modctl.c revision 4321:a8930ec16e52
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27#pragma ident	"%Z%%M%	%I%	%E% SMI"
28
29/*
30 * modctl system call for loadable module support.
31 */
32
33#include <sys/param.h>
34#include <sys/user.h>
35#include <sys/systm.h>
36#include <sys/exec.h>
37#include <sys/file.h>
38#include <sys/stat.h>
39#include <sys/conf.h>
40#include <sys/time.h>
41#include <sys/reboot.h>
42#include <sys/fs/ufs_fsdir.h>
43#include <sys/kmem.h>
44#include <sys/sysconf.h>
45#include <sys/cmn_err.h>
46#include <sys/ddi.h>
47#include <sys/sunddi.h>
48#include <sys/sunndi.h>
49#include <sys/ndi_impldefs.h>
50#include <sys/ddi_impldefs.h>
51#include <sys/ddi_implfuncs.h>
52#include <sys/bootconf.h>
53#include <sys/dc_ki.h>
54#include <sys/cladm.h>
55#include <sys/dtrace.h>
56#include <sys/kdi.h>
57
58#include <sys/devpolicy.h>
59#include <sys/modctl.h>
60#include <sys/kobj.h>
61#include <sys/devops.h>
62#include <sys/autoconf.h>
63#include <sys/hwconf.h>
64#include <sys/callb.h>
65#include <sys/debug.h>
66#include <sys/cpuvar.h>
67#include <sys/sysmacros.h>
68#include <sys/sysevent.h>
69#include <sys/sysevent_impl.h>
70#include <sys/instance.h>
71#include <sys/modhash.h>
72#include <sys/modhash_impl.h>
73#include <sys/dacf_impl.h>
74#include <sys/vfs.h>
75#include <sys/pathname.h>
76#include <sys/console.h>
77#include <sys/policy.h>
78#include <ipp/ipp_impl.h>
79#include <sys/fs/dv_node.h>
80#include <sys/strsubr.h>
81#include <sys/fs/sdev_node.h>
82
83static int		mod_circdep(struct modctl *);
84static int		modinfo(modid_t, struct modinfo *);
85
86static void		mod_uninstall_all(void);
87static int		mod_getinfo(struct modctl *, struct modinfo *);
88static struct modctl	*allocate_modp(const char *, const char *);
89
90static int		mod_load(struct modctl *, int);
91static void		mod_unload(struct modctl *);
92static int		modinstall(struct modctl *);
93static int		moduninstall(struct modctl *);
94
95static struct modctl	*mod_hold_by_name_common(struct modctl *, const char *);
96static struct modctl	*mod_hold_next_by_id(modid_t);
97static struct modctl	*mod_hold_loaded_mod(struct modctl *, char *, int *);
98static struct modctl	*mod_hold_installed_mod(char *, int, int *);
99
100static void		mod_release(struct modctl *);
101static void		mod_make_requisite(struct modctl *, struct modctl *);
102static int		mod_install_requisites(struct modctl *);
103static void		check_esc_sequences(char *, char *);
104static struct modctl	*mod_hold_by_name_requisite(struct modctl *, char *);
105
106/*
107 * module loading thread control structure. Calls to kobj_load_module()() are
108 * handled off to a separate thead using this structure.
109 */
110struct loadmt {
111	ksema_t		sema;
112	struct modctl	*mp;
113	int		usepath;
114	kthread_t	*owner;
115	int		retval;
116};
117
118static void	modload_thread(struct loadmt *);
119
120kcondvar_t	mod_cv;
121kcondvar_t	mod_uninstall_cv;	/* Communication between swapper */
122					/* and the uninstall daemon. */
123kmutex_t	mod_lock;		/* protects &modules insert linkage, */
124					/* mod_busy, mod_want, and mod_ref. */
125					/* blocking operations while holding */
126					/* mod_lock should be avoided */
127kmutex_t	mod_uninstall_lock;	/* protects mod_uninstall_cv */
128kthread_id_t	mod_aul_thread;
129
130int		modunload_wait;
131kmutex_t	modunload_wait_mutex;
132kcondvar_t	modunload_wait_cv;
133int		modunload_active_count;
134int		modunload_disable_count;
135
136int	isminiroot;		/* set if running as miniroot */
137int	modrootloaded;		/* set after root driver and fs are loaded */
138int	moddebug = 0x0;		/* debug flags for module writers */
139int	swaploaded;		/* set after swap driver and fs are loaded */
140int	bop_io_quiesced = 0;	/* set when BOP I/O can no longer be used */
141int	last_module_id;
142clock_t	mod_uninstall_interval = 0;
143int	ddi_modclose_unload = 1;	/* 0 -> just decrement reference */
144
145struct devnames *devnamesp;
146struct devnames orphanlist;
147
148krwlock_t	devinfo_tree_lock;	/* obsolete, to be removed */
149
150#define	MAJBINDFILE "/etc/name_to_major"
151#define	SYSBINDFILE "/etc/name_to_sysnum"
152
153static char	majbind[] = MAJBINDFILE;
154static char	sysbind[] = SYSBINDFILE;
155static uint_t	mod_autounload_key;	/* for module autounload detection */
156
157extern int obpdebug;
158extern int make_mbind(char *, int, char *, struct bind **);
159
160#define	DEBUGGER_PRESENT	((boothowto & RB_DEBUG) || (obpdebug != 0))
161
162static int minorperm_loaded = 0;
163
164
165
166void
167mod_setup(void)
168{
169	struct sysent *callp;
170	int callnum, exectype;
171	int	num_devs;
172	int	i;
173
174	/*
175	 * Initialize the list of loaded driver dev_ops.
176	 * XXX - This must be done before reading the system file so that
177	 * forceloads of drivers will work.
178	 */
179	num_devs = read_binding_file(majbind, mb_hashtab, make_mbind);
180	/*
181	 * Since read_binding_file is common code, it doesn't enforce that all
182	 * of the binding file entries have major numbers <= MAXMAJ32.  Thus,
183	 * ensure that we don't allocate some massive amount of space due to a
184	 * bad entry.  We can't have major numbers bigger than MAXMAJ32
185	 * until file system support for larger major numbers exists.
186	 */
187
188	/*
189	 * Leave space for expansion, but not more than L_MAXMAJ32
190	 */
191	devcnt = MIN(num_devs + 30, L_MAXMAJ32);
192	devopsp = kmem_alloc(devcnt * sizeof (struct dev_ops *), KM_SLEEP);
193	for (i = 0; i < devcnt; i++)
194		devopsp[i] = &mod_nodev_ops;
195
196	init_devnamesp(devcnt);
197
198	/*
199	 * Sync up with the work that the stand-alone linker has already done.
200	 */
201	(void) kobj_sync();
202
203	if (boothowto & RB_DEBUG)
204		kdi_dvec_modavail();
205
206	make_aliases(mb_hashtab);
207
208	/*
209	 * Initialize streams device implementation structures.
210	 */
211	devimpl = kmem_zalloc(devcnt * sizeof (cdevsw_impl_t), KM_SLEEP);
212
213	/*
214	 * If the cl_bootstrap module is present,
215	 * we should be configured as a cluster. Loading this module
216	 * will set "cluster_bootflags" to non-zero.
217	 */
218	(void) modload("misc", "cl_bootstrap");
219
220	(void) read_binding_file(sysbind, sb_hashtab, make_mbind);
221	init_syscallnames(NSYSCALL);
222
223	/*
224	 * Start up dynamic autoconfiguration framework (dacf).
225	 */
226	mod_hash_init();
227	dacf_init();
228
229	/*
230	 * Start up IP policy framework (ipp).
231	 */
232	ipp_init();
233
234	/*
235	 * Allocate loadable native system call locks.
236	 */
237	for (callnum = 0, callp = sysent; callnum < NSYSCALL;
238	    callnum++, callp++) {
239		if (LOADABLE_SYSCALL(callp)) {
240			if (mod_getsysname(callnum) != NULL) {
241				callp->sy_lock =
242				    kobj_zalloc(sizeof (krwlock_t), KM_SLEEP);
243				rw_init(callp->sy_lock, NULL, RW_DEFAULT, NULL);
244			} else {
245				callp->sy_flags &= ~SE_LOADABLE;
246				callp->sy_callc = nosys;
247			}
248#ifdef DEBUG
249		} else {
250			/*
251			 * Do some sanity checks on the sysent table
252			 */
253			switch (callp->sy_flags & SE_RVAL_MASK) {
254			case SE_32RVAL1:
255				/* only r_val1 returned */
256			case SE_32RVAL1 | SE_32RVAL2:
257				/* r_val1 and r_val2 returned */
258			case SE_64RVAL:
259				/* 64-bit rval returned */
260				break;
261			default:
262				cmn_err(CE_WARN, "sysent[%d]: bad flags %x",
263				    callnum, callp->sy_flags);
264			}
265#endif
266		}
267	}
268
269#ifdef _SYSCALL32_IMPL
270	/*
271	 * Allocate loadable system call locks for 32-bit compat syscalls
272	 */
273	for (callnum = 0, callp = sysent32; callnum < NSYSCALL;
274	    callnum++, callp++) {
275		if (LOADABLE_SYSCALL(callp)) {
276			if (mod_getsysname(callnum) != NULL) {
277				callp->sy_lock =
278				    kobj_zalloc(sizeof (krwlock_t), KM_SLEEP);
279				rw_init(callp->sy_lock, NULL, RW_DEFAULT, NULL);
280			} else {
281				callp->sy_flags &= ~SE_LOADABLE;
282				callp->sy_callc = nosys;
283			}
284#ifdef DEBUG
285		} else {
286			/*
287			 * Do some sanity checks on the sysent table
288			 */
289			switch (callp->sy_flags & SE_RVAL_MASK) {
290			case SE_32RVAL1:
291				/* only r_val1 returned */
292			case SE_32RVAL1 | SE_32RVAL2:
293				/* r_val1 and r_val2 returned */
294			case SE_64RVAL:
295				/* 64-bit rval returned */
296				break;
297			default:
298				cmn_err(CE_WARN, "sysent32[%d]: bad flags %x",
299				    callnum, callp->sy_flags);
300				goto skip;
301			}
302
303			/*
304			 * Cross-check the native and compatibility tables.
305			 */
306			if (callp->sy_callc == nosys ||
307			    sysent[callnum].sy_callc == nosys)
308				continue;
309			/*
310			 * If only one or the other slot is loadable, then
311			 * there's an error -- they should match!
312			 */
313			if ((callp->sy_callc == loadable_syscall) ^
314			    (sysent[callnum].sy_callc == loadable_syscall)) {
315				cmn_err(CE_WARN, "sysent[%d] loadable?",
316				    callnum);
317			}
318			/*
319			 * This is more of a heuristic test -- if the
320			 * system call returns two values in the 32-bit
321			 * world, it should probably return two 32-bit
322			 * values in the 64-bit world too.
323			 */
324			if (((callp->sy_flags & SE_32RVAL2) == 0) ^
325			    ((sysent[callnum].sy_flags & SE_32RVAL2) == 0)) {
326				cmn_err(CE_WARN, "sysent[%d] rval2 mismatch!",
327				    callnum);
328			}
329skip:;
330#endif	/* DEBUG */
331		}
332	}
333#endif	/* _SYSCALL32_IMPL */
334
335	/*
336	 * Allocate loadable exec locks.  (Assumes all execs are loadable)
337	 */
338	for (exectype = 0; exectype < nexectype; exectype++) {
339		execsw[exectype].exec_lock =
340		    kobj_zalloc(sizeof (krwlock_t), KM_SLEEP);
341		rw_init(execsw[exectype].exec_lock, NULL, RW_DEFAULT, NULL);
342	}
343
344	read_class_file();
345
346	/* init thread specific structure for mod_uninstall_all */
347	tsd_create(&mod_autounload_key, NULL);
348}
349
350static int
351modctl_modload(int use_path, char *filename, int *rvp)
352{
353	struct modctl *modp;
354	int retval = 0;
355	char *filenamep;
356	int modid;
357
358	filenamep = kmem_zalloc(MOD_MAXPATH, KM_SLEEP);
359
360	if (copyinstr(filename, filenamep, MOD_MAXPATH, 0)) {
361		retval = EFAULT;
362		goto out;
363	}
364
365	filenamep[MOD_MAXPATH - 1] = 0;
366	modp = mod_hold_installed_mod(filenamep, use_path, &retval);
367
368	if (modp == NULL)
369		goto out;
370
371	modp->mod_loadflags |= MOD_NOAUTOUNLOAD;
372	modid = modp->mod_id;
373	mod_release_mod(modp);
374	CPU_STATS_ADDQ(CPU, sys, modload, 1);
375	if (rvp != NULL && copyout(&modid, rvp, sizeof (modid)) != 0)
376		retval = EFAULT;
377out:
378	kmem_free(filenamep, MOD_MAXPATH);
379
380	return (retval);
381}
382
383static int
384modctl_modunload(modid_t id)
385{
386	int rval = 0;
387
388	if (id == 0) {
389#ifdef DEBUG
390		/*
391		 * Turn on mod_uninstall_daemon
392		 */
393		if (mod_uninstall_interval == 0) {
394			mod_uninstall_interval = 60;
395			modreap();
396			return (rval);
397		}
398#endif
399		mod_uninstall_all();
400	} else {
401		rval = modunload(id);
402	}
403	return (rval);
404}
405
406static int
407modctl_modinfo(modid_t id, struct modinfo *umodi)
408{
409	int retval;
410	struct modinfo modi;
411#if defined(_SYSCALL32_IMPL)
412	int nobase;
413	struct modinfo32 modi32;
414#endif
415
416	if (get_udatamodel() == DATAMODEL_NATIVE) {
417		if (copyin(umodi, &modi, sizeof (struct modinfo)) != 0)
418			return (EFAULT);
419	}
420#ifdef _SYSCALL32_IMPL
421	else {
422		bzero(&modi, sizeof (modi));
423		if (copyin(umodi, &modi32, sizeof (struct modinfo32)) != 0)
424			return (EFAULT);
425		modi.mi_info = modi32.mi_info;
426		modi.mi_id = modi32.mi_id;
427		modi.mi_nextid = modi32.mi_nextid;
428		nobase = modi.mi_info & MI_INFO_NOBASE;
429	}
430#endif
431	/*
432	 * This flag is -only- for the kernels use.
433	 */
434	modi.mi_info &= ~MI_INFO_LINKAGE;
435
436	retval = modinfo(id, &modi);
437	if (retval)
438		return (retval);
439
440	if (get_udatamodel() == DATAMODEL_NATIVE) {
441		if (copyout(&modi, umodi, sizeof (struct modinfo)) != 0)
442			retval = EFAULT;
443#ifdef _SYSCALL32_IMPL
444	} else {
445		int i;
446
447		if (!nobase && (uintptr_t)modi.mi_base > UINT32_MAX)
448			return (EOVERFLOW);
449
450		modi32.mi_info = modi.mi_info;
451		modi32.mi_state = modi.mi_state;
452		modi32.mi_id = modi.mi_id;
453		modi32.mi_nextid = modi.mi_nextid;
454		modi32.mi_base = (caddr32_t)(uintptr_t)modi.mi_base;
455		modi32.mi_size = modi.mi_size;
456		modi32.mi_rev = modi.mi_rev;
457		modi32.mi_loadcnt = modi.mi_loadcnt;
458		bcopy(modi.mi_name, modi32.mi_name, sizeof (modi32.mi_name));
459		for (i = 0; i < MODMAXLINK32; i++) {
460			modi32.mi_msinfo[i].msi_p0 = modi.mi_msinfo[i].msi_p0;
461			bcopy(modi.mi_msinfo[i].msi_linkinfo,
462			    modi32.mi_msinfo[i].msi_linkinfo,
463			    sizeof (modi32.mi_msinfo[0].msi_linkinfo));
464		}
465		if (copyout(&modi32, umodi, sizeof (struct modinfo32)) != 0)
466			retval = EFAULT;
467#endif
468	}
469
470	return (retval);
471}
472
473/*
474 * Return the last major number in the range of permissible major numbers.
475 */
476/*ARGSUSED*/
477static int
478modctl_modreserve(modid_t id, int *data)
479{
480	if (copyout(&devcnt, data, sizeof (devcnt)) != 0)
481		return (EFAULT);
482	return (0);
483}
484
485static int
486modctl_add_major(int *data)
487{
488	struct modconfig mc;
489	int i, rv;
490	struct aliases alias;
491	struct aliases *ap;
492	char name[MAXMODCONFNAME];
493	char cname[MAXMODCONFNAME];
494	char *drvname;
495
496	bzero(&mc, sizeof (struct modconfig));
497	if (get_udatamodel() == DATAMODEL_NATIVE) {
498		if (copyin(data, &mc, sizeof (struct modconfig)) != 0)
499			return (EFAULT);
500	}
501#ifdef _SYSCALL32_IMPL
502	else {
503		struct modconfig32 modc32;
504
505		if (copyin(data, &modc32, sizeof (struct modconfig32)) != 0)
506			return (EFAULT);
507		else {
508			bcopy(modc32.drvname, mc.drvname,
509			    sizeof (modc32.drvname));
510			bcopy(modc32.drvclass, mc.drvclass,
511			    sizeof (modc32.drvclass));
512			mc.major = modc32.major;
513			mc.num_aliases = modc32.num_aliases;
514			mc.ap = (struct aliases *)(uintptr_t)modc32.ap;
515		}
516	}
517#endif
518
519	/*
520	 * If the driver is already in the mb_hashtab, and the name given
521	 * doesn't match that driver's name, fail.  Otherwise, pass, since
522	 * we may be adding aliases.
523	 */
524	if ((drvname = mod_major_to_name(mc.major)) != NULL &&
525	    strcmp(drvname, mc.drvname) != 0)
526		return (EINVAL);
527
528	/*
529	 * Add each supplied driver alias to mb_hashtab
530	 */
531	ap = mc.ap;
532	for (i = 0; i < mc.num_aliases; i++) {
533		bzero(&alias, sizeof (struct aliases));
534
535		if (get_udatamodel() == DATAMODEL_NATIVE) {
536			if (copyin(ap, &alias, sizeof (struct aliases)) != 0)
537				return (EFAULT);
538
539			if (alias.a_len > MAXMODCONFNAME)
540				return (EINVAL);
541
542			if (copyin(alias.a_name, name, alias.a_len) != 0)
543				return (EFAULT);
544
545			if (name[alias.a_len - 1] != '\0')
546				return (EINVAL);
547		}
548#ifdef _SYSCALL32_IMPL
549		else {
550			struct aliases32 al32;
551
552			bzero(&al32, sizeof (struct aliases32));
553			if (copyin(ap, &al32, sizeof (struct aliases32)) != 0)
554				return (EFAULT);
555
556			if (al32.a_len > MAXMODCONFNAME)
557				return (EINVAL);
558
559			if (copyin((void *)(uintptr_t)al32.a_name,
560			    name, al32.a_len) != 0)
561				return (EFAULT);
562
563			if (name[al32.a_len - 1] != '\0')
564				return (EINVAL);
565
566			alias.a_next = (void *)(uintptr_t)al32.a_next;
567		}
568#endif
569		check_esc_sequences(name, cname);
570		(void) make_mbind(cname, mc.major, NULL, mb_hashtab);
571		ap = alias.a_next;
572	}
573
574	/*
575	 * Try to establish an mbinding for mc.drvname, and add it to devnames.
576	 * Add class if any after establishing the major number
577	 */
578	(void) make_mbind(mc.drvname, mc.major, NULL, mb_hashtab);
579	rv = make_devname(mc.drvname, mc.major);
580
581	if (rv == 0) {
582		if (mc.drvclass[0] != '\0')
583			add_class(mc.drvname, mc.drvclass);
584		(void) i_ddi_load_drvconf(mc.major);
585		i_ddi_bind_devs();
586		i_ddi_di_cache_invalidate(KM_SLEEP);
587	}
588	return (rv);
589}
590
591static int
592modctl_rem_major(major_t major)
593{
594	struct devnames *dnp;
595
596	if (major >= devcnt)
597		return (EINVAL);
598
599	/* mark devnames as removed */
600	dnp = &devnamesp[major];
601	LOCK_DEV_OPS(&dnp->dn_lock);
602	if (dnp->dn_name == NULL ||
603	    (dnp->dn_flags & (DN_DRIVER_REMOVED | DN_TAKEN_GETUDEV))) {
604		UNLOCK_DEV_OPS(&dnp->dn_lock);
605		return (EINVAL);
606	}
607	dnp->dn_flags |= DN_DRIVER_REMOVED;
608	pm_driver_removed(major);
609	UNLOCK_DEV_OPS(&dnp->dn_lock);
610
611	(void) i_ddi_unload_drvconf(major);
612	i_ddi_unbind_devs(major);
613	i_ddi_di_cache_invalidate(KM_SLEEP);
614	return (0);
615}
616
617static struct vfs *
618path_to_vfs(char *name)
619{
620	vnode_t *vp;
621	struct vfs *vfsp;
622
623	if (lookupname(name, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp))
624		return (NULL);
625
626	vfsp = vp->v_vfsp;
627	VN_RELE(vp);
628	return (vfsp);
629}
630
631static int
632new_vfs_in_modpath()
633{
634	static int n_modpath = 0;
635	static char *modpath_copy;
636	static struct pathvfs {
637		char *path;
638		struct vfs *vfsp;
639	} *pathvfs;
640
641	int i, new_vfs = 0;
642	char *tmp, *tmp1;
643	struct vfs *vfsp;
644
645	if (n_modpath != 0) {
646		for (i = 0; i < n_modpath; i++) {
647			vfsp = path_to_vfs(pathvfs[i].path);
648			if (vfsp != pathvfs[i].vfsp) {
649				pathvfs[i].vfsp = vfsp;
650				if (vfsp)
651					new_vfs = 1;
652			}
653		}
654		return (new_vfs);
655	}
656
657	/*
658	 * First call, initialize the pathvfs structure
659	 */
660	modpath_copy = i_ddi_strdup(default_path, KM_SLEEP);
661	tmp = modpath_copy;
662	n_modpath = 1;
663	tmp1 = strchr(tmp, ' ');
664	while (tmp1) {
665		*tmp1 = '\0';
666		n_modpath++;
667		tmp = tmp1 + 1;
668		tmp1 = strchr(tmp, ' ');
669	}
670
671	pathvfs = kmem_zalloc(n_modpath * sizeof (struct pathvfs), KM_SLEEP);
672	tmp = modpath_copy;
673	for (i = 0; i < n_modpath; i++) {
674		pathvfs[i].path = tmp;
675		vfsp = path_to_vfs(tmp);
676		pathvfs[i].vfsp = vfsp;
677		tmp += strlen(tmp) + 1;
678	}
679	return (1);	/* always reread driver.conf the first time */
680}
681
682static int
683modctl_load_drvconf(major_t major)
684{
685	int ret;
686
687	if (major != (major_t)-1) {
688		ret = i_ddi_load_drvconf(major);
689		if (ret == 0)
690			i_ddi_bind_devs();
691		return (ret);
692	}
693
694	/*
695	 * We are invoked to rescan new driver.conf files. It is
696	 * only necessary if a new file system was mounted in the
697	 * module_path. Because rescanning driver.conf files can
698	 * take some time on older platforms (sun4m), the following
699	 * code skips unnecessary driver.conf rescans to optimize
700	 * boot performance.
701	 */
702	if (new_vfs_in_modpath()) {
703		(void) i_ddi_load_drvconf((major_t)-1);
704		/*
705		 * If we are still initializing io subsystem,
706		 * load drivers with ddi-forceattach property
707		 */
708		if (!i_ddi_io_initialized())
709			i_ddi_forceattach_drivers();
710	}
711	return (0);
712}
713
714static int
715modctl_unload_drvconf(major_t major)
716{
717	int ret;
718
719	if (major >= devcnt)
720		return (EINVAL);
721
722	ret = i_ddi_unload_drvconf(major);
723	if (ret != 0)
724		return (ret);
725	(void) i_ddi_unbind_devs(major);
726
727	return (0);
728}
729
730static void
731check_esc_sequences(char *str, char *cstr)
732{
733	int i;
734	size_t len;
735	char *p;
736
737	len = strlen(str);
738	for (i = 0; i < len; i++, str++, cstr++) {
739		if (*str != '\\') {
740			*cstr = *str;
741		} else {
742			p = str + 1;
743			/*
744			 * we only handle octal escape sequences for SPACE
745			 */
746			if (*p++ == '0' && *p++ == '4' && *p == '0') {
747				*cstr = ' ';
748				str += 3;
749			} else {
750				*cstr = *str;
751			}
752		}
753	}
754	*cstr = 0;
755}
756
757static int
758modctl_getmodpathlen(int *data)
759{
760	int len;
761	len = strlen(default_path);
762	if (copyout(&len, data, sizeof (len)) != 0)
763		return (EFAULT);
764	return (0);
765}
766
767static int
768modctl_getmodpath(char *data)
769{
770	if (copyout(default_path, data, strlen(default_path) + 1) != 0)
771		return (EFAULT);
772	return (0);
773}
774
775static int
776modctl_read_sysbinding_file(void)
777{
778	(void) read_binding_file(sysbind, sb_hashtab, make_mbind);
779	return (0);
780}
781
782static int
783modctl_getmaj(char *uname, uint_t ulen, int *umajorp)
784{
785	char name[256];
786	int retval;
787	major_t major;
788
789	if (ulen == 0)
790		return (EINVAL);
791	if ((retval = copyinstr(uname, name,
792	    (ulen < 256) ? ulen : 256, 0)) != 0)
793		return (retval);
794	if ((major = mod_name_to_major(name)) == (major_t)-1)
795		return (ENODEV);
796	if (copyout(&major, umajorp, sizeof (major_t)) != 0)
797		return (EFAULT);
798	return (0);
799}
800
801static int
802modctl_getname(char *uname, uint_t ulen, int *umajorp)
803{
804	char *name;
805	major_t major;
806
807	if (copyin(umajorp, &major, sizeof (major)) != 0)
808		return (EFAULT);
809	if ((name = mod_major_to_name(major)) == NULL)
810		return (ENODEV);
811	if ((strlen(name) + 1) > ulen)
812		return (ENOSPC);
813	return (copyoutstr(name, uname, ulen, NULL));
814}
815
816static int
817modctl_devt2instance(dev_t dev, int *uinstancep)
818{
819	int	instance;
820
821	if ((instance = dev_to_instance(dev)) == -1)
822		return (EINVAL);
823
824	return (copyout(&instance, uinstancep, sizeof (int)));
825}
826
827/*
828 * Return the sizeof of the device id.
829 */
830static int
831modctl_sizeof_devid(dev_t dev, uint_t *len)
832{
833	uint_t		sz;
834	ddi_devid_t	devid;
835
836	/* get device id */
837	if (ddi_lyr_get_devid(dev, &devid) == DDI_FAILURE)
838		return (EINVAL);
839
840	sz = ddi_devid_sizeof(devid);
841	ddi_devid_free(devid);
842
843	/* copyout device id size */
844	if (copyout(&sz, len, sizeof (sz)) != 0)
845		return (EFAULT);
846
847	return (0);
848}
849
850/*
851 * Return a copy of the device id.
852 */
853static int
854modctl_get_devid(dev_t dev, uint_t len, ddi_devid_t udevid)
855{
856	uint_t		sz;
857	ddi_devid_t	devid;
858	int		err = 0;
859
860	/* get device id */
861	if (ddi_lyr_get_devid(dev, &devid) == DDI_FAILURE)
862		return (EINVAL);
863
864	sz = ddi_devid_sizeof(devid);
865
866	/* Error if device id is larger than space allocated */
867	if (sz > len) {
868		ddi_devid_free(devid);
869		return (ENOSPC);
870	}
871
872	/* copy out device id */
873	if (copyout(devid, udevid, sz) != 0)
874		err = EFAULT;
875	ddi_devid_free(devid);
876	return (err);
877}
878
879/*
880 * return the /devices paths associated with the specified devid and
881 * minor name.
882 */
883/*ARGSUSED*/
884static int
885modctl_devid2paths(ddi_devid_t udevid, char *uminor_name, uint_t flag,
886	size_t *ulensp, char *upaths)
887{
888	ddi_devid_t	devid = NULL;
889	int		devid_len;
890	char		*minor_name = NULL;
891	dev_info_t	*dip = NULL;
892	struct ddi_minor_data   *dmdp;
893	char		*path = NULL;
894	int		ulens;
895	int		lens;
896	int		len;
897	dev_t		*devlist = NULL;
898	int		ndevs;
899	int		i;
900	int		ret = 0;
901
902	/*
903	 * If upaths is NULL then we are only computing the amount of space
904	 * needed to hold the paths and returning the value in *ulensp. If we
905	 * are copying out paths then we get the amount of space allocated by
906	 * the caller. If the actual space needed for paths is larger, or
907	 * things are changing out from under us, then we return EAGAIN.
908	 */
909	if (upaths) {
910		if (ulensp == NULL)
911			return (EINVAL);
912		if (copyin(ulensp, &ulens, sizeof (ulens)) != 0)
913			return (EFAULT);
914	}
915
916	/*
917	 * copyin enough of the devid to determine the length then
918	 * reallocate and copy in the entire devid.
919	 */
920	devid_len = ddi_devid_sizeof(NULL);
921	devid = kmem_alloc(devid_len, KM_SLEEP);
922	if (copyin(udevid, devid, devid_len)) {
923		ret = EFAULT;
924		goto out;
925	}
926	len = devid_len;
927	devid_len = ddi_devid_sizeof(devid);
928	kmem_free(devid, len);
929	devid = kmem_alloc(devid_len, KM_SLEEP);
930	if (copyin(udevid, devid, devid_len)) {
931		ret = EFAULT;
932		goto out;
933	}
934
935	/* copyin the minor name if specified. */
936	minor_name = uminor_name;
937	if ((minor_name != DEVID_MINOR_NAME_ALL) &&
938	    (minor_name != DEVID_MINOR_NAME_ALL_CHR) &&
939	    (minor_name != DEVID_MINOR_NAME_ALL_BLK)) {
940		minor_name = kmem_alloc(MAXPATHLEN, KM_SLEEP);
941		if (copyinstr(uminor_name, minor_name, MAXPATHLEN, 0)) {
942			ret = EFAULT;
943			goto out;
944		}
945	}
946
947	/*
948	 * Use existing function to resolve the devid into a devlist.
949	 *
950	 * NOTE: there is a loss of spectype information in the current
951	 * ddi_lyr_devid_to_devlist implementation. We work around this by not
952	 * passing down DEVID_MINOR_NAME_ALL here, but reproducing all minor
953	 * node forms in the loop processing the devlist below. It would be
954	 * best if at some point the use of this interface here was replaced
955	 * with a path oriented call.
956	 */
957	if (ddi_lyr_devid_to_devlist(devid,
958	    (minor_name == DEVID_MINOR_NAME_ALL) ?
959	    DEVID_MINOR_NAME_ALL_CHR : minor_name,
960	    &ndevs, &devlist) != DDI_SUCCESS) {
961		ret = EINVAL;
962		goto out;
963	}
964
965	/*
966	 * loop over the devlist, converting each devt to a path and doing
967	 * a copyout of the path and computation of the amount of space
968	 * needed to hold all the paths
969	 */
970	path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
971	for (i = 0, lens = 0; i < ndevs; i++) {
972
973		/* find the dip associated with the dev_t */
974		if ((dip = e_ddi_hold_devi_by_dev(devlist[i], 0)) == NULL)
975			continue;
976
977		/* loop over all the minor nodes, skipping ones we don't want */
978		for (dmdp = DEVI(dip)->devi_minor; dmdp; dmdp = dmdp->next) {
979			if ((dmdp->ddm_dev != devlist[i]) ||
980			    (dmdp->type != DDM_MINOR))
981				continue;
982
983			if ((minor_name != DEVID_MINOR_NAME_ALL) &&
984			    (minor_name != DEVID_MINOR_NAME_ALL_CHR) &&
985			    (minor_name != DEVID_MINOR_NAME_ALL_BLK) &&
986			    strcmp(minor_name, dmdp->ddm_name))
987				continue;
988			else {
989				if ((minor_name == DEVID_MINOR_NAME_ALL_CHR) &&
990				    (dmdp->ddm_spec_type != S_IFCHR))
991					continue;
992				if ((minor_name == DEVID_MINOR_NAME_ALL_BLK) &&
993				    (dmdp->ddm_spec_type != S_IFBLK))
994					continue;
995			}
996
997			/* XXX need ddi_pathname_minor(dmdp, path); interface */
998			if (ddi_dev_pathname(dmdp->ddm_dev, dmdp->ddm_spec_type,
999			    path) != DDI_SUCCESS) {
1000				ret = EAGAIN;
1001				goto out;
1002			}
1003			len = strlen(path) + 1;
1004			*(path + len) = '\0';	/* set double termination */
1005			lens += len;
1006
1007			/* copyout the path with double terminations */
1008			if (upaths) {
1009				if (lens > ulens) {
1010					ret = EAGAIN;
1011					goto out;
1012				}
1013				if (copyout(path, upaths, len + 1)) {
1014					ret = EFAULT;
1015					goto out;
1016				}
1017				upaths += len;
1018			}
1019		}
1020		ddi_release_devi(dip);
1021		dip = NULL;
1022	}
1023	lens++;		/* add one for double termination */
1024
1025	/* copy out the amount of space needed to hold the paths */
1026	if (ulensp && copyout(&lens, ulensp, sizeof (lens))) {
1027		ret = EFAULT;
1028		goto out;
1029	}
1030	ret = 0;
1031
1032out:	if (dip)
1033		ddi_release_devi(dip);
1034	if (path)
1035		kmem_free(path, MAXPATHLEN);
1036	if (devlist)
1037		ddi_lyr_free_devlist(devlist, ndevs);
1038	if (minor_name &&
1039	    (minor_name != DEVID_MINOR_NAME_ALL) &&
1040	    (minor_name != DEVID_MINOR_NAME_ALL_CHR) &&
1041	    (minor_name != DEVID_MINOR_NAME_ALL_BLK))
1042		kmem_free(minor_name, MAXPATHLEN);
1043	if (devid)
1044		kmem_free(devid, devid_len);
1045	return (ret);
1046}
1047
1048/*
1049 * Return the size of the minor name.
1050 */
1051static int
1052modctl_sizeof_minorname(dev_t dev, int spectype, uint_t *len)
1053{
1054	uint_t	sz;
1055	char	*name;
1056
1057	/* get the minor name */
1058	if (ddi_lyr_get_minor_name(dev, spectype, &name) == DDI_FAILURE)
1059		return (EINVAL);
1060
1061	sz = strlen(name) + 1;
1062	kmem_free(name, sz);
1063
1064	/* copy out the size of the minor name */
1065	if (copyout(&sz, len, sizeof (sz)) != 0)
1066		return (EFAULT);
1067
1068	return (0);
1069}
1070
1071/*
1072 * Return the minor name.
1073 */
1074static int
1075modctl_get_minorname(dev_t dev, int spectype, uint_t len, char *uname)
1076{
1077	uint_t	sz;
1078	char	*name;
1079	int	err = 0;
1080
1081	/* get the minor name */
1082	if (ddi_lyr_get_minor_name(dev, spectype, &name) == DDI_FAILURE)
1083		return (EINVAL);
1084
1085	sz = strlen(name) + 1;
1086
1087	/* Error if the minor name is larger than the space allocated */
1088	if (sz > len) {
1089		kmem_free(name, sz);
1090		return (ENOSPC);
1091	}
1092
1093	/* copy out the minor name */
1094	if (copyout(name, uname, sz) != 0)
1095		err = EFAULT;
1096	kmem_free(name, sz);
1097	return (err);
1098}
1099
1100/*
1101 * Return the size of the (dev_t,spectype) devfspath name.
1102 */
1103static int
1104modctl_devfspath_len(dev_t dev, int spectype, uint_t *len)
1105{
1106	uint_t	sz;
1107	char	*name;
1108
1109	/* get the path name */
1110	name = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1111	if (ddi_dev_pathname(dev, spectype, name) == DDI_FAILURE) {
1112		kmem_free(name, MAXPATHLEN);
1113		return (EINVAL);
1114	}
1115
1116	sz = strlen(name) + 1;
1117	kmem_free(name, MAXPATHLEN);
1118
1119	/* copy out the size of the path name */
1120	if (copyout(&sz, len, sizeof (sz)) != 0)
1121		return (EFAULT);
1122
1123	return (0);
1124}
1125
1126/*
1127 * Return the (dev_t,spectype) devfspath name.
1128 */
1129static int
1130modctl_devfspath(dev_t dev, int spectype, uint_t len, char *uname)
1131{
1132	uint_t	sz;
1133	char	*name;
1134	int	err = 0;
1135
1136	/* get the path name */
1137	name = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1138	if (ddi_dev_pathname(dev, spectype, name) == DDI_FAILURE) {
1139		kmem_free(name, MAXPATHLEN);
1140		return (EINVAL);
1141	}
1142
1143	sz = strlen(name) + 1;
1144
1145	/* Error if the path name is larger than the space allocated */
1146	if (sz > len) {
1147		kmem_free(name, MAXPATHLEN);
1148		return (ENOSPC);
1149	}
1150
1151	/* copy out the path name */
1152	if (copyout(name, uname, sz) != 0)
1153		err = EFAULT;
1154	kmem_free(name, MAXPATHLEN);
1155	return (err);
1156}
1157
1158/*
1159 * Return the size of the (major,instance) devfspath name.
1160 */
1161static int
1162modctl_devfspath_mi_len(major_t major, int instance, uint_t *len)
1163{
1164	uint_t	sz;
1165	char	*name;
1166
1167	/* get the path name */
1168	name = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1169	if (e_ddi_majorinstance_to_path(major, instance, name) != DDI_SUCCESS) {
1170		kmem_free(name, MAXPATHLEN);
1171		return (EINVAL);
1172	}
1173
1174	sz = strlen(name) + 1;
1175	kmem_free(name, MAXPATHLEN);
1176
1177	/* copy out the size of the path name */
1178	if (copyout(&sz, len, sizeof (sz)) != 0)
1179		return (EFAULT);
1180
1181	return (0);
1182}
1183
1184/*
1185 * Return the (major_instance) devfspath name.
1186 * NOTE: e_ddi_majorinstance_to_path does not require the device to attach to
1187 * return a path - it uses the instance tree.
1188 */
1189static int
1190modctl_devfspath_mi(major_t major, int instance, uint_t len, char *uname)
1191{
1192	uint_t	sz;
1193	char	*name;
1194	int	err = 0;
1195
1196	/* get the path name */
1197	name = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1198	if (e_ddi_majorinstance_to_path(major, instance, name) != DDI_SUCCESS) {
1199		kmem_free(name, MAXPATHLEN);
1200		return (EINVAL);
1201	}
1202
1203	sz = strlen(name) + 1;
1204
1205	/* Error if the path name is larger than the space allocated */
1206	if (sz > len) {
1207		kmem_free(name, MAXPATHLEN);
1208		return (ENOSPC);
1209	}
1210
1211	/* copy out the path name */
1212	if (copyout(name, uname, sz) != 0)
1213		err = EFAULT;
1214	kmem_free(name, MAXPATHLEN);
1215	return (err);
1216}
1217
1218static int
1219modctl_get_fbname(char *path)
1220{
1221	extern dev_t fbdev;
1222	char *pathname = NULL;
1223	int rval = 0;
1224
1225	/* make sure fbdev is set before we plunge in */
1226	if (fbdev == NODEV)
1227		return (ENODEV);
1228
1229	pathname = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1230	if ((rval = ddi_dev_pathname(fbdev, S_IFCHR,
1231	    pathname)) == DDI_SUCCESS) {
1232		if (copyout(pathname, path, strlen(pathname)+1) != 0) {
1233			rval = EFAULT;
1234		}
1235	}
1236	kmem_free(pathname, MAXPATHLEN);
1237	return (rval);
1238}
1239
1240/*
1241 * modctl_reread_dacf()
1242 *	Reread the dacf rules database from the named binding file.
1243 *	If NULL is specified, pass along the NULL, it means 'use the default'.
1244 */
1245static int
1246modctl_reread_dacf(char *path)
1247{
1248	int rval = 0;
1249	char *filename, *filenamep;
1250
1251	filename = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1252
1253	if (path == NULL) {
1254		filenamep = NULL;
1255	} else {
1256		if (copyinstr(path, filename, MAXPATHLEN, 0) != 0) {
1257			rval = EFAULT;
1258			goto out;
1259		}
1260		filenamep = filename;
1261		filenamep[MAXPATHLEN - 1] = '\0';
1262	}
1263
1264	rval = read_dacf_binding_file(filenamep);
1265out:
1266	kmem_free(filename, MAXPATHLEN);
1267	return (rval);
1268}
1269
1270/*ARGSUSED*/
1271static int
1272modctl_modevents(int subcmd, uintptr_t a2, uintptr_t a3, uintptr_t a4,
1273    uint_t flag)
1274{
1275	int error = 0;
1276	char *filenamep;
1277
1278	switch (subcmd) {
1279
1280	case MODEVENTS_FLUSH:
1281		/* flush all currently queued events */
1282		log_sysevent_flushq(subcmd, flag);
1283		break;
1284
1285	case MODEVENTS_SET_DOOR_UPCALL_FILENAME:
1286		/*
1287		 * bind door_upcall to filename
1288		 * this should only be done once per invocation
1289		 * of the event daemon.
1290		 */
1291
1292		filenamep = kmem_zalloc(MOD_MAXPATH, KM_SLEEP);
1293
1294		if (copyinstr((char *)a2, filenamep, MOD_MAXPATH, 0)) {
1295			error = EFAULT;
1296		} else {
1297			error = log_sysevent_filename(filenamep);
1298		}
1299		kmem_free(filenamep, MOD_MAXPATH);
1300		break;
1301
1302	case MODEVENTS_GETDATA:
1303		error = log_sysevent_copyout_data((sysevent_id_t *)a2,
1304		    (size_t)a3, (caddr_t)a4);
1305		break;
1306
1307	case MODEVENTS_FREEDATA:
1308		error = log_sysevent_free_data((sysevent_id_t *)a2);
1309		break;
1310	case MODEVENTS_POST_EVENT:
1311		error = log_usr_sysevent((sysevent_t *)a2, (uint32_t)a3,
1312			(sysevent_id_t *)a4);
1313		break;
1314	case MODEVENTS_REGISTER_EVENT:
1315		error = log_sysevent_register((char *)a2, (char *)a3,
1316		    (se_pubsub_t *)a4);
1317		break;
1318	default:
1319		error = EINVAL;
1320	}
1321
1322	return (error);
1323}
1324
1325static void
1326free_mperm(mperm_t *mp)
1327{
1328	int len;
1329
1330	if (mp->mp_minorname) {
1331		len = strlen(mp->mp_minorname) + 1;
1332		kmem_free(mp->mp_minorname, len);
1333	}
1334	kmem_free(mp, sizeof (mperm_t));
1335}
1336
1337#define	MP_NO_DRV_ERR	\
1338	"/etc/minor_perm: no driver for %s\n"
1339
1340#define	MP_EMPTY_MINOR	\
1341	"/etc/minor_perm: empty minor name for driver %s\n"
1342
1343#define	MP_NO_MINOR	\
1344	"/etc/minor_perm: no minor matching %s for driver %s\n"
1345
1346/*
1347 * Remove mperm entry with matching minorname
1348 */
1349static void
1350rem_minorperm(major_t major, char *drvname, mperm_t *mp, int is_clone)
1351{
1352	mperm_t **mp_head;
1353	mperm_t *freemp = NULL;
1354	struct devnames *dnp = &devnamesp[major];
1355	mperm_t **wildmp;
1356
1357	ASSERT(mp->mp_minorname && strlen(mp->mp_minorname) > 0);
1358
1359	LOCK_DEV_OPS(&dnp->dn_lock);
1360	if (strcmp(mp->mp_minorname, "*") == 0) {
1361		wildmp = ((is_clone == 0) ?
1362			&dnp->dn_mperm_wild : &dnp->dn_mperm_clone);
1363		if (*wildmp)
1364			freemp = *wildmp;
1365		*wildmp = NULL;
1366	} else {
1367		mp_head = &dnp->dn_mperm;
1368		while (*mp_head) {
1369			if (strcmp((*mp_head)->mp_minorname,
1370			    mp->mp_minorname) != 0) {
1371				mp_head = &(*mp_head)->mp_next;
1372				continue;
1373			}
1374			/* remove the entry */
1375			freemp = *mp_head;
1376			*mp_head = freemp->mp_next;
1377			break;
1378		}
1379	}
1380	if (freemp) {
1381		if (moddebug & MODDEBUG_MINORPERM) {
1382			cmn_err(CE_CONT, "< %s %s 0%o %d %d\n",
1383			    drvname, freemp->mp_minorname,
1384			    freemp->mp_mode & 0777,
1385			    freemp->mp_uid, freemp->mp_gid);
1386		}
1387		free_mperm(freemp);
1388	} else {
1389		if (moddebug & MODDEBUG_MINORPERM) {
1390			cmn_err(CE_CONT, MP_NO_MINOR,
1391				drvname, mp->mp_minorname);
1392		}
1393	}
1394
1395	UNLOCK_DEV_OPS(&dnp->dn_lock);
1396}
1397
1398/*
1399 * Add minor perm entry
1400 */
1401static void
1402add_minorperm(major_t major, char *drvname, mperm_t *mp, int is_clone)
1403{
1404	mperm_t **mp_head;
1405	mperm_t *freemp = NULL;
1406	struct devnames *dnp = &devnamesp[major];
1407	mperm_t **wildmp;
1408
1409	ASSERT(mp->mp_minorname && strlen(mp->mp_minorname) > 0);
1410
1411	/*
1412	 * Note that update_drv replace semantics require
1413	 * replacing matching entries with the new permissions.
1414	 */
1415	LOCK_DEV_OPS(&dnp->dn_lock);
1416	if (strcmp(mp->mp_minorname, "*") == 0) {
1417		wildmp = ((is_clone == 0) ?
1418			&dnp->dn_mperm_wild : &dnp->dn_mperm_clone);
1419		if (*wildmp)
1420			freemp = *wildmp;
1421		*wildmp = mp;
1422	} else {
1423		mperm_t *p, *v = NULL;
1424		for (p = dnp->dn_mperm; p; v = p, p = p->mp_next) {
1425			if (strcmp(p->mp_minorname, mp->mp_minorname) == 0) {
1426				if (v == NULL)
1427					dnp->dn_mperm = mp;
1428				else
1429					v->mp_next = mp;
1430				mp->mp_next = p->mp_next;
1431				freemp = p;
1432				goto replaced;
1433			}
1434		}
1435		if (p == NULL) {
1436			mp_head = &dnp->dn_mperm;
1437			if (*mp_head == NULL) {
1438				*mp_head = mp;
1439			} else {
1440				mp->mp_next = *mp_head;
1441				*mp_head = mp;
1442			}
1443		}
1444	}
1445replaced:
1446	if (freemp) {
1447		if (moddebug & MODDEBUG_MINORPERM) {
1448			cmn_err(CE_CONT, "< %s %s 0%o %d %d\n",
1449			    drvname, freemp->mp_minorname,
1450			    freemp->mp_mode & 0777,
1451			    freemp->mp_uid, freemp->mp_gid);
1452		}
1453		free_mperm(freemp);
1454	}
1455	if (moddebug & MODDEBUG_MINORPERM) {
1456		cmn_err(CE_CONT, "> %s %s 0%o %d %d\n",
1457		    drvname, mp->mp_minorname, mp->mp_mode & 0777,
1458		    mp->mp_uid, mp->mp_gid);
1459	}
1460	UNLOCK_DEV_OPS(&dnp->dn_lock);
1461}
1462
1463
1464static int
1465process_minorperm(int cmd, nvlist_t *nvl)
1466{
1467	char *minor;
1468	major_t major;
1469	mperm_t *mp;
1470	nvpair_t *nvp;
1471	char *name;
1472	int is_clone;
1473	major_t minmaj;
1474
1475	ASSERT(cmd == MODLOADMINORPERM ||
1476	    cmd == MODADDMINORPERM || cmd == MODREMMINORPERM);
1477
1478	nvp = NULL;
1479	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
1480		name = nvpair_name(nvp);
1481
1482		is_clone = 0;
1483		(void) nvpair_value_string(nvp, &minor);
1484		major = ddi_name_to_major(name);
1485		if (major != (major_t)-1) {
1486			mp = kmem_zalloc(sizeof (*mp), KM_SLEEP);
1487			if (minor == NULL || strlen(minor) == 0) {
1488				if (moddebug & MODDEBUG_MINORPERM) {
1489					cmn_err(CE_CONT, MP_EMPTY_MINOR, name);
1490				}
1491				minor = "*";
1492			}
1493
1494			/*
1495			 * The minor name of a node using the clone
1496			 * driver must be the driver name.  To avoid
1497			 * multiple searches, we map entries in the form
1498			 * clone:<driver> to <driver>:*.  This also allows us
1499			 * to filter out some of the litter in /etc/minor_perm.
1500			 * Minor perm alias entries where the name is not
1501			 * the driver kept on the clone list itself.
1502			 * This all seems very fragile as a driver could
1503			 * be introduced with an existing alias name.
1504			 */
1505			if (strcmp(name, "clone") == 0) {
1506				minmaj = ddi_name_to_major(minor);
1507				if (minmaj != (major_t)-1) {
1508					if (moddebug & MODDEBUG_MINORPERM) {
1509						cmn_err(CE_CONT,
1510						    "mapping %s:%s to %s:*\n",
1511						    name, minor, minor);
1512					}
1513					major = minmaj;
1514					name = minor;
1515					minor = "*";
1516					is_clone = 1;
1517				}
1518			}
1519
1520			if (mp) {
1521				mp->mp_minorname =
1522				    i_ddi_strdup(minor, KM_SLEEP);
1523			}
1524		} else {
1525			mp = NULL;
1526			if (moddebug & MODDEBUG_MINORPERM) {
1527				cmn_err(CE_CONT, MP_NO_DRV_ERR, name);
1528			}
1529		}
1530
1531		/* mode */
1532		nvp = nvlist_next_nvpair(nvl, nvp);
1533		ASSERT(strcmp(nvpair_name(nvp), "mode") == 0);
1534		if (mp)
1535			(void) nvpair_value_int32(nvp, (int *)&mp->mp_mode);
1536		/* uid */
1537		nvp = nvlist_next_nvpair(nvl, nvp);
1538		ASSERT(strcmp(nvpair_name(nvp), "uid") == 0);
1539		if (mp)
1540			(void) nvpair_value_uint32(nvp, &mp->mp_uid);
1541		/* gid */
1542		nvp = nvlist_next_nvpair(nvl, nvp);
1543		ASSERT(strcmp(nvpair_name(nvp), "gid") == 0);
1544		if (mp) {
1545			(void) nvpair_value_uint32(nvp, &mp->mp_gid);
1546
1547			if (cmd == MODREMMINORPERM) {
1548				rem_minorperm(major, name, mp, is_clone);
1549				free_mperm(mp);
1550			} else {
1551				add_minorperm(major, name, mp, is_clone);
1552			}
1553		}
1554	}
1555
1556	if (cmd == MODLOADMINORPERM)
1557		minorperm_loaded = 1;
1558
1559	/*
1560	 * Reset permissions of cached dv_nodes
1561	 */
1562	(void) devfs_reset_perm(DV_RESET_PERM);
1563
1564	return (0);
1565}
1566
1567static int
1568modctl_minorperm(int cmd, char *usrbuf, size_t buflen)
1569{
1570	int error;
1571	nvlist_t *nvl;
1572	char *buf = kmem_alloc(buflen, KM_SLEEP);
1573
1574	if ((error = ddi_copyin(usrbuf, buf, buflen, 0)) != 0) {
1575		kmem_free(buf, buflen);
1576		return (error);
1577	}
1578
1579	error = nvlist_unpack(buf, buflen, &nvl, KM_SLEEP);
1580	kmem_free(buf, buflen);
1581	if (error)
1582		return (error);
1583
1584	error = process_minorperm(cmd, nvl);
1585	nvlist_free(nvl);
1586	return (error);
1587}
1588
1589struct walk_args {
1590	char		*wa_drvname;
1591	list_t		wa_pathlist;
1592};
1593
1594struct path_elem {
1595	char		*pe_dir;
1596	char		*pe_nodename;
1597	list_node_t	pe_node;
1598	int		pe_dirlen;
1599};
1600
1601/*ARGSUSED*/
1602static int
1603modctl_inst_walker(const char *path, in_node_t *np, in_drv_t *dp, void *arg)
1604{
1605	struct walk_args *wargs = (struct walk_args *)arg;
1606	struct path_elem *pe;
1607	char *nodename;
1608
1609	if (strcmp(dp->ind_driver_name, wargs->wa_drvname) != 0)
1610		return (INST_WALK_CONTINUE);
1611
1612	pe = kmem_zalloc(sizeof (*pe), KM_SLEEP);
1613	pe->pe_dir = i_ddi_strdup((char *)path, KM_SLEEP);
1614	pe->pe_dirlen = strlen(pe->pe_dir) + 1;
1615	ASSERT(strrchr(pe->pe_dir, '/') != NULL);
1616	nodename = strrchr(pe->pe_dir, '/');
1617	*nodename++ = 0;
1618	pe->pe_nodename = nodename;
1619	list_insert_tail(&wargs->wa_pathlist, pe);
1620
1621	return (INST_WALK_CONTINUE);
1622}
1623
1624static int
1625modctl_remdrv_cleanup(const char *u_drvname)
1626{
1627	struct walk_args *wargs;
1628	struct path_elem *pe;
1629	char *drvname;
1630	int err, rval = 0;
1631
1632	drvname = kmem_alloc(MAXMODCONFNAME, KM_SLEEP);
1633	if ((err = copyinstr(u_drvname, drvname, MAXMODCONFNAME, 0))) {
1634		kmem_free(drvname, MAXMODCONFNAME);
1635		return (err);
1636	}
1637
1638	/*
1639	 * First go through the instance database.  For each
1640	 * instance of a device bound to the driver being
1641	 * removed, remove any underlying devfs attribute nodes.
1642	 *
1643	 * This is a two-step process.  First we go through
1644	 * the instance data itself, constructing a list of
1645	 * the nodes discovered.  The second step is then
1646	 * to find and remove any devfs attribute nodes
1647	 * for the instances discovered in the first step.
1648	 * The two-step process avoids any difficulties
1649	 * which could arise by holding the instance data
1650	 * lock with simultaneous devfs operations.
1651	 */
1652	wargs = kmem_zalloc(sizeof (*wargs), KM_SLEEP);
1653
1654	wargs->wa_drvname = drvname;
1655	list_create(&wargs->wa_pathlist,
1656	    sizeof (struct path_elem), offsetof(struct path_elem, pe_node));
1657
1658	(void) e_ddi_walk_instances(modctl_inst_walker, (void *)wargs);
1659
1660	for (pe = list_head(&wargs->wa_pathlist); pe != NULL;
1661	    pe = list_next(&wargs->wa_pathlist, pe)) {
1662		err = devfs_remdrv_cleanup((const char *)pe->pe_dir,
1663			(const char *)pe->pe_nodename);
1664		if (rval == 0)
1665			rval = err;
1666	}
1667
1668	while ((pe = list_head(&wargs->wa_pathlist)) != NULL) {
1669		list_remove(&wargs->wa_pathlist, pe);
1670		kmem_free(pe->pe_dir, pe->pe_dirlen);
1671		kmem_free(pe, sizeof (*pe));
1672	}
1673	kmem_free(wargs, sizeof (*wargs));
1674
1675	/*
1676	 * Pseudo nodes aren't recorded in the instance database
1677	 * so any such nodes need to be handled separately.
1678	 */
1679	err = devfs_remdrv_cleanup("pseudo", (const char *)drvname);
1680	if (rval == 0)
1681		rval = err;
1682
1683	kmem_free(drvname, MAXMODCONFNAME);
1684	return (rval);
1685}
1686
1687static int
1688modctl_allocpriv(const char *name)
1689{
1690	char *pstr = kmem_alloc(PRIVNAME_MAX, KM_SLEEP);
1691	int error;
1692
1693	if ((error = copyinstr(name, pstr, PRIVNAME_MAX, 0))) {
1694		kmem_free(pstr, PRIVNAME_MAX);
1695		return (error);
1696	}
1697	error = priv_getbyname(pstr, PRIV_ALLOC);
1698	if (error < 0)
1699		error = -error;
1700	else
1701		error = 0;
1702	kmem_free(pstr, PRIVNAME_MAX);
1703	return (error);
1704}
1705
1706static int
1707modctl_devexists(const char *upath, int pathlen)
1708{
1709	char	*path;
1710	int	ret;
1711
1712	/*
1713	 * copy in the path, including the terminating null
1714	 */
1715	pathlen++;
1716	if (pathlen <= 1 || pathlen > MAXPATHLEN)
1717		return (EINVAL);
1718	path = kmem_zalloc(pathlen + 1, KM_SLEEP);
1719	if ((ret = copyinstr(upath, path, pathlen, NULL)) == 0) {
1720		ret = sdev_modctl_devexists(path);
1721	}
1722
1723	kmem_free(path, pathlen + 1);
1724	return (ret);
1725}
1726
1727static int
1728modctl_devreaddir(const char *udir, int udirlen,
1729    char *upaths, int64_t *ulensp)
1730{
1731	char	*paths = NULL;
1732	char	**dirlist = NULL;
1733	char	*dir;
1734	int64_t	ulens;
1735	int64_t	lens;
1736	int	i, n;
1737	int	ret = 0;
1738	char	*p;
1739	int	npaths;
1740	int	npaths_alloc;
1741
1742	/*
1743	 * If upaths is NULL then we are only computing the amount of space
1744	 * needed to return the paths, with the value returned in *ulensp. If we
1745	 * are copying out paths then we get the amount of space allocated by
1746	 * the caller. If the actual space needed for paths is larger, or
1747	 * things are changing out from under us, then we return EAGAIN.
1748	 */
1749	if (upaths) {
1750		if (ulensp == NULL)
1751			return (EINVAL);
1752		if (copyin(ulensp, &ulens, sizeof (ulens)) != 0)
1753			return (EFAULT);
1754	}
1755
1756	/*
1757	 * copyin the /dev path including terminating null
1758	 */
1759	udirlen++;
1760	if (udirlen <= 1 || udirlen > MAXPATHLEN)
1761		return (EINVAL);
1762	dir = kmem_zalloc(udirlen + 1, KM_SLEEP);
1763	if ((ret = copyinstr(udir, dir, udirlen, NULL)) != 0)
1764		goto err;
1765
1766	if ((ret = sdev_modctl_readdir(dir, &dirlist,
1767	    &npaths, &npaths_alloc)) != 0) {
1768		ASSERT(dirlist == NULL);
1769		goto err;
1770	}
1771
1772	lens = 0;
1773	for (i = 0; i < npaths; i++) {
1774		lens += strlen(dirlist[i]) + 1;
1775	}
1776	lens++;		/* add one for double termination */
1777
1778	if (upaths) {
1779		if (lens > ulens) {
1780			ret = EAGAIN;
1781			goto out;
1782		}
1783
1784		paths = kmem_alloc(lens, KM_SLEEP);
1785
1786		p = paths;
1787		for (i = 0; i < npaths; i++) {
1788			n = strlen(dirlist[i]) + 1;
1789			bcopy(dirlist[i], p, n);
1790			p += n;
1791		}
1792		*p = 0;
1793
1794		if (copyout(paths, upaths, lens)) {
1795			ret = EFAULT;
1796			goto err;
1797		}
1798	}
1799
1800out:
1801	/* copy out the amount of space needed to hold the paths */
1802	if (copyout(&lens, ulensp, sizeof (lens)))
1803		ret = EFAULT;
1804
1805err:
1806	if (dirlist)
1807		sdev_modctl_readdir_free(dirlist, npaths, npaths_alloc);
1808	if (paths)
1809		kmem_free(paths, lens);
1810	kmem_free(dir, udirlen + 1);
1811	return (ret);
1812}
1813
1814int
1815modctl_moddevname(int subcmd, uintptr_t a1, uintptr_t a2)
1816{
1817	int error = 0;
1818
1819	switch (subcmd) {
1820	case MODDEVNAME_LOOKUPDOOR:
1821	case MODDEVNAME_DEVFSADMNODE:
1822		error = devname_filename_register(subcmd, (char *)a1);
1823		break;
1824	case MODDEVNAME_NSMAPS:
1825		error = devname_nsmaps_register((char *)a1, (size_t)a2);
1826		break;
1827	case MODDEVNAME_PROFILE:
1828		error = devname_profile_update((char *)a1, (size_t)a2);
1829		break;
1830	case MODDEVNAME_RECONFIG:
1831		i_ddi_set_reconfig();
1832		break;
1833	case MODDEVNAME_SYSAVAIL:
1834		i_ddi_set_sysavail();
1835		break;
1836	default:
1837		error = EINVAL;
1838		break;
1839	}
1840
1841	return (error);
1842}
1843
1844/*ARGSUSED5*/
1845int
1846modctl(int cmd, uintptr_t a1, uintptr_t a2, uintptr_t a3, uintptr_t a4,
1847    uintptr_t a5)
1848{
1849	int	error = EINVAL;
1850	dev_t	dev;
1851
1852	if (secpolicy_modctl(CRED(), cmd) != 0)
1853		return (set_errno(EPERM));
1854
1855	switch (cmd) {
1856	case MODLOAD:		/* load a module */
1857		error = modctl_modload((int)a1, (char *)a2, (int *)a3);
1858		break;
1859
1860	case MODUNLOAD:		/* unload a module */
1861		error = modctl_modunload((modid_t)a1);
1862		break;
1863
1864	case MODINFO:		/* get module status */
1865		error = modctl_modinfo((modid_t)a1, (struct modinfo *)a2);
1866		break;
1867
1868	case MODRESERVED:	/* get last major number in range */
1869		error = modctl_modreserve((modid_t)a1, (int *)a2);
1870		break;
1871
1872	case MODSETMINIROOT:	/* we are running in miniroot */
1873		isminiroot = 1;
1874		error = 0;
1875		break;
1876
1877	case MODADDMAJBIND:	/* read major binding file */
1878		error = modctl_add_major((int *)a2);
1879		break;
1880
1881	case MODGETPATHLEN:	/* get modpath length */
1882		error = modctl_getmodpathlen((int *)a2);
1883		break;
1884
1885	case MODGETPATH:	/* get modpath */
1886		error = modctl_getmodpath((char *)a2);
1887		break;
1888
1889	case MODREADSYSBIND:	/* read system call binding file */
1890		error = modctl_read_sysbinding_file();
1891		break;
1892
1893	case MODGETMAJBIND:	/* get major number for named device */
1894		error = modctl_getmaj((char *)a1, (uint_t)a2, (int *)a3);
1895		break;
1896
1897	case MODGETNAME:	/* get name of device given major number */
1898		error = modctl_getname((char *)a1, (uint_t)a2, (int *)a3);
1899		break;
1900
1901	case MODDEVT2INSTANCE:
1902		if (get_udatamodel() == DATAMODEL_NATIVE) {
1903			dev = (dev_t)a1;
1904		}
1905#ifdef _SYSCALL32_IMPL
1906		else {
1907			dev = expldev(a1);
1908		}
1909#endif
1910		error = modctl_devt2instance(dev, (int *)a2);
1911		break;
1912
1913	case MODSIZEOF_DEVID:	/* sizeof device id of device given dev_t */
1914		if (get_udatamodel() == DATAMODEL_NATIVE) {
1915			dev = (dev_t)a1;
1916		}
1917#ifdef _SYSCALL32_IMPL
1918		else {
1919			dev = expldev(a1);
1920		}
1921#endif
1922		error = modctl_sizeof_devid(dev, (uint_t *)a2);
1923		break;
1924
1925	case MODGETDEVID:	/* get device id of device given dev_t */
1926		if (get_udatamodel() == DATAMODEL_NATIVE) {
1927			dev = (dev_t)a1;
1928		}
1929#ifdef _SYSCALL32_IMPL
1930		else {
1931			dev = expldev(a1);
1932		}
1933#endif
1934		error = modctl_get_devid(dev, (uint_t)a2, (ddi_devid_t)a3);
1935		break;
1936
1937	case MODSIZEOF_MINORNAME:	/* sizeof minor nm (dev_t,spectype) */
1938		if (get_udatamodel() == DATAMODEL_NATIVE) {
1939			error = modctl_sizeof_minorname((dev_t)a1, (int)a2,
1940			    (uint_t *)a3);
1941		}
1942#ifdef _SYSCALL32_IMPL
1943		else {
1944			error = modctl_sizeof_minorname(expldev(a1), (int)a2,
1945			    (uint_t *)a3);
1946		}
1947
1948#endif
1949		break;
1950
1951	case MODGETMINORNAME:		/* get minor name of (dev_t,spectype) */
1952		if (get_udatamodel() == DATAMODEL_NATIVE) {
1953			error = modctl_get_minorname((dev_t)a1, (int)a2,
1954			    (uint_t)a3, (char *)a4);
1955		}
1956#ifdef _SYSCALL32_IMPL
1957		else {
1958			error = modctl_get_minorname(expldev(a1), (int)a2,
1959			    (uint_t)a3, (char *)a4);
1960		}
1961#endif
1962		break;
1963
1964	case MODGETDEVFSPATH_LEN:	/* sizeof path nm of (dev_t,spectype) */
1965		if (get_udatamodel() == DATAMODEL_NATIVE) {
1966			error = modctl_devfspath_len((dev_t)a1, (int)a2,
1967			    (uint_t *)a3);
1968		}
1969#ifdef _SYSCALL32_IMPL
1970		else {
1971			error = modctl_devfspath_len(expldev(a1), (int)a2,
1972			    (uint_t *)a3);
1973		}
1974
1975#endif
1976		break;
1977
1978	case MODGETDEVFSPATH:   	/* get path name of (dev_t,spec) type */
1979		if (get_udatamodel() == DATAMODEL_NATIVE) {
1980			error = modctl_devfspath((dev_t)a1, (int)a2,
1981			    (uint_t)a3, (char *)a4);
1982		}
1983#ifdef _SYSCALL32_IMPL
1984		else {
1985			error = modctl_devfspath(expldev(a1), (int)a2,
1986			    (uint_t)a3, (char *)a4);
1987		}
1988#endif
1989		break;
1990
1991	case MODGETDEVFSPATH_MI_LEN:	/* sizeof path nm of (major,instance) */
1992		error = modctl_devfspath_mi_len((major_t)a1, (int)a2,
1993			    (uint_t *)a3);
1994		break;
1995
1996	case MODGETDEVFSPATH_MI:   	/* get path name of (major,instance) */
1997		error = modctl_devfspath_mi((major_t)a1, (int)a2,
1998			    (uint_t)a3, (char *)a4);
1999		break;
2000
2001
2002	case MODEVENTS:
2003		error = modctl_modevents((int)a1, a2, a3, a4, (uint_t)a5);
2004		break;
2005
2006	case MODGETFBNAME:	/* get the framebuffer name */
2007		error = modctl_get_fbname((char *)a1);
2008		break;
2009
2010	case MODREREADDACF:	/* reread dacf rule database from given file */
2011		error = modctl_reread_dacf((char *)a1);
2012		break;
2013
2014	case MODLOADDRVCONF:	/* load driver.conf file for major */
2015		error = modctl_load_drvconf((major_t)a1);
2016		break;
2017
2018	case MODUNLOADDRVCONF:	/* unload driver.conf file for major */
2019		error = modctl_unload_drvconf((major_t)a1);
2020		break;
2021
2022	case MODREMMAJBIND:	/* remove a major binding */
2023		error = modctl_rem_major((major_t)a1);
2024		break;
2025
2026	case MODDEVID2PATHS:	/* get paths given devid */
2027		error = modctl_devid2paths((ddi_devid_t)a1, (char *)a2,
2028		    (uint_t)a3, (size_t *)a4, (char *)a5);
2029		break;
2030
2031	case MODSETDEVPOLICY:	/* establish device policy */
2032		error = devpolicy_load((int)a1, (size_t)a2, (devplcysys_t *)a3);
2033		break;
2034
2035	case MODGETDEVPOLICY:	/* get device policy */
2036		error = devpolicy_get((int *)a1, (size_t)a2,
2037				(devplcysys_t *)a3);
2038		break;
2039
2040	case MODALLOCPRIV:
2041		error = modctl_allocpriv((const char *)a1);
2042		break;
2043
2044	case MODGETDEVPOLICYBYNAME:
2045		error = devpolicy_getbyname((size_t)a1,
2046		    (devplcysys_t *)a2, (char *)a3);
2047		break;
2048
2049	case MODLOADMINORPERM:
2050	case MODADDMINORPERM:
2051	case MODREMMINORPERM:
2052		error = modctl_minorperm(cmd, (char *)a1, (size_t)a2);
2053		break;
2054
2055	case MODREMDRVCLEANUP:
2056		error = modctl_remdrv_cleanup((const char *)a1);
2057		break;
2058
2059	case MODDEVEXISTS:	/* non-reconfiguring /dev lookup */
2060		error = modctl_devexists((const char *)a1, (size_t)a2);
2061		break;
2062
2063	case MODDEVREADDIR:	/* non-reconfiguring /dev readdir */
2064		error = modctl_devreaddir((const char *)a1, (size_t)a2,
2065		    (char *)a3, (int64_t *)a4);
2066		break;
2067
2068	case MODDEVNAME:
2069		error = modctl_moddevname((int)a1, a2, a3);
2070		break;
2071
2072	default:
2073		error = EINVAL;
2074		break;
2075	}
2076
2077	return (error ? set_errno(error) : 0);
2078}
2079
2080/*
2081 * Calls to kobj_load_module()() are handled off to this routine in a
2082 * separate thread.
2083 */
2084static void
2085modload_thread(struct loadmt *ltp)
2086{
2087	/* load the module and signal the creator of this thread */
2088	kmutex_t	cpr_lk;
2089	callb_cpr_t	cpr_i;
2090
2091	mutex_init(&cpr_lk, NULL, MUTEX_DEFAULT, NULL);
2092	CALLB_CPR_INIT(&cpr_i, &cpr_lk, callb_generic_cpr, "modload");
2093	/* borrow the devi lock from thread which invoked us */
2094	pm_borrow_lock(ltp->owner);
2095	ltp->retval = kobj_load_module(ltp->mp, ltp->usepath);
2096	pm_return_lock();
2097	sema_v(&ltp->sema);
2098	mutex_enter(&cpr_lk);
2099	CALLB_CPR_EXIT(&cpr_i);
2100	mutex_destroy(&cpr_lk);
2101	thread_exit();
2102}
2103
2104/*
2105 * load a module, adding a reference if caller specifies rmodp.  If rmodp
2106 * is specified then an errno is returned, otherwise a module index is
2107 * returned (-1 on error).
2108 */
2109static int
2110modrload(char *subdir, char *filename, struct modctl **rmodp)
2111{
2112	struct modctl *modp;
2113	size_t size;
2114	char *fullname;
2115	int retval = EINVAL;
2116	int id = -1;
2117
2118	if (rmodp)
2119		*rmodp = NULL;			/* avoid garbage */
2120
2121	if (subdir != NULL) {
2122		/*
2123		 * refuse / in filename to prevent "../" escapes.
2124		 */
2125		if (strchr(filename, '/') != NULL)
2126			return (rmodp ? retval : id);
2127
2128		/*
2129		 * allocate enough space for <subdir>/<filename><NULL>
2130		 */
2131		size = strlen(subdir) + strlen(filename) + 2;
2132		fullname = kmem_zalloc(size, KM_SLEEP);
2133		(void) sprintf(fullname, "%s/%s", subdir, filename);
2134	} else {
2135		fullname = filename;
2136	}
2137
2138	modp = mod_hold_installed_mod(fullname, 1, &retval);
2139	if (modp != NULL) {
2140		id = modp->mod_id;
2141		if (rmodp) {
2142			/* add mod_ref and return *rmodp */
2143			mutex_enter(&mod_lock);
2144			modp->mod_ref++;
2145			mutex_exit(&mod_lock);
2146			*rmodp = modp;
2147		}
2148		mod_release_mod(modp);
2149		CPU_STATS_ADDQ(CPU, sys, modload, 1);
2150	}
2151
2152done:	if (subdir != NULL)
2153		kmem_free(fullname, size);
2154	return (rmodp ? retval : id);
2155}
2156
2157/*
2158 * This is the primary kernel interface to load a module. It loads and
2159 * installs the named module.  It does not hold mod_ref of the module, so
2160 * a module unload attempt can occur at any time - it is up to the
2161 * _fini/mod_remove implementation to determine if unload will succeed.
2162 */
2163int
2164modload(char *subdir, char *filename)
2165{
2166	return (modrload(subdir, filename, NULL));
2167}
2168
2169/*
2170 * Load a module using a series of qualified names from most specific to least
2171 * specific, e.g. for subdir "foo", p1 "bar", p2 "baz", we might try:
2172 *
2173 * foo/bar.baz.1.2.3
2174 * foo/bar.baz.1.2
2175 * foo/bar.baz.1
2176 *
2177 * Return the module ID on success; -1 if no module was loaded.
2178 */
2179int
2180modload_qualified(const char *subdir, const char *p1,
2181    const char *p2, const char *delim, uint_t suffv[], int suffc)
2182{
2183	char path[MOD_MAXPATH];
2184	size_t n, resid = sizeof (path);
2185	char *p = path;
2186
2187	char **dotv;
2188	int i, rc, id;
2189	modctl_t *mp;
2190
2191	if (p2 != NULL)
2192		n = snprintf(p, resid, "%s/%s%s%s", subdir, p1, delim, p2);
2193	else
2194		n = snprintf(p, resid, "%s/%s", subdir, p1);
2195
2196	if (n >= resid)
2197		return (-1);
2198
2199	p += n;
2200	resid -= n;
2201	dotv = kmem_alloc(sizeof (char *) * (suffc + 1), KM_SLEEP);
2202
2203	for (i = 0; i < suffc; i++) {
2204		dotv[i] = p;
2205		n = snprintf(p, resid, "%s%u", delim, suffv[i]);
2206
2207		if (n >= resid) {
2208			kmem_free(dotv, sizeof (char *) * (suffc + 1));
2209			return (-1);
2210		}
2211
2212		p += n;
2213		resid -= n;
2214	}
2215
2216	dotv[suffc] = p;
2217
2218	for (i = suffc; i >= 0; i--) {
2219		dotv[i][0] = '\0';
2220		mp = mod_hold_installed_mod(path, 1, &rc);
2221
2222		if (mp != NULL) {
2223			kmem_free(dotv, sizeof (char *) * (suffc + 1));
2224			id = mp->mod_id;
2225			mod_release_mod(mp);
2226			return (id);
2227		}
2228	}
2229
2230	kmem_free(dotv, sizeof (char *) * (suffc + 1));
2231	return (-1);
2232}
2233
2234/*
2235 * Load a module.
2236 */
2237int
2238modloadonly(char *subdir, char *filename)
2239{
2240	struct modctl *modp;
2241	char *fullname;
2242	size_t size;
2243	int id, retval;
2244
2245	if (subdir != NULL) {
2246		/*
2247		 * allocate enough space for <subdir>/<filename><NULL>
2248		 */
2249		size = strlen(subdir) + strlen(filename) + 2;
2250		fullname = kmem_zalloc(size, KM_SLEEP);
2251		(void) sprintf(fullname, "%s/%s", subdir, filename);
2252	} else {
2253		fullname = filename;
2254	}
2255
2256	modp = mod_hold_loaded_mod(NULL, fullname, &retval);
2257	if (modp) {
2258		id = modp->mod_id;
2259		mod_release_mod(modp);
2260	}
2261
2262	if (subdir != NULL)
2263		kmem_free(fullname, size);
2264
2265	if (retval == 0)
2266		return (id);
2267	return (-1);
2268}
2269
2270/*
2271 * Try to uninstall and unload a module, removing a reference if caller
2272 * specifies rmodp.
2273 */
2274static int
2275modunrload(modid_t id, struct modctl **rmodp, int unload)
2276{
2277	struct modctl	*modp;
2278	int		retval;
2279
2280	if (rmodp)
2281		*rmodp = NULL;			/* avoid garbage */
2282
2283	if ((modp = mod_hold_by_id((modid_t)id)) == NULL)
2284		return (EINVAL);
2285
2286	if (rmodp) {
2287		mutex_enter(&mod_lock);
2288		modp->mod_ref--;
2289		mutex_exit(&mod_lock);
2290		*rmodp = modp;
2291	}
2292
2293	if (unload) {
2294		retval = moduninstall(modp);
2295		if (retval == 0) {
2296			mod_unload(modp);
2297			CPU_STATS_ADDQ(CPU, sys, modunload, 1);
2298		} else if (retval == EALREADY)
2299			retval = 0;	/* already unloaded, not an error */
2300	} else
2301		retval = 0;
2302
2303	mod_release_mod(modp);
2304	return (retval);
2305}
2306
2307/*
2308 * Uninstall and unload a module.
2309 */
2310int
2311modunload(modid_t id)
2312{
2313	int		retval;
2314
2315	/* synchronize with any active modunload_disable() */
2316	modunload_begin();
2317	if (ddi_root_node())
2318		(void) devfs_clean(ddi_root_node(), NULL, 0);
2319	retval = modunrload(id, NULL, 1);
2320	modunload_end();
2321	return (retval);
2322}
2323
2324/*
2325 * Return status of a loaded module.
2326 */
2327static int
2328modinfo(modid_t id, struct modinfo *modinfop)
2329{
2330	struct modctl	*modp;
2331	modid_t		mid;
2332	int		i;
2333
2334	mid = modinfop->mi_id;
2335	if (modinfop->mi_info & MI_INFO_ALL) {
2336		while ((modp = mod_hold_next_by_id(mid++)) != NULL) {
2337			if ((modinfop->mi_info & MI_INFO_CNT) ||
2338			    modp->mod_installed)
2339				break;
2340			mod_release_mod(modp);
2341		}
2342		if (modp == NULL)
2343			return (EINVAL);
2344	} else {
2345		modp = mod_hold_by_id(id);
2346		if (modp == NULL)
2347			return (EINVAL);
2348		if (!(modinfop->mi_info & MI_INFO_CNT) &&
2349		    (modp->mod_installed == 0)) {
2350			mod_release_mod(modp);
2351			return (EINVAL);
2352		}
2353	}
2354
2355	modinfop->mi_rev = 0;
2356	modinfop->mi_state = 0;
2357	for (i = 0; i < MODMAXLINK; i++) {
2358		modinfop->mi_msinfo[i].msi_p0 = -1;
2359		modinfop->mi_msinfo[i].msi_linkinfo[0] = 0;
2360	}
2361	if (modp->mod_loaded) {
2362		modinfop->mi_state = MI_LOADED;
2363		kobj_getmodinfo(modp->mod_mp, modinfop);
2364	}
2365	if (modp->mod_installed) {
2366		modinfop->mi_state |= MI_INSTALLED;
2367
2368		(void) mod_getinfo(modp, modinfop);
2369	}
2370
2371	modinfop->mi_id = modp->mod_id;
2372	modinfop->mi_loadcnt = modp->mod_loadcnt;
2373	(void) strcpy(modinfop->mi_name, modp->mod_modname);
2374
2375	mod_release_mod(modp);
2376	return (0);
2377}
2378
2379static char mod_stub_err[] = "mod_hold_stub: Couldn't load stub module %s";
2380static char no_err[] = "No error function for weak stub %s";
2381
2382/*
2383 * used by the stubs themselves to load and hold a module.
2384 * Returns  0 if the module is successfully held;
2385 *	    the stub needs to call mod_release_stub().
2386 *	    -1 if the stub should just call the err_fcn.
2387 * Note that this code is stretched out so that we avoid subroutine calls
2388 * and optimize for the most likely case.  That is, the case where the
2389 * module is loaded and installed and not held.  In that case we just inc
2390 * the mod_ref count and continue.
2391 */
2392int
2393mod_hold_stub(struct mod_stub_info *stub)
2394{
2395	struct modctl *mp;
2396	struct mod_modinfo *mip;
2397
2398	mip = stub->mods_modinfo;
2399
2400	mutex_enter(&mod_lock);
2401
2402	/* we do mod_hold_by_modctl inline for speed */
2403
2404mod_check_again:
2405	if ((mp = mip->mp) != NULL) {
2406		if (mp->mod_busy == 0) {
2407			if (mp->mod_installed) {
2408				/* increment the reference count */
2409				mp->mod_ref++;
2410				ASSERT(mp->mod_ref && mp->mod_installed);
2411				mutex_exit(&mod_lock);
2412				return (0);
2413			} else {
2414				mp->mod_busy = 1;
2415				mp->mod_inprogress_thread =
2416				    (curthread == NULL ?
2417				    (kthread_id_t)-1 : curthread);
2418			}
2419		} else {
2420			/*
2421			 * wait one time and then go see if someone
2422			 * else has resolved the stub (set mip->mp).
2423			 */
2424			if (mod_hold_by_modctl(mp,
2425			    MOD_WAIT_ONCE | MOD_LOCK_HELD))
2426				goto mod_check_again;
2427
2428			/*
2429			 * what we have now may have been unloaded!, in
2430			 * that case, mip->mp will be NULL, we'll hit this
2431			 * module and load again..
2432			 */
2433			cmn_err(CE_PANIC, "mod_hold_stub should have blocked");
2434		}
2435		mutex_exit(&mod_lock);
2436	} else {
2437		/* first time we've hit this module */
2438		mutex_exit(&mod_lock);
2439		mp = mod_hold_by_name(mip->modm_module_name);
2440		mip->mp = mp;
2441	}
2442
2443	/*
2444	 * If we are here, it means that the following conditions
2445	 * are satisfied.
2446	 *
2447	 * mip->mp != NULL
2448	 * this thread has set the mp->mod_busy = 1
2449	 * mp->mod_installed = 0
2450	 *
2451	 */
2452	ASSERT(mp != NULL);
2453	ASSERT(mp->mod_busy == 1);
2454
2455	if (mp->mod_installed == 0) {
2456		/* Module not loaded, if weak stub don't load it */
2457		if (stub->mods_flag & MODS_WEAK) {
2458			if (stub->mods_errfcn == NULL) {
2459				mod_release_mod(mp);
2460				cmn_err(CE_PANIC, no_err,
2461				    mip->modm_module_name);
2462			}
2463		} else {
2464			/* Not a weak stub so load the module */
2465
2466			if (mod_load(mp, 1) != 0 || modinstall(mp) != 0) {
2467				/*
2468				 * If mod_load() was successful
2469				 * and modinstall() failed, then
2470				 * unload the module.
2471				 */
2472				if (mp->mod_loaded)
2473					mod_unload(mp);
2474
2475				mod_release_mod(mp);
2476				if (stub->mods_errfcn == NULL) {
2477					cmn_err(CE_PANIC, mod_stub_err,
2478					    mip->modm_module_name);
2479				} else {
2480					return (-1);
2481				}
2482			}
2483		}
2484	}
2485
2486	/*
2487	 * At this point module is held and loaded. Release
2488	 * the mod_busy and mod_inprogress_thread before
2489	 * returning. We actually call mod_release() here so
2490	 * that if another stub wants to access this module,
2491	 * it can do so. mod_ref is incremented before mod_release()
2492	 * is called to prevent someone else from snatching the
2493	 * module from this thread.
2494	 */
2495	mutex_enter(&mod_lock);
2496	mp->mod_ref++;
2497	ASSERT(mp->mod_ref &&
2498	    (mp->mod_loaded || (stub->mods_flag & MODS_WEAK)));
2499	mod_release(mp);
2500	mutex_exit(&mod_lock);
2501	return (0);
2502}
2503
2504void
2505mod_release_stub(struct mod_stub_info *stub)
2506{
2507	struct modctl *mp = stub->mods_modinfo->mp;
2508
2509	/* inline mod_release_mod */
2510	mutex_enter(&mod_lock);
2511	ASSERT(mp->mod_ref &&
2512	    (mp->mod_loaded || (stub->mods_flag & MODS_WEAK)));
2513	mp->mod_ref--;
2514	if (mp->mod_want) {
2515		mp->mod_want = 0;
2516		cv_broadcast(&mod_cv);
2517	}
2518	mutex_exit(&mod_lock);
2519}
2520
2521static struct modctl *
2522mod_hold_loaded_mod(struct modctl *dep, char *filename, int *status)
2523{
2524	struct modctl *modp;
2525	int retval;
2526
2527	/*
2528	 * Hold the module.
2529	 */
2530	modp = mod_hold_by_name_requisite(dep, filename);
2531	if (modp) {
2532		retval = mod_load(modp, 1);
2533		if (retval != 0) {
2534			mod_release_mod(modp);
2535			modp = NULL;
2536		}
2537		*status = retval;
2538	} else {
2539		*status = ENOSPC;
2540	}
2541
2542	/*
2543	 * if dep is not NULL, clear the module dependency information.
2544	 * This information is set in mod_hold_by_name_common().
2545	 */
2546	if (dep != NULL && dep->mod_requisite_loading != NULL) {
2547		ASSERT(dep->mod_busy);
2548		dep->mod_requisite_loading = NULL;
2549	}
2550
2551	return (modp);
2552}
2553
2554/*
2555 * hold, load, and install the named module
2556 */
2557static struct modctl *
2558mod_hold_installed_mod(char *name, int usepath, int *r)
2559{
2560	struct modctl *modp;
2561	int retval;
2562
2563	/*
2564	 * Verify that that module in question actually exists on disk
2565	 * before allocation of module structure by mod_hold_by_name.
2566	 */
2567	if (modrootloaded && swaploaded) {
2568		if (!kobj_path_exists(name, usepath)) {
2569			*r = ENOENT;
2570			return (NULL);
2571		}
2572	}
2573
2574	/*
2575	 * Hold the module.
2576	 */
2577	modp = mod_hold_by_name(name);
2578	if (modp) {
2579		retval = mod_load(modp, usepath);
2580		if (retval != 0) {
2581			mod_release_mod(modp);
2582			modp = NULL;
2583			*r = retval;
2584		} else {
2585			if ((*r = modinstall(modp)) != 0) {
2586				/*
2587				 * We loaded it, but failed to _init() it.
2588				 * Be kind to developers -- force it
2589				 * out of memory now so that the next
2590				 * attempt to use the module will cause
2591				 * a reload.  See 1093793.
2592				 */
2593				mod_unload(modp);
2594				mod_release_mod(modp);
2595				modp = NULL;
2596			}
2597		}
2598	} else {
2599		*r = ENOSPC;
2600	}
2601	return (modp);
2602}
2603
2604static char mod_excl_msg[] =
2605	"module %s(%s) is EXCLUDED and will not be loaded\n";
2606static char mod_init_msg[] = "loadmodule:%s(%s): _init() error %d\n";
2607
2608/*
2609 * This routine is needed for dependencies.  Users specify dependencies
2610 * by declaring a character array initialized to filenames of dependents.
2611 * So the code that handles dependents deals with filenames (and not
2612 * module names) because that's all it has.  We load by filename and once
2613 * we've loaded a file we can get the module name.
2614 * Unfortunately there isn't a single unified filename/modulename namespace.
2615 * C'est la vie.
2616 *
2617 * We allow the name being looked up to be prepended by an optional
2618 * subdirectory e.g. we can lookup (NULL, "fs/ufs") or ("fs", "ufs")
2619 */
2620struct modctl *
2621mod_find_by_filename(char *subdir, char *filename)
2622{
2623	struct modctl	*mp;
2624	size_t		sublen;
2625
2626	ASSERT(!MUTEX_HELD(&mod_lock));
2627	if (subdir != NULL)
2628		sublen = strlen(subdir);
2629	else
2630		sublen = 0;
2631
2632	mutex_enter(&mod_lock);
2633	mp = &modules;
2634	do {
2635		if (sublen) {
2636			char *mod_filename = mp->mod_filename;
2637
2638			if (strncmp(subdir, mod_filename, sublen) == 0 &&
2639			    mod_filename[sublen] == '/' &&
2640			    strcmp(filename, &mod_filename[sublen + 1]) == 0) {
2641				mutex_exit(&mod_lock);
2642				return (mp);
2643			}
2644		} else if (strcmp(filename, mp->mod_filename) == 0) {
2645			mutex_exit(&mod_lock);
2646			return (mp);
2647		}
2648	} while ((mp = mp->mod_next) != &modules);
2649	mutex_exit(&mod_lock);
2650	return (NULL);
2651}
2652
2653/*
2654 * Check for circular dependencies.  This is called from do_dependents()
2655 * in kobj.c.  If we are the thread already loading this module, then
2656 * we're trying to load a dependent that we're already loading which
2657 * means the user specified circular dependencies.
2658 */
2659static int
2660mod_circdep(struct modctl *modp)
2661{
2662	struct modctl	*rmod;
2663
2664	ASSERT(MUTEX_HELD(&mod_lock));
2665
2666	/*
2667	 * Check the mod_inprogress_thread first.
2668	 * mod_inprogress_thread is used in mod_hold_stub()
2669	 * directly to improve performance.
2670	 */
2671	if (modp->mod_inprogress_thread == curthread)
2672		return (1);
2673
2674	/*
2675	 * Check the module circular dependencies.
2676	 */
2677	for (rmod = modp; rmod != NULL; rmod = rmod->mod_requisite_loading) {
2678		/*
2679		 * Check if there is a module circular dependency.
2680		 */
2681		if (rmod->mod_requisite_loading == modp)
2682			return (1);
2683	}
2684	return (0);
2685}
2686
2687static int
2688mod_getinfo(struct modctl *modp, struct modinfo *modinfop)
2689{
2690	int (*func)(struct modinfo *);
2691	int retval;
2692
2693	ASSERT(modp->mod_busy);
2694
2695	/* primary modules don't do getinfo */
2696	if (modp->mod_prim)
2697		return (0);
2698
2699	func = (int (*)(struct modinfo *))kobj_lookup(modp->mod_mp, "_info");
2700
2701	if (kobj_addrcheck(modp->mod_mp, (caddr_t)func)) {
2702		cmn_err(CE_WARN, "_info() not defined properly in %s",
2703		    modp->mod_filename);
2704		/*
2705		 * The semantics of mod_info(9F) are that 0 is failure
2706		 * and non-zero is success.
2707		 */
2708		retval = 0;
2709	} else
2710		retval = (*func)(modinfop);	/* call _info() function */
2711
2712	if (moddebug & MODDEBUG_USERDEBUG)
2713		printf("Returned from _info, retval = %x\n", retval);
2714
2715	return (retval);
2716}
2717
2718static void
2719modadd(struct modctl *mp)
2720{
2721	ASSERT(MUTEX_HELD(&mod_lock));
2722
2723	mp->mod_id = last_module_id++;
2724	mp->mod_next = &modules;
2725	mp->mod_prev = modules.mod_prev;
2726	modules.mod_prev->mod_next = mp;
2727	modules.mod_prev = mp;
2728}
2729
2730/*ARGSUSED*/
2731static struct modctl *
2732allocate_modp(const char *filename, const char *modname)
2733{
2734	struct modctl *mp;
2735
2736	mp = kobj_zalloc(sizeof (*mp), KM_SLEEP);
2737	mp->mod_modname = kobj_zalloc(strlen(modname) + 1, KM_SLEEP);
2738	(void) strcpy(mp->mod_modname, modname);
2739	return (mp);
2740}
2741
2742/*
2743 * Get the value of a symbol.  This is a wrapper routine that
2744 * calls kobj_getsymvalue().  kobj_getsymvalue() may go away but this
2745 * wrapper will prevent callers from noticing.
2746 */
2747uintptr_t
2748modgetsymvalue(char *name, int kernelonly)
2749{
2750	return (kobj_getsymvalue(name, kernelonly));
2751}
2752
2753/*
2754 * Get the symbol nearest an address.  This is a wrapper routine that
2755 * calls kobj_getsymname().  kobj_getsymname() may go away but this
2756 * wrapper will prevent callers from noticing.
2757 */
2758char *
2759modgetsymname(uintptr_t value, ulong_t *offset)
2760{
2761	return (kobj_getsymname(value, offset));
2762}
2763
2764/*
2765 * Lookup a symbol in a specified module.  These are wrapper routines that
2766 * call kobj_lookup().  kobj_lookup() may go away but these wrappers will
2767 * prevent callers from noticing.
2768 */
2769uintptr_t
2770modlookup(const char *modname, const char *symname)
2771{
2772	struct modctl *modp;
2773	uintptr_t val;
2774
2775	if ((modp = mod_hold_by_name(modname)) == NULL)
2776		return (0);
2777	val = kobj_lookup(modp->mod_mp, symname);
2778	mod_release_mod(modp);
2779	return (val);
2780}
2781
2782uintptr_t
2783modlookup_by_modctl(modctl_t *modp, const char *symname)
2784{
2785	ASSERT(modp->mod_ref > 0 || modp->mod_busy);
2786
2787	return (kobj_lookup(modp->mod_mp, symname));
2788}
2789
2790/*
2791 * Ask the user for the name of the system file and the default path
2792 * for modules.
2793 */
2794void
2795mod_askparams()
2796{
2797	static char s0[64];
2798	intptr_t fd;
2799
2800	if ((fd = kobj_open(systemfile)) != -1L)
2801		kobj_close(fd);
2802	else
2803		systemfile = NULL;
2804
2805	/*CONSTANTCONDITION*/
2806	while (1) {
2807		printf("Name of system file [%s]:  ",
2808			systemfile ? systemfile : "/dev/null");
2809
2810		console_gets(s0, sizeof (s0));
2811
2812		if (s0[0] == '\0')
2813			break;
2814		else if (strcmp(s0, "/dev/null") == 0) {
2815			systemfile = NULL;
2816			break;
2817		} else {
2818			if ((fd = kobj_open(s0)) != -1L) {
2819				kobj_close(fd);
2820				systemfile = s0;
2821				break;
2822			}
2823		}
2824		printf("can't find file %s\n", s0);
2825	}
2826}
2827
2828static char loading_msg[] = "loading '%s' id %d\n";
2829static char load_msg[] = "load '%s' id %d loaded @ 0x%p/0x%p size %d/%d\n";
2830
2831/*
2832 * Common code for loading a module (but not installing it).
2833 * Handoff the task of module loading to a seperate thread
2834 * with a large stack if possible, since this code may recurse a few times.
2835 * Return zero if there are no errors or an errno value.
2836 */
2837static int
2838mod_load(struct modctl *mp, int usepath)
2839{
2840	int		retval;
2841	struct modinfo	*modinfop = NULL;
2842	struct loadmt	lt;
2843
2844	ASSERT(MUTEX_NOT_HELD(&mod_lock));
2845	ASSERT(mp->mod_busy);
2846
2847	if (mp->mod_loaded)
2848		return (0);
2849
2850	if (mod_sysctl(SYS_CHECK_EXCLUDE, mp->mod_modname) != 0 ||
2851	    mod_sysctl(SYS_CHECK_EXCLUDE, mp->mod_filename) != 0) {
2852		if (moddebug & MODDEBUG_LOADMSG) {
2853			printf(mod_excl_msg, mp->mod_filename,
2854				mp->mod_modname);
2855		}
2856		return (ENXIO);
2857	}
2858	if (moddebug & MODDEBUG_LOADMSG2)
2859		printf(loading_msg, mp->mod_filename, mp->mod_id);
2860
2861	if (curthread != &t0) {
2862		lt.mp = mp;
2863		lt.usepath = usepath;
2864		lt.owner = curthread;
2865		sema_init(&lt.sema, 0, NULL, SEMA_DEFAULT, NULL);
2866
2867		/* create thread to hand of call to */
2868		(void) thread_create(NULL, DEFAULTSTKSZ * 2,
2869		    modload_thread, &lt, 0, &p0, TS_RUN, maxclsyspri);
2870
2871		/* wait for thread to complete kobj_load_module */
2872		sema_p(&lt.sema);
2873
2874		sema_destroy(&lt.sema);
2875		retval = lt.retval;
2876	} else
2877		retval = kobj_load_module(mp, usepath);
2878
2879	if (mp->mod_mp) {
2880		ASSERT(retval == 0);
2881		mp->mod_loaded = 1;
2882		mp->mod_loadcnt++;
2883		if (moddebug & MODDEBUG_LOADMSG) {
2884			printf(load_msg, mp->mod_filename, mp->mod_id,
2885				(void *)((struct module *)mp->mod_mp)->text,
2886				(void *)((struct module *)mp->mod_mp)->data,
2887				((struct module *)mp->mod_mp)->text_size,
2888				((struct module *)mp->mod_mp)->data_size);
2889		}
2890
2891		/*
2892		 * XXX - There should be a better way to get this.
2893		 */
2894		modinfop = kmem_zalloc(sizeof (struct modinfo), KM_SLEEP);
2895		modinfop->mi_info = MI_INFO_LINKAGE;
2896		if (mod_getinfo(mp, modinfop) == 0)
2897			mp->mod_linkage = NULL;
2898		else {
2899			mp->mod_linkage = (void *)modinfop->mi_base;
2900			ASSERT(mp->mod_linkage->ml_rev == MODREV_1);
2901		}
2902
2903		/*
2904		 * DCS: bootstrapping code. If the driver is loaded
2905		 * before root mount, it is assumed that the driver
2906		 * may be used before mounting root. In order to
2907		 * access mappings of global to local minor no.'s
2908		 * during installation/open of the driver, we load
2909		 * them into memory here while the BOP_interfaces
2910		 * are still up.
2911		 */
2912		if ((cluster_bootflags & CLUSTER_BOOTED) && !modrootloaded) {
2913			retval = clboot_modload(mp);
2914		}
2915
2916		kmem_free(modinfop, sizeof (struct modinfo));
2917		(void) mod_sysctl(SYS_SET_MVAR, (void *)mp);
2918		retval = install_stubs_by_name(mp, mp->mod_modname);
2919
2920		/*
2921		 * Now that the module is loaded, we need to give DTrace
2922		 * a chance to notify its providers.  This is done via
2923		 * the dtrace_modload function pointer.
2924		 */
2925		if (strcmp(mp->mod_modname, "dtrace") != 0) {
2926			struct modctl *dmp = mod_hold_by_name("dtrace");
2927
2928			if (dmp != NULL && dtrace_modload != NULL)
2929				(*dtrace_modload)(mp);
2930
2931			mod_release_mod(dmp);
2932		}
2933
2934	} else {
2935		/*
2936		 * If load failed then we need to release any requisites
2937		 * that we had established.
2938		 */
2939		ASSERT(retval);
2940		mod_release_requisites(mp);
2941
2942		if (moddebug & MODDEBUG_ERRMSG)
2943			printf("error loading '%s', error %d\n",
2944			    mp->mod_filename, retval);
2945	}
2946	return (retval);
2947}
2948
2949static char unload_msg[] = "unloading %s, module id %d, loadcnt %d.\n";
2950
2951static void
2952mod_unload(struct modctl *mp)
2953{
2954	ASSERT(MUTEX_NOT_HELD(&mod_lock));
2955	ASSERT(mp->mod_busy);
2956	ASSERT((mp->mod_loaded && (mp->mod_installed == 0)) &&
2957	    ((mp->mod_prim == 0) && (mp->mod_ref >= 0)));
2958
2959	if (moddebug & MODDEBUG_LOADMSG)
2960		printf(unload_msg, mp->mod_modname,
2961			mp->mod_id, mp->mod_loadcnt);
2962
2963	/*
2964	 * If mod_ref is not zero, it means some modules might still refer
2965	 * to this module. Then you can't unload this module right now.
2966	 * Instead, set 1 to mod_delay_unload to notify the system of
2967	 * unloading this module later when it's not required any more.
2968	 */
2969	if (mp->mod_ref > 0) {
2970		mp->mod_delay_unload = 1;
2971		if (moddebug & MODDEBUG_LOADMSG2) {
2972			printf("module %s not unloaded,"
2973			    " non-zero reference count (%d)",
2974			    mp->mod_modname, mp->mod_ref);
2975		}
2976		return;
2977	}
2978
2979	if (((mp->mod_loaded == 0) || mp->mod_installed) ||
2980	    (mp->mod_ref || mp->mod_prim)) {
2981		/*
2982		 * A DEBUG kernel would ASSERT panic above, the code is broken
2983		 * if we get this warning.
2984		 */
2985		cmn_err(CE_WARN, "mod_unload: %s in incorrect state: %d %d %d",
2986		    mp->mod_filename, mp->mod_installed, mp->mod_loaded,
2987		    mp->mod_ref);
2988		return;
2989	}
2990
2991	/* reset stub functions to call the binder again */
2992	reset_stubs(mp);
2993
2994	/*
2995	 * mark module as unloaded before the modctl structure is freed.
2996	 * This is required not to reuse the modctl structure before
2997	 * the module is marked as unloaded.
2998	 */
2999	mp->mod_loaded = 0;
3000	mp->mod_linkage = NULL;
3001
3002	/* free the memory */
3003	kobj_unload_module(mp);
3004
3005	if (mp->mod_delay_unload) {
3006		mp->mod_delay_unload = 0;
3007		if (moddebug & MODDEBUG_LOADMSG2) {
3008			printf("deferred unload of module %s"
3009			    " (id %d) successful",
3010			    mp->mod_modname, mp->mod_id);
3011		}
3012	}
3013
3014	/* release hold on requisites */
3015	mod_release_requisites(mp);
3016
3017	/*
3018	 * Now that the module is gone, we need to give DTrace a chance to
3019	 * remove any probes that it may have had in the module.  This is
3020	 * done via the dtrace_modunload function pointer.
3021	 */
3022	if (strcmp(mp->mod_modname, "dtrace") != 0) {
3023		struct modctl *dmp = mod_hold_by_name("dtrace");
3024
3025		if (dmp != NULL && dtrace_modunload != NULL)
3026			(*dtrace_modunload)(mp);
3027
3028		mod_release_mod(dmp);
3029	}
3030}
3031
3032static int
3033modinstall(struct modctl *mp)
3034{
3035	int val;
3036	int (*func)(void);
3037
3038	ASSERT(MUTEX_NOT_HELD(&mod_lock));
3039	ASSERT(mp->mod_busy && mp->mod_loaded);
3040
3041	if (mp->mod_installed)
3042		return (0);
3043	/*
3044	 * If mod_delay_unload is on, it means the system chose the deferred
3045	 * unload for this module. Then you can't install this module until
3046	 * it's unloaded from the system.
3047	 */
3048	if (mp->mod_delay_unload)
3049		return (ENXIO);
3050
3051	if (moddebug & MODDEBUG_LOADMSG)
3052		printf("installing %s, module id %d.\n",
3053			mp->mod_modname, mp->mod_id);
3054
3055	ASSERT(mp->mod_mp != NULL);
3056	if (mod_install_requisites(mp) != 0) {
3057		/*
3058		 * Note that we can't call mod_unload(mp) here since
3059		 * if modinstall() was called by mod_install_requisites(),
3060		 * we won't be able to hold the dependent modules
3061		 * (otherwise there would be a deadlock).
3062		 */
3063		return (ENXIO);
3064	}
3065
3066	if (moddebug & MODDEBUG_ERRMSG) {
3067		printf("init '%s' id %d loaded @ 0x%p/0x%p size %lu/%lu\n",
3068			mp->mod_filename, mp->mod_id,
3069			(void *)((struct module *)mp->mod_mp)->text,
3070			(void *)((struct module *)mp->mod_mp)->data,
3071			((struct module *)mp->mod_mp)->text_size,
3072			((struct module *)mp->mod_mp)->data_size);
3073	}
3074
3075	func = (int (*)())kobj_lookup(mp->mod_mp, "_init");
3076
3077	if (kobj_addrcheck(mp->mod_mp, (caddr_t)func)) {
3078		cmn_err(CE_WARN, "_init() not defined properly in %s",
3079		    mp->mod_filename);
3080		return (EFAULT);
3081	}
3082
3083	if (moddebug & MODDEBUG_USERDEBUG) {
3084		printf("breakpoint before calling %s:_init()\n",
3085		    mp->mod_modname);
3086		if (DEBUGGER_PRESENT)
3087			debug_enter("_init");
3088	}
3089
3090	ASSERT(MUTEX_NOT_HELD(&mod_lock));
3091	ASSERT(mp->mod_busy && mp->mod_loaded);
3092	val = (*func)();		/* call _init */
3093
3094	if (moddebug & MODDEBUG_USERDEBUG)
3095		printf("Returned from _init, val = %x\n", val);
3096
3097	if (val == 0) {
3098		/*
3099		 * Set the MODS_INSTALLED flag to enable this module
3100		 * being called now.
3101		 */
3102		install_stubs(mp);
3103		mp->mod_installed = 1;
3104	} else if (moddebug & MODDEBUG_ERRMSG)
3105		printf(mod_init_msg, mp->mod_filename, mp->mod_modname, val);
3106
3107	return (val);
3108}
3109
3110int	detach_driver_unconfig = 0;
3111
3112static int
3113detach_driver(char *name)
3114{
3115	major_t major;
3116	int error;
3117
3118	/*
3119	 * If being called from mod_uninstall_all() then the appropriate
3120	 * driver detaches (leaf only) have already been done.
3121	 */
3122	if (mod_in_autounload())
3123		return (0);
3124
3125	major = ddi_name_to_major(name);
3126	if (major == (major_t)-1)
3127		return (0);
3128
3129	error = ndi_devi_unconfig_driver(ddi_root_node(),
3130	    NDI_DETACH_DRIVER | detach_driver_unconfig, major);
3131	return (error == NDI_SUCCESS ? 0 : -1);
3132}
3133
3134static char finiret_msg[] = "Returned from _fini for %s, status = %x\n";
3135
3136static int
3137moduninstall(struct modctl *mp)
3138{
3139	int status = 0;
3140	int (*func)(void);
3141
3142	ASSERT(MUTEX_NOT_HELD(&mod_lock));
3143	ASSERT(mp->mod_busy);
3144
3145	/*
3146	 * Verify that we need to do something and can uninstall the module.
3147	 *
3148	 * If we should not uninstall the module or if the module is not in
3149	 * the correct state to start an uninstall we return EBUSY to prevent
3150	 * us from progressing to mod_unload.  If the module has already been
3151	 * uninstalled and unloaded we return EALREADY.
3152	 */
3153	if (mp->mod_prim || mp->mod_ref || mp->mod_nenabled != 0)
3154		return (EBUSY);
3155	if ((mp->mod_installed == 0) || (mp->mod_loaded == 0))
3156		return (EALREADY);
3157
3158	/*
3159	 * To avoid devinfo / module deadlock we must release this module
3160	 * prior to initiating the detach_driver, otherwise the detach_driver
3161	 * might deadlock on a devinfo node held by another thread
3162	 * coming top down and involving the module we have locked.
3163	 *
3164	 * When we regrab the module we must reverify that it is OK
3165	 * to proceed with the uninstall operation.
3166	 */
3167	mod_release_mod(mp);
3168	status = detach_driver(mp->mod_modname);
3169	(void) mod_hold_by_modctl(mp, MOD_WAIT_FOREVER | MOD_LOCK_NOT_HELD);
3170
3171	/* check detach status and reverify state with lock */
3172	mutex_enter(&mod_lock);
3173	if ((status != 0) || mp->mod_prim || mp->mod_ref) {
3174		mutex_exit(&mod_lock);
3175		return (EBUSY);
3176	}
3177	if ((mp->mod_installed == 0) || (mp->mod_loaded == 0)) {
3178		mutex_exit(&mod_lock);
3179		return (EALREADY);
3180	}
3181	mutex_exit(&mod_lock);
3182
3183	if (moddebug & MODDEBUG_LOADMSG2)
3184		printf("uninstalling %s\n", mp->mod_modname);
3185
3186	/*
3187	 * lookup _fini, return EBUSY if not defined.
3188	 *
3189	 * The MODDEBUG_FINI_EBUSY is usefull in resolving leaks in
3190	 * detach(9E) - it allows bufctl addresses to be resolved.
3191	 */
3192	func = (int (*)())kobj_lookup(mp->mod_mp, "_fini");
3193	if ((func == NULL) || (mp->mod_loadflags & MOD_NOUNLOAD) ||
3194	    (moddebug & MODDEBUG_FINI_EBUSY))
3195		return (EBUSY);
3196
3197	/* verify that _fini is in this module */
3198	if (kobj_addrcheck(mp->mod_mp, (caddr_t)func)) {
3199		cmn_err(CE_WARN, "_fini() not defined properly in %s",
3200		    mp->mod_filename);
3201		return (EFAULT);
3202	}
3203
3204	/* call _fini() */
3205	ASSERT(MUTEX_NOT_HELD(&mod_lock));
3206	ASSERT(mp->mod_busy && mp->mod_loaded && mp->mod_installed);
3207
3208	status = (*func)();
3209
3210	if (status == 0) {
3211		/* _fini returned success, the module is no longer installed */
3212		if (moddebug & MODDEBUG_LOADMSG)
3213			printf("uninstalled %s\n", mp->mod_modname);
3214
3215		/*
3216		 * Even though we only set mod_installed to zero here, a zero
3217		 * return value means we are commited to a code path were
3218		 * mod_loaded will also end up as zero - we have no other
3219		 * way to get the module data and bss back to the pre _init
3220		 * state except a reload. To ensure this, after return,
3221		 * mod_busy must stay set until mod_loaded is cleared.
3222		 */
3223		mp->mod_installed = 0;
3224
3225		/*
3226		 * Clear the MODS_INSTALLED flag not to call functions
3227		 * in the module directly from now on.
3228		 */
3229		uninstall_stubs(mp);
3230	} else {
3231		if (moddebug & MODDEBUG_USERDEBUG)
3232			printf(finiret_msg, mp->mod_filename, status);
3233		/*
3234		 * By definition _fini is only allowed to return EBUSY or the
3235		 * result of mod_remove (EBUSY or EINVAL).  In the off chance
3236		 * that a driver returns EALREADY we convert this to EINVAL
3237		 * since to our caller EALREADY means module was already
3238		 * removed.
3239		 */
3240		if (status == EALREADY)
3241			status = EINVAL;
3242	}
3243
3244	return (status);
3245}
3246
3247/*
3248 * Uninstall all modules.
3249 */
3250static void
3251mod_uninstall_all(void)
3252{
3253	struct modctl	*mp;
3254	modid_t		modid = 0;
3255
3256	/* synchronize with any active modunload_disable() */
3257	modunload_begin();
3258
3259	/* mark this thread as doing autounloading */
3260	(void) tsd_set(mod_autounload_key, (void *)1);
3261
3262	(void) devfs_clean(ddi_root_node(), NULL, 0);
3263	(void) ndi_devi_unconfig(ddi_root_node(), NDI_AUTODETACH);
3264
3265	while ((mp = mod_hold_next_by_id(modid)) != NULL) {
3266		modid = mp->mod_id;
3267		/*
3268		 * Skip modules with the MOD_NOAUTOUNLOAD flag set
3269		 */
3270		if (mp->mod_loadflags & MOD_NOAUTOUNLOAD) {
3271			mod_release_mod(mp);
3272			continue;
3273		}
3274
3275		if (moduninstall(mp) == 0) {
3276			mod_unload(mp);
3277			CPU_STATS_ADDQ(CPU, sys, modunload, 1);
3278		}
3279		mod_release_mod(mp);
3280	}
3281
3282	(void) tsd_set(mod_autounload_key, NULL);
3283	modunload_end();
3284}
3285
3286/* wait for unloads that have begun before registering disable */
3287void
3288modunload_disable(void)
3289{
3290	mutex_enter(&modunload_wait_mutex);
3291	while (modunload_active_count) {
3292		modunload_wait++;
3293		cv_wait(&modunload_wait_cv, &modunload_wait_mutex);
3294		modunload_wait--;
3295	}
3296	modunload_disable_count++;
3297	mutex_exit(&modunload_wait_mutex);
3298}
3299
3300/* mark end of disable and signal waiters */
3301void
3302modunload_enable(void)
3303{
3304	mutex_enter(&modunload_wait_mutex);
3305	modunload_disable_count--;
3306	if ((modunload_disable_count == 0) && modunload_wait)
3307		cv_broadcast(&modunload_wait_cv);
3308	mutex_exit(&modunload_wait_mutex);
3309}
3310
3311/* wait for disables to complete before begining unload */
3312void
3313modunload_begin()
3314{
3315	mutex_enter(&modunload_wait_mutex);
3316	while (modunload_disable_count) {
3317		modunload_wait++;
3318		cv_wait(&modunload_wait_cv, &modunload_wait_mutex);
3319		modunload_wait--;
3320	}
3321	modunload_active_count++;
3322	mutex_exit(&modunload_wait_mutex);
3323}
3324
3325/* mark end of unload and signal waiters */
3326void
3327modunload_end()
3328{
3329	mutex_enter(&modunload_wait_mutex);
3330	modunload_active_count--;
3331	if ((modunload_active_count == 0) && modunload_wait)
3332		cv_broadcast(&modunload_wait_cv);
3333	mutex_exit(&modunload_wait_mutex);
3334}
3335
3336void
3337mod_uninstall_daemon(void)
3338{
3339	callb_cpr_t	cprinfo;
3340	clock_t		ticks = 0;
3341
3342	mod_aul_thread = curthread;
3343
3344	CALLB_CPR_INIT(&cprinfo, &mod_uninstall_lock, callb_generic_cpr, "mud");
3345	for (;;) {
3346		mutex_enter(&mod_uninstall_lock);
3347		CALLB_CPR_SAFE_BEGIN(&cprinfo);
3348		/*
3349		 * In DEBUG kernels, unheld drivers are uninstalled periodically
3350		 * every mod_uninstall_interval seconds.  Periodic uninstall can
3351		 * be disabled by setting mod_uninstall_interval to 0 which is
3352		 * the default for a non-DEBUG kernel.
3353		 */
3354		if (mod_uninstall_interval) {
3355			ticks = ddi_get_lbolt() +
3356				drv_usectohz(mod_uninstall_interval * 1000000);
3357			(void) cv_timedwait(&mod_uninstall_cv,
3358				&mod_uninstall_lock, ticks);
3359		} else {
3360			cv_wait(&mod_uninstall_cv, &mod_uninstall_lock);
3361		}
3362		/*
3363		 * The whole daemon is safe for CPR except we don't want
3364		 * the daemon to run if FREEZE is issued and this daemon
3365		 * wakes up from the cv_wait above. In this case, it'll be
3366		 * blocked in CALLB_CPR_SAFE_END until THAW is issued.
3367		 *
3368		 * The reason of calling CALLB_CPR_SAFE_BEGIN twice is that
3369		 * mod_uninstall_lock is used to protect cprinfo and
3370		 * CALLB_CPR_SAFE_BEGIN assumes that this lock is held when
3371		 * called.
3372		 */
3373		CALLB_CPR_SAFE_END(&cprinfo, &mod_uninstall_lock);
3374		CALLB_CPR_SAFE_BEGIN(&cprinfo);
3375		mutex_exit(&mod_uninstall_lock);
3376		if ((modunload_disable_count == 0) &&
3377		    ((moddebug & MODDEBUG_NOAUTOUNLOAD) == 0)) {
3378			mod_uninstall_all();
3379		}
3380	}
3381}
3382
3383/*
3384 * Unload all uninstalled modules.
3385 */
3386void
3387modreap(void)
3388{
3389	mutex_enter(&mod_uninstall_lock);
3390	cv_broadcast(&mod_uninstall_cv);
3391	mutex_exit(&mod_uninstall_lock);
3392}
3393
3394/*
3395 * Hold the specified module. This is the module holding primitive.
3396 *
3397 * If MOD_LOCK_HELD then the caller already holds the mod_lock.
3398 *
3399 * Return values:
3400 *	 0 ==> the module is held
3401 *	 1 ==> the module is not held and the MOD_WAIT_ONCE caller needs
3402 *		to determine how to retry.
3403 */
3404int
3405mod_hold_by_modctl(struct modctl *mp, int f)
3406{
3407	ASSERT((f & (MOD_WAIT_ONCE | MOD_WAIT_FOREVER)) &&
3408	    ((f & (MOD_WAIT_ONCE | MOD_WAIT_FOREVER)) !=
3409	    (MOD_WAIT_ONCE | MOD_WAIT_FOREVER)));
3410	ASSERT((f & (MOD_LOCK_HELD | MOD_LOCK_NOT_HELD)) &&
3411	    ((f & (MOD_LOCK_HELD | MOD_LOCK_NOT_HELD)) !=
3412	    (MOD_LOCK_HELD | MOD_LOCK_NOT_HELD)));
3413	ASSERT((f & MOD_LOCK_NOT_HELD) || MUTEX_HELD(&mod_lock));
3414
3415	if (f & MOD_LOCK_NOT_HELD)
3416		mutex_enter(&mod_lock);
3417
3418	while (mp->mod_busy) {
3419		mp->mod_want = 1;
3420		cv_wait(&mod_cv, &mod_lock);
3421		/*
3422		 * Module may be unloaded by daemon.
3423		 * Nevertheless, modctl structure is still in linked list
3424		 * (i.e., off &modules), not freed!
3425		 * Caller is not supposed to assume "mp" is valid, but there
3426		 * is no reasonable way to detect this but using
3427		 * mp->mod_modinfo->mp == NULL check (follow the back pointer)
3428		 *   (or similar check depending on calling context)
3429		 * DON'T free modctl structure, it will be very very
3430		 * problematic.
3431		 */
3432		if (f & MOD_WAIT_ONCE) {
3433			if (f & MOD_LOCK_NOT_HELD)
3434				mutex_exit(&mod_lock);
3435			return (1);	/* caller decides how to retry */
3436		}
3437	}
3438
3439	mp->mod_busy = 1;
3440	mp->mod_inprogress_thread =
3441	    (curthread == NULL ? (kthread_id_t)-1 : curthread);
3442
3443	if (f & MOD_LOCK_NOT_HELD)
3444		mutex_exit(&mod_lock);
3445	return (0);
3446}
3447
3448static struct modctl *
3449mod_hold_by_name_common(struct modctl *dep, const char *filename)
3450{
3451	const char	*modname;
3452	struct modctl	*mp;
3453	char		*curname, *newname;
3454	int		found = 0;
3455
3456	mutex_enter(&mod_lock);
3457
3458	if ((modname = strrchr(filename, '/')) == NULL)
3459		modname = filename;
3460	else
3461		modname++;
3462
3463	mp = &modules;
3464	do {
3465		if (strcmp(modname, mp->mod_modname) == 0) {
3466			found = 1;
3467			break;
3468		}
3469	} while ((mp = mp->mod_next) != &modules);
3470
3471	if (found == 0) {
3472		mp = allocate_modp(filename, modname);
3473		modadd(mp);
3474	}
3475
3476	/*
3477	 * if dep is not NULL, set the mp in mod_requisite_loading for
3478	 * the module circular dependency check. This field is used in
3479	 * mod_circdep(), but it's cleard in mod_hold_loaded_mod().
3480	 */
3481	if (dep != NULL) {
3482		ASSERT(dep->mod_busy && dep->mod_requisite_loading == NULL);
3483		dep->mod_requisite_loading = mp;
3484	}
3485
3486	/*
3487	 * If the module was held, then it must be us who has it held.
3488	 */
3489	if (mod_circdep(mp))
3490		mp = NULL;
3491	else {
3492		(void) mod_hold_by_modctl(mp, MOD_WAIT_FOREVER | MOD_LOCK_HELD);
3493
3494		/*
3495		 * If the name hadn't been set or has changed, allocate
3496		 * space and set it.  Free space used by previous name.
3497		 *
3498		 * Do not change the name of primary modules, for primary
3499		 * modules the mod_filename was allocated in standalone mode:
3500		 * it is illegal to kobj_alloc in standalone mode and kobj_free
3501		 * in non-standalone mode.
3502		 */
3503		curname = mp->mod_filename;
3504		if (curname == NULL ||
3505		    ((mp->mod_prim == 0) &&
3506		    (curname != filename) &&
3507		    (modname != filename) &&
3508		    (strcmp(curname, filename) != 0))) {
3509			newname = kobj_zalloc(strlen(filename) + 1, KM_SLEEP);
3510			(void) strcpy(newname, filename);
3511			mp->mod_filename = newname;
3512			if (curname != NULL)
3513				kobj_free(curname, strlen(curname) + 1);
3514		}
3515	}
3516
3517	mutex_exit(&mod_lock);
3518	if (mp && moddebug & MODDEBUG_LOADMSG2)
3519		printf("Holding %s\n", mp->mod_filename);
3520	if (mp == NULL && moddebug & MODDEBUG_LOADMSG2)
3521		printf("circular dependency loading %s\n", filename);
3522	return (mp);
3523}
3524
3525static struct modctl *
3526mod_hold_by_name_requisite(struct modctl *dep, char *filename)
3527{
3528	return (mod_hold_by_name_common(dep, filename));
3529}
3530
3531struct modctl *
3532mod_hold_by_name(const char *filename)
3533{
3534	return (mod_hold_by_name_common(NULL, filename));
3535}
3536
3537struct modctl *
3538mod_hold_by_id(modid_t modid)
3539{
3540	struct modctl	*mp;
3541	int		found = 0;
3542
3543	mutex_enter(&mod_lock);
3544	mp = &modules;
3545	do {
3546		if (mp->mod_id == modid) {
3547			found = 1;
3548			break;
3549		}
3550	} while ((mp = mp->mod_next) != &modules);
3551
3552	if ((found == 0) || mod_circdep(mp))
3553		mp = NULL;
3554	else
3555		(void) mod_hold_by_modctl(mp, MOD_WAIT_FOREVER | MOD_LOCK_HELD);
3556
3557	mutex_exit(&mod_lock);
3558	return (mp);
3559}
3560
3561static struct modctl *
3562mod_hold_next_by_id(modid_t modid)
3563{
3564	struct modctl	*mp;
3565	int		found = 0;
3566
3567	if (modid < -1)
3568		return (NULL);
3569
3570	mutex_enter(&mod_lock);
3571
3572	mp = &modules;
3573	do {
3574		if (mp->mod_id > modid) {
3575			found = 1;
3576			break;
3577		}
3578	} while ((mp = mp->mod_next) != &modules);
3579
3580	if ((found == 0) || mod_circdep(mp))
3581		mp = NULL;
3582	else
3583		(void) mod_hold_by_modctl(mp, MOD_WAIT_FOREVER | MOD_LOCK_HELD);
3584
3585	mutex_exit(&mod_lock);
3586	return (mp);
3587}
3588
3589static void
3590mod_release(struct modctl *mp)
3591{
3592	ASSERT(MUTEX_HELD(&mod_lock));
3593	ASSERT(mp->mod_busy);
3594
3595	mp->mod_busy = 0;
3596	mp->mod_inprogress_thread = NULL;
3597	if (mp->mod_want) {
3598		mp->mod_want = 0;
3599		cv_broadcast(&mod_cv);
3600	}
3601}
3602
3603void
3604mod_release_mod(struct modctl *mp)
3605{
3606	if (moddebug & MODDEBUG_LOADMSG2)
3607		printf("Releasing %s\n", mp->mod_filename);
3608	mutex_enter(&mod_lock);
3609	mod_release(mp);
3610	mutex_exit(&mod_lock);
3611}
3612
3613modid_t
3614mod_name_to_modid(char *filename)
3615{
3616	char		*modname;
3617	struct modctl	*mp;
3618
3619	mutex_enter(&mod_lock);
3620
3621	if ((modname = strrchr(filename, '/')) == NULL)
3622		modname = filename;
3623	else
3624		modname++;
3625
3626	mp = &modules;
3627	do {
3628		if (strcmp(modname, mp->mod_modname) == 0) {
3629			mutex_exit(&mod_lock);
3630			return (mp->mod_id);
3631		}
3632	} while ((mp = mp->mod_next) != &modules);
3633
3634	mutex_exit(&mod_lock);
3635	return (-1);
3636}
3637
3638
3639int
3640mod_remove_by_name(char *name)
3641{
3642	struct modctl *mp;
3643	int retval;
3644
3645	mp = mod_hold_by_name(name);
3646
3647	if (mp == NULL)
3648		return (EINVAL);
3649
3650	if (mp->mod_loadflags & MOD_NOAUTOUNLOAD) {
3651		/*
3652		 * Do not unload forceloaded modules
3653		 */
3654		mod_release_mod(mp);
3655		return (0);
3656	}
3657
3658	if ((retval = moduninstall(mp)) == 0) {
3659		mod_unload(mp);
3660		CPU_STATS_ADDQ(CPU, sys, modunload, 1);
3661	} else if (retval == EALREADY)
3662		retval = 0;		/* already unloaded, not an error */
3663	mod_release_mod(mp);
3664	return (retval);
3665}
3666
3667/*
3668 * Record that module "dep" is dependent on module "on_mod."
3669 */
3670static void
3671mod_make_requisite(struct modctl *dependent, struct modctl *on_mod)
3672{
3673	struct modctl_list **pmlnp;	/* previous next pointer */
3674	struct modctl_list *mlp;
3675	struct modctl_list *new;
3676
3677	ASSERT(dependent->mod_busy && on_mod->mod_busy);
3678	mutex_enter(&mod_lock);
3679
3680	/*
3681	 * Search dependent's requisite list to see if on_mod is recorded.
3682	 * List is ordered by id.
3683	 */
3684	for (pmlnp = &dependent->mod_requisites, mlp = *pmlnp;
3685	    mlp; pmlnp = &mlp->modl_next, mlp = *pmlnp)
3686		if (mlp->modl_modp->mod_id >= on_mod->mod_id)
3687			break;
3688
3689	/* Create and insert if not already recorded */
3690	if ((mlp == NULL) || (mlp->modl_modp->mod_id != on_mod->mod_id)) {
3691		new = kobj_zalloc(sizeof (*new), KM_SLEEP);
3692		new->modl_modp = on_mod;
3693		new->modl_next = mlp;
3694		*pmlnp = new;
3695
3696		/*
3697		 * Increment the mod_ref count in our new requisite module.
3698		 * This is what keeps a module that has other modules
3699		 * which are dependent on it from being uninstalled and
3700		 * unloaded. "on_mod"'s mod_ref count decremented in
3701		 * mod_release_requisites when the "dependent" module
3702		 * unload is complete.  "on_mod" must be loaded, but may not
3703		 * yet be installed.
3704		 */
3705		on_mod->mod_ref++;
3706		ASSERT(on_mod->mod_ref && on_mod->mod_loaded);
3707	}
3708
3709	mutex_exit(&mod_lock);
3710}
3711
3712/*
3713 * release the hold associated with mod_make_requisite mod_ref++
3714 * as part of unload.
3715 */
3716void
3717mod_release_requisites(struct modctl *modp)
3718{
3719	struct modctl_list *modl;
3720	struct modctl_list *next;
3721	struct modctl *req;
3722	struct modctl_list *start = NULL, *mod_garbage;
3723
3724	ASSERT(modp->mod_busy);
3725	ASSERT(!MUTEX_HELD(&mod_lock));
3726
3727	mutex_enter(&mod_lock);		/* needed for manipulation of req */
3728	for (modl = modp->mod_requisites; modl; modl = next) {
3729		next = modl->modl_next;
3730		req = modl->modl_modp;
3731		ASSERT(req->mod_ref >= 1 && req->mod_loaded);
3732		req->mod_ref--;
3733
3734		/*
3735		 * Check if the module has to be unloaded or not.
3736		 */
3737		if (req->mod_ref == 0 && req->mod_delay_unload) {
3738			struct modctl_list *new;
3739			/*
3740			 * Allocate the modclt_list holding the garbage
3741			 * module which should be unloaded later.
3742			 */
3743			new = kobj_zalloc(sizeof (struct modctl_list),
3744			    KM_SLEEP);
3745			new->modl_modp = req;
3746
3747			if (start == NULL)
3748				mod_garbage = start = new;
3749			else {
3750				mod_garbage->modl_next = new;
3751				mod_garbage = new;
3752			}
3753		}
3754
3755		/* free the list as we go */
3756		kobj_free(modl, sizeof (*modl));
3757	}
3758	modp->mod_requisites = NULL;
3759	mutex_exit(&mod_lock);
3760
3761	/*
3762	 * Unload the garbage modules.
3763	 */
3764	for (mod_garbage = start; mod_garbage != NULL; /* nothing */) {
3765		struct modctl_list *old = mod_garbage;
3766		struct modctl *mp = mod_garbage->modl_modp;
3767		ASSERT(mp != NULL);
3768
3769		/*
3770		 * Hold this module until it's unloaded completely.
3771		 */
3772		(void) mod_hold_by_modctl(mp,
3773		    MOD_WAIT_FOREVER | MOD_LOCK_NOT_HELD);
3774		/*
3775		 * Check if the module is not unloaded yet and nobody requires
3776		 * the module. If it's unloaded already or somebody still
3777		 * requires the module, don't unload it now.
3778		 */
3779		if (mp->mod_loaded && mp->mod_ref == 0)
3780			mod_unload(mp);
3781		ASSERT((mp->mod_loaded == 0 && mp->mod_delay_unload == 0) ||
3782		    (mp->mod_ref > 0));
3783		mod_release_mod(mp);
3784
3785		mod_garbage = mod_garbage->modl_next;
3786		kobj_free(old, sizeof (struct modctl_list));
3787	}
3788}
3789
3790/*
3791 * Process dependency of the module represented by "dep" on the
3792 * module named by "on."
3793 *
3794 * Called from kobj_do_dependents() to load a module "on" on which
3795 * "dep" depends.
3796 */
3797struct modctl *
3798mod_load_requisite(struct modctl *dep, char *on)
3799{
3800	struct modctl *on_mod;
3801	int retval;
3802
3803	if ((on_mod = mod_hold_loaded_mod(dep, on, &retval)) != NULL) {
3804		mod_make_requisite(dep, on_mod);
3805	} else if (moddebug & MODDEBUG_ERRMSG) {
3806		printf("error processing %s on which module %s depends\n",
3807			on, dep->mod_modname);
3808	}
3809	return (on_mod);
3810}
3811
3812static int
3813mod_install_requisites(struct modctl *modp)
3814{
3815	struct modctl_list *modl;
3816	struct modctl *req;
3817	int status = 0;
3818
3819	ASSERT(MUTEX_NOT_HELD(&mod_lock));
3820	ASSERT(modp->mod_busy);
3821
3822	for (modl = modp->mod_requisites; modl; modl = modl->modl_next) {
3823		req = modl->modl_modp;
3824		(void) mod_hold_by_modctl(req,
3825		    MOD_WAIT_FOREVER | MOD_LOCK_NOT_HELD);
3826		status = modinstall(req);
3827		mod_release_mod(req);
3828
3829		if (status != 0)
3830			break;
3831	}
3832	return (status);
3833}
3834
3835/*
3836 * returns 1 if this thread is doing autounload, 0 otherwise.
3837 * see mod_uninstall_all.
3838 */
3839int
3840mod_in_autounload()
3841{
3842	return ((int)(uintptr_t)tsd_get(mod_autounload_key));
3843}
3844
3845/*
3846 * gmatch adapted from libc, stripping the wchar stuff
3847 */
3848#define	popchar(p, c) \
3849	c = *p++; \
3850	if (c == 0) \
3851		return (0);
3852
3853int
3854gmatch(const char *s, const char *p)
3855{
3856	int c, sc;
3857	int ok, lc, notflag;
3858
3859	sc = *s++;
3860	c = *p++;
3861	if (c == 0)
3862		return (sc == c);	/* nothing matches nothing */
3863
3864	switch (c) {
3865	case '\\':
3866		/* skip to quoted character */
3867		popchar(p, c)
3868		/*FALLTHRU*/
3869
3870	default:
3871		/* straight comparison */
3872		if (c != sc)
3873			return (0);
3874		/*FALLTHRU*/
3875
3876	case '?':
3877		/* first char matches, move to remainder */
3878		return (sc != '\0' ? gmatch(s, p) : 0);
3879
3880
3881	case '*':
3882		while (*p == '*')
3883			p++;
3884
3885		/* * matches everything */
3886		if (*p == 0)
3887			return (1);
3888
3889		/* undo skip at the beginning & iterate over substrings */
3890		--s;
3891		while (*s) {
3892			if (gmatch(s, p))
3893				return (1);
3894			s++;
3895		}
3896		return (0);
3897
3898	case '[':
3899		/* match any char within [] */
3900		if (sc == 0)
3901			return (0);
3902
3903		ok = lc = notflag = 0;
3904
3905		if (*p == '!') {
3906			notflag = 1;
3907			p++;
3908		}
3909		popchar(p, c)
3910
3911		do {
3912			if (c == '-' && lc && *p != ']') {
3913				/* test sc against range [c1-c2] */
3914				popchar(p, c)
3915				if (c == '\\') {
3916					popchar(p, c)
3917				}
3918
3919				if (notflag) {
3920					/* return 0 on mismatch */
3921					if (lc <= sc && sc <= c)
3922						return (0);
3923					ok++;
3924				} else if (lc <= sc && sc <= c) {
3925					ok++;
3926				}
3927				/* keep going, may get a match next */
3928			} else if (c == '\\') {
3929				/* skip to quoted character */
3930				popchar(p, c)
3931			}
3932			lc = c;
3933			if (notflag) {
3934				if (sc == lc)
3935					return (0);
3936				ok++;
3937			} else if (sc == lc) {
3938				ok++;
3939			}
3940			popchar(p, c)
3941		} while (c != ']');
3942
3943		/* recurse on remainder of string */
3944		return (ok ? gmatch(s, p) : 0);
3945	}
3946	/*NOTREACHED*/
3947}
3948
3949
3950/*
3951 * Get default perm for device from /etc/minor_perm. Return 0 if match found.
3952 *
3953 * Pure wild-carded patterns are handled separately so the ordering of
3954 * these patterns doesn't matter.  We're still dependent on ordering
3955 * however as the first matching entry is the one returned.
3956 * Not ideal but all existing examples and usage do imply this
3957 * ordering implicitly.
3958 *
3959 * Drivers using the clone driver are always good for some entertainment.
3960 * Clone nodes under pseudo have the form clone@0:<driver>.  Some minor
3961 * perm entries have the form clone:<driver>, others use <driver>:*
3962 * Examples are clone:llc1 vs. llc2:*, for example.
3963 *
3964 * Minor perms in the clone:<driver> form are mapped to the drivers's
3965 * mperm list, not the clone driver, as wildcard entries for clone
3966 * reference only.  In other words, a clone wildcard will match
3967 * references for clone@0:<driver> but never <driver>@<minor>.
3968 *
3969 * Additional minor perms in the standard form are also supported,
3970 * for mixed usage, ie a node with an entry clone:<driver> could
3971 * provide further entries <driver>:<minor>.
3972 *
3973 * Finally, some uses of clone use an alias as the minor name rather
3974 * than the driver name, with the alias as the minor perm entry.
3975 * This case is handled by attaching the driver to bring its
3976 * minor list into existence, then discover the alias via DDI_ALIAS.
3977 * The clone device's minor perm list can then be searched for
3978 * that alias.
3979 */
3980
3981static int
3982dev_alias_minorperm(dev_info_t *dip, char *minor_name, mperm_t *rmp)
3983{
3984	major_t major;
3985	struct devnames *dnp;
3986	mperm_t *mp;
3987	char *alias = NULL;
3988	dev_info_t *cdevi;
3989	struct ddi_minor_data *dmd;
3990
3991	major = ddi_name_to_major(minor_name);
3992
3993	ASSERT(dip == clone_dip);
3994	ASSERT(major != (major_t)-1);
3995
3996	/*
3997	 * Attach the driver named by the minor node, then
3998	 * search its first instance's minor list for an
3999	 * alias node.
4000	 */
4001	if (ddi_hold_installed_driver(major) == NULL)
4002		return (1);
4003
4004	dnp = &devnamesp[major];
4005	LOCK_DEV_OPS(&dnp->dn_lock);
4006
4007	if ((cdevi = dnp->dn_head) != NULL) {
4008		mutex_enter(&DEVI(cdevi)->devi_lock);
4009		for (dmd = DEVI(cdevi)->devi_minor; dmd; dmd = dmd->next) {
4010			if (dmd->type == DDM_ALIAS) {
4011				alias = i_ddi_strdup(dmd->ddm_name, KM_SLEEP);
4012				break;
4013			}
4014		}
4015		mutex_exit(&DEVI(cdevi)->devi_lock);
4016	}
4017
4018	UNLOCK_DEV_OPS(&dnp->dn_lock);
4019	ddi_rele_driver(major);
4020
4021	if (alias == NULL) {
4022		if (moddebug & MODDEBUG_MINORPERM)
4023			cmn_err(CE_CONT, "dev_minorperm: "
4024			    "no alias for %s\n", minor_name);
4025		return (1);
4026	}
4027
4028	major = ddi_driver_major(clone_dip);
4029	dnp = &devnamesp[major];
4030	LOCK_DEV_OPS(&dnp->dn_lock);
4031
4032	/*
4033	 * Go through the clone driver's mperm list looking
4034	 * for a match for the specified alias.
4035	 */
4036	for (mp = dnp->dn_mperm; mp; mp = mp->mp_next) {
4037		if (strcmp(alias, mp->mp_minorname) == 0) {
4038			break;
4039		}
4040	}
4041
4042	if (mp) {
4043		if (moddebug & MODDEBUG_MP_MATCH) {
4044			cmn_err(CE_CONT,
4045			    "minor perm defaults: %s %s 0%o %d %d (aliased)\n",
4046			    minor_name, alias, mp->mp_mode,
4047			    mp->mp_uid, mp->mp_gid);
4048		}
4049		rmp->mp_uid = mp->mp_uid;
4050		rmp->mp_gid = mp->mp_gid;
4051		rmp->mp_mode = mp->mp_mode;
4052	}
4053	UNLOCK_DEV_OPS(&dnp->dn_lock);
4054
4055	kmem_free(alias, strlen(alias)+1);
4056
4057	return (mp == NULL);
4058}
4059
4060int
4061dev_minorperm(dev_info_t *dip, char *name, mperm_t *rmp)
4062{
4063	major_t major;
4064	char *minor_name;
4065	struct devnames *dnp;
4066	mperm_t *mp;
4067	int is_clone = 0;
4068
4069	if (!minorperm_loaded) {
4070		if (moddebug & MODDEBUG_MINORPERM)
4071			cmn_err(CE_CONT,
4072			    "%s: minor perm not yet loaded\n", name);
4073		return (1);
4074	}
4075
4076	minor_name = strchr(name, ':');
4077	if (minor_name == NULL)
4078		return (1);
4079	minor_name++;
4080
4081	/*
4082	 * If it's the clone driver, search the driver as named
4083	 * by the minor.  All clone minor perm entries other than
4084	 * alias nodes are actually installed on the real driver's list.
4085	 */
4086	if (dip == clone_dip) {
4087		major = ddi_name_to_major(minor_name);
4088		if (major == (major_t)-1) {
4089			if (moddebug & MODDEBUG_MINORPERM)
4090				cmn_err(CE_CONT, "dev_minorperm: "
4091				    "%s: no such driver\n", minor_name);
4092			return (1);
4093		}
4094		is_clone = 1;
4095	} else {
4096		major = ddi_driver_major(dip);
4097		ASSERT(major != (major_t)-1);
4098	}
4099
4100	dnp = &devnamesp[major];
4101	LOCK_DEV_OPS(&dnp->dn_lock);
4102
4103	/*
4104	 * Go through the driver's mperm list looking for
4105	 * a match for the specified minor.  If there's
4106	 * no matching pattern, use the wild card.
4107	 * Defer to the clone wild for clone if specified,
4108	 * otherwise fall back to the normal form.
4109	 */
4110	for (mp = dnp->dn_mperm; mp; mp = mp->mp_next) {
4111		if (gmatch(minor_name, mp->mp_minorname) != 0) {
4112			break;
4113		}
4114	}
4115	if (mp == NULL) {
4116		if (is_clone)
4117			mp = dnp->dn_mperm_clone;
4118		if (mp == NULL)
4119			mp = dnp->dn_mperm_wild;
4120	}
4121
4122	if (mp) {
4123		if (moddebug & MODDEBUG_MP_MATCH) {
4124			cmn_err(CE_CONT,
4125			    "minor perm defaults: %s %s 0%o %d %d\n",
4126			    name, mp->mp_minorname, mp->mp_mode,
4127			    mp->mp_uid, mp->mp_gid);
4128		}
4129		rmp->mp_uid = mp->mp_uid;
4130		rmp->mp_gid = mp->mp_gid;
4131		rmp->mp_mode = mp->mp_mode;
4132	}
4133	UNLOCK_DEV_OPS(&dnp->dn_lock);
4134
4135	/*
4136	 * If no match can be found for a clone node,
4137	 * search for a possible match for an alias.
4138	 * One such example is /dev/ptmx -> /devices/pseudo/clone@0:ptm,
4139	 * with minor perm entry clone:ptmx.
4140	 */
4141	if (mp == NULL && is_clone) {
4142		return (dev_alias_minorperm(dip, minor_name, rmp));
4143	}
4144
4145	return (mp == NULL);
4146}
4147
4148/*
4149 * dynamicaly reference load a dl module/library, returning handle
4150 */
4151/*ARGSUSED*/
4152ddi_modhandle_t
4153ddi_modopen(const char *modname, int mode, int *errnop)
4154{
4155	char		*subdir;
4156	char		*mod;
4157	int		subdirlen;
4158	struct modctl	*hmodp = NULL;
4159	int		retval = EINVAL;
4160
4161	ASSERT(modname && (mode == KRTLD_MODE_FIRST));
4162	if ((modname == NULL) || (mode != KRTLD_MODE_FIRST))
4163		goto out;
4164
4165	/* find optional first '/' in modname */
4166	mod = strchr(modname, '/');
4167	if (mod != strrchr(modname, '/'))
4168		goto out;		/* only one '/' is legal */
4169
4170	if (mod) {
4171		/* for subdir string without modification to argument */
4172		mod++;
4173		subdirlen = mod - modname;
4174		subdir = kmem_alloc(subdirlen, KM_SLEEP);
4175		(void) strlcpy(subdir, modname, subdirlen);
4176	} else {
4177		subdirlen = 0;
4178		subdir = "misc";
4179		mod = (char *)modname;
4180	}
4181
4182	/* reference load with errno return value */
4183	retval = modrload(subdir, mod, &hmodp);
4184
4185	if (subdirlen)
4186		kmem_free(subdir, subdirlen);
4187
4188out:	if (errnop)
4189		*errnop = retval;
4190
4191	if (moddebug & MODDEBUG_DDI_MOD)
4192		printf("ddi_modopen %s mode %x: %s %p %d\n",
4193		    modname ? modname : "<unknown>", mode,
4194		    hmodp ? hmodp->mod_filename : "<unknown>",
4195		    (void *)hmodp, retval);
4196
4197	return ((ddi_modhandle_t)hmodp);
4198}
4199
4200/* lookup "name" in open dl module/library */
4201void *
4202ddi_modsym(ddi_modhandle_t h, const char *name, int *errnop)
4203{
4204	struct modctl	*hmodp = (struct modctl *)h;
4205	void		*f;
4206	int		retval;
4207
4208	ASSERT(hmodp && name && hmodp->mod_installed && (hmodp->mod_ref >= 1));
4209	if ((hmodp == NULL) || (name == NULL) ||
4210	    (hmodp->mod_installed == 0) || (hmodp->mod_ref < 1)) {
4211		f = NULL;
4212		retval = EINVAL;
4213	} else {
4214		f = (void *)kobj_lookup(hmodp->mod_mp, (char *)name);
4215		if (f)
4216			retval = 0;
4217		else
4218			retval = ENOTSUP;
4219	}
4220
4221	if (moddebug & MODDEBUG_DDI_MOD)
4222		printf("ddi_modsym in %s of %s: %d %p\n",
4223		    hmodp ? hmodp->mod_modname : "<unknown>",
4224		    name ? name : "<unknown>", retval, f);
4225
4226	if (errnop)
4227		*errnop = retval;
4228	return (f);
4229}
4230
4231/* dynamic (un)reference unload of an open dl module/library */
4232int
4233ddi_modclose(ddi_modhandle_t h)
4234{
4235	struct modctl	*hmodp = (struct modctl *)h;
4236	struct modctl	*modp = NULL;
4237	int		retval;
4238
4239	ASSERT(hmodp && hmodp->mod_installed && (hmodp->mod_ref >= 1));
4240	if ((hmodp == NULL) ||
4241	    (hmodp->mod_installed == 0) || (hmodp->mod_ref < 1)) {
4242		retval = EINVAL;
4243		goto out;
4244	}
4245
4246	retval = modunrload(hmodp->mod_id, &modp, ddi_modclose_unload);
4247	if (retval == EBUSY)
4248		retval = 0;	/* EBUSY is not an error */
4249
4250	if (retval == 0) {
4251		ASSERT(hmodp == modp);
4252		if (hmodp != modp)
4253			retval = EINVAL;
4254	}
4255
4256out:	if (moddebug & MODDEBUG_DDI_MOD)
4257		printf("ddi_modclose %s: %d\n",
4258		    hmodp ? hmodp->mod_modname : "<unknown>", retval);
4259
4260	return (retval);
4261}
4262