streamio.c revision 3448:aaf16568054b
1231990Smp/*
259243Sobrien * CDDL HEADER START
359243Sobrien *
459243Sobrien * The contents of this file are subject to the terms of the
559243Sobrien * Common Development and Distribution License (the "License").
659243Sobrien * You may not use this file except in compliance with the License.
759243Sobrien *
859243Sobrien * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
959243Sobrien * or http://www.opensolaris.org/os/licensing.
1059243Sobrien * See the License for the specific language governing permissions
1159243Sobrien * and limitations under the License.
1259243Sobrien *
1359243Sobrien * When distributing Covered Code, include this CDDL HEADER in each
1459243Sobrien * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
1559243Sobrien * If applicable, add the following below this CDDL HEADER, with the
1659243Sobrien * fields enclosed by brackets "[]" replaced with your own identifying
1759243Sobrien * information: Portions Copyright [yyyy] [name of copyright owner]
1859243Sobrien *
1959243Sobrien * CDDL HEADER END
2059243Sobrien */
2159243Sobrien/*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
22100616Smp/*	  All Rights Reserved  	*/
2359243Sobrien
2459243Sobrien
2559243Sobrien/*
2659243Sobrien * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
2759243Sobrien * Use is subject to license terms.
2859243Sobrien */
2959243Sobrien
3059243Sobrien#pragma ident	"%Z%%M%	%I%	%E% SMI"
3159243Sobrien
3259243Sobrien#include <sys/types.h>
3359243Sobrien#include <sys/sysmacros.h>
3459243Sobrien#include <sys/param.h>
3559243Sobrien#include <sys/errno.h>
3659243Sobrien#include <sys/signal.h>
3759243Sobrien#include <sys/stat.h>
3859243Sobrien#include <sys/proc.h>
3959243Sobrien#include <sys/cred.h>
4059243Sobrien#include <sys/user.h>
4159243Sobrien#include <sys/vnode.h>
42145479Smp#include <sys/file.h>
4359243Sobrien#include <sys/stream.h>
4459243Sobrien#include <sys/strsubr.h>
4559243Sobrien#include <sys/stropts.h>
4659243Sobrien#include <sys/tihdr.h>
4759243Sobrien#include <sys/var.h>
4859243Sobrien#include <sys/poll.h>
4959243Sobrien#include <sys/termio.h>
50145479Smp#include <sys/ttold.h>
51145479Smp#include <sys/systm.h>
52145479Smp#include <sys/uio.h>
53231990Smp#include <sys/cmn_err.h>
54145479Smp#include <sys/sad.h>
55231990Smp#include <sys/netstack.h>
56231990Smp#include <sys/priocntl.h>
57231990Smp#include <sys/jioctl.h>
58145479Smp#include <sys/procset.h>
59145479Smp#include <sys/session.h>
60145479Smp#include <sys/kmem.h>
6159243Sobrien#include <sys/filio.h>
6259243Sobrien#include <sys/vtrace.h>
6359243Sobrien#include <sys/debug.h>
6459243Sobrien#include <sys/strredir.h>
6559243Sobrien#include <sys/fs/fifonode.h>
6659243Sobrien#include <sys/fs/snode.h>
6759243Sobrien#include <sys/strlog.h>
6859243Sobrien#include <sys/strsun.h>
6959243Sobrien#include <sys/project.h>
7059243Sobrien#include <sys/kbio.h>
7159243Sobrien#include <sys/msio.h>
7259243Sobrien#include <sys/tty.h>
7359243Sobrien#include <sys/ptyvar.h>
7459243Sobrien#include <sys/vuid_event.h>
7559243Sobrien#include <sys/modctl.h>
7659243Sobrien#include <sys/sunddi.h>
7759243Sobrien#include <sys/sunldi_impl.h>
7859243Sobrien#include <sys/autoconf.h>
7959243Sobrien#include <sys/policy.h>
8059243Sobrien#include <sys/zone.h>
8159243Sobrien
8259243Sobrien
8359243Sobrien/*
8459243Sobrien * This define helps improve the readability of streams code while
8559243Sobrien * still maintaining a very old streams performance enhancement.  The
8659243Sobrien * performance enhancement basically involved having all callers
8759243Sobrien * of straccess() perform the first check that straccess() will do
8859243Sobrien * locally before actually calling straccess().  (There by reducing
8959243Sobrien * the number of unnecessary calls to straccess().)
9059243Sobrien */
9159243Sobrien#define	i_straccess(x, y)	((stp->sd_sidp == NULL) ? 0 : \
9259243Sobrien				    (stp->sd_vnode->v_type == VFIFO) ? 0 : \
9359243Sobrien				    straccess((x), (y)))
9459243Sobrien
9559243Sobrien/*
9659243Sobrien * what is mblk_pull_len?
9759243Sobrien *
9859243Sobrien * If a streams message consists of many short messages,
9959243Sobrien * a performance degradation occurs from copyout overhead.
10059243Sobrien * To decrease the per mblk overhead, messages that are
10159243Sobrien * likely to consist of many small mblks are pulled up into
10259243Sobrien * one continuous chunk of memory.
10359243Sobrien *
10459243Sobrien * To avoid the processing overhead of examining every
10559243Sobrien * mblk, a quick heuristic is used. If the first mblk in
10659243Sobrien * the message is shorter than mblk_pull_len, it is likely
107145479Smp * that the rest of the mblk will be short.
10859243Sobrien *
10959243Sobrien * This heuristic was decided upon after performance tests
110131962Smp * indicated that anything more complex slowed down the main
11159243Sobrien * code path.
11259243Sobrien */
11359243Sobrien#define	MBLK_PULL_LEN 64
11459243Sobrienuint32_t mblk_pull_len = MBLK_PULL_LEN;
11559243Sobrien
11659243Sobrien/*
117145479Smp * The sgttyb_handling flag controls the handling of the old BSD
118145479Smp * TIOCGETP, TIOCSETP, and TIOCSETN ioctls as follows:
119145479Smp *
12059243Sobrien * 0 - Emit no warnings at all and retain old, broken behavior.
12159243Sobrien * 1 - Emit no warnings and silently handle new semantics.
12259243Sobrien * 2 - Send cmn_err(CE_NOTE) when either TIOCSETP or TIOCSETN is used
12359243Sobrien *     (once per system invocation).  Handle with new semantics.
12459243Sobrien * 3 - Send SIGSYS when any TIOCGETP, TIOCSETP, or TIOCSETN call is
12559243Sobrien *     made (so that offenders drop core and are easy to debug).
12659243Sobrien *
12759243Sobrien * The "new semantics" are that TIOCGETP returns B38400 for
12859243Sobrien * sg_[io]speed if the corresponding value is over B38400, and that
12959243Sobrien * TIOCSET[PN] accept B38400 in these cases to mean "retain current
13059243Sobrien * bit rate."
13159243Sobrien */
13259243Sobrienint sgttyb_handling = 1;
13359243Sobrienstatic boolean_t sgttyb_complaint;
13459243Sobrien
13559243Sobrien/* don't push drcompat module by default on Style-2 streams */
13659243Sobrienstatic int push_drcompat = 0;
13759243Sobrien
138231990Smp/*
13959243Sobrien * id value used to distinguish between different ioctl messages
14059243Sobrien */
14159243Sobrienstatic uint32_t ioc_id;
14259243Sobrien
14359243Sobrienstatic void putback(struct stdata *, queue_t *, mblk_t *, int);
14459243Sobrienstatic void strcleanall(struct vnode *);
14559243Sobrienstatic int strwsrv(queue_t *);
14659243Sobrien
14759243Sobrien/*
14859243Sobrien * qinit and module_info structures for stream head read and write queues
14959243Sobrien */
15059243Sobrienstruct module_info strm_info = { 0, "strrhead", 0, INFPSZ, STRHIGH, STRLOW };
15159243Sobrienstruct module_info stwm_info = { 0, "strwhead", 0, 0, 0, 0 };
15259243Sobrienstruct qinit strdata = { strrput, NULL, NULL, NULL, NULL, &strm_info };
15359243Sobrienstruct qinit stwdata = { NULL, strwsrv, NULL, NULL, NULL, &stwm_info };
15459243Sobrienstruct module_info fiform_info = { 0, "fifostrrhead", 0, PIPE_BUF, FIFOHIWAT,
15559243Sobrien    FIFOLOWAT };
15659243Sobrienstruct module_info fifowm_info = { 0, "fifostrwhead", 0, 0, 0, 0 };
15759243Sobrienstruct qinit fifo_strdata = { strrput, NULL, NULL, NULL, NULL, &fiform_info };
15859243Sobrienstruct qinit fifo_stwdata = { NULL, strwsrv, NULL, NULL, NULL, &fifowm_info };
15959243Sobrien
16059243Sobrienextern kmutex_t	strresources;	/* protects global resources */
16159243Sobrienextern kmutex_t muxifier;	/* single-threads multiplexor creation */
16259243Sobrien
16359243Sobrienstatic boolean_t msghasdata(mblk_t *bp);
16459243Sobrien#define	msgnodata(bp) (!msghasdata(bp))
16559243Sobrien
16659243Sobrien/*
16759243Sobrien * Stream head locking notes:
16859243Sobrien *	There are four monitors associated with the stream head:
16959243Sobrien *	1. v_stream monitor: in stropen() and strclose() v_lock
17059243Sobrien *		is held while the association of vnode and stream
17159243Sobrien *		head is established or tested for.
172100616Smp *	2. open/close/push/pop monitor: sd_lock is held while each
173100616Smp *		thread bids for exclusive access to this monitor
174100616Smp *		for opening or closing a stream.  In addition, this
175100616Smp *		monitor is entered during pushes and pops.  This
176100616Smp *		guarantees that during plumbing operations there
17759243Sobrien *		is only one thread trying to change the plumbing.
17859243Sobrien *		Any other threads present in the stream are only
17959243Sobrien *		using the plumbing.
18059243Sobrien *	3. read/write monitor: in the case of read, a thread holds
18159243Sobrien *		sd_lock while trying to get data from the stream
18259243Sobrien *		head queue.  if there is none to fulfill a read
18359243Sobrien *		request, it sets RSLEEP and calls cv_wait_sig() down
184195609Smp *		in strwaitq() to await the arrival of new data.
18559243Sobrien *		when new data arrives in strrput(), sd_lock is acquired
18659243Sobrien *		before testing for RSLEEP and calling cv_broadcast().
18759243Sobrien *		the behavior of strwrite(), strwsrv(), and WSLEEP
18859243Sobrien *		mirror this.
18959243Sobrien *	4. ioctl monitor: sd_lock is gotten to ensure that only one
190145479Smp *		thread is doing an ioctl at a time.
191145479Smp */
192145479Smp
193145479Smpstatic int
194145479Smppush_mod(queue_t *qp, dev_t *devp, struct stdata *stp, const char *name,
195145479Smp    int anchor, cred_t *crp, uint_t anchor_zoneid)
196145479Smp{
197145479Smp	int error;
198145479Smp	fmodsw_impl_t *fp;
199145479Smp
200145479Smp	if (stp->sd_flag & (STRHUP|STRDERR|STWRERR)) {
201145479Smp		error = (stp->sd_flag & STRHUP) ? ENXIO : EIO;
202145479Smp		return (error);
203145479Smp	}
204145479Smp	if (stp->sd_pushcnt >= nstrpush) {
205145479Smp		return (EINVAL);
206145479Smp	}
207145479Smp
208145479Smp	if ((fp = fmodsw_find(name, FMODSW_HOLD | FMODSW_LOAD)) == NULL) {
209145479Smp		stp->sd_flag |= STREOPENFAIL;
210145479Smp		return (EINVAL);
211145479Smp	}
212145479Smp
21359243Sobrien	/*
214	 * push new module and call its open routine via qattach
215	 */
216	if ((error = qattach(qp, devp, 0, crp, fp, B_FALSE)) != 0)
217		return (error);
218
219	/*
220	 * Check to see if caller wants a STREAMS anchor
221	 * put at this place in the stream, and add if so.
222	 */
223	mutex_enter(&stp->sd_lock);
224	if (anchor == stp->sd_pushcnt) {
225		stp->sd_anchor = stp->sd_pushcnt;
226		stp->sd_anchorzone = anchor_zoneid;
227	}
228	mutex_exit(&stp->sd_lock);
229
230	return (0);
231}
232
233/*
234 * Open a stream device.
235 */
236int
237stropen(vnode_t *vp, dev_t *devp, int flag, cred_t *crp)
238{
239	struct stdata *stp;
240	queue_t *qp;
241	int s;
242	dev_t dummydev;
243	struct autopush *ap;
244	int error = 0;
245	ssize_t	rmin, rmax;
246	int cloneopen;
247	queue_t *brq;
248	major_t major;
249	str_stack_t *ss;
250	zoneid_t zoneid;
251	uint_t anchor;
252
253#ifdef C2_AUDIT
254	if (audit_active)
255		audit_stropen(vp, devp, flag, crp);
256#endif
257
258	/*
259	 * If the stream already exists, wait for any open in progress
260	 * to complete, then call the open function of each module and
261	 * driver in the stream.  Otherwise create the stream.
262	 */
263	TRACE_1(TR_FAC_STREAMS_FR, TR_STROPEN, "stropen:%p", vp);
264retry:
265	mutex_enter(&vp->v_lock);
266	if ((stp = vp->v_stream) != NULL) {
267
268		/*
269		 * Waiting for stream to be created to device
270		 * due to another open.
271		 */
272	    mutex_exit(&vp->v_lock);
273
274	    if (STRMATED(stp)) {
275		struct stdata *strmatep = stp->sd_mate;
276
277		STRLOCKMATES(stp);
278		if (strmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
279			if (flag & (FNDELAY|FNONBLOCK)) {
280				error = EAGAIN;
281				mutex_exit(&strmatep->sd_lock);
282				goto ckreturn;
283			}
284			mutex_exit(&stp->sd_lock);
285			if (!cv_wait_sig(&strmatep->sd_monitor,
286			    &strmatep->sd_lock)) {
287				error = EINTR;
288				mutex_exit(&strmatep->sd_lock);
289				mutex_enter(&stp->sd_lock);
290				goto ckreturn;
291			}
292			mutex_exit(&strmatep->sd_lock);
293			goto retry;
294		}
295		if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
296			if (flag & (FNDELAY|FNONBLOCK)) {
297				error = EAGAIN;
298				mutex_exit(&strmatep->sd_lock);
299				goto ckreturn;
300			}
301			mutex_exit(&strmatep->sd_lock);
302			if (!cv_wait_sig(&stp->sd_monitor, &stp->sd_lock)) {
303				error = EINTR;
304				goto ckreturn;
305			}
306			mutex_exit(&stp->sd_lock);
307			goto retry;
308		}
309
310		if (stp->sd_flag & (STRDERR|STWRERR)) {
311			error = EIO;
312			mutex_exit(&strmatep->sd_lock);
313			goto ckreturn;
314		}
315
316		stp->sd_flag |= STWOPEN;
317		STRUNLOCKMATES(stp);
318	    } else {
319		mutex_enter(&stp->sd_lock);
320		if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
321			if (flag & (FNDELAY|FNONBLOCK)) {
322				error = EAGAIN;
323				goto ckreturn;
324			}
325			if (!cv_wait_sig(&stp->sd_monitor, &stp->sd_lock)) {
326				error = EINTR;
327				goto ckreturn;
328			}
329			mutex_exit(&stp->sd_lock);
330			goto retry;  /* could be clone! */
331		}
332
333		if (stp->sd_flag & (STRDERR|STWRERR)) {
334			error = EIO;
335			goto ckreturn;
336		}
337
338		stp->sd_flag |= STWOPEN;
339		mutex_exit(&stp->sd_lock);
340	    }
341
342		/*
343		 * Open all modules and devices down stream to notify
344		 * that another user is streaming.  For modules, set the
345		 * last argument to MODOPEN and do not pass any open flags.
346		 * Ignore dummydev since this is not the first open.
347		 */
348	    claimstr(stp->sd_wrq);
349	    qp = stp->sd_wrq;
350	    while (_SAMESTR(qp)) {
351		qp = qp->q_next;
352		if ((error = qreopen(_RD(qp), devp, flag, crp)) != 0)
353			break;
354	    }
355	    releasestr(stp->sd_wrq);
356	    mutex_enter(&stp->sd_lock);
357	    stp->sd_flag &= ~(STRHUP|STWOPEN|STRDERR|STWRERR);
358	    stp->sd_rerror = 0;
359	    stp->sd_werror = 0;
360ckreturn:
361	    cv_broadcast(&stp->sd_monitor);
362	    mutex_exit(&stp->sd_lock);
363	    return (error);
364	}
365
366	/*
367	 * This vnode isn't streaming.  SPECFS already
368	 * checked for multiple vnodes pointing to the
369	 * same stream, so create a stream to the driver.
370	 */
371	qp = allocq();
372	stp = shalloc(qp);
373
374	/*
375	 * Initialize stream head.  shalloc() has given us
376	 * exclusive access, and we have the vnode locked;
377	 * we can do whatever we want with stp.
378	 */
379	stp->sd_flag = STWOPEN;
380	stp->sd_siglist = NULL;
381	stp->sd_pollist.ph_list = NULL;
382	stp->sd_sigflags = 0;
383	stp->sd_mark = NULL;
384	stp->sd_closetime = STRTIMOUT;
385	stp->sd_sidp = NULL;
386	stp->sd_pgidp = NULL;
387	stp->sd_vnode = vp;
388	stp->sd_rerror = 0;
389	stp->sd_werror = 0;
390	stp->sd_wroff = 0;
391	stp->sd_tail = 0;
392	stp->sd_iocblk = NULL;
393	stp->sd_pushcnt = 0;
394	stp->sd_qn_minpsz = 0;
395	stp->sd_qn_maxpsz = INFPSZ - 1;	/* used to check for initialization */
396	stp->sd_maxblk = INFPSZ;
397	qp->q_ptr = _WR(qp)->q_ptr = stp;
398	STREAM(qp) = STREAM(_WR(qp)) = stp;
399	vp->v_stream = stp;
400	mutex_exit(&vp->v_lock);
401	if (vp->v_type == VFIFO) {
402		stp->sd_flag |= OLDNDELAY;
403		/*
404		 * This means, both for pipes and fifos
405		 * strwrite will send SIGPIPE if the other
406		 * end is closed. For putmsg it depends
407		 * on whether it is a XPG4_2 application
408		 * or not
409		 */
410		stp->sd_wput_opt = SW_SIGPIPE;
411
412		/* setq might sleep in kmem_alloc - avoid holding locks. */
413		setq(qp, &fifo_strdata, &fifo_stwdata, NULL, QMTSAFE,
414		    SQ_CI|SQ_CO, B_FALSE);
415
416		set_qend(qp);
417		stp->sd_strtab = fifo_getinfo();
418		_WR(qp)->q_nfsrv = _WR(qp);
419		qp->q_nfsrv = qp;
420		/*
421		 * Wake up others that are waiting for stream to be created.
422		 */
423		mutex_enter(&stp->sd_lock);
424		/*
425		 * nothing is be pushed on stream yet, so
426		 * optimized stream head packetsizes are just that
427		 * of the read queue
428		 */
429		stp->sd_qn_minpsz = qp->q_minpsz;
430		stp->sd_qn_maxpsz = qp->q_maxpsz;
431		stp->sd_flag &= ~STWOPEN;
432		goto fifo_opendone;
433	}
434	/* setq might sleep in kmem_alloc - avoid holding locks. */
435	setq(qp, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_FALSE);
436
437	set_qend(qp);
438
439	/*
440	 * Open driver and create stream to it (via qattach).
441	 */
442	cloneopen = (getmajor(*devp) == clone_major);
443	if ((error = qattach(qp, devp, flag, crp, NULL, B_FALSE)) != 0) {
444		mutex_enter(&vp->v_lock);
445		vp->v_stream = NULL;
446		mutex_exit(&vp->v_lock);
447		mutex_enter(&stp->sd_lock);
448		cv_broadcast(&stp->sd_monitor);
449		mutex_exit(&stp->sd_lock);
450		freeq(_RD(qp));
451		shfree(stp);
452		return (error);
453	}
454	/*
455	 * Set sd_strtab after open in order to handle clonable drivers
456	 */
457	stp->sd_strtab = STREAMSTAB(getmajor(*devp));
458
459	/*
460	 * Historical note: dummydev used to be be prior to the initial
461	 * open (via qattach above), which made the value seen
462	 * inconsistent between an I_PUSH and an autopush of a module.
463	 */
464	dummydev = *devp;
465
466	/*
467	 * For clone open of old style (Q not associated) network driver,
468	 * push DRMODNAME module to handle DL_ATTACH/DL_DETACH
469	 */
470	brq = _RD(_WR(qp)->q_next);
471	major = getmajor(*devp);
472	if (push_drcompat && cloneopen && NETWORK_DRV(major) &&
473	    ((brq->q_flag & _QASSOCIATED) == 0)) {
474		if (push_mod(qp, &dummydev, stp, DRMODNAME, 0, crp, 0) != 0)
475			cmn_err(CE_WARN, "cannot push " DRMODNAME
476			    " streams module");
477	}
478
479	/*
480	 * Check for autopush. Start with the global zone. If not found
481	 * check in the local zone.
482	 */
483	zoneid = GLOBAL_ZONEID;
484retryap:
485	ss = netstack_find_by_stackid(zoneid_to_netstackid(zoneid))->
486	    netstack_str;
487	if ((ap = sad_ap_find_by_dev(*devp, ss)) == NULL) {
488		netstack_rele(ss->ss_netstack);
489		if (zoneid == GLOBAL_ZONEID) {
490			/*
491			 * None found. Also look in the zone's autopush table.
492			 */
493			zoneid = crgetzoneid(crp);
494			if (zoneid != GLOBAL_ZONEID)
495				goto retryap;
496		}
497		goto opendone;
498	}
499	anchor = ap->ap_anchor;
500	zoneid = crgetzoneid(crp);
501	for (s = 0; s < ap->ap_npush; s++) {
502		error = push_mod(qp, &dummydev, stp, ap->ap_list[s],
503		    anchor, crp, zoneid);
504		if (error != 0)
505			break;
506	}
507	sad_ap_rele(ap, ss);
508	netstack_rele(ss->ss_netstack);
509
510	/*
511	 * let specfs know that open failed part way through
512	 */
513	if (error) {
514		mutex_enter(&stp->sd_lock);
515		stp->sd_flag |= STREOPENFAIL;
516		mutex_exit(&stp->sd_lock);
517	}
518
519opendone:
520
521	/*
522	 * Wake up others that are waiting for stream to be created.
523	 */
524	mutex_enter(&stp->sd_lock);
525	stp->sd_flag &= ~STWOPEN;
526
527	/*
528	 * As a performance concern we are caching the values of
529	 * q_minpsz and q_maxpsz of the module below the stream
530	 * head in the stream head.
531	 */
532	mutex_enter(QLOCK(stp->sd_wrq->q_next));
533	rmin = stp->sd_wrq->q_next->q_minpsz;
534	rmax = stp->sd_wrq->q_next->q_maxpsz;
535	mutex_exit(QLOCK(stp->sd_wrq->q_next));
536
537	/* do this processing here as a performance concern */
538	if (strmsgsz != 0) {
539		if (rmax == INFPSZ)
540			rmax = strmsgsz;
541		else
542			rmax = MIN(strmsgsz, rmax);
543	}
544
545	mutex_enter(QLOCK(stp->sd_wrq));
546	stp->sd_qn_minpsz = rmin;
547	stp->sd_qn_maxpsz = rmax;
548	mutex_exit(QLOCK(stp->sd_wrq));
549
550fifo_opendone:
551	cv_broadcast(&stp->sd_monitor);
552	mutex_exit(&stp->sd_lock);
553	return (error);
554}
555
556static int strsink(queue_t *, mblk_t *);
557static struct qinit deadrend = {
558	strsink, NULL, NULL, NULL, NULL, &strm_info, NULL
559};
560static struct qinit deadwend = {
561	NULL, NULL, NULL, NULL, NULL, &stwm_info, NULL
562};
563
564/*
565 * Close a stream.
566 * This is called from closef() on the last close of an open stream.
567 * Strclean() will already have removed the siglist and pollist
568 * information, so all that remains is to remove all multiplexor links
569 * for the stream, pop all the modules (and the driver), and free the
570 * stream structure.
571 */
572
573int
574strclose(struct vnode *vp, int flag, cred_t *crp)
575{
576	struct stdata *stp;
577	queue_t *qp;
578	int rval;
579	int freestp = 1;
580	queue_t *rmq;
581
582#ifdef C2_AUDIT
583	if (audit_active)
584		audit_strclose(vp, flag, crp);
585#endif
586
587	TRACE_1(TR_FAC_STREAMS_FR,
588		TR_STRCLOSE, "strclose:%p", vp);
589	ASSERT(vp->v_stream);
590
591	stp = vp->v_stream;
592	ASSERT(!(stp->sd_flag & STPLEX));
593	qp = stp->sd_wrq;
594
595	/*
596	 * Needed so that strpoll will return non-zero for this fd.
597	 * Note that with POLLNOERR STRHUP does still cause POLLHUP.
598	 */
599	mutex_enter(&stp->sd_lock);
600	stp->sd_flag |= STRHUP;
601	mutex_exit(&stp->sd_lock);
602
603	/*
604	 * If the registered process or process group did not have an
605	 * open instance of this stream then strclean would not be
606	 * called. Thus at the time of closing all remaining siglist entries
607	 * are removed.
608	 */
609	if (stp->sd_siglist != NULL)
610		strcleanall(vp);
611
612	ASSERT(stp->sd_siglist == NULL);
613	ASSERT(stp->sd_sigflags == 0);
614
615	if (STRMATED(stp)) {
616		struct stdata *strmatep = stp->sd_mate;
617		int waited = 1;
618
619		STRLOCKMATES(stp);
620		while (waited) {
621			waited = 0;
622			while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
623				mutex_exit(&strmatep->sd_lock);
624				cv_wait(&stp->sd_monitor, &stp->sd_lock);
625				mutex_exit(&stp->sd_lock);
626				STRLOCKMATES(stp);
627				waited = 1;
628			}
629			while (strmatep->sd_flag &
630			    (STWOPEN|STRCLOSE|STRPLUMB)) {
631				mutex_exit(&stp->sd_lock);
632				cv_wait(&strmatep->sd_monitor,
633				    &strmatep->sd_lock);
634				mutex_exit(&strmatep->sd_lock);
635				STRLOCKMATES(stp);
636				waited = 1;
637			}
638		}
639		stp->sd_flag |= STRCLOSE;
640		STRUNLOCKMATES(stp);
641	} else {
642		mutex_enter(&stp->sd_lock);
643		stp->sd_flag |= STRCLOSE;
644		mutex_exit(&stp->sd_lock);
645	}
646
647	ASSERT(qp->q_first == NULL);	/* No more delayed write */
648
649	/* Check if an I_LINK was ever done on this stream */
650	if (stp->sd_flag & STRHASLINKS) {
651		netstack_t *ns;
652		str_stack_t *ss;
653
654		ns = netstack_find_by_cred(crp);
655		ASSERT(ns != NULL);
656		ss = ns->netstack_str;
657		ASSERT(ss != NULL);
658
659		(void) munlinkall(stp, LINKCLOSE|LINKNORMAL, crp, &rval, ss);
660		netstack_rele(ss->ss_netstack);
661	}
662
663	while (_SAMESTR(qp)) {
664		/*
665		 * Holding sd_lock prevents q_next from changing in
666		 * this stream.
667		 */
668		mutex_enter(&stp->sd_lock);
669		if (!(flag & (FNDELAY|FNONBLOCK)) && (stp->sd_closetime > 0)) {
670
671			/*
672			 * sleep until awakened by strwsrv() or timeout
673			 */
674			for (;;) {
675				mutex_enter(QLOCK(qp->q_next));
676				if (!(qp->q_next->q_mblkcnt)) {
677					mutex_exit(QLOCK(qp->q_next));
678					break;
679				}
680				stp->sd_flag |= WSLEEP;
681
682				/* ensure strwsrv gets enabled */
683				qp->q_next->q_flag |= QWANTW;
684				mutex_exit(QLOCK(qp->q_next));
685				/* get out if we timed out or recv'd a signal */
686				if (str_cv_wait(&qp->q_wait, &stp->sd_lock,
687				    stp->sd_closetime, 0) <= 0) {
688					break;
689				}
690			}
691			stp->sd_flag &= ~WSLEEP;
692		}
693		mutex_exit(&stp->sd_lock);
694
695		rmq = qp->q_next;
696		if (rmq->q_flag & QISDRV) {
697			ASSERT(!_SAMESTR(rmq));
698			wait_sq_svc(_RD(qp)->q_syncq);
699		}
700
701		qdetach(_RD(rmq), 1, flag, crp, B_FALSE);
702	}
703
704	/*
705	 * Since we call pollwakeup in close() now, the poll list should
706	 * be empty in most cases. The only exception is the layered devices
707	 * (e.g. the console drivers with redirection modules pushed on top
708	 * of it).  We have to do this after calling qdetach() because
709	 * the redirection module won't have torn down the console
710	 * redirection until after qdetach() has been invoked.
711	 */
712	if (stp->sd_pollist.ph_list != NULL) {
713		pollwakeup(&stp->sd_pollist, POLLERR);
714		pollhead_clean(&stp->sd_pollist);
715	}
716	ASSERT(stp->sd_pollist.ph_list == NULL);
717	ASSERT(stp->sd_sidp == NULL);
718	ASSERT(stp->sd_pgidp == NULL);
719
720	/* Prevent qenable from re-enabling the stream head queue */
721	disable_svc(_RD(qp));
722
723	/*
724	 * Wait until service procedure of each queue is
725	 * run, if QINSERVICE is set.
726	 */
727	wait_svc(_RD(qp));
728
729	/*
730	 * Now, flush both queues.
731	 */
732	flushq(_RD(qp), FLUSHALL);
733	flushq(qp, FLUSHALL);
734
735	/*
736	 * If the write queue of the stream head is pointing to a
737	 * read queue, we have a twisted stream.  If the read queue
738	 * is alive, convert the stream head queues into a dead end.
739	 * If the read queue is dead, free the dead pair.
740	 */
741	if (qp->q_next && !_SAMESTR(qp)) {
742		if (qp->q_next->q_qinfo == &deadrend) {	/* half-closed pipe */
743			flushq(qp->q_next, FLUSHALL); /* ensure no message */
744			shfree(qp->q_next->q_stream);
745			freeq(qp->q_next);
746			freeq(_RD(qp));
747		} else if (qp->q_next == _RD(qp)) {	/* fifo */
748			freeq(_RD(qp));
749		} else {				/* pipe */
750			freestp = 0;
751			/*
752			 * The q_info pointers are never accessed when
753			 * SQLOCK is held.
754			 */
755			ASSERT(qp->q_syncq == _RD(qp)->q_syncq);
756			mutex_enter(SQLOCK(qp->q_syncq));
757			qp->q_qinfo = &deadwend;
758			_RD(qp)->q_qinfo = &deadrend;
759			mutex_exit(SQLOCK(qp->q_syncq));
760		}
761	} else {
762		freeq(_RD(qp)); /* free stream head queue pair */
763	}
764
765	mutex_enter(&vp->v_lock);
766	if (stp->sd_iocblk) {
767		if (stp->sd_iocblk != (mblk_t *)-1) {
768			freemsg(stp->sd_iocblk);
769		}
770		stp->sd_iocblk = NULL;
771	}
772	stp->sd_vnode = NULL;
773	vp->v_stream = NULL;
774	mutex_exit(&vp->v_lock);
775	mutex_enter(&stp->sd_lock);
776	stp->sd_flag &= ~STRCLOSE;
777	cv_broadcast(&stp->sd_monitor);
778	mutex_exit(&stp->sd_lock);
779
780	if (freestp)
781		shfree(stp);
782	return (0);
783}
784
785static int
786strsink(queue_t *q, mblk_t *bp)
787{
788	struct copyresp *resp;
789
790	switch (bp->b_datap->db_type) {
791	case M_FLUSH:
792		if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) {
793			*bp->b_rptr &= ~FLUSHR;
794			bp->b_flag |= MSGNOLOOP;
795			/*
796			 * Protect against the driver passing up
797			 * messages after it has done a qprocsoff.
798			 */
799			if (_OTHERQ(q)->q_next == NULL)
800				freemsg(bp);
801			else
802				qreply(q, bp);
803		} else {
804			freemsg(bp);
805		}
806		break;
807
808	case M_COPYIN:
809	case M_COPYOUT:
810		if (bp->b_cont) {
811			freemsg(bp->b_cont);
812			bp->b_cont = NULL;
813		}
814		bp->b_datap->db_type = M_IOCDATA;
815		bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
816		resp = (struct copyresp *)bp->b_rptr;
817		resp->cp_rval = (caddr_t)1;	/* failure */
818		/*
819		 * Protect against the driver passing up
820		 * messages after it has done a qprocsoff.
821		 */
822		if (_OTHERQ(q)->q_next == NULL)
823			freemsg(bp);
824		else
825			qreply(q, bp);
826		break;
827
828	case M_IOCTL:
829		if (bp->b_cont) {
830			freemsg(bp->b_cont);
831			bp->b_cont = NULL;
832		}
833		bp->b_datap->db_type = M_IOCNAK;
834		/*
835		 * Protect against the driver passing up
836		 * messages after it has done a qprocsoff.
837		 */
838		if (_OTHERQ(q)->q_next == NULL)
839			freemsg(bp);
840		else
841			qreply(q, bp);
842		break;
843
844	default:
845		freemsg(bp);
846		break;
847	}
848
849	return (0);
850}
851
852/*
853 * Clean up after a process when it closes a stream.  This is called
854 * from closef for all closes, whereas strclose is called only for the
855 * last close on a stream.  The siglist is scanned for entries for the
856 * current process, and these are removed.
857 */
858void
859strclean(struct vnode *vp)
860{
861	strsig_t *ssp, *pssp, *tssp;
862	stdata_t *stp;
863	int update = 0;
864
865	TRACE_1(TR_FAC_STREAMS_FR,
866		TR_STRCLEAN, "strclean:%p", vp);
867	stp = vp->v_stream;
868	pssp = NULL;
869	mutex_enter(&stp->sd_lock);
870	ssp = stp->sd_siglist;
871	while (ssp) {
872		if (ssp->ss_pidp == curproc->p_pidp) {
873			tssp = ssp->ss_next;
874			if (pssp)
875				pssp->ss_next = tssp;
876			else
877				stp->sd_siglist = tssp;
878			mutex_enter(&pidlock);
879			PID_RELE(ssp->ss_pidp);
880			mutex_exit(&pidlock);
881			kmem_free(ssp, sizeof (strsig_t));
882			update = 1;
883			ssp = tssp;
884		} else {
885			pssp = ssp;
886			ssp = ssp->ss_next;
887		}
888	}
889	if (update) {
890		stp->sd_sigflags = 0;
891		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
892			stp->sd_sigflags |= ssp->ss_events;
893	}
894	mutex_exit(&stp->sd_lock);
895}
896
897/*
898 * Used on the last close to remove any remaining items on the siglist.
899 * These could be present on the siglist due to I_ESETSIG calls that
900 * use process groups or processed that do not have an open file descriptor
901 * for this stream (Such entries would not be removed by strclean).
902 */
903static void
904strcleanall(struct vnode *vp)
905{
906	strsig_t *ssp, *nssp;
907	stdata_t *stp;
908
909	stp = vp->v_stream;
910	mutex_enter(&stp->sd_lock);
911	ssp = stp->sd_siglist;
912	stp->sd_siglist = NULL;
913	while (ssp) {
914		nssp = ssp->ss_next;
915		mutex_enter(&pidlock);
916		PID_RELE(ssp->ss_pidp);
917		mutex_exit(&pidlock);
918		kmem_free(ssp, sizeof (strsig_t));
919		ssp = nssp;
920	}
921	stp->sd_sigflags = 0;
922	mutex_exit(&stp->sd_lock);
923}
924
925/*
926 * Retrieve the next message from the logical stream head read queue
927 * using either rwnext (if sync stream) or getq_noenab.
928 * It is the callers responsibility to call qbackenable after
929 * it is finished with the message. The caller should not call
930 * qbackenable until after any putback calls to avoid spurious backenabling.
931 */
932mblk_t *
933strget(struct stdata *stp, queue_t *q, struct uio *uiop, int first,
934    int *errorp)
935{
936	mblk_t *bp;
937	int error;
938
939	ASSERT(MUTEX_HELD(&stp->sd_lock));
940	/* Holding sd_lock prevents the read queue from changing  */
941
942	if (uiop != NULL && stp->sd_struiordq != NULL &&
943	    q->q_first == NULL &&
944	    (!first || (stp->sd_wakeq & RSLEEP))) {
945		/*
946		 * Stream supports rwnext() for the read side.
947		 * If this is the first time we're called by e.g. strread
948		 * only do the downcall if there is a deferred wakeup
949		 * (registered in sd_wakeq).
950		 */
951		struiod_t uiod;
952
953		if (first)
954			stp->sd_wakeq &= ~RSLEEP;
955
956		(void) uiodup(uiop, &uiod.d_uio, uiod.d_iov,
957			sizeof (uiod.d_iov) / sizeof (*uiod.d_iov));
958		uiod.d_mp = 0;
959		/*
960		 * Mark that a thread is in rwnext on the read side
961		 * to prevent strrput from nacking ioctls immediately.
962		 * When the last concurrent rwnext returns
963		 * the ioctls are nack'ed.
964		 */
965		ASSERT(MUTEX_HELD(&stp->sd_lock));
966		stp->sd_struiodnak++;
967		/*
968		 * Note: rwnext will drop sd_lock.
969		 */
970		error = rwnext(q, &uiod);
971		ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
972		mutex_enter(&stp->sd_lock);
973		stp->sd_struiodnak--;
974		while (stp->sd_struiodnak == 0 &&
975		    ((bp = stp->sd_struionak) != NULL)) {
976			stp->sd_struionak = bp->b_next;
977			bp->b_next = NULL;
978			bp->b_datap->db_type = M_IOCNAK;
979			/*
980			 * Protect against the driver passing up
981			 * messages after it has done a qprocsoff.
982			 */
983			if (_OTHERQ(q)->q_next == NULL)
984				freemsg(bp);
985			else {
986				mutex_exit(&stp->sd_lock);
987				qreply(q, bp);
988				mutex_enter(&stp->sd_lock);
989			}
990		}
991		ASSERT(MUTEX_HELD(&stp->sd_lock));
992		if (error == 0 || error == EWOULDBLOCK) {
993			if ((bp = uiod.d_mp) != NULL) {
994				*errorp = 0;
995				ASSERT(MUTEX_HELD(&stp->sd_lock));
996				return (bp);
997			}
998			error = 0;
999		} else if (error == EINVAL) {
1000			/*
1001			 * The stream plumbing must have
1002			 * changed while we were away, so
1003			 * just turn off rwnext()s.
1004			 */
1005			error = 0;
1006		} else if (error == EBUSY) {
1007			/*
1008			 * The module might have data in transit using putnext
1009			 * Fall back on waiting + getq.
1010			 */
1011			error = 0;
1012		} else {
1013			*errorp = error;
1014			ASSERT(MUTEX_HELD(&stp->sd_lock));
1015			return (NULL);
1016		}
1017		/*
1018		 * Try a getq in case a rwnext() generated mblk
1019		 * has bubbled up via strrput().
1020		 */
1021	}
1022	*errorp = 0;
1023	ASSERT(MUTEX_HELD(&stp->sd_lock));
1024	return (getq_noenab(q));
1025}
1026
1027/*
1028 * Copy out the message pointed to by `bp' into the uio pointed to by `uiop'.
1029 * If the message does not fit in the uio the remainder of it is returned;
1030 * otherwise NULL is returned.  Any embedded zero-length mblk_t's are
1031 * consumed, even if uio_resid reaches zero.  On error, `*errorp' is set to
1032 * the error code, the message is consumed, and NULL is returned.
1033 */
1034static mblk_t *
1035struiocopyout(mblk_t *bp, struct uio *uiop, int *errorp)
1036{
1037	int error;
1038	ptrdiff_t n;
1039	mblk_t *nbp;
1040
1041	ASSERT(bp->b_wptr >= bp->b_rptr);
1042
1043	do {
1044		if ((n = MIN(uiop->uio_resid, MBLKL(bp))) != 0) {
1045			ASSERT(n > 0);
1046
1047			error = uiomove(bp->b_rptr, n, UIO_READ, uiop);
1048			if (error != 0) {
1049				freemsg(bp);
1050				*errorp = error;
1051				return (NULL);
1052			}
1053		}
1054
1055		bp->b_rptr += n;
1056		while (bp != NULL && (bp->b_rptr >= bp->b_wptr)) {
1057			nbp = bp;
1058			bp = bp->b_cont;
1059			freeb(nbp);
1060		}
1061	} while (bp != NULL && uiop->uio_resid > 0);
1062
1063	*errorp = 0;
1064	return (bp);
1065}
1066
1067/*
1068 * Read a stream according to the mode flags in sd_flag:
1069 *
1070 * (default mode)		- Byte stream, msg boundaries are ignored
1071 * RD_MSGDIS (msg discard)	- Read on msg boundaries and throw away
1072 *				any data remaining in msg
1073 * RD_MSGNODIS (msg non-discard) - Read on msg boundaries and put back
1074 *				any remaining data on head of read queue
1075 *
1076 * Consume readable messages on the front of the queue until
1077 * ttolwp(curthread)->lwp_count
1078 * is satisfied, the readable messages are exhausted, or a message
1079 * boundary is reached in a message mode.  If no data was read and
1080 * the stream was not opened with the NDELAY flag, block until data arrives.
1081 * Otherwise return the data read and update the count.
1082 *
1083 * In default mode a 0 length message signifies end-of-file and terminates
1084 * a read in progress.  The 0 length message is removed from the queue
1085 * only if it is the only message read (no data is read).
1086 *
1087 * An attempt to read an M_PROTO or M_PCPROTO message results in an
1088 * EBADMSG error return, unless either RD_PROTDAT or RD_PROTDIS are set.
1089 * If RD_PROTDAT is set, M_PROTO and M_PCPROTO messages are read as data.
1090 * If RD_PROTDIS is set, the M_PROTO and M_PCPROTO parts of the message
1091 * are unlinked from and M_DATA blocks in the message, the protos are
1092 * thrown away, and the data is read.
1093 */
1094/* ARGSUSED */
1095int
1096strread(struct vnode *vp, struct uio *uiop, cred_t *crp)
1097{
1098	struct stdata *stp;
1099	mblk_t *bp, *nbp;
1100	queue_t *q;
1101	int error = 0;
1102	uint_t old_sd_flag;
1103	int first;
1104	char rflg;
1105	uint_t mark;		/* Contains MSG*MARK and _LASTMARK */
1106#define	_LASTMARK	0x8000	/* Distinct from MSG*MARK */
1107	short delim;
1108	unsigned char pri = 0;
1109	char waitflag;
1110	unsigned char type;
1111
1112	TRACE_1(TR_FAC_STREAMS_FR,
1113		TR_STRREAD_ENTER, "strread:%p", vp);
1114	ASSERT(vp->v_stream);
1115	stp = vp->v_stream;
1116
1117	mutex_enter(&stp->sd_lock);
1118
1119	if ((error = i_straccess(stp, JCREAD)) != 0) {
1120		mutex_exit(&stp->sd_lock);
1121		return (error);
1122	}
1123
1124	if (stp->sd_flag & (STRDERR|STPLEX)) {
1125		error = strgeterr(stp, STRDERR|STPLEX, 0);
1126		if (error != 0) {
1127			mutex_exit(&stp->sd_lock);
1128			return (error);
1129		}
1130	}
1131
1132	/*
1133	 * Loop terminates when uiop->uio_resid == 0.
1134	 */
1135	rflg = 0;
1136	waitflag = READWAIT;
1137	q = _RD(stp->sd_wrq);
1138	for (;;) {
1139		ASSERT(MUTEX_HELD(&stp->sd_lock));
1140		old_sd_flag = stp->sd_flag;
1141		mark = 0;
1142		delim = 0;
1143		first = 1;
1144		while ((bp = strget(stp, q, uiop, first, &error)) == NULL) {
1145			int done = 0;
1146
1147			ASSERT(MUTEX_HELD(&stp->sd_lock));
1148
1149			if (error != 0)
1150				goto oops;
1151
1152			if (stp->sd_flag & (STRHUP|STREOF)) {
1153				goto oops;
1154			}
1155			if (rflg && !(stp->sd_flag & STRDELIM)) {
1156				goto oops;
1157			}
1158			/*
1159			 * If a read(fd,buf,0) has been done, there is no
1160			 * need to sleep. We always have zero bytes to
1161			 * return.
1162			 */
1163			if (uiop->uio_resid == 0) {
1164				goto oops;
1165			}
1166
1167			qbackenable(q, 0);
1168
1169			TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_WAIT,
1170				"strread calls strwaitq:%p, %p, %p",
1171				vp, uiop, crp);
1172			if ((error = strwaitq(stp, waitflag, uiop->uio_resid,
1173			    uiop->uio_fmode, -1, &done)) != 0 || done) {
1174				TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_DONE,
1175					"strread error or done:%p, %p, %p",
1176					vp, uiop, crp);
1177				if ((uiop->uio_fmode & FNDELAY) &&
1178				    (stp->sd_flag & OLDNDELAY) &&
1179				    (error == EAGAIN))
1180					error = 0;
1181				goto oops;
1182			}
1183			TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_AWAKE,
1184				"strread awakes:%p, %p, %p", vp, uiop, crp);
1185			if ((error = i_straccess(stp, JCREAD)) != 0) {
1186				goto oops;
1187			}
1188			first = 0;
1189		}
1190		ASSERT(MUTEX_HELD(&stp->sd_lock));
1191		ASSERT(bp);
1192		pri = bp->b_band;
1193		/*
1194		 * Extract any mark information. If the message is not
1195		 * completely consumed this information will be put in the mblk
1196		 * that is putback.
1197		 * If MSGMARKNEXT is set and the message is completely consumed
1198		 * the STRATMARK flag will be set below. Likewise, if
1199		 * MSGNOTMARKNEXT is set and the message is
1200		 * completely consumed STRNOTATMARK will be set.
1201		 *
1202		 * For some unknown reason strread only breaks the read at the
1203		 * last mark.
1204		 */
1205		mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT);
1206		ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
1207			(MSGMARKNEXT|MSGNOTMARKNEXT));
1208		if (mark != 0 && bp == stp->sd_mark) {
1209			if (rflg) {
1210				putback(stp, q, bp, pri);
1211				goto oops;
1212			}
1213			mark |= _LASTMARK;
1214			stp->sd_mark = NULL;
1215		}
1216		if ((stp->sd_flag & STRDELIM) && (bp->b_flag & MSGDELIM))
1217			delim = 1;
1218		mutex_exit(&stp->sd_lock);
1219
1220		if (STREAM_NEEDSERVICE(stp))
1221			stream_runservice(stp);
1222
1223		type = bp->b_datap->db_type;
1224
1225		switch (type) {
1226
1227		case M_DATA:
1228ismdata:
1229			if (msgnodata(bp)) {
1230				if (mark || delim) {
1231					freemsg(bp);
1232				} else if (rflg) {
1233
1234					/*
1235					 * If already read data put zero
1236					 * length message back on queue else
1237					 * free msg and return 0.
1238					 */
1239					bp->b_band = pri;
1240					mutex_enter(&stp->sd_lock);
1241					putback(stp, q, bp, pri);
1242					mutex_exit(&stp->sd_lock);
1243				} else {
1244					freemsg(bp);
1245				}
1246				error =  0;
1247				goto oops1;
1248			}
1249
1250			rflg = 1;
1251			waitflag |= NOINTR;
1252			bp = struiocopyout(bp, uiop, &error);
1253			if (error != 0)
1254				goto oops1;
1255
1256			mutex_enter(&stp->sd_lock);
1257			if (bp) {
1258				/*
1259				 * Have remaining data in message.
1260				 * Free msg if in discard mode.
1261				 */
1262				if (stp->sd_read_opt & RD_MSGDIS) {
1263					freemsg(bp);
1264				} else {
1265					bp->b_band = pri;
1266					if ((mark & _LASTMARK) &&
1267					    (stp->sd_mark == NULL))
1268						stp->sd_mark = bp;
1269					bp->b_flag |= mark & ~_LASTMARK;
1270					if (delim)
1271						bp->b_flag |= MSGDELIM;
1272					if (msgnodata(bp))
1273						freemsg(bp);
1274					else
1275						putback(stp, q, bp, pri);
1276				}
1277			} else {
1278				/*
1279				 * Consumed the complete message.
1280				 * Move the MSG*MARKNEXT information
1281				 * to the stream head just in case
1282				 * the read queue becomes empty.
1283				 *
1284				 * If the stream head was at the mark
1285				 * (STRATMARK) before we dropped sd_lock above
1286				 * and some data was consumed then we have
1287				 * moved past the mark thus STRATMARK is
1288				 * cleared. However, if a message arrived in
1289				 * strrput during the copyout above causing
1290				 * STRATMARK to be set we can not clear that
1291				 * flag.
1292				 */
1293				if (mark &
1294				    (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) {
1295					if (mark & MSGMARKNEXT) {
1296						stp->sd_flag &= ~STRNOTATMARK;
1297						stp->sd_flag |= STRATMARK;
1298					} else if (mark & MSGNOTMARKNEXT) {
1299						stp->sd_flag &= ~STRATMARK;
1300						stp->sd_flag |= STRNOTATMARK;
1301					} else {
1302						stp->sd_flag &=
1303						    ~(STRATMARK|STRNOTATMARK);
1304					}
1305				} else if (rflg && (old_sd_flag & STRATMARK)) {
1306					stp->sd_flag &= ~STRATMARK;
1307				}
1308			}
1309
1310			/*
1311			 * Check for signal messages at the front of the read
1312			 * queue and generate the signal(s) if appropriate.
1313			 * The only signal that can be on queue is M_SIG at
1314			 * this point.
1315			 */
1316			while ((((bp = q->q_first)) != NULL) &&
1317				(bp->b_datap->db_type == M_SIG)) {
1318				bp = getq_noenab(q);
1319				/*
1320				 * sd_lock is held so the content of the
1321				 * read queue can not change.
1322				 */
1323				ASSERT(bp != NULL &&
1324					bp->b_datap->db_type == M_SIG);
1325				strsignal_nolock(stp, *bp->b_rptr,
1326					(int32_t)bp->b_band);
1327				mutex_exit(&stp->sd_lock);
1328				freemsg(bp);
1329				if (STREAM_NEEDSERVICE(stp))
1330					stream_runservice(stp);
1331				mutex_enter(&stp->sd_lock);
1332			}
1333
1334			if ((uiop->uio_resid == 0) || (mark & _LASTMARK) ||
1335			    delim ||
1336			    (stp->sd_read_opt & (RD_MSGDIS|RD_MSGNODIS))) {
1337				goto oops;
1338			}
1339			continue;
1340
1341		case M_SIG:
1342			strsignal(stp, *bp->b_rptr, (int32_t)bp->b_band);
1343			freemsg(bp);
1344			mutex_enter(&stp->sd_lock);
1345			continue;
1346
1347		case M_PROTO:
1348		case M_PCPROTO:
1349			/*
1350			 * Only data messages are readable.
1351			 * Any others generate an error, unless
1352			 * RD_PROTDIS or RD_PROTDAT is set.
1353			 */
1354			if (stp->sd_read_opt & RD_PROTDAT) {
1355				for (nbp = bp; nbp; nbp = nbp->b_next) {
1356				    if ((nbp->b_datap->db_type == M_PROTO) ||
1357					(nbp->b_datap->db_type == M_PCPROTO))
1358					nbp->b_datap->db_type = M_DATA;
1359				    else
1360					break;
1361				}
1362				/*
1363				 * clear stream head hi pri flag based on
1364				 * first message
1365				 */
1366				if (type == M_PCPROTO) {
1367					mutex_enter(&stp->sd_lock);
1368					stp->sd_flag &= ~STRPRI;
1369					mutex_exit(&stp->sd_lock);
1370				}
1371				goto ismdata;
1372			} else if (stp->sd_read_opt & RD_PROTDIS) {
1373				/*
1374				 * discard non-data messages
1375				 */
1376				while (bp &&
1377				    ((bp->b_datap->db_type == M_PROTO) ||
1378				    (bp->b_datap->db_type == M_PCPROTO))) {
1379					nbp = unlinkb(bp);
1380					freeb(bp);
1381					bp = nbp;
1382				}
1383				/*
1384				 * clear stream head hi pri flag based on
1385				 * first message
1386				 */
1387				if (type == M_PCPROTO) {
1388					mutex_enter(&stp->sd_lock);
1389					stp->sd_flag &= ~STRPRI;
1390					mutex_exit(&stp->sd_lock);
1391				}
1392				if (bp) {
1393					bp->b_band = pri;
1394					goto ismdata;
1395				} else {
1396					break;
1397				}
1398			}
1399			/* FALLTHRU */
1400		case M_PASSFP:
1401			if ((bp->b_datap->db_type == M_PASSFP) &&
1402			    (stp->sd_read_opt & RD_PROTDIS)) {
1403				freemsg(bp);
1404				break;
1405			}
1406			mutex_enter(&stp->sd_lock);
1407			putback(stp, q, bp, pri);
1408			mutex_exit(&stp->sd_lock);
1409			if (rflg == 0)
1410				error = EBADMSG;
1411			goto oops1;
1412
1413		default:
1414			/*
1415			 * Garbage on stream head read queue.
1416			 */
1417			cmn_err(CE_WARN, "bad %x found at stream head\n",
1418				bp->b_datap->db_type);
1419			freemsg(bp);
1420			goto oops1;
1421		}
1422		mutex_enter(&stp->sd_lock);
1423	}
1424oops:
1425	mutex_exit(&stp->sd_lock);
1426oops1:
1427	qbackenable(q, pri);
1428	return (error);
1429#undef	_LASTMARK
1430}
1431
1432/*
1433 * Default processing of M_PROTO/M_PCPROTO messages.
1434 * Determine which wakeups and signals are needed.
1435 * This can be replaced by a user-specified procedure for kernel users
1436 * of STREAMS.
1437 */
1438/* ARGSUSED */
1439mblk_t *
1440strrput_proto(vnode_t *vp, mblk_t *mp,
1441    strwakeup_t *wakeups, strsigset_t *firstmsgsigs,
1442    strsigset_t *allmsgsigs, strpollset_t *pollwakeups)
1443{
1444	*wakeups = RSLEEP;
1445	*allmsgsigs = 0;
1446
1447	switch (mp->b_datap->db_type) {
1448	case M_PROTO:
1449		if (mp->b_band == 0) {
1450			*firstmsgsigs = S_INPUT | S_RDNORM;
1451			*pollwakeups = POLLIN | POLLRDNORM;
1452		} else {
1453			*firstmsgsigs = S_INPUT | S_RDBAND;
1454			*pollwakeups = POLLIN | POLLRDBAND;
1455		}
1456		break;
1457	case M_PCPROTO:
1458		*firstmsgsigs = S_HIPRI;
1459		*pollwakeups = POLLPRI;
1460		break;
1461	}
1462	return (mp);
1463}
1464
1465/*
1466 * Default processing of everything but M_DATA, M_PROTO, M_PCPROTO and
1467 * M_PASSFP messages.
1468 * Determine which wakeups and signals are needed.
1469 * This can be replaced by a user-specified procedure for kernel users
1470 * of STREAMS.
1471 */
1472/* ARGSUSED */
1473mblk_t *
1474strrput_misc(vnode_t *vp, mblk_t *mp,
1475    strwakeup_t *wakeups, strsigset_t *firstmsgsigs,
1476    strsigset_t *allmsgsigs, strpollset_t *pollwakeups)
1477{
1478	*wakeups = 0;
1479	*firstmsgsigs = 0;
1480	*allmsgsigs = 0;
1481	*pollwakeups = 0;
1482	return (mp);
1483}
1484
1485/*
1486 * Stream read put procedure.  Called from downstream driver/module
1487 * with messages for the stream head.  Data, protocol, and in-stream
1488 * signal messages are placed on the queue, others are handled directly.
1489 */
1490int
1491strrput(queue_t *q, mblk_t *bp)
1492{
1493	struct stdata	*stp;
1494	ulong_t		rput_opt;
1495	strwakeup_t	wakeups;
1496	strsigset_t	firstmsgsigs;	/* Signals if first message on queue */
1497	strsigset_t	allmsgsigs;	/* Signals for all messages */
1498	strsigset_t	signals;	/* Signals events to generate */
1499	strpollset_t	pollwakeups;
1500	mblk_t		*nextbp;
1501	uchar_t		band = 0;
1502	int		hipri_sig;
1503
1504	stp = (struct stdata *)q->q_ptr;
1505	/*
1506	 * Use rput_opt for optimized access to the SR_ flags except
1507	 * SR_POLLIN. That flag has to be checked under sd_lock since it
1508	 * is modified by strpoll().
1509	 */
1510	rput_opt = stp->sd_rput_opt;
1511
1512	ASSERT(qclaimed(q));
1513	TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_ENTER,
1514		"strrput called with message type:q %p bp %p", q, bp);
1515
1516	/*
1517	 * Perform initial processing and pass to the parameterized functions.
1518	 */
1519	ASSERT(bp->b_next == NULL);
1520
1521	switch (bp->b_datap->db_type) {
1522	case M_DATA:
1523		/*
1524		 * sockfs is the only consumer of STREOF and when it is set,
1525		 * it implies that the receiver is not interested in receiving
1526		 * any more data, hence the mblk is freed to prevent unnecessary
1527		 * message queueing at the stream head.
1528		 */
1529		if (stp->sd_flag == STREOF) {
1530			freemsg(bp);
1531			return (0);
1532		}
1533		if ((rput_opt & SR_IGN_ZEROLEN) &&
1534		    bp->b_rptr == bp->b_wptr && msgnodata(bp)) {
1535			/*
1536			 * Ignore zero-length M_DATA messages. These might be
1537			 * generated by some transports.
1538			 * The zero-length M_DATA messages, even if they
1539			 * are ignored, should effect the atmark tracking and
1540			 * should wake up a thread sleeping in strwaitmark.
1541			 */
1542			mutex_enter(&stp->sd_lock);
1543			if (bp->b_flag & MSGMARKNEXT) {
1544				/*
1545				 * Record the position of the mark either
1546				 * in q_last or in STRATMARK.
1547				 */
1548				if (q->q_last != NULL) {
1549					q->q_last->b_flag &= ~MSGNOTMARKNEXT;
1550					q->q_last->b_flag |= MSGMARKNEXT;
1551				} else {
1552					stp->sd_flag &= ~STRNOTATMARK;
1553					stp->sd_flag |= STRATMARK;
1554				}
1555			} else if (bp->b_flag & MSGNOTMARKNEXT) {
1556				/*
1557				 * Record that this is not the position of
1558				 * the mark either in q_last or in
1559				 * STRNOTATMARK.
1560				 */
1561				if (q->q_last != NULL) {
1562					q->q_last->b_flag &= ~MSGMARKNEXT;
1563					q->q_last->b_flag |= MSGNOTMARKNEXT;
1564				} else {
1565					stp->sd_flag &= ~STRATMARK;
1566					stp->sd_flag |= STRNOTATMARK;
1567				}
1568			}
1569			if (stp->sd_flag & RSLEEP) {
1570				stp->sd_flag &= ~RSLEEP;
1571				cv_broadcast(&q->q_wait);
1572			}
1573			mutex_exit(&stp->sd_lock);
1574			freemsg(bp);
1575			return (0);
1576		}
1577		wakeups = RSLEEP;
1578		if (bp->b_band == 0) {
1579			firstmsgsigs = S_INPUT | S_RDNORM;
1580			pollwakeups = POLLIN | POLLRDNORM;
1581		} else {
1582			firstmsgsigs = S_INPUT | S_RDBAND;
1583			pollwakeups = POLLIN | POLLRDBAND;
1584		}
1585		if (rput_opt & SR_SIGALLDATA)
1586			allmsgsigs = firstmsgsigs;
1587		else
1588			allmsgsigs = 0;
1589
1590		mutex_enter(&stp->sd_lock);
1591		if ((rput_opt & SR_CONSOL_DATA) &&
1592		    (bp->b_flag & (MSGMARK|MSGDELIM)) == 0) {
1593			/*
1594			 * Consolidate on M_DATA message onto an M_DATA,
1595			 * M_PROTO, or M_PCPROTO by merging it with q_last.
1596			 * The consolidation does not take place if
1597			 * the old message is marked with either of the
1598			 * marks or the delim flag or if the new
1599			 * message is marked with MSGMARK. The MSGMARK
1600			 * check is needed to handle the odd semantics of
1601			 * MSGMARK where essentially the whole message
1602			 * is to be treated as marked.
1603			 * Carry any MSGMARKNEXT  and MSGNOTMARKNEXT from the
1604			 * new message to the front of the b_cont chain.
1605			 */
1606			mblk_t *lbp;
1607
1608			lbp = q->q_last;
1609			if (lbp != NULL &&
1610			    (lbp->b_datap->db_type == M_DATA ||
1611			    lbp->b_datap->db_type == M_PROTO ||
1612			    lbp->b_datap->db_type == M_PCPROTO) &&
1613			    !(lbp->b_flag & (MSGDELIM|MSGMARK|
1614			    MSGMARKNEXT))) {
1615				rmvq_noenab(q, lbp);
1616				/*
1617				 * The first message in the b_cont list
1618				 * tracks MSGMARKNEXT and MSGNOTMARKNEXT.
1619				 * We need to handle the case where we
1620				 * are appending
1621				 *
1622				 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT.
1623				 * 2) a MSGMARKNEXT to a plain message.
1624				 * 3) a MSGNOTMARKNEXT to a plain message
1625				 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT
1626				 *    message.
1627				 *
1628				 * Thus we never append a MSGMARKNEXT or
1629				 * MSGNOTMARKNEXT to a MSGMARKNEXT message.
1630				 */
1631				if (bp->b_flag & MSGMARKNEXT) {
1632					lbp->b_flag |= MSGMARKNEXT;
1633					lbp->b_flag &= ~MSGNOTMARKNEXT;
1634					bp->b_flag &= ~MSGMARKNEXT;
1635				} else if (bp->b_flag & MSGNOTMARKNEXT) {
1636					lbp->b_flag |= MSGNOTMARKNEXT;
1637					bp->b_flag &= ~MSGNOTMARKNEXT;
1638				}
1639
1640				linkb(lbp, bp);
1641				bp = lbp;
1642				/*
1643				 * The new message logically isn't the first
1644				 * even though the q_first check below thinks
1645				 * it is. Clear the firstmsgsigs to make it
1646				 * not appear to be first.
1647				 */
1648				firstmsgsigs = 0;
1649			}
1650		}
1651		break;
1652
1653	case M_PASSFP:
1654		wakeups = RSLEEP;
1655		allmsgsigs = 0;
1656		if (bp->b_band == 0) {
1657			firstmsgsigs = S_INPUT | S_RDNORM;
1658			pollwakeups = POLLIN | POLLRDNORM;
1659		} else {
1660			firstmsgsigs = S_INPUT | S_RDBAND;
1661			pollwakeups = POLLIN | POLLRDBAND;
1662		}
1663		mutex_enter(&stp->sd_lock);
1664		break;
1665
1666	case M_PROTO:
1667	case M_PCPROTO:
1668		ASSERT(stp->sd_rprotofunc != NULL);
1669		bp = (stp->sd_rprotofunc)(stp->sd_vnode, bp,
1670			&wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups);
1671#define	ALLSIG	(S_INPUT|S_HIPRI|S_OUTPUT|S_MSG|S_ERROR|S_HANGUP|S_RDNORM|\
1672		S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)
1673#define	ALLPOLL	(POLLIN|POLLPRI|POLLOUT|POLLRDNORM|POLLWRNORM|POLLRDBAND|\
1674		POLLWRBAND)
1675
1676		ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0);
1677		ASSERT((firstmsgsigs & ~ALLSIG) == 0);
1678		ASSERT((allmsgsigs & ~ALLSIG) == 0);
1679		ASSERT((pollwakeups & ~ALLPOLL) == 0);
1680
1681		mutex_enter(&stp->sd_lock);
1682		break;
1683
1684	default:
1685		ASSERT(stp->sd_rmiscfunc != NULL);
1686		bp = (stp->sd_rmiscfunc)(stp->sd_vnode, bp,
1687			&wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups);
1688		ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0);
1689		ASSERT((firstmsgsigs & ~ALLSIG) == 0);
1690		ASSERT((allmsgsigs & ~ALLSIG) == 0);
1691		ASSERT((pollwakeups & ~ALLPOLL) == 0);
1692#undef	ALLSIG
1693#undef	ALLPOLL
1694		mutex_enter(&stp->sd_lock);
1695		break;
1696	}
1697	ASSERT(MUTEX_HELD(&stp->sd_lock));
1698
1699	/* By default generate superset of signals */
1700	signals = (firstmsgsigs | allmsgsigs);
1701
1702	/*
1703	 * The  proto and misc functions can return multiple messages
1704	 * as a b_next chain. Such messages are processed separately.
1705	 */
1706one_more:
1707	hipri_sig = 0;
1708	if (bp == NULL) {
1709		nextbp = NULL;
1710	} else {
1711		nextbp = bp->b_next;
1712		bp->b_next = NULL;
1713
1714		switch (bp->b_datap->db_type) {
1715		case M_PCPROTO:
1716			/*
1717			 * Only one priority protocol message is allowed at the
1718			 * stream head at a time.
1719			 */
1720			if (stp->sd_flag & STRPRI) {
1721				TRACE_0(TR_FAC_STREAMS_FR, TR_STRRPUT_PROTERR,
1722				    "M_PCPROTO already at head");
1723				freemsg(bp);
1724				mutex_exit(&stp->sd_lock);
1725				goto done;
1726			}
1727			stp->sd_flag |= STRPRI;
1728			hipri_sig = 1;
1729			/* FALLTHRU */
1730		case M_DATA:
1731		case M_PROTO:
1732		case M_PASSFP:
1733			band = bp->b_band;
1734			/*
1735			 * Marking doesn't work well when messages
1736			 * are marked in more than one band.  We only
1737			 * remember the last message received, even if
1738			 * it is placed on the queue ahead of other
1739			 * marked messages.
1740			 */
1741			if (bp->b_flag & MSGMARK)
1742				stp->sd_mark = bp;
1743			(void) putq(q, bp);
1744
1745			/*
1746			 * If message is a PCPROTO message, always use
1747			 * firstmsgsigs to determine if a signal should be
1748			 * sent as strrput is the only place to send
1749			 * signals for PCPROTO. Other messages are based on
1750			 * the STRGETINPROG flag. The flag determines if
1751			 * strrput or (k)strgetmsg will be responsible for
1752			 * sending the signals, in the firstmsgsigs case.
1753			 */
1754			if ((hipri_sig == 1) ||
1755			    (((stp->sd_flag & STRGETINPROG) == 0) &&
1756			    (q->q_first == bp)))
1757				signals = (firstmsgsigs | allmsgsigs);
1758			else
1759				signals = allmsgsigs;
1760			break;
1761
1762		default:
1763			mutex_exit(&stp->sd_lock);
1764			(void) strrput_nondata(q, bp);
1765			mutex_enter(&stp->sd_lock);
1766			break;
1767		}
1768	}
1769	ASSERT(MUTEX_HELD(&stp->sd_lock));
1770	/*
1771	 * Wake sleeping read/getmsg and cancel deferred wakeup
1772	 */
1773	if (wakeups & RSLEEP)
1774		stp->sd_wakeq &= ~RSLEEP;
1775
1776	wakeups &= stp->sd_flag;
1777	if (wakeups & RSLEEP) {
1778		stp->sd_flag &= ~RSLEEP;
1779		cv_broadcast(&q->q_wait);
1780	}
1781	if (wakeups & WSLEEP) {
1782		stp->sd_flag &= ~WSLEEP;
1783		cv_broadcast(&_WR(q)->q_wait);
1784	}
1785
1786	if (pollwakeups != 0) {
1787		if (pollwakeups == (POLLIN | POLLRDNORM)) {
1788			/*
1789			 * Can't use rput_opt since it was not
1790			 * read when sd_lock was held and SR_POLLIN is changed
1791			 * by strpoll() under sd_lock.
1792			 */
1793			if (!(stp->sd_rput_opt & SR_POLLIN))
1794				goto no_pollwake;
1795			stp->sd_rput_opt &= ~SR_POLLIN;
1796		}
1797		mutex_exit(&stp->sd_lock);
1798		pollwakeup(&stp->sd_pollist, pollwakeups);
1799		mutex_enter(&stp->sd_lock);
1800	}
1801no_pollwake:
1802
1803	/*
1804	 * strsendsig can handle multiple signals with a
1805	 * single call.
1806	 */
1807	if (stp->sd_sigflags & signals)
1808		strsendsig(stp->sd_siglist, signals, band, 0);
1809	mutex_exit(&stp->sd_lock);
1810
1811
1812done:
1813	if (nextbp == NULL)
1814		return (0);
1815
1816	/*
1817	 * Any signals were handled the first time.
1818	 * Wakeups and pollwakeups are redone to avoid any race
1819	 * conditions - all the messages are not queued until the
1820	 * last message has been processed by strrput.
1821	 */
1822	bp = nextbp;
1823	signals = firstmsgsigs = allmsgsigs = 0;
1824	mutex_enter(&stp->sd_lock);
1825	goto one_more;
1826}
1827
1828static void
1829log_dupioc(queue_t *rq, mblk_t *bp)
1830{
1831	queue_t *wq, *qp;
1832	char *modnames, *mnp, *dname;
1833	size_t maxmodstr;
1834	boolean_t islast;
1835
1836	/*
1837	 * Allocate a buffer large enough to hold the names of nstrpush modules
1838	 * and one driver, with spaces between and NUL terminator.  If we can't
1839	 * get memory, then we'll just log the driver name.
1840	 */
1841	maxmodstr = nstrpush * (FMNAMESZ + 1);
1842	mnp = modnames = kmem_alloc(maxmodstr, KM_NOSLEEP);
1843
1844	/* march down write side to print log message down to the driver */
1845	wq = WR(rq);
1846
1847	/* make sure q_next doesn't shift around while we're grabbing data */
1848	claimstr(wq);
1849	qp = wq->q_next;
1850	do {
1851		if ((dname = qp->q_qinfo->qi_minfo->mi_idname) == NULL)
1852			dname = "?";
1853		islast = !SAMESTR(qp) || qp->q_next == NULL;
1854		if (modnames == NULL) {
1855			/*
1856			 * If we don't have memory, then get the driver name in
1857			 * the log where we can see it.  Note that memory
1858			 * pressure is a possible cause of these sorts of bugs.
1859			 */
1860			if (islast) {
1861				modnames = dname;
1862				maxmodstr = 0;
1863			}
1864		} else {
1865			mnp += snprintf(mnp, FMNAMESZ + 1, "%s", dname);
1866			if (!islast)
1867				*mnp++ = ' ';
1868		}
1869		qp = qp->q_next;
1870	} while (!islast);
1871	releasestr(wq);
1872	/* Cannot happen unless stream head is corrupt. */
1873	ASSERT(modnames != NULL);
1874	(void) strlog(rq->q_qinfo->qi_minfo->mi_idnum, 0, 1,
1875	    SL_CONSOLE|SL_TRACE|SL_ERROR,
1876	    "Warning: stream %p received duplicate %X M_IOC%s; module list: %s",
1877	    rq->q_ptr, ((struct iocblk *)bp->b_rptr)->ioc_cmd,
1878	    (DB_TYPE(bp) == M_IOCACK ? "ACK" : "NAK"), modnames);
1879	if (maxmodstr != 0)
1880		kmem_free(modnames, maxmodstr);
1881}
1882
1883int
1884strrput_nondata(queue_t *q, mblk_t *bp)
1885{
1886	struct stdata *stp;
1887	struct iocblk *iocbp;
1888	struct stroptions *sop;
1889	struct copyreq *reqp;
1890	struct copyresp *resp;
1891	unsigned char bpri;
1892	unsigned char  flushed_already = 0;
1893
1894	stp = (struct stdata *)q->q_ptr;
1895
1896	ASSERT(!(stp->sd_flag & STPLEX));
1897	ASSERT(qclaimed(q));
1898
1899	switch (bp->b_datap->db_type) {
1900	case M_ERROR:
1901		/*
1902		 * An error has occurred downstream, the errno is in the first
1903		 * bytes of the message.
1904		 */
1905		if ((bp->b_wptr - bp->b_rptr) == 2) {	/* New flavor */
1906			unsigned char rw = 0;
1907
1908			mutex_enter(&stp->sd_lock);
1909			if (*bp->b_rptr != NOERROR) {	/* read error */
1910				if (*bp->b_rptr != 0) {
1911					if (stp->sd_flag & STRDERR)
1912						flushed_already |= FLUSHR;
1913					stp->sd_flag |= STRDERR;
1914					rw |= FLUSHR;
1915				} else {
1916					stp->sd_flag &= ~STRDERR;
1917				}
1918				stp->sd_rerror = *bp->b_rptr;
1919			}
1920			bp->b_rptr++;
1921			if (*bp->b_rptr != NOERROR) {	/* write error */
1922				if (*bp->b_rptr != 0) {
1923					if (stp->sd_flag & STWRERR)
1924						flushed_already |= FLUSHW;
1925					stp->sd_flag |= STWRERR;
1926					rw |= FLUSHW;
1927				} else {
1928					stp->sd_flag &= ~STWRERR;
1929				}
1930				stp->sd_werror = *bp->b_rptr;
1931			}
1932			if (rw) {
1933				TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_WAKE,
1934					"strrput cv_broadcast:q %p, bp %p",
1935					q, bp);
1936				cv_broadcast(&q->q_wait); /* readers */
1937				cv_broadcast(&_WR(q)->q_wait); /* writers */
1938				cv_broadcast(&stp->sd_monitor); /* ioctllers */
1939
1940				mutex_exit(&stp->sd_lock);
1941				pollwakeup(&stp->sd_pollist, POLLERR);
1942				mutex_enter(&stp->sd_lock);
1943
1944				if (stp->sd_sigflags & S_ERROR)
1945					strsendsig(stp->sd_siglist, S_ERROR, 0,
1946					    ((rw & FLUSHR) ? stp->sd_rerror :
1947					    stp->sd_werror));
1948				mutex_exit(&stp->sd_lock);
1949				/*
1950				 * Send the M_FLUSH only
1951				 * for the first M_ERROR
1952				 * message on the stream
1953				 */
1954				if (flushed_already == rw) {
1955					freemsg(bp);
1956					return (0);
1957				}
1958
1959				bp->b_datap->db_type = M_FLUSH;
1960				*bp->b_rptr = rw;
1961				bp->b_wptr = bp->b_rptr + 1;
1962				/*
1963				 * Protect against the driver
1964				 * passing up messages after
1965				 * it has done a qprocsoff
1966				 */
1967				if (_OTHERQ(q)->q_next == NULL)
1968					freemsg(bp);
1969				else
1970					qreply(q, bp);
1971				return (0);
1972			} else
1973				mutex_exit(&stp->sd_lock);
1974		} else if (*bp->b_rptr != 0) {		/* Old flavor */
1975				if (stp->sd_flag & (STRDERR|STWRERR))
1976					flushed_already = FLUSHRW;
1977				mutex_enter(&stp->sd_lock);
1978				stp->sd_flag |= (STRDERR|STWRERR);
1979				stp->sd_rerror = *bp->b_rptr;
1980				stp->sd_werror = *bp->b_rptr;
1981				TRACE_2(TR_FAC_STREAMS_FR,
1982					TR_STRRPUT_WAKE2,
1983					"strrput wakeup #2:q %p, bp %p", q, bp);
1984				cv_broadcast(&q->q_wait); /* the readers */
1985				cv_broadcast(&_WR(q)->q_wait); /* the writers */
1986				cv_broadcast(&stp->sd_monitor); /* ioctllers */
1987
1988				mutex_exit(&stp->sd_lock);
1989				pollwakeup(&stp->sd_pollist, POLLERR);
1990				mutex_enter(&stp->sd_lock);
1991
1992				if (stp->sd_sigflags & S_ERROR)
1993					strsendsig(stp->sd_siglist, S_ERROR, 0,
1994					    (stp->sd_werror ? stp->sd_werror :
1995					    stp->sd_rerror));
1996				mutex_exit(&stp->sd_lock);
1997
1998				/*
1999				 * Send the M_FLUSH only
2000				 * for the first M_ERROR
2001				 * message on the stream
2002				 */
2003				if (flushed_already != FLUSHRW) {
2004					bp->b_datap->db_type = M_FLUSH;
2005					*bp->b_rptr = FLUSHRW;
2006					/*
2007					 * Protect against the driver passing up
2008					 * messages after it has done a
2009					 * qprocsoff.
2010					 */
2011				if (_OTHERQ(q)->q_next == NULL)
2012					freemsg(bp);
2013				else
2014					qreply(q, bp);
2015				return (0);
2016				}
2017		}
2018		freemsg(bp);
2019		return (0);
2020
2021	case M_HANGUP:
2022
2023		freemsg(bp);
2024		mutex_enter(&stp->sd_lock);
2025		stp->sd_werror = ENXIO;
2026		stp->sd_flag |= STRHUP;
2027		stp->sd_flag &= ~(WSLEEP|RSLEEP);
2028
2029		/*
2030		 * send signal if controlling tty
2031		 */
2032
2033		if (stp->sd_sidp) {
2034			prsignal(stp->sd_sidp, SIGHUP);
2035			if (stp->sd_sidp != stp->sd_pgidp)
2036				pgsignal(stp->sd_pgidp, SIGTSTP);
2037		}
2038
2039		/*
2040		 * wake up read, write, and exception pollers and
2041		 * reset wakeup mechanism.
2042		 */
2043		cv_broadcast(&q->q_wait);	/* the readers */
2044		cv_broadcast(&_WR(q)->q_wait);	/* the writers */
2045		cv_broadcast(&stp->sd_monitor);	/* the ioctllers */
2046		strhup(stp);
2047		mutex_exit(&stp->sd_lock);
2048		return (0);
2049
2050	case M_UNHANGUP:
2051		freemsg(bp);
2052		mutex_enter(&stp->sd_lock);
2053		stp->sd_werror = 0;
2054		stp->sd_flag &= ~STRHUP;
2055		mutex_exit(&stp->sd_lock);
2056		return (0);
2057
2058	case M_SIG:
2059		/*
2060		 * Someone downstream wants to post a signal.  The
2061		 * signal to post is contained in the first byte of the
2062		 * message.  If the message would go on the front of
2063		 * the queue, send a signal to the process group
2064		 * (if not SIGPOLL) or to the siglist processes
2065		 * (SIGPOLL).  If something is already on the queue,
2066		 * OR if we are delivering a delayed suspend (*sigh*
2067		 * another "tty" hack) and there's no one sleeping already,
2068		 * just enqueue the message.
2069		 */
2070		mutex_enter(&stp->sd_lock);
2071		if (q->q_first || (*bp->b_rptr == SIGTSTP &&
2072		    !(stp->sd_flag & RSLEEP))) {
2073			(void) putq(q, bp);
2074			mutex_exit(&stp->sd_lock);
2075			return (0);
2076		}
2077		mutex_exit(&stp->sd_lock);
2078		/* FALLTHRU */
2079
2080	case M_PCSIG:
2081		/*
2082		 * Don't enqueue, just post the signal.
2083		 */
2084		strsignal(stp, *bp->b_rptr, 0L);
2085		freemsg(bp);
2086		return (0);
2087
2088	case M_FLUSH:
2089		/*
2090		 * Flush queues.  The indication of which queues to flush
2091		 * is in the first byte of the message.  If the read queue
2092		 * is specified, then flush it.  If FLUSHBAND is set, just
2093		 * flush the band specified by the second byte of the message.
2094		 *
2095		 * If a module has issued a M_SETOPT to not flush hi
2096		 * priority messages off of the stream head, then pass this
2097		 * flag into the flushq code to preserve such messages.
2098		 */
2099
2100		if (*bp->b_rptr & FLUSHR) {
2101			mutex_enter(&stp->sd_lock);
2102			if (*bp->b_rptr & FLUSHBAND) {
2103				ASSERT((bp->b_wptr - bp->b_rptr) >= 2);
2104				flushband(q, *(bp->b_rptr + 1), FLUSHALL);
2105			} else
2106				flushq_common(q, FLUSHALL,
2107				    stp->sd_read_opt & RFLUSHPCPROT);
2108			if ((q->q_first == NULL) ||
2109			    (q->q_first->b_datap->db_type < QPCTL))
2110				stp->sd_flag &= ~STRPRI;
2111			else {
2112				ASSERT(stp->sd_flag & STRPRI);
2113			}
2114			mutex_exit(&stp->sd_lock);
2115		}
2116		if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) {
2117			*bp->b_rptr &= ~FLUSHR;
2118			bp->b_flag |= MSGNOLOOP;
2119			/*
2120			 * Protect against the driver passing up
2121			 * messages after it has done a qprocsoff.
2122			 */
2123			if (_OTHERQ(q)->q_next == NULL)
2124				freemsg(bp);
2125			else
2126				qreply(q, bp);
2127			return (0);
2128		}
2129		freemsg(bp);
2130		return (0);
2131
2132	case M_IOCACK:
2133	case M_IOCNAK:
2134		iocbp = (struct iocblk *)bp->b_rptr;
2135		/*
2136		 * If not waiting for ACK or NAK then just free msg.
2137		 * If incorrect id sequence number then just free msg.
2138		 * If already have ACK or NAK for user then this is a
2139		 *    duplicate, display a warning and free the msg.
2140		 */
2141		mutex_enter(&stp->sd_lock);
2142		if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk ||
2143		    (stp->sd_iocid != iocbp->ioc_id)) {
2144			/*
2145			 * If the ACK/NAK is a dup, display a message
2146			 * Dup is when sd_iocid == ioc_id, and
2147			 * sd_iocblk == <valid ptr> or -1 (the former
2148			 * is when an ioctl has been put on the stream
2149			 * head, but has not yet been consumed, the
2150			 * later is when it has been consumed).
2151			 */
2152			if ((stp->sd_iocid == iocbp->ioc_id) &&
2153			    (stp->sd_iocblk != NULL)) {
2154				log_dupioc(q, bp);
2155			}
2156			freemsg(bp);
2157			mutex_exit(&stp->sd_lock);
2158			return (0);
2159		}
2160
2161		/*
2162		 * Assign ACK or NAK to user and wake up.
2163		 */
2164		stp->sd_iocblk = bp;
2165		cv_broadcast(&stp->sd_monitor);
2166		mutex_exit(&stp->sd_lock);
2167		return (0);
2168
2169	case M_COPYIN:
2170	case M_COPYOUT:
2171		reqp = (struct copyreq *)bp->b_rptr;
2172
2173		/*
2174		 * If not waiting for ACK or NAK then just fail request.
2175		 * If already have ACK, NAK, or copy request, then just
2176		 * fail request.
2177		 * If incorrect id sequence number then just fail request.
2178		 */
2179		mutex_enter(&stp->sd_lock);
2180		if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk ||
2181		    (stp->sd_iocid != reqp->cq_id)) {
2182			if (bp->b_cont) {
2183				freemsg(bp->b_cont);
2184				bp->b_cont = NULL;
2185			}
2186			bp->b_datap->db_type = M_IOCDATA;
2187			bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
2188			resp = (struct copyresp *)bp->b_rptr;
2189			resp->cp_rval = (caddr_t)1;	/* failure */
2190			mutex_exit(&stp->sd_lock);
2191			putnext(stp->sd_wrq, bp);
2192			return (0);
2193		}
2194
2195		/*
2196		 * Assign copy request to user and wake up.
2197		 */
2198		stp->sd_iocblk = bp;
2199		cv_broadcast(&stp->sd_monitor);
2200		mutex_exit(&stp->sd_lock);
2201		return (0);
2202
2203	case M_SETOPTS:
2204		/*
2205		 * Set stream head options (read option, write offset,
2206		 * min/max packet size, and/or high/low water marks for
2207		 * the read side only).
2208		 */
2209
2210		bpri = 0;
2211		sop = (struct stroptions *)bp->b_rptr;
2212		mutex_enter(&stp->sd_lock);
2213		if (sop->so_flags & SO_READOPT) {
2214			switch (sop->so_readopt & RMODEMASK) {
2215			case RNORM:
2216				stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS);
2217				break;
2218
2219			case RMSGD:
2220				stp->sd_read_opt =
2221				    ((stp->sd_read_opt & ~RD_MSGNODIS) |
2222				    RD_MSGDIS);
2223				break;
2224
2225			case RMSGN:
2226				stp->sd_read_opt =
2227				    ((stp->sd_read_opt & ~RD_MSGDIS) |
2228				    RD_MSGNODIS);
2229				break;
2230			}
2231			switch (sop->so_readopt & RPROTMASK) {
2232			case RPROTNORM:
2233				stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS);
2234				break;
2235
2236			case RPROTDAT:
2237				stp->sd_read_opt =
2238				    ((stp->sd_read_opt & ~RD_PROTDIS) |
2239				    RD_PROTDAT);
2240				break;
2241
2242			case RPROTDIS:
2243				stp->sd_read_opt =
2244				    ((stp->sd_read_opt & ~RD_PROTDAT) |
2245				    RD_PROTDIS);
2246				break;
2247			}
2248			switch (sop->so_readopt & RFLUSHMASK) {
2249			case RFLUSHPCPROT:
2250				/*
2251				 * This sets the stream head to NOT flush
2252				 * M_PCPROTO messages.
2253				 */
2254				stp->sd_read_opt |= RFLUSHPCPROT;
2255				break;
2256			}
2257		}
2258		if (sop->so_flags & SO_ERROPT) {
2259			switch (sop->so_erropt & RERRMASK) {
2260			case RERRNORM:
2261				stp->sd_flag &= ~STRDERRNONPERSIST;
2262				break;
2263			case RERRNONPERSIST:
2264				stp->sd_flag |= STRDERRNONPERSIST;
2265				break;
2266			}
2267			switch (sop->so_erropt & WERRMASK) {
2268			case WERRNORM:
2269				stp->sd_flag &= ~STWRERRNONPERSIST;
2270				break;
2271			case WERRNONPERSIST:
2272				stp->sd_flag |= STWRERRNONPERSIST;
2273				break;
2274			}
2275		}
2276		if (sop->so_flags & SO_COPYOPT) {
2277			if (sop->so_copyopt & ZCVMSAFE) {
2278				stp->sd_copyflag |= STZCVMSAFE;
2279				stp->sd_copyflag &= ~STZCVMUNSAFE;
2280			} else if (sop->so_copyopt & ZCVMUNSAFE) {
2281				stp->sd_copyflag |= STZCVMUNSAFE;
2282				stp->sd_copyflag &= ~STZCVMSAFE;
2283			}
2284
2285			if (sop->so_copyopt & COPYCACHED) {
2286				stp->sd_copyflag |= STRCOPYCACHED;
2287			}
2288		}
2289		if (sop->so_flags & SO_WROFF)
2290			stp->sd_wroff = sop->so_wroff;
2291		if (sop->so_flags & SO_TAIL)
2292			stp->sd_tail = sop->so_tail;
2293		if (sop->so_flags & SO_MINPSZ)
2294			q->q_minpsz = sop->so_minpsz;
2295		if (sop->so_flags & SO_MAXPSZ)
2296			q->q_maxpsz = sop->so_maxpsz;
2297		if (sop->so_flags & SO_MAXBLK)
2298			stp->sd_maxblk = sop->so_maxblk;
2299		if (sop->so_flags & SO_HIWAT) {
2300		    if (sop->so_flags & SO_BAND) {
2301			if (strqset(q, QHIWAT, sop->so_band, sop->so_hiwat))
2302				cmn_err(CE_WARN,
2303				    "strrput: could not allocate qband\n");
2304			else
2305				bpri = sop->so_band;
2306		    } else {
2307			q->q_hiwat = sop->so_hiwat;
2308		    }
2309		}
2310		if (sop->so_flags & SO_LOWAT) {
2311		    if (sop->so_flags & SO_BAND) {
2312			if (strqset(q, QLOWAT, sop->so_band, sop->so_lowat))
2313				cmn_err(CE_WARN,
2314				    "strrput: could not allocate qband\n");
2315			else
2316				bpri = sop->so_band;
2317		    } else {
2318			q->q_lowat = sop->so_lowat;
2319		    }
2320		}
2321		if (sop->so_flags & SO_MREADON)
2322			stp->sd_flag |= SNDMREAD;
2323		if (sop->so_flags & SO_MREADOFF)
2324			stp->sd_flag &= ~SNDMREAD;
2325		if (sop->so_flags & SO_NDELON)
2326			stp->sd_flag |= OLDNDELAY;
2327		if (sop->so_flags & SO_NDELOFF)
2328			stp->sd_flag &= ~OLDNDELAY;
2329		if (sop->so_flags & SO_ISTTY)
2330			stp->sd_flag |= STRISTTY;
2331		if (sop->so_flags & SO_ISNTTY)
2332			stp->sd_flag &= ~STRISTTY;
2333		if (sop->so_flags & SO_TOSTOP)
2334			stp->sd_flag |= STRTOSTOP;
2335		if (sop->so_flags & SO_TONSTOP)
2336			stp->sd_flag &= ~STRTOSTOP;
2337		if (sop->so_flags & SO_DELIM)
2338			stp->sd_flag |= STRDELIM;
2339		if (sop->so_flags & SO_NODELIM)
2340			stp->sd_flag &= ~STRDELIM;
2341
2342		mutex_exit(&stp->sd_lock);
2343		freemsg(bp);
2344
2345		/* Check backenable in case the water marks changed */
2346		qbackenable(q, bpri);
2347		return (0);
2348
2349	/*
2350	 * The following set of cases deal with situations where two stream
2351	 * heads are connected to each other (twisted streams).  These messages
2352	 * have no meaning at the stream head.
2353	 */
2354	case M_BREAK:
2355	case M_CTL:
2356	case M_DELAY:
2357	case M_START:
2358	case M_STOP:
2359	case M_IOCDATA:
2360	case M_STARTI:
2361	case M_STOPI:
2362		freemsg(bp);
2363		return (0);
2364
2365	case M_IOCTL:
2366		/*
2367		 * Always NAK this condition
2368		 * (makes no sense)
2369		 * If there is one or more threads in the read side
2370		 * rwnext we have to defer the nacking until that thread
2371		 * returns (in strget).
2372		 */
2373		mutex_enter(&stp->sd_lock);
2374		if (stp->sd_struiodnak != 0) {
2375			/*
2376			 * Defer NAK to the streamhead. Queue at the end
2377			 * the list.
2378			 */
2379			mblk_t *mp = stp->sd_struionak;
2380
2381			while (mp && mp->b_next)
2382				mp = mp->b_next;
2383			if (mp)
2384				mp->b_next = bp;
2385			else
2386				stp->sd_struionak = bp;
2387			bp->b_next = NULL;
2388			mutex_exit(&stp->sd_lock);
2389			return (0);
2390		}
2391		mutex_exit(&stp->sd_lock);
2392
2393		bp->b_datap->db_type = M_IOCNAK;
2394		/*
2395		 * Protect against the driver passing up
2396		 * messages after it has done a qprocsoff.
2397		 */
2398		if (_OTHERQ(q)->q_next == NULL)
2399			freemsg(bp);
2400		else
2401			qreply(q, bp);
2402		return (0);
2403
2404	default:
2405#ifdef DEBUG
2406		cmn_err(CE_WARN,
2407			"bad message type %x received at stream head\n",
2408			bp->b_datap->db_type);
2409#endif
2410		freemsg(bp);
2411		return (0);
2412	}
2413
2414	/* NOTREACHED */
2415}
2416
2417/*
2418 * Check if the stream pointed to by `stp' can be written to, and return an
2419 * error code if not.  If `eiohup' is set, then return EIO if STRHUP is set.
2420 * If `sigpipeok' is set and the SW_SIGPIPE option is enabled on the stream,
2421 * then always return EPIPE and send a SIGPIPE to the invoking thread.
2422 */
2423static int
2424strwriteable(struct stdata *stp, boolean_t eiohup, boolean_t sigpipeok)
2425{
2426	int error;
2427
2428	ASSERT(MUTEX_HELD(&stp->sd_lock));
2429
2430	/*
2431	 * For modem support, POSIX states that on writes, EIO should
2432	 * be returned if the stream has been hung up.
2433	 */
2434	if (eiohup && (stp->sd_flag & (STPLEX|STRHUP)) == STRHUP)
2435		error = EIO;
2436	else
2437		error = strgeterr(stp, STRHUP|STPLEX|STWRERR, 0);
2438
2439	if (error != 0) {
2440		if (!(stp->sd_flag & STPLEX) &&
2441		    (stp->sd_wput_opt & SW_SIGPIPE) && sigpipeok) {
2442			tsignal(curthread, SIGPIPE);
2443			error = EPIPE;
2444		}
2445	}
2446
2447	return (error);
2448}
2449
2450/*
2451 * Copyin and send data down a stream.
2452 * The caller will allocate and copyin any control part that precedes the
2453 * message and pass than in as mctl.
2454 *
2455 * Caller should *not* hold sd_lock.
2456 * When EWOULDBLOCK is returned the caller has to redo the canputnext
2457 * under sd_lock in order to avoid missing a backenabling wakeup.
2458 *
2459 * Use iosize = -1 to not send any M_DATA. iosize = 0 sends zero-length M_DATA.
2460 *
2461 * Set MSG_IGNFLOW in flags to ignore flow control for hipri messages.
2462 * For sync streams we can only ignore flow control by reverting to using
2463 * putnext.
2464 *
2465 * If sd_maxblk is less than *iosize this routine might return without
2466 * transferring all of *iosize. In all cases, on return *iosize will contain
2467 * the amount of data that was transferred.
2468 */
2469static int
2470strput(struct stdata *stp, mblk_t *mctl, struct uio *uiop, ssize_t *iosize,
2471    int b_flag, int pri, int flags)
2472{
2473	struiod_t uiod;
2474	mblk_t *mp;
2475	queue_t *wqp = stp->sd_wrq;
2476	int error = 0;
2477	ssize_t count = *iosize;
2478	cred_t *cr;
2479
2480	ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
2481
2482	if (uiop != NULL && count >= 0)
2483		flags |= stp->sd_struiowrq ? STRUIO_POSTPONE : 0;
2484
2485	if (!(flags & STRUIO_POSTPONE)) {
2486		/*
2487		 * Use regular canputnext, strmakedata, putnext sequence.
2488		 */
2489		if (pri == 0) {
2490			if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) {
2491				freemsg(mctl);
2492				return (EWOULDBLOCK);
2493			}
2494		} else {
2495			if (!(flags & MSG_IGNFLOW) && !bcanputnext(wqp, pri)) {
2496				freemsg(mctl);
2497				return (EWOULDBLOCK);
2498			}
2499		}
2500
2501		if ((error = strmakedata(iosize, uiop, stp, flags,
2502					&mp)) != 0) {
2503			freemsg(mctl);
2504			/*
2505			 * need to change return code to ENOMEM
2506			 * so that this is not confused with
2507			 * flow control, EAGAIN.
2508			 */
2509
2510			if (error == EAGAIN)
2511				return (ENOMEM);
2512			else
2513				return (error);
2514		}
2515		if (mctl != NULL) {
2516			if (mctl->b_cont == NULL)
2517				mctl->b_cont = mp;
2518			else if (mp != NULL)
2519				linkb(mctl, mp);
2520			mp = mctl;
2521			/*
2522			 * Note that for interrupt thread, the CRED() is
2523			 * NULL. Don't bother with the pid either.
2524			 */
2525			if ((cr = CRED()) != NULL) {
2526				mblk_setcred(mp, cr);
2527				DB_CPID(mp) = curproc->p_pid;
2528			}
2529		} else if (mp == NULL)
2530			return (0);
2531
2532		mp->b_flag |= b_flag;
2533		mp->b_band = (uchar_t)pri;
2534
2535		if (flags & MSG_IGNFLOW) {
2536			/*
2537			 * XXX Hack: Don't get stuck running service
2538			 * procedures. This is needed for sockfs when
2539			 * sending the unbind message out of the rput
2540			 * procedure - we don't want a put procedure
2541			 * to run service procedures.
2542			 */
2543			putnext(wqp, mp);
2544		} else {
2545			stream_willservice(stp);
2546			putnext(wqp, mp);
2547			stream_runservice(stp);
2548		}
2549		return (0);
2550	}
2551	/*
2552	 * Stream supports rwnext() for the write side.
2553	 */
2554	if ((error = strmakedata(iosize, uiop, stp, flags, &mp)) != 0) {
2555		freemsg(mctl);
2556		/*
2557		 * map EAGAIN to ENOMEM since EAGAIN means "flow controlled".
2558		 */
2559		return (error == EAGAIN ? ENOMEM : error);
2560	}
2561	if (mctl != NULL) {
2562		if (mctl->b_cont == NULL)
2563			mctl->b_cont = mp;
2564		else if (mp != NULL)
2565			linkb(mctl, mp);
2566		mp = mctl;
2567		/*
2568		 * Note that for interrupt thread, the CRED() is
2569		 * NULL.  Don't bother with the pid either.
2570		 */
2571		if ((cr = CRED()) != NULL) {
2572			mblk_setcred(mp, cr);
2573			DB_CPID(mp) = curproc->p_pid;
2574		}
2575	} else if (mp == NULL) {
2576		return (0);
2577	}
2578
2579	mp->b_flag |= b_flag;
2580	mp->b_band = (uchar_t)pri;
2581
2582	(void) uiodup(uiop, &uiod.d_uio, uiod.d_iov,
2583		sizeof (uiod.d_iov) / sizeof (*uiod.d_iov));
2584	uiod.d_uio.uio_offset = 0;
2585	uiod.d_mp = mp;
2586	error = rwnext(wqp, &uiod);
2587	if (! uiod.d_mp) {
2588		uioskip(uiop, *iosize);
2589		return (error);
2590	}
2591	ASSERT(mp == uiod.d_mp);
2592	if (error == EINVAL) {
2593		/*
2594		 * The stream plumbing must have changed while
2595		 * we were away, so just turn off rwnext()s.
2596		 */
2597		error = 0;
2598	} else if (error == EBUSY || error == EWOULDBLOCK) {
2599		/*
2600		 * Couldn't enter a perimeter or took a page fault,
2601		 * so fall-back to putnext().
2602		 */
2603		error = 0;
2604	} else {
2605		freemsg(mp);
2606		return (error);
2607	}
2608	/* Have to check canput before consuming data from the uio */
2609	if (pri == 0) {
2610		if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) {
2611			freemsg(mp);
2612			return (EWOULDBLOCK);
2613		}
2614	} else {
2615		if (!bcanputnext(wqp, pri) && !(flags & MSG_IGNFLOW)) {
2616			freemsg(mp);
2617			return (EWOULDBLOCK);
2618		}
2619	}
2620	ASSERT(mp == uiod.d_mp);
2621	/* Copyin data from the uio */
2622	if ((error = struioget(wqp, mp, &uiod, 0)) != 0) {
2623		freemsg(mp);
2624		return (error);
2625	}
2626	uioskip(uiop, *iosize);
2627	if (flags & MSG_IGNFLOW) {
2628		/*
2629		 * XXX Hack: Don't get stuck running service procedures.
2630		 * This is needed for sockfs when sending the unbind message
2631		 * out of the rput procedure - we don't want a put procedure
2632		 * to run service procedures.
2633		 */
2634		putnext(wqp, mp);
2635	} else {
2636		stream_willservice(stp);
2637		putnext(wqp, mp);
2638		stream_runservice(stp);
2639	}
2640	return (0);
2641}
2642
2643/*
2644 * Write attempts to break the write request into messages conforming
2645 * with the minimum and maximum packet sizes set downstream.
2646 *
2647 * Write will not block if downstream queue is full and
2648 * O_NDELAY is set, otherwise it will block waiting for the queue to get room.
2649 *
2650 * A write of zero bytes gets packaged into a zero length message and sent
2651 * downstream like any other message.
2652 *
2653 * If buffers of the requested sizes are not available, the write will
2654 * sleep until the buffers become available.
2655 *
2656 * Write (if specified) will supply a write offset in a message if it
2657 * makes sense. This can be specified by downstream modules as part of
2658 * a M_SETOPTS message.  Write will not supply the write offset if it
2659 * cannot supply any data in a buffer.  In other words, write will never
2660 * send down an empty packet due to a write offset.
2661 */
2662/* ARGSUSED2 */
2663int
2664strwrite(struct vnode *vp, struct uio *uiop, cred_t *crp)
2665{
2666	return (strwrite_common(vp, uiop, crp, 0));
2667}
2668
2669/* ARGSUSED2 */
2670int
2671strwrite_common(struct vnode *vp, struct uio *uiop, cred_t *crp, int wflag)
2672{
2673	struct stdata *stp;
2674	struct queue *wqp;
2675	ssize_t rmin, rmax;
2676	ssize_t iosize;
2677	int waitflag;
2678	int tempmode;
2679	int error = 0;
2680	int b_flag;
2681
2682	ASSERT(vp->v_stream);
2683	stp = vp->v_stream;
2684
2685	mutex_enter(&stp->sd_lock);
2686
2687	if ((error = i_straccess(stp, JCWRITE)) != 0) {
2688		mutex_exit(&stp->sd_lock);
2689		return (error);
2690	}
2691
2692	if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
2693		error = strwriteable(stp, B_TRUE, B_TRUE);
2694		if (error != 0) {
2695			mutex_exit(&stp->sd_lock);
2696			return (error);
2697		}
2698	}
2699
2700	mutex_exit(&stp->sd_lock);
2701
2702	wqp = stp->sd_wrq;
2703
2704	/* get these values from them cached in the stream head */
2705	rmin = stp->sd_qn_minpsz;
2706	rmax = stp->sd_qn_maxpsz;
2707
2708	/*
2709	 * Check the min/max packet size constraints.  If min packet size
2710	 * is non-zero, the write cannot be split into multiple messages
2711	 * and still guarantee the size constraints.
2712	 */
2713	TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_IN, "strwrite in:q %p", wqp);
2714
2715	ASSERT((rmax >= 0) || (rmax == INFPSZ));
2716	if (rmax == 0) {
2717		return (0);
2718	}
2719	if (rmin > 0) {
2720		if (uiop->uio_resid < rmin) {
2721			TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT,
2722				"strwrite out:q %p out %d error %d",
2723				wqp, 0, ERANGE);
2724			return (ERANGE);
2725		}
2726		if ((rmax != INFPSZ) && (uiop->uio_resid > rmax)) {
2727			TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT,
2728				"strwrite out:q %p out %d error %d",
2729				wqp, 1, ERANGE);
2730			return (ERANGE);
2731		}
2732	}
2733
2734	/*
2735	 * Do until count satisfied or error.
2736	 */
2737	waitflag = WRITEWAIT | wflag;
2738	if (stp->sd_flag & OLDNDELAY)
2739		tempmode = uiop->uio_fmode & ~FNDELAY;
2740	else
2741		tempmode = uiop->uio_fmode;
2742
2743	if (rmax == INFPSZ)
2744		rmax = uiop->uio_resid;
2745
2746	/*
2747	 * Note that tempmode does not get used in strput/strmakedata
2748	 * but only in strwaitq. The other routines use uio_fmode
2749	 * unmodified.
2750	 */
2751
2752	/* LINTED: constant in conditional context */
2753	while (1) {	/* breaks when uio_resid reaches zero */
2754		/*
2755		 * Determine the size of the next message to be
2756		 * packaged.  May have to break write into several
2757		 * messages based on max packet size.
2758		 */
2759		iosize = MIN(uiop->uio_resid, rmax);
2760
2761		/*
2762		 * Put block downstream when flow control allows it.
2763		 */
2764		if ((stp->sd_flag & STRDELIM) && (uiop->uio_resid == iosize))
2765			b_flag = MSGDELIM;
2766		else
2767			b_flag = 0;
2768
2769		for (;;) {
2770			int done = 0;
2771
2772			error = strput(stp, NULL, uiop, &iosize, b_flag,
2773				0, 0);
2774			if (error == 0)
2775				break;
2776			if (error != EWOULDBLOCK)
2777				goto out;
2778
2779			mutex_enter(&stp->sd_lock);
2780			/*
2781			 * Check for a missed wakeup.
2782			 * Needed since strput did not hold sd_lock across
2783			 * the canputnext.
2784			 */
2785			if (canputnext(wqp)) {
2786				/* Try again */
2787				mutex_exit(&stp->sd_lock);
2788				continue;
2789			}
2790			TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAIT,
2791				"strwrite wait:q %p wait", wqp);
2792			if ((error = strwaitq(stp, waitflag, (ssize_t)0,
2793			    tempmode, -1, &done)) != 0 || done) {
2794				mutex_exit(&stp->sd_lock);
2795				if ((vp->v_type == VFIFO) &&
2796				    (uiop->uio_fmode & FNDELAY) &&
2797				    (error == EAGAIN))
2798					error = 0;
2799				goto out;
2800			}
2801			TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAKE,
2802				"strwrite wake:q %p awakes", wqp);
2803			if ((error = i_straccess(stp, JCWRITE)) != 0) {
2804				mutex_exit(&stp->sd_lock);
2805				goto out;
2806			}
2807			mutex_exit(&stp->sd_lock);
2808		}
2809		waitflag |= NOINTR;
2810		TRACE_2(TR_FAC_STREAMS_FR, TR_STRWRITE_RESID,
2811			"strwrite resid:q %p uiop %p", wqp, uiop);
2812		if (uiop->uio_resid) {
2813			/* Recheck for errors - needed for sockets */
2814			if ((stp->sd_wput_opt & SW_RECHECK_ERR) &&
2815			    (stp->sd_flag & (STWRERR|STRHUP|STPLEX))) {
2816				mutex_enter(&stp->sd_lock);
2817				error = strwriteable(stp, B_FALSE, B_TRUE);
2818				mutex_exit(&stp->sd_lock);
2819				if (error != 0)
2820					return (error);
2821			}
2822			continue;
2823		}
2824		break;
2825	}
2826out:
2827	/*
2828	 * For historical reasons, applications expect EAGAIN when a data
2829	 * mblk_t cannot be allocated, so change ENOMEM back to EAGAIN.
2830	 */
2831	if (error == ENOMEM)
2832		error = EAGAIN;
2833	TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT,
2834		"strwrite out:q %p out %d error %d", wqp, 2, error);
2835	return (error);
2836}
2837
2838/*
2839 * Stream head write service routine.
2840 * Its job is to wake up any sleeping writers when a queue
2841 * downstream needs data (part of the flow control in putq and getq).
2842 * It also must wake anyone sleeping on a poll().
2843 * For stream head right below mux module, it must also invoke put procedure
2844 * of next downstream module.
2845 */
2846int
2847strwsrv(queue_t *q)
2848{
2849	struct stdata *stp;
2850	queue_t *tq;
2851	qband_t *qbp;
2852	int i;
2853	qband_t *myqbp;
2854	int isevent;
2855	unsigned char	qbf[NBAND];	/* band flushing backenable flags */
2856
2857	TRACE_1(TR_FAC_STREAMS_FR,
2858		TR_STRWSRV, "strwsrv:q %p", q);
2859	stp = (struct stdata *)q->q_ptr;
2860	ASSERT(qclaimed(q));
2861	mutex_enter(&stp->sd_lock);
2862	ASSERT(!(stp->sd_flag & STPLEX));
2863
2864	if (stp->sd_flag & WSLEEP) {
2865		stp->sd_flag &= ~WSLEEP;
2866		cv_broadcast(&q->q_wait);
2867	}
2868	mutex_exit(&stp->sd_lock);
2869
2870	/* The other end of a stream pipe went away. */
2871	if ((tq = q->q_next) == NULL) {
2872		return (0);
2873	}
2874
2875	/* Find the next module forward that has a service procedure */
2876	claimstr(q);
2877	tq = q->q_nfsrv;
2878	ASSERT(tq != NULL);
2879
2880	if ((q->q_flag & QBACK)) {
2881		if ((tq->q_flag & QFULL)) {
2882			mutex_enter(QLOCK(tq));
2883			if (!(tq->q_flag & QFULL)) {
2884				mutex_exit(QLOCK(tq));
2885				goto wakeup;
2886			}
2887			/*
2888			 * The queue must have become full again. Set QWANTW
2889			 * again so strwsrv will be back enabled when
2890			 * the queue becomes non-full next time.
2891			 */
2892			tq->q_flag |= QWANTW;
2893			mutex_exit(QLOCK(tq));
2894		} else {
2895		wakeup:
2896			pollwakeup(&stp->sd_pollist, POLLWRNORM);
2897			mutex_enter(&stp->sd_lock);
2898			if (stp->sd_sigflags & S_WRNORM)
2899				strsendsig(stp->sd_siglist, S_WRNORM, 0, 0);
2900			mutex_exit(&stp->sd_lock);
2901		}
2902	}
2903
2904	isevent = 0;
2905	i = 1;
2906	bzero((caddr_t)qbf, NBAND);
2907	mutex_enter(QLOCK(tq));
2908	if ((myqbp = q->q_bandp) != NULL)
2909		for (qbp = tq->q_bandp; qbp && myqbp; qbp = qbp->qb_next) {
2910			ASSERT(myqbp);
2911			if ((myqbp->qb_flag & QB_BACK)) {
2912				if (qbp->qb_flag & QB_FULL) {
2913					/*
2914					 * The band must have become full again.
2915					 * Set QB_WANTW again so strwsrv will
2916					 * be back enabled when the band becomes
2917					 * non-full next time.
2918					 */
2919					qbp->qb_flag |= QB_WANTW;
2920				} else {
2921					isevent = 1;
2922					qbf[i] = 1;
2923				}
2924			}
2925			myqbp = myqbp->qb_next;
2926			i++;
2927		}
2928	mutex_exit(QLOCK(tq));
2929
2930	if (isevent) {
2931	    for (i = tq->q_nband; i; i--) {
2932		if (qbf[i]) {
2933			pollwakeup(&stp->sd_pollist, POLLWRBAND);
2934			mutex_enter(&stp->sd_lock);
2935			if (stp->sd_sigflags & S_WRBAND)
2936				strsendsig(stp->sd_siglist, S_WRBAND,
2937					(uchar_t)i, 0);
2938			mutex_exit(&stp->sd_lock);
2939		}
2940	    }
2941	}
2942
2943	releasestr(q);
2944	return (0);
2945}
2946
2947/*
2948 * Special case of strcopyin/strcopyout for copying
2949 * struct strioctl that can deal with both data
2950 * models.
2951 */
2952
2953#ifdef	_LP64
2954
2955static int
2956strcopyin_strioctl(void *from, void *to, int flag, int copyflag)
2957{
2958	struct	strioctl32 strioc32;
2959	struct	strioctl *striocp;
2960
2961	if (copyflag & U_TO_K) {
2962		ASSERT((copyflag & K_TO_K) == 0);
2963
2964		if ((flag & FMODELS) == DATAMODEL_ILP32) {
2965			if (copyin(from, &strioc32, sizeof (strioc32)))
2966				return (EFAULT);
2967
2968			striocp = (struct strioctl *)to;
2969			striocp->ic_cmd	= strioc32.ic_cmd;
2970			striocp->ic_timout = strioc32.ic_timout;
2971			striocp->ic_len	= strioc32.ic_len;
2972			striocp->ic_dp	= (char *)(uintptr_t)strioc32.ic_dp;
2973
2974		} else { /* NATIVE data model */
2975			if (copyin(from, to, sizeof (struct strioctl))) {
2976				return (EFAULT);
2977			} else {
2978				return (0);
2979			}
2980		}
2981	} else {
2982		ASSERT(copyflag & K_TO_K);
2983		bcopy(from, to, sizeof (struct strioctl));
2984	}
2985	return (0);
2986}
2987
2988static int
2989strcopyout_strioctl(void *from, void *to, int flag, int copyflag)
2990{
2991	struct	strioctl32 strioc32;
2992	struct	strioctl *striocp;
2993
2994	if (copyflag & U_TO_K) {
2995		ASSERT((copyflag & K_TO_K) == 0);
2996
2997		if ((flag & FMODELS) == DATAMODEL_ILP32) {
2998			striocp = (struct strioctl *)from;
2999			strioc32.ic_cmd	= striocp->ic_cmd;
3000			strioc32.ic_timout = striocp->ic_timout;
3001			strioc32.ic_len	= striocp->ic_len;
3002			strioc32.ic_dp	= (caddr32_t)(uintptr_t)striocp->ic_dp;
3003			ASSERT((char *)(uintptr_t)strioc32.ic_dp ==
3004			    striocp->ic_dp);
3005
3006			if (copyout(&strioc32, to, sizeof (strioc32)))
3007				return (EFAULT);
3008
3009		} else { /* NATIVE data model */
3010			if (copyout(from, to, sizeof (struct strioctl))) {
3011				return (EFAULT);
3012			} else {
3013				return (0);
3014			}
3015		}
3016	} else {
3017		ASSERT(copyflag & K_TO_K);
3018		bcopy(from, to, sizeof (struct strioctl));
3019	}
3020	return (0);
3021}
3022
3023#else	/* ! _LP64 */
3024
3025/* ARGSUSED2 */
3026static int
3027strcopyin_strioctl(void *from, void *to, int flag, int copyflag)
3028{
3029	return (strcopyin(from, to, sizeof (struct strioctl), copyflag));
3030}
3031
3032/* ARGSUSED2 */
3033static int
3034strcopyout_strioctl(void *from, void *to, int flag, int copyflag)
3035{
3036	return (strcopyout(from, to, sizeof (struct strioctl), copyflag));
3037}
3038
3039#endif	/* _LP64 */
3040
3041/*
3042 * Determine type of job control semantics expected by user.  The
3043 * possibilities are:
3044 *	JCREAD	- Behaves like read() on fd; send SIGTTIN
3045 *	JCWRITE	- Behaves like write() on fd; send SIGTTOU if TOSTOP set
3046 *	JCSETP	- Sets a value in the stream; send SIGTTOU, ignore TOSTOP
3047 *	JCGETP	- Gets a value in the stream; no signals.
3048 * See straccess in strsubr.c for usage of these values.
3049 *
3050 * This routine also returns -1 for I_STR as a special case; the
3051 * caller must call again with the real ioctl number for
3052 * classification.
3053 */
3054static int
3055job_control_type(int cmd)
3056{
3057	switch (cmd) {
3058	case I_STR:
3059		return (-1);
3060
3061	case I_RECVFD:
3062	case I_E_RECVFD:
3063		return (JCREAD);
3064
3065	case I_FDINSERT:
3066	case I_SENDFD:
3067		return (JCWRITE);
3068
3069	case TCSETA:
3070	case TCSETAW:
3071	case TCSETAF:
3072	case TCSBRK:
3073	case TCXONC:
3074	case TCFLSH:
3075	case TCDSET:	/* Obsolete */
3076	case TIOCSWINSZ:
3077	case TCSETS:
3078	case TCSETSW:
3079	case TCSETSF:
3080	case TIOCSETD:
3081	case TIOCHPCL:
3082	case TIOCSETP:
3083	case TIOCSETN:
3084	case TIOCEXCL:
3085	case TIOCNXCL:
3086	case TIOCFLUSH:
3087	case TIOCSETC:
3088	case TIOCLBIS:
3089	case TIOCLBIC:
3090	case TIOCLSET:
3091	case TIOCSBRK:
3092	case TIOCCBRK:
3093	case TIOCSDTR:
3094	case TIOCCDTR:
3095	case TIOCSLTC:
3096	case TIOCSTOP:
3097	case TIOCSTART:
3098	case TIOCSTI:
3099	case TIOCSPGRP:
3100	case TIOCMSET:
3101	case TIOCMBIS:
3102	case TIOCMBIC:
3103	case TIOCREMOTE:
3104	case TIOCSIGNAL:
3105	case LDSETT:
3106	case LDSMAP:	/* Obsolete */
3107	case DIOCSETP:
3108	case I_FLUSH:
3109	case I_SRDOPT:
3110	case I_SETSIG:
3111	case I_SWROPT:
3112	case I_FLUSHBAND:
3113	case I_SETCLTIME:
3114	case I_SERROPT:
3115	case I_ESETSIG:
3116	case FIONBIO:
3117	case FIOASYNC:
3118	case FIOSETOWN:
3119	case JBOOT:	/* Obsolete */
3120	case JTERM:	/* Obsolete */
3121	case JTIMOM:	/* Obsolete */
3122	case JZOMBOOT:	/* Obsolete */
3123	case JAGENT:	/* Obsolete */
3124	case JTRUN:	/* Obsolete */
3125	case JXTPROTO:	/* Obsolete */
3126	case TIOCSETLD:
3127		return (JCSETP);
3128	}
3129
3130	return (JCGETP);
3131}
3132
3133/*
3134 * ioctl for streams
3135 */
3136int
3137strioctl(struct vnode *vp, int cmd, intptr_t arg, int flag, int copyflag,
3138    cred_t *crp, int *rvalp)
3139{
3140	struct stdata *stp;
3141	struct strioctl strioc;
3142	struct uio uio;
3143	struct iovec iov;
3144	int access;
3145	mblk_t *mp;
3146	int error = 0;
3147	int done = 0;
3148	ssize_t	rmin, rmax;
3149	queue_t *wrq;
3150	queue_t *rdq;
3151	boolean_t kioctl = B_FALSE;
3152
3153	if (flag & FKIOCTL) {
3154		copyflag = K_TO_K;
3155		kioctl = B_TRUE;
3156	}
3157	ASSERT(vp->v_stream);
3158	ASSERT(copyflag == U_TO_K || copyflag == K_TO_K);
3159	stp = vp->v_stream;
3160
3161	TRACE_3(TR_FAC_STREAMS_FR, TR_IOCTL_ENTER,
3162		"strioctl:stp %p cmd %X arg %lX", stp, cmd, arg);
3163
3164#ifdef C2_AUDIT
3165	if (audit_active)
3166		audit_strioctl(vp, cmd, arg, flag, copyflag, crp, rvalp);
3167#endif
3168
3169	/*
3170	 * If the copy is kernel to kernel, make sure that the FNATIVE
3171	 * flag is set.  After this it would be a serious error to have
3172	 * no model flag.
3173	 */
3174	if (copyflag == K_TO_K)
3175		flag = (flag & ~FMODELS) | FNATIVE;
3176
3177	ASSERT((flag & FMODELS) != 0);
3178
3179	wrq = stp->sd_wrq;
3180	rdq = _RD(wrq);
3181
3182	access = job_control_type(cmd);
3183
3184	/* We should never see these here, should be handled by iwscn */
3185	if (cmd == SRIOCSREDIR || cmd == SRIOCISREDIR)
3186		return (EINVAL);
3187
3188	mutex_enter(&stp->sd_lock);
3189	if ((access != -1) && ((error = i_straccess(stp, access)) != 0)) {
3190		mutex_exit(&stp->sd_lock);
3191		return (error);
3192	}
3193	mutex_exit(&stp->sd_lock);
3194
3195	/*
3196	 * Check for sgttyb-related ioctls first, and complain as
3197	 * necessary.
3198	 */
3199	switch (cmd) {
3200	case TIOCGETP:
3201	case TIOCSETP:
3202	case TIOCSETN:
3203		if (sgttyb_handling >= 2 && !sgttyb_complaint) {
3204			sgttyb_complaint = B_TRUE;
3205			cmn_err(CE_NOTE,
3206			    "application used obsolete TIOC[GS]ET");
3207		}
3208		if (sgttyb_handling >= 3) {
3209			tsignal(curthread, SIGSYS);
3210			return (EIO);
3211		}
3212		break;
3213	}
3214
3215	mutex_enter(&stp->sd_lock);
3216
3217	switch (cmd) {
3218	case I_RECVFD:
3219	case I_E_RECVFD:
3220	case I_PEEK:
3221	case I_NREAD:
3222	case FIONREAD:
3223	case FIORDCHK:
3224	case I_ATMARK:
3225	case FIONBIO:
3226	case FIOASYNC:
3227		if (stp->sd_flag & (STRDERR|STPLEX)) {
3228			error = strgeterr(stp, STRDERR|STPLEX, 0);
3229			if (error != 0) {
3230				mutex_exit(&stp->sd_lock);
3231				return (error);
3232			}
3233		}
3234		break;
3235
3236	default:
3237		if (stp->sd_flag & (STRDERR|STWRERR|STPLEX)) {
3238			error = strgeterr(stp, STRDERR|STWRERR|STPLEX, 0);
3239			if (error != 0) {
3240				mutex_exit(&stp->sd_lock);
3241				return (error);
3242			}
3243		}
3244	}
3245
3246	mutex_exit(&stp->sd_lock);
3247
3248	switch (cmd) {
3249	default:
3250		/*
3251		 * The stream head has hardcoded knowledge of a
3252		 * miscellaneous collection of terminal-, keyboard- and
3253		 * mouse-related ioctls, enumerated below.  This hardcoded
3254		 * knowledge allows the stream head to automatically
3255		 * convert transparent ioctl requests made by userland
3256		 * programs into I_STR ioctls which many old STREAMS
3257		 * modules and drivers require.
3258		 *
3259		 * No new ioctls should ever be added to this list.
3260		 * Instead, the STREAMS module or driver should be written
3261		 * to either handle transparent ioctls or require any
3262		 * userland programs to use I_STR ioctls (by returning
3263		 * EINVAL to any transparent ioctl requests).
3264		 *
3265		 * More importantly, removing ioctls from this list should
3266		 * be done with the utmost care, since our STREAMS modules
3267		 * and drivers *count* on the stream head performing this
3268		 * conversion, and thus may panic while processing
3269		 * transparent ioctl request for one of these ioctls (keep
3270		 * in mind that third party modules and drivers may have
3271		 * similar problems).
3272		 */
3273		if (((cmd & IOCTYPE) == LDIOC) ||
3274		    ((cmd & IOCTYPE) == tIOC) ||
3275		    ((cmd & IOCTYPE) == TIOC) ||
3276		    ((cmd & IOCTYPE) == KIOC) ||
3277		    ((cmd & IOCTYPE) == MSIOC) ||
3278		    ((cmd & IOCTYPE) == VUIOC)) {
3279			/*
3280			 * The ioctl is a tty ioctl - set up strioc buffer
3281			 * and call strdoioctl() to do the work.
3282			 */
3283			if (stp->sd_flag & STRHUP)
3284				return (ENXIO);
3285			strioc.ic_cmd = cmd;
3286			strioc.ic_timout = INFTIM;
3287
3288			switch (cmd) {
3289
3290			case TCXONC:
3291			case TCSBRK:
3292			case TCFLSH:
3293			case TCDSET:
3294				{
3295				int native_arg = (int)arg;
3296				strioc.ic_len = sizeof (int);
3297				strioc.ic_dp = (char *)&native_arg;
3298				return (strdoioctl(stp, &strioc, flag,
3299				    K_TO_K, crp, rvalp));
3300				}
3301
3302			case TCSETA:
3303			case TCSETAW:
3304			case TCSETAF:
3305				strioc.ic_len = sizeof (struct termio);
3306				strioc.ic_dp = (char *)arg;
3307				return (strdoioctl(stp, &strioc, flag,
3308					copyflag, crp, rvalp));
3309
3310			case TCSETS:
3311			case TCSETSW:
3312			case TCSETSF:
3313				strioc.ic_len = sizeof (struct termios);
3314				strioc.ic_dp = (char *)arg;
3315				return (strdoioctl(stp, &strioc, flag,
3316					copyflag, crp, rvalp));
3317
3318			case LDSETT:
3319				strioc.ic_len = sizeof (struct termcb);
3320				strioc.ic_dp = (char *)arg;
3321				return (strdoioctl(stp, &strioc, flag,
3322					copyflag, crp, rvalp));
3323
3324			case TIOCSETP:
3325				strioc.ic_len = sizeof (struct sgttyb);
3326				strioc.ic_dp = (char *)arg;
3327				return (strdoioctl(stp, &strioc, flag,
3328					copyflag, crp, rvalp));
3329
3330			case TIOCSTI:
3331				if ((flag & FREAD) == 0 &&
3332				    secpolicy_sti(crp) != 0) {
3333					return (EPERM);
3334				}
3335				mutex_enter(&stp->sd_lock);
3336				mutex_enter(&curproc->p_splock);
3337				if (stp->sd_sidp != curproc->p_sessp->s_sidp &&
3338				    secpolicy_sti(crp) != 0) {
3339					mutex_exit(&curproc->p_splock);
3340					mutex_exit(&stp->sd_lock);
3341					return (EACCES);
3342				}
3343				mutex_exit(&curproc->p_splock);
3344				mutex_exit(&stp->sd_lock);
3345
3346				strioc.ic_len = sizeof (char);
3347				strioc.ic_dp = (char *)arg;
3348				return (strdoioctl(stp, &strioc, flag,
3349					copyflag, crp, rvalp));
3350
3351			case TIOCSWINSZ:
3352				strioc.ic_len = sizeof (struct winsize);
3353				strioc.ic_dp = (char *)arg;
3354				return (strdoioctl(stp, &strioc, flag,
3355					copyflag, crp, rvalp));
3356
3357			case TIOCSSIZE:
3358				strioc.ic_len = sizeof (struct ttysize);
3359				strioc.ic_dp = (char *)arg;
3360				return (strdoioctl(stp, &strioc, flag,
3361					copyflag, crp, rvalp));
3362
3363			case TIOCSSOFTCAR:
3364			case KIOCTRANS:
3365			case KIOCTRANSABLE:
3366			case KIOCCMD:
3367			case KIOCSDIRECT:
3368			case KIOCSCOMPAT:
3369			case KIOCSKABORTEN:
3370			case KIOCSRPTDELAY:
3371			case KIOCSRPTRATE:
3372			case VUIDSFORMAT:
3373			case TIOCSPPS:
3374				strioc.ic_len = sizeof (int);
3375				strioc.ic_dp = (char *)arg;
3376				return (strdoioctl(stp, &strioc, flag,
3377					copyflag, crp, rvalp));
3378
3379			case KIOCSETKEY:
3380			case KIOCGETKEY:
3381				strioc.ic_len = sizeof (struct kiockey);
3382				strioc.ic_dp = (char *)arg;
3383				return (strdoioctl(stp, &strioc, flag,
3384					copyflag, crp, rvalp));
3385
3386			case KIOCSKEY:
3387			case KIOCGKEY:
3388				strioc.ic_len = sizeof (struct kiockeymap);
3389				strioc.ic_dp = (char *)arg;
3390				return (strdoioctl(stp, &strioc, flag,
3391					copyflag, crp, rvalp));
3392
3393			case KIOCSLED:
3394				/* arg is a pointer to char */
3395				strioc.ic_len = sizeof (char);
3396				strioc.ic_dp = (char *)arg;
3397				return (strdoioctl(stp, &strioc, flag,
3398					copyflag, crp, rvalp));
3399
3400			case MSIOSETPARMS:
3401				strioc.ic_len = sizeof (Ms_parms);
3402				strioc.ic_dp = (char *)arg;
3403				return (strdoioctl(stp, &strioc, flag,
3404					copyflag, crp, rvalp));
3405
3406			case VUIDSADDR:
3407			case VUIDGADDR:
3408				strioc.ic_len = sizeof (struct vuid_addr_probe);
3409				strioc.ic_dp = (char *)arg;
3410				return (strdoioctl(stp, &strioc, flag,
3411					copyflag, crp, rvalp));
3412
3413			/*
3414			 * These M_IOCTL's don't require any data to be sent
3415			 * downstream, and the driver will allocate and link
3416			 * on its own mblk_t upon M_IOCACK -- thus we set
3417			 * ic_len to zero and set ic_dp to arg so we know
3418			 * where to copyout to later.
3419			 */
3420			case TIOCGSOFTCAR:
3421			case TIOCGWINSZ:
3422			case TIOCGSIZE:
3423			case KIOCGTRANS:
3424			case KIOCGTRANSABLE:
3425			case KIOCTYPE:
3426			case KIOCGDIRECT:
3427			case KIOCGCOMPAT:
3428			case KIOCLAYOUT:
3429			case KIOCGLED:
3430			case MSIOGETPARMS:
3431			case MSIOBUTTONS:
3432			case VUIDGFORMAT:
3433			case TIOCGPPS:
3434			case TIOCGPPSEV:
3435			case TCGETA:
3436			case TCGETS:
3437			case LDGETT:
3438			case TIOCGETP:
3439			case KIOCGRPTDELAY:
3440			case KIOCGRPTRATE:
3441				strioc.ic_len = 0;
3442				strioc.ic_dp = (char *)arg;
3443				return (strdoioctl(stp, &strioc, flag,
3444					copyflag, crp, rvalp));
3445			}
3446		}
3447
3448		/*
3449		 * Unknown cmd - send it down as a transparent ioctl.
3450		 */
3451		strioc.ic_cmd = cmd;
3452		strioc.ic_timout = INFTIM;
3453		strioc.ic_len = TRANSPARENT;
3454		strioc.ic_dp = (char *)&arg;
3455
3456		return (strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp));
3457
3458	case I_STR:
3459		/*
3460		 * Stream ioctl.  Read in an strioctl buffer from the user
3461		 * along with any data specified and send it downstream.
3462		 * Strdoioctl will wait allow only one ioctl message at
3463		 * a time, and waits for the acknowledgement.
3464		 */
3465
3466		if (stp->sd_flag & STRHUP)
3467			return (ENXIO);
3468
3469		error = strcopyin_strioctl((void *)arg, &strioc, flag,
3470		    copyflag);
3471		if (error != 0)
3472			return (error);
3473
3474		if ((strioc.ic_len < 0) || (strioc.ic_timout < -1))
3475			return (EINVAL);
3476
3477		access = job_control_type(strioc.ic_cmd);
3478		mutex_enter(&stp->sd_lock);
3479		if ((access != -1) &&
3480		    ((error = i_straccess(stp, access)) != 0)) {
3481			mutex_exit(&stp->sd_lock);
3482			return (error);
3483		}
3484		mutex_exit(&stp->sd_lock);
3485
3486		/*
3487		 * The I_STR facility provides a trap door for malicious
3488		 * code to send down bogus streamio(7I) ioctl commands to
3489		 * unsuspecting STREAMS modules and drivers which expect to
3490		 * only get these messages from the stream head.
3491		 * Explicitly prohibit any streamio ioctls which can be
3492		 * passed downstream by the stream head.  Note that we do
3493		 * not block all streamio ioctls because the ioctl
3494		 * numberspace is not well managed and thus it's possible
3495		 * that a module or driver's ioctl numbers may accidentally
3496		 * collide with them.
3497		 */
3498		switch (strioc.ic_cmd) {
3499		case I_LINK:
3500		case I_PLINK:
3501		case I_UNLINK:
3502		case I_PUNLINK:
3503		case _I_GETPEERCRED:
3504		case _I_PLINK_LH:
3505			return (EINVAL);
3506		}
3507
3508		error = strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp);
3509		if (error == 0) {
3510			error = strcopyout_strioctl(&strioc, (void *)arg,
3511			    flag, copyflag);
3512		}
3513		return (error);
3514
3515	case I_NREAD:
3516		/*
3517		 * Return number of bytes of data in first message
3518		 * in queue in "arg" and return the number of messages
3519		 * in queue in return value.
3520		 */
3521	    {
3522		size_t	size;
3523		int	retval;
3524		int	count = 0;
3525
3526		mutex_enter(QLOCK(rdq));
3527
3528		size = msgdsize(rdq->q_first);
3529		for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
3530			count++;
3531
3532		mutex_exit(QLOCK(rdq));
3533		if (stp->sd_struiordq) {
3534			infod_t infod;
3535
3536			infod.d_cmd = INFOD_COUNT;
3537			infod.d_count = 0;
3538			if (count == 0) {
3539				infod.d_cmd |= INFOD_FIRSTBYTES;
3540				infod.d_bytes = 0;
3541			}
3542			infod.d_res = 0;
3543			(void) infonext(rdq, &infod);
3544			count += infod.d_count;
3545			if (infod.d_res & INFOD_FIRSTBYTES)
3546				size = infod.d_bytes;
3547		}
3548
3549		/*
3550		 * Drop down from size_t to the "int" required by the
3551		 * interface.  Cap at INT_MAX.
3552		 */
3553		retval = MIN(size, INT_MAX);
3554		error = strcopyout(&retval, (void *)arg, sizeof (retval),
3555		    copyflag);
3556		if (!error)
3557			*rvalp = count;
3558		return (error);
3559	    }
3560
3561	case FIONREAD:
3562		/*
3563		 * Return number of bytes of data in all data messages
3564		 * in queue in "arg".
3565		 */
3566	    {
3567		size_t	size = 0;
3568		int	retval;
3569
3570		mutex_enter(QLOCK(rdq));
3571		for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
3572			size += msgdsize(mp);
3573		mutex_exit(QLOCK(rdq));
3574
3575		if (stp->sd_struiordq) {
3576			infod_t infod;
3577
3578			infod.d_cmd = INFOD_BYTES;
3579			infod.d_res = 0;
3580			infod.d_bytes = 0;
3581			(void) infonext(rdq, &infod);
3582			size += infod.d_bytes;
3583		}
3584
3585		/*
3586		 * Drop down from size_t to the "int" required by the
3587		 * interface.  Cap at INT_MAX.
3588		 */
3589		retval = MIN(size, INT_MAX);
3590		error = strcopyout(&retval, (void *)arg, sizeof (retval),
3591		    copyflag);
3592
3593		*rvalp = 0;
3594		return (error);
3595	    }
3596	case FIORDCHK:
3597		/*
3598		 * FIORDCHK does not use arg value (like FIONREAD),
3599		 * instead a count is returned. I_NREAD value may
3600		 * not be accurate but safe. The real thing to do is
3601		 * to add the msgdsizes of all data  messages until
3602		 * a non-data message.
3603		 */
3604	    {
3605		size_t size = 0;
3606
3607		mutex_enter(QLOCK(rdq));
3608		for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
3609			size += msgdsize(mp);
3610		mutex_exit(QLOCK(rdq));
3611
3612		if (stp->sd_struiordq) {
3613			infod_t infod;
3614
3615			infod.d_cmd = INFOD_BYTES;
3616			infod.d_res = 0;
3617			infod.d_bytes = 0;
3618			(void) infonext(rdq, &infod);
3619			size += infod.d_bytes;
3620		}
3621
3622		/*
3623		 * Since ioctl returns an int, and memory sizes under
3624		 * LP64 may not fit, we return INT_MAX if the count was
3625		 * actually greater.
3626		 */
3627		*rvalp = MIN(size, INT_MAX);
3628		return (0);
3629	    }
3630
3631	case I_FIND:
3632		/*
3633		 * Get module name.
3634		 */
3635	    {
3636		char mname[FMNAMESZ + 1];
3637		queue_t *q;
3638
3639		error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg,
3640		    mname, FMNAMESZ + 1, NULL);
3641		if (error)
3642			return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
3643
3644		/*
3645		 * Return EINVAL if we're handed a bogus module name.
3646		 */
3647		if (fmodsw_find(mname, FMODSW_LOAD) == NULL) {
3648			TRACE_0(TR_FAC_STREAMS_FR,
3649				TR_I_CANT_FIND, "couldn't I_FIND");
3650			return (EINVAL);
3651		}
3652
3653		*rvalp = 0;
3654
3655		/* Look downstream to see if module is there. */
3656		claimstr(stp->sd_wrq);
3657		for (q = stp->sd_wrq->q_next; q; q = q->q_next) {
3658			if (q->q_flag&QREADR) {
3659				q = NULL;
3660				break;
3661			}
3662			if (strcmp(mname, q->q_qinfo->qi_minfo->mi_idname) == 0)
3663				break;
3664		}
3665		releasestr(stp->sd_wrq);
3666
3667		*rvalp = (q ? 1 : 0);
3668		return (error);
3669	    }
3670
3671	case I_PUSH:
3672	case __I_PUSH_NOCTTY:
3673		/*
3674		 * Push a module.
3675		 * For the case __I_PUSH_NOCTTY push a module but
3676		 * do not allocate controlling tty. See bugid 4025044
3677		 */
3678
3679	    {
3680		char mname[FMNAMESZ + 1];
3681		fmodsw_impl_t *fp;
3682		dev_t dummydev;
3683
3684		if (stp->sd_flag & STRHUP)
3685			return (ENXIO);
3686
3687		/*
3688		 * Get module name and look up in fmodsw.
3689		 */
3690		error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg,
3691		    mname, FMNAMESZ + 1, NULL);
3692		if (error)
3693			return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
3694
3695		if ((fp = fmodsw_find(mname, FMODSW_HOLD | FMODSW_LOAD)) ==
3696		    NULL)
3697			return (EINVAL);
3698
3699		TRACE_2(TR_FAC_STREAMS_FR, TR_I_PUSH,
3700		    "I_PUSH:fp %p stp %p", fp, stp);
3701
3702		if (error = strstartplumb(stp, flag, cmd)) {
3703			fmodsw_rele(fp);
3704			return (error);
3705		}
3706
3707		/*
3708		 * See if any more modules can be pushed on this stream.
3709		 * Note that this check must be done after strstartplumb()
3710		 * since otherwise multiple threads issuing I_PUSHes on
3711		 * the same stream will be able to exceed nstrpush.
3712		 */
3713		mutex_enter(&stp->sd_lock);
3714		if (stp->sd_pushcnt >= nstrpush) {
3715			fmodsw_rele(fp);
3716			strendplumb(stp);
3717			mutex_exit(&stp->sd_lock);
3718			return (EINVAL);
3719		}
3720		mutex_exit(&stp->sd_lock);
3721
3722		/*
3723		 * Push new module and call its open routine
3724		 * via qattach().  Modules don't change device
3725		 * numbers, so just ignore dummydev here.
3726		 */
3727		dummydev = vp->v_rdev;
3728		if ((error = qattach(rdq, &dummydev, 0, crp, fp,
3729		    B_FALSE)) == 0) {
3730			if (vp->v_type == VCHR && /* sorry, no pipes allowed */
3731			    (cmd == I_PUSH) && (stp->sd_flag & STRISTTY)) {
3732				/*
3733				 * try to allocate it as a controlling terminal
3734				 */
3735				(void) strctty(stp);
3736			}
3737		}
3738
3739		mutex_enter(&stp->sd_lock);
3740
3741		/*
3742		 * As a performance concern we are caching the values of
3743		 * q_minpsz and q_maxpsz of the module below the stream
3744		 * head in the stream head.
3745		 */
3746		mutex_enter(QLOCK(stp->sd_wrq->q_next));
3747		rmin = stp->sd_wrq->q_next->q_minpsz;
3748		rmax = stp->sd_wrq->q_next->q_maxpsz;
3749		mutex_exit(QLOCK(stp->sd_wrq->q_next));
3750
3751		/* Do this processing here as a performance concern */
3752		if (strmsgsz != 0) {
3753			if (rmax == INFPSZ)
3754				rmax = strmsgsz;
3755			else  {
3756				if (vp->v_type == VFIFO)
3757					rmax = MIN(PIPE_BUF, rmax);
3758				else	rmax = MIN(strmsgsz, rmax);
3759			}
3760		}
3761
3762		mutex_enter(QLOCK(wrq));
3763		stp->sd_qn_minpsz = rmin;
3764		stp->sd_qn_maxpsz = rmax;
3765		mutex_exit(QLOCK(wrq));
3766
3767		strendplumb(stp);
3768		mutex_exit(&stp->sd_lock);
3769		return (error);
3770	    }
3771
3772	case I_POP:
3773	    {
3774		queue_t	*q;
3775
3776		if (stp->sd_flag & STRHUP)
3777			return (ENXIO);
3778		if (!wrq->q_next)	/* for broken pipes */
3779			return (EINVAL);
3780
3781		if (error = strstartplumb(stp, flag, cmd))
3782			return (error);
3783
3784		/*
3785		 * If there is an anchor on this stream and popping
3786		 * the current module would attempt to pop through the
3787		 * anchor, then disallow the pop unless we have sufficient
3788		 * privileges; take the cheapest (non-locking) check
3789		 * first.
3790		 */
3791		if (secpolicy_ip_config(crp, B_TRUE) != 0 ||
3792		    (stp->sd_anchorzone != crgetzoneid(crp))) {
3793			mutex_enter(&stp->sd_lock);
3794			/*
3795			 * Anchors only apply if there's at least one
3796			 * module on the stream (sd_pushcnt > 0).
3797			 */
3798			if (stp->sd_pushcnt > 0 &&
3799			    stp->sd_pushcnt == stp->sd_anchor &&
3800			    stp->sd_vnode->v_type != VFIFO) {
3801				strendplumb(stp);
3802				mutex_exit(&stp->sd_lock);
3803				if (stp->sd_anchorzone != crgetzoneid(crp))
3804					return (EINVAL);
3805				/* Audit and report error */
3806				return (secpolicy_ip_config(crp, B_FALSE));
3807			}
3808			mutex_exit(&stp->sd_lock);
3809		}
3810
3811		q = wrq->q_next;
3812		TRACE_2(TR_FAC_STREAMS_FR, TR_I_POP,
3813			"I_POP:%p from %p", q, stp);
3814		if (q->q_next == NULL || (q->q_flag & (QREADR|QISDRV))) {
3815			error = EINVAL;
3816		} else {
3817			qdetach(_RD(q), 1, flag, crp, B_FALSE);
3818			error = 0;
3819		}
3820		mutex_enter(&stp->sd_lock);
3821
3822		/*
3823		 * As a performance concern we are caching the values of
3824		 * q_minpsz and q_maxpsz of the module below the stream
3825		 * head in the stream head.
3826		 */
3827		mutex_enter(QLOCK(wrq->q_next));
3828		rmin = wrq->q_next->q_minpsz;
3829		rmax = wrq->q_next->q_maxpsz;
3830		mutex_exit(QLOCK(wrq->q_next));
3831
3832		/* Do this processing here as a performance concern */
3833		if (strmsgsz != 0) {
3834			if (rmax == INFPSZ)
3835				rmax = strmsgsz;
3836			else  {
3837				if (vp->v_type == VFIFO)
3838					rmax = MIN(PIPE_BUF, rmax);
3839				else	rmax = MIN(strmsgsz, rmax);
3840			}
3841		}
3842
3843		mutex_enter(QLOCK(wrq));
3844		stp->sd_qn_minpsz = rmin;
3845		stp->sd_qn_maxpsz = rmax;
3846		mutex_exit(QLOCK(wrq));
3847
3848		/* If we popped through the anchor, then reset the anchor. */
3849		if (stp->sd_pushcnt < stp->sd_anchor) {
3850			stp->sd_anchor = 0;
3851			stp->sd_anchorzone = 0;
3852		}
3853		strendplumb(stp);
3854		mutex_exit(&stp->sd_lock);
3855		return (error);
3856	    }
3857
3858	case _I_MUXID2FD:
3859	{
3860		/*
3861		 * Create a fd for a I_PLINK'ed lower stream with a given
3862		 * muxid.  With the fd, application can send down ioctls,
3863		 * like I_LIST, to the previously I_PLINK'ed stream.  Note
3864		 * that after getting the fd, the application has to do an
3865		 * I_PUNLINK on the muxid before it can do any operation
3866		 * on the lower stream.  This is required by spec1170.
3867		 *
3868		 * The fd used to do this ioctl should point to the same
3869		 * controlling device used to do the I_PLINK.  If it uses
3870		 * a different stream or an invalid muxid, I_MUXID2FD will
3871		 * fail.  The error code is set to EINVAL.
3872		 *
3873		 * The intended use of this interface is the following.
3874		 * An application I_PLINK'ed a stream and exits.  The fd
3875		 * to the lower stream is gone.  Another application
3876		 * wants to get a fd to the lower stream, it uses I_MUXID2FD.
3877		 */
3878		int muxid = (int)arg;
3879		int fd;
3880		linkinfo_t *linkp;
3881		struct file *fp;
3882		netstack_t *ns;
3883		str_stack_t *ss;
3884
3885		/*
3886		 * Do not allow the wildcard muxid.  This ioctl is not
3887		 * intended to find arbitrary link.
3888		 */
3889		if (muxid == 0) {
3890			return (EINVAL);
3891		}
3892
3893		ns = netstack_find_by_cred(crp);
3894		ASSERT(ns != NULL);
3895		ss = ns->netstack_str;
3896		ASSERT(ss != NULL);
3897
3898		mutex_enter(&muxifier);
3899		linkp = findlinks(vp->v_stream, muxid, LINKPERSIST, ss);
3900		if (linkp == NULL) {
3901			mutex_exit(&muxifier);
3902			netstack_rele(ss->ss_netstack);
3903			return (EINVAL);
3904		}
3905
3906		if ((fd = ufalloc(0)) == -1) {
3907			mutex_exit(&muxifier);
3908			netstack_rele(ss->ss_netstack);
3909			return (EMFILE);
3910		}
3911		fp = linkp->li_fpdown;
3912		mutex_enter(&fp->f_tlock);
3913		fp->f_count++;
3914		mutex_exit(&fp->f_tlock);
3915		mutex_exit(&muxifier);
3916		setf(fd, fp);
3917		*rvalp = fd;
3918		netstack_rele(ss->ss_netstack);
3919		return (0);
3920	}
3921
3922	case _I_INSERT:
3923	{
3924		/*
3925		 * To insert a module to a given position in a stream.
3926		 * In the first release, only allow privileged user
3927		 * to use this ioctl. Furthermore, the insert is only allowed
3928		 * below an anchor if the zoneid is the same as the zoneid
3929		 * which created the anchor.
3930		 *
3931		 * Note that we do not plan to support this ioctl
3932		 * on pipes in the first release.  We want to learn more
3933		 * about the implications of these ioctls before extending
3934		 * their support.  And we do not think these features are
3935		 * valuable for pipes.
3936		 *
3937		 * Neither do we support O/C hot stream.  Note that only
3938		 * the upper streams of TCP/IP stack are O/C hot streams.
3939		 * The lower IP stream is not.
3940		 * When there is a O/C cold barrier, we only allow inserts
3941		 * above the barrier.
3942		 */
3943		STRUCT_DECL(strmodconf, strmodinsert);
3944		char mod_name[FMNAMESZ + 1];
3945		fmodsw_impl_t *fp;
3946		dev_t dummydev;
3947		queue_t *tmp_wrq;
3948		int pos;
3949		boolean_t is_insert;
3950
3951		STRUCT_INIT(strmodinsert, flag);
3952		if (stp->sd_flag & STRHUP)
3953			return (ENXIO);
3954		if (STRMATED(stp))
3955			return (EINVAL);
3956		if ((error = secpolicy_net_config(crp, B_FALSE)) != 0)
3957			return (error);
3958		if (stp->sd_anchor != 0 &&
3959		    stp->sd_anchorzone != crgetzoneid(crp))
3960			return (EINVAL);
3961
3962		error = strcopyin((void *)arg, STRUCT_BUF(strmodinsert),
3963		    STRUCT_SIZE(strmodinsert), copyflag);
3964		if (error)
3965			return (error);
3966
3967		/*
3968		 * Get module name and look up in fmodsw.
3969		 */
3970		error = (copyflag & U_TO_K ? copyinstr :
3971		    copystr)(STRUCT_FGETP(strmodinsert, mod_name),
3972		    mod_name, FMNAMESZ + 1, NULL);
3973		if (error)
3974			return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
3975
3976		if ((fp = fmodsw_find(mod_name, FMODSW_HOLD | FMODSW_LOAD)) ==
3977		    NULL)
3978			return (EINVAL);
3979
3980		if (error = strstartplumb(stp, flag, cmd)) {
3981			fmodsw_rele(fp);
3982			return (error);
3983		}
3984
3985		/*
3986		 * Is this _I_INSERT just like an I_PUSH?  We need to know
3987		 * this because we do some optimizations if this is a
3988		 * module being pushed.
3989		 */
3990		pos = STRUCT_FGET(strmodinsert, pos);
3991		is_insert = (pos != 0);
3992
3993		/*
3994		 * Make sure pos is valid.  Even though it is not an I_PUSH,
3995		 * we impose the same limit on the number of modules in a
3996		 * stream.
3997		 */
3998		mutex_enter(&stp->sd_lock);
3999		if (stp->sd_pushcnt >= nstrpush || pos < 0 ||
4000		    pos > stp->sd_pushcnt) {
4001			fmodsw_rele(fp);
4002			strendplumb(stp);
4003			mutex_exit(&stp->sd_lock);
4004			return (EINVAL);
4005		}
4006		if (stp->sd_anchor != 0) {
4007			/*
4008			 * Is this insert below the anchor?
4009			 * Pushcnt hasn't been increased yet hence
4010			 * we test for greater than here, and greater or
4011			 * equal after qattach.
4012			 */
4013			if (pos > (stp->sd_pushcnt - stp->sd_anchor) &&
4014			    stp->sd_anchorzone != crgetzoneid(crp)) {
4015				fmodsw_rele(fp);
4016				strendplumb(stp);
4017				mutex_exit(&stp->sd_lock);
4018				return (EPERM);
4019			}
4020		}
4021
4022		mutex_exit(&stp->sd_lock);
4023
4024		/*
4025		 * First find the correct position this module to
4026		 * be inserted.  We don't need to call claimstr()
4027		 * as the stream should not be changing at this point.
4028		 *
4029		 * Insert new module and call its open routine
4030		 * via qattach().  Modules don't change device
4031		 * numbers, so just ignore dummydev here.
4032		 */
4033		for (tmp_wrq = stp->sd_wrq; pos > 0;
4034		    tmp_wrq = tmp_wrq->q_next, pos--) {
4035			ASSERT(SAMESTR(tmp_wrq));
4036		}
4037		dummydev = vp->v_rdev;
4038		if ((error = qattach(_RD(tmp_wrq), &dummydev, 0, crp,
4039		    fp, is_insert)) != 0) {
4040			mutex_enter(&stp->sd_lock);
4041			strendplumb(stp);
4042			mutex_exit(&stp->sd_lock);
4043			return (error);
4044		}
4045
4046		mutex_enter(&stp->sd_lock);
4047
4048		/*
4049		 * As a performance concern we are caching the values of
4050		 * q_minpsz and q_maxpsz of the module below the stream
4051		 * head in the stream head.
4052		 */
4053		if (!is_insert) {
4054			mutex_enter(QLOCK(stp->sd_wrq->q_next));
4055			rmin = stp->sd_wrq->q_next->q_minpsz;
4056			rmax = stp->sd_wrq->q_next->q_maxpsz;
4057			mutex_exit(QLOCK(stp->sd_wrq->q_next));
4058
4059			/* Do this processing here as a performance concern */
4060			if (strmsgsz != 0) {
4061				if (rmax == INFPSZ) {
4062					rmax = strmsgsz;
4063				} else  {
4064					rmax = MIN(strmsgsz, rmax);
4065				}
4066			}
4067
4068			mutex_enter(QLOCK(wrq));
4069			stp->sd_qn_minpsz = rmin;
4070			stp->sd_qn_maxpsz = rmax;
4071			mutex_exit(QLOCK(wrq));
4072		}
4073
4074		/*
4075		 * Need to update the anchor value if this module is
4076		 * inserted below the anchor point.
4077		 */
4078		if (stp->sd_anchor != 0) {
4079			pos = STRUCT_FGET(strmodinsert, pos);
4080			if (pos >= (stp->sd_pushcnt - stp->sd_anchor))
4081				stp->sd_anchor++;
4082		}
4083
4084		strendplumb(stp);
4085		mutex_exit(&stp->sd_lock);
4086		return (0);
4087	}
4088
4089	case _I_REMOVE:
4090	{
4091		/*
4092		 * To remove a module with a given name in a stream.  The
4093		 * caller of this ioctl needs to provide both the name and
4094		 * the position of the module to be removed.  This eliminates
4095		 * the ambiguity of removal if a module is inserted/pushed
4096		 * multiple times in a stream.  In the first release, only
4097		 * allow privileged user to use this ioctl.
4098		 * Furthermore, the remove is only allowed
4099		 * below an anchor if the zoneid is the same as the zoneid
4100		 * which created the anchor.
4101		 *
4102		 * Note that we do not plan to support this ioctl
4103		 * on pipes in the first release.  We want to learn more
4104		 * about the implications of these ioctls before extending
4105		 * their support.  And we do not think these features are
4106		 * valuable for pipes.
4107		 *
4108		 * Neither do we support O/C hot stream.  Note that only
4109		 * the upper streams of TCP/IP stack are O/C hot streams.
4110		 * The lower IP stream is not.
4111		 * When there is a O/C cold barrier we do not allow removal
4112		 * below the barrier.
4113		 *
4114		 * Also note that _I_REMOVE cannot be used to remove a
4115		 * driver or the stream head.
4116		 */
4117		STRUCT_DECL(strmodconf, strmodremove);
4118		queue_t	*q;
4119		int pos;
4120		char mod_name[FMNAMESZ + 1];
4121		boolean_t is_remove;
4122
4123		STRUCT_INIT(strmodremove, flag);
4124		if (stp->sd_flag & STRHUP)
4125			return (ENXIO);
4126		if (STRMATED(stp))
4127			return (EINVAL);
4128		if ((error = secpolicy_net_config(crp, B_FALSE)) != 0)
4129			return (error);
4130		if (stp->sd_anchor != 0 &&
4131		    stp->sd_anchorzone != crgetzoneid(crp))
4132			return (EINVAL);
4133
4134		error = strcopyin((void *)arg, STRUCT_BUF(strmodremove),
4135		    STRUCT_SIZE(strmodremove), copyflag);
4136		if (error)
4137			return (error);
4138
4139		error = (copyflag & U_TO_K ? copyinstr :
4140		    copystr)(STRUCT_FGETP(strmodremove, mod_name),
4141		    mod_name, FMNAMESZ + 1, NULL);
4142		if (error)
4143			return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
4144
4145		if ((error = strstartplumb(stp, flag, cmd)) != 0)
4146			return (error);
4147
4148		/*
4149		 * Match the name of given module to the name of module at
4150		 * the given position.
4151		 */
4152		pos = STRUCT_FGET(strmodremove, pos);
4153
4154		is_remove = (pos != 0);
4155		for (q = stp->sd_wrq->q_next; SAMESTR(q) && pos > 0;
4156		    q = q->q_next, pos--)
4157			;
4158		if (pos > 0 || ! SAMESTR(q) ||
4159		    strncmp(q->q_qinfo->qi_minfo->mi_idname, mod_name,
4160		    strlen(q->q_qinfo->qi_minfo->mi_idname)) != 0) {
4161			mutex_enter(&stp->sd_lock);
4162			strendplumb(stp);
4163			mutex_exit(&stp->sd_lock);
4164			return (EINVAL);
4165		}
4166
4167		/*
4168		 * If the position is at or below an anchor, then the zoneid
4169		 * must match the zoneid that created the anchor.
4170		 */
4171		if (stp->sd_anchor != 0) {
4172			pos = STRUCT_FGET(strmodremove, pos);
4173			if (pos >= (stp->sd_pushcnt - stp->sd_anchor) &&
4174			    stp->sd_anchorzone != crgetzoneid(crp)) {
4175				mutex_enter(&stp->sd_lock);
4176				strendplumb(stp);
4177				mutex_exit(&stp->sd_lock);
4178				return (EPERM);
4179			}
4180		}
4181
4182
4183		ASSERT(!(q->q_flag & QREADR));
4184		qdetach(_RD(q), 1, flag, crp, is_remove);
4185
4186		mutex_enter(&stp->sd_lock);
4187
4188		/*
4189		 * As a performance concern we are caching the values of
4190		 * q_minpsz and q_maxpsz of the module below the stream
4191		 * head in the stream head.
4192		 */
4193		if (!is_remove) {
4194			mutex_enter(QLOCK(wrq->q_next));
4195			rmin = wrq->q_next->q_minpsz;
4196			rmax = wrq->q_next->q_maxpsz;
4197			mutex_exit(QLOCK(wrq->q_next));
4198
4199			/* Do this processing here as a performance concern */
4200			if (strmsgsz != 0) {
4201				if (rmax == INFPSZ)
4202					rmax = strmsgsz;
4203				else  {
4204					if (vp->v_type == VFIFO)
4205						rmax = MIN(PIPE_BUF, rmax);
4206					else	rmax = MIN(strmsgsz, rmax);
4207				}
4208			}
4209
4210			mutex_enter(QLOCK(wrq));
4211			stp->sd_qn_minpsz = rmin;
4212			stp->sd_qn_maxpsz = rmax;
4213			mutex_exit(QLOCK(wrq));
4214		}
4215
4216		/*
4217		 * Need to update the anchor value if this module is removed
4218		 * at or below the anchor point.  If the removed module is at
4219		 * the anchor point, remove the anchor for this stream if
4220		 * there is no module above the anchor point.  Otherwise, if
4221		 * the removed module is below the anchor point, decrement the
4222		 * anchor point by 1.
4223		 */
4224		if (stp->sd_anchor != 0) {
4225			pos = STRUCT_FGET(strmodremove, pos);
4226			if (pos == stp->sd_pushcnt - stp->sd_anchor + 1)
4227				stp->sd_anchor = 0;
4228			else if (pos > (stp->sd_pushcnt - stp->sd_anchor + 1))
4229				stp->sd_anchor--;
4230		}
4231
4232		strendplumb(stp);
4233		mutex_exit(&stp->sd_lock);
4234		return (0);
4235	}
4236
4237	case I_ANCHOR:
4238		/*
4239		 * Set the anchor position on the stream to reside at
4240		 * the top module (in other words, the top module
4241		 * cannot be popped).  Anchors with a FIFO make no
4242		 * obvious sense, so they're not allowed.
4243		 */
4244		mutex_enter(&stp->sd_lock);
4245
4246		if (stp->sd_vnode->v_type == VFIFO) {
4247			mutex_exit(&stp->sd_lock);
4248			return (EINVAL);
4249		}
4250		/* Only allow the same zoneid to update the anchor */
4251		if (stp->sd_anchor != 0 &&
4252		    stp->sd_anchorzone != crgetzoneid(crp)) {
4253			mutex_exit(&stp->sd_lock);
4254			return (EINVAL);
4255		}
4256		stp->sd_anchor = stp->sd_pushcnt;
4257		stp->sd_anchorzone = crgetzoneid(crp);
4258		mutex_exit(&stp->sd_lock);
4259		return (0);
4260
4261	case I_LOOK:
4262		/*
4263		 * Get name of first module downstream.
4264		 * If no module, return an error.
4265		 */
4266	    {
4267		claimstr(wrq);
4268		if (_SAMESTR(wrq) && wrq->q_next->q_next) {
4269			char *name = wrq->q_next->q_qinfo->qi_minfo->mi_idname;
4270			error = strcopyout(name, (void *)arg, strlen(name) + 1,
4271			    copyflag);
4272			releasestr(wrq);
4273			return (error);
4274		}
4275		releasestr(wrq);
4276		return (EINVAL);
4277	    }
4278
4279	case I_LINK:
4280	case I_PLINK:
4281		/*
4282		 * Link a multiplexor.
4283		 */
4284		error = mlink(vp, cmd, (int)arg, crp, rvalp, 0);
4285		return (error);
4286
4287	case _I_PLINK_LH:
4288		/*
4289		 * Link a multiplexor: Call must originate from kernel.
4290		 */
4291		if (kioctl)
4292			return (ldi_mlink_lh(vp, cmd, arg, crp, rvalp));
4293
4294		return (EINVAL);
4295	case I_UNLINK:
4296	case I_PUNLINK:
4297		/*
4298		 * Unlink a multiplexor.
4299		 * If arg is -1, unlink all links for which this is the
4300		 * controlling stream.  Otherwise, arg is an index number
4301		 * for a link to be removed.
4302		 */
4303	    {
4304		struct linkinfo *linkp;
4305		int native_arg = (int)arg;
4306		int type;
4307		netstack_t *ns;
4308		str_stack_t *ss;
4309
4310		TRACE_1(TR_FAC_STREAMS_FR,
4311			TR_I_UNLINK, "I_UNLINK/I_PUNLINK:%p", stp);
4312		if (vp->v_type == VFIFO) {
4313			return (EINVAL);
4314		}
4315		if (cmd == I_UNLINK)
4316			type = LINKNORMAL;
4317		else	/* I_PUNLINK */
4318			type = LINKPERSIST;
4319		if (native_arg == 0) {
4320			return (EINVAL);
4321		}
4322		ns = netstack_find_by_cred(crp);
4323		ASSERT(ns != NULL);
4324		ss = ns->netstack_str;
4325		ASSERT(ss != NULL);
4326
4327		if (native_arg == MUXID_ALL)
4328			error = munlinkall(stp, type, crp, rvalp, ss);
4329		else {
4330			mutex_enter(&muxifier);
4331			if (!(linkp = findlinks(stp, (int)arg, type, ss))) {
4332				/* invalid user supplied index number */
4333				mutex_exit(&muxifier);
4334				netstack_rele(ss->ss_netstack);
4335				return (EINVAL);
4336			}
4337			/* munlink drops the muxifier lock */
4338			error = munlink(stp, linkp, type, crp, rvalp, ss);
4339		}
4340		netstack_rele(ss->ss_netstack);
4341		return (error);
4342	    }
4343
4344	case I_FLUSH:
4345		/*
4346		 * send a flush message downstream
4347		 * flush message can indicate
4348		 * FLUSHR - flush read queue
4349		 * FLUSHW - flush write queue
4350		 * FLUSHRW - flush read/write queue
4351		 */
4352		if (stp->sd_flag & STRHUP)
4353			return (ENXIO);
4354		if (arg & ~FLUSHRW)
4355			return (EINVAL);
4356
4357		for (;;) {
4358			if (putnextctl1(stp->sd_wrq, M_FLUSH, (int)arg)) {
4359				break;
4360			}
4361			if (error = strwaitbuf(1, BPRI_HI)) {
4362				return (error);
4363			}
4364		}
4365
4366		/*
4367		 * Send down an unsupported ioctl and wait for the nack
4368		 * in order to allow the M_FLUSH to propagate back
4369		 * up to the stream head.
4370		 * Replaces if (qready()) runqueues();
4371		 */
4372		strioc.ic_cmd = -1;	/* The unsupported ioctl */
4373		strioc.ic_timout = 0;
4374		strioc.ic_len = 0;
4375		strioc.ic_dp = NULL;
4376		(void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp);
4377		*rvalp = 0;
4378		return (0);
4379
4380	case I_FLUSHBAND:
4381	    {
4382		struct bandinfo binfo;
4383
4384		error = strcopyin((void *)arg, &binfo, sizeof (binfo),
4385		    copyflag);
4386		if (error)
4387			return (error);
4388		if (stp->sd_flag & STRHUP)
4389			return (ENXIO);
4390		if (binfo.bi_flag & ~FLUSHRW)
4391			return (EINVAL);
4392		while (!(mp = allocb(2, BPRI_HI))) {
4393			if (error = strwaitbuf(2, BPRI_HI))
4394				return (error);
4395		}
4396		mp->b_datap->db_type = M_FLUSH;
4397		*mp->b_wptr++ = binfo.bi_flag | FLUSHBAND;
4398		*mp->b_wptr++ = binfo.bi_pri;
4399		putnext(stp->sd_wrq, mp);
4400		/*
4401		 * Send down an unsupported ioctl and wait for the nack
4402		 * in order to allow the M_FLUSH to propagate back
4403		 * up to the stream head.
4404		 * Replaces if (qready()) runqueues();
4405		 */
4406		strioc.ic_cmd = -1;	/* The unsupported ioctl */
4407		strioc.ic_timout = 0;
4408		strioc.ic_len = 0;
4409		strioc.ic_dp = NULL;
4410		(void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp);
4411		*rvalp = 0;
4412		return (0);
4413	    }
4414
4415	case I_SRDOPT:
4416		/*
4417		 * Set read options
4418		 *
4419		 * RNORM - default stream mode
4420		 * RMSGN - message no discard
4421		 * RMSGD - message discard
4422		 * RPROTNORM - fail read with EBADMSG for M_[PC]PROTOs
4423		 * RPROTDAT - convert M_[PC]PROTOs to M_DATAs
4424		 * RPROTDIS - discard M_[PC]PROTOs and retain M_DATAs
4425		 */
4426		if (arg & ~(RMODEMASK | RPROTMASK))
4427			return (EINVAL);
4428
4429		if ((arg & (RMSGD|RMSGN)) == (RMSGD|RMSGN))
4430			return (EINVAL);
4431
4432		mutex_enter(&stp->sd_lock);
4433		switch (arg & RMODEMASK) {
4434		case RNORM:
4435			stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS);
4436			break;
4437		case RMSGD:
4438			stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGNODIS) |
4439			    RD_MSGDIS;
4440			break;
4441		case RMSGN:
4442			stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGDIS) |
4443			    RD_MSGNODIS;
4444			break;
4445		}
4446
4447		switch (arg & RPROTMASK) {
4448		case RPROTNORM:
4449			stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS);
4450			break;
4451
4452		case RPROTDAT:
4453			stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDIS) |
4454			    RD_PROTDAT);
4455			break;
4456
4457		case RPROTDIS:
4458			stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDAT) |
4459			    RD_PROTDIS);
4460			break;
4461		}
4462		mutex_exit(&stp->sd_lock);
4463		return (0);
4464
4465	case I_GRDOPT:
4466		/*
4467		 * Get read option and return the value
4468		 * to spot pointed to by arg
4469		 */
4470	    {
4471		int rdopt;
4472
4473		rdopt = ((stp->sd_read_opt & RD_MSGDIS) ? RMSGD :
4474		    ((stp->sd_read_opt & RD_MSGNODIS) ? RMSGN : RNORM));
4475		rdopt |= ((stp->sd_read_opt & RD_PROTDAT) ? RPROTDAT :
4476		    ((stp->sd_read_opt & RD_PROTDIS) ? RPROTDIS : RPROTNORM));
4477
4478		return (strcopyout(&rdopt, (void *)arg, sizeof (int),
4479		    copyflag));
4480	    }
4481
4482	case I_SERROPT:
4483		/*
4484		 * Set error options
4485		 *
4486		 * RERRNORM - persistent read errors
4487		 * RERRNONPERSIST - non-persistent read errors
4488		 * WERRNORM - persistent write errors
4489		 * WERRNONPERSIST - non-persistent write errors
4490		 */
4491		if (arg & ~(RERRMASK | WERRMASK))
4492			return (EINVAL);
4493
4494		mutex_enter(&stp->sd_lock);
4495		switch (arg & RERRMASK) {
4496		case RERRNORM:
4497			stp->sd_flag &= ~STRDERRNONPERSIST;
4498			break;
4499		case RERRNONPERSIST:
4500			stp->sd_flag |= STRDERRNONPERSIST;
4501			break;
4502		}
4503		switch (arg & WERRMASK) {
4504		case WERRNORM:
4505			stp->sd_flag &= ~STWRERRNONPERSIST;
4506			break;
4507		case WERRNONPERSIST:
4508			stp->sd_flag |= STWRERRNONPERSIST;
4509			break;
4510		}
4511		mutex_exit(&stp->sd_lock);
4512		return (0);
4513
4514	case I_GERROPT:
4515		/*
4516		 * Get error option and return the value
4517		 * to spot pointed to by arg
4518		 */
4519	    {
4520		int erropt = 0;
4521
4522		erropt |= (stp->sd_flag & STRDERRNONPERSIST) ? RERRNONPERSIST :
4523			RERRNORM;
4524		erropt |= (stp->sd_flag & STWRERRNONPERSIST) ? WERRNONPERSIST :
4525			WERRNORM;
4526		return (strcopyout(&erropt, (void *)arg, sizeof (int),
4527		    copyflag));
4528	    }
4529
4530	case I_SETSIG:
4531		/*
4532		 * Register the calling proc to receive the SIGPOLL
4533		 * signal based on the events given in arg.  If
4534		 * arg is zero, remove the proc from register list.
4535		 */
4536	    {
4537		strsig_t *ssp, *pssp;
4538		struct pid *pidp;
4539
4540		pssp = NULL;
4541		pidp = curproc->p_pidp;
4542		/*
4543		 * Hold sd_lock to prevent traversal of sd_siglist while
4544		 * it is modified.
4545		 */
4546		mutex_enter(&stp->sd_lock);
4547		for (ssp = stp->sd_siglist; ssp && (ssp->ss_pidp != pidp);
4548			pssp = ssp, ssp = ssp->ss_next)
4549			;
4550
4551		if (arg) {
4552			if (arg & ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR|
4553			    S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) {
4554				mutex_exit(&stp->sd_lock);
4555				return (EINVAL);
4556			}
4557			if ((arg & S_BANDURG) && !(arg & S_RDBAND)) {
4558				mutex_exit(&stp->sd_lock);
4559				return (EINVAL);
4560			}
4561
4562			/*
4563			 * If proc not already registered, add it
4564			 * to list.
4565			 */
4566			if (!ssp) {
4567				ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP);
4568				ssp->ss_pidp = pidp;
4569				ssp->ss_pid = pidp->pid_id;
4570				ssp->ss_next = NULL;
4571				if (pssp)
4572					pssp->ss_next = ssp;
4573				else
4574					stp->sd_siglist = ssp;
4575				mutex_enter(&pidlock);
4576				PID_HOLD(pidp);
4577				mutex_exit(&pidlock);
4578			}
4579
4580			/*
4581			 * Set events.
4582			 */
4583			ssp->ss_events = (int)arg;
4584		} else {
4585			/*
4586			 * Remove proc from register list.
4587			 */
4588			if (ssp) {
4589				mutex_enter(&pidlock);
4590				PID_RELE(pidp);
4591				mutex_exit(&pidlock);
4592				if (pssp)
4593					pssp->ss_next = ssp->ss_next;
4594				else
4595					stp->sd_siglist = ssp->ss_next;
4596				kmem_free(ssp, sizeof (strsig_t));
4597			} else {
4598				mutex_exit(&stp->sd_lock);
4599				return (EINVAL);
4600			}
4601		}
4602
4603		/*
4604		 * Recalculate OR of sig events.
4605		 */
4606		stp->sd_sigflags = 0;
4607		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4608			stp->sd_sigflags |= ssp->ss_events;
4609		mutex_exit(&stp->sd_lock);
4610		return (0);
4611	    }
4612
4613	case I_GETSIG:
4614		/*
4615		 * Return (in arg) the current registration of events
4616		 * for which the calling proc is to be signaled.
4617		 */
4618	    {
4619		struct strsig *ssp;
4620		struct pid  *pidp;
4621
4622		pidp = curproc->p_pidp;
4623		mutex_enter(&stp->sd_lock);
4624		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4625			if (ssp->ss_pidp == pidp) {
4626				error = strcopyout(&ssp->ss_events, (void *)arg,
4627				    sizeof (int), copyflag);
4628				mutex_exit(&stp->sd_lock);
4629				return (error);
4630			}
4631		mutex_exit(&stp->sd_lock);
4632		return (EINVAL);
4633	    }
4634
4635	case I_ESETSIG:
4636		/*
4637		 * Register the ss_pid to receive the SIGPOLL
4638		 * signal based on the events is ss_events arg.  If
4639		 * ss_events is zero, remove the proc from register list.
4640		 */
4641	{
4642		struct strsig *ssp, *pssp;
4643		struct proc *proc;
4644		struct pid  *pidp;
4645		pid_t pid;
4646		struct strsigset ss;
4647
4648		error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag);
4649		if (error)
4650			return (error);
4651
4652		pid = ss.ss_pid;
4653
4654		if (ss.ss_events != 0) {
4655			/*
4656			 * Permissions check by sending signal 0.
4657			 * Note that when kill fails it does a set_errno
4658			 * causing the system call to fail.
4659			 */
4660			error = kill(pid, 0);
4661			if (error) {
4662				return (error);
4663			}
4664		}
4665		mutex_enter(&pidlock);
4666		if (pid == 0)
4667			proc = curproc;
4668		else if (pid < 0)
4669			proc = pgfind(-pid);
4670		else
4671			proc = prfind(pid);
4672		if (proc == NULL) {
4673			mutex_exit(&pidlock);
4674			return (ESRCH);
4675		}
4676		if (pid < 0)
4677			pidp = proc->p_pgidp;
4678		else
4679			pidp = proc->p_pidp;
4680		ASSERT(pidp);
4681		/*
4682		 * Get a hold on the pid structure while referencing it.
4683		 * There is a separate PID_HOLD should it be inserted
4684		 * in the list below.
4685		 */
4686		PID_HOLD(pidp);
4687		mutex_exit(&pidlock);
4688
4689		pssp = NULL;
4690		/*
4691		 * Hold sd_lock to prevent traversal of sd_siglist while
4692		 * it is modified.
4693		 */
4694		mutex_enter(&stp->sd_lock);
4695		for (ssp = stp->sd_siglist; ssp && (ssp->ss_pid != pid);
4696				pssp = ssp, ssp = ssp->ss_next)
4697			;
4698
4699		if (ss.ss_events) {
4700			if (ss.ss_events &
4701			    ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR|
4702			    S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) {
4703				mutex_exit(&stp->sd_lock);
4704				mutex_enter(&pidlock);
4705				PID_RELE(pidp);
4706				mutex_exit(&pidlock);
4707				return (EINVAL);
4708			}
4709			if ((ss.ss_events & S_BANDURG) &&
4710			    !(ss.ss_events & S_RDBAND)) {
4711				mutex_exit(&stp->sd_lock);
4712				mutex_enter(&pidlock);
4713				PID_RELE(pidp);
4714				mutex_exit(&pidlock);
4715				return (EINVAL);
4716			}
4717
4718			/*
4719			 * If proc not already registered, add it
4720			 * to list.
4721			 */
4722			if (!ssp) {
4723				ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP);
4724				ssp->ss_pidp = pidp;
4725				ssp->ss_pid = pid;
4726				ssp->ss_next = NULL;
4727				if (pssp)
4728					pssp->ss_next = ssp;
4729				else
4730					stp->sd_siglist = ssp;
4731				mutex_enter(&pidlock);
4732				PID_HOLD(pidp);
4733				mutex_exit(&pidlock);
4734			}
4735
4736			/*
4737			 * Set events.
4738			 */
4739			ssp->ss_events = ss.ss_events;
4740		} else {
4741			/*
4742			 * Remove proc from register list.
4743			 */
4744			if (ssp) {
4745				mutex_enter(&pidlock);
4746				PID_RELE(pidp);
4747				mutex_exit(&pidlock);
4748				if (pssp)
4749					pssp->ss_next = ssp->ss_next;
4750				else
4751					stp->sd_siglist = ssp->ss_next;
4752				kmem_free(ssp, sizeof (strsig_t));
4753			} else {
4754				mutex_exit(&stp->sd_lock);
4755				mutex_enter(&pidlock);
4756				PID_RELE(pidp);
4757				mutex_exit(&pidlock);
4758				return (EINVAL);
4759			}
4760		}
4761
4762		/*
4763		 * Recalculate OR of sig events.
4764		 */
4765		stp->sd_sigflags = 0;
4766		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4767			stp->sd_sigflags |= ssp->ss_events;
4768		mutex_exit(&stp->sd_lock);
4769		mutex_enter(&pidlock);
4770		PID_RELE(pidp);
4771		mutex_exit(&pidlock);
4772		return (0);
4773	    }
4774
4775	case I_EGETSIG:
4776		/*
4777		 * Return (in arg) the current registration of events
4778		 * for which the calling proc is to be signaled.
4779		 */
4780	    {
4781		struct strsig *ssp;
4782		struct proc *proc;
4783		pid_t pid;
4784		struct pid  *pidp;
4785		struct strsigset ss;
4786
4787		error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag);
4788		if (error)
4789			return (error);
4790
4791		pid = ss.ss_pid;
4792		mutex_enter(&pidlock);
4793		if (pid == 0)
4794			proc = curproc;
4795		else if (pid < 0)
4796			proc = pgfind(-pid);
4797		else
4798			proc = prfind(pid);
4799		if (proc == NULL) {
4800			mutex_exit(&pidlock);
4801			return (ESRCH);
4802		}
4803		if (pid < 0)
4804			pidp = proc->p_pgidp;
4805		else
4806			pidp = proc->p_pidp;
4807
4808		/* Prevent the pidp from being reassigned */
4809		PID_HOLD(pidp);
4810		mutex_exit(&pidlock);
4811
4812		mutex_enter(&stp->sd_lock);
4813		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4814			if (ssp->ss_pid == pid) {
4815				ss.ss_pid = ssp->ss_pid;
4816				ss.ss_events = ssp->ss_events;
4817				error = strcopyout(&ss, (void *)arg,
4818				    sizeof (struct strsigset), copyflag);
4819				mutex_exit(&stp->sd_lock);
4820				mutex_enter(&pidlock);
4821				PID_RELE(pidp);
4822				mutex_exit(&pidlock);
4823				return (error);
4824			}
4825		mutex_exit(&stp->sd_lock);
4826		mutex_enter(&pidlock);
4827		PID_RELE(pidp);
4828		mutex_exit(&pidlock);
4829		return (EINVAL);
4830	    }
4831
4832	case I_PEEK:
4833	    {
4834		STRUCT_DECL(strpeek, strpeek);
4835		size_t n;
4836		mblk_t *fmp, *tmp_mp = NULL;
4837
4838		STRUCT_INIT(strpeek, flag);
4839
4840		error = strcopyin((void *)arg, STRUCT_BUF(strpeek),
4841		    STRUCT_SIZE(strpeek), copyflag);
4842		if (error)
4843			return (error);
4844
4845		mutex_enter(QLOCK(rdq));
4846		/*
4847		 * Skip the invalid messages
4848		 */
4849		for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
4850			if (mp->b_datap->db_type != M_SIG)
4851				break;
4852
4853		/*
4854		 * If user has requested to peek at a high priority message
4855		 * and first message is not, return 0
4856		 */
4857		if (mp != NULL) {
4858			if ((STRUCT_FGET(strpeek, flags) & RS_HIPRI) &&
4859			    queclass(mp) == QNORM) {
4860				*rvalp = 0;
4861				mutex_exit(QLOCK(rdq));
4862				return (0);
4863			}
4864		} else if (stp->sd_struiordq == NULL ||
4865		    (STRUCT_FGET(strpeek, flags) & RS_HIPRI)) {
4866			/*
4867			 * No mblks to look at at the streamhead and
4868			 * 1). This isn't a synch stream or
4869			 * 2). This is a synch stream but caller wants high
4870			 *	priority messages which is not supported by
4871			 *	the synch stream. (it only supports QNORM)
4872			 */
4873			*rvalp = 0;
4874			mutex_exit(QLOCK(rdq));
4875			return (0);
4876		}
4877
4878		fmp = mp;
4879
4880		if (mp && mp->b_datap->db_type == M_PASSFP) {
4881			mutex_exit(QLOCK(rdq));
4882			return (EBADMSG);
4883		}
4884
4885		ASSERT(mp == NULL || mp->b_datap->db_type == M_PCPROTO ||
4886		    mp->b_datap->db_type == M_PROTO ||
4887		    mp->b_datap->db_type == M_DATA);
4888
4889		if (mp && mp->b_datap->db_type == M_PCPROTO) {
4890			STRUCT_FSET(strpeek, flags, RS_HIPRI);
4891		} else {
4892			STRUCT_FSET(strpeek, flags, 0);
4893		}
4894
4895
4896		if (mp && ((tmp_mp = dupmsg(mp)) == NULL)) {
4897			mutex_exit(QLOCK(rdq));
4898			return (ENOSR);
4899		}
4900		mutex_exit(QLOCK(rdq));
4901
4902		/*
4903		 * set mp = tmp_mp, so that I_PEEK processing can continue.
4904		 * tmp_mp is used to free the dup'd message.
4905		 */
4906		mp = tmp_mp;
4907
4908		uio.uio_fmode = 0;
4909		uio.uio_extflg = UIO_COPY_CACHED;
4910		uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE :
4911		    UIO_SYSSPACE;
4912		uio.uio_limit = 0;
4913		/*
4914		 * First process PROTO blocks, if any.
4915		 * If user doesn't want to get ctl info by setting maxlen <= 0,
4916		 * then set len to -1/0 and skip control blocks part.
4917		 */
4918		if (STRUCT_FGET(strpeek, ctlbuf.maxlen) < 0)
4919			STRUCT_FSET(strpeek, ctlbuf.len, -1);
4920		else if (STRUCT_FGET(strpeek, ctlbuf.maxlen) == 0)
4921			STRUCT_FSET(strpeek, ctlbuf.len, 0);
4922		else {
4923			int	ctl_part = 0;
4924
4925			iov.iov_base = STRUCT_FGETP(strpeek, ctlbuf.buf);
4926			iov.iov_len = STRUCT_FGET(strpeek, ctlbuf.maxlen);
4927			uio.uio_iov = &iov;
4928			uio.uio_resid = iov.iov_len;
4929			uio.uio_loffset = 0;
4930			uio.uio_iovcnt = 1;
4931			while (mp && mp->b_datap->db_type != M_DATA &&
4932			    uio.uio_resid >= 0) {
4933				ASSERT(STRUCT_FGET(strpeek, flags) == 0 ?
4934				    mp->b_datap->db_type == M_PROTO :
4935				    mp->b_datap->db_type == M_PCPROTO);
4936
4937				if ((n = MIN(uio.uio_resid,
4938				    mp->b_wptr - mp->b_rptr)) != 0 &&
4939				    (error = uiomove((char *)mp->b_rptr, n,
4940				    UIO_READ, &uio)) != 0) {
4941					freemsg(tmp_mp);
4942					return (error);
4943				}
4944				ctl_part = 1;
4945				mp = mp->b_cont;
4946			}
4947			/* No ctl message */
4948			if (ctl_part == 0)
4949				STRUCT_FSET(strpeek, ctlbuf.len, -1);
4950			else
4951				STRUCT_FSET(strpeek, ctlbuf.len,
4952				    STRUCT_FGET(strpeek, ctlbuf.maxlen) -
4953				    uio.uio_resid);
4954		}
4955
4956		/*
4957		 * Now process DATA blocks, if any.
4958		 * If user doesn't want to get data info by setting maxlen <= 0,
4959		 * then set len to -1/0 and skip data blocks part.
4960		 */
4961		if (STRUCT_FGET(strpeek, databuf.maxlen) < 0)
4962			STRUCT_FSET(strpeek, databuf.len, -1);
4963		else if (STRUCT_FGET(strpeek, databuf.maxlen) == 0)
4964			STRUCT_FSET(strpeek, databuf.len, 0);
4965		else {
4966			int	data_part = 0;
4967
4968			iov.iov_base = STRUCT_FGETP(strpeek, databuf.buf);
4969			iov.iov_len = STRUCT_FGET(strpeek, databuf.maxlen);
4970			uio.uio_iov = &iov;
4971			uio.uio_resid = iov.iov_len;
4972			uio.uio_loffset = 0;
4973			uio.uio_iovcnt = 1;
4974			while (mp && uio.uio_resid) {
4975				if (mp->b_datap->db_type == M_DATA) {
4976					if ((n = MIN(uio.uio_resid,
4977					    mp->b_wptr - mp->b_rptr)) != 0 &&
4978					    (error = uiomove((char *)mp->b_rptr,
4979						n, UIO_READ, &uio)) != 0) {
4980						freemsg(tmp_mp);
4981						return (error);
4982					}
4983					data_part = 1;
4984				}
4985				ASSERT(data_part == 0 ||
4986				    mp->b_datap->db_type == M_DATA);
4987				mp = mp->b_cont;
4988			}
4989			/* No data message */
4990			if (data_part == 0)
4991				STRUCT_FSET(strpeek, databuf.len, -1);
4992			else
4993				STRUCT_FSET(strpeek, databuf.len,
4994				    STRUCT_FGET(strpeek, databuf.maxlen) -
4995				    uio.uio_resid);
4996		}
4997		freemsg(tmp_mp);
4998
4999		/*
5000		 * It is a synch stream and user wants to get
5001		 * data (maxlen > 0).
5002		 * uio setup is done by the codes that process DATA
5003		 * blocks above.
5004		 */
5005		if ((fmp == NULL) && STRUCT_FGET(strpeek, databuf.maxlen) > 0) {
5006			infod_t infod;
5007
5008			infod.d_cmd = INFOD_COPYOUT;
5009			infod.d_res = 0;
5010			infod.d_uiop = &uio;
5011			error = infonext(rdq, &infod);
5012			if (error == EINVAL || error == EBUSY)
5013				error = 0;
5014			if (error)
5015				return (error);
5016			STRUCT_FSET(strpeek, databuf.len, STRUCT_FGET(strpeek,
5017			    databuf.maxlen) - uio.uio_resid);
5018			if (STRUCT_FGET(strpeek, databuf.len) == 0) {
5019				/*
5020				 * No data found by the infonext().
5021				 */
5022				STRUCT_FSET(strpeek, databuf.len, -1);
5023			}
5024		}
5025		error = strcopyout(STRUCT_BUF(strpeek), (void *)arg,
5026		    STRUCT_SIZE(strpeek), copyflag);
5027		if (error) {
5028			return (error);
5029		}
5030		/*
5031		 * If there is no message retrieved, set return code to 0
5032		 * otherwise, set it to 1.
5033		 */
5034		if (STRUCT_FGET(strpeek, ctlbuf.len) == -1 &&
5035		    STRUCT_FGET(strpeek, databuf.len) == -1)
5036			*rvalp = 0;
5037		else
5038			*rvalp = 1;
5039		return (0);
5040	    }
5041
5042	case I_FDINSERT:
5043	    {
5044		STRUCT_DECL(strfdinsert, strfdinsert);
5045		struct file *resftp;
5046		struct stdata *resstp;
5047		t_uscalar_t	ival;
5048		ssize_t msgsize;
5049		struct strbuf mctl;
5050
5051		STRUCT_INIT(strfdinsert, flag);
5052		if (stp->sd_flag & STRHUP)
5053			return (ENXIO);
5054		/*
5055		 * STRDERR, STWRERR and STPLEX tested above.
5056		 */
5057		error = strcopyin((void *)arg, STRUCT_BUF(strfdinsert),
5058		    STRUCT_SIZE(strfdinsert), copyflag);
5059		if (error)
5060			return (error);
5061
5062		if (STRUCT_FGET(strfdinsert, offset) < 0 ||
5063		    (STRUCT_FGET(strfdinsert, offset) %
5064		    sizeof (t_uscalar_t)) != 0)
5065			return (EINVAL);
5066		if ((resftp = getf(STRUCT_FGET(strfdinsert, fildes))) != NULL) {
5067			if ((resstp = resftp->f_vnode->v_stream) == NULL) {
5068				releasef(STRUCT_FGET(strfdinsert, fildes));
5069				return (EINVAL);
5070			}
5071		} else
5072			return (EINVAL);
5073
5074		mutex_enter(&resstp->sd_lock);
5075		if (resstp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
5076			error = strgeterr(resstp,
5077					STRDERR|STWRERR|STRHUP|STPLEX, 0);
5078			if (error != 0) {
5079				mutex_exit(&resstp->sd_lock);
5080				releasef(STRUCT_FGET(strfdinsert, fildes));
5081				return (error);
5082			}
5083		}
5084		mutex_exit(&resstp->sd_lock);
5085
5086#ifdef	_ILP32
5087		{
5088			queue_t	*q;
5089			queue_t	*mate = NULL;
5090
5091			/* get read queue of stream terminus */
5092			claimstr(resstp->sd_wrq);
5093			for (q = resstp->sd_wrq->q_next; q->q_next != NULL;
5094			    q = q->q_next)
5095				if (!STRMATED(resstp) && STREAM(q) != resstp &&
5096				    mate == NULL) {
5097					ASSERT(q->q_qinfo->qi_srvp);
5098					ASSERT(_OTHERQ(q)->q_qinfo->qi_srvp);
5099					claimstr(q);
5100					mate = q;
5101				}
5102			q = _RD(q);
5103			if (mate)
5104				releasestr(mate);
5105			releasestr(resstp->sd_wrq);
5106			ival = (t_uscalar_t)q;
5107		}
5108#else
5109		ival = (t_uscalar_t)getminor(resftp->f_vnode->v_rdev);
5110#endif	/* _ILP32 */
5111
5112		if (STRUCT_FGET(strfdinsert, ctlbuf.len) <
5113		    STRUCT_FGET(strfdinsert, offset) + sizeof (t_uscalar_t)) {
5114			releasef(STRUCT_FGET(strfdinsert, fildes));
5115			return (EINVAL);
5116		}
5117
5118		/*
5119		 * Check for legal flag value.
5120		 */
5121		if (STRUCT_FGET(strfdinsert, flags) & ~RS_HIPRI) {
5122			releasef(STRUCT_FGET(strfdinsert, fildes));
5123			return (EINVAL);
5124		}
5125
5126		/* get these values from those cached in the stream head */
5127		mutex_enter(QLOCK(stp->sd_wrq));
5128		rmin = stp->sd_qn_minpsz;
5129		rmax = stp->sd_qn_maxpsz;
5130		mutex_exit(QLOCK(stp->sd_wrq));
5131
5132		/*
5133		 * Make sure ctl and data sizes together fall within
5134		 * the limits of the max and min receive packet sizes
5135		 * and do not exceed system limit.  A negative data
5136		 * length means that no data part is to be sent.
5137		 */
5138		ASSERT((rmax >= 0) || (rmax == INFPSZ));
5139		if (rmax == 0) {
5140			releasef(STRUCT_FGET(strfdinsert, fildes));
5141			return (ERANGE);
5142		}
5143		if ((msgsize = STRUCT_FGET(strfdinsert, databuf.len)) < 0)
5144			msgsize = 0;
5145		if ((msgsize < rmin) ||
5146		    ((msgsize > rmax) && (rmax != INFPSZ)) ||
5147		    (STRUCT_FGET(strfdinsert, ctlbuf.len) > strctlsz)) {
5148			releasef(STRUCT_FGET(strfdinsert, fildes));
5149			return (ERANGE);
5150		}
5151
5152		mutex_enter(&stp->sd_lock);
5153		while (!(STRUCT_FGET(strfdinsert, flags) & RS_HIPRI) &&
5154		    !canputnext(stp->sd_wrq)) {
5155			if ((error = strwaitq(stp, WRITEWAIT, (ssize_t)0,
5156			    flag, -1, &done)) != 0 || done) {
5157				mutex_exit(&stp->sd_lock);
5158				releasef(STRUCT_FGET(strfdinsert, fildes));
5159				return (error);
5160			}
5161			if ((error = i_straccess(stp, access)) != 0) {
5162				mutex_exit(&stp->sd_lock);
5163				releasef(
5164				    STRUCT_FGET(strfdinsert, fildes));
5165				return (error);
5166			}
5167		}
5168		mutex_exit(&stp->sd_lock);
5169
5170		/*
5171		 * Copy strfdinsert.ctlbuf into native form of
5172		 * ctlbuf to pass down into strmakemsg().
5173		 */
5174		mctl.maxlen = STRUCT_FGET(strfdinsert, ctlbuf.maxlen);
5175		mctl.len = STRUCT_FGET(strfdinsert, ctlbuf.len);
5176		mctl.buf = STRUCT_FGETP(strfdinsert, ctlbuf.buf);
5177
5178		iov.iov_base = STRUCT_FGETP(strfdinsert, databuf.buf);
5179		iov.iov_len = STRUCT_FGET(strfdinsert, databuf.len);
5180		uio.uio_iov = &iov;
5181		uio.uio_iovcnt = 1;
5182		uio.uio_loffset = 0;
5183		uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE :
5184		    UIO_SYSSPACE;
5185		uio.uio_fmode = 0;
5186		uio.uio_extflg = UIO_COPY_CACHED;
5187		uio.uio_resid = iov.iov_len;
5188		if ((error = strmakemsg(&mctl,
5189		    &msgsize, &uio, stp,
5190		    STRUCT_FGET(strfdinsert, flags), &mp)) != 0 || !mp) {
5191			STRUCT_FSET(strfdinsert, databuf.len, msgsize);
5192			releasef(STRUCT_FGET(strfdinsert, fildes));
5193			return (error);
5194		}
5195
5196		STRUCT_FSET(strfdinsert, databuf.len, msgsize);
5197
5198		/*
5199		 * Place the possibly reencoded queue pointer 'offset' bytes
5200		 * from the start of the control portion of the message.
5201		 */
5202		*((t_uscalar_t *)(mp->b_rptr +
5203		    STRUCT_FGET(strfdinsert, offset))) = ival;
5204
5205		/*
5206		 * Put message downstream.
5207		 */
5208		stream_willservice(stp);
5209		putnext(stp->sd_wrq, mp);
5210		stream_runservice(stp);
5211		releasef(STRUCT_FGET(strfdinsert, fildes));
5212		return (error);
5213	    }
5214
5215	case I_SENDFD:
5216	    {
5217		struct file *fp;
5218
5219		if ((fp = getf((int)arg)) == NULL)
5220			return (EBADF);
5221		error = do_sendfp(stp, fp, crp);
5222#ifdef C2_AUDIT
5223		if (audit_active) {
5224			audit_fdsend((int)arg, fp, error);
5225		}
5226#endif
5227		releasef((int)arg);
5228		return (error);
5229	    }
5230
5231	case I_RECVFD:
5232	case I_E_RECVFD:
5233	    {
5234		struct k_strrecvfd *srf;
5235		int i, fd;
5236
5237		mutex_enter(&stp->sd_lock);
5238		while (!(mp = getq(rdq))) {
5239			if (stp->sd_flag & (STRHUP|STREOF)) {
5240				mutex_exit(&stp->sd_lock);
5241				return (ENXIO);
5242			}
5243			if ((error = strwaitq(stp, GETWAIT, (ssize_t)0,
5244			    flag, -1, &done)) != 0 || done) {
5245				mutex_exit(&stp->sd_lock);
5246				return (error);
5247			}
5248			if ((error = i_straccess(stp, access)) != 0) {
5249				mutex_exit(&stp->sd_lock);
5250				return (error);
5251			}
5252		}
5253		if (mp->b_datap->db_type != M_PASSFP) {
5254			putback(stp, rdq, mp, mp->b_band);
5255			mutex_exit(&stp->sd_lock);
5256			return (EBADMSG);
5257		}
5258		mutex_exit(&stp->sd_lock);
5259
5260		srf = (struct k_strrecvfd *)mp->b_rptr;
5261		if ((fd = ufalloc(0)) == -1) {
5262			mutex_enter(&stp->sd_lock);
5263			putback(stp, rdq, mp, mp->b_band);
5264			mutex_exit(&stp->sd_lock);
5265			return (EMFILE);
5266		}
5267		if (cmd == I_RECVFD) {
5268			struct o_strrecvfd	ostrfd;
5269
5270			/* check to see if uid/gid values are too large. */
5271
5272			if (srf->uid > (o_uid_t)USHRT_MAX ||
5273			    srf->gid > (o_gid_t)USHRT_MAX) {
5274				mutex_enter(&stp->sd_lock);
5275				putback(stp, rdq, mp, mp->b_band);
5276				mutex_exit(&stp->sd_lock);
5277				setf(fd, NULL);	/* release fd entry */
5278				return (EOVERFLOW);
5279			}
5280
5281			ostrfd.fd = fd;
5282			ostrfd.uid = (o_uid_t)srf->uid;
5283			ostrfd.gid = (o_gid_t)srf->gid;
5284
5285			/* Null the filler bits */
5286			for (i = 0; i < 8; i++)
5287				ostrfd.fill[i] = 0;
5288
5289			error = strcopyout(&ostrfd, (void *)arg,
5290			    sizeof (struct o_strrecvfd), copyflag);
5291		} else {		/* I_E_RECVFD */
5292			struct strrecvfd	strfd;
5293
5294			strfd.fd = fd;
5295			strfd.uid = srf->uid;
5296			strfd.gid = srf->gid;
5297
5298			/* null the filler bits */
5299			for (i = 0; i < 8; i++)
5300				strfd.fill[i] = 0;
5301
5302			error = strcopyout(&strfd, (void *)arg,
5303			    sizeof (struct strrecvfd), copyflag);
5304		}
5305
5306		if (error) {
5307			setf(fd, NULL);	/* release fd entry */
5308			mutex_enter(&stp->sd_lock);
5309			putback(stp, rdq, mp, mp->b_band);
5310			mutex_exit(&stp->sd_lock);
5311			return (error);
5312		}
5313#ifdef C2_AUDIT
5314		if (audit_active) {
5315			audit_fdrecv(fd, srf->fp);
5316		}
5317#endif
5318
5319		/*
5320		 * Always increment f_count since the freemsg() below will
5321		 * always call free_passfp() which performs a closef().
5322		 */
5323		mutex_enter(&srf->fp->f_tlock);
5324		srf->fp->f_count++;
5325		mutex_exit(&srf->fp->f_tlock);
5326		setf(fd, srf->fp);
5327		freemsg(mp);
5328		return (0);
5329	    }
5330
5331	case I_SWROPT:
5332		/*
5333		 * Set/clear the write options. arg is a bit
5334		 * mask with any of the following bits set...
5335		 * 	SNDZERO - send zero length message
5336		 *	SNDPIPE - send sigpipe to process if
5337		 *		sd_werror is set and process is
5338		 *		doing a write or putmsg.
5339		 * The new stream head write options should reflect
5340		 * what is in arg.
5341		 */
5342		if (arg & ~(SNDZERO|SNDPIPE))
5343			return (EINVAL);
5344
5345		mutex_enter(&stp->sd_lock);
5346		stp->sd_wput_opt &= ~(SW_SIGPIPE|SW_SNDZERO);
5347		if (arg & SNDZERO)
5348			stp->sd_wput_opt |= SW_SNDZERO;
5349		if (arg & SNDPIPE)
5350			stp->sd_wput_opt |= SW_SIGPIPE;
5351		mutex_exit(&stp->sd_lock);
5352		return (0);
5353
5354	case I_GWROPT:
5355	    {
5356		int wropt = 0;
5357
5358		if (stp->sd_wput_opt & SW_SNDZERO)
5359			wropt |= SNDZERO;
5360		if (stp->sd_wput_opt & SW_SIGPIPE)
5361			wropt |= SNDPIPE;
5362		return (strcopyout(&wropt, (void *)arg, sizeof (wropt),
5363		    copyflag));
5364	    }
5365
5366	case I_LIST:
5367		/*
5368		 * Returns all the modules found on this stream,
5369		 * upto the driver. If argument is NULL, return the
5370		 * number of modules (including driver). If argument
5371		 * is not NULL, copy the names into the structure
5372		 * provided.
5373		 */
5374
5375	    {
5376		queue_t *q;
5377		int num_modules, space_allocated;
5378		STRUCT_DECL(str_list, strlist);
5379		struct str_mlist *mlist_ptr;
5380
5381		if (arg == NULL) { /* Return number of modules plus driver */
5382			q = stp->sd_wrq;
5383			if (stp->sd_vnode->v_type == VFIFO) {
5384				*rvalp = stp->sd_pushcnt;
5385			} else {
5386				*rvalp = stp->sd_pushcnt + 1;
5387			}
5388		} else {
5389			STRUCT_INIT(strlist, flag);
5390
5391			error = strcopyin((void *)arg, STRUCT_BUF(strlist),
5392			    STRUCT_SIZE(strlist), copyflag);
5393			if (error)
5394				return (error);
5395
5396			space_allocated = STRUCT_FGET(strlist, sl_nmods);
5397			if ((space_allocated) <= 0)
5398				return (EINVAL);
5399			claimstr(stp->sd_wrq);
5400			q = stp->sd_wrq;
5401			num_modules = 0;
5402			while (_SAMESTR(q) && (space_allocated != 0)) {
5403				char *name =
5404				    q->q_next->q_qinfo->qi_minfo->mi_idname;
5405
5406				mlist_ptr = STRUCT_FGETP(strlist, sl_modlist);
5407
5408				error = strcopyout(name, mlist_ptr,
5409				    strlen(name) + 1, copyflag);
5410
5411				if (error) {
5412					releasestr(stp->sd_wrq);
5413					return (error);
5414				}
5415				q = q->q_next;
5416				space_allocated--;
5417				num_modules++;
5418				mlist_ptr =
5419				    (struct str_mlist *)((uintptr_t)mlist_ptr +
5420				    sizeof (struct str_mlist));
5421				STRUCT_FSETP(strlist, sl_modlist, mlist_ptr);
5422			}
5423			releasestr(stp->sd_wrq);
5424			error = strcopyout(&num_modules, (void *)arg,
5425			    sizeof (int), copyflag);
5426		}
5427		return (error);
5428	    }
5429
5430	case I_CKBAND:
5431	    {
5432		queue_t *q;
5433		qband_t *qbp;
5434
5435		if ((arg < 0) || (arg >= NBAND))
5436			return (EINVAL);
5437		q = _RD(stp->sd_wrq);
5438		mutex_enter(QLOCK(q));
5439		if (arg > (int)q->q_nband) {
5440			*rvalp = 0;
5441		} else {
5442			if (arg == 0) {
5443				if (q->q_first)
5444					*rvalp = 1;
5445				else
5446					*rvalp = 0;
5447			} else {
5448				qbp = q->q_bandp;
5449				while (--arg > 0)
5450					qbp = qbp->qb_next;
5451				if (qbp->qb_first)
5452					*rvalp = 1;
5453				else
5454					*rvalp = 0;
5455			}
5456		}
5457		mutex_exit(QLOCK(q));
5458		return (0);
5459	    }
5460
5461	case I_GETBAND:
5462	    {
5463		int intpri;
5464		queue_t *q;
5465
5466		q = _RD(stp->sd_wrq);
5467		mutex_enter(QLOCK(q));
5468		mp = q->q_first;
5469		if (!mp) {
5470			mutex_exit(QLOCK(q));
5471			return (ENODATA);
5472		}
5473		intpri = (int)mp->b_band;
5474		error = strcopyout(&intpri, (void *)arg, sizeof (int),
5475		    copyflag);
5476		mutex_exit(QLOCK(q));
5477		return (error);
5478	    }
5479
5480	case I_ATMARK:
5481	    {
5482		queue_t *q;
5483
5484		if (arg & ~(ANYMARK|LASTMARK))
5485			return (EINVAL);
5486		q = _RD(stp->sd_wrq);
5487		mutex_enter(&stp->sd_lock);
5488		if ((stp->sd_flag & STRATMARK) && (arg == ANYMARK)) {
5489			*rvalp = 1;
5490		} else {
5491			mutex_enter(QLOCK(q));
5492			mp = q->q_first;
5493
5494			if (mp == NULL)
5495				*rvalp = 0;
5496			else if ((arg == ANYMARK) && (mp->b_flag & MSGMARK))
5497				*rvalp = 1;
5498			else if ((arg == LASTMARK) && (mp == stp->sd_mark))
5499				*rvalp = 1;
5500			else
5501				*rvalp = 0;
5502			mutex_exit(QLOCK(q));
5503		}
5504		mutex_exit(&stp->sd_lock);
5505		return (0);
5506	    }
5507
5508	case I_CANPUT:
5509	    {
5510		char band;
5511
5512		if ((arg < 0) || (arg >= NBAND))
5513			return (EINVAL);
5514		band = (char)arg;
5515		*rvalp = bcanputnext(stp->sd_wrq, band);
5516		return (0);
5517	    }
5518
5519	case I_SETCLTIME:
5520	    {
5521		int closetime;
5522
5523		error = strcopyin((void *)arg, &closetime, sizeof (int),
5524		    copyflag);
5525		if (error)
5526			return (error);
5527		if (closetime < 0)
5528			return (EINVAL);
5529
5530		stp->sd_closetime = closetime;
5531		return (0);
5532	    }
5533
5534	case I_GETCLTIME:
5535	    {
5536		int closetime;
5537
5538		closetime = stp->sd_closetime;
5539		return (strcopyout(&closetime, (void *)arg, sizeof (int),
5540		    copyflag));
5541	    }
5542
5543	case TIOCGSID:
5544	{
5545		pid_t sid;
5546
5547		mutex_enter(&stp->sd_lock);
5548		if (stp->sd_sidp == NULL) {
5549			mutex_exit(&stp->sd_lock);
5550			return (ENOTTY);
5551		}
5552		sid = stp->sd_sidp->pid_id;
5553		mutex_exit(&stp->sd_lock);
5554		return (strcopyout(&sid, (void *)arg, sizeof (pid_t),
5555		    copyflag));
5556	}
5557
5558	case TIOCSPGRP:
5559	{
5560		pid_t pgrp;
5561		proc_t *q;
5562		pid_t	sid, fg_pgid, bg_pgid;
5563
5564		if (error = strcopyin((void *)arg, &pgrp, sizeof (pid_t),
5565		    copyflag))
5566			return (error);
5567		mutex_enter(&stp->sd_lock);
5568		mutex_enter(&pidlock);
5569		if (stp->sd_sidp != ttoproc(curthread)->p_sessp->s_sidp) {
5570			mutex_exit(&pidlock);
5571			mutex_exit(&stp->sd_lock);
5572			return (ENOTTY);
5573		}
5574		if (pgrp == stp->sd_pgidp->pid_id) {
5575			mutex_exit(&pidlock);
5576			mutex_exit(&stp->sd_lock);
5577			return (0);
5578		}
5579		if (pgrp <= 0 || pgrp >= maxpid) {
5580			mutex_exit(&pidlock);
5581			mutex_exit(&stp->sd_lock);
5582			return (EINVAL);
5583		}
5584		if ((q = pgfind(pgrp)) == NULL ||
5585		    q->p_sessp != ttoproc(curthread)->p_sessp) {
5586			mutex_exit(&pidlock);
5587			mutex_exit(&stp->sd_lock);
5588			return (EPERM);
5589		}
5590		sid = stp->sd_sidp->pid_id;
5591		fg_pgid = q->p_pgrp;
5592		bg_pgid = stp->sd_pgidp->pid_id;
5593		CL_SET_PROCESS_GROUP(curthread, sid, bg_pgid, fg_pgid);
5594		PID_RELE(stp->sd_pgidp);
5595		ctty_clear_sighuped();
5596		stp->sd_pgidp = q->p_pgidp;
5597		PID_HOLD(stp->sd_pgidp);
5598		mutex_exit(&pidlock);
5599		mutex_exit(&stp->sd_lock);
5600		return (0);
5601	}
5602
5603	case TIOCGPGRP:
5604	{
5605		pid_t pgrp;
5606
5607		mutex_enter(&stp->sd_lock);
5608		if (stp->sd_sidp == NULL) {
5609			mutex_exit(&stp->sd_lock);
5610			return (ENOTTY);
5611		}
5612		pgrp = stp->sd_pgidp->pid_id;
5613		mutex_exit(&stp->sd_lock);
5614		return (strcopyout(&pgrp, (void *)arg, sizeof (pid_t),
5615		    copyflag));
5616	}
5617
5618	case TIOCSCTTY:
5619	{
5620		return (strctty(stp));
5621	}
5622
5623	case TIOCNOTTY:
5624	{
5625		/* freectty() always assumes curproc. */
5626		if (freectty(B_FALSE) != 0)
5627			return (0);
5628		return (ENOTTY);
5629	}
5630
5631	case FIONBIO:
5632	case FIOASYNC:
5633		return (0);	/* handled by the upper layer */
5634	}
5635}
5636
5637/*
5638 * Custom free routine used for M_PASSFP messages.
5639 */
5640static void
5641free_passfp(struct k_strrecvfd *srf)
5642{
5643	(void) closef(srf->fp);
5644	kmem_free(srf, sizeof (struct k_strrecvfd) + sizeof (frtn_t));
5645}
5646
5647/* ARGSUSED */
5648int
5649do_sendfp(struct stdata *stp, struct file *fp, struct cred *cr)
5650{
5651	queue_t *qp, *nextqp;
5652	struct k_strrecvfd *srf;
5653	mblk_t *mp;
5654	frtn_t *frtnp;
5655	size_t bufsize;
5656	queue_t	*mate = NULL;
5657	syncq_t	*sq = NULL;
5658	int retval = 0;
5659
5660	if (stp->sd_flag & STRHUP)
5661		return (ENXIO);
5662
5663	claimstr(stp->sd_wrq);
5664
5665	/* Fastpath, we have a pipe, and we are already mated, use it. */
5666	if (STRMATED(stp)) {
5667		qp = _RD(stp->sd_mate->sd_wrq);
5668		claimstr(qp);
5669		mate = qp;
5670	} else { /* Not already mated. */
5671
5672		/*
5673		 * Walk the stream to the end of this one.
5674		 * assumes that the claimstr() will prevent
5675		 * plumbing between the stream head and the
5676		 * driver from changing
5677		 */
5678		qp = stp->sd_wrq;
5679
5680		/*
5681		 * Loop until we reach the end of this stream.
5682		 * On completion, qp points to the write queue
5683		 * at the end of the stream, or the read queue
5684		 * at the stream head if this is a fifo.
5685		 */
5686		while (((qp = qp->q_next) != NULL) && _SAMESTR(qp))
5687			;
5688
5689		/*
5690		 * Just in case we get a q_next which is NULL, but
5691		 * not at the end of the stream.  This is actually
5692		 * broken, so we set an assert to catch it in
5693		 * debug, and set an error and return if not debug.
5694		 */
5695		ASSERT(qp);
5696		if (qp == NULL) {
5697			releasestr(stp->sd_wrq);
5698			return (EINVAL);
5699		}
5700
5701		/*
5702		 * Enter the syncq for the driver, so (hopefully)
5703		 * the queue values will not change on us.
5704		 * XXXX - This will only prevent the race IFF only
5705		 *   the write side modifies the q_next member, and
5706		 *   the put procedure is protected by at least
5707		 *   MT_PERQ.
5708		 */
5709		if ((sq = qp->q_syncq) != NULL)
5710			entersq(sq, SQ_PUT);
5711
5712		/* Now get the q_next value from this qp. */
5713		nextqp = qp->q_next;
5714
5715		/*
5716		 * If nextqp exists and the other stream is different
5717		 * from this one claim the stream, set the mate, and
5718		 * get the read queue at the stream head of the other
5719		 * stream.  Assumes that nextqp was at least valid when
5720		 * we got it.  Hopefully the entersq of the driver
5721		 * will prevent it from changing on us.
5722		 */
5723		if ((nextqp != NULL) && (STREAM(nextqp) != stp)) {
5724			ASSERT(qp->q_qinfo->qi_srvp);
5725			ASSERT(_OTHERQ(qp)->q_qinfo->qi_srvp);
5726			ASSERT(_OTHERQ(qp->q_next)->q_qinfo->qi_srvp);
5727			claimstr(nextqp);
5728
5729			/* Make sure we still have a q_next */
5730			if (nextqp != qp->q_next) {
5731				releasestr(stp->sd_wrq);
5732				releasestr(nextqp);
5733				return (EINVAL);
5734			}
5735
5736			qp = _RD(STREAM(nextqp)->sd_wrq);
5737			mate = qp;
5738		}
5739		/* If we entered the synq above, leave it. */
5740		if (sq != NULL)
5741			leavesq(sq, SQ_PUT);
5742	} /*  STRMATED(STP)  */
5743
5744	/* XXX prevents substitution of the ops vector */
5745	if (qp->q_qinfo != &strdata && qp->q_qinfo != &fifo_strdata) {
5746		retval = EINVAL;
5747		goto out;
5748	}
5749
5750	if (qp->q_flag & QFULL) {
5751		retval = EAGAIN;
5752		goto out;
5753	}
5754
5755	/*
5756	 * Since M_PASSFP messages include a file descriptor, we use
5757	 * esballoc() and specify a custom free routine (free_passfp()) that
5758	 * will close the descriptor as part of freeing the message.  For
5759	 * convenience, we stash the frtn_t right after the data block.
5760	 */
5761	bufsize = sizeof (struct k_strrecvfd) + sizeof (frtn_t);
5762	srf = kmem_alloc(bufsize, KM_NOSLEEP);
5763	if (srf == NULL) {
5764		retval = EAGAIN;
5765		goto out;
5766	}
5767
5768	frtnp = (frtn_t *)(srf + 1);
5769	frtnp->free_arg = (caddr_t)srf;
5770	frtnp->free_func = free_passfp;
5771
5772	mp = esballoc((uchar_t *)srf, bufsize, BPRI_MED, frtnp);
5773	if (mp == NULL) {
5774		kmem_free(srf, bufsize);
5775		retval = EAGAIN;
5776		goto out;
5777	}
5778	mp->b_wptr += sizeof (struct k_strrecvfd);
5779	mp->b_datap->db_type = M_PASSFP;
5780
5781	srf->fp = fp;
5782	srf->uid = crgetuid(curthread->t_cred);
5783	srf->gid = crgetgid(curthread->t_cred);
5784	mutex_enter(&fp->f_tlock);
5785	fp->f_count++;
5786	mutex_exit(&fp->f_tlock);
5787
5788	put(qp, mp);
5789out:
5790	releasestr(stp->sd_wrq);
5791	if (mate)
5792		releasestr(mate);
5793	return (retval);
5794}
5795
5796/*
5797 * Send an ioctl message downstream and wait for acknowledgement.
5798 * flags may be set to either U_TO_K or K_TO_K and a combination
5799 * of STR_NOERROR or STR_NOSIG
5800 * STR_NOSIG: Signals are essentially ignored or held and have
5801 *	no effect for the duration of the call.
5802 * STR_NOERROR: Ignores stream head read, write and hup errors.
5803 *	Additionally, if an existing ioctl times out, it is assumed
5804 *	lost and and this ioctl will continue as if the previous ioctl had
5805 *	finished.  ETIME may be returned if this ioctl times out (i.e.
5806 *	ic_timout is not INFTIM).  Non-stream head errors may be returned if
5807 *	the ioc_error indicates that the driver/module had problems,
5808 *	an EFAULT was found when accessing user data, a lack of
5809 * 	resources, etc.
5810 */
5811int
5812strdoioctl(
5813	struct stdata *stp,
5814	struct strioctl *strioc,
5815	int fflags,		/* file flags with model info */
5816	int flag,
5817	cred_t *crp,
5818	int *rvalp)
5819{
5820	mblk_t *bp;
5821	struct iocblk *iocbp;
5822	struct copyreq *reqp;
5823	struct copyresp *resp;
5824	int id;
5825	int transparent = 0;
5826	int error = 0;
5827	int len = 0;
5828	caddr_t taddr;
5829	int copyflag = (flag & (U_TO_K | K_TO_K));
5830	int sigflag = (flag & STR_NOSIG);
5831	int errs;
5832	uint_t waitflags;
5833
5834	ASSERT(copyflag == U_TO_K || copyflag == K_TO_K);
5835	ASSERT((fflags & FMODELS) != 0);
5836
5837	TRACE_2(TR_FAC_STREAMS_FR,
5838		TR_STRDOIOCTL,
5839		"strdoioctl:stp %p strioc %p", stp, strioc);
5840	if (strioc->ic_len == TRANSPARENT) {	/* send arg in M_DATA block */
5841		transparent = 1;
5842		strioc->ic_len = sizeof (intptr_t);
5843	}
5844
5845	if (strioc->ic_len < 0 || (strmsgsz > 0 && strioc->ic_len > strmsgsz))
5846		return (EINVAL);
5847
5848	if ((bp = allocb_cred_wait(sizeof (union ioctypes), sigflag, &error,
5849	    crp)) == NULL)
5850			return (error);
5851
5852	bzero(bp->b_wptr, sizeof (union ioctypes));
5853
5854	iocbp = (struct iocblk *)bp->b_wptr;
5855	iocbp->ioc_count = strioc->ic_len;
5856	iocbp->ioc_cmd = strioc->ic_cmd;
5857	iocbp->ioc_flag = (fflags & FMODELS);
5858
5859	crhold(crp);
5860	iocbp->ioc_cr = crp;
5861	DB_TYPE(bp) = M_IOCTL;
5862	DB_CPID(bp) = curproc->p_pid;
5863	bp->b_wptr += sizeof (struct iocblk);
5864
5865	if (flag & STR_NOERROR)
5866		errs = STPLEX;
5867	else
5868		errs = STRHUP|STRDERR|STWRERR|STPLEX;
5869
5870	/*
5871	 * If there is data to copy into ioctl block, do so.
5872	 */
5873	if (iocbp->ioc_count > 0) {
5874		if (transparent)
5875			/*
5876			 * Note: STR_NOERROR does not have an effect
5877			 * in putiocd()
5878			 */
5879			id = K_TO_K | sigflag;
5880		else
5881			id = flag;
5882		if ((error = putiocd(bp, strioc->ic_dp, id, crp)) != 0) {
5883			freemsg(bp);
5884			crfree(crp);
5885			return (error);
5886		}
5887
5888		/*
5889		 * We could have slept copying in user pages.
5890		 * Recheck the stream head state (the other end
5891		 * of a pipe could have gone away).
5892		 */
5893		if (stp->sd_flag & errs) {
5894			mutex_enter(&stp->sd_lock);
5895			error = strgeterr(stp, errs, 0);
5896			mutex_exit(&stp->sd_lock);
5897			if (error != 0) {
5898				freemsg(bp);
5899				crfree(crp);
5900				return (error);
5901			}
5902		}
5903	}
5904	if (transparent)
5905		iocbp->ioc_count = TRANSPARENT;
5906
5907	/*
5908	 * Block for up to STRTIMOUT milliseconds if there is an outstanding
5909	 * ioctl for this stream already running.  All processes
5910	 * sleeping here will be awakened as a result of an ACK
5911	 * or NAK being received for the outstanding ioctl, or
5912	 * as a result of the timer expiring on the outstanding
5913	 * ioctl (a failure), or as a result of any waiting
5914	 * process's timer expiring (also a failure).
5915	 */
5916
5917	error = 0;
5918	mutex_enter(&stp->sd_lock);
5919	while (stp->sd_flag & (IOCWAIT | IOCWAITNE)) {
5920		clock_t cv_rval;
5921
5922		TRACE_0(TR_FAC_STREAMS_FR,
5923			TR_STRDOIOCTL_WAIT,
5924			"strdoioctl sleeps - IOCWAIT");
5925		cv_rval = str_cv_wait(&stp->sd_iocmonitor, &stp->sd_lock,
5926		    STRTIMOUT, sigflag);
5927		if (cv_rval <= 0) {
5928			if (cv_rval == 0) {
5929				error = EINTR;
5930			} else {
5931				if (flag & STR_NOERROR) {
5932					/*
5933					 * Terminating current ioctl in
5934					 * progress -- assume it got lost and
5935					 * wake up the other thread so that the
5936					 * operation completes.
5937					 */
5938					if (!(stp->sd_flag & IOCWAITNE)) {
5939						stp->sd_flag |= IOCWAITNE;
5940						cv_broadcast(&stp->sd_monitor);
5941					}
5942					/*
5943					 * Otherwise, there's a running
5944					 * STR_NOERROR -- we have no choice
5945					 * here but to wait forever (or until
5946					 * interrupted).
5947					 */
5948				} else {
5949					/*
5950					 * pending ioctl has caused
5951					 * us to time out
5952					 */
5953					error = ETIME;
5954				}
5955			}
5956		} else if ((stp->sd_flag & errs)) {
5957			error = strgeterr(stp, errs, 0);
5958		}
5959		if (error) {
5960			mutex_exit(&stp->sd_lock);
5961			freemsg(bp);
5962			crfree(crp);
5963			return (error);
5964		}
5965	}
5966
5967	/*
5968	 * Have control of ioctl mechanism.
5969	 * Send down ioctl packet and wait for response.
5970	 */
5971	if (stp->sd_iocblk != (mblk_t *)-1) {
5972		freemsg(stp->sd_iocblk);
5973	}
5974	stp->sd_iocblk = NULL;
5975
5976	/*
5977	 * If this is marked with 'noerror' (internal; mostly
5978	 * I_{P,}{UN,}LINK), then make sure nobody else is able to get
5979	 * in here by setting IOCWAITNE.
5980	 */
5981	waitflags = IOCWAIT;
5982	if (flag & STR_NOERROR)
5983		waitflags |= IOCWAITNE;
5984
5985	stp->sd_flag |= waitflags;
5986
5987	/*
5988	 * Assign sequence number.
5989	 */
5990	iocbp->ioc_id = stp->sd_iocid = getiocseqno();
5991
5992	mutex_exit(&stp->sd_lock);
5993
5994	TRACE_1(TR_FAC_STREAMS_FR,
5995		TR_STRDOIOCTL_PUT, "strdoioctl put: stp %p", stp);
5996	stream_willservice(stp);
5997	putnext(stp->sd_wrq, bp);
5998	stream_runservice(stp);
5999
6000	/*
6001	 * Timed wait for acknowledgment.  The wait time is limited by the
6002	 * timeout value, which must be a positive integer (number of
6003	 * milliseconds) to wait, or 0 (use default value of STRTIMOUT
6004	 * milliseconds), or -1 (wait forever).  This will be awakened
6005	 * either by an ACK/NAK message arriving, the timer expiring, or
6006	 * the timer expiring on another ioctl waiting for control of the
6007	 * mechanism.
6008	 */
6009waitioc:
6010	mutex_enter(&stp->sd_lock);
6011
6012
6013	/*
6014	 * If the reply has already arrived, don't sleep.  If awakened from
6015	 * the sleep, fail only if the reply has not arrived by then.
6016	 * Otherwise, process the reply.
6017	 */
6018	while (!stp->sd_iocblk) {
6019		clock_t cv_rval;
6020
6021		if (stp->sd_flag & errs) {
6022			error = strgeterr(stp, errs, 0);
6023			if (error != 0) {
6024				stp->sd_flag &= ~waitflags;
6025				cv_broadcast(&stp->sd_iocmonitor);
6026				mutex_exit(&stp->sd_lock);
6027				crfree(crp);
6028				return (error);
6029			}
6030		}
6031
6032		TRACE_0(TR_FAC_STREAMS_FR,
6033			TR_STRDOIOCTL_WAIT2,
6034			"strdoioctl sleeps awaiting reply");
6035		ASSERT(error == 0);
6036
6037		cv_rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock,
6038		    (strioc->ic_timout ?
6039		    strioc->ic_timout * 1000 : STRTIMOUT), sigflag);
6040
6041		/*
6042		 * There are four possible cases here: interrupt, timeout,
6043		 * wakeup by IOCWAITNE (above), or wakeup by strrput_nondata (a
6044		 * valid M_IOCTL reply).
6045		 *
6046		 * If we've been awakened by a STR_NOERROR ioctl on some other
6047		 * thread, then sd_iocblk will still be NULL, and IOCWAITNE
6048		 * will be set.  Pretend as if we just timed out.  Note that
6049		 * this other thread waited at least STRTIMOUT before trying to
6050		 * awaken our thread, so this is indistinguishable (even for
6051		 * INFTIM) from the case where we failed with ETIME waiting on
6052		 * IOCWAIT in the prior loop.
6053		 */
6054		if (cv_rval > 0 && !(flag & STR_NOERROR) &&
6055		    stp->sd_iocblk == NULL && (stp->sd_flag & IOCWAITNE)) {
6056			cv_rval = -1;
6057		}
6058
6059		/*
6060		 * note: STR_NOERROR does not protect
6061		 * us here.. use ic_timout < 0
6062		 */
6063		if (cv_rval <= 0) {
6064			if (cv_rval == 0) {
6065				error = EINTR;
6066			} else {
6067				error =  ETIME;
6068			}
6069			/*
6070			 * A message could have come in after we were scheduled
6071			 * but before we were actually run.
6072			 */
6073			bp = stp->sd_iocblk;
6074			stp->sd_iocblk = NULL;
6075			if (bp != NULL) {
6076				if ((bp->b_datap->db_type == M_COPYIN) ||
6077				    (bp->b_datap->db_type == M_COPYOUT)) {
6078					mutex_exit(&stp->sd_lock);
6079					if (bp->b_cont) {
6080						freemsg(bp->b_cont);
6081						bp->b_cont = NULL;
6082					}
6083					bp->b_datap->db_type = M_IOCDATA;
6084					bp->b_wptr = bp->b_rptr +
6085						sizeof (struct copyresp);
6086					resp = (struct copyresp *)bp->b_rptr;
6087					resp->cp_rval =
6088					    (caddr_t)1; /* failure */
6089					stream_willservice(stp);
6090					putnext(stp->sd_wrq, bp);
6091					stream_runservice(stp);
6092					mutex_enter(&stp->sd_lock);
6093				} else {
6094					freemsg(bp);
6095				}
6096			}
6097			stp->sd_flag &= ~waitflags;
6098			cv_broadcast(&stp->sd_iocmonitor);
6099			mutex_exit(&stp->sd_lock);
6100			crfree(crp);
6101			return (error);
6102		}
6103	}
6104	bp = stp->sd_iocblk;
6105	/*
6106	 * Note: it is strictly impossible to get here with sd_iocblk set to
6107	 * -1.  This is because the initial loop above doesn't allow any new
6108	 * ioctls into the fray until all others have passed this point.
6109	 */
6110	ASSERT(bp != NULL && bp != (mblk_t *)-1);
6111	TRACE_1(TR_FAC_STREAMS_FR,
6112		TR_STRDOIOCTL_ACK, "strdoioctl got reply: bp %p", bp);
6113	if ((bp->b_datap->db_type == M_IOCACK) ||
6114	    (bp->b_datap->db_type == M_IOCNAK)) {
6115		/* for detection of duplicate ioctl replies */
6116		stp->sd_iocblk = (mblk_t *)-1;
6117		stp->sd_flag &= ~waitflags;
6118		cv_broadcast(&stp->sd_iocmonitor);
6119		mutex_exit(&stp->sd_lock);
6120	} else {
6121		/*
6122		 * flags not cleared here because we're still doing
6123		 * copy in/out for ioctl.
6124		 */
6125		stp->sd_iocblk = NULL;
6126		mutex_exit(&stp->sd_lock);
6127	}
6128
6129
6130	/*
6131	 * Have received acknowledgment.
6132	 */
6133
6134	switch (bp->b_datap->db_type) {
6135	case M_IOCACK:
6136		/*
6137		 * Positive ack.
6138		 */
6139		iocbp = (struct iocblk *)bp->b_rptr;
6140
6141		/*
6142		 * Set error if indicated.
6143		 */
6144		if (iocbp->ioc_error) {
6145			error = iocbp->ioc_error;
6146			break;
6147		}
6148
6149		/*
6150		 * Set return value.
6151		 */
6152		*rvalp = iocbp->ioc_rval;
6153
6154		/*
6155		 * Data may have been returned in ACK message (ioc_count > 0).
6156		 * If so, copy it out to the user's buffer.
6157		 */
6158		if (iocbp->ioc_count && !transparent) {
6159			if (error = getiocd(bp, strioc->ic_dp, copyflag))
6160				break;
6161		}
6162		if (!transparent) {
6163			if (len)	/* an M_COPYOUT was used with I_STR */
6164				strioc->ic_len = len;
6165			else
6166				strioc->ic_len = (int)iocbp->ioc_count;
6167		}
6168		break;
6169
6170	case M_IOCNAK:
6171		/*
6172		 * Negative ack.
6173		 *
6174		 * The only thing to do is set error as specified
6175		 * in neg ack packet.
6176		 */
6177		iocbp = (struct iocblk *)bp->b_rptr;
6178
6179		error = (iocbp->ioc_error ? iocbp->ioc_error : EINVAL);
6180		break;
6181
6182	case M_COPYIN:
6183		/*
6184		 * Driver or module has requested user ioctl data.
6185		 */
6186		reqp = (struct copyreq *)bp->b_rptr;
6187
6188		/*
6189		 * M_COPYIN should *never* have a message attached, though
6190		 * it's harmless if it does -- thus, panic on a DEBUG
6191		 * kernel and just free it on a non-DEBUG build.
6192		 */
6193		ASSERT(bp->b_cont == NULL);
6194		if (bp->b_cont != NULL) {
6195			freemsg(bp->b_cont);
6196			bp->b_cont = NULL;
6197		}
6198
6199		error = putiocd(bp, reqp->cq_addr, flag, crp);
6200		if (error && bp->b_cont) {
6201			freemsg(bp->b_cont);
6202			bp->b_cont = NULL;
6203		}
6204
6205		bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
6206		bp->b_datap->db_type = M_IOCDATA;
6207
6208		mblk_setcred(bp, crp);
6209		DB_CPID(bp) = curproc->p_pid;
6210		resp = (struct copyresp *)bp->b_rptr;
6211		resp->cp_rval = (caddr_t)(uintptr_t)error;
6212		resp->cp_flag = (fflags & FMODELS);
6213
6214		stream_willservice(stp);
6215		putnext(stp->sd_wrq, bp);
6216		stream_runservice(stp);
6217
6218		if (error) {
6219			mutex_enter(&stp->sd_lock);
6220			stp->sd_flag &= ~waitflags;
6221			cv_broadcast(&stp->sd_iocmonitor);
6222			mutex_exit(&stp->sd_lock);
6223			crfree(crp);
6224			return (error);
6225		}
6226
6227		goto waitioc;
6228
6229	case M_COPYOUT:
6230		/*
6231		 * Driver or module has ioctl data for a user.
6232		 */
6233		reqp = (struct copyreq *)bp->b_rptr;
6234		ASSERT(bp->b_cont != NULL);
6235
6236		/*
6237		 * Always (transparent or non-transparent )
6238		 * use the address specified in the request
6239		 */
6240		taddr = reqp->cq_addr;
6241		if (!transparent)
6242			len = (int)reqp->cq_size;
6243
6244		/* copyout data to the provided address */
6245		error = getiocd(bp, taddr, copyflag);
6246
6247		freemsg(bp->b_cont);
6248		bp->b_cont = NULL;
6249
6250		bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
6251		bp->b_datap->db_type = M_IOCDATA;
6252
6253		mblk_setcred(bp, crp);
6254		DB_CPID(bp) = curproc->p_pid;
6255		resp = (struct copyresp *)bp->b_rptr;
6256		resp->cp_rval = (caddr_t)(uintptr_t)error;
6257		resp->cp_flag = (fflags & FMODELS);
6258
6259		stream_willservice(stp);
6260		putnext(stp->sd_wrq, bp);
6261		stream_runservice(stp);
6262
6263		if (error) {
6264			mutex_enter(&stp->sd_lock);
6265			stp->sd_flag &= ~waitflags;
6266			cv_broadcast(&stp->sd_iocmonitor);
6267			mutex_exit(&stp->sd_lock);
6268			crfree(crp);
6269			return (error);
6270		}
6271		goto waitioc;
6272
6273	default:
6274		ASSERT(0);
6275		mutex_enter(&stp->sd_lock);
6276		stp->sd_flag &= ~waitflags;
6277		cv_broadcast(&stp->sd_iocmonitor);
6278		mutex_exit(&stp->sd_lock);
6279		break;
6280	}
6281
6282	freemsg(bp);
6283	crfree(crp);
6284	return (error);
6285}
6286
6287/*
6288 * For the SunOS keyboard driver.
6289 * Return the next available "ioctl" sequence number.
6290 * Exported, so that streams modules can send "ioctl" messages
6291 * downstream from their open routine.
6292 */
6293int
6294getiocseqno(void)
6295{
6296	int	i;
6297
6298	mutex_enter(&strresources);
6299	i = ++ioc_id;
6300	mutex_exit(&strresources);
6301	return (i);
6302}
6303
6304/*
6305 * Get the next message from the read queue.  If the message is
6306 * priority, STRPRI will have been set by strrput().  This flag
6307 * should be reset only when the entire message at the front of the
6308 * queue as been consumed.
6309 *
6310 * NOTE: strgetmsg and kstrgetmsg have much of the logic in common.
6311 */
6312int
6313strgetmsg(
6314	struct vnode *vp,
6315	struct strbuf *mctl,
6316	struct strbuf *mdata,
6317	unsigned char *prip,
6318	int *flagsp,
6319	int fmode,
6320	rval_t *rvp)
6321{
6322	struct stdata *stp;
6323	mblk_t *bp, *nbp;
6324	mblk_t *savemp = NULL;
6325	mblk_t *savemptail = NULL;
6326	uint_t old_sd_flag;
6327	int flg;
6328	int more = 0;
6329	int error = 0;
6330	char first = 1;
6331	uint_t mark;		/* Contains MSG*MARK and _LASTMARK */
6332#define	_LASTMARK	0x8000	/* Distinct from MSG*MARK */
6333	unsigned char pri = 0;
6334	queue_t *q;
6335	int	pr = 0;			/* Partial read successful */
6336	struct uio uios;
6337	struct uio *uiop = &uios;
6338	struct iovec iovs;
6339	unsigned char type;
6340
6341	TRACE_1(TR_FAC_STREAMS_FR, TR_STRGETMSG_ENTER,
6342		"strgetmsg:%p", vp);
6343
6344	ASSERT(vp->v_stream);
6345	stp = vp->v_stream;
6346	rvp->r_val1 = 0;
6347
6348	mutex_enter(&stp->sd_lock);
6349
6350	if ((error = i_straccess(stp, JCREAD)) != 0) {
6351		mutex_exit(&stp->sd_lock);
6352		return (error);
6353	}
6354
6355	if (stp->sd_flag & (STRDERR|STPLEX)) {
6356		error = strgeterr(stp, STRDERR|STPLEX, 0);
6357		if (error != 0) {
6358			mutex_exit(&stp->sd_lock);
6359			return (error);
6360		}
6361	}
6362	mutex_exit(&stp->sd_lock);
6363
6364	switch (*flagsp) {
6365	case MSG_HIPRI:
6366		if (*prip != 0)
6367			return (EINVAL);
6368		break;
6369
6370	case MSG_ANY:
6371	case MSG_BAND:
6372		break;
6373
6374	default:
6375		return (EINVAL);
6376	}
6377	/*
6378	 * Setup uio and iov for data part
6379	 */
6380	iovs.iov_base = mdata->buf;
6381	iovs.iov_len = mdata->maxlen;
6382	uios.uio_iov = &iovs;
6383	uios.uio_iovcnt = 1;
6384	uios.uio_loffset = 0;
6385	uios.uio_segflg = UIO_USERSPACE;
6386	uios.uio_fmode = 0;
6387	uios.uio_extflg = UIO_COPY_CACHED;
6388	uios.uio_resid = mdata->maxlen;
6389	uios.uio_offset = 0;
6390
6391	q = _RD(stp->sd_wrq);
6392	mutex_enter(&stp->sd_lock);
6393	old_sd_flag = stp->sd_flag;
6394	mark = 0;
6395	for (;;) {
6396		int done = 0;
6397		mblk_t *q_first = q->q_first;
6398
6399		/*
6400		 * Get the next message of appropriate priority
6401		 * from the stream head.  If the caller is interested
6402		 * in band or hipri messages, then they should already
6403		 * be enqueued at the stream head.  On the other hand
6404		 * if the caller wants normal (band 0) messages, they
6405		 * might be deferred in a synchronous stream and they
6406		 * will need to be pulled up.
6407		 *
6408		 * After we have dequeued a message, we might find that
6409		 * it was a deferred M_SIG that was enqueued at the
6410		 * stream head.  It must now be posted as part of the
6411		 * read by calling strsignal_nolock().
6412		 *
6413		 * Also note that strrput does not enqueue an M_PCSIG,
6414		 * and there cannot be more than one hipri message,
6415		 * so there was no need to have the M_PCSIG case.
6416		 *
6417		 * At some time it might be nice to try and wrap the
6418		 * functionality of kstrgetmsg() and strgetmsg() into
6419		 * a common routine so to reduce the amount of replicated
6420		 * code (since they are extremely similar).
6421		 */
6422		if (!(*flagsp & (MSG_HIPRI|MSG_BAND))) {
6423			/* Asking for normal, band0 data */
6424			bp = strget(stp, q, uiop, first, &error);
6425			ASSERT(MUTEX_HELD(&stp->sd_lock));
6426			if (bp != NULL) {
6427				if (bp->b_datap->db_type == M_SIG) {
6428					strsignal_nolock(stp, *bp->b_rptr,
6429					    (int32_t)bp->b_band);
6430					continue;
6431				} else {
6432					break;
6433				}
6434			}
6435			if (error != 0) {
6436				goto getmout;
6437			}
6438
6439		/*
6440		 * We can't depend on the value of STRPRI here because
6441		 * the stream head may be in transit. Therefore, we
6442		 * must look at the type of the first message to
6443		 * determine if a high priority messages is waiting
6444		 */
6445		} else if ((*flagsp & MSG_HIPRI) && q_first != NULL &&
6446			    q_first->b_datap->db_type >= QPCTL &&
6447			    (bp = getq_noenab(q)) != NULL) {
6448			/* Asked for HIPRI and got one */
6449			ASSERT(bp->b_datap->db_type >= QPCTL);
6450			break;
6451		} else if ((*flagsp & MSG_BAND) && q_first != NULL &&
6452			    ((q_first->b_band >= *prip) ||
6453			    q_first->b_datap->db_type >= QPCTL) &&
6454			    (bp = getq_noenab(q)) != NULL) {
6455			/*
6456			 * Asked for at least band "prip" and got either at
6457			 * least that band or a hipri message.
6458			 */
6459			ASSERT(bp->b_band >= *prip ||
6460				bp->b_datap->db_type >= QPCTL);
6461			if (bp->b_datap->db_type == M_SIG) {
6462				strsignal_nolock(stp, *bp->b_rptr,
6463				    (int32_t)bp->b_band);
6464				continue;
6465			} else {
6466				break;
6467			}
6468		}
6469
6470		/* No data. Time to sleep? */
6471		qbackenable(q, 0);
6472
6473		/*
6474		 * If STRHUP or STREOF, return 0 length control and data.
6475		 * If resid is 0, then a read(fd,buf,0) was done. Do not
6476		 * sleep to satisfy this request because by default we have
6477		 * zero bytes to return.
6478		 */
6479		if ((stp->sd_flag & (STRHUP|STREOF)) || (mctl->maxlen == 0 &&
6480		    mdata->maxlen == 0)) {
6481			mctl->len = mdata->len = 0;
6482			*flagsp = 0;
6483			mutex_exit(&stp->sd_lock);
6484			return (0);
6485		}
6486		TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_WAIT,
6487			"strgetmsg calls strwaitq:%p, %p",
6488			vp, uiop);
6489		if (((error = strwaitq(stp, GETWAIT, (ssize_t)0, fmode, -1,
6490		    &done)) != 0) || done) {
6491			TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_DONE,
6492				"strgetmsg error or done:%p, %p",
6493				vp, uiop);
6494			mutex_exit(&stp->sd_lock);
6495			return (error);
6496		}
6497		TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_AWAKE,
6498			"strgetmsg awakes:%p, %p", vp, uiop);
6499		if ((error = i_straccess(stp, JCREAD)) != 0) {
6500			mutex_exit(&stp->sd_lock);
6501			return (error);
6502		}
6503		first = 0;
6504	}
6505	ASSERT(bp != NULL);
6506	/*
6507	 * Extract any mark information. If the message is not completely
6508	 * consumed this information will be put in the mblk
6509	 * that is putback.
6510	 * If MSGMARKNEXT is set and the message is completely consumed
6511	 * the STRATMARK flag will be set below. Likewise, if
6512	 * MSGNOTMARKNEXT is set and the message is
6513	 * completely consumed STRNOTATMARK will be set.
6514	 */
6515	mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT);
6516	ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
6517		(MSGMARKNEXT|MSGNOTMARKNEXT));
6518	if (mark != 0 && bp == stp->sd_mark) {
6519		mark |= _LASTMARK;
6520		stp->sd_mark = NULL;
6521	}
6522	/*
6523	 * keep track of the original message type and priority
6524	 */
6525	pri = bp->b_band;
6526	type = bp->b_datap->db_type;
6527	if (type == M_PASSFP) {
6528		if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
6529			stp->sd_mark = bp;
6530		bp->b_flag |= mark & ~_LASTMARK;
6531		putback(stp, q, bp, pri);
6532		qbackenable(q, pri);
6533		mutex_exit(&stp->sd_lock);
6534		return (EBADMSG);
6535	}
6536	ASSERT(type != M_SIG);
6537
6538	/*
6539	 * Set this flag so strrput will not generate signals. Need to
6540	 * make sure this flag is cleared before leaving this routine
6541	 * else signals will stop being sent.
6542	 */
6543	stp->sd_flag |= STRGETINPROG;
6544	mutex_exit(&stp->sd_lock);
6545
6546	if (STREAM_NEEDSERVICE(stp))
6547		stream_runservice(stp);
6548
6549	/*
6550	 * Set HIPRI flag if message is priority.
6551	 */
6552	if (type >= QPCTL)
6553		flg = MSG_HIPRI;
6554	else
6555		flg = MSG_BAND;
6556
6557	/*
6558	 * First process PROTO or PCPROTO blocks, if any.
6559	 */
6560	if (mctl->maxlen >= 0 && type != M_DATA) {
6561		size_t	n, bcnt;
6562		char	*ubuf;
6563
6564		bcnt = mctl->maxlen;
6565		ubuf = mctl->buf;
6566		while (bp != NULL && bp->b_datap->db_type != M_DATA) {
6567			if ((n = MIN(bcnt, bp->b_wptr - bp->b_rptr)) != 0 &&
6568			    copyout(bp->b_rptr, ubuf, n)) {
6569				error = EFAULT;
6570				mutex_enter(&stp->sd_lock);
6571				/*
6572				 * clear stream head pri flag based on
6573				 * first message type
6574				 */
6575				if (type >= QPCTL) {
6576					ASSERT(type == M_PCPROTO);
6577					stp->sd_flag &= ~STRPRI;
6578				}
6579				more = 0;
6580				freemsg(bp);
6581				goto getmout;
6582			}
6583			ubuf += n;
6584			bp->b_rptr += n;
6585			if (bp->b_rptr >= bp->b_wptr) {
6586				nbp = bp;
6587				bp = bp->b_cont;
6588				freeb(nbp);
6589			}
6590			ASSERT(n <= bcnt);
6591			bcnt -= n;
6592			if (bcnt == 0)
6593				break;
6594		}
6595		mctl->len = mctl->maxlen - bcnt;
6596	} else
6597		mctl->len = -1;
6598
6599	if (bp && bp->b_datap->db_type != M_DATA) {
6600		/*
6601		 * More PROTO blocks in msg.
6602		 */
6603		more |= MORECTL;
6604		savemp = bp;
6605		while (bp && bp->b_datap->db_type != M_DATA) {
6606			savemptail = bp;
6607			bp = bp->b_cont;
6608		}
6609		savemptail->b_cont = NULL;
6610	}
6611
6612	/*
6613	 * Now process DATA blocks, if any.
6614	 */
6615	if (mdata->maxlen >= 0 && bp) {
6616		/*
6617		 * struiocopyout will consume a potential zero-length
6618		 * M_DATA even if uio_resid is zero.
6619		 */
6620		size_t oldresid = uiop->uio_resid;
6621
6622		bp = struiocopyout(bp, uiop, &error);
6623		if (error != 0) {
6624			mutex_enter(&stp->sd_lock);
6625			/*
6626			 * clear stream head hi pri flag based on
6627			 * first message
6628			 */
6629			if (type >= QPCTL) {
6630				ASSERT(type == M_PCPROTO);
6631				stp->sd_flag &= ~STRPRI;
6632			}
6633			more = 0;
6634			freemsg(savemp);
6635			goto getmout;
6636		}
6637		/*
6638		 * (pr == 1) indicates a partial read.
6639		 */
6640		if (oldresid > uiop->uio_resid)
6641			pr = 1;
6642		mdata->len = mdata->maxlen - uiop->uio_resid;
6643	} else
6644		mdata->len = -1;
6645
6646	if (bp) {			/* more data blocks in msg */
6647		more |= MOREDATA;
6648		if (savemp)
6649			savemptail->b_cont = bp;
6650		else
6651			savemp = bp;
6652	}
6653
6654	mutex_enter(&stp->sd_lock);
6655	if (savemp) {
6656		if (pr && (savemp->b_datap->db_type == M_DATA) &&
6657		    msgnodata(savemp)) {
6658			/*
6659			 * Avoid queuing a zero-length tail part of
6660			 * a message. pr=1 indicates that we read some of
6661			 * the message.
6662			 */
6663			freemsg(savemp);
6664			more &= ~MOREDATA;
6665			/*
6666			 * clear stream head hi pri flag based on
6667			 * first message
6668			 */
6669			if (type >= QPCTL) {
6670				ASSERT(type == M_PCPROTO);
6671				stp->sd_flag &= ~STRPRI;
6672			}
6673		} else {
6674			savemp->b_band = pri;
6675			/*
6676			 * If the first message was HIPRI and the one we're
6677			 * putting back isn't, then clear STRPRI, otherwise
6678			 * set STRPRI again.  Note that we must set STRPRI
6679			 * again since the flush logic in strrput_nondata()
6680			 * may have cleared it while we had sd_lock dropped.
6681			 */
6682			if (type >= QPCTL) {
6683				ASSERT(type == M_PCPROTO);
6684				if (queclass(savemp) < QPCTL)
6685					stp->sd_flag &= ~STRPRI;
6686				else
6687					stp->sd_flag |= STRPRI;
6688			} else if (queclass(savemp) >= QPCTL) {
6689				/*
6690				 * The first message was not a HIPRI message,
6691				 * but the one we are about to putback is.
6692				 * For simplicitly, we do not allow for HIPRI
6693				 * messages to be embedded in the message
6694				 * body, so just force it to same type as
6695				 * first message.
6696				 */
6697				ASSERT(type == M_DATA || type == M_PROTO);
6698				ASSERT(savemp->b_datap->db_type == M_PCPROTO);
6699				savemp->b_datap->db_type = type;
6700			}
6701			if (mark != 0) {
6702				savemp->b_flag |= mark & ~_LASTMARK;
6703				if ((mark & _LASTMARK) &&
6704				    (stp->sd_mark == NULL)) {
6705					/*
6706					 * If another marked message arrived
6707					 * while sd_lock was not held sd_mark
6708					 * would be non-NULL.
6709					 */
6710					stp->sd_mark = savemp;
6711				}
6712			}
6713			putback(stp, q, savemp, pri);
6714		}
6715	} else {
6716		/*
6717		 * The complete message was consumed.
6718		 *
6719		 * If another M_PCPROTO arrived while sd_lock was not held
6720		 * it would have been discarded since STRPRI was still set.
6721		 *
6722		 * Move the MSG*MARKNEXT information
6723		 * to the stream head just in case
6724		 * the read queue becomes empty.
6725		 * clear stream head hi pri flag based on
6726		 * first message
6727		 *
6728		 * If the stream head was at the mark
6729		 * (STRATMARK) before we dropped sd_lock above
6730		 * and some data was consumed then we have
6731		 * moved past the mark thus STRATMARK is
6732		 * cleared. However, if a message arrived in
6733		 * strrput during the copyout above causing
6734		 * STRATMARK to be set we can not clear that
6735		 * flag.
6736		 */
6737		if (type >= QPCTL) {
6738			ASSERT(type == M_PCPROTO);
6739			stp->sd_flag &= ~STRPRI;
6740		}
6741		if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) {
6742			if (mark & MSGMARKNEXT) {
6743				stp->sd_flag &= ~STRNOTATMARK;
6744				stp->sd_flag |= STRATMARK;
6745			} else if (mark & MSGNOTMARKNEXT) {
6746				stp->sd_flag &= ~STRATMARK;
6747				stp->sd_flag |= STRNOTATMARK;
6748			} else {
6749				stp->sd_flag &= ~(STRATMARK|STRNOTATMARK);
6750			}
6751		} else if (pr && (old_sd_flag & STRATMARK)) {
6752			stp->sd_flag &= ~STRATMARK;
6753		}
6754	}
6755
6756	*flagsp = flg;
6757	*prip = pri;
6758
6759	/*
6760	 * Getmsg cleanup processing - if the state of the queue has changed
6761	 * some signals may need to be sent and/or poll awakened.
6762	 */
6763getmout:
6764	qbackenable(q, pri);
6765
6766	/*
6767	 * We dropped the stream head lock above. Send all M_SIG messages
6768	 * before processing stream head for SIGPOLL messages.
6769	 */
6770	ASSERT(MUTEX_HELD(&stp->sd_lock));
6771	while ((bp = q->q_first) != NULL &&
6772	    (bp->b_datap->db_type == M_SIG)) {
6773		/*
6774		 * sd_lock is held so the content of the read queue can not
6775		 * change.
6776		 */
6777		bp = getq(q);
6778		ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG);
6779
6780		strsignal_nolock(stp, *bp->b_rptr, (int32_t)bp->b_band);
6781		mutex_exit(&stp->sd_lock);
6782		freemsg(bp);
6783		if (STREAM_NEEDSERVICE(stp))
6784			stream_runservice(stp);
6785		mutex_enter(&stp->sd_lock);
6786	}
6787
6788	/*
6789	 * stream head cannot change while we make the determination
6790	 * whether or not to send a signal. Drop the flag to allow strrput
6791	 * to send firstmsgsigs again.
6792	 */
6793	stp->sd_flag &= ~STRGETINPROG;
6794
6795	/*
6796	 * If the type of message at the front of the queue changed
6797	 * due to the receive the appropriate signals and pollwakeup events
6798	 * are generated. The type of changes are:
6799	 *	Processed a hipri message, q_first is not hipri.
6800	 *	Processed a band X message, and q_first is band Y.
6801	 * The generated signals and pollwakeups are identical to what
6802	 * strrput() generates should the message that is now on q_first
6803	 * arrive to an empty read queue.
6804	 *
6805	 * Note: only strrput will send a signal for a hipri message.
6806	 */
6807	if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) {
6808		strsigset_t signals = 0;
6809		strpollset_t pollwakeups = 0;
6810
6811		if (flg & MSG_HIPRI) {
6812			/*
6813			 * Removed a hipri message. Regular data at
6814			 * the front of  the queue.
6815			 */
6816			if (bp->b_band == 0) {
6817				signals = S_INPUT | S_RDNORM;
6818				pollwakeups = POLLIN | POLLRDNORM;
6819			} else {
6820				signals = S_INPUT | S_RDBAND;
6821				pollwakeups = POLLIN | POLLRDBAND;
6822			}
6823		} else if (pri != bp->b_band) {
6824			/*
6825			 * The band is different for the new q_first.
6826			 */
6827			if (bp->b_band == 0) {
6828				signals = S_RDNORM;
6829				pollwakeups = POLLIN | POLLRDNORM;
6830			} else {
6831				signals = S_RDBAND;
6832				pollwakeups = POLLIN | POLLRDBAND;
6833			}
6834		}
6835
6836		if (pollwakeups != 0) {
6837			if (pollwakeups == (POLLIN | POLLRDNORM)) {
6838				if (!(stp->sd_rput_opt & SR_POLLIN))
6839					goto no_pollwake;
6840				stp->sd_rput_opt &= ~SR_POLLIN;
6841			}
6842			mutex_exit(&stp->sd_lock);
6843			pollwakeup(&stp->sd_pollist, pollwakeups);
6844			mutex_enter(&stp->sd_lock);
6845		}
6846no_pollwake:
6847
6848		if (stp->sd_sigflags & signals)
6849			strsendsig(stp->sd_siglist, signals, bp->b_band, 0);
6850	}
6851	mutex_exit(&stp->sd_lock);
6852
6853	rvp->r_val1 = more;
6854	return (error);
6855#undef	_LASTMARK
6856}
6857
6858/*
6859 * Get the next message from the read queue.  If the message is
6860 * priority, STRPRI will have been set by strrput().  This flag
6861 * should be reset only when the entire message at the front of the
6862 * queue as been consumed.
6863 *
6864 * If uiop is NULL all data is returned in mctlp.
6865 * Note that a NULL uiop implies that FNDELAY and FNONBLOCK are assumed
6866 * not enabled.
6867 * The timeout parameter is in milliseconds; -1 for infinity.
6868 * This routine handles the consolidation private flags:
6869 *	MSG_IGNERROR	Ignore any stream head error except STPLEX.
6870 *	MSG_DELAYERROR	Defer the error check until the queue is empty.
6871 *	MSG_HOLDSIG	Hold signals while waiting for data.
6872 *	MSG_IPEEK	Only peek at messages.
6873 *	MSG_DISCARDTAIL	Discard the tail M_DATA part of the message
6874 *			that doesn't fit.
6875 *	MSG_NOMARK	If the message is marked leave it on the queue.
6876 *
6877 * NOTE: strgetmsg and kstrgetmsg have much of the logic in common.
6878 */
6879int
6880kstrgetmsg(
6881	struct vnode *vp,
6882	mblk_t **mctlp,
6883	struct uio *uiop,
6884	unsigned char *prip,
6885	int *flagsp,
6886	clock_t timout,
6887	rval_t *rvp)
6888{
6889	struct stdata *stp;
6890	mblk_t *bp, *nbp;
6891	mblk_t *savemp = NULL;
6892	mblk_t *savemptail = NULL;
6893	int flags;
6894	uint_t old_sd_flag;
6895	int flg;
6896	int more = 0;
6897	int error = 0;
6898	char first = 1;
6899	uint_t mark;		/* Contains MSG*MARK and _LASTMARK */
6900#define	_LASTMARK	0x8000	/* Distinct from MSG*MARK */
6901	unsigned char pri = 0;
6902	queue_t *q;
6903	int	pr = 0;			/* Partial read successful */
6904	unsigned char type;
6905
6906	TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_ENTER,
6907		"kstrgetmsg:%p", vp);
6908
6909	ASSERT(vp->v_stream);
6910	stp = vp->v_stream;
6911	rvp->r_val1 = 0;
6912
6913	mutex_enter(&stp->sd_lock);
6914
6915	if ((error = i_straccess(stp, JCREAD)) != 0) {
6916		mutex_exit(&stp->sd_lock);
6917		return (error);
6918	}
6919
6920	flags = *flagsp;
6921	if (stp->sd_flag & (STRDERR|STPLEX)) {
6922		if ((stp->sd_flag & STPLEX) ||
6923		    (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == 0) {
6924			error = strgeterr(stp, STRDERR|STPLEX,
6925					(flags & MSG_IPEEK));
6926			if (error != 0) {
6927				mutex_exit(&stp->sd_lock);
6928				return (error);
6929			}
6930		}
6931	}
6932	mutex_exit(&stp->sd_lock);
6933
6934	switch (flags & (MSG_HIPRI|MSG_ANY|MSG_BAND)) {
6935	case MSG_HIPRI:
6936		if (*prip != 0)
6937			return (EINVAL);
6938		break;
6939
6940	case MSG_ANY:
6941	case MSG_BAND:
6942		break;
6943
6944	default:
6945		return (EINVAL);
6946	}
6947
6948retry:
6949	q = _RD(stp->sd_wrq);
6950	mutex_enter(&stp->sd_lock);
6951	old_sd_flag = stp->sd_flag;
6952	mark = 0;
6953	for (;;) {
6954		int done = 0;
6955		int waitflag;
6956		int fmode;
6957		mblk_t *q_first = q->q_first;
6958
6959		/*
6960		 * This section of the code operates just like the code
6961		 * in strgetmsg().  There is a comment there about what
6962		 * is going on here.
6963		 */
6964		if (!(flags & (MSG_HIPRI|MSG_BAND))) {
6965			/* Asking for normal, band0 data */
6966			bp = strget(stp, q, uiop, first, &error);
6967			ASSERT(MUTEX_HELD(&stp->sd_lock));
6968			if (bp != NULL) {
6969				if (bp->b_datap->db_type == M_SIG) {
6970					strsignal_nolock(stp, *bp->b_rptr,
6971					    (int32_t)bp->b_band);
6972					continue;
6973				} else {
6974					break;
6975				}
6976			}
6977			if (error != 0) {
6978				goto getmout;
6979			}
6980		/*
6981		 * We can't depend on the value of STRPRI here because
6982		 * the stream head may be in transit. Therefore, we
6983		 * must look at the type of the first message to
6984		 * determine if a high priority messages is waiting
6985		 */
6986		} else if ((flags & MSG_HIPRI) && q_first != NULL &&
6987			    q_first->b_datap->db_type >= QPCTL &&
6988			    (bp = getq_noenab(q)) != NULL) {
6989			ASSERT(bp->b_datap->db_type >= QPCTL);
6990			break;
6991		} else if ((flags & MSG_BAND) && q_first != NULL &&
6992			    ((q_first->b_band >= *prip) ||
6993			    q_first->b_datap->db_type >= QPCTL) &&
6994			    (bp = getq_noenab(q)) != NULL) {
6995			/*
6996			 * Asked for at least band "prip" and got either at
6997			 * least that band or a hipri message.
6998			 */
6999			ASSERT(bp->b_band >= *prip ||
7000				bp->b_datap->db_type >= QPCTL);
7001			if (bp->b_datap->db_type == M_SIG) {
7002				strsignal_nolock(stp, *bp->b_rptr,
7003				    (int32_t)bp->b_band);
7004				continue;
7005			} else {
7006				break;
7007			}
7008		}
7009
7010		/* No data. Time to sleep? */
7011		qbackenable(q, 0);
7012
7013		/*
7014		 * Delayed error notification?
7015		 */
7016		if ((stp->sd_flag & (STRDERR|STPLEX)) &&
7017		    (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == MSG_DELAYERROR) {
7018			error = strgeterr(stp, STRDERR|STPLEX,
7019					(flags & MSG_IPEEK));
7020			if (error != 0) {
7021				mutex_exit(&stp->sd_lock);
7022				return (error);
7023			}
7024		}
7025
7026		/*
7027		 * If STRHUP or STREOF, return 0 length control and data.
7028		 * If a read(fd,buf,0) has been done, do not sleep, just
7029		 * return.
7030		 *
7031		 * If mctlp == NULL and uiop == NULL, then the code will
7032		 * do the strwaitq. This is an understood way of saying
7033		 * sleep "polling" until a message is received.
7034		 */
7035		if ((stp->sd_flag & (STRHUP|STREOF)) ||
7036		    (uiop != NULL && uiop->uio_resid == 0)) {
7037			if (mctlp != NULL)
7038				*mctlp = NULL;
7039			*flagsp = 0;
7040			mutex_exit(&stp->sd_lock);
7041			return (0);
7042		}
7043
7044		waitflag = GETWAIT;
7045		if (flags &
7046		    (MSG_HOLDSIG|MSG_IGNERROR|MSG_IPEEK|MSG_DELAYERROR)) {
7047			if (flags & MSG_HOLDSIG)
7048				waitflag |= STR_NOSIG;
7049			if (flags & MSG_IGNERROR)
7050				waitflag |= STR_NOERROR;
7051			if (flags & MSG_IPEEK)
7052				waitflag |= STR_PEEK;
7053			if (flags & MSG_DELAYERROR)
7054				waitflag |= STR_DELAYERR;
7055		}
7056		if (uiop != NULL)
7057			fmode = uiop->uio_fmode;
7058		else
7059			fmode = 0;
7060
7061		TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_WAIT,
7062			"kstrgetmsg calls strwaitq:%p, %p",
7063			vp, uiop);
7064		if (((error = strwaitq(stp, waitflag, (ssize_t)0,
7065		    fmode, timout, &done)) != 0) || done) {
7066			TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_DONE,
7067				"kstrgetmsg error or done:%p, %p",
7068				vp, uiop);
7069			mutex_exit(&stp->sd_lock);
7070			return (error);
7071		}
7072		TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_AWAKE,
7073			"kstrgetmsg awakes:%p, %p", vp, uiop);
7074		if ((error = i_straccess(stp, JCREAD)) != 0) {
7075			mutex_exit(&stp->sd_lock);
7076			return (error);
7077		}
7078		first = 0;
7079	}
7080	ASSERT(bp != NULL);
7081	/*
7082	 * Extract any mark information. If the message is not completely
7083	 * consumed this information will be put in the mblk
7084	 * that is putback.
7085	 * If MSGMARKNEXT is set and the message is completely consumed
7086	 * the STRATMARK flag will be set below. Likewise, if
7087	 * MSGNOTMARKNEXT is set and the message is
7088	 * completely consumed STRNOTATMARK will be set.
7089	 */
7090	mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT);
7091	ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
7092		(MSGMARKNEXT|MSGNOTMARKNEXT));
7093	pri = bp->b_band;
7094	if (mark != 0) {
7095		/*
7096		 * If the caller doesn't want the mark return.
7097		 * Used to implement MSG_WAITALL in sockets.
7098		 */
7099		if (flags & MSG_NOMARK) {
7100			putback(stp, q, bp, pri);
7101			qbackenable(q, pri);
7102			mutex_exit(&stp->sd_lock);
7103			return (EWOULDBLOCK);
7104		}
7105		if (bp == stp->sd_mark) {
7106			mark |= _LASTMARK;
7107			stp->sd_mark = NULL;
7108		}
7109	}
7110
7111	/*
7112	 * keep track of the first message type
7113	 */
7114	type = bp->b_datap->db_type;
7115
7116	if (bp->b_datap->db_type == M_PASSFP) {
7117		if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
7118			stp->sd_mark = bp;
7119		bp->b_flag |= mark & ~_LASTMARK;
7120		putback(stp, q, bp, pri);
7121		qbackenable(q, pri);
7122		mutex_exit(&stp->sd_lock);
7123		return (EBADMSG);
7124	}
7125	ASSERT(type != M_SIG);
7126
7127	if (flags & MSG_IPEEK) {
7128		/*
7129		 * Clear any struioflag - we do the uiomove over again
7130		 * when peeking since it simplifies the code.
7131		 *
7132		 * Dup the message and put the original back on the queue.
7133		 * If dupmsg() fails, try again with copymsg() to see if
7134		 * there is indeed a shortage of memory.  dupmsg() may fail
7135		 * if db_ref in any of the messages reaches its limit.
7136		 */
7137		if ((nbp = dupmsg(bp)) == NULL && (nbp = copymsg(bp)) == NULL) {
7138			/*
7139			 * Restore the state of the stream head since we
7140			 * need to drop sd_lock (strwaitbuf is sleeping).
7141			 */
7142			size_t size = msgdsize(bp);
7143
7144			if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
7145				stp->sd_mark = bp;
7146			bp->b_flag |= mark & ~_LASTMARK;
7147			putback(stp, q, bp, pri);
7148			mutex_exit(&stp->sd_lock);
7149			error = strwaitbuf(size, BPRI_HI);
7150			if (error) {
7151				/*
7152				 * There is no net change to the queue thus
7153				 * no need to qbackenable.
7154				 */
7155				return (error);
7156			}
7157			goto retry;
7158		}
7159
7160		if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
7161			stp->sd_mark = bp;
7162		bp->b_flag |= mark & ~_LASTMARK;
7163		putback(stp, q, bp, pri);
7164		bp = nbp;
7165	}
7166
7167	/*
7168	 * Set this flag so strrput will not generate signals. Need to
7169	 * make sure this flag is cleared before leaving this routine
7170	 * else signals will stop being sent.
7171	 */
7172	stp->sd_flag |= STRGETINPROG;
7173	mutex_exit(&stp->sd_lock);
7174
7175	if ((stp->sd_rputdatafunc != NULL) && (DB_TYPE(bp) == M_DATA) &&
7176	    (!(DB_FLAGS(bp) & DBLK_COOKED))) {
7177
7178		bp = (stp->sd_rputdatafunc)(
7179		    stp->sd_vnode, bp, NULL,
7180		    NULL, NULL, NULL);
7181
7182		if (bp == NULL)
7183			goto retry;
7184
7185		DB_FLAGS(bp) |= DBLK_COOKED;
7186	}
7187
7188	if (STREAM_NEEDSERVICE(stp))
7189		stream_runservice(stp);
7190
7191	/*
7192	 * Set HIPRI flag if message is priority.
7193	 */
7194	if (type >= QPCTL)
7195		flg = MSG_HIPRI;
7196	else
7197		flg = MSG_BAND;
7198
7199	/*
7200	 * First process PROTO or PCPROTO blocks, if any.
7201	 */
7202	if (mctlp != NULL && type != M_DATA) {
7203		mblk_t *nbp;
7204
7205		*mctlp = bp;
7206		while (bp->b_cont && bp->b_cont->b_datap->db_type != M_DATA)
7207			bp = bp->b_cont;
7208		nbp = bp->b_cont;
7209		bp->b_cont = NULL;
7210		bp = nbp;
7211	}
7212
7213	if (bp && bp->b_datap->db_type != M_DATA) {
7214		/*
7215		 * More PROTO blocks in msg. Will only happen if mctlp is NULL.
7216		 */
7217		more |= MORECTL;
7218		savemp = bp;
7219		while (bp && bp->b_datap->db_type != M_DATA) {
7220			savemptail = bp;
7221			bp = bp->b_cont;
7222		}
7223		savemptail->b_cont = NULL;
7224	}
7225
7226	/*
7227	 * Now process DATA blocks, if any.
7228	 */
7229	if (uiop == NULL) {
7230		/* Append data to tail of mctlp */
7231		if (mctlp != NULL) {
7232			mblk_t **mpp = mctlp;
7233
7234			while (*mpp != NULL)
7235				mpp = &((*mpp)->b_cont);
7236			*mpp = bp;
7237			bp = NULL;
7238		}
7239	} else if (uiop->uio_resid >= 0 && bp) {
7240		size_t oldresid = uiop->uio_resid;
7241
7242		/*
7243		 * If a streams message is likely to consist
7244		 * of many small mblks, it is pulled up into
7245		 * one continuous chunk of memory.
7246		 * see longer comment at top of page
7247		 * by mblk_pull_len declaration.
7248		 */
7249
7250		if (MBLKL(bp) < mblk_pull_len) {
7251			(void) pullupmsg(bp, -1);
7252		}
7253
7254		bp = struiocopyout(bp, uiop, &error);
7255		if (error != 0) {
7256			if (mctlp != NULL) {
7257				freemsg(*mctlp);
7258				*mctlp = NULL;
7259			} else
7260				freemsg(savemp);
7261			mutex_enter(&stp->sd_lock);
7262			/*
7263			 * clear stream head hi pri flag based on
7264			 * first message
7265			 */
7266			if (!(flags & MSG_IPEEK) && (type >= QPCTL)) {
7267				ASSERT(type == M_PCPROTO);
7268				stp->sd_flag &= ~STRPRI;
7269			}
7270			more = 0;
7271			goto getmout;
7272		}
7273		/*
7274		 * (pr == 1) indicates a partial read.
7275		 */
7276		if (oldresid > uiop->uio_resid)
7277			pr = 1;
7278	}
7279
7280	if (bp) {			/* more data blocks in msg */
7281		more |= MOREDATA;
7282		if (savemp)
7283			savemptail->b_cont = bp;
7284		else
7285			savemp = bp;
7286	}
7287
7288	mutex_enter(&stp->sd_lock);
7289	if (savemp) {
7290		if (flags & (MSG_IPEEK|MSG_DISCARDTAIL)) {
7291			/*
7292			 * When MSG_DISCARDTAIL is set or
7293			 * when peeking discard any tail. When peeking this
7294			 * is the tail of the dup that was copied out - the
7295			 * message has already been putback on the queue.
7296			 * Return MOREDATA to the caller even though the data
7297			 * is discarded. This is used by sockets (to
7298			 * set MSG_TRUNC).
7299			 */
7300			freemsg(savemp);
7301			if (!(flags & MSG_IPEEK) && (type >= QPCTL)) {
7302				ASSERT(type == M_PCPROTO);
7303				stp->sd_flag &= ~STRPRI;
7304			}
7305		} else if (pr && (savemp->b_datap->db_type == M_DATA) &&
7306			    msgnodata(savemp)) {
7307			/*
7308			 * Avoid queuing a zero-length tail part of
7309			 * a message. pr=1 indicates that we read some of
7310			 * the message.
7311			 */
7312			freemsg(savemp);
7313			more &= ~MOREDATA;
7314			if (type >= QPCTL) {
7315				ASSERT(type == M_PCPROTO);
7316				stp->sd_flag &= ~STRPRI;
7317			}
7318		} else {
7319			savemp->b_band = pri;
7320			/*
7321			 * If the first message was HIPRI and the one we're
7322			 * putting back isn't, then clear STRPRI, otherwise
7323			 * set STRPRI again.  Note that we must set STRPRI
7324			 * again since the flush logic in strrput_nondata()
7325			 * may have cleared it while we had sd_lock dropped.
7326			 */
7327			if (type >= QPCTL) {
7328				ASSERT(type == M_PCPROTO);
7329				if (queclass(savemp) < QPCTL)
7330					stp->sd_flag &= ~STRPRI;
7331				else
7332					stp->sd_flag |= STRPRI;
7333			} else if (queclass(savemp) >= QPCTL) {
7334				/*
7335				 * The first message was not a HIPRI message,
7336				 * but the one we are about to putback is.
7337				 * For simplicitly, we do not allow for HIPRI
7338				 * messages to be embedded in the message
7339				 * body, so just force it to same type as
7340				 * first message.
7341				 */
7342				ASSERT(type == M_DATA || type == M_PROTO);
7343				ASSERT(savemp->b_datap->db_type == M_PCPROTO);
7344				savemp->b_datap->db_type = type;
7345			}
7346			if (mark != 0) {
7347				if ((mark & _LASTMARK) &&
7348				    (stp->sd_mark == NULL)) {
7349					/*
7350					 * If another marked message arrived
7351					 * while sd_lock was not held sd_mark
7352					 * would be non-NULL.
7353					 */
7354					stp->sd_mark = savemp;
7355				}
7356				savemp->b_flag |= mark & ~_LASTMARK;
7357			}
7358			putback(stp, q, savemp, pri);
7359		}
7360	} else if (!(flags & MSG_IPEEK)) {
7361		/*
7362		 * The complete message was consumed.
7363		 *
7364		 * If another M_PCPROTO arrived while sd_lock was not held
7365		 * it would have been discarded since STRPRI was still set.
7366		 *
7367		 * Move the MSG*MARKNEXT information
7368		 * to the stream head just in case
7369		 * the read queue becomes empty.
7370		 * clear stream head hi pri flag based on
7371		 * first message
7372		 *
7373		 * If the stream head was at the mark
7374		 * (STRATMARK) before we dropped sd_lock above
7375		 * and some data was consumed then we have
7376		 * moved past the mark thus STRATMARK is
7377		 * cleared. However, if a message arrived in
7378		 * strrput during the copyout above causing
7379		 * STRATMARK to be set we can not clear that
7380		 * flag.
7381		 * XXX A "perimeter" would help by single-threading strrput,
7382		 * strread, strgetmsg and kstrgetmsg.
7383		 */
7384		if (type >= QPCTL) {
7385			ASSERT(type == M_PCPROTO);
7386			stp->sd_flag &= ~STRPRI;
7387		}
7388		if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) {
7389			if (mark & MSGMARKNEXT) {
7390				stp->sd_flag &= ~STRNOTATMARK;
7391				stp->sd_flag |= STRATMARK;
7392			} else if (mark & MSGNOTMARKNEXT) {
7393				stp->sd_flag &= ~STRATMARK;
7394				stp->sd_flag |= STRNOTATMARK;
7395			} else {
7396				stp->sd_flag &= ~(STRATMARK|STRNOTATMARK);
7397			}
7398		} else if (pr && (old_sd_flag & STRATMARK)) {
7399			stp->sd_flag &= ~STRATMARK;
7400		}
7401	}
7402
7403	*flagsp = flg;
7404	*prip = pri;
7405
7406	/*
7407	 * Getmsg cleanup processing - if the state of the queue has changed
7408	 * some signals may need to be sent and/or poll awakened.
7409	 */
7410getmout:
7411	qbackenable(q, pri);
7412
7413	/*
7414	 * We dropped the stream head lock above. Send all M_SIG messages
7415	 * before processing stream head for SIGPOLL messages.
7416	 */
7417	ASSERT(MUTEX_HELD(&stp->sd_lock));
7418	while ((bp = q->q_first) != NULL &&
7419	    (bp->b_datap->db_type == M_SIG)) {
7420		/*
7421		 * sd_lock is held so the content of the read queue can not
7422		 * change.
7423		 */
7424		bp = getq(q);
7425		ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG);
7426
7427		strsignal_nolock(stp, *bp->b_rptr, (int32_t)bp->b_band);
7428		mutex_exit(&stp->sd_lock);
7429		freemsg(bp);
7430		if (STREAM_NEEDSERVICE(stp))
7431			stream_runservice(stp);
7432		mutex_enter(&stp->sd_lock);
7433	}
7434
7435	/*
7436	 * stream head cannot change while we make the determination
7437	 * whether or not to send a signal. Drop the flag to allow strrput
7438	 * to send firstmsgsigs again.
7439	 */
7440	stp->sd_flag &= ~STRGETINPROG;
7441
7442	/*
7443	 * If the type of message at the front of the queue changed
7444	 * due to the receive the appropriate signals and pollwakeup events
7445	 * are generated. The type of changes are:
7446	 *	Processed a hipri message, q_first is not hipri.
7447	 *	Processed a band X message, and q_first is band Y.
7448	 * The generated signals and pollwakeups are identical to what
7449	 * strrput() generates should the message that is now on q_first
7450	 * arrive to an empty read queue.
7451	 *
7452	 * Note: only strrput will send a signal for a hipri message.
7453	 */
7454	if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) {
7455		strsigset_t signals = 0;
7456		strpollset_t pollwakeups = 0;
7457
7458		if (flg & MSG_HIPRI) {
7459			/*
7460			 * Removed a hipri message. Regular data at
7461			 * the front of  the queue.
7462			 */
7463			if (bp->b_band == 0) {
7464				signals = S_INPUT | S_RDNORM;
7465				pollwakeups = POLLIN | POLLRDNORM;
7466			} else {
7467				signals = S_INPUT | S_RDBAND;
7468				pollwakeups = POLLIN | POLLRDBAND;
7469			}
7470		} else if (pri != bp->b_band) {
7471			/*
7472			 * The band is different for the new q_first.
7473			 */
7474			if (bp->b_band == 0) {
7475				signals = S_RDNORM;
7476				pollwakeups = POLLIN | POLLRDNORM;
7477			} else {
7478				signals = S_RDBAND;
7479				pollwakeups = POLLIN | POLLRDBAND;
7480			}
7481		}
7482
7483		if (pollwakeups != 0) {
7484			if (pollwakeups == (POLLIN | POLLRDNORM)) {
7485				if (!(stp->sd_rput_opt & SR_POLLIN))
7486					goto no_pollwake;
7487				stp->sd_rput_opt &= ~SR_POLLIN;
7488			}
7489			mutex_exit(&stp->sd_lock);
7490			pollwakeup(&stp->sd_pollist, pollwakeups);
7491			mutex_enter(&stp->sd_lock);
7492		}
7493no_pollwake:
7494
7495		if (stp->sd_sigflags & signals)
7496			strsendsig(stp->sd_siglist, signals, bp->b_band, 0);
7497	}
7498	mutex_exit(&stp->sd_lock);
7499
7500	rvp->r_val1 = more;
7501	return (error);
7502#undef	_LASTMARK
7503}
7504
7505/*
7506 * Put a message downstream.
7507 *
7508 * NOTE: strputmsg and kstrputmsg have much of the logic in common.
7509 */
7510int
7511strputmsg(
7512	struct vnode *vp,
7513	struct strbuf *mctl,
7514	struct strbuf *mdata,
7515	unsigned char pri,
7516	int flag,
7517	int fmode)
7518{
7519	struct stdata *stp;
7520	queue_t *wqp;
7521	mblk_t *mp;
7522	ssize_t msgsize;
7523	ssize_t rmin, rmax;
7524	int error;
7525	struct uio uios;
7526	struct uio *uiop = &uios;
7527	struct iovec iovs;
7528	int xpg4 = 0;
7529
7530	ASSERT(vp->v_stream);
7531	stp = vp->v_stream;
7532	wqp = stp->sd_wrq;
7533
7534	/*
7535	 * If it is an XPG4 application, we need to send
7536	 * SIGPIPE below
7537	 */
7538
7539	xpg4 = (flag & MSG_XPG4) ? 1 : 0;
7540	flag &= ~MSG_XPG4;
7541
7542#ifdef C2_AUDIT
7543	if (audit_active)
7544		audit_strputmsg(vp, mctl, mdata, pri, flag, fmode);
7545#endif
7546
7547	mutex_enter(&stp->sd_lock);
7548
7549	if ((error = i_straccess(stp, JCWRITE)) != 0) {
7550		mutex_exit(&stp->sd_lock);
7551		return (error);
7552	}
7553
7554	if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
7555		error = strwriteable(stp, B_FALSE, xpg4);
7556		if (error != 0) {
7557			mutex_exit(&stp->sd_lock);
7558			return (error);
7559		}
7560	}
7561
7562	mutex_exit(&stp->sd_lock);
7563
7564	/*
7565	 * Check for legal flag value.
7566	 */
7567	switch (flag) {
7568	case MSG_HIPRI:
7569		if ((mctl->len < 0) || (pri != 0))
7570			return (EINVAL);
7571		break;
7572	case MSG_BAND:
7573		break;
7574
7575	default:
7576		return (EINVAL);
7577	}
7578
7579	TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_IN,
7580		"strputmsg in:stp %p", stp);
7581
7582	/* get these values from those cached in the stream head */
7583	rmin = stp->sd_qn_minpsz;
7584	rmax = stp->sd_qn_maxpsz;
7585
7586	/*
7587	 * Make sure ctl and data sizes together fall within the
7588	 * limits of the max and min receive packet sizes and do
7589	 * not exceed system limit.
7590	 */
7591	ASSERT((rmax >= 0) || (rmax == INFPSZ));
7592	if (rmax == 0) {
7593		return (ERANGE);
7594	}
7595	/*
7596	 * Use the MAXIMUM of sd_maxblk and q_maxpsz.
7597	 * Needed to prevent partial failures in the strmakedata loop.
7598	 */
7599	if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk)
7600		rmax = stp->sd_maxblk;
7601
7602	if ((msgsize = mdata->len) < 0) {
7603		msgsize = 0;
7604		rmin = 0;	/* no range check for NULL data part */
7605	}
7606	if ((msgsize < rmin) ||
7607	    ((msgsize > rmax) && (rmax != INFPSZ)) ||
7608	    (mctl->len > strctlsz)) {
7609		return (ERANGE);
7610	}
7611
7612	/*
7613	 * Setup uio and iov for data part
7614	 */
7615	iovs.iov_base = mdata->buf;
7616	iovs.iov_len = msgsize;
7617	uios.uio_iov = &iovs;
7618	uios.uio_iovcnt = 1;
7619	uios.uio_loffset = 0;
7620	uios.uio_segflg = UIO_USERSPACE;
7621	uios.uio_fmode = fmode;
7622	uios.uio_extflg = UIO_COPY_DEFAULT;
7623	uios.uio_resid = msgsize;
7624	uios.uio_offset = 0;
7625
7626	/* Ignore flow control in strput for HIPRI */
7627	if (flag & MSG_HIPRI)
7628		flag |= MSG_IGNFLOW;
7629
7630	for (;;) {
7631		int done = 0;
7632
7633		/*
7634		 * strput will always free the ctl mblk - even when strput
7635		 * fails.
7636		 */
7637		if ((error = strmakectl(mctl, flag, fmode, &mp)) != 0) {
7638			TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT,
7639				"strputmsg out:stp %p out %d error %d",
7640				stp, 1, error);
7641			return (error);
7642		}
7643		/*
7644		 * Verify that the whole message can be transferred by
7645		 * strput.
7646		 */
7647		ASSERT(stp->sd_maxblk == INFPSZ ||
7648			stp->sd_maxblk >= mdata->len);
7649
7650		msgsize = mdata->len;
7651		error = strput(stp, mp, uiop, &msgsize, 0, pri, flag);
7652		mdata->len = msgsize;
7653
7654		if (error == 0)
7655			break;
7656
7657		if (error != EWOULDBLOCK)
7658			goto out;
7659
7660		mutex_enter(&stp->sd_lock);
7661		/*
7662		 * Check for a missed wakeup.
7663		 * Needed since strput did not hold sd_lock across
7664		 * the canputnext.
7665		 */
7666		if (bcanputnext(wqp, pri)) {
7667			/* Try again */
7668			mutex_exit(&stp->sd_lock);
7669			continue;
7670		}
7671		TRACE_2(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAIT,
7672			"strputmsg wait:stp %p waits pri %d", stp, pri);
7673		if (((error = strwaitq(stp, WRITEWAIT, (ssize_t)0, fmode, -1,
7674		    &done)) != 0) || done) {
7675			mutex_exit(&stp->sd_lock);
7676			TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT,
7677				"strputmsg out:q %p out %d error %d",
7678				stp, 0, error);
7679			return (error);
7680		}
7681		TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAKE,
7682			"strputmsg wake:stp %p wakes", stp);
7683		if ((error = i_straccess(stp, JCWRITE)) != 0) {
7684			mutex_exit(&stp->sd_lock);
7685			return (error);
7686		}
7687		mutex_exit(&stp->sd_lock);
7688	}
7689out:
7690	/*
7691	 * For historic reasons, applications expect EAGAIN
7692	 * when data mblk could not be allocated. so change
7693	 * ENOMEM back to EAGAIN
7694	 */
7695	if (error == ENOMEM)
7696		error = EAGAIN;
7697	TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT,
7698		"strputmsg out:stp %p out %d error %d", stp, 2, error);
7699	return (error);
7700}
7701
7702/*
7703 * Put a message downstream.
7704 * Can send only an M_PROTO/M_PCPROTO by passing in a NULL uiop.
7705 * The fmode flag (NDELAY, NONBLOCK) is the or of the flags in the uio
7706 * and the fmode parameter.
7707 *
7708 * This routine handles the consolidation private flags:
7709 *	MSG_IGNERROR	Ignore any stream head error except STPLEX.
7710 *	MSG_HOLDSIG	Hold signals while waiting for data.
7711 *	MSG_IGNFLOW	Don't check streams flow control.
7712 *
7713 * NOTE: strputmsg and kstrputmsg have much of the logic in common.
7714 */
7715int
7716kstrputmsg(
7717	struct vnode *vp,
7718	mblk_t *mctl,
7719	struct uio *uiop,
7720	ssize_t msgsize,
7721	unsigned char pri,
7722	int flag,
7723	int fmode)
7724{
7725	struct stdata *stp;
7726	queue_t *wqp;
7727	ssize_t rmin, rmax;
7728	int error;
7729
7730	ASSERT(vp->v_stream);
7731	stp = vp->v_stream;
7732	wqp = stp->sd_wrq;
7733#ifdef C2_AUDIT
7734	if (audit_active)
7735		audit_strputmsg(vp, NULL, NULL, pri, flag, fmode);
7736#endif
7737	if (mctl == NULL)
7738		return (EINVAL);
7739
7740	mutex_enter(&stp->sd_lock);
7741
7742	if ((error = i_straccess(stp, JCWRITE)) != 0) {
7743		mutex_exit(&stp->sd_lock);
7744		freemsg(mctl);
7745		return (error);
7746	}
7747
7748	if ((stp->sd_flag & STPLEX) || !(flag & MSG_IGNERROR)) {
7749		if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
7750			error = strwriteable(stp, B_FALSE, B_TRUE);
7751			if (error != 0) {
7752				mutex_exit(&stp->sd_lock);
7753				freemsg(mctl);
7754				return (error);
7755			}
7756		}
7757	}
7758
7759	mutex_exit(&stp->sd_lock);
7760
7761	/*
7762	 * Check for legal flag value.
7763	 */
7764	switch (flag & (MSG_HIPRI|MSG_BAND|MSG_ANY)) {
7765	case MSG_HIPRI:
7766		if (pri != 0) {
7767			freemsg(mctl);
7768			return (EINVAL);
7769		}
7770		break;
7771	case MSG_BAND:
7772		break;
7773	default:
7774		freemsg(mctl);
7775		return (EINVAL);
7776	}
7777
7778	TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_IN,
7779		"kstrputmsg in:stp %p", stp);
7780
7781	/* get these values from those cached in the stream head */
7782	rmin = stp->sd_qn_minpsz;
7783	rmax = stp->sd_qn_maxpsz;
7784
7785	/*
7786	 * Make sure ctl and data sizes together fall within the
7787	 * limits of the max and min receive packet sizes and do
7788	 * not exceed system limit.
7789	 */
7790	ASSERT((rmax >= 0) || (rmax == INFPSZ));
7791	if (rmax == 0) {
7792		freemsg(mctl);
7793		return (ERANGE);
7794	}
7795	/*
7796	 * Use the MAXIMUM of sd_maxblk and q_maxpsz.
7797	 * Needed to prevent partial failures in the strmakedata loop.
7798	 */
7799	if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk)
7800		rmax = stp->sd_maxblk;
7801
7802	if (uiop == NULL) {
7803		msgsize = -1;
7804		rmin = -1;	/* no range check for NULL data part */
7805	} else {
7806		/* Use uio flags as well as the fmode parameter flags */
7807		fmode |= uiop->uio_fmode;
7808
7809		if ((msgsize < rmin) ||
7810		    ((msgsize > rmax) && (rmax != INFPSZ))) {
7811			freemsg(mctl);
7812			return (ERANGE);
7813		}
7814	}
7815
7816	/* Ignore flow control in strput for HIPRI */
7817	if (flag & MSG_HIPRI)
7818		flag |= MSG_IGNFLOW;
7819
7820	for (;;) {
7821		int done = 0;
7822		int waitflag;
7823		mblk_t *mp;
7824
7825		/*
7826		 * strput will always free the ctl mblk - even when strput
7827		 * fails. If MSG_IGNFLOW is set then any error returned
7828		 * will cause us to break the loop, so we don't need a copy
7829		 * of the message. If MSG_IGNFLOW is not set, then we can
7830		 * get hit by flow control and be forced to try again. In
7831		 * this case we need to have a copy of the message. We
7832		 * do this using copymsg since the message may get modified
7833		 * by something below us.
7834		 *
7835		 * We've observed that many TPI providers do not check db_ref
7836		 * on the control messages but blindly reuse them for the
7837		 * T_OK_ACK/T_ERROR_ACK. Thus using copymsg is more
7838		 * friendly to such providers than using dupmsg. Also, note
7839		 * that sockfs uses MSG_IGNFLOW for all TPI control messages.
7840		 * Only data messages are subject to flow control, hence
7841		 * subject to this copymsg.
7842		 */
7843		if (flag & MSG_IGNFLOW) {
7844			mp = mctl;
7845			mctl = NULL;
7846		} else {
7847			do {
7848				/*
7849				 * If a message has a free pointer, the message
7850				 * must be dupmsg to maintain this pointer.
7851				 * Code using this facility must be sure
7852				 * that modules below will not change the
7853				 * contents of the dblk without checking db_ref
7854				 * first. If db_ref is > 1, then the module
7855				 * needs to do a copymsg first. Otherwise,
7856				 * the contents of the dblk may become
7857				 * inconsistent because the freesmg/freeb below
7858				 * may end up calling atomic_add_32_nv.
7859				 * The atomic_add_32_nv in freeb (accessing
7860				 * all of db_ref, db_type, db_flags, and
7861				 * db_struioflag) does not prevent other threads
7862				 * from concurrently trying to modify e.g.
7863				 * db_type.
7864				 */
7865				if (mctl->b_datap->db_frtnp != NULL)
7866					mp = dupmsg(mctl);
7867				else
7868					mp = copymsg(mctl);
7869
7870				if (mp != NULL)
7871					break;
7872
7873				error = strwaitbuf(msgdsize(mctl), BPRI_MED);
7874				if (error) {
7875					freemsg(mctl);
7876					return (error);
7877				}
7878			} while (mp == NULL);
7879		}
7880		/*
7881		 * Verify that all of msgsize can be transferred by
7882		 * strput.
7883		 */
7884		ASSERT(stp->sd_maxblk == INFPSZ || stp->sd_maxblk >= msgsize);
7885		error = strput(stp, mp, uiop, &msgsize, 0, pri, flag);
7886		if (error == 0)
7887			break;
7888
7889		if (error != EWOULDBLOCK)
7890			goto out;
7891
7892		/*
7893		 * IF MSG_IGNFLOW is set we should have broken out of loop
7894		 * above.
7895		 */
7896		ASSERT(!(flag & MSG_IGNFLOW));
7897		mutex_enter(&stp->sd_lock);
7898		/*
7899		 * Check for a missed wakeup.
7900		 * Needed since strput did not hold sd_lock across
7901		 * the canputnext.
7902		 */
7903		if (bcanputnext(wqp, pri)) {
7904			/* Try again */
7905			mutex_exit(&stp->sd_lock);
7906			continue;
7907		}
7908		TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAIT,
7909			"kstrputmsg wait:stp %p waits pri %d", stp, pri);
7910
7911		waitflag = WRITEWAIT;
7912		if (flag & (MSG_HOLDSIG|MSG_IGNERROR)) {
7913			if (flag & MSG_HOLDSIG)
7914				waitflag |= STR_NOSIG;
7915			if (flag & MSG_IGNERROR)
7916				waitflag |= STR_NOERROR;
7917		}
7918		if (((error = strwaitq(stp, waitflag,
7919		    (ssize_t)0, fmode, -1, &done)) != 0) || done) {
7920			mutex_exit(&stp->sd_lock);
7921			TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT,
7922				"kstrputmsg out:stp %p out %d error %d",
7923				stp, 0, error);
7924			freemsg(mctl);
7925			return (error);
7926		}
7927		TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAKE,
7928			"kstrputmsg wake:stp %p wakes", stp);
7929		if ((error = i_straccess(stp, JCWRITE)) != 0) {
7930			mutex_exit(&stp->sd_lock);
7931			freemsg(mctl);
7932			return (error);
7933		}
7934		mutex_exit(&stp->sd_lock);
7935	}
7936out:
7937	freemsg(mctl);
7938	/*
7939	 * For historic reasons, applications expect EAGAIN
7940	 * when data mblk could not be allocated. so change
7941	 * ENOMEM back to EAGAIN
7942	 */
7943	if (error == ENOMEM)
7944		error = EAGAIN;
7945	TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT,
7946		"kstrputmsg out:stp %p out %d error %d", stp, 2, error);
7947	return (error);
7948}
7949
7950/*
7951 * Determines whether the necessary conditions are set on a stream
7952 * for it to be readable, writeable, or have exceptions.
7953 *
7954 * strpoll handles the consolidation private events:
7955 *	POLLNOERR	Do not return POLLERR even if there are stream
7956 *			head errors.
7957 *			Used by sockfs.
7958 *	POLLRDDATA	Do not return POLLIN unless at least one message on
7959 *			the queue contains one or more M_DATA mblks. Thus
7960 *			when this flag is set a queue with only
7961 *			M_PROTO/M_PCPROTO mblks does not return POLLIN.
7962 *			Used by sockfs to ignore T_EXDATA_IND messages.
7963 *
7964 * Note: POLLRDDATA assumes that synch streams only return messages with
7965 * an M_DATA attached (i.e. not messages consisting of only
7966 * an M_PROTO/M_PCPROTO part).
7967 */
7968int
7969strpoll(
7970	struct stdata *stp,
7971	short events_arg,
7972	int anyyet,
7973	short *reventsp,
7974	struct pollhead **phpp)
7975{
7976	int events = (ushort_t)events_arg;
7977	int retevents = 0;
7978	mblk_t *mp;
7979	qband_t *qbp;
7980	long sd_flags = stp->sd_flag;
7981	int headlocked = 0;
7982
7983	/*
7984	 * For performance, a single 'if' tests for most possible edge
7985	 * conditions in one shot
7986	 */
7987	if (sd_flags & (STPLEX | STRDERR | STWRERR)) {
7988		if (sd_flags & STPLEX) {
7989			*reventsp = POLLNVAL;
7990			return (EINVAL);
7991		}
7992		if (((events & (POLLIN | POLLRDNORM | POLLRDBAND | POLLPRI)) &&
7993		    (sd_flags & STRDERR)) ||
7994		    ((events & (POLLOUT | POLLWRNORM | POLLWRBAND)) &&
7995		    (sd_flags & STWRERR))) {
7996			if (!(events & POLLNOERR)) {
7997				*reventsp = POLLERR;
7998				return (0);
7999			}
8000		}
8001	}
8002	if (sd_flags & STRHUP) {
8003		retevents |= POLLHUP;
8004	} else if (events & (POLLWRNORM | POLLWRBAND)) {
8005		queue_t *tq;
8006		queue_t	*qp = stp->sd_wrq;
8007
8008		claimstr(qp);
8009		/* Find next module forward that has a service procedure */
8010		tq = qp->q_next->q_nfsrv;
8011		ASSERT(tq != NULL);
8012
8013		polllock(&stp->sd_pollist, QLOCK(tq));
8014		if (events & POLLWRNORM) {
8015			queue_t *sqp;
8016
8017			if (tq->q_flag & QFULL)
8018				/* ensure backq svc procedure runs */
8019				tq->q_flag |= QWANTW;
8020			else if ((sqp = stp->sd_struiowrq) != NULL) {
8021				/* Check sync stream barrier write q */
8022				mutex_exit(QLOCK(tq));
8023				polllock(&stp->sd_pollist, QLOCK(sqp));
8024				if (sqp->q_flag & QFULL)
8025					/* ensure pollwakeup() is done */
8026					sqp->q_flag |= QWANTWSYNC;
8027				else
8028					retevents |= POLLOUT;
8029				/* More write events to process ??? */
8030				if (! (events & POLLWRBAND)) {
8031					mutex_exit(QLOCK(sqp));
8032					releasestr(qp);
8033					goto chkrd;
8034				}
8035				mutex_exit(QLOCK(sqp));
8036				polllock(&stp->sd_pollist, QLOCK(tq));
8037			} else
8038				retevents |= POLLOUT;
8039		}
8040		if (events & POLLWRBAND) {
8041			qbp = tq->q_bandp;
8042			if (qbp) {
8043				while (qbp) {
8044					if (qbp->qb_flag & QB_FULL)
8045						qbp->qb_flag |= QB_WANTW;
8046					else
8047						retevents |= POLLWRBAND;
8048					qbp = qbp->qb_next;
8049				}
8050			} else {
8051				retevents |= POLLWRBAND;
8052			}
8053		}
8054		mutex_exit(QLOCK(tq));
8055		releasestr(qp);
8056	}
8057chkrd:
8058	if (sd_flags & STRPRI) {
8059		retevents |= (events & POLLPRI);
8060	} else if (events & (POLLRDNORM | POLLRDBAND | POLLIN)) {
8061		queue_t	*qp = _RD(stp->sd_wrq);
8062		int normevents = (events & (POLLIN | POLLRDNORM));
8063
8064		/*
8065		 * Note: Need to do polllock() here since ps_lock may be
8066		 * held. See bug 4191544.
8067		 */
8068		polllock(&stp->sd_pollist, &stp->sd_lock);
8069		headlocked = 1;
8070		mp = qp->q_first;
8071		while (mp) {
8072			/*
8073			 * For POLLRDDATA we scan b_cont and b_next until we
8074			 * find an M_DATA.
8075			 */
8076			if ((events & POLLRDDATA) &&
8077			    mp->b_datap->db_type != M_DATA) {
8078				mblk_t *nmp = mp->b_cont;
8079
8080				while (nmp != NULL &&
8081				    nmp->b_datap->db_type != M_DATA)
8082					nmp = nmp->b_cont;
8083				if (nmp == NULL) {
8084					mp = mp->b_next;
8085					continue;
8086				}
8087			}
8088			if (mp->b_band == 0)
8089				retevents |= normevents;
8090			else
8091				retevents |= (events & (POLLIN | POLLRDBAND));
8092			break;
8093		}
8094		if (! (retevents & normevents) &&
8095		    (stp->sd_wakeq & RSLEEP)) {
8096			/*
8097			 * Sync stream barrier read queue has data.
8098			 */
8099			retevents |= normevents;
8100		}
8101		/* Treat eof as normal data */
8102		if (sd_flags & STREOF)
8103			retevents |= normevents;
8104	}
8105
8106	*reventsp = (short)retevents;
8107	if (retevents) {
8108		if (headlocked)
8109			mutex_exit(&stp->sd_lock);
8110		return (0);
8111	}
8112
8113	/*
8114	 * If poll() has not found any events yet, set up event cell
8115	 * to wake up the poll if a requested event occurs on this
8116	 * stream.  Check for collisions with outstanding poll requests.
8117	 */
8118	if (!anyyet) {
8119		*phpp = &stp->sd_pollist;
8120		if (headlocked == 0) {
8121			polllock(&stp->sd_pollist, &stp->sd_lock);
8122			headlocked = 1;
8123		}
8124		stp->sd_rput_opt |= SR_POLLIN;
8125	}
8126	if (headlocked)
8127		mutex_exit(&stp->sd_lock);
8128	return (0);
8129}
8130
8131/*
8132 * The purpose of putback() is to assure sleeping polls/reads
8133 * are awakened when there are no new messages arriving at the,
8134 * stream head, and a message is placed back on the read queue.
8135 *
8136 * sd_lock must be held when messages are placed back on stream
8137 * head.  (getq() holds sd_lock when it removes messages from
8138 * the queue)
8139 */
8140
8141static void
8142putback(struct stdata *stp, queue_t *q, mblk_t *bp, int band)
8143{
8144	ASSERT(MUTEX_HELD(&stp->sd_lock));
8145	(void) putbq(q, bp);
8146	/*
8147	 * A message may have come in when the sd_lock was dropped in the
8148	 * calling routine. If this is the case and STR*ATMARK info was
8149	 * received, need to move that from the stream head to the q_last
8150	 * so that SIOCATMARK can return the proper value.
8151	 */
8152	if (stp->sd_flag & (STRATMARK | STRNOTATMARK)) {
8153		unsigned short *flagp = &q->q_last->b_flag;
8154		uint_t b_flag = (uint_t)*flagp;
8155
8156		if (stp->sd_flag & STRATMARK) {
8157			b_flag &= ~MSGNOTMARKNEXT;
8158			b_flag |= MSGMARKNEXT;
8159			stp->sd_flag &= ~STRATMARK;
8160		} else {
8161			b_flag &= ~MSGMARKNEXT;
8162			b_flag |= MSGNOTMARKNEXT;
8163			stp->sd_flag &= ~STRNOTATMARK;
8164		}
8165		*flagp = (unsigned short) b_flag;
8166	}
8167
8168#ifdef	DEBUG
8169	/*
8170	 * Make sure that the flags are not messed up.
8171	 */
8172	{
8173		mblk_t *mp;
8174		mp = q->q_last;
8175		while (mp != NULL) {
8176			ASSERT((mp->b_flag & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
8177			    (MSGMARKNEXT|MSGNOTMARKNEXT));
8178			mp = mp->b_cont;
8179		}
8180	}
8181#endif
8182	if (q->q_first == bp) {
8183		short pollevents;
8184
8185		if (stp->sd_flag & RSLEEP) {
8186			stp->sd_flag &= ~RSLEEP;
8187			cv_broadcast(&q->q_wait);
8188		}
8189		if (stp->sd_flag & STRPRI) {
8190			pollevents = POLLPRI;
8191		} else {
8192			if (band == 0) {
8193				if (!(stp->sd_rput_opt & SR_POLLIN))
8194					return;
8195				stp->sd_rput_opt &= ~SR_POLLIN;
8196				pollevents = POLLIN | POLLRDNORM;
8197			} else {
8198				pollevents = POLLIN | POLLRDBAND;
8199			}
8200		}
8201		mutex_exit(&stp->sd_lock);
8202		pollwakeup(&stp->sd_pollist, pollevents);
8203		mutex_enter(&stp->sd_lock);
8204	}
8205}
8206
8207/*
8208 * Return the held vnode attached to the stream head of a
8209 * given queue
8210 * It is the responsibility of the calling routine to ensure
8211 * that the queue does not go away (e.g. pop).
8212 */
8213vnode_t *
8214strq2vp(queue_t *qp)
8215{
8216	vnode_t *vp;
8217	vp = STREAM(qp)->sd_vnode;
8218	ASSERT(vp != NULL);
8219	VN_HOLD(vp);
8220	return (vp);
8221}
8222
8223/*
8224 * return the stream head write queue for the given vp
8225 * It is the responsibility of the calling routine to ensure
8226 * that the stream or vnode do not close.
8227 */
8228queue_t *
8229strvp2wq(vnode_t *vp)
8230{
8231	ASSERT(vp->v_stream != NULL);
8232	return (vp->v_stream->sd_wrq);
8233}
8234
8235/*
8236 * pollwakeup stream head
8237 * It is the responsibility of the calling routine to ensure
8238 * that the stream or vnode do not close.
8239 */
8240void
8241strpollwakeup(vnode_t *vp, short event)
8242{
8243	ASSERT(vp->v_stream);
8244	pollwakeup(&vp->v_stream->sd_pollist, event);
8245}
8246
8247/*
8248 * Mate the stream heads of two vnodes together. If the two vnodes are the
8249 * same, we just make the write-side point at the read-side -- otherwise,
8250 * we do a full mate.  Only works on vnodes associated with streams that are
8251 * still being built and thus have only a stream head.
8252 */
8253void
8254strmate(vnode_t *vp1, vnode_t *vp2)
8255{
8256	queue_t *wrq1 = strvp2wq(vp1);
8257	queue_t *wrq2 = strvp2wq(vp2);
8258
8259	/*
8260	 * Verify that there are no modules on the stream yet.  We also
8261	 * rely on the stream head always having a service procedure to
8262	 * avoid tweaking q_nfsrv.
8263	 */
8264	ASSERT(wrq1->q_next == NULL && wrq2->q_next == NULL);
8265	ASSERT(wrq1->q_qinfo->qi_srvp != NULL);
8266	ASSERT(wrq2->q_qinfo->qi_srvp != NULL);
8267
8268	/*
8269	 * If the queues are the same, just twist; otherwise do a full mate.
8270	 */
8271	if (wrq1 == wrq2) {
8272		wrq1->q_next = _RD(wrq1);
8273	} else {
8274		wrq1->q_next = _RD(wrq2);
8275		wrq2->q_next = _RD(wrq1);
8276		STREAM(wrq1)->sd_mate = STREAM(wrq2);
8277		STREAM(wrq1)->sd_flag |= STRMATE;
8278		STREAM(wrq2)->sd_mate = STREAM(wrq1);
8279		STREAM(wrq2)->sd_flag |= STRMATE;
8280	}
8281}
8282
8283/*
8284 * XXX will go away when console is correctly fixed.
8285 * Clean up the console PIDS, from previous I_SETSIG,
8286 * called only for cnopen which never calls strclean().
8287 */
8288void
8289str_cn_clean(struct vnode *vp)
8290{
8291	strsig_t *ssp, *pssp, *tssp;
8292	struct stdata *stp;
8293	struct pid  *pidp;
8294	int update = 0;
8295
8296	ASSERT(vp->v_stream);
8297	stp = vp->v_stream;
8298	pssp = NULL;
8299	mutex_enter(&stp->sd_lock);
8300	ssp = stp->sd_siglist;
8301	while (ssp) {
8302		mutex_enter(&pidlock);
8303		pidp = ssp->ss_pidp;
8304		/*
8305		 * Get rid of PID if the proc is gone.
8306		 */
8307		if (pidp->pid_prinactive) {
8308			tssp = ssp->ss_next;
8309			if (pssp)
8310				pssp->ss_next = tssp;
8311			else
8312				stp->sd_siglist = tssp;
8313			ASSERT(pidp->pid_ref <= 1);
8314			PID_RELE(ssp->ss_pidp);
8315			mutex_exit(&pidlock);
8316			kmem_free(ssp, sizeof (strsig_t));
8317			update = 1;
8318			ssp = tssp;
8319			continue;
8320		} else
8321			mutex_exit(&pidlock);
8322		pssp = ssp;
8323		ssp = ssp->ss_next;
8324	}
8325	if (update) {
8326		stp->sd_sigflags = 0;
8327		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
8328			stp->sd_sigflags |= ssp->ss_events;
8329	}
8330	mutex_exit(&stp->sd_lock);
8331}
8332
8333/*
8334 * Return B_TRUE if there is data in the message, B_FALSE otherwise.
8335 */
8336static boolean_t
8337msghasdata(mblk_t *bp)
8338{
8339	for (; bp; bp = bp->b_cont)
8340		if (bp->b_datap->db_type == M_DATA) {
8341			ASSERT(bp->b_wptr >= bp->b_rptr);
8342			if (bp->b_wptr > bp->b_rptr)
8343				return (B_TRUE);
8344		}
8345	return (B_FALSE);
8346}
8347