fork.c revision 2712:f74a135872bc
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27/*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28/*	  All Rights Reserved  	*/
29
30
31#pragma ident	"%Z%%M%	%I%	%E% SMI"
32
33#include <sys/types.h>
34#include <sys/param.h>
35#include <sys/sysmacros.h>
36#include <sys/signal.h>
37#include <sys/cred.h>
38#include <sys/policy.h>
39#include <sys/user.h>
40#include <sys/systm.h>
41#include <sys/cpuvar.h>
42#include <sys/vfs.h>
43#include <sys/vnode.h>
44#include <sys/file.h>
45#include <sys/errno.h>
46#include <sys/time.h>
47#include <sys/proc.h>
48#include <sys/cmn_err.h>
49#include <sys/acct.h>
50#include <sys/tuneable.h>
51#include <sys/class.h>
52#include <sys/kmem.h>
53#include <sys/session.h>
54#include <sys/ucontext.h>
55#include <sys/stack.h>
56#include <sys/procfs.h>
57#include <sys/prsystm.h>
58#include <sys/vmsystm.h>
59#include <sys/vtrace.h>
60#include <sys/debug.h>
61#include <sys/shm_impl.h>
62#include <sys/door_data.h>
63#include <vm/as.h>
64#include <vm/rm.h>
65#include <c2/audit.h>
66#include <sys/var.h>
67#include <sys/schedctl.h>
68#include <sys/utrap.h>
69#include <sys/task.h>
70#include <sys/resource.h>
71#include <sys/cyclic.h>
72#include <sys/lgrp.h>
73#include <sys/rctl.h>
74#include <sys/contract_impl.h>
75#include <sys/contract/process_impl.h>
76#include <sys/list.h>
77#include <sys/dtrace.h>
78#include <sys/pool.h>
79#include <sys/zone.h>
80#include <sys/sdt.h>
81#include <sys/class.h>
82#include <sys/corectl.h>
83#include <sys/brand.h>
84
85static int64_t cfork(int, int);
86static int getproc(proc_t **, int);
87static void fork_fail(proc_t *);
88static void forklwp_fail(proc_t *);
89
90int fork_fail_pending;
91
92extern struct kmem_cache *process_cache;
93
94/*
95 * forkall system call.
96 */
97int64_t
98forkall(void)
99{
100	return (cfork(0, 0));
101}
102
103/*
104 * The parent is stopped until the child invokes relvm().
105 */
106int64_t
107vfork(void)
108{
109	curthread->t_post_sys = 1;	/* so vfwait() will be called */
110	return (cfork(1, 1));
111}
112
113/*
114 * fork1 system call
115 */
116int64_t
117fork1(void)
118{
119	return (cfork(0, 1));
120}
121
122/* ARGSUSED */
123static int64_t
124cfork(int isvfork, int isfork1)
125{
126	proc_t *p = ttoproc(curthread);
127	struct as *as;
128	proc_t *cp, **orphpp;
129	klwp_t *clone;
130	kthread_t *t;
131	task_t *tk;
132	rval_t	r;
133	int error;
134	int i;
135	rctl_set_t *dup_set;
136	rctl_alloc_gp_t *dup_gp;
137	rctl_entity_p_t e;
138	lwpdir_t *ldp;
139	lwpent_t *lep;
140	lwpent_t *clep;
141
142	/*
143	 * fork is not supported for the /proc agent lwp.
144	 */
145	if (curthread == p->p_agenttp) {
146		error = ENOTSUP;
147		goto forkerr;
148	}
149
150	if ((error = secpolicy_basic_fork(CRED())) != 0)
151		goto forkerr;
152
153	/*
154	 * If the calling lwp is doing a fork1() then the
155	 * other lwps in this process are not duplicated and
156	 * don't need to be held where their kernel stacks can be
157	 * cloned.  If doing forkall(), the process is held with
158	 * SHOLDFORK, so that the lwps are at a point where their
159	 * stacks can be copied which is on entry or exit from
160	 * the kernel.
161	 */
162	if (!holdlwps(isfork1 ? SHOLDFORK1 : SHOLDFORK)) {
163		aston(curthread);
164		error = EINTR;
165		goto forkerr;
166	}
167
168#if defined(__sparc)
169	/*
170	 * Ensure that the user stack is fully constructed
171	 * before creating the child process structure.
172	 */
173	(void) flush_user_windows_to_stack(NULL);
174#endif
175
176	mutex_enter(&p->p_lock);
177	/*
178	 * If this is vfork(), cancel any suspend request we might
179	 * have gotten from some other thread via lwp_suspend().
180	 * Otherwise we could end up with a deadlock on return
181	 * from the vfork() in both the parent and the child.
182	 */
183	if (isvfork)
184		curthread->t_proc_flag &= ~TP_HOLDLWP;
185	/*
186	 * Prevent our resource set associations from being changed during fork.
187	 */
188	pool_barrier_enter();
189	mutex_exit(&p->p_lock);
190
191	/*
192	 * Create a child proc struct. Place a VN_HOLD on appropriate vnodes.
193	 */
194	if (getproc(&cp, 0) < 0) {
195		mutex_enter(&p->p_lock);
196		pool_barrier_exit();
197		continuelwps(p);
198		mutex_exit(&p->p_lock);
199		error = EAGAIN;
200		goto forkerr;
201	}
202
203	TRACE_2(TR_FAC_PROC, TR_PROC_FORK, "proc_fork:cp %p p %p", cp, p);
204
205	/*
206	 * Assign an address space to child
207	 */
208	if (isvfork) {
209		/*
210		 * Clear any watched areas and remember the
211		 * watched pages for restoring in vfwait().
212		 */
213		as = p->p_as;
214		if (avl_numnodes(&as->a_wpage) != 0) {
215			AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
216			as_clearwatch(as);
217			p->p_wpage = as->a_wpage;
218			avl_create(&as->a_wpage, wp_compare,
219			    sizeof (struct watched_page),
220			    offsetof(struct watched_page, wp_link));
221			AS_LOCK_EXIT(as, &as->a_lock);
222		}
223		cp->p_as = as;
224		cp->p_flag |= SVFORK;
225	} else {
226		/*
227		 * We need to hold P_PR_LOCK until the address space has
228		 * been duplicated and we've had a chance to remove from the
229		 * child any DTrace probes that were in the parent. Holding
230		 * P_PR_LOCK prevents any new probes from being added and any
231		 * extant probes from being removed.
232		 */
233		mutex_enter(&p->p_lock);
234		sprlock_proc(p);
235		p->p_flag |= SFORKING;
236		mutex_exit(&p->p_lock);
237
238		error = as_dup(p->p_as, &cp->p_as);
239		if (error != 0) {
240			fork_fail(cp);
241			mutex_enter(&pidlock);
242			orphpp = &p->p_orphan;
243			while (*orphpp != cp)
244				orphpp = &(*orphpp)->p_nextorph;
245			*orphpp = cp->p_nextorph;
246			if (p->p_child == cp)
247				p->p_child = cp->p_sibling;
248			if (cp->p_sibling)
249				cp->p_sibling->p_psibling = cp->p_psibling;
250			if (cp->p_psibling)
251				cp->p_psibling->p_sibling = cp->p_sibling;
252			mutex_enter(&cp->p_lock);
253			tk = cp->p_task;
254			task_detach(cp);
255			ASSERT(cp->p_pool->pool_ref > 0);
256			atomic_add_32(&cp->p_pool->pool_ref, -1);
257			mutex_exit(&cp->p_lock);
258			pid_exit(cp);
259			mutex_exit(&pidlock);
260			task_rele(tk);
261
262			mutex_enter(&p->p_lock);
263			p->p_flag &= ~SFORKING;
264			pool_barrier_exit();
265			continuelwps(p);
266			sprunlock(p);
267			/*
268			 * Preserve ENOMEM error condition but
269			 * map all others to EAGAIN.
270			 */
271			error = (error == ENOMEM) ? ENOMEM : EAGAIN;
272			goto forkerr;
273		}
274		/* Duplicate parent's shared memory */
275		if (p->p_segacct)
276			shmfork(p, cp);
277
278		/*
279		 * Remove all DTrace tracepoints from the child process. We
280		 * need to do this _before_ duplicating USDT providers since
281		 * any associated probes may be immediately enabled.
282		 */
283		if (p->p_dtrace_count > 0)
284			dtrace_fasttrap_fork(p, cp);
285
286		/*
287		 * Duplicate any helper actions and providers. The SFORKING
288		 * we set above informs the code to enable USDT probes that
289		 * sprlock() may fail because the child is being forked.
290		 */
291		if (p->p_dtrace_helpers != NULL) {
292			ASSERT(dtrace_helpers_fork != NULL);
293			(*dtrace_helpers_fork)(p, cp);
294		}
295
296		mutex_enter(&p->p_lock);
297		p->p_flag &= ~SFORKING;
298		sprunlock(p);
299	}
300
301	/*
302	 * Duplicate parent's resource controls.
303	 */
304	dup_set = rctl_set_create();
305	for (;;) {
306		dup_gp = rctl_set_dup_prealloc(p->p_rctls);
307		mutex_enter(&p->p_rctls->rcs_lock);
308		if (rctl_set_dup_ready(p->p_rctls, dup_gp))
309			break;
310		mutex_exit(&p->p_rctls->rcs_lock);
311		rctl_prealloc_destroy(dup_gp);
312	}
313	e.rcep_p.proc = cp;
314	e.rcep_t = RCENTITY_PROCESS;
315	cp->p_rctls = rctl_set_dup(p->p_rctls, p, cp, &e, dup_set, dup_gp,
316	    RCD_DUP | RCD_CALLBACK);
317	mutex_exit(&p->p_rctls->rcs_lock);
318
319	rctl_prealloc_destroy(dup_gp);
320
321	/*
322	 * Allocate the child's lwp directory and lwpid hash table.
323	 */
324	if (isfork1)
325		cp->p_lwpdir_sz = 2;
326	else
327		cp->p_lwpdir_sz = p->p_lwpdir_sz;
328	cp->p_lwpdir = cp->p_lwpfree = ldp =
329		kmem_zalloc(cp->p_lwpdir_sz * sizeof (lwpdir_t), KM_SLEEP);
330	for (i = 1; i < cp->p_lwpdir_sz; i++, ldp++)
331		ldp->ld_next = ldp + 1;
332	cp->p_tidhash_sz = (cp->p_lwpdir_sz + 2) / 2;
333	cp->p_tidhash =
334		kmem_zalloc(cp->p_tidhash_sz * sizeof (lwpdir_t *), KM_SLEEP);
335
336	/*
337	 * Duplicate parent's lwps.
338	 * Mutual exclusion is not needed because the process is
339	 * in the hold state and only the current lwp is running.
340	 */
341	klgrpset_clear(cp->p_lgrpset);
342	if (isfork1) {
343		clone = forklwp(ttolwp(curthread), cp, curthread->t_tid);
344		if (clone == NULL)
345			goto forklwperr;
346		/*
347		 * Inherit only the lwp_wait()able flag,
348		 * Daemon threads should not call fork1(), but oh well...
349		 */
350		lwptot(clone)->t_proc_flag |=
351			(curthread->t_proc_flag & TP_TWAIT);
352	} else {
353		/* this is forkall(), no one can be in lwp_wait() */
354		ASSERT(p->p_lwpwait == 0 && p->p_lwpdwait == 0);
355		/* for each entry in the parent's lwp directory... */
356		for (i = 0, ldp = p->p_lwpdir; i < p->p_lwpdir_sz; i++, ldp++) {
357			klwp_t *clwp;
358			kthread_t *ct;
359
360			if ((lep = ldp->ld_entry) == NULL)
361				continue;
362
363			if ((t = lep->le_thread) != NULL) {
364				clwp = forklwp(ttolwp(t), cp, t->t_tid);
365				if (clwp == NULL)
366					goto forklwperr;
367				ct = lwptot(clwp);
368				/*
369				 * Inherit lwp_wait()able and daemon flags.
370				 */
371				ct->t_proc_flag |=
372				    (t->t_proc_flag & (TP_TWAIT|TP_DAEMON));
373				/*
374				 * Keep track of the clone of curthread to
375				 * post return values through lwp_setrval().
376				 * Mark other threads for special treatment
377				 * by lwp_rtt() / post_syscall().
378				 */
379				if (t == curthread)
380					clone = clwp;
381				else
382					ct->t_flag |= T_FORKALL;
383			} else {
384				/*
385				 * Replicate zombie lwps in the child.
386				 */
387				clep = kmem_zalloc(sizeof (*clep), KM_SLEEP);
388				clep->le_lwpid = lep->le_lwpid;
389				clep->le_start = lep->le_start;
390				lwp_hash_in(cp, clep);
391			}
392		}
393	}
394
395	/*
396	 * Put new process in the parent's process contract, or put it
397	 * in a new one if there is an active process template.  Send a
398	 * fork event (if requested) to whatever contract the child is
399	 * a member of.  Fails if the parent has been SIGKILLed.
400	 */
401	if (contract_process_fork(NULL, cp, p, B_TRUE) == NULL)
402		goto forklwperr;
403
404	/*
405	 * No fork failures occur beyond this point.
406	 */
407
408	cp->p_lwpid = p->p_lwpid;
409	if (!isfork1) {
410		cp->p_lwpdaemon = p->p_lwpdaemon;
411		cp->p_zombcnt = p->p_zombcnt;
412		/*
413		 * If the parent's lwp ids have wrapped around, so have the
414		 * child's.
415		 */
416		cp->p_flag |= p->p_flag & SLWPWRAP;
417	}
418
419	mutex_enter(&p->p_lock);
420	corectl_path_hold(cp->p_corefile = p->p_corefile);
421	corectl_content_hold(cp->p_content = p->p_content);
422	mutex_exit(&p->p_lock);
423
424	/*
425	 * Duplicate process context ops, if any.
426	 */
427	if (p->p_pctx)
428		forkpctx(p, cp);
429
430#ifdef __sparc
431	utrap_dup(p, cp);
432#endif
433	/*
434	 * If the child process has been marked to stop on exit
435	 * from this fork, arrange for all other lwps to stop in
436	 * sympathy with the active lwp.
437	 */
438	if (PTOU(cp)->u_systrap &&
439	    prismember(&PTOU(cp)->u_exitmask, curthread->t_sysnum)) {
440		mutex_enter(&cp->p_lock);
441		t = cp->p_tlist;
442		do {
443			t->t_proc_flag |= TP_PRSTOP;
444			aston(t);	/* so TP_PRSTOP will be seen */
445		} while ((t = t->t_forw) != cp->p_tlist);
446		mutex_exit(&cp->p_lock);
447	}
448	/*
449	 * If the parent process has been marked to stop on exit
450	 * from this fork, and its asynchronous-stop flag has not
451	 * been set, arrange for all other lwps to stop before
452	 * they return back to user level.
453	 */
454	if (!(p->p_proc_flag & P_PR_ASYNC) && PTOU(p)->u_systrap &&
455	    prismember(&PTOU(p)->u_exitmask, curthread->t_sysnum)) {
456		mutex_enter(&p->p_lock);
457		t = p->p_tlist;
458		do {
459			t->t_proc_flag |= TP_PRSTOP;
460			aston(t);	/* so TP_PRSTOP will be seen */
461		} while ((t = t->t_forw) != p->p_tlist);
462		mutex_exit(&p->p_lock);
463	}
464
465	if (PROC_IS_BRANDED(p))
466		BROP(p)->b_lwp_setrval(clone, p->p_pid, 1);
467	else
468		lwp_setrval(clone, p->p_pid, 1);
469
470	/* set return values for parent */
471	r.r_val1 = (int)cp->p_pid;
472	r.r_val2 = 0;
473
474	/*
475	 * pool_barrier_exit() can now be called because the child process has:
476	 * - all identifying features cloned or set (p_pid, p_task, p_pool)
477	 * - all resource sets associated (p_tlist->*->t_cpupart, p_as->a_mset)
478	 * - any other fields set which are used in resource set binding.
479	 */
480	mutex_enter(&p->p_lock);
481	pool_barrier_exit();
482	mutex_exit(&p->p_lock);
483
484	mutex_enter(&pidlock);
485	mutex_enter(&cp->p_lock);
486
487	/*
488	 * Now that there are lwps and threads attached, add the new
489	 * process to the process group.
490	 */
491	pgjoin(cp, p->p_pgidp);
492	cp->p_stat = SRUN;
493	/*
494	 * We are now done with all the lwps in the child process.
495	 */
496	t = cp->p_tlist;
497	do {
498		/*
499		 * Set the lwp_suspend()ed lwps running.
500		 * They will suspend properly at syscall exit.
501		 */
502		if (t->t_proc_flag & TP_HOLDLWP)
503			lwp_create_done(t);
504		else {
505			/* set TS_CREATE to allow continuelwps() to work */
506			thread_lock(t);
507			ASSERT(t->t_state == TS_STOPPED &&
508			    !(t->t_schedflag & (TS_CREATE|TS_CSTART)));
509			t->t_schedflag |= TS_CREATE;
510			thread_unlock(t);
511		}
512	} while ((t = t->t_forw) != cp->p_tlist);
513	mutex_exit(&cp->p_lock);
514
515	if (isvfork) {
516		CPU_STATS_ADDQ(CPU, sys, sysvfork, 1);
517		mutex_enter(&p->p_lock);
518		p->p_flag |= SVFWAIT;
519		DTRACE_PROC1(create, proc_t *, cp);
520		cv_broadcast(&pr_pid_cv[p->p_slot]);	/* inform /proc */
521		mutex_exit(&p->p_lock);
522		/*
523		 * Grab child's p_lock before dropping pidlock to ensure
524		 * the process will not disappear before we set it running.
525		 */
526		mutex_enter(&cp->p_lock);
527		mutex_exit(&pidlock);
528		sigdefault(cp);
529		continuelwps(cp);
530		mutex_exit(&cp->p_lock);
531	} else {
532		CPU_STATS_ADDQ(CPU, sys, sysfork, 1);
533		DTRACE_PROC1(create, proc_t *, cp);
534		/*
535		 * It is CL_FORKRET's job to drop pidlock.
536		 * If we do it here, the process could be set running
537		 * and disappear before CL_FORKRET() is called.
538		 */
539		CL_FORKRET(curthread, cp->p_tlist);
540		ASSERT(MUTEX_NOT_HELD(&pidlock));
541	}
542
543	return (r.r_vals);
544
545forklwperr:
546	if (isvfork) {
547		if (avl_numnodes(&p->p_wpage) != 0) {
548			/* restore watchpoints to parent */
549			as = p->p_as;
550			AS_LOCK_ENTER(as, &as->a_lock,
551				RW_WRITER);
552			as->a_wpage = p->p_wpage;
553			avl_create(&p->p_wpage, wp_compare,
554			    sizeof (struct watched_page),
555			    offsetof(struct watched_page, wp_link));
556			as_setwatch(as);
557			AS_LOCK_EXIT(as, &as->a_lock);
558		}
559	} else {
560		if (cp->p_segacct)
561			shmexit(cp);
562		as = cp->p_as;
563		cp->p_as = &kas;
564		as_free(as);
565	}
566
567	if (cp->p_lwpdir) {
568		for (i = 0, ldp = cp->p_lwpdir; i < cp->p_lwpdir_sz; i++, ldp++)
569			if ((lep = ldp->ld_entry) != NULL)
570				kmem_free(lep, sizeof (*lep));
571		kmem_free(cp->p_lwpdir,
572		    cp->p_lwpdir_sz * sizeof (*cp->p_lwpdir));
573	}
574	cp->p_lwpdir = NULL;
575	cp->p_lwpfree = NULL;
576	cp->p_lwpdir_sz = 0;
577
578	if (cp->p_tidhash)
579		kmem_free(cp->p_tidhash,
580		    cp->p_tidhash_sz * sizeof (*cp->p_tidhash));
581	cp->p_tidhash = NULL;
582	cp->p_tidhash_sz = 0;
583
584	forklwp_fail(cp);
585	fork_fail(cp);
586	rctl_set_free(cp->p_rctls);
587	mutex_enter(&pidlock);
588
589	/*
590	 * Detach failed child from task.
591	 */
592	mutex_enter(&cp->p_lock);
593	tk = cp->p_task;
594	task_detach(cp);
595	ASSERT(cp->p_pool->pool_ref > 0);
596	atomic_add_32(&cp->p_pool->pool_ref, -1);
597	mutex_exit(&cp->p_lock);
598
599	orphpp = &p->p_orphan;
600	while (*orphpp != cp)
601		orphpp = &(*orphpp)->p_nextorph;
602	*orphpp = cp->p_nextorph;
603	if (p->p_child == cp)
604		p->p_child = cp->p_sibling;
605	if (cp->p_sibling)
606		cp->p_sibling->p_psibling = cp->p_psibling;
607	if (cp->p_psibling)
608		cp->p_psibling->p_sibling = cp->p_sibling;
609	pid_exit(cp);
610	mutex_exit(&pidlock);
611
612	task_rele(tk);
613
614	mutex_enter(&p->p_lock);
615	pool_barrier_exit();
616	continuelwps(p);
617	mutex_exit(&p->p_lock);
618	error = EAGAIN;
619forkerr:
620	return ((int64_t)set_errno(error));
621}
622
623/*
624 * Free allocated resources from getproc() if a fork failed.
625 */
626static void
627fork_fail(proc_t *cp)
628{
629	uf_info_t *fip = P_FINFO(cp);
630
631	fcnt_add(fip, -1);
632	sigdelq(cp, NULL, 0);
633
634	mutex_enter(&pidlock);
635	upcount_dec(crgetruid(cp->p_cred), crgetzoneid(cp->p_cred));
636	mutex_exit(&pidlock);
637
638	/*
639	 * single threaded, so no locking needed here
640	 */
641	crfree(cp->p_cred);
642
643	kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t));
644
645	VN_RELE(u.u_cdir);
646	if (u.u_rdir)
647		VN_RELE(u.u_rdir);
648	if (cp->p_exec)
649		VN_RELE(cp->p_exec);
650	if (cp->p_execdir)
651		VN_RELE(cp->p_execdir);
652	if (u.u_cwd)
653		refstr_rele(u.u_cwd);
654}
655
656/*
657 * Clean up the lwps already created for this child process.
658 * The fork failed while duplicating all the lwps of the parent
659 * and those lwps already created must be freed.
660 * This process is invisible to the rest of the system,
661 * so we don't need to hold p->p_lock to protect the list.
662 */
663static void
664forklwp_fail(proc_t *p)
665{
666	kthread_t *t;
667	task_t *tk;
668
669	while ((t = p->p_tlist) != NULL) {
670		/*
671		 * First remove the lwp from the process's p_tlist.
672		 */
673		if (t != t->t_forw)
674			p->p_tlist = t->t_forw;
675		else
676			p->p_tlist = NULL;
677		p->p_lwpcnt--;
678		t->t_forw->t_back = t->t_back;
679		t->t_back->t_forw = t->t_forw;
680
681		tk = p->p_task;
682		mutex_enter(&p->p_zone->zone_nlwps_lock);
683		tk->tk_nlwps--;
684		tk->tk_proj->kpj_nlwps--;
685		p->p_zone->zone_nlwps--;
686		mutex_exit(&p->p_zone->zone_nlwps_lock);
687
688		ASSERT(t->t_schedctl == NULL);
689
690		if (t->t_door != NULL) {
691			kmem_free(t->t_door, sizeof (door_data_t));
692			t->t_door = NULL;
693		}
694		lwp_ctmpl_clear(ttolwp(t));
695
696		/*
697		 * Remove the thread from the all threads list.
698		 * We need to hold pidlock for this.
699		 */
700		mutex_enter(&pidlock);
701		t->t_next->t_prev = t->t_prev;
702		t->t_prev->t_next = t->t_next;
703		CL_EXIT(t);	/* tell the scheduler that we're exiting */
704		cv_broadcast(&t->t_joincv);	/* tell anyone in thread_join */
705		mutex_exit(&pidlock);
706
707		/*
708		 * Let the lgroup load averages know that this thread isn't
709		 * going to show up (i.e. un-do what was done on behalf of
710		 * this thread by the earlier lgrp_move_thread()).
711		 */
712		kpreempt_disable();
713		lgrp_move_thread(t, NULL, 1);
714		kpreempt_enable();
715
716		/*
717		 * The thread was created TS_STOPPED.
718		 * We change it to TS_FREE to avoid an
719		 * ASSERT() panic in thread_free().
720		 */
721		t->t_state = TS_FREE;
722		thread_rele(t);
723		thread_free(t);
724	}
725}
726
727extern struct as kas;
728
729/*
730 * fork a kernel process.
731 */
732int
733newproc(void (*pc)(), caddr_t arg, id_t cid, int pri, struct contract **ct)
734{
735	proc_t *p;
736	struct user *up;
737	klwp_t *lwp;
738	cont_process_t *ctp = NULL;
739	rctl_entity_p_t e;
740
741	ASSERT(!(cid == syscid && ct != NULL));
742	if (cid == syscid) {
743		rctl_alloc_gp_t *init_gp;
744		rctl_set_t *init_set;
745
746		if (getproc(&p, 1) < 0)
747			return (EAGAIN);
748
749		p->p_flag |= SNOWAIT;
750		p->p_exec = NULL;
751		p->p_execdir = NULL;
752
753		init_set = rctl_set_create();
754		init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS);
755
756		/*
757		 * kernel processes do not inherit /proc tracing flags.
758		 */
759		sigemptyset(&p->p_sigmask);
760		premptyset(&p->p_fltmask);
761		up = PTOU(p);
762		up->u_systrap = 0;
763		premptyset(&(up->u_entrymask));
764		premptyset(&(up->u_exitmask));
765		mutex_enter(&p->p_lock);
766		e.rcep_p.proc = p;
767		e.rcep_t = RCENTITY_PROCESS;
768		p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set,
769		    init_gp);
770		mutex_exit(&p->p_lock);
771
772		rctl_prealloc_destroy(init_gp);
773	} else  {
774		rctl_alloc_gp_t *init_gp, *default_gp;
775		rctl_set_t *init_set;
776		task_t *tk, *tk_old;
777
778		if (getproc(&p, 0) < 0)
779			return (EAGAIN);
780		/*
781		 * init creates a new task, distinct from the task
782		 * containing kernel "processes".
783		 */
784		tk = task_create(0, p->p_zone);
785		mutex_enter(&tk->tk_zone->zone_nlwps_lock);
786		tk->tk_proj->kpj_ntasks++;
787		mutex_exit(&tk->tk_zone->zone_nlwps_lock);
788
789		default_gp = rctl_rlimit_set_prealloc(RLIM_NLIMITS);
790		init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS);
791		init_set = rctl_set_create();
792
793		mutex_enter(&pidlock);
794		mutex_enter(&p->p_lock);
795		tk_old = p->p_task;	/* switch to new task */
796
797		task_detach(p);
798		task_begin(tk, p);
799		mutex_exit(&pidlock);
800
801		e.rcep_p.proc = p;
802		e.rcep_t = RCENTITY_PROCESS;
803		p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set,
804		    init_gp);
805		rctlproc_default_init(p, default_gp);
806		mutex_exit(&p->p_lock);
807
808		task_rele(tk_old);
809		rctl_prealloc_destroy(default_gp);
810		rctl_prealloc_destroy(init_gp);
811	}
812
813	p->p_as = &kas;
814
815	if ((lwp = lwp_create(pc, arg, 0, p, TS_STOPPED, pri,
816	    &curthread->t_hold, cid, 1)) == NULL) {
817		task_t *tk;
818		fork_fail(p);
819		mutex_enter(&pidlock);
820		mutex_enter(&p->p_lock);
821		tk = p->p_task;
822		task_detach(p);
823		ASSERT(p->p_pool->pool_ref > 0);
824		atomic_add_32(&p->p_pool->pool_ref, -1);
825		mutex_exit(&p->p_lock);
826		pid_exit(p);
827		mutex_exit(&pidlock);
828		task_rele(tk);
829
830		return (EAGAIN);
831	}
832
833	if (cid != syscid) {
834		ctp = contract_process_fork(sys_process_tmpl, p, curproc,
835		    B_FALSE);
836		ASSERT(ctp != NULL);
837		if (ct != NULL)
838			*ct = &ctp->conp_contract;
839	}
840
841	p->p_lwpid = 1;
842	mutex_enter(&pidlock);
843	pgjoin(p, curproc->p_pgidp);
844	p->p_stat = SRUN;
845	mutex_enter(&p->p_lock);
846	lwptot(lwp)->t_proc_flag &= ~TP_HOLDLWP;
847	lwp_create_done(lwptot(lwp));
848	mutex_exit(&p->p_lock);
849	mutex_exit(&pidlock);
850	return (0);
851}
852
853/*
854 * create a child proc struct.
855 */
856static int
857getproc(proc_t **cpp, int kernel)
858{
859	proc_t		*pp, *cp;
860	pid_t		newpid;
861	struct user	*uarea;
862	extern uint_t	nproc;
863	struct cred	*cr;
864	uid_t		ruid;
865	zoneid_t	zoneid;
866
867	if (!page_mem_avail(tune.t_minarmem))
868		return (-1);
869	if (zone_status_get(curproc->p_zone) >= ZONE_IS_SHUTTING_DOWN)
870		return (-1);	/* no point in starting new processes */
871
872	pp = curproc;
873	cp = kmem_cache_alloc(process_cache, KM_SLEEP);
874	bzero(cp, sizeof (proc_t));
875
876	/*
877	 * Make proc entry for child process
878	 */
879	mutex_init(&cp->p_splock, NULL, MUTEX_DEFAULT, NULL);
880	mutex_init(&cp->p_crlock, NULL, MUTEX_DEFAULT, NULL);
881	mutex_init(&cp->p_pflock, NULL, MUTEX_DEFAULT, NULL);
882#if defined(__x86)
883	mutex_init(&cp->p_ldtlock, NULL, MUTEX_DEFAULT, NULL);
884#endif
885	mutex_init(&cp->p_maplock, NULL, MUTEX_DEFAULT, NULL);
886	cp->p_stat = SIDL;
887	cp->p_mstart = gethrtime();
888
889	if ((newpid = pid_allocate(cp, PID_ALLOC_PROC)) == -1) {
890		if (nproc == v.v_proc) {
891			CPU_STATS_ADDQ(CPU, sys, procovf, 1);
892			cmn_err(CE_WARN, "out of processes");
893		}
894		goto bad;
895	}
896
897	/*
898	 * If not privileged make sure that this user hasn't exceeded
899	 * v.v_maxup processes, and that users collectively haven't
900	 * exceeded v.v_maxupttl processes.
901	 */
902	mutex_enter(&pidlock);
903	ASSERT(nproc < v.v_proc);	/* otherwise how'd we get our pid? */
904	cr = CRED();
905	ruid = crgetruid(cr);
906	zoneid = crgetzoneid(cr);
907	if (nproc >= v.v_maxup && 	/* short-circuit; usually false */
908	    (nproc >= v.v_maxupttl ||
909	    upcount_get(ruid, zoneid) >= v.v_maxup) &&
910	    secpolicy_newproc(cr) != 0) {
911		mutex_exit(&pidlock);
912		zcmn_err(zoneid, CE_NOTE,
913		    "out of per-user processes for uid %d", ruid);
914		goto bad;
915	}
916
917	/*
918	 * Everything is cool, put the new proc on the active process list.
919	 * It is already on the pid list and in /proc.
920	 * Increment the per uid process count (upcount).
921	 */
922	nproc++;
923	upcount_inc(ruid, zoneid);
924
925	cp->p_next = practive;
926	practive->p_prev = cp;
927	practive = cp;
928
929	cp->p_ignore = pp->p_ignore;
930	cp->p_siginfo = pp->p_siginfo;
931	cp->p_flag = pp->p_flag & (SJCTL|SNOWAIT|SNOCD);
932	cp->p_sessp = pp->p_sessp;
933	sess_hold(pp);
934	cp->p_exec = pp->p_exec;
935	cp->p_execdir = pp->p_execdir;
936	cp->p_zone = pp->p_zone;
937	cp->p_brand = pp->p_brand;
938	if (PROC_IS_BRANDED(pp))
939		BROP(pp)->b_copy_procdata(cp, pp);
940
941	cp->p_bssbase = pp->p_bssbase;
942	cp->p_brkbase = pp->p_brkbase;
943	cp->p_brksize = pp->p_brksize;
944	cp->p_brkpageszc = pp->p_brkpageszc;
945	cp->p_stksize = pp->p_stksize;
946	cp->p_stkpageszc = pp->p_stkpageszc;
947	cp->p_stkprot = pp->p_stkprot;
948	cp->p_datprot = pp->p_datprot;
949	cp->p_usrstack = pp->p_usrstack;
950	cp->p_model = pp->p_model;
951	cp->p_ppid = pp->p_pid;
952	cp->p_ancpid = pp->p_pid;
953	cp->p_portcnt = pp->p_portcnt;
954
955	/*
956	 * Initialize watchpoint structures
957	 */
958	avl_create(&cp->p_warea, wa_compare, sizeof (struct watched_area),
959	    offsetof(struct watched_area, wa_link));
960
961	/*
962	 * Initialize immediate resource control values.
963	 */
964	cp->p_stk_ctl = pp->p_stk_ctl;
965	cp->p_fsz_ctl = pp->p_fsz_ctl;
966	cp->p_vmem_ctl = pp->p_vmem_ctl;
967	cp->p_fno_ctl = pp->p_fno_ctl;
968
969	/*
970	 * Link up to parent-child-sibling chain.  No need to lock
971	 * in general since only a call to freeproc() (done by the
972	 * same parent as newproc()) diddles with the child chain.
973	 */
974	cp->p_sibling = pp->p_child;
975	if (pp->p_child)
976		pp->p_child->p_psibling = cp;
977
978	cp->p_parent = pp;
979	pp->p_child = cp;
980
981	cp->p_child_ns = NULL;
982	cp->p_sibling_ns = NULL;
983
984	cp->p_nextorph = pp->p_orphan;
985	cp->p_nextofkin = pp;
986	pp->p_orphan = cp;
987
988	/*
989	 * Inherit profiling state; do not inherit REALPROF profiling state.
990	 */
991	cp->p_prof = pp->p_prof;
992	cp->p_rprof_cyclic = CYCLIC_NONE;
993
994	/*
995	 * Inherit pool pointer from the parent.  Kernel processes are
996	 * always bound to the default pool.
997	 */
998	mutex_enter(&pp->p_lock);
999	if (kernel) {
1000		cp->p_pool = pool_default;
1001		cp->p_flag |= SSYS;
1002	} else {
1003		cp->p_pool = pp->p_pool;
1004	}
1005	atomic_add_32(&cp->p_pool->pool_ref, 1);
1006	mutex_exit(&pp->p_lock);
1007
1008	/*
1009	 * Add the child process to the current task.  Kernel processes
1010	 * are always attached to task0.
1011	 */
1012	mutex_enter(&cp->p_lock);
1013	if (kernel)
1014		task_attach(task0p, cp);
1015	else
1016		task_attach(pp->p_task, cp);
1017	mutex_exit(&cp->p_lock);
1018	mutex_exit(&pidlock);
1019
1020	avl_create(&cp->p_ct_held, contract_compar, sizeof (contract_t),
1021	    offsetof(contract_t, ct_ctlist));
1022
1023	/*
1024	 * Duplicate any audit information kept in the process table
1025	 */
1026#ifdef C2_AUDIT
1027	if (audit_active)	/* copy audit data to cp */
1028		audit_newproc(cp);
1029#endif
1030
1031	crhold(cp->p_cred = cr);
1032
1033	/*
1034	 * Bump up the counts on the file structures pointed at by the
1035	 * parent's file table since the child will point at them too.
1036	 */
1037	fcnt_add(P_FINFO(pp), 1);
1038
1039	VN_HOLD(u.u_cdir);
1040	if (u.u_rdir)
1041		VN_HOLD(u.u_rdir);
1042	if (u.u_cwd)
1043		refstr_hold(u.u_cwd);
1044
1045	/*
1046	 * copy the parent's uarea.
1047	 */
1048	uarea = PTOU(cp);
1049	bcopy(PTOU(pp), uarea, sizeof (user_t));
1050	flist_fork(P_FINFO(pp), P_FINFO(cp));
1051
1052	gethrestime(&uarea->u_start);
1053	uarea->u_ticks = lbolt;
1054	uarea->u_mem = rm_asrss(pp->p_as);
1055	uarea->u_acflag = AFORK;
1056
1057	/*
1058	 * If inherit-on-fork, copy /proc tracing flags to child.
1059	 */
1060	if ((pp->p_proc_flag & P_PR_FORK) != 0) {
1061		cp->p_proc_flag |= pp->p_proc_flag & (P_PR_TRACE|P_PR_FORK);
1062		cp->p_sigmask = pp->p_sigmask;
1063		cp->p_fltmask = pp->p_fltmask;
1064	} else {
1065		sigemptyset(&cp->p_sigmask);
1066		premptyset(&cp->p_fltmask);
1067		uarea->u_systrap = 0;
1068		premptyset(&uarea->u_entrymask);
1069		premptyset(&uarea->u_exitmask);
1070	}
1071	/*
1072	 * If microstate accounting is being inherited, mark child
1073	 */
1074	if ((pp->p_flag & SMSFORK) != 0)
1075		cp->p_flag |= pp->p_flag & (SMSFORK|SMSACCT);
1076
1077	/*
1078	 * Inherit fixalignment flag from the parent
1079	 */
1080	cp->p_fixalignment = pp->p_fixalignment;
1081
1082	if (cp->p_exec)
1083		VN_HOLD(cp->p_exec);
1084	if (cp->p_execdir)
1085		VN_HOLD(cp->p_execdir);
1086	*cpp = cp;
1087	return (0);
1088
1089bad:
1090	ASSERT(MUTEX_NOT_HELD(&pidlock));
1091
1092	mutex_destroy(&cp->p_crlock);
1093	mutex_destroy(&cp->p_pflock);
1094#if defined(__x86)
1095	mutex_destroy(&cp->p_ldtlock);
1096#endif
1097	if (newpid != -1) {
1098		proc_entry_free(cp->p_pidp);
1099		(void) pid_rele(cp->p_pidp);
1100	}
1101	kmem_cache_free(process_cache, cp);
1102
1103	/*
1104	 * We most likely got into this situation because some process is
1105	 * forking out of control.  As punishment, put it to sleep for a
1106	 * bit so it can't eat the machine alive.  Sleep interval is chosen
1107	 * to allow no more than one fork failure per cpu per clock tick
1108	 * on average (yes, I just made this up).  This has two desirable
1109	 * properties: (1) it sets a constant limit on the fork failure
1110	 * rate, and (2) the busier the system is, the harsher the penalty
1111	 * for abusing it becomes.
1112	 */
1113	INCR_COUNT(&fork_fail_pending, &pidlock);
1114	delay(fork_fail_pending / ncpus + 1);
1115	DECR_COUNT(&fork_fail_pending, &pidlock);
1116
1117	return (-1); /* out of memory or proc slots */
1118}
1119
1120/*
1121 * Release virtual memory.
1122 * In the case of vfork(), the child was given exclusive access to its
1123 * parent's address space.  The parent is waiting in vfwait() for the
1124 * child to release its exclusive claim via relvm().
1125 */
1126void
1127relvm()
1128{
1129	proc_t *p = curproc;
1130
1131	ASSERT((unsigned)p->p_lwpcnt <= 1);
1132
1133	prrelvm();	/* inform /proc */
1134
1135	if (p->p_flag & SVFORK) {
1136		proc_t *pp = p->p_parent;
1137		/*
1138		 * The child process is either exec'ing or exit'ing.
1139		 * The child is now separated from the parent's address
1140		 * space.  The parent process is made dispatchable.
1141		 *
1142		 * This is a delicate locking maneuver, involving
1143		 * both the parent's p_lock and the child's p_lock.
1144		 * As soon as the SVFORK flag is turned off, the
1145		 * parent is free to run, but it must not run until
1146		 * we wake it up using its p_cv because it might
1147		 * exit and we would be referencing invalid memory.
1148		 * Therefore, we hold the parent with its p_lock
1149		 * while protecting our p_flags with our own p_lock.
1150		 */
1151try_again:
1152		mutex_enter(&p->p_lock);	/* grab child's lock first */
1153		prbarrier(p);		/* make sure /proc is blocked out */
1154		mutex_enter(&pp->p_lock);
1155
1156		/*
1157		 * Check if parent is locked by /proc.
1158		 */
1159		if (pp->p_proc_flag & P_PR_LOCK) {
1160			/*
1161			 * Delay until /proc is done with the parent.
1162			 * We must drop our (the child's) p->p_lock, wait
1163			 * via prbarrier() on the parent, then start over.
1164			 */
1165			mutex_exit(&p->p_lock);
1166			prbarrier(pp);
1167			mutex_exit(&pp->p_lock);
1168			goto try_again;
1169		}
1170		p->p_flag &= ~SVFORK;
1171		kpreempt_disable();
1172		p->p_as = &kas;
1173
1174		/*
1175		 * notify hat of change in thread's address space
1176		 */
1177		hat_thread_exit(curthread);
1178		kpreempt_enable();
1179
1180		/*
1181		 * child sizes are copied back to parent because
1182		 * child may have grown.
1183		 */
1184		pp->p_brkbase = p->p_brkbase;
1185		pp->p_brksize = p->p_brksize;
1186		pp->p_stksize = p->p_stksize;
1187		/*
1188		 * The parent is no longer waiting for the vfork()d child.
1189		 * Restore the parent's watched pages, if any.  This is
1190		 * safe because we know the parent is not locked by /proc
1191		 */
1192		pp->p_flag &= ~SVFWAIT;
1193		if (avl_numnodes(&pp->p_wpage) != 0) {
1194			pp->p_as->a_wpage = pp->p_wpage;
1195			avl_create(&pp->p_wpage, wp_compare,
1196			    sizeof (struct watched_page),
1197			    offsetof(struct watched_page, wp_link));
1198		}
1199		cv_signal(&pp->p_cv);
1200		mutex_exit(&pp->p_lock);
1201		mutex_exit(&p->p_lock);
1202	} else {
1203		if (p->p_as != &kas) {
1204			struct as *as;
1205
1206			if (p->p_segacct)
1207				shmexit(p);
1208
1209			/*
1210			 * We grab p_lock for the benefit of /proc
1211			 */
1212			kpreempt_disable();
1213			mutex_enter(&p->p_lock);
1214			prbarrier(p);	/* make sure /proc is blocked out */
1215			as = p->p_as;
1216			p->p_as = &kas;
1217			mutex_exit(&p->p_lock);
1218
1219			/*
1220			 * notify hat of change in thread's address space
1221			 */
1222			hat_thread_exit(curthread);
1223			kpreempt_enable();
1224
1225			as_free(as);
1226		}
1227	}
1228}
1229
1230/*
1231 * Wait for child to exec or exit.
1232 * Called by parent of vfork'ed process.
1233 * See important comments in relvm(), above.
1234 */
1235void
1236vfwait(pid_t pid)
1237{
1238	int signalled = 0;
1239	proc_t *pp = ttoproc(curthread);
1240	proc_t *cp;
1241
1242	/*
1243	 * Wait for child to exec or exit.
1244	 */
1245	for (;;) {
1246		mutex_enter(&pidlock);
1247		cp = prfind(pid);
1248		if (cp == NULL || cp->p_parent != pp) {
1249			/*
1250			 * Child has exit()ed.
1251			 */
1252			mutex_exit(&pidlock);
1253			break;
1254		}
1255		/*
1256		 * Grab the child's p_lock before releasing pidlock.
1257		 * Otherwise, the child could exit and we would be
1258		 * referencing invalid memory.
1259		 */
1260		mutex_enter(&cp->p_lock);
1261		mutex_exit(&pidlock);
1262		if (!(cp->p_flag & SVFORK)) {
1263			/*
1264			 * Child has exec()ed or is exit()ing.
1265			 */
1266			mutex_exit(&cp->p_lock);
1267			break;
1268		}
1269		mutex_enter(&pp->p_lock);
1270		mutex_exit(&cp->p_lock);
1271		/*
1272		 * We might be waked up spuriously from the cv_wait().
1273		 * We have to do the whole operation over again to be
1274		 * sure the child's SVFORK flag really is turned off.
1275		 * We cannot make reference to the child because it can
1276		 * exit before we return and we would be referencing
1277		 * invalid memory.
1278		 *
1279		 * Because this is potentially a very long-term wait,
1280		 * we call cv_wait_sig() (for its jobcontrol and /proc
1281		 * side-effects) unless there is a current signal, in
1282		 * which case we use cv_wait() because we cannot return
1283		 * from this function until the child has released the
1284		 * address space.  Calling cv_wait_sig() with a current
1285		 * signal would lead to an indefinite loop here because
1286		 * cv_wait_sig() returns immediately in this case.
1287		 */
1288		if (signalled)
1289			cv_wait(&pp->p_cv, &pp->p_lock);
1290		else
1291			signalled = !cv_wait_sig(&pp->p_cv, &pp->p_lock);
1292		mutex_exit(&pp->p_lock);
1293	}
1294
1295	/* restore watchpoints to parent */
1296	if (pr_watch_active(pp)) {
1297		struct as *as = pp->p_as;
1298		AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1299		as_setwatch(as);
1300		AS_LOCK_EXIT(as, &as->a_lock);
1301	}
1302
1303	mutex_enter(&pp->p_lock);
1304	prbarrier(pp);	/* barrier against /proc locking */
1305	continuelwps(pp);
1306	mutex_exit(&pp->p_lock);
1307}
1308