
5733		count = sq->sq_count;
5734		SQ_PUTLOCKS_ENTER(sq);
5735		sq->sq_flags |= SQ_WRITER;
5736		SUM_SQ_PUTCOUNTS(sq, count);
5737		if (count != 0)
5738			wait_needed = 1;
5739		SQ_PUTLOCKS_EXIT(sq);
5740		mutex_exit(SQLOCK(sq));
5741	}
5742	mutex_exit(SQLOCK(outer));
5743
5744	/*
5745	 * Get everybody out of the syncqs sequentially.
5746	 * Note that we don't actually need to acquire the PUTLOCKS, since
5747	 * we have already cleared the fastbit, and set QWRITER.  By
5748	 * definition, the count can not increase since putnext will
5749	 * take the slowlock path (and the purpose of acquiring the
5750	 * putlocks was to make sure it didn't increase while we were
5751	 * waiting).
5752	 *
5753	 * Note that we still acquire the PUTLOCKS to be safe.
5754	 */
5755	if (wait_needed) {
5756		for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
5757			mutex_enter(SQLOCK(sq));
5758			count = sq->sq_count;
5759			SQ_PUTLOCKS_ENTER(sq);
5760			SUM_SQ_PUTCOUNTS(sq, count);
5761			while (count != 0) {
5762				sq->sq_flags |= SQ_WANTWAKEUP;
5763				SQ_PUTLOCKS_EXIT(sq);
5764				cv_wait(&sq->sq_wait, SQLOCK(sq));
5765				count = sq->sq_count;
5766				SQ_PUTLOCKS_ENTER(sq);
5767				SUM_SQ_PUTCOUNTS(sq, count);
5768			}
5769			SQ_PUTLOCKS_EXIT(sq);
5770			mutex_exit(SQLOCK(sq));
5771		}
5772		/*
5773		 * Verify that none of the flags got set while we
5774		 * were waiting for the sq_counts to drop.
5775		 * If this happens we exit and retry entering the
5776		 * outer perimeter.
5777		 */
5778		mutex_enter(SQLOCK(outer));
5779		if (outer->sq_flags & (flags & ~SQ_WRITER)) {
5780			mutex_exit(SQLOCK(outer));
5781			outer_exit(outer);
5782			goto retry;
5783		}
5784		mutex_exit(SQLOCK(outer));
5785	}
5786}
5787
5788/*
5789 * Drop the write access at the outer perimeter.
5790 * Read access is dropped implicitly (by putnext, put, and leavesq) by
5791 * decrementing sq_count.
5792 */
5793void
5794outer_exit(syncq_t *outer)
5795{
5796	syncq_t	*sq;
5797	int	 drain_needed;
5798	uint16_t flags;
5799
5800	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5801	    outer->sq_oprev != NULL);
5802	ASSERT(MUTEX_NOT_HELD(SQLOCK(outer)));
5803
5804	/*
5805	 * Atomically (from the perspective of threads calling become_writer)
5806	 * drop the write access at the outer perimeter by holding
5807	 * SQLOCK(outer) across all the dropsq calls and the resetting of
5808	 * SQ_WRITER.
5809	 * This defines a locking order between the outer perimeter
5810	 * SQLOCK and the inner perimeter SQLOCKs.
5811	 */
5812	mutex_enter(SQLOCK(outer));
5813	flags = outer->sq_flags;
5814	ASSERT(outer->sq_flags & SQ_WRITER);
5815	if (flags & SQ_QUEUED) {
5816		write_now(outer);
5817		flags = outer->sq_flags;
5818	}
5819
5820	/*
5821	 * sq_onext is stable since sq_count has not yet been decreased.
5822	 * Reset the SQ_WRITER flags in all syncqs.
5823	 * After dropping SQ_WRITER on the outer syncq we empty all the
5824	 * inner syncqs.
5825	 */
5826	drain_needed = 0;
5827	for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext)
5828		drain_needed += dropsq(sq, SQ_WRITER);
5829	ASSERT(!(outer->sq_flags & SQ_QUEUED));
5830	flags &= ~SQ_WRITER;
5831	if (drain_needed) {
5832		outer->sq_flags = flags;
5833		mutex_exit(SQLOCK(outer));
5834		for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext)
5835			emptysq(sq);
5836		mutex_enter(SQLOCK(outer));
5837		flags = outer->sq_flags;
5838	}
5839	if (flags & SQ_WANTWAKEUP) {
5840		flags &= ~SQ_WANTWAKEUP;
5841		cv_broadcast(&outer->sq_wait);
5842	}
5843	outer->sq_flags = flags;
5844	ASSERT(outer->sq_count > 0);
5845	outer->sq_count--;
5846	mutex_exit(SQLOCK(outer));
5847}
5848
5849/*
5850 * Add another syncq to an outer perimeter.
5851 * Block out all other access to the outer perimeter while it is being
5852 * changed using blocksq.
5853 * Assumes that the caller has *not* done an outer_enter.
5854 *
5855 * Vulnerable to starvation in blocksq.
5856 */
5857static void
5858outer_insert(syncq_t *outer, syncq_t *sq)
5859{
5860	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5861	    outer->sq_oprev != NULL);
5862	ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
5863	    sq->sq_oprev == NULL);	/* Can't be in an outer perimeter */
5864
5865	/* Get exclusive access to the outer perimeter list */
5866	blocksq(outer, SQ_BLOCKED, 0);
5867	ASSERT(outer->sq_flags & SQ_BLOCKED);
5868	ASSERT(!(outer->sq_flags & SQ_WRITER));
5869
5870	mutex_enter(SQLOCK(sq));
5871	sq->sq_outer = outer;
5872	outer->sq_onext->sq_oprev = sq;
5873	sq->sq_onext = outer->sq_onext;
5874	outer->sq_onext = sq;
5875	sq->sq_oprev = outer;
5876	mutex_exit(SQLOCK(sq));
5877	unblocksq(outer, SQ_BLOCKED, 1);
5878}
5879
5880/*
5881 * Remove a syncq from an outer perimeter.
5882 * Block out all other access to the outer perimeter while it is being
5883 * changed using blocksq.
5884 * Assumes that the caller has *not* done an outer_enter.
5885 *
5886 * Vulnerable to starvation in blocksq.
5887 */
5888static void
5889outer_remove(syncq_t *outer, syncq_t *sq)
5890{
5891	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5892	    outer->sq_oprev != NULL);
5893	ASSERT(sq->sq_outer == outer);
5894
5895	/* Get exclusive access to the outer perimeter list */
5896	blocksq(outer, SQ_BLOCKED, 0);
5897	ASSERT(outer->sq_flags & SQ_BLOCKED);
5898	ASSERT(!(outer->sq_flags & SQ_WRITER));
5899
5900	mutex_enter(SQLOCK(sq));
5901	sq->sq_outer = NULL;
5902	sq->sq_onext->sq_oprev = sq->sq_oprev;
5903	sq->sq_oprev->sq_onext = sq->sq_onext;
5904	sq->sq_oprev = sq->sq_onext = NULL;
5905	mutex_exit(SQLOCK(sq));
5906	unblocksq(outer, SQ_BLOCKED, 1);
5907}
5908
5909/*
5910 * Queue a deferred qwriter(OUTER) callback for this outer perimeter.
5911 * If this is the first callback for this outer perimeter then add
5912 * this outer perimeter to the list of outer perimeters that
5913 * the qwriter_outer_thread will process.
5914 *
5915 * Increments sq_count in the outer syncq to prevent the membership
5916 * of the outer perimeter (in terms of inner syncqs) to change while
5917 * the callback is pending.
5918 */
5919static void
5920queue_writer(syncq_t *outer, void (*func)(), queue_t *q, mblk_t *mp)
5921{
5922	ASSERT(MUTEX_HELD(SQLOCK(outer)));
5923
5924	mp->b_prev = (mblk_t *)func;
5925	mp->b_queue = q;
5926	mp->b_next = NULL;
5927	outer->sq_count++;	/* Decremented when dequeued */
5928	ASSERT(outer->sq_count != 0);	/* Wraparound */
5929	if (outer->sq_evhead == NULL) {
5930		/* First message. */
5931		outer->sq_evhead = outer->sq_evtail = mp;
5932		outer->sq_flags |= SQ_EVENTS;
5933		mutex_exit(SQLOCK(outer));
5934		STRSTAT(qwr_outer);
5935		(void) taskq_dispatch(streams_taskq,
5936		    (task_func_t *)qwriter_outer_service, outer, TQ_SLEEP);
5937	} else {
5938		ASSERT(outer->sq_flags & SQ_EVENTS);
5939		outer->sq_evtail->b_next = mp;
5940		outer->sq_evtail = mp;
5941		mutex_exit(SQLOCK(outer));
5942	}
5943}
5944
5945/*
5946 * Try and upgrade to write access at the outer perimeter. If this can
5947 * not be done without blocking then queue the callback to be done
5948 * by the qwriter_outer_thread.
5949 *
5950 * This routine can only be called from put or service procedures plus
5951 * asynchronous callback routines that have properly entered the queue (with
5952 * entersq). Thus qwriter(OUTER) assumes the caller has one claim on the syncq
5953 * associated with q.
5954 */
5955void
5956qwriter_outer(queue_t *q, mblk_t *mp, void (*func)())
5957{
5958	syncq_t	*osq, *sq, *outer;
5959	int	failed;
5960	uint16_t flags;
5961
5962	osq = q->q_syncq;
5963	outer = osq->sq_outer;
5964	if (outer == NULL)
5965		panic("qwriter(PERIM_OUTER): no outer perimeter");
5966	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5967	    outer->sq_oprev != NULL);
5968
5969	mutex_enter(SQLOCK(outer));
5970	flags = outer->sq_flags;
5971	/*
5972	 * If some thread is traversing sq_next, or if we are blocked by
5973	 * outer_insert or outer_remove, or if the we already have queued
5974	 * callbacks, then queue this callback for later processing.
5975	 *
5976	 * Also queue the qwriter for an interrupt thread in order
5977	 * to reduce the time spent running at high IPL.
5978	 * to identify there are events.
5979	 */
5980	if ((flags & SQ_GOAWAY) || (curthread->t_pri >= kpreemptpri)) {
5981		/*
5982		 * Queue the become_writer request.
5983		 * The queueing is atomic under SQLOCK(outer) in order
5984		 * to synchronize with outer_exit.
5985		 * queue_writer will drop the outer SQLOCK
5986		 */
5987		if (flags & SQ_BLOCKED) {
5988			/* Must set SQ_WRITER on inner perimeter */
5989			mutex_enter(SQLOCK(osq));
5990			osq->sq_flags |= SQ_WRITER;
5991			mutex_exit(SQLOCK(osq));
5992		} else {
5993			if (!(flags & SQ_WRITER)) {
5994				/*
5995				 * The outer could have been SQ_BLOCKED thus
5996				 * SQ_WRITER might not be set on the inner.
5997				 */
5998				mutex_enter(SQLOCK(osq));
5999				osq->sq_flags |= SQ_WRITER;
6000				mutex_exit(SQLOCK(osq));
6001			}
6002			ASSERT(osq->sq_flags & SQ_WRITER);
6003		}
6004		queue_writer(outer, func, q, mp);
6005		return;
6006	}
6007	/*
6008	 * We are half-way to exclusive access to the outer perimeter.
6009	 * Prevent any outer_enter, qwriter(OUTER), or outer_insert/remove
6010	 * while the inner syncqs are traversed.
6011	 */
6012	outer->sq_count++;
6013	ASSERT(outer->sq_count != 0);	/* wraparound */
6014	flags |= SQ_WRITER;
6015	/*
6016	 * Check if we can run the function immediately. Mark all
6017	 * syncqs with the writer flag to prevent new entries into
6018	 * put and service procedures.
6019	 *
6020	 * Set SQ_WRITER on all the inner syncqs while holding
6021	 * the SQLOCK on the outer syncq. This ensures that the changing
6022	 * of SQ_WRITER is atomic under the outer SQLOCK.
6023	 */
6024	failed = 0;
6025	for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
6026		uint16_t count;
6027		uint_t	maxcnt = (sq == osq) ? 1 : 0;
6028
6029		mutex_enter(SQLOCK(sq));
6030		count = sq->sq_count;
6031		SQ_PUTLOCKS_ENTER(sq);
6032		SUM_SQ_PUTCOUNTS(sq, count);
6033		if (sq->sq_count > maxcnt)
6034			failed = 1;
6035		sq->sq_flags |= SQ_WRITER;
6036		SQ_PUTLOCKS_EXIT(sq);
6037		mutex_exit(SQLOCK(sq));
6038	}
6039	if (failed) {
6040		/*
6041		 * Some other thread has a read claim on the outer perimeter.
6042		 * Queue the callback for deferred processing.
6043		 *
6044		 * queue_writer will set SQ_QUEUED before we drop SQ_WRITER
6045		 * so that other qwriter(OUTER) calls will queue their
6046		 * callbacks as well. queue_writer increments sq_count so we
6047		 * decrement to compensate for the our increment.
6048		 *
6049		 * Dropping SQ_WRITER enables the writer thread to work
6050		 * on this outer perimeter.
6051		 */
6052		outer->sq_flags = flags;
6053		queue_writer(outer, func, q, mp);
6054		/* queue_writer dropper the lock */
6055		mutex_enter(SQLOCK(outer));
6056		ASSERT(outer->sq_count > 0);
6057		outer->sq_count--;
6058		ASSERT(outer->sq_flags & SQ_WRITER);
6059		flags = outer->sq_flags;
6060		flags &= ~SQ_WRITER;
6061		if (flags & SQ_WANTWAKEUP) {
6062			flags &= ~SQ_WANTWAKEUP;
6063			cv_broadcast(&outer->sq_wait);
6064		}
6065		outer->sq_flags = flags;
6066		mutex_exit(SQLOCK(outer));
6067		return;
6068	} else {
6069		outer->sq_flags = flags;
6070		mutex_exit(SQLOCK(outer));
6071	}
6072
6073	/* Can run it immediately */
6074	(*func)(q, mp);
6075
6076	outer_exit(outer);
6077}
6078
6079/*
6080 * Dequeue all writer callbacks from the outer perimeter and run them.
6081 */
6082static void
6083write_now(syncq_t *outer)
6084{
6085	mblk_t		*mp;
6086	queue_t		*q;
6087	void	(*func)();
6088
6089	ASSERT(MUTEX_HELD(SQLOCK(outer)));
6090	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
6091	    outer->sq_oprev != NULL);
6092	while ((mp = outer->sq_evhead) != NULL) {
6093		/*
6094		 * queues cannot be placed on the queuelist on the outer
6095		 * perimeter.
6096		 */
6097		ASSERT(!(outer->sq_flags & SQ_MESSAGES));
6098		ASSERT((outer->sq_flags & SQ_EVENTS));
6099
6100		outer->sq_evhead = mp->b_next;
6101		if (outer->sq_evhead == NULL) {
6102			outer->sq_evtail = NULL;
6103			outer->sq_flags &= ~SQ_EVENTS;
6104		}
6105		ASSERT(outer->sq_count != 0);
6106		outer->sq_count--;	/* Incremented when enqueued. */
6107		mutex_exit(SQLOCK(outer));
6108		/*
6109		 * Drop the message if the queue is closing.
6110		 * Make sure that the queue is "claimed" when the callback
6111		 * is run in order to satisfy various ASSERTs.
6112		 */
6113		q = mp->b_queue;
6114		func = (void (*)())mp->b_prev;
6115		ASSERT(func != NULL);
6116		mp->b_next = mp->b_prev = NULL;
6117		if (q->q_flag & QWCLOSE) {
6118			freemsg(mp);
6119		} else {
6120			claimq(q);
6121			(*func)(q, mp);
6122			releaseq(q);
6123		}
6124		mutex_enter(SQLOCK(outer));
6125	}
6126	ASSERT(MUTEX_HELD(SQLOCK(outer)));
6127}
6128
6129/*
6130 * The list of messages on the inner syncq is effectively hashed
6131 * by destination queue.  These destination queues are doubly
6132 * linked lists (hopefully) in priority order.  Messages are then
6133 * put on the queue referenced by the q_sqhead/q_sqtail elements.
6134 * Additional messages are linked together by the b_next/b_prev
6135 * elements in the mblk, with (similar to putq()) the first message
6136 * having a NULL b_prev and the last message having a NULL b_next.
6137 *
6138 * Events, such as qwriter callbacks, are put onto a list in FIFO
6139 * order referenced by sq_evhead, and sq_evtail.  This is a singly
6140 * linked list, and messages here MUST be processed in the order queued.
6141 */
6142
6143/*
6144 * Run the events on the syncq event list (sq_evhead).
6145 * Assumes there is only one claim on the syncq, it is
6146 * already exclusive (SQ_EXCL set), and the SQLOCK held.
6147 * Messages here are processed in order, with the SQ_EXCL bit
6148 * held all the way through till the last message is processed.
6149 */
6150void
6151sq_run_events(syncq_t *sq)
6152{
6153	mblk_t		*bp;
6154	queue_t		*qp;
6155	uint16_t	flags = sq->sq_flags;
6156	void		(*func)();
6157
6158	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6159	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6160	    sq->sq_oprev == NULL) ||
6161	    (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6162	    sq->sq_oprev != NULL));
6163
6164	ASSERT(flags & SQ_EXCL);
6165	ASSERT(sq->sq_count == 1);
6166
6167	/*
6168	 * We need to process all of the events on this list.  It
6169	 * is possible that new events will be added while we are
6170	 * away processing a callback, so on every loop, we start
6171	 * back at the beginning of the list.
6172	 */
6173	/*
6174	 * We have to reaccess sq_evhead since there is a
6175	 * possibility of a new entry while we were running
6176	 * the callback.
6177	 */
6178	for (bp = sq->sq_evhead; bp != NULL; bp = sq->sq_evhead) {
6179		ASSERT(bp->b_queue->q_syncq == sq);
6180		ASSERT(sq->sq_flags & SQ_EVENTS);
6181
6182		qp = bp->b_queue;
6183		func = (void (*)())bp->b_prev;
6184		ASSERT(func != NULL);
6185
6186		/*
6187		 * Messages from the event queue must be taken off in
6188		 * FIFO order.
6189		 */
6190		ASSERT(sq->sq_evhead == bp);
6191		sq->sq_evhead = bp->b_next;
6192
6193		if (bp->b_next == NULL) {
6194			/* Deleting last */
6195			ASSERT(sq->sq_evtail == bp);
6196			sq->sq_evtail = NULL;
6197			sq->sq_flags &= ~SQ_EVENTS;
6198		}
6199		bp->b_prev = bp->b_next = NULL;
6200		ASSERT(bp->b_datap->db_ref != 0);
6201
6202		mutex_exit(SQLOCK(sq));
6203
6204		(*func)(qp, bp);
6205
6206		mutex_enter(SQLOCK(sq));
6207		/*
6208		 * re-read the flags, since they could have changed.
6209		 */
6210		flags = sq->sq_flags;
6211		ASSERT(flags & SQ_EXCL);
6212	}
6213	ASSERT(sq->sq_evhead == NULL && sq->sq_evtail == NULL);
6214	ASSERT(!(sq->sq_flags & SQ_EVENTS));
6215
6216	if (flags & SQ_WANTWAKEUP) {
6217		flags &= ~SQ_WANTWAKEUP;
6218		cv_broadcast(&sq->sq_wait);
6219	}
6220	if (flags & SQ_WANTEXWAKEUP) {
6221		flags &= ~SQ_WANTEXWAKEUP;
6222		cv_broadcast(&sq->sq_exitwait);
6223	}
6224	sq->sq_flags = flags;
6225}
6226
6227/*
6228 * Put messages on the event list.
6229 * If we can go exclusive now, do so and process the event list, otherwise
6230 * let the last claim service this list (or wake the sqthread).
6231 * This procedure assumes SQLOCK is held.  To run the event list, it
6232 * must be called with no claims.
6233 */
6234static void
6235sqfill_events(syncq_t *sq, queue_t *q, mblk_t *mp, void (*func)())
6236{
6237	uint16_t count;
6238
6239	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6240	ASSERT(func != NULL);
6241
6242	/*
6243	 * This is a callback.  Add it to the list of callbacks
6244	 * and see about upgrading.
6245	 */
6246	mp->b_prev = (mblk_t *)func;
6247	mp->b_queue = q;
6248	mp->b_next = NULL;
6249	if (sq->sq_evhead == NULL) {
6250		sq->sq_evhead = sq->sq_evtail = mp;
6251		sq->sq_flags |= SQ_EVENTS;
6252	} else {
6253		ASSERT(sq->sq_evtail != NULL);
6254		ASSERT(sq->sq_evtail->b_next == NULL);
6255		ASSERT(sq->sq_flags & SQ_EVENTS);
6256		sq->sq_evtail->b_next = mp;
6257		sq->sq_evtail = mp;
6258	}
6259	/*
6260	 * We have set SQ_EVENTS, so threads will have to
6261	 * unwind out of the perimeter, and new entries will
6262	 * not grab a putlock.  But we still need to know
6263	 * how many threads have already made a claim to the
6264	 * syncq, so grab the putlocks, and sum the counts.
6265	 * If there are no claims on the syncq, we can upgrade
6266	 * to exclusive, and run the event list.
6267	 * NOTE: We hold the SQLOCK, so we can just grab the
6268	 * putlocks.
6269	 */
6270	count = sq->sq_count;
6271	SQ_PUTLOCKS_ENTER(sq);
6272	SUM_SQ_PUTCOUNTS(sq, count);
6273	/*
6274	 * We have no claim, so we need to check if there
6275	 * are no others, then we can upgrade.
6276	 */
6277	/*
6278	 * There are currently no claims on
6279	 * the syncq by this thread (at least on this entry). The thread who has
6280	 * the claim should drain syncq.
6281	 */
6282	if (count > 0) {
6283		/*
6284		 * Can't upgrade - other threads inside.
6285		 */
6286		SQ_PUTLOCKS_EXIT(sq);
6287		mutex_exit(SQLOCK(sq));
6288		return;
6289	}
6290	/*
6291	 * Need to set SQ_EXCL and make a claim on the syncq.
6292	 */
6293	ASSERT((sq->sq_flags & SQ_EXCL) == 0);
6294	sq->sq_flags |= SQ_EXCL;
6295	ASSERT(sq->sq_count == 0);
6296	sq->sq_count++;
6297	SQ_PUTLOCKS_EXIT(sq);
6298
6299	/* Process the events list */
6300	sq_run_events(sq);
6301
6302	/*
6303	 * Release our claim...
6304	 */
6305	sq->sq_count--;
6306
6307	/*
6308	 * And release SQ_EXCL.
6309	 * We don't need to acquire the putlocks to release
6310	 * SQ_EXCL, since we are exclusive, and hold the SQLOCK.
6311	 */
6312	sq->sq_flags &= ~SQ_EXCL;
6313
6314	/*
6315	 * sq_run_events should have released SQ_EXCL
6316	 */
6317	ASSERT(!(sq->sq_flags & SQ_EXCL));
6318
6319	/*
6320	 * If anything happened while we were running the
6321	 * events (or was there before), we need to process
6322	 * them now.  We shouldn't be exclusive sine we
6323	 * released the perimeter above (plus, we asserted
6324	 * for it).
6325	 */
6326	if (!(sq->sq_flags & SQ_STAYAWAY) && (sq->sq_flags & SQ_QUEUED))
6327		drain_syncq(sq);
6328	else
6329		mutex_exit(SQLOCK(sq));
6330}
6331
6332/*
6333 * Perform delayed processing. The caller has to make sure that it is safe
6334 * to enter the syncq (e.g. by checking that none of the SQ_STAYAWAY bits are
6335 * set).
6336 *
6337 * Assume that the caller has NO claims on the syncq.  However, a claim
6338 * on the syncq does not indicate that a thread is draining the syncq.
6339 * There may be more claims on the syncq than there are threads draining
6340 * (i.e.  #_threads_draining <= sq_count)
6341 *
6342 * drain_syncq has to terminate when one of the SQ_STAYAWAY bits gets set
6343 * in order to preserve qwriter(OUTER) ordering constraints.
6344 *
6345 * sq_putcount only needs to be checked when dispatching the queued
6346 * writer call for CIPUT sync queue, but this is handled in sq_run_events.
6347 */
6348void
6349drain_syncq(syncq_t *sq)
6350{
6351	queue_t		*qp;
6352	uint16_t	count;
6353	uint16_t	type = sq->sq_type;
6354	uint16_t	flags = sq->sq_flags;
6355	boolean_t	bg_service = sq->sq_svcflags & SQ_SERVICE;
6356
6357	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_START,
6358	    "drain_syncq start:%p", sq);
6359	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6360	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6361	    sq->sq_oprev == NULL) ||
6362	    (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6363	    sq->sq_oprev != NULL));
6364
6365	/*
6366	 * Drop SQ_SERVICE flag.
6367	 */
6368	if (bg_service)
6369		sq->sq_svcflags &= ~SQ_SERVICE;
6370
6371	/*
6372	 * If SQ_EXCL is set, someone else is processing this syncq - let him
6373	 * finish the job.
6374	 */
6375	if (flags & SQ_EXCL) {
6376		if (bg_service) {
6377			ASSERT(sq->sq_servcount != 0);
6378			sq->sq_servcount--;
6379		}
6380		mutex_exit(SQLOCK(sq));
6381		return;
6382	}
6383
6384	/*
6385	 * This routine can be called by a background thread if
6386	 * it was scheduled by a hi-priority thread.  SO, if there are
6387	 * NOT messages queued, return (remember, we have the SQLOCK,
6388	 * and it cannot change until we release it). Wakeup any waiters also.
6389	 */
6390	if (!(flags & SQ_QUEUED)) {
6391		if (flags & SQ_WANTWAKEUP) {
6392			flags &= ~SQ_WANTWAKEUP;
6393			cv_broadcast(&sq->sq_wait);
6394		}
6395		if (flags & SQ_WANTEXWAKEUP) {
6396			flags &= ~SQ_WANTEXWAKEUP;
6397			cv_broadcast(&sq->sq_exitwait);
6398		}
6399		sq->sq_flags = flags;
6400		if (bg_service) {
6401			ASSERT(sq->sq_servcount != 0);
6402			sq->sq_servcount--;
6403		}
6404		mutex_exit(SQLOCK(sq));
6405		return;
6406	}
6407
6408	/*
6409	 * If this is not a concurrent put perimeter, we need to
6410	 * become exclusive to drain.  Also, if not CIPUT, we would
6411	 * not have acquired a putlock, so we don't need to check
6412	 * the putcounts.  If not entering with a claim, we test
6413	 * for sq_count == 0.
6414	 */
6415	type = sq->sq_type;
6416	if (!(type & SQ_CIPUT)) {
6417		if (sq->sq_count > 1) {
6418			if (bg_service) {
6419				ASSERT(sq->sq_servcount != 0);
6420				sq->sq_servcount--;
6421			}
6422			mutex_exit(SQLOCK(sq));
6423			return;
6424		}
6425		sq->sq_flags |= SQ_EXCL;
6426	}
6427
6428	/*
6429	 * This is where we make a claim to the syncq.
6430	 * This can either be done by incrementing a putlock, or
6431	 * the sq_count.  But since we already have the SQLOCK
6432	 * here, we just bump the sq_count.
6433	 *
6434	 * Note that after we make a claim, we need to let the code
6435	 * fall through to the end of this routine to clean itself
6436	 * up.  A return in the while loop will put the syncq in a
6437	 * very bad state.
6438	 */
6439	sq->sq_count++;
6440	ASSERT(sq->sq_count != 0);	/* wraparound */
6441
6442	while ((flags = sq->sq_flags) & SQ_QUEUED) {
6443		/*
6444		 * If we are told to stayaway or went exclusive,
6445		 * we are done.
6446		 */
6447		if (flags & (SQ_STAYAWAY)) {
6448			break;
6449		}
6450
6451		/*
6452		 * If there are events to run, do so.
6453		 * We have one claim to the syncq, so if there are
6454		 * more than one, other threads are running.
6455		 */
6456		if (sq->sq_evhead != NULL) {
6457			ASSERT(sq->sq_flags & SQ_EVENTS);
6458
6459			count = sq->sq_count;
6460			SQ_PUTLOCKS_ENTER(sq);
6461			SUM_SQ_PUTCOUNTS(sq, count);
6462			if (count > 1) {
6463				SQ_PUTLOCKS_EXIT(sq);
6464				/* Can't upgrade - other threads inside */
6465				break;
6466			}
6467			ASSERT((flags & SQ_EXCL) == 0);
6468			sq->sq_flags = flags | SQ_EXCL;
6469			SQ_PUTLOCKS_EXIT(sq);
6470			/*
6471			 * we have the only claim, run the events,
6472			 * sq_run_events will clear the SQ_EXCL flag.
6473			 */
6474			sq_run_events(sq);
6475
6476			/*
6477			 * If this is a CIPUT perimeter, we need
6478			 * to drop the SQ_EXCL flag so we can properly
6479			 * continue draining the syncq.
6480			 */
6481			if (type & SQ_CIPUT) {
6482				ASSERT(sq->sq_flags & SQ_EXCL);
6483				sq->sq_flags &= ~SQ_EXCL;
6484			}
6485
6486			/*
6487			 * And go back to the beginning just in case
6488			 * anything changed while we were away.
6489			 */
6490			ASSERT((sq->sq_flags & SQ_EXCL) || (type & SQ_CIPUT));
6491			continue;
6492		}
6493
6494		ASSERT(sq->sq_evhead == NULL);
6495		ASSERT(!(sq->sq_flags & SQ_EVENTS));
6496
6497		/*
6498		 * Find the queue that is not draining.
6499		 *
6500		 * q_draining is protected by QLOCK which we do not hold.
6501		 * But if it was set, then a thread was draining, and if it gets
6502		 * cleared, then it was because the thread has successfully
6503		 * drained the syncq, or a GOAWAY state occurred. For the GOAWAY
6504		 * state to happen, a thread needs the SQLOCK which we hold, and
6505		 * if there was such a flag, we would have already seen it.
6506		 */
6507
6508		for (qp = sq->sq_head;
6509		    qp != NULL && (qp->q_draining ||
6510		    (qp->q_sqflags & Q_SQDRAINING));
6511		    qp = qp->q_sqnext)
6512			;
6513
6514		if (qp == NULL)
6515			break;
6516
6517		/*
6518		 * We have a queue to work on, and we hold the
6519		 * SQLOCK and one claim, call qdrain_syncq.
6520		 * This means we need to release the SQLOCK and
6521		 * acquire the QLOCK (OK since we have a claim).
6522		 * Note that qdrain_syncq will actually dequeue
6523		 * this queue from the sq_head list when it is
6524		 * convinced all the work is done and release
6525		 * the QLOCK before returning.
6526		 */
6527		qp->q_sqflags |= Q_SQDRAINING;
6528		mutex_exit(SQLOCK(sq));
6529		mutex_enter(QLOCK(qp));
6530		qdrain_syncq(sq, qp);
6531		mutex_enter(SQLOCK(sq));
6532
6533		/* The queue is drained */
6534		ASSERT(qp->q_sqflags & Q_SQDRAINING);
6535		qp->q_sqflags &= ~Q_SQDRAINING;
6536		/*
6537		 * NOTE: After this point qp should not be used since it may be
6538		 * closed.
6539		 */
6540	}
6541
6542	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6543	flags = sq->sq_flags;
6544
6545	/*
6546	 * sq->sq_head cannot change because we hold the
6547	 * sqlock. However, a thread CAN decide that it is no longer
6548	 * going to drain that queue.  However, this should be due to
6549	 * a GOAWAY state, and we should see that here.
6550	 *
6551	 * This loop is not very efficient. One solution may be adding a second
6552	 * pointer to the "draining" queue, but it is difficult to do when
6553	 * queues are inserted in the middle due to priority ordering. Another
6554	 * possibility is to yank the queue out of the sq list and put it onto
6555	 * the "draining list" and then put it back if it can't be drained.
6556	 */
6557
6558	ASSERT((sq->sq_head == NULL) || (flags & SQ_GOAWAY) ||
6559	    (type & SQ_CI) || sq->sq_head->q_draining);
6560
6561	/* Drop SQ_EXCL for non-CIPUT perimeters */
6562	if (!(type & SQ_CIPUT))
6563		flags &= ~SQ_EXCL;
6564	ASSERT((flags & SQ_EXCL) == 0);
6565
6566	/* Wake up any waiters. */
6567	if (flags & SQ_WANTWAKEUP) {
6568		flags &= ~SQ_WANTWAKEUP;
6569		cv_broadcast(&sq->sq_wait);
6570	}
6571	if (flags & SQ_WANTEXWAKEUP) {
6572		flags &= ~SQ_WANTEXWAKEUP;
6573		cv_broadcast(&sq->sq_exitwait);
6574	}
6575	sq->sq_flags = flags;
6576
6577	ASSERT(sq->sq_count != 0);
6578	/* Release our claim. */
6579	sq->sq_count--;
6580
6581	if (bg_service) {
6582		ASSERT(sq->sq_servcount != 0);
6583		sq->sq_servcount--;
6584	}
6585
6586	mutex_exit(SQLOCK(sq));
6587
6588	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_END,
6589	    "drain_syncq end:%p", sq);
6590}
6591
6592
6593/*
6594 *
6595 * qdrain_syncq can be called (currently) from only one of two places:
6596 *	drain_syncq
6597 * 	putnext  (or some variation of it).
6598 * and eventually
6599 * 	qwait(_sig)
6600 *
6601 * If called from drain_syncq, we found it in the list of queues needing
6602 * service, so there is work to be done (or it wouldn't be in the list).
6603 *
6604 * If called from some putnext variation, it was because the
6605 * perimeter is open, but messages are blocking a putnext and
6606 * there is not a thread working on it.  Now a thread could start
6607 * working on it while we are getting ready to do so ourself, but
6608 * the thread would set the q_draining flag, and we can spin out.
6609 *
6610 * As for qwait(_sig), I think I shall let it continue to call
6611 * drain_syncq directly (after all, it will get here eventually).
6612 *
6613 * qdrain_syncq has to terminate when:
6614 * - one of the SQ_STAYAWAY bits gets set to preserve qwriter(OUTER) ordering
6615 * - SQ_EVENTS gets set to preserve qwriter(INNER) ordering
6616 *
6617 * ASSUMES:
6618 *	One claim
6619 * 	QLOCK held
6620 * 	SQLOCK not held
6621 *	Will release QLOCK before returning
6622 */
6623void
6624qdrain_syncq(syncq_t *sq, queue_t *q)
6625{
6626	mblk_t		*bp;
6627#ifdef DEBUG
6628	uint16_t	count;
6629#endif
6630
6631	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_START,
6632	    "drain_syncq start:%p", sq);
6633	ASSERT(q->q_syncq == sq);
6634	ASSERT(MUTEX_HELD(QLOCK(q)));
6635	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6636	/*
6637	 * For non-CIPUT perimeters, we should be called with the exclusive bit
6638	 * set already. For CIPUT perimeters, we will be doing a concurrent
6639	 * drain, so it better not be set.
6640	 */
6641	ASSERT((sq->sq_flags & (SQ_EXCL|SQ_CIPUT)));
6642	ASSERT(!((sq->sq_type & SQ_CIPUT) && (sq->sq_flags & SQ_EXCL)));
6643	ASSERT((sq->sq_type & SQ_CIPUT) || (sq->sq_flags & SQ_EXCL));
6644	/*
6645	 * All outer pointers are set, or none of them are
6646	 */
6647	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6648	    sq->sq_oprev == NULL) ||
6649	    (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6650	    sq->sq_oprev != NULL));
6651#ifdef DEBUG
6652	count = sq->sq_count;
6653	/*
6654	 * This is OK without the putlocks, because we have one
6655	 * claim either from the sq_count, or a putcount.  We could
6656	 * get an erroneous value from other counts, but ours won't
6657	 * change, so one way or another, we will have at least a
6658	 * value of one.
6659	 */
6660	SUM_SQ_PUTCOUNTS(sq, count);
6661	ASSERT(count >= 1);
6662#endif /* DEBUG */
6663
6664	/*
6665	 * The first thing to do is find out if a thread is already draining
6666	 * this queue. If so, we are done, just return.
6667	 */
6668	if (q->q_draining) {
6669		mutex_exit(QLOCK(q));
6670		return;
6671	}
6672
6673	/*
6674	 * If the perimeter is exclusive, there is nothing we can do right now,
6675	 * go away. Note that there is nothing to prevent this case from
6676	 * changing right after this check, but the spin-out will catch it.
6677	 */
6678
6679	/* Tell other threads that we are draining this queue */
6680	q->q_draining = 1;	/* Protected by QLOCK */
6681
6682	/*
6683	 * If there is nothing to do, clear QFULL as necessary. This caters for
6684	 * the case where an empty queue was enqueued onto the syncq.
6685	 */
6686	if (q->q_sqhead == NULL) {
6687		ASSERT(q->q_syncqmsgs == 0);
6688		mutex_exit(QLOCK(q));
6689		clr_qfull(q);
6690		mutex_enter(QLOCK(q));
6691	}
6692
6693	/*
6694	 * Note that q_sqhead must be re-checked here in case another message
6695	 * was enqueued whilst QLOCK was dropped during the call to clr_qfull.
6696	 */
6697	for (bp = q->q_sqhead; bp != NULL; bp = q->q_sqhead) {
6698		/*
6699		 * Because we can enter this routine just because a putnext is
6700		 * blocked, we need to spin out if the perimeter wants to go
6701		 * exclusive as well as just blocked. We need to spin out also
6702		 * if events are queued on the syncq.
6703		 * Don't check for SQ_EXCL, because non-CIPUT perimeters would
6704		 * set it, and it can't become exclusive while we hold a claim.
6705		 */
6706		if (sq->sq_flags & (SQ_STAYAWAY | SQ_EVENTS)) {
6707			break;
6708		}
6709
6710#ifdef DEBUG
6711		/*
6712		 * Since we are in qdrain_syncq, we already know the queue,
6713		 * but for sanity, we want to check this against the qp that
6714		 * was passed in by bp->b_queue.
6715		 */
6716
6717		ASSERT(bp->b_queue == q);
6718		ASSERT(bp->b_queue->q_syncq == sq);
6719		bp->b_queue = NULL;
6720
6721		/*
6722		 * We would have the following check in the DEBUG code:
6723		 *
6724		 * if (bp->b_prev != NULL)  {
6725		 *	ASSERT(bp->b_prev == (void (*)())q->q_qinfo->qi_putp);
6726		 * }
6727		 *
6728		 * This can't be done, however, since IP modifies qinfo
6729		 * structure at run-time (switching between IPv4 qinfo and IPv6
6730		 * qinfo), invalidating the check.
6731		 * So the assignment to func is left here, but the ASSERT itself
6732		 * is removed until the whole issue is resolved.
6733		 */
6734#endif
6735		ASSERT(q->q_sqhead == bp);
6736		q->q_sqhead = bp->b_next;
6737		bp->b_prev = bp->b_next = NULL;
6738		ASSERT(q->q_syncqmsgs > 0);
6739		mutex_exit(QLOCK(q));
6740
6741		ASSERT(bp->b_datap->db_ref != 0);
6742
6743		(void) (*q->q_qinfo->qi_putp)(q, bp);
6744
6745		mutex_enter(QLOCK(q));
6746
6747		/*
6748		 * q_syncqmsgs should only be decremented after executing the
6749		 * put procedure to avoid message re-ordering. This is due to an
6750		 * optimisation in putnext() which can call the put procedure
6751		 * directly if it sees q_syncqmsgs == 0 (despite Q_SQQUEUED
6752		 * being set).
6753		 *
6754		 * We also need to clear QFULL in the next service procedure
6755		 * queue if this is the last message destined for that queue.
6756		 *
6757		 * It would make better sense to have some sort of tunable for
6758		 * the low water mark, but these semantics are not yet defined.
6759		 * So, alas, we use a constant.
6760		 */
6761		if (--q->q_syncqmsgs == 0) {
6762			mutex_exit(QLOCK(q));
6763			clr_qfull(q);
6764			mutex_enter(QLOCK(q));
6765		}
6766
6767		/*
6768		 * Always clear SQ_EXCL when CIPUT in order to handle
6769		 * qwriter(INNER). The putp() can call qwriter and get exclusive
6770		 * access IFF this is the only claim. So, we need to test for
6771		 * this possibility, acquire the mutex and clear the bit.
6772		 */
6773		if ((sq->sq_type & SQ_CIPUT) && (sq->sq_flags & SQ_EXCL)) {
6774			mutex_enter(SQLOCK(sq));
6775			sq->sq_flags &= ~SQ_EXCL;
6776			mutex_exit(SQLOCK(sq));
6777		}
6778	}
6779
6780	/*
6781	 * We should either have no messages on this queue, or we were told to
6782	 * goaway by a waiter (which we will wake up at the end of this
6783	 * function).
6784	 */
6785	ASSERT((q->q_sqhead == NULL) ||
6786	    (sq->sq_flags & (SQ_STAYAWAY | SQ_EVENTS)));
6787
6788	ASSERT(MUTEX_HELD(QLOCK(q)));
6789	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6790
6791	/* Remove the q from the syncq list if all the messages are drained. */
6792	if (q->q_sqhead == NULL) {
6793		ASSERT(q->q_syncqmsgs == 0);
6794		mutex_enter(SQLOCK(sq));
6795		if (q->q_sqflags & Q_SQQUEUED)
6796			SQRM_Q(sq, q);
6797		mutex_exit(SQLOCK(sq));
6798		/*
6799		 * Since the queue is removed from the list, reset its priority.
6800		 */
6801		q->q_spri = 0;
6802	}
6803
6804	/*
6805	 * Remember, the q_draining flag is used to let another thread know
6806	 * that there is a thread currently draining the messages for a queue.
6807	 * Since we are now done with this queue (even if there may be messages
6808	 * still there), we need to clear this flag so some thread will work on
6809	 * it if needed.
6810	 */
6811	ASSERT(q->q_draining);
6812	q->q_draining = 0;
6813
6814	/* Called with a claim, so OK to drop all locks. */
6815	mutex_exit(QLOCK(q));
6816
6817	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_END,
6818	    "drain_syncq end:%p", sq);
6819}
6820/* END OF QDRAIN_SYNCQ  */
6821
6822
6823/*
6824 * This is the mate to qdrain_syncq, except that it is putting the message onto
6825 * the queue instead of draining. Since the message is destined for the queue
6826 * that is selected, there is no need to identify the function because the
6827 * message is intended for the put routine for the queue. For debug kernels,
6828 * this routine will do it anyway just in case.
6829 *
6830 * After the message is enqueued on the syncq, it calls putnext_tail()
6831 * which will schedule a background thread to actually process the message.
6832 *
6833 * Assumes that there is a claim on the syncq (sq->sq_count > 0) and
6834 * SQLOCK(sq) and QLOCK(q) are not held.
6835 */
6836void
6837qfill_syncq(syncq_t *sq, queue_t *q, mblk_t *mp)
6838{
6839	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6840	ASSERT(MUTEX_NOT_HELD(QLOCK(q)));
6841	ASSERT(sq->sq_count > 0);
6842	ASSERT(q->q_syncq == sq);
6843	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6844	    sq->sq_oprev == NULL) ||
6845	    (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6846	    sq->sq_oprev != NULL));
6847
6848	mutex_enter(QLOCK(q));
6849
6850#ifdef DEBUG
6851	/*
6852	 * This is used for debug in the qfill_syncq/qdrain_syncq case
6853	 * to trace the queue that the message is intended for.  Note
6854	 * that the original use was to identify the queue and function
6855	 * to call on the drain.  In the new syncq, we have the context
6856	 * of the queue that we are draining, so call it's putproc and
6857	 * don't rely on the saved values.  But for debug this is still
6858	 * useful information.
6859	 */
6860	mp->b_prev = (mblk_t *)q->q_qinfo->qi_putp;
6861	mp->b_queue = q;
6862	mp->b_next = NULL;
6863#endif
6864	ASSERT(q->q_syncq == sq);
6865	/*
6866	 * Enqueue the message on the list.
6867	 * SQPUT_MP() accesses q_syncqmsgs.  We are already holding QLOCK to
6868	 * protect it.  So it's ok to acquire SQLOCK after SQPUT_MP().
6869	 */
6870	SQPUT_MP(q, mp);
6871	mutex_enter(SQLOCK(sq));
6872
6873	/*
6874	 * And queue on syncq for scheduling, if not already queued.
6875	 * Note that we need the SQLOCK for this, and for testing flags
6876	 * at the end to see if we will drain.  So grab it now, and
6877	 * release it before we call qdrain_syncq or return.
6878	 */
6879	if (!(q->q_sqflags & Q_SQQUEUED)) {
6880		q->q_spri = curthread->t_pri;
6881		SQPUT_Q(sq, q);
6882	}
6883#ifdef DEBUG
6884	else {
6885		/*
6886		 * All of these conditions MUST be true!
6887		 */
6888		ASSERT(sq->sq_tail != NULL);
6889		if (sq->sq_tail == sq->sq_head) {
6890			ASSERT((q->q_sqprev == NULL) &&
6891			    (q->q_sqnext == NULL));
6892		} else {
6893			ASSERT((q->q_sqprev != NULL) ||
6894			    (q->q_sqnext != NULL));
6895		}
6896		ASSERT(sq->sq_flags & SQ_QUEUED);
6897		ASSERT(q->q_syncqmsgs != 0);
6898		ASSERT(q->q_sqflags & Q_SQQUEUED);
6899	}
6900#endif
6901	mutex_exit(QLOCK(q));
6902	/*
6903	 * SQLOCK is still held, so sq_count can be safely decremented.
6904	 */
6905	sq->sq_count--;
6906
6907	putnext_tail(sq, q, 0);
6908	/* Should not reference sq or q after this point. */
6909}
6910
6911/*  End of qfill_syncq  */
6912
6913/*
6914 * Remove all messages from a syncq (if qp is NULL) or remove all messages
6915 * that would be put into qp by drain_syncq.
6916 * Used when deleting the syncq (qp == NULL) or when detaching
6917 * a queue (qp != NULL).
6918 * Return non-zero if one or more messages were freed.
6919 *
6920 * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
6921 * sq_putlocks are used.
6922 *
6923 * NOTE: This function assumes that it is called from the close() context and
6924 * that all the queues in the syncq are going away. For this reason it doesn't
6925 * acquire QLOCK for modifying q_sqhead/q_sqtail fields. This assumption is
6926 * currently valid, but it is useful to rethink this function to behave properly
6927 * in other cases.
6928 */
6929int
6930flush_syncq(syncq_t *sq, queue_t *qp)
6931{
6932	mblk_t		*bp, *mp_head, *mp_next, *mp_prev;
6933	queue_t		*q;
6934	int		ret = 0;
6935
6936	mutex_enter(SQLOCK(sq));
6937
6938	/*
6939	 * Before we leave, we need to make sure there are no
6940	 * events listed for this queue.  All events for this queue
6941	 * will just be freed.
6942	 */
6943	if (qp != NULL && sq->sq_evhead != NULL) {
6944		ASSERT(sq->sq_flags & SQ_EVENTS);
6945
6946		mp_prev = NULL;
6947		for (bp = sq->sq_evhead; bp != NULL; bp = mp_next) {
6948			mp_next = bp->b_next;
6949			if (bp->b_queue == qp) {
6950				/* Delete this message */
6951				if (mp_prev != NULL) {
6952					mp_prev->b_next = mp_next;
6953					/*
6954					 * Update sq_evtail if the last element
6955					 * is removed.
6956					 */
6957					if (bp == sq->sq_evtail) {
6958						ASSERT(mp_next == NULL);
6959						sq->sq_evtail = mp_prev;
6960					}
6961				} else
6962					sq->sq_evhead = mp_next;
6963				if (sq->sq_evhead == NULL)
6964					sq->sq_flags &= ~SQ_EVENTS;
6965				bp->b_prev = bp->b_next = NULL;
6966				freemsg(bp);
6967				ret++;
6968			} else {
6969				mp_prev = bp;
6970			}
6971		}
6972	}
6973
6974	/*
6975	 * Walk sq_head and:
6976	 *	- match qp if qp is set, remove it's messages
6977	 *	- all if qp is not set
6978	 */
6979	q = sq->sq_head;
6980	while (q != NULL) {
6981		ASSERT(q->q_syncq == sq);
6982		if ((qp == NULL) || (qp == q)) {
6983			/*
6984			 * Yank the messages as a list off the queue
6985			 */
6986			mp_head = q->q_sqhead;
6987			/*
6988			 * We do not have QLOCK(q) here (which is safe due to
6989			 * assumptions mentioned above). To obtain the lock we
6990			 * need to release SQLOCK which may allow lots of things
6991			 * to change upon us. This place requires more analysis.
6992			 */
6993			q->q_sqhead = q->q_sqtail = NULL;
6994			ASSERT(mp_head->b_queue &&
6995			    mp_head->b_queue->q_syncq == sq);
6996
6997			/*
6998			 * Free each of the messages.
6999			 */
7000			for (bp = mp_head; bp != NULL; bp = mp_next) {
7001				mp_next = bp->b_next;
7002				bp->b_prev = bp->b_next = NULL;
7003				freemsg(bp);
7004				ret++;
7005			}
7006			/*
7007			 * Now remove the queue from the syncq.
7008			 */
7009			ASSERT(q->q_sqflags & Q_SQQUEUED);
7010			SQRM_Q(sq, q);
7011			q->q_spri = 0;
7012			q->q_syncqmsgs = 0;
7013
7014			/*
7015			 * If qp was specified, we are done with it and are
7016			 * going to drop SQLOCK(sq) and return. We wakeup syncq
7017			 * waiters while we still have the SQLOCK.
7018			 */
7019			if ((qp != NULL) && (sq->sq_flags & SQ_WANTWAKEUP)) {
7020				sq->sq_flags &= ~SQ_WANTWAKEUP;
7021				cv_broadcast(&sq->sq_wait);
7022			}
7023			/* Drop SQLOCK across clr_qfull */
7024			mutex_exit(SQLOCK(sq));
7025
7026			/*
7027			 * We avoid doing the test that drain_syncq does and
7028			 * unconditionally clear qfull for every flushed
7029			 * message. Since flush_syncq is only called during
7030			 * close this should not be a problem.
7031			 */
7032			clr_qfull(q);
7033			if (qp != NULL) {
7034				return (ret);
7035			} else {
7036				mutex_enter(SQLOCK(sq));
7037				/*
7038				 * The head was removed by SQRM_Q above.
7039				 * reread the new head and flush it.
7040				 */
7041				q = sq->sq_head;
7042			}
7043		} else {
7044			q = q->q_sqnext;
7045		}
7046		ASSERT(MUTEX_HELD(SQLOCK(sq)));
7047	}
7048
7049	if (sq->sq_flags & SQ_WANTWAKEUP) {
7050		sq->sq_flags &= ~SQ_WANTWAKEUP;
7051		cv_broadcast(&sq->sq_wait);
7052	}
7053
7054	mutex_exit(SQLOCK(sq));
7055	return (ret);
7056}
7057
7058/*
7059 * Propagate all messages from a syncq to the next syncq that are associated
7060 * with the specified queue. If the queue is attached to a driver or if the
7061 * messages have been added due to a qwriter(PERIM_INNER), free the messages.
7062 *
7063 * Assumes that the stream is strlock()'ed. We don't come here if there
7064 * are no messages to propagate.
7065 *
7066 * NOTE : If the queue is attached to a driver, all the messages are freed
7067 * as there is no point in propagating the messages from the driver syncq
7068 * to the closing stream head which will in turn get freed later.
7069 */
7070static int
7071propagate_syncq(queue_t *qp)
7072{
7073	mblk_t		*bp, *head, *tail, *prev, *next;
7074	syncq_t 	*sq;
7075	queue_t		*nqp;
7076	syncq_t		*nsq;
7077	boolean_t	isdriver;
7078	int 		moved = 0;
7079	uint16_t	flags;
7080	pri_t		priority = curthread->t_pri;
7081#ifdef DEBUG
7082	void		(*func)();
7083#endif
7084
7085	sq = qp->q_syncq;
7086	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7087	/* debug macro */
7088	SQ_PUTLOCKS_HELD(sq);
7089	/*
7090	 * As entersq() does not increment the sq_count for
7091	 * the write side, check sq_count for non-QPERQ
7092	 * perimeters alone.
7093	 */
7094	ASSERT((qp->q_flag & QPERQ) || (sq->sq_count >= 1));
7095
7096	/*
7097	 * propagate_syncq() can be called because of either messages on the
7098	 * queue syncq or because on events on the queue syncq. Do actual
7099	 * message propagations if there are any messages.
7100	 */
7101	if (qp->q_syncqmsgs) {
7102		isdriver = (qp->q_flag & QISDRV);
7103
7104		if (!isdriver) {
7105			nqp = qp->q_next;
7106			nsq = nqp->q_syncq;
7107			ASSERT(MUTEX_HELD(SQLOCK(nsq)));
7108			/* debug macro */
7109			SQ_PUTLOCKS_HELD(nsq);
7110#ifdef DEBUG
7111			func = (void (*)())nqp->q_qinfo->qi_putp;
7112#endif
7113		}
7114
7115		SQRM_Q(sq, qp);
7116		priority = MAX(qp->q_spri, priority);
7117		qp->q_spri = 0;
7118		head = qp->q_sqhead;
7119		tail = qp->q_sqtail;
7120		qp->q_sqhead = qp->q_sqtail = NULL;
7121		qp->q_syncqmsgs = 0;
7122
7123		/*
7124		 * Walk the list of messages, and free them if this is a driver,
7125		 * otherwise reset the b_prev and b_queue value to the new putp.
7126		 * Afterward, we will just add the head to the end of the next
7127		 * syncq, and point the tail to the end of this one.
7128		 */
7129
7130		for (bp = head; bp != NULL; bp = next) {
7131			next = bp->b_next;
7132			if (isdriver) {
7133				bp->b_prev = bp->b_next = NULL;
7134				freemsg(bp);
7135				continue;
7136			}
7137			/* Change the q values for this message */
7138			bp->b_queue = nqp;
7139#ifdef DEBUG
7140			bp->b_prev = (mblk_t *)func;
7141#endif
7142			moved++;
7143		}
7144		/*
7145		 * Attach list of messages to the end of the new queue (if there
7146		 * is a list of messages).
7147		 */
7148
7149		if (!isdriver && head != NULL) {
7150			ASSERT(tail != NULL);
7151			if (nqp->q_sqhead == NULL) {
7152				nqp->q_sqhead = head;
7153			} else {
7154				ASSERT(nqp->q_sqtail != NULL);
7155				nqp->q_sqtail->b_next = head;
7156			}
7157			nqp->q_sqtail = tail;
7158			/*
7159			 * When messages are moved from high priority queue to
7160			 * another queue, the destination queue priority is
7161			 * upgraded.
7162			 */
7163
7164			if (priority > nqp->q_spri)
7165				nqp->q_spri = priority;
7166
7167			SQPUT_Q(nsq, nqp);
7168
7169			nqp->q_syncqmsgs += moved;
7170			ASSERT(nqp->q_syncqmsgs != 0);
7171		}
7172	}
7173
7174	/*
7175	 * Before we leave, we need to make sure there are no
7176	 * events listed for this queue.  All events for this queue
7177	 * will just be freed.
7178	 */
7179	if (sq->sq_evhead != NULL) {
7180		ASSERT(sq->sq_flags & SQ_EVENTS);
7181		prev = NULL;
7182		for (bp = sq->sq_evhead; bp != NULL; bp = next) {
7183			next = bp->b_next;
7184			if (bp->b_queue == qp) {
7185				/* Delete this message */
7186				if (prev != NULL) {
7187					prev->b_next = next;
7188					/*
7189					 * Update sq_evtail if the last element
7190					 * is removed.
7191					 */
7192					if (bp == sq->sq_evtail) {
7193						ASSERT(next == NULL);
7194						sq->sq_evtail = prev;
7195					}
7196				} else
7197					sq->sq_evhead = next;
7198				if (sq->sq_evhead == NULL)
7199					sq->sq_flags &= ~SQ_EVENTS;
7200				bp->b_prev = bp->b_next = NULL;
7201				freemsg(bp);
7202			} else {
7203				prev = bp;
7204			}
7205		}
7206	}
7207
7208	flags = sq->sq_flags;
7209
7210	/* Wake up any waiter before leaving. */
7211	if (flags & SQ_WANTWAKEUP) {
7212		flags &= ~SQ_WANTWAKEUP;
7213		cv_broadcast(&sq->sq_wait);
7214	}
7215	sq->sq_flags = flags;
7216
7217	return (moved);
7218}
7219
7220/*
7221 * Try and upgrade to exclusive access at the inner perimeter. If this can
7222 * not be done without blocking then request will be queued on the syncq
7223 * and drain_syncq will run it later.
7224 *
7225 * This routine can only be called from put or service procedures plus
7226 * asynchronous callback routines that have properly entered the queue (with
7227 * entersq). Thus qwriter_inner assumes the caller has one claim on the syncq
7228 * associated with q.
7229 */
7230void
7231qwriter_inner(queue_t *q, mblk_t *mp, void (*func)())
7232{
7233	syncq_t	*sq = q->q_syncq;
7234	uint16_t count;
7235
7236	mutex_enter(SQLOCK(sq));
7237	count = sq->sq_count;
7238	SQ_PUTLOCKS_ENTER(sq);
7239	SUM_SQ_PUTCOUNTS(sq, count);
7240	ASSERT(count >= 1);
7241	ASSERT(sq->sq_type & (SQ_CIPUT|SQ_CISVC));
7242
7243	if (count == 1) {
7244		/*
7245		 * Can upgrade. This case also handles nested qwriter calls
7246		 * (when the qwriter callback function calls qwriter). In that
7247		 * case SQ_EXCL is already set.
7248		 */
7249		sq->sq_flags |= SQ_EXCL;
7250		SQ_PUTLOCKS_EXIT(sq);
7251		mutex_exit(SQLOCK(sq));
7252		(*func)(q, mp);
7253		/*
7254		 * Assumes that leavesq, putnext, and drain_syncq will reset
7255		 * SQ_EXCL for SQ_CIPUT/SQ_CISVC queues. We leave SQ_EXCL on
7256		 * until putnext, leavesq, or drain_syncq drops it.
7257		 * That way we handle nested qwriter(INNER) without dropping
7258		 * SQ_EXCL until the outermost qwriter callback routine is
7259		 * done.
7260		 */
7261		return;
7262	}
7263	SQ_PUTLOCKS_EXIT(sq);
7264	sqfill_events(sq, q, mp, func);
7265}
7266
7267/*
7268 * Synchronous callback support functions
7269 */
7270
7271/*
7272 * Allocate a callback parameter structure.
7273 * Assumes that caller initializes the flags and the id.
7274 * Acquires SQLOCK(sq) if non-NULL is returned.
7275 */
7276callbparams_t *
7277callbparams_alloc(syncq_t *sq, void (*func)(void *), void *arg, int kmflags)
7278{
7279	callbparams_t *cbp;
7280	size_t size = sizeof (callbparams_t);
7281
7282	cbp = kmem_alloc(size, kmflags & ~KM_PANIC);
7283
7284	/*
7285	 * Only try tryhard allocation if the caller is ready to panic.
7286	 * Otherwise just fail.
7287	 */
7288	if (cbp == NULL) {
7289		if (kmflags & KM_PANIC)
7290			cbp = kmem_alloc_tryhard(sizeof (callbparams_t),
7291			    &size, kmflags);
7292		else
7293			return (NULL);
7294	}
7295
7296	ASSERT(size >= sizeof (callbparams_t));
7297	cbp->cbp_size = size;
7298	cbp->cbp_sq = sq;
7299	cbp->cbp_func = func;
7300	cbp->cbp_arg = arg;
7301	mutex_enter(SQLOCK(sq));
7302	cbp->cbp_next = sq->sq_callbpend;
7303	sq->sq_callbpend = cbp;
7304	return (cbp);
7305}
7306
7307void
7308callbparams_free(syncq_t *sq, callbparams_t *cbp)
7309{
7310	callbparams_t **pp, *p;
7311
7312	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7313
7314	for (pp = &sq->sq_callbpend; (p = *pp) != NULL; pp = &p->cbp_next) {
7315		if (p == cbp) {
7316			*pp = p->cbp_next;
7317			kmem_free(p, p->cbp_size);
7318			return;
7319		}
7320	}
7321	(void) (STRLOG(0, 0, 0, SL_CONSOLE,
7322	    "callbparams_free: not found\n"));
7323}
7324
7325void
7326callbparams_free_id(syncq_t *sq, callbparams_id_t id, int32_t flag)
7327{
7328	callbparams_t **pp, *p;
7329
7330	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7331
7332	for (pp = &sq->sq_callbpend; (p = *pp) != NULL; pp = &p->cbp_next) {
7333		if (p->cbp_id == id && p->cbp_flags == flag) {
7334			*pp = p->cbp_next;
7335			kmem_free(p, p->cbp_size);
7336			return;
7337		}
7338	}
7339	(void) (STRLOG(0, 0, 0, SL_CONSOLE,
7340	    "callbparams_free_id: not found\n"));
7341}
7342
7343/*
7344 * Callback wrapper function used by once-only callbacks that can be
7345 * cancelled (qtimeout and qbufcall)
7346 * Contains inline version of entersq(sq, SQ_CALLBACK) that can be
7347 * cancelled by the qun* functions.
7348 */
7349void
7350qcallbwrapper(void *arg)
7351{
7352	callbparams_t *cbp = arg;
7353	syncq_t	*sq;
7354	uint16_t count = 0;
7355	uint16_t waitflags = SQ_STAYAWAY | SQ_EVENTS | SQ_EXCL;
7356	uint16_t type;
7357
7358	sq = cbp->cbp_sq;
7359	mutex_enter(SQLOCK(sq));
7360	type = sq->sq_type;
7361	if (!(type & SQ_CICB)) {
7362		count = sq->sq_count;
7363		SQ_PUTLOCKS_ENTER(sq);
7364		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
7365		SUM_SQ_PUTCOUNTS(sq, count);
7366		sq->sq_needexcl++;
7367		ASSERT(sq->sq_needexcl != 0);	/* wraparound */
7368		waitflags |= SQ_MESSAGES;
7369	}
7370	/* Can not handle exclusive entry at outer perimeter */
7371	ASSERT(type & SQ_COCB);
7372
7373	while ((sq->sq_flags & waitflags) || (!(type & SQ_CICB) &&count != 0)) {
7374		if ((sq->sq_callbflags & cbp->cbp_flags) &&
7375		    (sq->sq_cancelid == cbp->cbp_id)) {
7376			/* timeout has been cancelled */
7377			sq->sq_callbflags |= SQ_CALLB_BYPASSED;
7378			callbparams_free(sq, cbp);
7379			if (!(type & SQ_CICB)) {
7380				ASSERT(sq->sq_needexcl > 0);
7381				sq->sq_needexcl--;
7382				if (sq->sq_needexcl == 0) {
7383					SQ_PUTCOUNT_SETFAST_LOCKED(sq);
7384				}
7385				SQ_PUTLOCKS_EXIT(sq);
7386			}
7387			mutex_exit(SQLOCK(sq));
7388			return;
7389		}
7390		sq->sq_flags |= SQ_WANTWAKEUP;
7391		if (!(type & SQ_CICB)) {
7392			SQ_PUTLOCKS_EXIT(sq);
7393		}
7394		cv_wait(&sq->sq_wait, SQLOCK(sq));
7395		if (!(type & SQ_CICB)) {
7396			count = sq->sq_count;
7397			SQ_PUTLOCKS_ENTER(sq);
7398			SUM_SQ_PUTCOUNTS(sq, count);
7399		}
7400	}
7401
7402	sq->sq_count++;
7403	ASSERT(sq->sq_count != 0);	/* Wraparound */
7404	if (!(type & SQ_CICB)) {
7405		ASSERT(count == 0);
7406		sq->sq_flags |= SQ_EXCL;
7407		ASSERT(sq->sq_needexcl > 0);
7408		sq->sq_needexcl--;
7409		if (sq->sq_needexcl == 0) {
7410			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
7411		}
7412		SQ_PUTLOCKS_EXIT(sq);
7413	}
7414
7415	mutex_exit(SQLOCK(sq));
7416
7417	cbp->cbp_func(cbp->cbp_arg);
7418
7419	/*
7420	 * We drop the lock only for leavesq to re-acquire it.
7421	 * Possible optimization is inline of leavesq.
7422	 */
7423	mutex_enter(SQLOCK(sq));
7424	callbparams_free(sq, cbp);
7425	mutex_exit(SQLOCK(sq));
7426	leavesq(sq, SQ_CALLBACK);
7427}
7428
7429/*
7430 * No need to grab sq_putlocks here. See comment in strsubr.h that
7431 * explains when sq_putlocks are used.
7432 *
7433 * sq_count (or one of the sq_putcounts) has already been
7434 * decremented by the caller, and if SQ_QUEUED, we need to call
7435 * drain_syncq (the global syncq drain).
7436 * If putnext_tail is called with the SQ_EXCL bit set, we are in
7437 * one of two states, non-CIPUT perimeter, and we need to clear
7438 * it, or we went exclusive in the put procedure.  In any case,
7439 * we want to clear the bit now, and it is probably easier to do
7440 * this at the beginning of this function (remember, we hold
7441 * the SQLOCK).  Lastly, if there are other messages queued
7442 * on the syncq (and not for our destination), enable the syncq
7443 * for background work.
7444 */
7445
7446/* ARGSUSED */
7447void
7448putnext_tail(syncq_t *sq, queue_t *qp, uint32_t passflags)
7449{
7450	uint16_t	flags = sq->sq_flags;
7451
7452	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7453	ASSERT(MUTEX_NOT_HELD(QLOCK(qp)));
7454
7455	/* Clear SQ_EXCL if set in passflags */
7456	if (passflags & SQ_EXCL) {
7457		flags &= ~SQ_EXCL;
7458	}
7459	if (flags & SQ_WANTWAKEUP) {
7460		flags &= ~SQ_WANTWAKEUP;
7461		cv_broadcast(&sq->sq_wait);
7462	}
7463	if (flags & SQ_WANTEXWAKEUP) {
7464		flags &= ~SQ_WANTEXWAKEUP;
7465		cv_broadcast(&sq->sq_exitwait);
7466	}
7467	sq->sq_flags = flags;
7468
7469	/*
7470	 * We have cleared SQ_EXCL if we were asked to, and started
7471	 * the wakeup process for waiters.  If there are no writers
7472	 * then we need to drain the syncq if we were told to, or
7473	 * enable the background thread to do it.
7474	 */
7475	if (!(flags & (SQ_STAYAWAY|SQ_EXCL))) {
7476		if ((passflags & SQ_QUEUED) ||
7477		    (sq->sq_svcflags & SQ_DISABLED)) {
7478			/* drain_syncq will take care of events in the list */
7479			drain_syncq(sq);
7480			return;
7481		} else if (flags & SQ_QUEUED) {
7482			sqenable(sq);
7483		}
7484	}
7485	/* Drop the SQLOCK on exit */
7486	mutex_exit(SQLOCK(sq));
7487	TRACE_3(TR_FAC_STREAMS_FR, TR_PUTNEXT_END,
7488	    "putnext_end:(%p, %p, %p) done", NULL, qp, sq);
7489}
7490
7491void
7492set_qend(queue_t *q)
7493{
7494	mutex_enter(QLOCK(q));
7495	if (!O_SAMESTR(q))
7496		q->q_flag |= QEND;
7497	else
7498		q->q_flag &= ~QEND;
7499	mutex_exit(QLOCK(q));
7500	q = _OTHERQ(q);
7501	mutex_enter(QLOCK(q));
7502	if (!O_SAMESTR(q))
7503		q->q_flag |= QEND;
7504	else
7505		q->q_flag &= ~QEND;
7506	mutex_exit(QLOCK(q));
7507}
7508
7509/*
7510 * Set QFULL in next service procedure queue (that cares) if not already
7511 * set and if there are already more messages on the syncq than
7512 * sq_max_size.  If sq_max_size is 0, no flow control will be asserted on
7513 * any syncq.
7514 *
7515 * The fq here is the next queue with a service procedure.  This is where
7516 * we would fail canputnext, so this is where we need to set QFULL.
7517 * In the case when fq != q we need to take QLOCK(fq) to set QFULL flag.
7518 *
7519 * We already have QLOCK at this point. To avoid cross-locks with
7520 * freezestr() which grabs all QLOCKs and with strlock() which grabs both
7521 * SQLOCK and sd_reflock, we need to drop respective locks first.
7522 */
7523void
7524set_qfull(queue_t *q)
7525{
7526	queue_t		*fq = NULL;
7527
7528	ASSERT(MUTEX_HELD(QLOCK(q)));
7529	if ((sq_max_size != 0) && (!(q->q_nfsrv->q_flag & QFULL)) &&
7530	    (q->q_syncqmsgs > sq_max_size)) {
7531		if ((fq = q->q_nfsrv) == q) {
7532			fq->q_flag |= QFULL;
7533		} else {
7534			mutex_exit(QLOCK(q));
7535			mutex_enter(QLOCK(fq));
7536			fq->q_flag |= QFULL;
7537			mutex_exit(QLOCK(fq));
7538			mutex_enter(QLOCK(q));
7539		}
7540	}
7541}
7542
7543void
7544clr_qfull(queue_t *q)
7545{
7546	queue_t	*oq = q;
7547
7548	q = q->q_nfsrv;
7549	/* Fast check if there is any work to do before getting the lock. */
7550	if ((q->q_flag & (QFULL|QWANTW)) == 0) {
7551		return;
7552	}
7553
7554	/*
7555	 * Do not reset QFULL (and backenable) if the q_count is the reason
7556	 * for QFULL being set.
7557	 */
7558	mutex_enter(QLOCK(q));
7559	/*
7560	 * If queue is empty i.e q_mblkcnt is zero, queue can not be full.
7561	 * Hence clear the QFULL.
7562	 * If both q_count and q_mblkcnt are less than the hiwat mark,
7563	 * clear the QFULL.
7564	 */
7565	if (q->q_mblkcnt == 0 || ((q->q_count < q->q_hiwat) &&
7566	    (q->q_mblkcnt < q->q_hiwat))) {
7567		q->q_flag &= ~QFULL;
7568		/*
7569		 * A little more confusing, how about this way:
7570		 * if someone wants to write,
7571		 * AND
7572		 *    both counts are less than the lowat mark
7573		 *    OR
7574		 *    the lowat mark is zero
7575		 * THEN
7576		 * backenable
7577		 */
7578		if ((q->q_flag & QWANTW) &&
7579		    (((q->q_count < q->q_lowat) &&
7580		    (q->q_mblkcnt < q->q_lowat)) || q->q_lowat == 0)) {
7581			q->q_flag &= ~QWANTW;
7582			mutex_exit(QLOCK(q));
7583			backenable(oq, 0);
7584		} else
7585			mutex_exit(QLOCK(q));
7586	} else
7587		mutex_exit(QLOCK(q));
7588}
7589
7590/*
7591 * Set the forward service procedure pointer.
7592 *
7593 * Called at insert-time to cache a queue's next forward service procedure in
7594 * q_nfsrv; used by canput() and canputnext().  If the queue to be inserted
7595 * has a service procedure then q_nfsrv points to itself.  If the queue to be
7596 * inserted does not have a service procedure, then q_nfsrv points to the next
7597 * queue forward that has a service procedure.  If the queue is at the logical
7598 * end of the stream (driver for write side, stream head for the read side)
7599 * and does not have a service procedure, then q_nfsrv also points to itself.
7600 */
7601void
7602set_nfsrv_ptr(
7603	queue_t  *rnew,		/* read queue pointer to new module */
7604	queue_t  *wnew,		/* write queue pointer to new module */
7605	queue_t  *prev_rq,	/* read queue pointer to the module above */
7606	queue_t  *prev_wq)	/* write queue pointer to the module above */
7607{
7608	queue_t *qp;
7609
7610	if (prev_wq->q_next == NULL) {
7611		/*
7612		 * Insert the driver, initialize the driver and stream head.
7613		 * In this case, prev_rq/prev_wq should be the stream head.
7614		 * _I_INSERT does not allow inserting a driver.  Make sure
7615		 * that it is not an insertion.
7616		 */
7617		ASSERT(!(rnew->q_flag & _QINSERTING));
7618		wnew->q_nfsrv = wnew;
7619		if (rnew->q_qinfo->qi_srvp)
7620			rnew->q_nfsrv = rnew;
7621		else
7622			rnew->q_nfsrv = prev_rq;
7623		prev_rq->q_nfsrv = prev_rq;
7624		prev_wq->q_nfsrv = prev_wq;
7625	} else {
7626		/*
7627		 * set up read side q_nfsrv pointer.  This MUST be done
7628		 * before setting the write side, because the setting of
7629		 * the write side for a fifo may depend on it.
7630		 *
7631		 * Suppose we have a fifo that only has pipemod pushed.
7632		 * pipemod has no read or write service procedures, so
7633		 * nfsrv for both pipemod queues points to prev_rq (the
7634		 * stream read head).  Now push bufmod (which has only a
7635		 * read service procedure).  Doing the write side first,
7636		 * wnew->q_nfsrv is set to pipemod's writeq nfsrv, which
7637		 * is WRONG; the next queue forward from wnew with a
7638		 * service procedure will be rnew, not the stream read head.
7639		 * Since the downstream queue (which in the case of a fifo
7640		 * is the read queue rnew) can affect upstream queues, it
7641		 * needs to be done first.  Setting up the read side first
7642		 * sets nfsrv for both pipemod queues to rnew and then
7643		 * when the write side is set up, wnew-q_nfsrv will also
7644		 * point to rnew.
7645		 */
7646		if (rnew->q_qinfo->qi_srvp) {
7647			/*
7648			 * use _OTHERQ() because, if this is a pipe, next
7649			 * module may have been pushed from other end and
7650			 * q_next could be a read queue.
7651			 */
7652			qp = _OTHERQ(prev_wq->q_next);
7653			while (qp && qp->q_nfsrv != qp) {
7654				qp->q_nfsrv = rnew;
7655				qp = backq(qp);
7656			}
7657			rnew->q_nfsrv = rnew;
7658		} else
7659			rnew->q_nfsrv = prev_rq->q_nfsrv;
7660
7661		/* set up write side q_nfsrv pointer */
7662		if (wnew->q_qinfo->qi_srvp) {
7663			wnew->q_nfsrv = wnew;
7664
7665			/*
7666			 * For insertion, need to update nfsrv of the modules
7667			 * above which do not have a service routine.
7668			 */
7669			if (rnew->q_flag & _QINSERTING) {
7670				for (qp = prev_wq;
7671				    qp != NULL && qp->q_nfsrv != qp;
7672				    qp = backq(qp)) {
7673					qp->q_nfsrv = wnew->q_nfsrv;
7674				}
7675			}
7676		} else {
7677			if (prev_wq->q_next == prev_rq)
7678				/*
7679				 * Since prev_wq/prev_rq are the middle of a
7680				 * fifo, wnew/rnew will also be the middle of
7681				 * a fifo and wnew's nfsrv is same as rnew's.
7682				 */
7683				wnew->q_nfsrv = rnew->q_nfsrv;
7684			else
7685				wnew->q_nfsrv = prev_wq->q_next->q_nfsrv;
7686		}
7687	}
7688}
7689
7690/*
7691 * Reset the forward service procedure pointer; called at remove-time.
7692 */
7693void
7694reset_nfsrv_ptr(queue_t *rqp, queue_t *wqp)
7695{
7696	queue_t *tmp_qp;
7697
7698	/* Reset the write side q_nfsrv pointer for _I_REMOVE */
7699	if ((rqp->q_flag & _QREMOVING) && (wqp->q_qinfo->qi_srvp != NULL)) {
7700		for (tmp_qp = backq(wqp);
7701		    tmp_qp != NULL && tmp_qp->q_nfsrv == wqp;
7702		    tmp_qp = backq(tmp_qp)) {
7703			tmp_qp->q_nfsrv = wqp->q_nfsrv;
7704		}
7705	}
7706
7707	/* reset the read side q_nfsrv pointer */
7708	if (rqp->q_qinfo->qi_srvp) {
7709		if (wqp->q_next) {	/* non-driver case */
7710			tmp_qp = _OTHERQ(wqp->q_next);
7711			while (tmp_qp && tmp_qp->q_nfsrv == rqp) {
7712				/* Note that rqp->q_next cannot be NULL */
7713				ASSERT(rqp->q_next != NULL);
7714				tmp_qp->q_nfsrv = rqp->q_next->q_nfsrv;
7715				tmp_qp = backq(tmp_qp);
7716			}
7717		}
7718	}
7719}
7720
7721/*
7722 * This routine should be called after all stream geometry changes to update
7723 * the stream head cached struio() rd/wr queue pointers. Note must be called
7724 * with the streamlock()ed.
7725 *
7726 * Note: only enables Synchronous STREAMS for a side of a Stream which has
7727 *	 an explicit synchronous barrier module queue. That is, a queue that
7728 *	 has specified a struio() type.
7729 */
7730static void
7731strsetuio(stdata_t *stp)
7732{
7733	queue_t *wrq;
7734
7735	if (stp->sd_flag & STPLEX) {
7736		/*
7737		 * Not streamhead, but a mux, so no Synchronous STREAMS.
7738		 */
7739		stp->sd_struiowrq = NULL;
7740		stp->sd_struiordq = NULL;
7741		return;
7742	}
7743	/*
7744	 * Scan the write queue(s) while synchronous
7745	 * until we find a qinfo uio type specified.
7746	 */
7747	wrq = stp->sd_wrq->q_next;
7748	while (wrq) {
7749		if (wrq->q_struiot == STRUIOT_NONE) {
7750			wrq = 0;
7751			break;
7752		}
7753		if (wrq->q_struiot != STRUIOT_DONTCARE)
7754			break;
7755		if (! _SAMESTR(wrq)) {
7756			wrq = 0;
7757			break;
7758		}
7759		wrq = wrq->q_next;
7760	}
7761	stp->sd_struiowrq = wrq;
7762	/*
7763	 * Scan the read queue(s) while synchronous
7764	 * until we find a qinfo uio type specified.
7765	 */
7766	wrq = stp->sd_wrq->q_next;
7767	while (wrq) {
7768		if (_RD(wrq)->q_struiot == STRUIOT_NONE) {
7769			wrq = 0;
7770			break;
7771		}
7772		if (_RD(wrq)->q_struiot != STRUIOT_DONTCARE)
7773			break;
7774		if (! _SAMESTR(wrq)) {
7775			wrq = 0;
7776			break;
7777		}
7778		wrq = wrq->q_next;
7779	}
7780	stp->sd_struiordq = wrq ? _RD(wrq) : 0;
7781}
7782
7783/*
7784 * pass_wput, unblocks the passthru queues, so that
7785 * messages can arrive at muxs lower read queue, before
7786 * I_LINK/I_UNLINK is acked/nacked.
7787 */
7788static void
7789pass_wput(queue_t *q, mblk_t *mp)
7790{
7791	syncq_t *sq;
7792
7793	sq = _RD(q)->q_syncq;
7794	if (sq->sq_flags & SQ_BLOCKED)
7795		unblocksq(sq, SQ_BLOCKED, 0);
7796	putnext(q, mp);
7797}
7798
7799/*
7800 * Set up queues for the link/unlink.
7801 * Create a new queue and block it and then insert it
7802 * below the stream head on the lower stream.
7803 * This prevents any messages from arriving during the setq
7804 * as well as while the mux is processing the LINK/I_UNLINK.
7805 * The blocked passq is unblocked once the LINK/I_UNLINK has
7806 * been acked or nacked or if a message is generated and sent
7807 * down muxs write put procedure.
7808 * See pass_wput().
7809 *
7810 * After the new queue is inserted, all messages coming from below are
7811 * blocked. The call to strlock will ensure that all activity in the stream head
7812 * read queue syncq is stopped (sq_count drops to zero).
7813 */
7814static queue_t *
7815link_addpassthru(stdata_t *stpdown)
7816{
7817	queue_t *passq;
7818	sqlist_t sqlist;
7819
7820	passq = allocq();
7821	STREAM(passq) = STREAM(_WR(passq)) = stpdown;
7822	/* setq might sleep in allocator - avoid holding locks. */
7823	setq(passq, &passthru_rinit, &passthru_winit, NULL, QPERQ,
7824	    SQ_CI|SQ_CO, B_FALSE);
7825	claimq(passq);
7826	blocksq(passq->q_syncq, SQ_BLOCKED, 1);
7827	insertq(STREAM(passq), passq);
7828
7829	/*
7830	 * Use strlock() to wait for the stream head sq_count to drop to zero
7831	 * since we are going to change q_ptr in the stream head.  Note that
7832	 * insertq() doesn't wait for any syncq counts to drop to zero.
7833	 */
7834	sqlist.sqlist_head = NULL;
7835	sqlist.sqlist_index = 0;
7836	sqlist.sqlist_size = sizeof (sqlist_t);
7837	sqlist_insert(&sqlist, _RD(stpdown->sd_wrq)->q_syncq);
7838	strlock(stpdown, &sqlist);
7839	strunlock(stpdown, &sqlist);
7840
7841	releaseq(passq);
7842	return (passq);
7843}
7844
7845/*
7846 * Let messages flow up into the mux by removing
7847 * the passq.
7848 */
7849static void
7850link_rempassthru(queue_t *passq)
7851{
7852	claimq(passq);
7853	removeq(passq);
7854	releaseq(passq);
7855	freeq(passq);
7856}
7857
7858/*
7859 * Wait for the condition variable pointed to by `cvp' to be signaled,
7860 * or for `tim' milliseconds to elapse, whichever comes first.  If `tim'
7861 * is negative, then there is no time limit.  If `nosigs' is non-zero,
7862 * then the wait will be non-interruptible.
7863 *
7864 * Returns >0 if signaled, 0 if interrupted, or -1 upon timeout.
7865 */
7866clock_t
7867str_cv_wait(kcondvar_t *cvp, kmutex_t *mp, clock_t tim, int nosigs)
7868{
7869	clock_t ret, now, tick;
7870
7871	if (tim < 0) {
7872		if (nosigs) {
7873			cv_wait(cvp, mp);
7874			ret = 1;
7875		} else {
7876			ret = cv_wait_sig(cvp, mp);
7877		}
7878	} else if (tim > 0) {
7879		/*
7880		 * convert milliseconds to clock ticks
7881		 */
7882		tick = MSEC_TO_TICK_ROUNDUP(tim);
7883		time_to_wait(&now, tick);
7884		if (nosigs) {
7885			ret = cv_timedwait(cvp, mp, now);
7886		} else {
7887			ret = cv_timedwait_sig(cvp, mp, now);
7888		}
7889	} else {
7890		ret = -1;
7891	}
7892	return (ret);
7893}
7894
7895/*
7896 * Wait until the stream head can determine if it is at the mark but
7897 * don't wait forever to prevent a race condition between the "mark" state
7898 * in the stream head and any mark state in the caller/user of this routine.
7899 *
7900 * This is used by sockets and for a socket it would be incorrect
7901 * to return a failure for SIOCATMARK when there is no data in the receive
7902 * queue and the marked urgent data is traveling up the stream.
7903 *
7904 * This routine waits until the mark is known by waiting for one of these
7905 * three events:
7906 *	The stream head read queue becoming non-empty (including an EOF).
7907 *	The STRATMARK flag being set (due to a MSGMARKNEXT message).
7908 *	The STRNOTATMARK flag being set (which indicates that the transport
7909 *	has sent a MSGNOTMARKNEXT message to indicate that it is not at
7910 *	the mark).
7911 *
7912 * The routine returns 1 if the stream is at the mark; 0 if it can
7913 * be determined that the stream is not at the mark.
7914 * If the wait times out and it can't determine
7915 * whether or not the stream might be at the mark the routine will return -1.
7916 *
7917 * Note: This routine should only be used when a mark is pending i.e.,
7918 * in the socket case the SIGURG has been posted.
7919 * Note2: This can not wakeup just because synchronous streams indicate
7920 * that data is available since it is not possible to use the synchronous
7921 * streams interfaces to determine the b_flag value for the data queued below
7922 * the stream head.
7923 */
7924int
7925strwaitmark(vnode_t *vp)
7926{
7927	struct stdata *stp = vp->v_stream;
7928	queue_t *rq = _RD(stp->sd_wrq);
7929	int mark;
7930
7931	mutex_enter(&stp->sd_lock);
7932	while (rq->q_first == NULL &&
7933	    !(stp->sd_flag & (STRATMARK|STRNOTATMARK|STREOF))) {
7934		stp->sd_flag |= RSLEEP;
7935
7936		/* Wait for 100 milliseconds for any state change. */
7937		if (str_cv_wait(&rq->q_wait, &stp->sd_lock, 100, 1) == -1) {
7938			mutex_exit(&stp->sd_lock);
7939			return (-1);
7940		}
7941	}
7942	if (stp->sd_flag & STRATMARK)
7943		mark = 1;
7944	else if (rq->q_first != NULL && (rq->q_first->b_flag & MSGMARK))
7945		mark = 1;
7946	else
7947		mark = 0;
7948
7949	mutex_exit(&stp->sd_lock);
7950	return (mark);
7951}
7952
7953/*
7954 * Set a read side error. If persist is set change the socket error
7955 * to persistent. If errfunc is set install the function as the exported
7956 * error handler.
7957 */
7958void
7959strsetrerror(vnode_t *vp, int error, int persist, errfunc_t errfunc)
7960{
7961	struct stdata *stp = vp->v_stream;
7962
7963	mutex_enter(&stp->sd_lock);
7964	stp->sd_rerror = error;
7965	if (error == 0 && errfunc == NULL)
7966		stp->sd_flag &= ~STRDERR;
7967	else
7968		stp->sd_flag |= STRDERR;
7969	if (persist) {
7970		stp->sd_flag &= ~STRDERRNONPERSIST;
7971	} else {
7972		stp->sd_flag |= STRDERRNONPERSIST;
7973	}
7974	stp->sd_rderrfunc = errfunc;
7975	if (error != 0 || errfunc != NULL) {
7976		cv_broadcast(&_RD(stp->sd_wrq)->q_wait);	/* readers */
7977		cv_broadcast(&stp->sd_wrq->q_wait);		/* writers */
7978		cv_broadcast(&stp->sd_monitor);			/* ioctllers */
7979
7980		mutex_exit(&stp->sd_lock);
7981		pollwakeup(&stp->sd_pollist, POLLERR);
7982		mutex_enter(&stp->sd_lock);
7983
7984		if (stp->sd_sigflags & S_ERROR)
7985			strsendsig(stp->sd_siglist, S_ERROR, 0, error);
7986	}
7987	mutex_exit(&stp->sd_lock);
7988}
7989
7990/*
7991 * Set a write side error. If persist is set change the socket error
7992 * to persistent.
7993 */
7994void
7995strsetwerror(vnode_t *vp, int error, int persist, errfunc_t errfunc)
7996{
7997	struct stdata *stp = vp->v_stream;
7998
7999	mutex_enter(&stp->sd_lock);
8000	stp->sd_werror = error;
8001	if (error == 0 && errfunc == NULL)
8002		stp->sd_flag &= ~STWRERR;
8003	else
8004		stp->sd_flag |= STWRERR;
8005	if (persist) {
8006		stp->sd_flag &= ~STWRERRNONPERSIST;
8007	} else {
8008		stp->sd_flag |= STWRERRNONPERSIST;
8009	}
8010	stp->sd_wrerrfunc = errfunc;
8011	if (error != 0 || errfunc != NULL) {
8012		cv_broadcast(&_RD(stp->sd_wrq)->q_wait);	/* readers */
8013		cv_broadcast(&stp->sd_wrq->q_wait);		/* writers */
8014		cv_broadcast(&stp->sd_monitor);			/* ioctllers */
8015
8016		mutex_exit(&stp->sd_lock);
8017		pollwakeup(&stp->sd_pollist, POLLERR);
8018		mutex_enter(&stp->sd_lock);
8019
8020		if (stp->sd_sigflags & S_ERROR)
8021			strsendsig(stp->sd_siglist, S_ERROR, 0, error);
8022	}
8023	mutex_exit(&stp->sd_lock);
8024}
8025
8026/*
8027 * Make the stream return 0 (EOF) when all data has been read.
8028 * No effect on write side.
8029 */
8030void
8031strseteof(vnode_t *vp, int eof)
8032{
8033	struct stdata *stp = vp->v_stream;
8034
8035	mutex_enter(&stp->sd_lock);
8036	if (!eof) {
8037		stp->sd_flag &= ~STREOF;
8038		mutex_exit(&stp->sd_lock);
8039		return;
8040	}
8041	stp->sd_flag |= STREOF;
8042	if (stp->sd_flag & RSLEEP) {
8043		stp->sd_flag &= ~RSLEEP;
8044		cv_broadcast(&_RD(stp->sd_wrq)->q_wait);
8045	}
8046
8047	mutex_exit(&stp->sd_lock);
8048	pollwakeup(&stp->sd_pollist, POLLIN|POLLRDNORM);
8049	mutex_enter(&stp->sd_lock);
8050
8051	if (stp->sd_sigflags & (S_INPUT|S_RDNORM))
8052		strsendsig(stp->sd_siglist, S_INPUT|S_RDNORM, 0, 0);
8053	mutex_exit(&stp->sd_lock);
8054}
8055
8056void
8057strflushrq(vnode_t *vp, int flag)
8058{
8059	struct stdata *stp = vp->v_stream;
8060
8061	mutex_enter(&stp->sd_lock);
8062	flushq(_RD(stp->sd_wrq), flag);
8063	mutex_exit(&stp->sd_lock);
8064}
8065
8066void
8067strsetrputhooks(vnode_t *vp, uint_t flags,
8068		msgfunc_t protofunc, msgfunc_t miscfunc)
8069{
8070	struct stdata *stp = vp->v_stream;
8071
8072	mutex_enter(&stp->sd_lock);
8073
8074	if (protofunc == NULL)
8075		stp->sd_rprotofunc = strrput_proto;
8076	else
8077		stp->sd_rprotofunc = protofunc;
8078
8079	if (miscfunc == NULL)
8080		stp->sd_rmiscfunc = strrput_misc;
8081	else
8082		stp->sd_rmiscfunc = miscfunc;
8083
8084	if (flags & SH_CONSOL_DATA)
8085		stp->sd_rput_opt |= SR_CONSOL_DATA;
8086	else
8087		stp->sd_rput_opt &= ~SR_CONSOL_DATA;
8088
8089	if (flags & SH_SIGALLDATA)
8090		stp->sd_rput_opt |= SR_SIGALLDATA;
8091	else
8092		stp->sd_rput_opt &= ~SR_SIGALLDATA;
8093
8094	if (flags & SH_IGN_ZEROLEN)
8095		stp->sd_rput_opt |= SR_IGN_ZEROLEN;
8096	else
8097		stp->sd_rput_opt &= ~SR_IGN_ZEROLEN;
8098
8099	mutex_exit(&stp->sd_lock);
8100}
8101
8102void
8103strsetwputhooks(vnode_t *vp, uint_t flags, clock_t closetime)
8104{
8105	struct stdata *stp = vp->v_stream;
8106
8107	mutex_enter(&stp->sd_lock);
8108	stp->sd_closetime = closetime;
8109
8110	if (flags & SH_SIGPIPE)
8111		stp->sd_wput_opt |= SW_SIGPIPE;
8112	else
8113		stp->sd_wput_opt &= ~SW_SIGPIPE;
8114	if (flags & SH_RECHECK_ERR)
8115		stp->sd_wput_opt |= SW_RECHECK_ERR;
8116	else
8117		stp->sd_wput_opt &= ~SW_RECHECK_ERR;
8118
8119	mutex_exit(&stp->sd_lock);
8120}
8121
8122void
8123strsetrwputdatahooks(vnode_t *vp, msgfunc_t rdatafunc, msgfunc_t wdatafunc)
8124{
8125	struct stdata *stp = vp->v_stream;
8126
8127	mutex_enter(&stp->sd_lock);
8128
8129	stp->sd_rputdatafunc = rdatafunc;
8130	stp->sd_wputdatafunc = wdatafunc;
8131
8132	mutex_exit(&stp->sd_lock);
8133}
8134
8135/* Used within framework when the queue is already locked */
8136void
8137qenable_locked(queue_t *q)
8138{
8139	stdata_t *stp = STREAM(q);
8140
8141	ASSERT(MUTEX_HELD(QLOCK(q)));
8142
8143	if (!q->q_qinfo->qi_srvp)
8144		return;
8145
8146	/*
8147	 * Do not place on run queue if already enabled or closing.
8148	 */
8149	if (q->q_flag & (QWCLOSE|QENAB))
8150		return;
8151
8152	/*
8153	 * mark queue enabled and place on run list if it is not already being
8154	 * serviced. If it is serviced, the runservice() function will detect
8155	 * that QENAB is set and call service procedure before clearing
8156	 * QINSERVICE flag.
8157	 */
8158	q->q_flag |= QENAB;
8159	if (q->q_flag & QINSERVICE)
8160		return;
8161
8162	/* Record the time of qenable */
8163	q->q_qtstamp = lbolt;
8164
8165	/*
8166	 * Put the queue in the stp list and schedule it for background
8167	 * processing if it is not already scheduled or if stream head does not
8168	 * intent to process it in the foreground later by setting
8169	 * STRS_WILLSERVICE flag.
8170	 */
8171	mutex_enter(&stp->sd_qlock);
8172	/*
8173	 * If there are already something on the list, stp flags should show
8174	 * intention to drain it.
8175	 */
8176	IMPLY(STREAM_NEEDSERVICE(stp),
8177	    (stp->sd_svcflags & (STRS_WILLSERVICE | STRS_SCHEDULED)));
8178
8179	ENQUEUE(q, stp->sd_qhead, stp->sd_qtail, q_link);
8180	stp->sd_nqueues++;
8181
8182	/*
8183	 * If no one will drain this stream we are the first producer and
8184	 * need to schedule it for background thread.
8185	 */
8186	if (!(stp->sd_svcflags & (STRS_WILLSERVICE | STRS_SCHEDULED))) {
8187		/*
8188		 * No one will service this stream later, so we have to
8189		 * schedule it now.
8190		 */
8191		STRSTAT(stenables);
8192		stp->sd_svcflags |= STRS_SCHEDULED;
8193		stp->sd_servid = (void *)taskq_dispatch(streams_taskq,
8194		    (task_func_t *)stream_service, stp, TQ_NOSLEEP|TQ_NOQUEUE);
8195
8196		if (stp->sd_servid == NULL) {
8197			/*
8198			 * Task queue failed so fail over to the backup
8199			 * servicing thread.
8200			 */
8201			STRSTAT(taskqfails);
8202			/*
8203			 * It is safe to clear STRS_SCHEDULED flag because it
8204			 * was set by this thread above.
8205			 */
8206			stp->sd_svcflags &= ~STRS_SCHEDULED;
8207
8208			/*
8209			 * Failover scheduling is protected by service_queue
8210			 * lock.
8211			 */
8212			mutex_enter(&service_queue);
8213			ASSERT((stp->sd_qhead == q) && (stp->sd_qtail == q));
8214			ASSERT(q->q_link == NULL);
8215			/*
8216			 * Append the queue to qhead/qtail list.
8217			 */
8218			if (qhead == NULL)
8219				qhead = q;
8220			else
8221				qtail->q_link = q;
8222			qtail = q;
8223			/*
8224			 * Clear stp queue list.
8225			 */
8226			stp->sd_qhead = stp->sd_qtail = NULL;
8227			stp->sd_nqueues = 0;
8228			/*
8229			 * Wakeup background queue processing thread.
8230			 */
8231			cv_signal(&services_to_run);
8232			mutex_exit(&service_queue);
8233		}
8234	}
8235	mutex_exit(&stp->sd_qlock);
8236}
8237
8238static void
8239queue_service(queue_t *q)
8240{
8241	/*
8242	 * The queue in the list should have
8243	 * QENAB flag set and should not have
8244	 * QINSERVICE flag set. QINSERVICE is
8245	 * set when the queue is dequeued and
8246	 * qenable_locked doesn't enqueue a
8247	 * queue with QINSERVICE set.
8248	 */
8249
8250	ASSERT(!(q->q_flag & QINSERVICE));
8251	ASSERT((q->q_flag & QENAB));
8252	mutex_enter(QLOCK(q));
8253	q->q_flag &= ~QENAB;
8254	q->q_flag |= QINSERVICE;
8255	mutex_exit(QLOCK(q));
8256	runservice(q);
8257}
8258
8259static void
8260syncq_service(syncq_t *sq)
8261{
8262	STRSTAT(syncqservice);
8263	mutex_enter(SQLOCK(sq));
8264	ASSERT(!(sq->sq_svcflags & SQ_SERVICE));
8265	ASSERT(sq->sq_servcount != 0);
8266	ASSERT(sq->sq_next == NULL);
8267
8268	/* if we came here from the background thread, clear the flag */
8269	if (sq->sq_svcflags & SQ_BGTHREAD)
8270		sq->sq_svcflags &= ~SQ_BGTHREAD;
8271
8272	/* let drain_syncq know that it's being called in the background */
8273	sq->sq_svcflags |= SQ_SERVICE;
8274	drain_syncq(sq);
8275}
8276
8277static void
8278qwriter_outer_service(syncq_t *outer)
8279{
8280	/*
8281	 * Note that SQ_WRITER is used on the outer perimeter
8282	 * to signal that a qwriter(OUTER) is either investigating
8283	 * running or that it is actually running a function.
8284	 */
8285	outer_enter(outer, SQ_BLOCKED|SQ_WRITER);
8286
8287	/*
8288	 * All inner syncq are empty and have SQ_WRITER set
8289	 * to block entering the outer perimeter.
8290	 *
8291	 * We do not need to explicitly call write_now since
8292	 * outer_exit does it for us.
8293	 */
8294	outer_exit(outer);
8295}
8296
8297static void
8298mblk_free(mblk_t *mp)
8299{
8300	dblk_t *dbp = mp->b_datap;
8301	frtn_t *frp = dbp->db_frtnp;
8302
8303	mp->b_next = NULL;
8304	if (dbp->db_fthdr != NULL)
8305		str_ftfree(dbp);
8306
8307	ASSERT(dbp->db_fthdr == NULL);
8308	frp->free_func(frp->free_arg);
8309	ASSERT(dbp->db_mblk == mp);
8310
8311	if (dbp->db_credp != NULL) {
8312		crfree(dbp->db_credp);
8313		dbp->db_credp = NULL;
8314	}
8315	dbp->db_cpid = -1;
8316	dbp->db_struioflag = 0;
8317	dbp->db_struioun.cksum.flags = 0;
8318
8319	kmem_cache_free(dbp->db_cache, dbp);
8320}
8321
8322/*
8323 * Background processing of the stream queue list.
8324 */
8325static void
8326stream_service(stdata_t *stp)
8327{
8328	queue_t *q;
8329
8330	mutex_enter(&stp->sd_qlock);
8331
8332	STR_SERVICE(stp, q);
8333
8334	stp->sd_svcflags &= ~STRS_SCHEDULED;
8335	stp->sd_servid = NULL;
8336	cv_signal(&stp->sd_qcv);
8337	mutex_exit(&stp->sd_qlock);
8338}
8339
8340/*
8341 * Foreground processing of the stream queue list.
8342 */
8343void
8344stream_runservice(stdata_t *stp)
8345{
8346	queue_t *q;
8347
8348	mutex_enter(&stp->sd_qlock);
8349	STRSTAT(rservice);
8350	/*
8351	 * We are going to drain this stream queue list, so qenable_locked will
8352	 * not schedule it until we finish.
8353	 */
8354	stp->sd_svcflags |= STRS_WILLSERVICE;
8355
8356	STR_SERVICE(stp, q);
8357
8358	stp->sd_svcflags &= ~STRS_WILLSERVICE;
8359	mutex_exit(&stp->sd_qlock);
8360	/*
8361	 * Help backup background thread to drain the qhead/qtail list.
8362	 */
8363	while (qhead != NULL) {
8364		STRSTAT(qhelps);
8365		mutex_enter(&service_queue);
8366		DQ(q, qhead, qtail, q_link);
8367		mutex_exit(&service_queue);
8368		if (q != NULL)
8369			queue_service(q);
8370	}
8371}
8372
8373void
8374stream_willservice(stdata_t *stp)
8375{
8376	mutex_enter(&stp->sd_qlock);
8377	stp->sd_svcflags |= STRS_WILLSERVICE;
8378	mutex_exit(&stp->sd_qlock);
8379}
8380
8381/*
8382 * Replace the cred currently in the mblk with a different one.
8383 * Also update db_cpid.
8384 */
8385void
8386mblk_setcred(mblk_t *mp, cred_t *cr, pid_t cpid)
8387{
8388	dblk_t *dbp = mp->b_datap;
8389	cred_t *ocr = dbp->db_credp;
8390
8391	ASSERT(cr != NULL);
8392
8393	if (cr != ocr) {
8394		crhold(dbp->db_credp = cr);
8395		if (ocr != NULL)
8396			crfree(ocr);
8397	}
8398	/* Don't overwrite with NOPID */
8399	if (cpid != NOPID)
8400		dbp->db_cpid = cpid;
8401}
8402
8403/*
8404 * If the src message has a cred, then replace the cred currently in the mblk
8405 * with it.
8406 * Also update db_cpid.
8407 */
8408void
8409mblk_copycred(mblk_t *mp, const mblk_t *src)
8410{
8411	dblk_t *dbp = mp->b_datap;
8412	cred_t *cr, *ocr;
8413	pid_t cpid;
8414
8415	cr = msg_getcred(src, &cpid);
8416	if (cr == NULL)
8417		return;
8418
8419	ocr = dbp->db_credp;
8420	if (cr != ocr) {
8421		crhold(dbp->db_credp = cr);
8422		if (ocr != NULL)
8423			crfree(ocr);
8424	}
8425	/* Don't overwrite with NOPID */
8426	if (cpid != NOPID)
8427		dbp->db_cpid = cpid;
8428}
8429
8430int
8431hcksum_assoc(mblk_t *mp,  multidata_t *mmd, pdesc_t *pd,
8432    uint32_t start, uint32_t stuff, uint32_t end, uint32_t value,
8433    uint32_t flags, int km_flags)
8434{
8435	int rc = 0;
8436
8437	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
8438	if (mp->b_datap->db_type == M_DATA) {
8439		/* Associate values for M_DATA type */
8440		DB_CKSUMSTART(mp) = (intptr_t)start;
8441		DB_CKSUMSTUFF(mp) = (intptr_t)stuff;
8442		DB_CKSUMEND(mp) = (intptr_t)end;
8443		DB_CKSUMFLAGS(mp) = flags;
8444		DB_CKSUM16(mp) = (uint16_t)value;
8445
8446	} else {
8447		pattrinfo_t pa_info;
8448
8449		ASSERT(mmd != NULL);
8450
8451		pa_info.type = PATTR_HCKSUM;
8452		pa_info.len = sizeof (pattr_hcksum_t);
8453
8454		if (mmd_addpattr(mmd, pd, &pa_info, B_TRUE, km_flags) != NULL) {
8455			pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf;
8456
8457			hck->hcksum_start_offset = start;
8458			hck->hcksum_stuff_offset = stuff;
8459			hck->hcksum_end_offset = end;
8460			hck->hcksum_cksum_val.inet_cksum = (uint16_t)value;
8461			hck->hcksum_flags = flags;
8462		} else {
8463			rc = -1;
8464		}
8465	}
8466	return (rc);
8467}
8468
8469void
8470hcksum_retrieve(mblk_t *mp, multidata_t *mmd, pdesc_t *pd,
8471    uint32_t *start, uint32_t *stuff, uint32_t *end,
8472    uint32_t *value, uint32_t *flags)
8473{
8474	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
8475	if (mp->b_datap->db_type == M_DATA) {
8476		if (flags != NULL) {
8477			*flags = DB_CKSUMFLAGS(mp) & HCK_FLAGS;
8478			if ((*flags & (HCK_PARTIALCKSUM |
8479			    HCK_FULLCKSUM)) != 0) {
8480				if (value != NULL)
8481					*value = (uint32_t)DB_CKSUM16(mp);
8482				if ((*flags & HCK_PARTIALCKSUM) != 0) {
8483					if (start != NULL)
8484						*start =
8485						    (uint32_t)DB_CKSUMSTART(mp);
8486					if (stuff != NULL)
8487						*stuff =
8488						    (uint32_t)DB_CKSUMSTUFF(mp);
8489					if (end != NULL)
8490						*end =
8491						    (uint32_t)DB_CKSUMEND(mp);
8492				}
8493			}
8494		}
8495	} else {
8496		pattrinfo_t hck_attr = {PATTR_HCKSUM};
8497
8498		ASSERT(mmd != NULL);
8499
8500		/* get hardware checksum attribute */
8501		if (mmd_getpattr(mmd, pd, &hck_attr) != NULL) {
8502			pattr_hcksum_t *hck = (pattr_hcksum_t *)hck_attr.buf;
8503
8504			ASSERT(hck_attr.len >= sizeof (pattr_hcksum_t));
8505			if (flags != NULL)
8506				*flags = hck->hcksum_flags;
8507			if (start != NULL)
8508				*start = hck->hcksum_start_offset;
8509			if (stuff != NULL)
8510				*stuff = hck->hcksum_stuff_offset;
8511			if (end != NULL)
8512				*end = hck->hcksum_end_offset;
8513			if (value != NULL)
8514				*value = (uint32_t)
8515				    hck->hcksum_cksum_val.inet_cksum;
8516		}
8517	}
8518}
8519
8520void
8521lso_info_set(mblk_t *mp, uint32_t mss, uint32_t flags)
8522{
8523	ASSERT(DB_TYPE(mp) == M_DATA);
8524
8525	/* Set the flags */
8526	DB_LSOFLAGS(mp) |= flags;
8527	DB_LSOMSS(mp) = mss;
8528}
8529
8530void
8531lso_info_get(mblk_t *mp, uint32_t *mss, uint32_t *flags)
8532{
8533	ASSERT(DB_TYPE(mp) == M_DATA);
8534
8535	if (flags != NULL) {
8536		*flags = DB_CKSUMFLAGS(mp) & HW_LSO;
8537		if ((*flags != 0) && (mss != NULL))
8538			*mss = (uint32_t)DB_LSOMSS(mp);
8539	}
8540}
8541
8542/*
8543 * Checksum buffer *bp for len bytes with psum partial checksum,
8544 * or 0 if none, and return the 16 bit partial checksum.
8545 */
8546unsigned
8547bcksum(uchar_t *bp, int len, unsigned int psum)
8548{
8549	int odd = len & 1;
8550	extern unsigned int ip_ocsum();
8551
8552	if (((intptr_t)bp & 1) == 0 && !odd) {
8553		/*
8554		 * Bp is 16 bit aligned and len is multiple of 16 bit word.
8555		 */
8556		return (ip_ocsum((ushort_t *)bp, len >> 1, psum));
8557	}
8558	if (((intptr_t)bp & 1) != 0) {
8559		/*
8560		 * Bp isn't 16 bit aligned.
8561		 */
8562		unsigned int tsum;
8563
8564#ifdef _LITTLE_ENDIAN
8565		psum += *bp;
8566#else
8567		psum += *bp << 8;
8568#endif
8569		len--;
8570		bp++;
8571		tsum = ip_ocsum((ushort_t *)bp, len >> 1, 0);
8572		psum += (tsum << 8) & 0xffff | (tsum >> 8);
8573		if (len & 1) {
8574			bp += len - 1;
8575#ifdef _LITTLE_ENDIAN
8576			psum += *bp << 8;
8577#else
8578			psum += *bp;
8579#endif
8580		}
8581	} else {
8582		/*
8583		 * Bp is 16 bit aligned.
8584		 */
8585		psum = ip_ocsum((ushort_t *)bp, len >> 1, psum);
8586		if (odd) {
8587			bp += len - 1;
8588#ifdef _LITTLE_ENDIAN
8589			psum += *bp;
8590#else
8591			psum += *bp << 8;
8592#endif
8593		}
8594	}
8595	/*
8596	 * Normalize psum to 16 bits before returning the new partial
8597	 * checksum. The max psum value before normalization is 0x3FDFE.
8598	 */
8599	return ((psum >> 16) + (psum & 0xFFFF));
8600}
8601
8602boolean_t
8603is_vmloaned_mblk(mblk_t *mp, multidata_t *mmd, pdesc_t *pd)
8604{
8605	boolean_t rc;
8606
8607	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
8608	if (DB_TYPE(mp) == M_DATA) {
8609		rc = (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0);
8610	} else {
8611		pattrinfo_t zcopy_attr = {PATTR_ZCOPY};
8612
8613		ASSERT(mmd != NULL);
8614		rc = (mmd_getpattr(mmd, pd, &zcopy_attr) != NULL);
8615	}
8616	return (rc);
8617}
8618
8619void
8620freemsgchain(mblk_t *mp)
8621{
8622	mblk_t	*next;
8623
8624	while (mp != NULL) {
8625		next = mp->b_next;
8626		mp->b_next = NULL;
8627
8628		freemsg(mp);
8629		mp = next;
8630	}
8631}
8632
8633mblk_t *
8634copymsgchain(mblk_t *mp)
8635{
8636	mblk_t	*nmp = NULL;
8637	mblk_t	**nmpp = &nmp;
8638
8639	for (; mp != NULL; mp = mp->b_next) {
8640		if ((*nmpp = copymsg(mp)) == NULL) {
8641			freemsgchain(nmp);
8642			return (NULL);
8643		}
8644
8645		nmpp = &((*nmpp)->b_next);
8646	}
8647
8648	return (nmp);
8649}
8650
8651/* NOTE: Do not add code after this point. */
8652#undef QLOCK
8653
8654/*
8655 * Replacement for QLOCK macro for those that can't use it.
8656 */
8657kmutex_t *
8658QLOCK(queue_t *q)
8659{
8660	return (&(q)->q_lock);
8661}
8662
8663/*
8664 * Dummy runqueues/queuerun functions functions for backwards compatibility.
8665 */
8666#undef runqueues
8667void
8668runqueues(void)
8669{
8670}
8671
8672#undef queuerun
8673void
8674queuerun(void)
8675{
8676}
8677
8678/*
8679 * Initialize the STR stack instance, which tracks autopush and persistent
8680 * links.
8681 */
8682/* ARGSUSED */
8683static void *
8684str_stack_init(netstackid_t stackid, netstack_t *ns)
8685{
8686	str_stack_t	*ss;
8687	int i;
8688
8689	ss = (str_stack_t *)kmem_zalloc(sizeof (*ss), KM_SLEEP);
8690	ss->ss_netstack = ns;
8691
8692	/*
8693	 * set up autopush
8694	 */
8695	sad_initspace(ss);
8696
8697	/*
8698	 * set up mux_node structures.
8699	 */
8700	ss->ss_devcnt = devcnt;	/* In case it should change before free */
8701	ss->ss_mux_nodes = kmem_zalloc((sizeof (struct mux_node) *
8702	    ss->ss_devcnt), KM_SLEEP);
8703	for (i = 0; i < ss->ss_devcnt; i++)
8704		ss->ss_mux_nodes[i].mn_imaj = i;
8705	return (ss);
8706}
8707
8708/*
8709 * Note: run at zone shutdown and not destroy so that the PLINKs are
8710 * gone by the time other cleanup happens from the destroy callbacks.
8711 */
8712static void
8713str_stack_shutdown(netstackid_t stackid, void *arg)
8714{
8715	str_stack_t *ss = (str_stack_t *)arg;
8716	int i;
8717	cred_t *cr;
8718
8719	cr = zone_get_kcred(netstackid_to_zoneid(stackid));
8720	ASSERT(cr != NULL);
8721
8722	/* Undo all the I_PLINKs for this zone */
8723	for (i = 0; i < ss->ss_devcnt; i++) {
8724		struct mux_edge		*ep;
8725		ldi_handle_t		lh;
8726		ldi_ident_t		li;
8727		int			ret;
8728		int			rval;
8729		dev_t			rdev;
8730
8731		ep = ss->ss_mux_nodes[i].mn_outp;
8732		if (ep == NULL)
8733			continue;
8734		ret = ldi_ident_from_major((major_t)i, &li);
8735		if (ret != 0) {
8736			continue;
8737		}
8738		rdev = ep->me_dev;
8739		ret = ldi_open_by_dev(&rdev, OTYP_CHR, FREAD|FWRITE,
8740		    cr, &lh, li);
8741		if (ret != 0) {
8742			ldi_ident_release(li);
8743			continue;
8744		}
8745
8746		ret = ldi_ioctl(lh, I_PUNLINK, (intptr_t)MUXID_ALL, FKIOCTL,
8747		    cr, &rval);
8748		if (ret) {
8749			(void) ldi_close(lh, FREAD|FWRITE, cr);
8750			ldi_ident_release(li);
8751			continue;
8752		}
8753		(void) ldi_close(lh, FREAD|FWRITE, cr);
8754
8755		/* Close layered handles */
8756		ldi_ident_release(li);
8757	}
8758	crfree(cr);
8759
8760	sad_freespace(ss);
8761
8762	kmem_free(ss->ss_mux_nodes, sizeof (struct mux_node) * ss->ss_devcnt);
8763	ss->ss_mux_nodes = NULL;
8764}
8765
8766/*
8767 * Free the structure; str_stack_shutdown did the other cleanup work.
8768 */
8769/* ARGSUSED */
8770static void
8771str_stack_fini(netstackid_t stackid, void *arg)
8772{
8773	str_stack_t	*ss = (str_stack_t *)arg;
8774
8775	kmem_free(ss, sizeof (*ss));
8776}
8777