ural.c revision 7656:2621e50fdf4a
1/*
2 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
3 * Use is subject to license terms.
4 */
5
6/*
7 * Copyright (c) 2005, 2006
8 *	Damien Bergamini <damien.bergamini@free.fr>
9 *
10 * Permission to use, copy, modify, and distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23/*
24 * Ralink Technology RT2500USB chipset driver
25 * http://www.ralinktech.com/
26 */
27
28#include <sys/types.h>
29#include <sys/byteorder.h>
30#include <sys/conf.h>
31#include <sys/cmn_err.h>
32#include <sys/stat.h>
33#include <sys/ddi.h>
34#include <sys/sunddi.h>
35#include <sys/strsubr.h>
36#include <sys/ethernet.h>
37#include <inet/common.h>
38#include <inet/nd.h>
39#include <inet/mi.h>
40#include <sys/note.h>
41#include <sys/stream.h>
42#include <sys/strsun.h>
43#include <sys/modctl.h>
44#include <sys/devops.h>
45#include <sys/dlpi.h>
46#include <sys/mac.h>
47#include <sys/mac_wifi.h>
48#include <sys/net80211.h>
49#include <sys/net80211_proto.h>
50#include <sys/varargs.h>
51#include <sys/policy.h>
52#include <sys/pci.h>
53#include <sys/crypto/common.h>
54#include <sys/crypto/api.h>
55#include <inet/wifi_ioctl.h>
56
57#define	USBDRV_MAJOR_VER	2
58#define	USBDRV_MINOR_VER	0
59#include <sys/usb/usba.h>
60
61#include "ural_reg.h"
62#include "ural_var.h"
63
64static void *ural_soft_state_p = NULL;
65
66#define	RAL_TXBUF_SIZE  	(IEEE80211_MAX_LEN)
67#define	RAL_RXBUF_SIZE  	(IEEE80211_MAX_LEN)
68
69/* quickly determine if a given rate is CCK or OFDM */
70#define	RAL_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
71#define	RAL_ACK_SIZE		14	/* 10 + 4(FCS) */
72#define	RAL_CTS_SIZE		14	/* 10 + 4(FCS) */
73#define	RAL_SIFS		10	/* us */
74#define	RAL_RXTX_TURNAROUND	5	/* us */
75
76#define	URAL_N(a)		(sizeof (a) / sizeof ((a)[0]))
77
78/*
79 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
80 */
81static const struct ieee80211_rateset ural_rateset_11a =
82	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
83
84static const struct ieee80211_rateset ural_rateset_11b =
85	{ 4, { 2, 4, 11, 22 } };
86
87static const struct ieee80211_rateset ural_rateset_11g =
88	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
89
90/*
91 * Default values for MAC registers; values taken from the reference driver.
92 */
93static const struct {
94	uint16_t	reg;
95	uint16_t	val;
96} ural_def_mac[] = {
97	{ RAL_TXRX_CSR5,  0x8c8d },
98	{ RAL_TXRX_CSR6,  0x8b8a },
99	{ RAL_TXRX_CSR7,  0x8687 },
100	{ RAL_TXRX_CSR8,  0x0085 },
101	{ RAL_MAC_CSR13,  0x1111 },
102	{ RAL_MAC_CSR14,  0x1e11 },
103	{ RAL_TXRX_CSR21, 0xe78f },
104	{ RAL_MAC_CSR9,   0xff1d },
105	{ RAL_MAC_CSR11,  0x0002 },
106	{ RAL_MAC_CSR22,  0x0053 },
107	{ RAL_MAC_CSR15,  0x0000 },
108	{ RAL_MAC_CSR8,   0x0780 },
109	{ RAL_TXRX_CSR19, 0x0000 },
110	{ RAL_TXRX_CSR18, 0x005a },
111	{ RAL_PHY_CSR2,   0x0000 },
112	{ RAL_TXRX_CSR0,  0x1ec0 },
113	{ RAL_PHY_CSR4,   0x000f }
114};
115
116/*
117 * Default values for BBP registers; values taken from the reference driver.
118 */
119static const struct {
120	uint8_t	reg;
121	uint8_t	val;
122} ural_def_bbp[] = {
123	{  3, 0x02 },
124	{  4, 0x19 },
125	{ 14, 0x1c },
126	{ 15, 0x30 },
127	{ 16, 0xac },
128	{ 17, 0x48 },
129	{ 18, 0x18 },
130	{ 19, 0xff },
131	{ 20, 0x1e },
132	{ 21, 0x08 },
133	{ 22, 0x08 },
134	{ 23, 0x08 },
135	{ 24, 0x80 },
136	{ 25, 0x50 },
137	{ 26, 0x08 },
138	{ 27, 0x23 },
139	{ 30, 0x10 },
140	{ 31, 0x2b },
141	{ 32, 0xb9 },
142	{ 34, 0x12 },
143	{ 35, 0x50 },
144	{ 39, 0xc4 },
145	{ 40, 0x02 },
146	{ 41, 0x60 },
147	{ 53, 0x10 },
148	{ 54, 0x18 },
149	{ 56, 0x08 },
150	{ 57, 0x10 },
151	{ 58, 0x08 },
152	{ 61, 0x60 },
153	{ 62, 0x10 },
154	{ 75, 0xff }
155};
156
157/*
158 * Default values for RF register R2 indexed by channel numbers.
159 */
160static const uint32_t ural_rf2522_r2[] = {
161	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
162	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
163};
164
165static const uint32_t ural_rf2523_r2[] = {
166	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
167	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
168};
169
170static const uint32_t ural_rf2524_r2[] = {
171	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
172	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
173};
174
175static const uint32_t ural_rf2525_r2[] = {
176	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
177	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
178};
179
180static const uint32_t ural_rf2525_hi_r2[] = {
181	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
182	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
183};
184
185static const uint32_t ural_rf2525e_r2[] = {
186	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
187	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
188};
189
190static const uint32_t ural_rf2526_hi_r2[] = {
191	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
192	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
193};
194
195static const uint32_t ural_rf2526_r2[] = {
196	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
197	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
198};
199
200/*
201 * For dual-band RF, RF registers R1 and R4 also depend on channel number;
202 * values taken from the reference driver.
203 */
204static const struct {
205	uint8_t		chan;
206	uint32_t	r1;
207	uint32_t	r2;
208	uint32_t	r4;
209} ural_rf5222[] = {
210	{   1, 0x08808, 0x0044d, 0x00282 },
211	{   2, 0x08808, 0x0044e, 0x00282 },
212	{   3, 0x08808, 0x0044f, 0x00282 },
213	{   4, 0x08808, 0x00460, 0x00282 },
214	{   5, 0x08808, 0x00461, 0x00282 },
215	{   6, 0x08808, 0x00462, 0x00282 },
216	{   7, 0x08808, 0x00463, 0x00282 },
217	{   8, 0x08808, 0x00464, 0x00282 },
218	{   9, 0x08808, 0x00465, 0x00282 },
219	{  10, 0x08808, 0x00466, 0x00282 },
220	{  11, 0x08808, 0x00467, 0x00282 },
221	{  12, 0x08808, 0x00468, 0x00282 },
222	{  13, 0x08808, 0x00469, 0x00282 },
223	{  14, 0x08808, 0x0046b, 0x00286 },
224
225	{  36, 0x08804, 0x06225, 0x00287 },
226	{  40, 0x08804, 0x06226, 0x00287 },
227	{  44, 0x08804, 0x06227, 0x00287 },
228	{  48, 0x08804, 0x06228, 0x00287 },
229	{  52, 0x08804, 0x06229, 0x00287 },
230	{  56, 0x08804, 0x0622a, 0x00287 },
231	{  60, 0x08804, 0x0622b, 0x00287 },
232	{  64, 0x08804, 0x0622c, 0x00287 },
233
234	{ 100, 0x08804, 0x02200, 0x00283 },
235	{ 104, 0x08804, 0x02201, 0x00283 },
236	{ 108, 0x08804, 0x02202, 0x00283 },
237	{ 112, 0x08804, 0x02203, 0x00283 },
238	{ 116, 0x08804, 0x02204, 0x00283 },
239	{ 120, 0x08804, 0x02205, 0x00283 },
240	{ 124, 0x08804, 0x02206, 0x00283 },
241	{ 128, 0x08804, 0x02207, 0x00283 },
242	{ 132, 0x08804, 0x02208, 0x00283 },
243	{ 136, 0x08804, 0x02209, 0x00283 },
244	{ 140, 0x08804, 0x0220a, 0x00283 },
245
246	{ 149, 0x08808, 0x02429, 0x00281 },
247	{ 153, 0x08808, 0x0242b, 0x00281 },
248	{ 157, 0x08808, 0x0242d, 0x00281 },
249	{ 161, 0x08808, 0x0242f, 0x00281 }
250};
251
252/*
253 * device operations
254 */
255static int ural_attach(dev_info_t *, ddi_attach_cmd_t);
256static int ural_detach(dev_info_t *, ddi_detach_cmd_t);
257
258/*
259 * Module Loading Data & Entry Points
260 */
261DDI_DEFINE_STREAM_OPS(ural_dev_ops, nulldev, nulldev, ural_attach,
262    ural_detach, nodev, NULL, D_MP, NULL, ddi_quiesce_not_supported);
263
264static struct modldrv ural_modldrv = {
265	&mod_driverops,		/* Type of module.  This one is a driver */
266	"ural driver",	/* short description */
267	&ural_dev_ops		/* driver specific ops */
268};
269
270static struct modlinkage modlinkage = {
271	MODREV_1,
272	(void *)&ural_modldrv,
273	NULL
274};
275
276static int	ural_m_stat(void *,  uint_t, uint64_t *);
277static int	ural_m_start(void *);
278static void	ural_m_stop(void *);
279static int	ural_m_promisc(void *, boolean_t);
280static int	ural_m_multicst(void *, boolean_t, const uint8_t *);
281static int	ural_m_unicst(void *, const uint8_t *);
282static mblk_t	*ural_m_tx(void *, mblk_t *);
283static void	ural_m_ioctl(void *, queue_t *, mblk_t *);
284
285static mac_callbacks_t ural_m_callbacks = {
286	MC_IOCTL,
287	ural_m_stat,
288	ural_m_start,
289	ural_m_stop,
290	ural_m_promisc,
291	ural_m_multicst,
292	ural_m_unicst,
293	ural_m_tx,
294	NULL,		/* mc_resources; */
295	ural_m_ioctl,
296	NULL		/* mc_getcapab */
297};
298
299extern const char *usb_str_cr(int);
300static void ural_amrr_start(struct ural_softc *, struct ieee80211_node *);
301static int  ural_tx_trigger(struct ural_softc *, mblk_t *);
302static int  ural_rx_trigger(struct ural_softc *);
303
304uint32_t ural_dbg_flags = 0;
305
306#ifdef DEBUG
307void
308ral_debug(uint32_t dbg_flags, const int8_t *fmt, ...)
309{
310	va_list args;
311
312	if (dbg_flags & ural_dbg_flags) {
313		va_start(args, fmt);
314		vcmn_err(CE_CONT, fmt, args);
315		va_end(args);
316	}
317}
318#endif
319
320static uint16_t
321ural_read(struct ural_softc *sc, uint16_t reg)
322{
323	usb_ctrl_setup_t req;
324	usb_cr_t cr;
325	usb_cb_flags_t cf;
326	mblk_t *mp;
327	int err;
328	uint16_t val;
329
330	bzero(&req, sizeof (req));
331	req.bmRequestType = USB_DEV_REQ_TYPE_VENDOR | USB_DEV_REQ_DEV_TO_HOST;
332	req.bRequest = RAL_READ_MAC;
333	req.wValue = 0;
334	req.wIndex = reg;
335	req.wLength = sizeof (uint16_t);
336
337	mp = NULL;
338	err = usb_pipe_ctrl_xfer_wait(sc->sc_udev->dev_default_ph, &req, &mp,
339	    &cr, &cf, 0);
340
341	if (err != USB_SUCCESS) {
342		RAL_DEBUG(RAL_DBG_ERR,
343		    "ural_read(): could not read MAC register:"
344		    " cr:%s(%d), cf:(%x)\n",
345		    usb_str_cr(cr), cr, cf);
346		return (0);
347	}
348
349	bcopy(mp->b_rptr, &val, sizeof (uint16_t));
350
351	if (mp)
352		freemsg(mp);
353
354	return (LE_16(val));
355}
356
357static void
358ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
359{
360	usb_ctrl_setup_t req;
361	usb_cr_t cr;
362	usb_cb_flags_t cf;
363	mblk_t *mp;
364	int err;
365
366	bzero(&req, sizeof (req));
367	req.bmRequestType = USB_DEV_REQ_TYPE_VENDOR | USB_DEV_REQ_DEV_TO_HOST;
368	req.bRequest = RAL_READ_MULTI_MAC;
369	req.wValue = 0;
370	req.wIndex = reg;
371	req.wLength = (uint16_t)len;
372	req.attrs = USB_ATTRS_AUTOCLEARING;
373
374	mp = NULL;
375	err = usb_pipe_ctrl_xfer_wait(sc->sc_udev->dev_default_ph, &req, &mp,
376	    &cr, &cf, 0);
377
378	if (err != USB_SUCCESS) {
379		RAL_DEBUG(RAL_DBG_ERR,
380		    "ural_read_multi(): could not read MAC register:"
381		    "cr:%s(%d), cf:(%x)\n",
382		    usb_str_cr(cr), cr, cf);
383		return;
384	}
385
386	bcopy(mp->b_rptr, buf, len);
387
388	if (mp)
389		freemsg(mp);
390}
391
392static void
393ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
394{
395	usb_ctrl_setup_t req;
396	usb_cr_t cr;
397	usb_cb_flags_t cf;
398	int err;
399
400	bzero(&req, sizeof (req));
401	req.bmRequestType = USB_DEV_REQ_TYPE_VENDOR | USB_DEV_REQ_HOST_TO_DEV;
402	req.bRequest = RAL_WRITE_MAC;
403	req.wValue = val;
404	req.wIndex = reg;
405	req.wLength = 0;
406	req.attrs = USB_ATTRS_NONE;
407
408	err = usb_pipe_ctrl_xfer_wait(sc->sc_udev->dev_default_ph, &req, NULL,
409	    &cr, &cf, 0);
410
411	if (err != USB_SUCCESS) {
412		RAL_DEBUG(RAL_DBG_ERR,
413		    "ural_write(): could not write MAC register:"
414		    "cr:%s(%d), cf:(%x)\n",
415		    usb_str_cr(cr), cr, cf);
416	}
417}
418
419/* ARGSUSED */
420static void
421ural_txeof(usb_pipe_handle_t pipe, usb_bulk_req_t *req)
422{
423	struct ural_softc *sc = (struct ural_softc *)req->bulk_client_private;
424	struct ieee80211com *ic = &sc->sc_ic;
425
426	RAL_DEBUG(RAL_DBG_TX,
427	    "ural_txeof(): cr:%s(%d), flags:0x%x, tx_queued:%d",
428	    usb_str_cr(req->bulk_completion_reason),
429	    req->bulk_completion_reason,
430	    req->bulk_cb_flags,
431	    sc->tx_queued);
432
433	if (req->bulk_completion_reason != USB_CR_OK)
434		sc->sc_tx_err++;
435
436	mutex_enter(&sc->tx_lock);
437
438	sc->tx_queued--;
439	sc->sc_tx_timer = 0;
440
441	if (sc->sc_need_sched) {
442		sc->sc_need_sched = 0;
443		mac_tx_update(ic->ic_mach);
444	}
445
446	mutex_exit(&sc->tx_lock);
447	usb_free_bulk_req(req);
448}
449
450/* ARGSUSED */
451static void
452ural_rxeof(usb_pipe_handle_t pipe, usb_bulk_req_t *req)
453{
454	struct ural_softc *sc = (struct ural_softc *)req->bulk_client_private;
455	struct ieee80211com *ic = &sc->sc_ic;
456
457	struct ural_rx_desc *desc;
458	struct ieee80211_frame *wh;
459	struct ieee80211_node *ni;
460
461	mblk_t *m, *mp;
462	int len, pktlen;
463	char *rxbuf;
464
465	mp = req->bulk_data;
466	req->bulk_data = NULL;
467
468	RAL_DEBUG(RAL_DBG_RX,
469	    "ural_rxeof(): cr:%s(%d), flags:0x%x, rx_queued:%d",
470	    usb_str_cr(req->bulk_completion_reason),
471	    req->bulk_completion_reason,
472	    req->bulk_cb_flags,
473	    sc->rx_queued);
474
475	if (req->bulk_completion_reason != USB_CR_OK) {
476		sc->sc_rx_err++;
477		goto fail;
478	}
479
480	len = (uintptr_t)mp->b_wptr - (uintptr_t)mp->b_rptr;
481	rxbuf = (char *)mp->b_rptr;
482
483	if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
484		RAL_DEBUG(RAL_DBG_ERR,
485		    "ural_rxeof(): xfer too short %d\n", len);
486		sc->sc_rx_err++;
487		goto fail;
488	}
489
490	/* rx descriptor is located at the end */
491	desc = (struct ural_rx_desc *)(rxbuf + len - RAL_RX_DESC_SIZE);
492
493	if ((LE_32(desc->flags) & RAL_RX_PHY_ERROR) ||
494	    (LE_32(desc->flags) & RAL_RX_CRC_ERROR)) {
495		/*
496		 * This should not happen since we did not request to receive
497		 * those frames when we filled RAL_TXRX_CSR2.
498		 */
499		RAL_DEBUG(RAL_DBG_ERR, "PHY or CRC error\n");
500		sc->sc_rx_err++;
501		goto fail;
502	}
503
504	pktlen = (LE_32(desc->flags) >> 16) & 0xfff;
505
506	if (pktlen > (len - RAL_RX_DESC_SIZE)) {
507		RAL_DEBUG(RAL_DBG_ERR,
508		    "ural_rxeof(): pktlen mismatch <%d, %d>.\n", pktlen, len);
509		goto fail;
510	}
511
512	/* Strip trailing 802.11 MAC FCS. */
513	pktlen -= IEEE80211_CRC_LEN;
514
515	if ((m = allocb(pktlen, BPRI_MED)) == NULL) {
516		RAL_DEBUG(RAL_DBG_ERR,
517		    "ural_rxeof(): allocate mblk failed.\n");
518		sc->sc_rx_nobuf++;
519		goto fail;
520	}
521
522	bcopy(rxbuf, m->b_rptr, pktlen);
523	m->b_wptr += pktlen;
524
525	wh = (struct ieee80211_frame *)m->b_rptr;
526	ni = ieee80211_find_rxnode(ic, wh);
527
528	/* send the frame to the 802.11 layer */
529	(void) ieee80211_input(ic, m, ni, desc->rssi, 0);
530
531	/* node is no longer needed */
532	ieee80211_free_node(ni);
533fail:
534	mutex_enter(&sc->rx_lock);
535	sc->rx_queued--;
536	mutex_exit(&sc->rx_lock);
537
538	freemsg(mp);
539	usb_free_bulk_req(req);
540
541	if (RAL_IS_RUNNING(sc))
542		(void) ural_rx_trigger(sc);
543}
544
545/*
546 * Return the expected ack rate for a frame transmitted at rate `rate'.
547 * this should depend on the destination node basic rate set.
548 */
549static int
550ural_ack_rate(struct ieee80211com *ic, int rate)
551{
552	switch (rate) {
553	/* CCK rates */
554	case 2:
555		return (2);
556	case 4:
557	case 11:
558	case 22:
559		return ((ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate);
560
561	/* OFDM rates */
562	case 12:
563	case 18:
564		return (12);
565	case 24:
566	case 36:
567		return (24);
568	case 48:
569	case 72:
570	case 96:
571	case 108:
572		return (48);
573	}
574
575	/* default to 1Mbps */
576	return (2);
577}
578
579/*
580 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
581 * The function automatically determines the operating mode depending on the
582 * given rate. `flags' indicates whether short preamble is in use or not.
583 */
584static uint16_t
585ural_txtime(int len, int rate, uint32_t flags)
586{
587	uint16_t txtime;
588
589	if (RAL_RATE_IS_OFDM(rate)) {
590		/* IEEE Std 802.11a-1999, pp. 37 */
591		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
592		txtime = 16 + 4 + 4 * txtime + 6;
593	} else {
594		/* IEEE Std 802.11b-1999, pp. 28 */
595		txtime = (16 * len + rate - 1) / rate;
596		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
597			txtime +=  72 + 24;
598		else
599			txtime += 144 + 48;
600	}
601	return (txtime);
602}
603
604static uint8_t
605ural_plcp_signal(int rate)
606{
607	switch (rate) {
608	/* CCK rates (returned values are device-dependent) */
609	case 2:		return (0x0);
610	case 4:		return (0x1);
611	case 11:	return (0x2);
612	case 22:	return (0x3);
613
614	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
615	case 12:	return (0xb);
616	case 18:	return (0xf);
617	case 24:	return (0xa);
618	case 36:	return (0xe);
619	case 48:	return (0x9);
620	case 72:	return (0xd);
621	case 96:	return (0x8);
622	case 108:	return (0xc);
623
624	/* unsupported rates (should not get there) */
625	default:	return (0xff);
626	}
627}
628
629static void
630ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
631    uint32_t flags, int len, int rate)
632{
633	struct ieee80211com *ic = &sc->sc_ic;
634	uint16_t plcp_length;
635	int remainder;
636
637	desc->flags = LE_32(flags);
638	desc->flags |= LE_32(RAL_TX_NEWSEQ);
639	desc->flags |= LE_32(len << 16);
640
641	desc->wme = LE_16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
642	desc->wme |= LE_16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
643
644	/* setup PLCP fields */
645	desc->plcp_signal  = ural_plcp_signal(rate);
646	desc->plcp_service = 4;
647
648	len += IEEE80211_CRC_LEN;
649	if (RAL_RATE_IS_OFDM(rate)) {
650		desc->flags |= LE_32(RAL_TX_OFDM);
651
652		plcp_length = len & 0xfff;
653		desc->plcp_length_hi = plcp_length >> 6;
654		desc->plcp_length_lo = plcp_length & 0x3f;
655	} else {
656		plcp_length = (16 * len + rate - 1) / rate;
657		if (rate == 22) {
658			remainder = (16 * len) % 22;
659			if (remainder != 0 && remainder < 7)
660				desc->plcp_service |= RAL_PLCP_LENGEXT;
661		}
662		desc->plcp_length_hi = plcp_length >> 8;
663		desc->plcp_length_lo = plcp_length & 0xff;
664
665		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
666			desc->plcp_signal |= 0x08;
667	}
668
669	desc->iv = 0;
670	desc->eiv = 0;
671}
672
673#define	RAL_TX_TIMEOUT		5
674
675static int
676ural_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type)
677{
678	struct ural_softc *sc = (struct ural_softc *)ic;
679	struct ural_tx_desc *desc;
680
681	struct ieee80211_frame *wh;
682	struct ieee80211_key *k;
683
684	uint16_t dur;
685	uint32_t flags = 0;
686	int rate, err = DDI_SUCCESS;
687
688	struct ieee80211_node *ni = NULL;
689	mblk_t *m, *m0;
690	int off, mblen, pktlen, xferlen;
691
692	mutex_enter(&sc->tx_lock);
693
694	if (sc->tx_queued > RAL_TX_LIST_COUNT) {
695		RAL_DEBUG(RAL_DBG_TX, "ural_send(): "
696		    "no TX buffer available!\n");
697		if ((type & IEEE80211_FC0_TYPE_MASK) ==
698		    IEEE80211_FC0_TYPE_DATA) {
699			sc->sc_need_sched = 1;
700		}
701		sc->sc_tx_nobuf++;
702		err = ENOMEM;
703		goto fail;
704	}
705
706	m = allocb(RAL_TXBUF_SIZE + RAL_TX_DESC_SIZE, BPRI_MED);
707	if (m == NULL) {
708		RAL_DEBUG(RAL_DBG_ERR, "ural_send(): can't alloc mblk.\n");
709		err = DDI_FAILURE;
710		goto fail;
711	}
712
713	m->b_rptr += RAL_TX_DESC_SIZE;	/* skip TX descriptor */
714	m->b_wptr += RAL_TX_DESC_SIZE;
715
716	for (off = 0, m0 = mp; m0 != NULL; m0 = m0->b_cont) {
717		mblen = (uintptr_t)m0->b_wptr - (uintptr_t)m0->b_rptr;
718		(void) memcpy(m->b_rptr + off, m0->b_rptr, mblen);
719		off += mblen;
720	}
721	m->b_wptr += off;
722
723	wh = (struct ieee80211_frame *)m->b_rptr;
724
725	ni = ieee80211_find_txnode(ic, wh->i_addr1);
726	if (ni == NULL) {
727		err = DDI_FAILURE;
728		sc->sc_tx_err++;
729		freemsg(m);
730		goto fail;
731	}
732
733	if ((type & IEEE80211_FC0_TYPE_MASK) ==
734	    IEEE80211_FC0_TYPE_DATA) {
735		(void) ieee80211_encap(ic, m, ni);
736	}
737
738	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
739		k = ieee80211_crypto_encap(ic, m);
740		if (k == NULL) {
741			sc->sc_tx_err++;
742			freemsg(m);
743			err = DDI_FAILURE;
744			goto fail;
745		}
746		/* packet header may have moved, reset our local pointer */
747		wh = (struct ieee80211_frame *)m->b_rptr;
748	}
749
750	m->b_rptr -= RAL_TX_DESC_SIZE;	/* restore */
751	desc = (struct ural_tx_desc *)m->b_rptr;
752
753	if ((type & IEEE80211_FC0_TYPE_MASK) ==
754	    IEEE80211_FC0_TYPE_DATA) {	/* DATA */
755		if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
756			rate = ic->ic_bss->in_rates.ir_rates[ic->ic_fixed_rate];
757		else
758			rate = ni->in_rates.ir_rates[ni->in_txrate];
759
760		rate &= IEEE80211_RATE_VAL;
761		if (rate <= 0) {
762			rate = 2;	/* basic rate */
763		}
764
765		if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
766			flags |= RAL_TX_ACK;
767			flags |= RAL_TX_RETRY(7);
768
769			dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
770			    ic->ic_flags) + RAL_SIFS;
771			*(uint16_t *)(uintptr_t)wh->i_dur = LE_16(dur);
772		}
773	} else {	/* MGMT */
774		rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
775
776		if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
777			flags |= RAL_TX_ACK;
778
779			dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags)
780			    + RAL_SIFS;
781			*(uint16_t *)(uintptr_t)wh->i_dur = LE_16(dur);
782
783			/* tell hardware to add timestamp for probe responses */
784			if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
785			    IEEE80211_FC0_TYPE_MGT &&
786			    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
787			    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
788				flags |= RAL_TX_TIMESTAMP;
789		}
790	}
791
792	pktlen = (uintptr_t)m->b_wptr - (uintptr_t)m->b_rptr - RAL_TX_DESC_SIZE;
793	ural_setup_tx_desc(sc, desc, flags, pktlen, rate);
794
795	/* align end on a 2-bytes boundary */
796	xferlen = (RAL_TX_DESC_SIZE + pktlen + 1) & ~1;
797
798	/*
799	 * No space left in the last URB to store the extra 2 bytes, force
800	 * sending of another URB.
801	 */
802	if ((xferlen % 64) == 0)
803		xferlen += 2;
804
805	m->b_wptr = m->b_rptr + xferlen;
806
807	RAL_DEBUG(RAL_DBG_TX, "sending data frame len=%u rate=%u xfer len=%u\n",
808	    pktlen, rate, xferlen);
809
810	(void) ural_tx_trigger(sc, m);
811
812	ic->ic_stats.is_tx_frags++;
813	ic->ic_stats.is_tx_bytes += pktlen;
814
815fail:
816	if (ni != NULL)
817		ieee80211_free_node(ni);
818
819	if ((type & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_DATA ||
820	    err == 0) {
821		freemsg(mp);
822	}
823
824	mutex_exit(&sc->tx_lock);
825
826	return (err);
827}
828
829static mblk_t *
830ural_m_tx(void *arg, mblk_t *mp)
831{
832	struct ural_softc *sc = (struct ural_softc *)arg;
833	struct ieee80211com *ic = &sc->sc_ic;
834	mblk_t *next;
835
836	/*
837	 * No data frames go out unless we're associated; this
838	 * should not happen as the 802.11 layer does not enable
839	 * the xmit queue until we enter the RUN state.
840	 */
841	if (ic->ic_state != IEEE80211_S_RUN) {
842		RAL_DEBUG(RAL_DBG_ERR, "ural_m_tx(): "
843		    "discard, state %u\n", ic->ic_state);
844		freemsgchain(mp);
845		return (NULL);
846	}
847
848	while (mp != NULL) {
849		next = mp->b_next;
850		mp->b_next = NULL;
851		if (ural_send(ic, mp, IEEE80211_FC0_TYPE_DATA) != DDI_SUCCESS) {
852			mp->b_next = next;
853			freemsgchain(mp);
854			return (NULL);
855		}
856		mp = next;
857	}
858	return (mp);
859}
860
861static void
862ural_set_testmode(struct ural_softc *sc)
863{
864	usb_ctrl_setup_t req;
865	usb_cr_t cr;
866	usb_cb_flags_t cf;
867	int err;
868
869	bzero(&req, sizeof (req));
870	req.bmRequestType = USB_DEV_REQ_TYPE_VENDOR | USB_DEV_REQ_HOST_TO_DEV;
871	req.bRequest = RAL_VENDOR_REQUEST;
872	req.wValue = 4;
873	req.wIndex = 1;
874	req.wLength = 0;
875	req.attrs = USB_ATTRS_NONE;
876
877	err = usb_pipe_ctrl_xfer_wait(sc->sc_udev->dev_default_ph, &req, NULL,
878	    &cr, &cf, 0);
879
880	if (err != USB_SUCCESS) {
881		RAL_DEBUG(RAL_DBG_USB,
882		    "ural_set_testmode(): could not set test mode:"
883		    "cr:%s(%d), cf:%(x)\n",
884		    usb_str_cr(cr), cr, cf);
885	}
886}
887
888static void
889ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
890{
891	usb_ctrl_setup_t req;
892	usb_cr_t cr;
893	usb_cb_flags_t cf;
894	mblk_t *mp;
895	int err;
896
897	bzero(&req, sizeof (req));
898	req.bmRequestType = USB_DEV_REQ_TYPE_VENDOR | USB_DEV_REQ_DEV_TO_HOST;
899	req.bRequest = RAL_READ_EEPROM;
900	req.wValue = 0;
901	req.wIndex = addr;
902	req.wLength = (uint16_t)len;
903
904	mp = NULL;
905	err = usb_pipe_ctrl_xfer_wait(sc->sc_udev->dev_default_ph, &req, &mp,
906	    &cr, &cf, 0);
907
908	if (err != USB_SUCCESS) {
909		RAL_DEBUG(RAL_DBG_USB,
910		    "ural_eeprom_read(): could not read EEPROM:"
911		    "cr:%s(%d), cf:(%x)\n",
912		    usb_str_cr(cr), cr, cf);
913		return;
914	}
915
916	bcopy(mp->b_rptr, buf, len);
917
918	if (mp)
919		freemsg(mp);
920}
921
922static void
923ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
924{
925	uint16_t tmp;
926	int ntries;
927
928	for (ntries = 0; ntries < 5; ntries++) {
929		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
930			break;
931	}
932	if (ntries == 5) {
933		RAL_DEBUG(RAL_DBG_ERR,
934		    "ural_bbp_write(): could not write to BBP\n");
935		return;
936	}
937
938	tmp = reg << 8 | val;
939	ural_write(sc, RAL_PHY_CSR7, tmp);
940}
941
942static uint8_t
943ural_bbp_read(struct ural_softc *sc, uint8_t reg)
944{
945	uint16_t val;
946	int ntries;
947
948	val = RAL_BBP_WRITE | reg << 8;
949	ural_write(sc, RAL_PHY_CSR7, val);
950
951	for (ntries = 0; ntries < 5; ntries++) {
952		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
953			break;
954	}
955	if (ntries == 5) {
956		RAL_DEBUG(RAL_DBG_ERR, "ural_bbp_read(): could not read BBP\n");
957		return (0);
958	}
959
960	return (ural_read(sc, RAL_PHY_CSR7) & 0xff);
961}
962
963static void
964ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
965{
966	uint32_t tmp;
967	int ntries;
968
969	for (ntries = 0; ntries < 5; ntries++) {
970		if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
971			break;
972	}
973	if (ntries == 5) {
974		RAL_DEBUG(RAL_DBG_ERR,
975		    "ural_rf_write(): could not write to RF\n");
976		return;
977	}
978
979	tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xffff) << 2 | (reg & 0x3);
980	ural_write(sc, RAL_PHY_CSR9,  tmp & 0xffff);
981	ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
982
983	/* remember last written value in sc */
984	sc->rf_regs[reg] = val;
985
986	RAL_DEBUG(RAL_DBG_HW, "RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff);
987}
988
989/*
990 * Disable RF auto-tuning.
991 */
992static void
993ural_disable_rf_tune(struct ural_softc *sc)
994{
995	uint32_t tmp;
996
997	if (sc->rf_rev != RAL_RF_2523) {
998		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
999		ural_rf_write(sc, RAL_RF1, tmp);
1000	}
1001
1002	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1003	ural_rf_write(sc, RAL_RF3, tmp);
1004
1005	RAL_DEBUG(RAL_DBG_HW, "disabling RF autotune\n");
1006}
1007
1008
1009static void
1010ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1011{
1012	struct ieee80211com *ic = &sc->sc_ic;
1013	uint8_t power, tmp;
1014	uint_t i, chan;
1015
1016	chan = ieee80211_chan2ieee(ic, c);
1017	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1018		return;
1019
1020	if (IEEE80211_IS_CHAN_2GHZ(c))
1021		power = min(sc->txpow[chan - 1], 31);
1022	else
1023		power = 31;
1024
1025	/* adjust txpower using ifconfig settings */
1026	power -= (100 - ic->ic_txpowlimit) / 8;
1027
1028	RAL_DEBUG(RAL_DBG_HW, "setting channel to %u, txpower to %u\n",
1029	    chan, power);
1030
1031	switch (sc->rf_rev) {
1032	case RAL_RF_2522:
1033		ural_rf_write(sc, RAL_RF1, 0x00814);
1034		ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1035		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1036		break;
1037
1038	case RAL_RF_2523:
1039		ural_rf_write(sc, RAL_RF1, 0x08804);
1040		ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1041		ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1042		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1043		break;
1044
1045	case RAL_RF_2524:
1046		ural_rf_write(sc, RAL_RF1, 0x0c808);
1047		ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1048		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1049		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1050		break;
1051
1052	case RAL_RF_2525:
1053		ural_rf_write(sc, RAL_RF1, 0x08808);
1054		ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1055		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1056		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1057
1058		ural_rf_write(sc, RAL_RF1, 0x08808);
1059		ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1060		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1061		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1062		break;
1063
1064	case RAL_RF_2525E:
1065		ural_rf_write(sc, RAL_RF1, 0x08808);
1066		ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1067		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1068		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1069		break;
1070
1071	case RAL_RF_2526:
1072		ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1073		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1074		ural_rf_write(sc, RAL_RF1, 0x08804);
1075
1076		ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1077		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1078		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1079		break;
1080
1081	/* dual-band RF */
1082	case RAL_RF_5222:
1083		for (i = 0; ural_rf5222[i].chan != chan; i++) {
1084			if (i > URAL_N(ural_rf5222)) break;
1085		}
1086
1087		ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1088		ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1089		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1090		ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1091		break;
1092	}
1093
1094	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1095	    ic->ic_state != IEEE80211_S_SCAN) {
1096		/* set Japan filter bit for channel 14 */
1097		tmp = ural_bbp_read(sc, 70);
1098
1099		tmp &= ~RAL_JAPAN_FILTER;
1100		if (chan == 14)
1101			tmp |= RAL_JAPAN_FILTER;
1102
1103		ural_bbp_write(sc, 70, tmp);
1104
1105		/* clear CRC errs */
1106		(void) ural_read(sc, RAL_STA_CSR0);
1107
1108		drv_usecwait(10000);
1109		ural_disable_rf_tune(sc);
1110	}
1111}
1112
1113/*
1114 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1115 * synchronization.
1116 */
1117static void
1118ural_enable_tsf_sync(struct ural_softc *sc)
1119{
1120	struct ieee80211com *ic = &sc->sc_ic;
1121	uint16_t logcwmin, preload, tmp;
1122
1123	/* first, disable TSF synchronization */
1124	ural_write(sc, RAL_TXRX_CSR19, 0);
1125
1126	tmp = (16 * ic->ic_bss->in_intval) << 4;
1127	ural_write(sc, RAL_TXRX_CSR18, tmp);
1128
1129	logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1130	preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1131	tmp = logcwmin << 12 | preload;
1132	ural_write(sc, RAL_TXRX_CSR20, tmp);
1133
1134	/* finally, enable TSF synchronization */
1135	tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1136	if (ic->ic_opmode == IEEE80211_M_STA)
1137		tmp |= RAL_ENABLE_TSF_SYNC(1);
1138	else
1139		tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1140	ural_write(sc, RAL_TXRX_CSR19, tmp);
1141
1142	RAL_DEBUG(RAL_DBG_HW, "enabling TSF synchronization\n");
1143}
1144
1145/*
1146 * This function can be called by ieee80211_set_shortslottime(). Refer to
1147 * IEEE Std 802.11-1999 pp. 85 to know how these values are computed.
1148 */
1149/* ARGSUSED */
1150static void
1151ural_update_slot(struct ieee80211com *ic, int onoff)
1152{
1153	struct ural_softc *sc = (struct ural_softc *)ic;
1154	uint16_t slottime, sifs, eifs;
1155
1156	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1157	/* slottime = (onoff ? 9 : 20); */
1158
1159	/*
1160	 * These settings may sound a bit inconsistent but this is what the
1161	 * reference driver does.
1162	 */
1163	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1164		sifs = 16 - RAL_RXTX_TURNAROUND;
1165		eifs = 364;
1166	} else {
1167		sifs = 10 - RAL_RXTX_TURNAROUND;
1168		eifs = 64;
1169	}
1170
1171	ural_write(sc, RAL_MAC_CSR10, slottime);
1172	ural_write(sc, RAL_MAC_CSR11, sifs);
1173	ural_write(sc, RAL_MAC_CSR12, eifs);
1174}
1175
1176static void
1177ural_set_txpreamble(struct ural_softc *sc)
1178{
1179	uint16_t tmp;
1180
1181	tmp = ural_read(sc, RAL_TXRX_CSR10);
1182
1183	tmp &= ~RAL_SHORT_PREAMBLE;
1184	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1185		tmp |= RAL_SHORT_PREAMBLE;
1186
1187	ural_write(sc, RAL_TXRX_CSR10, tmp);
1188}
1189
1190static void
1191ural_set_basicrates(struct ural_softc *sc)
1192{
1193	struct ieee80211com *ic = &sc->sc_ic;
1194
1195	/* update basic rate set */
1196	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1197		/* 11b basic rates: 1, 2Mbps */
1198		ural_write(sc, RAL_TXRX_CSR11, 0x3);
1199	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->in_chan)) {
1200		/* 11a basic rates: 6, 12, 24Mbps */
1201		ural_write(sc, RAL_TXRX_CSR11, 0x150);
1202	} else {
1203		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1204		ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1205	}
1206}
1207
1208static void
1209ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1210{
1211	uint16_t tmp;
1212
1213	tmp = bssid[0] | bssid[1] << 8;
1214	ural_write(sc, RAL_MAC_CSR5, tmp);
1215
1216	tmp = bssid[2] | bssid[3] << 8;
1217	ural_write(sc, RAL_MAC_CSR6, tmp);
1218
1219	tmp = bssid[4] | bssid[5] << 8;
1220	ural_write(sc, RAL_MAC_CSR7, tmp);
1221
1222	RAL_DEBUG(RAL_DBG_HW, "setting BSSID to " MACSTR "\n", MAC2STR(bssid));
1223}
1224
1225static void
1226ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1227{
1228	uint16_t tmp;
1229
1230	tmp = addr[0] | addr[1] << 8;
1231	ural_write(sc, RAL_MAC_CSR2, tmp);
1232
1233	tmp = addr[2] | addr[3] << 8;
1234	ural_write(sc, RAL_MAC_CSR3, tmp);
1235
1236	tmp = addr[4] | addr[5] << 8;
1237	ural_write(sc, RAL_MAC_CSR4, tmp);
1238
1239	RAL_DEBUG(RAL_DBG_HW,
1240	    "setting MAC address to " MACSTR "\n", MAC2STR(addr));
1241}
1242
1243static void
1244ural_update_promisc(struct ural_softc *sc)
1245{
1246	uint32_t tmp;
1247
1248	tmp = ural_read(sc, RAL_TXRX_CSR2);
1249
1250	tmp &= ~RAL_DROP_NOT_TO_ME;
1251	if (!(sc->sc_rcr & RAL_RCR_PROMISC))
1252		tmp |= RAL_DROP_NOT_TO_ME;
1253
1254	ural_write(sc, RAL_TXRX_CSR2, tmp);
1255
1256	RAL_DEBUG(RAL_DBG_HW, "%s promiscuous mode\n",
1257	    (sc->sc_rcr & RAL_RCR_PROMISC) ?  "entering" : "leaving");
1258}
1259
1260static const char *
1261ural_get_rf(int rev)
1262{
1263	switch (rev) {
1264	case RAL_RF_2522:	return ("RT2522");
1265	case RAL_RF_2523:	return ("RT2523");
1266	case RAL_RF_2524:	return ("RT2524");
1267	case RAL_RF_2525:	return ("RT2525");
1268	case RAL_RF_2525E:	return ("RT2525e");
1269	case RAL_RF_2526:	return ("RT2526");
1270	case RAL_RF_5222:	return ("RT5222");
1271	default:		return ("unknown");
1272	}
1273}
1274
1275static void
1276ural_read_eeprom(struct ural_softc *sc)
1277{
1278	struct ieee80211com *ic = &sc->sc_ic;
1279	uint16_t val;
1280
1281	ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1282	val = LE_16(val);
1283	sc->rf_rev =   (val >> 11) & 0x7;
1284	sc->hw_radio = (val >> 10) & 0x1;
1285	sc->led_mode = (val >> 6)  & 0x7;
1286	sc->rx_ant =   (val >> 4)  & 0x3;
1287	sc->tx_ant =   (val >> 2)  & 0x3;
1288	sc->nb_ant =   val & 0x3;
1289
1290	/* read MAC address */
1291	ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_macaddr, 6);
1292
1293	/* read default values for BBP registers */
1294	ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1295
1296	/* read Tx power for all b/g channels */
1297	ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
1298}
1299
1300static int
1301ural_bbp_init(struct ural_softc *sc)
1302{
1303	int i, ntries;
1304
1305	/* wait for BBP to be ready */
1306	for (ntries = 0; ntries < 100; ntries++) {
1307		if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
1308			break;
1309		drv_usecwait(1000);
1310	}
1311	if (ntries == 100) {
1312		RAL_DEBUG(RAL_DBG_ERR, "timeout waiting for BBP\n");
1313		return (EIO);
1314	}
1315
1316	/* initialize BBP registers to default values */
1317	for (i = 0; i < URAL_N(ural_def_bbp); i++)
1318		ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
1319
1320	return (0);
1321}
1322
1323static void
1324ural_set_txantenna(struct ural_softc *sc, int antenna)
1325{
1326	uint16_t tmp;
1327	uint8_t tx;
1328
1329	tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
1330	if (antenna == 1)
1331		tx |= RAL_BBP_ANTA;
1332	else if (antenna == 2)
1333		tx |= RAL_BBP_ANTB;
1334	else
1335		tx |= RAL_BBP_DIVERSITY;
1336
1337	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
1338	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
1339	    sc->rf_rev == RAL_RF_5222)
1340		tx |= RAL_BBP_FLIPIQ;
1341
1342	ural_bbp_write(sc, RAL_BBP_TX, tx);
1343
1344	/* update values in PHY_CSR5 and PHY_CSR6 */
1345	tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
1346	ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
1347
1348	tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
1349	ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
1350}
1351
1352static void
1353ural_set_rxantenna(struct ural_softc *sc, int antenna)
1354{
1355	uint8_t rx;
1356
1357	rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
1358	if (antenna == 1)
1359		rx |= RAL_BBP_ANTA;
1360	else if (antenna == 2)
1361		rx |= RAL_BBP_ANTB;
1362	else
1363		rx |= RAL_BBP_DIVERSITY;
1364
1365	/* need to force no I/Q flip for RF 2525e and 2526 */
1366	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
1367		rx &= ~RAL_BBP_FLIPIQ;
1368
1369	ural_bbp_write(sc, RAL_BBP_RX, rx);
1370}
1371
1372/*
1373 * This function is called periodically (every 200ms) during scanning to
1374 * switch from one channel to another.
1375 */
1376static void
1377ural_next_scan(void *arg)
1378{
1379	struct ural_softc *sc = arg;
1380	struct ieee80211com *ic = &sc->sc_ic;
1381
1382	if (ic->ic_state == IEEE80211_S_SCAN)
1383		ieee80211_next_scan(ic);
1384}
1385
1386static int
1387ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1388{
1389	struct ural_softc *sc = (struct ural_softc *)ic;
1390	enum ieee80211_state ostate;
1391	struct ieee80211_node *ni;
1392	int err;
1393
1394	RAL_LOCK(sc);
1395
1396	ostate = ic->ic_state;
1397
1398	if (sc->sc_scan_id != 0) {
1399		(void) untimeout(sc->sc_scan_id);
1400		sc->sc_scan_id = 0;
1401	}
1402
1403	if (sc->sc_amrr_id != 0) {
1404		(void) untimeout(sc->sc_amrr_id);
1405		sc->sc_amrr_id = 0;
1406	}
1407
1408	switch (nstate) {
1409	case IEEE80211_S_INIT:
1410		if (ostate == IEEE80211_S_RUN) {
1411			/* abort TSF synchronization */
1412			ural_write(sc, RAL_TXRX_CSR19, 0);
1413			/* force tx led to stop blinking */
1414			ural_write(sc, RAL_MAC_CSR20, 0);
1415		}
1416		break;
1417
1418	case IEEE80211_S_SCAN:
1419		ural_set_chan(sc, ic->ic_curchan);
1420		sc->sc_scan_id = timeout(ural_next_scan, (void *)sc,
1421		    drv_usectohz(sc->dwelltime * 1000));
1422		break;
1423
1424	case IEEE80211_S_AUTH:
1425		RAL_DEBUG(RAL_DBG_MSG, "-> IEEE80211_S_AUTH ...\n");
1426		ural_set_chan(sc, ic->ic_curchan);
1427		break;
1428
1429	case IEEE80211_S_ASSOC:
1430		RAL_DEBUG(RAL_DBG_MSG, "-> IEEE80211_S_ASSOC ...\n");
1431		ural_set_chan(sc, ic->ic_curchan);
1432		break;
1433
1434	case IEEE80211_S_RUN:
1435		RAL_DEBUG(RAL_DBG_MSG, "-> IEEE80211_S_RUN ...\n");
1436		ural_set_chan(sc, ic->ic_curchan);
1437
1438		ni = ic->ic_bss;
1439
1440		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1441			ural_update_slot(ic, 1);
1442			ural_set_txpreamble(sc);
1443			ural_set_basicrates(sc);
1444			ural_set_bssid(sc, ni->in_bssid);
1445		}
1446
1447
1448		/* make tx led blink on tx (controlled by ASIC) */
1449		ural_write(sc, RAL_MAC_CSR20, 1);
1450
1451		if (ic->ic_opmode != IEEE80211_M_MONITOR)
1452			ural_enable_tsf_sync(sc);
1453
1454		/* enable automatic rate adaptation in STA mode */
1455		if (ic->ic_opmode == IEEE80211_M_STA &&
1456		    ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
1457			ural_amrr_start(sc, ni);
1458
1459		break;
1460	}
1461
1462	RAL_UNLOCK(sc);
1463
1464	err = sc->sc_newstate(ic, nstate, arg);
1465	/*
1466	 * Finally, start any timers.
1467	 */
1468	if (nstate == IEEE80211_S_RUN)
1469		ieee80211_start_watchdog(ic, 1);
1470
1471	return (err);
1472}
1473
1474
1475
1476static void
1477ural_close_pipes(struct ural_softc *sc)
1478{
1479	usb_flags_t flags = USB_FLAGS_SLEEP;
1480
1481	if (sc->sc_rx_pipeh != NULL) {
1482		usb_pipe_reset(sc->sc_dev, sc->sc_rx_pipeh, flags, NULL, 0);
1483		usb_pipe_close(sc->sc_dev, sc->sc_rx_pipeh, flags, NULL, 0);
1484		sc->sc_rx_pipeh = NULL;
1485	}
1486
1487	if (sc->sc_tx_pipeh != NULL) {
1488		usb_pipe_reset(sc->sc_dev, sc->sc_tx_pipeh, flags, NULL, 0);
1489		usb_pipe_close(sc->sc_dev, sc->sc_tx_pipeh, flags, NULL, 0);
1490		sc->sc_tx_pipeh = NULL;
1491	}
1492}
1493
1494static int
1495ural_open_pipes(struct ural_softc *sc)
1496{
1497	usb_ep_data_t *ep_node;
1498	usb_pipe_policy_t policy;
1499	int err;
1500
1501	ep_node = usb_lookup_ep_data(sc->sc_dev, sc->sc_udev, 0, 0, 0,
1502	    USB_EP_ATTR_BULK, USB_EP_DIR_OUT);
1503
1504	bzero(&policy, sizeof (usb_pipe_policy_t));
1505	policy.pp_max_async_reqs = RAL_TX_LIST_COUNT;
1506
1507	if ((err = usb_pipe_open(sc->sc_dev,
1508	    &ep_node->ep_descr, &policy, USB_FLAGS_SLEEP,
1509	    &sc->sc_tx_pipeh)) != USB_SUCCESS) {
1510		RAL_DEBUG(RAL_DBG_ERR,
1511		    "ural_open_pipes(): %x failed to open tx pipe\n", err);
1512		goto fail;
1513	}
1514
1515	RAL_DEBUG(RAL_DBG_MSG, "tx pipe opened\n");
1516
1517	ep_node = usb_lookup_ep_data(sc->sc_dev, sc->sc_udev, 0, 0, 0,
1518	    USB_EP_ATTR_BULK, USB_EP_DIR_IN);
1519
1520	bzero(&policy, sizeof (usb_pipe_policy_t));
1521	policy.pp_max_async_reqs = RAL_RX_LIST_COUNT + 32;
1522
1523	if ((err = usb_pipe_open(sc->sc_dev,
1524	    &ep_node->ep_descr, &policy, USB_FLAGS_SLEEP,
1525	    &sc->sc_rx_pipeh)) != USB_SUCCESS) {
1526		RAL_DEBUG(RAL_DBG_ERR,
1527		    "ural_open_pipes(): %x failed to open rx pipe\n", err);
1528		goto fail;
1529	}
1530
1531	RAL_DEBUG(RAL_DBG_MSG, "rx pipe opened\n");
1532
1533	return (USB_SUCCESS);
1534
1535fail:
1536	if (sc->sc_rx_pipeh != NULL) {
1537		usb_pipe_close(sc->sc_dev, sc->sc_rx_pipeh,
1538		    USB_FLAGS_SLEEP, NULL, 0);
1539		sc->sc_rx_pipeh = NULL;
1540	}
1541
1542	if (sc->sc_tx_pipeh != NULL) {
1543		usb_pipe_close(sc->sc_dev, sc->sc_tx_pipeh,
1544		    USB_FLAGS_SLEEP, NULL, 0);
1545		sc->sc_tx_pipeh = NULL;
1546	}
1547
1548	return (USB_FAILURE);
1549}
1550
1551static int
1552ural_tx_trigger(struct ural_softc *sc, mblk_t *mp)
1553{
1554	usb_bulk_req_t *req;
1555	int err;
1556
1557	sc->sc_tx_timer = RAL_TX_TIMEOUT;
1558
1559	req = usb_alloc_bulk_req(sc->sc_dev, 0, USB_FLAGS_SLEEP);
1560	if (req == NULL) {
1561		RAL_DEBUG(RAL_DBG_ERR,
1562		    "ural_tx_trigger(): failed to allocate req");
1563		freemsg(mp);
1564		return (-1);
1565	}
1566
1567	req->bulk_len		= (uintptr_t)mp->b_wptr - (uintptr_t)mp->b_rptr;
1568	req->bulk_data		= mp;
1569	req->bulk_client_private = (usb_opaque_t)sc;
1570	req->bulk_timeout	= RAL_TX_TIMEOUT;
1571	req->bulk_attributes	= USB_ATTRS_AUTOCLEARING;
1572	req->bulk_cb		= ural_txeof;
1573	req->bulk_exc_cb	= ural_txeof;
1574	req->bulk_completion_reason = 0;
1575	req->bulk_cb_flags	= 0;
1576
1577	if ((err = usb_pipe_bulk_xfer(sc->sc_tx_pipeh, req, 0))
1578	    != USB_SUCCESS) {
1579
1580		RAL_DEBUG(RAL_DBG_ERR, "ural_tx_trigger(): "
1581		    "failed to do tx xfer, %d", err);
1582		usb_free_bulk_req(req);
1583		return (-1);
1584	}
1585
1586	sc->tx_queued++;
1587
1588	return (0);
1589}
1590
1591static int
1592ural_rx_trigger(struct ural_softc *sc)
1593{
1594	usb_bulk_req_t *req;
1595	int err;
1596
1597	req = usb_alloc_bulk_req(sc->sc_dev, RAL_RXBUF_SIZE, USB_FLAGS_SLEEP);
1598	if (req == NULL) {
1599		RAL_DEBUG(RAL_DBG_ERR,
1600		    "ural_rx_trigger(): failed to allocate req");
1601		return (-1);
1602	}
1603
1604	req->bulk_len		= RAL_RXBUF_SIZE;
1605	req->bulk_client_private = (usb_opaque_t)sc;
1606	req->bulk_timeout	= 0;
1607	req->bulk_attributes	= USB_ATTRS_SHORT_XFER_OK
1608	    | USB_ATTRS_AUTOCLEARING;
1609	req->bulk_cb		= ural_rxeof;
1610	req->bulk_exc_cb	= ural_rxeof;
1611	req->bulk_completion_reason = 0;
1612	req->bulk_cb_flags	= 0;
1613
1614	err = usb_pipe_bulk_xfer(sc->sc_rx_pipeh, req, 0);
1615
1616	if (err != USB_SUCCESS) {
1617		RAL_DEBUG(RAL_DBG_ERR, "ural_rx_trigger(): "
1618		    "failed to do rx xfer, %d", err);
1619		usb_free_bulk_req(req);
1620
1621		return (-1);
1622	}
1623
1624	mutex_enter(&sc->rx_lock);
1625	sc->rx_queued++;
1626	mutex_exit(&sc->rx_lock);
1627
1628	return (0);
1629}
1630
1631static void
1632ural_init_tx_queue(struct ural_softc *sc)
1633{
1634	sc->tx_queued = 0;
1635}
1636
1637static int
1638ural_init_rx_queue(struct ural_softc *sc)
1639{
1640	int	i;
1641
1642	sc->rx_queued = 0;
1643
1644	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
1645		if (ural_rx_trigger(sc) != 0) {
1646			return (USB_FAILURE);
1647		}
1648	}
1649
1650	return (USB_SUCCESS);
1651}
1652
1653static void
1654ural_stop(struct ural_softc *sc)
1655{
1656	struct ieee80211com *ic = &sc->sc_ic;
1657
1658	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1659	ieee80211_stop_watchdog(ic);	/* stop the watchdog */
1660
1661	RAL_LOCK(sc);
1662
1663	sc->sc_tx_timer = 0;
1664	sc->sc_flags &= ~RAL_FLAG_RUNNING;	/* STOP */
1665
1666	/* disable Rx */
1667	ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
1668
1669	/* reset ASIC and BBP (but won't reset MAC registers!) */
1670	ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
1671	ural_write(sc, RAL_MAC_CSR1, 0);
1672
1673	ural_close_pipes(sc);
1674
1675	RAL_UNLOCK(sc);
1676}
1677
1678static int
1679ural_init(struct ural_softc *sc)
1680{
1681	struct ieee80211com *ic = &sc->sc_ic;
1682	uint16_t tmp;
1683	int i, ntries;
1684
1685	ural_set_testmode(sc);
1686	ural_write(sc, 0x308, 0x00f0);	/* magic */
1687
1688	ural_stop(sc);
1689
1690	/* initialize MAC registers to default values */
1691	for (i = 0; i < URAL_N(ural_def_mac); i++)
1692		ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
1693
1694	/* wait for BBP and RF to wake up (this can take a long time!) */
1695	for (ntries = 0; ntries < 100; ntries++) {
1696		tmp = ural_read(sc, RAL_MAC_CSR17);
1697		if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
1698		    (RAL_BBP_AWAKE | RAL_RF_AWAKE))
1699			break;
1700		drv_usecwait(1000);
1701	}
1702	if (ntries == 100) {
1703		RAL_DEBUG(RAL_DBG_ERR,
1704		    "ural_init(): timeout waiting for BBP/RF to wakeup\n");
1705		goto fail;
1706	}
1707
1708	/* we're ready! */
1709	ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
1710
1711	/* set basic rate set (will be updated later) */
1712	ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1713
1714	if (ural_bbp_init(sc) != 0)
1715		goto fail;
1716
1717	/* set default BSS channel */
1718	ural_set_chan(sc, ic->ic_curchan);
1719
1720	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
1721	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof (sc->sta));
1722
1723	ural_set_txantenna(sc, sc->tx_ant);
1724	ural_set_rxantenna(sc, sc->rx_ant);
1725
1726	ural_set_macaddr(sc, ic->ic_macaddr);
1727
1728	if (ural_open_pipes(sc) != USB_SUCCESS) {
1729		RAL_DEBUG(RAL_DBG_ERR, "ural_init(): "
1730		    "could not open pipes.\n");
1731		goto fail;
1732	}
1733
1734	ural_init_tx_queue(sc);
1735
1736	if (ural_init_rx_queue(sc) != USB_SUCCESS)
1737		goto fail;
1738
1739	/* kick Rx */
1740	tmp = RAL_DROP_PHY | RAL_DROP_CRC;
1741	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1742		tmp |= RAL_DROP_CTL | RAL_DROP_BAD_VERSION;
1743		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
1744			tmp |= RAL_DROP_TODS;
1745		if (!(sc->sc_rcr & RAL_RCR_PROMISC))
1746			tmp |= RAL_DROP_NOT_TO_ME;
1747	}
1748	ural_write(sc, RAL_TXRX_CSR2, tmp);
1749	sc->sc_flags |= RAL_FLAG_RUNNING;	/* RUNNING */
1750
1751	return (DDI_SUCCESS);
1752fail:
1753	ural_stop(sc);
1754	return (EIO);
1755}
1756
1757static int
1758ural_offline(dev_info_t *devinfo)
1759{
1760	struct ural_softc *sc;
1761	struct ieee80211com *ic;
1762
1763	RAL_DEBUG(RAL_DBG_MSG, "ural_offline()\n");
1764
1765	/*
1766	 * We can't call ural_stop() here, since the hardware is removed,
1767	 * we can't access the register anymore.
1768	 */
1769
1770	sc = ddi_get_soft_state(ural_soft_state_p, ddi_get_instance(devinfo));
1771	ic = &sc->sc_ic;
1772
1773	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1774	ieee80211_stop_watchdog(ic);	/* stop the watchdog */
1775
1776	RAL_LOCK(sc);
1777
1778	sc->sc_tx_timer = 0;
1779	sc->sc_flags &= ~RAL_FLAG_RUNNING;	/* STOP */
1780
1781	ural_close_pipes(sc);
1782
1783	RAL_UNLOCK(sc);
1784
1785	return (DDI_SUCCESS);
1786}
1787
1788static int
1789ural_online(dev_info_t *devinfo)
1790{
1791	struct ural_softc *sc;
1792	int err;
1793
1794	RAL_DEBUG(RAL_DBG_MSG, "ural_online()\n");
1795
1796	sc = ddi_get_soft_state(ural_soft_state_p, ddi_get_instance(devinfo));
1797	err = ural_init(sc);
1798
1799	return (err);
1800}
1801
1802#define	URAL_AMRR_MIN_SUCCESS_THRESHOLD	1
1803#define	URAL_AMRR_MAX_SUCCESS_THRESHOLD	10
1804
1805/*
1806 * Naive implementation of the Adaptive Multi Rate Retry algorithm:
1807 * "IEEE 802.11 Rate Adaptation: A Practical Approach"
1808 * Mathieu Lacage, Hossein Manshaei, Thierry Turletti
1809 * INRIA Sophia - Projet Planete
1810 * http://www-sop.inria.fr/rapports/sophia/RR-5208.html
1811 *
1812 * This algorithm is particularly well suited for ural since it does not
1813 * require per-frame retry statistics.  Note however that since h/w does
1814 * not provide per-frame stats, we can't do per-node rate adaptation and
1815 * thus automatic rate adaptation is only enabled in STA operating mode.
1816 */
1817#define	is_success(amrr)	\
1818	((amrr)->retrycnt < (amrr)->txcnt / 10)
1819#define	is_failure(amrr)	\
1820	((amrr)->retrycnt > (amrr)->txcnt / 3)
1821#define	is_enough(amrr)		\
1822	((amrr)->txcnt > 10)
1823#define	is_min_rate(ni)		\
1824	((ni)->in_txrate == 0)
1825#define	is_max_rate(ni)		\
1826	((ni)->in_txrate == (ni)->in_rates.ir_nrates - 1)
1827#define	increase_rate(ni)	\
1828	((ni)->in_txrate++)
1829#define	decrease_rate(ni)	\
1830	((ni)->in_txrate--)
1831#define	reset_cnt(amrr)	do {	\
1832	(amrr)->txcnt = (amrr)->retrycnt = 0;	\
1833	_NOTE(CONSTCOND)	\
1834} while (/* CONSTCOND */0)
1835
1836static void
1837ural_ratectl(struct ural_amrr *amrr, struct ieee80211_node *ni)
1838{
1839	int need_change = 0;
1840
1841	if (is_success(amrr) && is_enough(amrr)) {
1842		amrr->success++;
1843		if (amrr->success >= amrr->success_threshold &&
1844		    !is_max_rate(ni)) {
1845			amrr->recovery = 1;
1846			amrr->success = 0;
1847			increase_rate(ni);
1848			need_change = 1;
1849		} else {
1850			amrr->recovery = 0;
1851		}
1852	} else if (is_failure(amrr)) {
1853		amrr->success = 0;
1854		if (!is_min_rate(ni)) {
1855			if (amrr->recovery) {
1856				amrr->success_threshold *= 2;
1857				if (amrr->success_threshold >
1858				    URAL_AMRR_MAX_SUCCESS_THRESHOLD)
1859					amrr->success_threshold =
1860					    URAL_AMRR_MAX_SUCCESS_THRESHOLD;
1861			} else {
1862				amrr->success_threshold =
1863				    URAL_AMRR_MIN_SUCCESS_THRESHOLD;
1864			}
1865			decrease_rate(ni);
1866			need_change = 1;
1867		}
1868		amrr->recovery = 0;	/* original paper was incorrect */
1869	}
1870
1871	if (is_enough(amrr) || need_change)
1872		reset_cnt(amrr);
1873}
1874
1875static void
1876ural_amrr_timeout(void *arg)
1877{
1878	struct ural_softc *sc = (struct ural_softc *)arg;
1879	struct ural_amrr *amrr = &sc->amrr;
1880
1881	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof (sc->sta));
1882
1883	/* count TX retry-fail as Tx errors */
1884	sc->sc_tx_err += sc->sta[9];
1885	sc->sc_tx_retries += (sc->sta[7] + sc->sta[8]);
1886
1887	amrr->retrycnt =
1888	    sc->sta[7] +	/* TX one-retry ok count */
1889	    sc->sta[8] +	/* TX more-retry ok count */
1890	    sc->sta[9];		/* TX retry-fail count */
1891
1892	amrr->txcnt =
1893	    amrr->retrycnt +
1894	    sc->sta[6];		/* TX no-retry ok count */
1895
1896	ural_ratectl(amrr, sc->sc_ic.ic_bss);
1897
1898	sc->sc_amrr_id = timeout(ural_amrr_timeout, (void *)sc,
1899	    drv_usectohz(1000 * 1000)); /* 1 second */
1900}
1901
1902
1903static void
1904ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
1905{
1906	struct ural_amrr *amrr = &sc->amrr;
1907	int i;
1908
1909	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
1910	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof (sc->sta));
1911
1912	amrr->success = 0;
1913	amrr->recovery = 0;
1914	amrr->txcnt = amrr->retrycnt = 0;
1915	amrr->success_threshold = URAL_AMRR_MIN_SUCCESS_THRESHOLD;
1916
1917	/* set rate to some reasonable initial value */
1918	for (i = ni->in_rates.ir_nrates - 1;
1919	    i > 0 && (ni->in_rates.ir_rates[i] & IEEE80211_RATE_VAL) > 72;
1920	    i--) {
1921	}
1922
1923	ni->in_txrate = i;
1924
1925	sc->sc_amrr_id = timeout(ural_amrr_timeout, (void *)sc,
1926	    drv_usectohz(1000 * 1000)); /* 1 second */
1927}
1928
1929void
1930ural_watchdog(void *arg)
1931{
1932	struct ural_softc *sc = arg;
1933	struct ieee80211com *ic = &sc->sc_ic;
1934	int ntimer = 0;
1935
1936	RAL_LOCK(sc);
1937	ic->ic_watchdog_timer = 0;
1938
1939	if (!RAL_IS_RUNNING(sc)) {
1940		RAL_UNLOCK(sc);
1941		return;
1942	}
1943
1944	if (sc->sc_tx_timer > 0) {
1945		if (--sc->sc_tx_timer == 0) {
1946			RAL_DEBUG(RAL_DBG_ERR, "tx timer timeout\n");
1947			RAL_UNLOCK(sc);
1948			(void) ural_init(sc);
1949			(void) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1950			return;
1951		}
1952	}
1953
1954	if (ic->ic_state == IEEE80211_S_RUN)
1955		ntimer = 1;
1956
1957	RAL_UNLOCK(sc);
1958
1959	ieee80211_watchdog(ic);
1960
1961	if (ntimer)
1962		ieee80211_start_watchdog(ic, ntimer);
1963}
1964
1965static int
1966ural_m_start(void *arg)
1967{
1968	struct ural_softc *sc = (struct ural_softc *)arg;
1969	crypto_mech_type_t type;
1970	int err;
1971
1972
1973	type = crypto_mech2id(SUN_CKM_RC4); /* load rc4 module into kernel */
1974	RAL_DEBUG(RAL_DBG_MSG, "ural_m_start(%d)\n", type);
1975
1976	/*
1977	 * initialize RT2500USB hardware
1978	 */
1979	err = ural_init(sc);
1980	if (err != DDI_SUCCESS) {
1981		RAL_DEBUG(RAL_DBG_ERR, "device configuration failed\n");
1982		goto fail;
1983	}
1984	sc->sc_flags |= RAL_FLAG_RUNNING;	/* RUNNING */
1985	return (err);
1986
1987fail:
1988	ural_stop(sc);
1989	return (err);
1990}
1991
1992static void
1993ural_m_stop(void *arg)
1994{
1995	struct ural_softc *sc = (struct ural_softc *)arg;
1996
1997	RAL_DEBUG(RAL_DBG_MSG, "ural_m_stop()\n");
1998
1999	(void) ural_stop(sc);
2000	sc->sc_flags &= ~RAL_FLAG_RUNNING;	/* STOP */
2001}
2002
2003static int
2004ural_m_unicst(void *arg, const uint8_t *macaddr)
2005{
2006	struct ural_softc *sc = (struct ural_softc *)arg;
2007	struct ieee80211com *ic = &sc->sc_ic;
2008
2009	RAL_DEBUG(RAL_DBG_MSG, "ural_m_unicst(): " MACSTR "\n",
2010	    MAC2STR(macaddr));
2011
2012	IEEE80211_ADDR_COPY(ic->ic_macaddr, macaddr);
2013	(void) ural_set_macaddr(sc, (uint8_t *)macaddr);
2014	(void) ural_init(sc);
2015
2016	return (0);
2017}
2018
2019/*ARGSUSED*/
2020static int
2021ural_m_multicst(void *arg, boolean_t add, const uint8_t *mca)
2022{
2023	return (0);
2024}
2025
2026static int
2027ural_m_promisc(void *arg, boolean_t on)
2028{
2029	struct ural_softc *sc = (struct ural_softc *)arg;
2030
2031	RAL_DEBUG(RAL_DBG_MSG, "ural_m_promisc()\n");
2032
2033	if (on) {
2034		sc->sc_rcr |= RAL_RCR_PROMISC;
2035		sc->sc_rcr |= RAL_RCR_MULTI;
2036	} else {
2037		sc->sc_rcr &= ~RAL_RCR_PROMISC;
2038		sc->sc_rcr &= ~RAL_RCR_PROMISC;
2039	}
2040
2041	ural_update_promisc(sc);
2042	return (0);
2043}
2044
2045static void
2046ural_m_ioctl(void* arg, queue_t *wq, mblk_t *mp)
2047{
2048	struct ural_softc *sc = (struct ural_softc *)arg;
2049	struct ieee80211com *ic = &sc->sc_ic;
2050	int err;
2051
2052	err = ieee80211_ioctl(ic, wq, mp);
2053	RAL_LOCK(sc);
2054	if (err == ENETRESET) {
2055		if (RAL_IS_RUNNING(sc)) {
2056			RAL_UNLOCK(sc);
2057			(void) ural_init(sc);
2058			(void) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2059			RAL_LOCK(sc);
2060		}
2061	}
2062	RAL_UNLOCK(sc);
2063}
2064
2065static int
2066ural_m_stat(void *arg, uint_t stat, uint64_t *val)
2067{
2068	struct ural_softc *sc  = (struct ural_softc *)arg;
2069	ieee80211com_t	*ic = &sc->sc_ic;
2070	ieee80211_node_t *ni = ic->ic_bss;
2071	struct ieee80211_rateset *rs = &ni->in_rates;
2072
2073	RAL_LOCK(sc);
2074	switch (stat) {
2075	case MAC_STAT_IFSPEED:
2076		*val = ((ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) ?
2077		    (rs->ir_rates[ni->in_txrate] & IEEE80211_RATE_VAL)
2078		    : ic->ic_fixed_rate) / 2 * 1000000;
2079		break;
2080	case MAC_STAT_NOXMTBUF:
2081		*val = sc->sc_tx_nobuf;
2082		break;
2083	case MAC_STAT_NORCVBUF:
2084		*val = sc->sc_rx_nobuf;
2085		break;
2086	case MAC_STAT_IERRORS:
2087		*val = sc->sc_rx_err;
2088		break;
2089	case MAC_STAT_RBYTES:
2090		*val = ic->ic_stats.is_rx_bytes;
2091		break;
2092	case MAC_STAT_IPACKETS:
2093		*val = ic->ic_stats.is_rx_frags;
2094		break;
2095	case MAC_STAT_OBYTES:
2096		*val = ic->ic_stats.is_tx_bytes;
2097		break;
2098	case MAC_STAT_OPACKETS:
2099		*val = ic->ic_stats.is_tx_frags;
2100		break;
2101	case MAC_STAT_OERRORS:
2102	case WIFI_STAT_TX_FAILED:
2103		*val = sc->sc_tx_err;
2104		break;
2105	case WIFI_STAT_TX_RETRANS:
2106		*val = sc->sc_tx_retries;
2107		break;
2108	case WIFI_STAT_FCS_ERRORS:
2109	case WIFI_STAT_WEP_ERRORS:
2110	case WIFI_STAT_TX_FRAGS:
2111	case WIFI_STAT_MCAST_TX:
2112	case WIFI_STAT_RTS_SUCCESS:
2113	case WIFI_STAT_RTS_FAILURE:
2114	case WIFI_STAT_ACK_FAILURE:
2115	case WIFI_STAT_RX_FRAGS:
2116	case WIFI_STAT_MCAST_RX:
2117	case WIFI_STAT_RX_DUPS:
2118		RAL_UNLOCK(sc);
2119		return (ieee80211_stat(ic, stat, val));
2120	default:
2121		RAL_UNLOCK(sc);
2122		return (ENOTSUP);
2123	}
2124	RAL_UNLOCK(sc);
2125
2126	return (0);
2127}
2128
2129
2130static int
2131ural_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
2132{
2133	struct ural_softc *sc;
2134	struct ieee80211com *ic;
2135	int err, i;
2136	int instance;
2137
2138	char strbuf[32];
2139
2140	wifi_data_t wd = { 0 };
2141	mac_register_t *macp;
2142
2143	RAL_DEBUG(RAL_DBG_MSG, "ural_attach()\n");
2144
2145	if (cmd != DDI_ATTACH)
2146		return (DDI_FAILURE);
2147
2148	instance = ddi_get_instance(devinfo);
2149
2150	if (ddi_soft_state_zalloc(ural_soft_state_p, instance) != DDI_SUCCESS) {
2151		RAL_DEBUG(RAL_DBG_MSG, "ural_attach(): "
2152		    "unable to alloc soft_state_p\n");
2153		return (DDI_FAILURE);
2154	}
2155
2156	sc = ddi_get_soft_state(ural_soft_state_p, instance);
2157	ic = (ieee80211com_t *)&sc->sc_ic;
2158	sc->sc_dev = devinfo;
2159
2160	if (usb_client_attach(devinfo, USBDRV_VERSION, 0) != USB_SUCCESS) {
2161		RAL_DEBUG(RAL_DBG_ERR,
2162		    "ural_attach(): usb_client_attach failed\n");
2163		goto fail1;
2164	}
2165
2166	if (usb_get_dev_data(devinfo, &sc->sc_udev,
2167	    USB_PARSE_LVL_ALL, 0) != USB_SUCCESS) {
2168		sc->sc_udev = NULL;
2169		goto fail2;
2170	}
2171
2172	mutex_init(&sc->sc_genlock, NULL, MUTEX_DRIVER, NULL);
2173	mutex_init(&sc->tx_lock, NULL, MUTEX_DRIVER, NULL);
2174	mutex_init(&sc->rx_lock, NULL, MUTEX_DRIVER, NULL);
2175
2176	/* retrieve RT2570 rev. no */
2177	sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
2178
2179	/* retrieve MAC address and various other things from EEPROM */
2180	ural_read_eeprom(sc);
2181
2182	RAL_DEBUG(RAL_DBG_MSG, "ural: MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
2183	    sc->asic_rev, ural_get_rf(sc->rf_rev));
2184
2185	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
2186	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
2187	ic->ic_state = IEEE80211_S_INIT;
2188
2189	ic->ic_maxrssi = 63;
2190	ic->ic_set_shortslot = ural_update_slot;
2191	ic->ic_xmit = ural_send;
2192
2193	/* set device capabilities */
2194	ic->ic_caps =
2195	    IEEE80211_C_TXPMGT |	/* tx power management */
2196	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
2197	    IEEE80211_C_SHSLOT;		/* short slot time supported */
2198
2199	ic->ic_caps |= IEEE80211_C_WPA; /* Support WPA/WPA2 */
2200
2201#define	IEEE80211_CHAN_A	\
2202	(IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM)
2203
2204	if (sc->rf_rev == RAL_RF_5222) {
2205		/* set supported .11a rates */
2206		ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a;
2207
2208		/* set supported .11a channels */
2209		for (i = 36; i <= 64; i += 4) {
2210			ic->ic_sup_channels[i].ich_freq =
2211			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
2212			ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_A;
2213		}
2214		for (i = 100; i <= 140; i += 4) {
2215			ic->ic_sup_channels[i].ich_freq =
2216			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
2217			ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_A;
2218		}
2219		for (i = 149; i <= 161; i += 4) {
2220			ic->ic_sup_channels[i].ich_freq =
2221			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
2222			ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_A;
2223		}
2224	}
2225
2226	/* set supported .11b and .11g rates */
2227	ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b;
2228	ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g;
2229
2230	/* set supported .11b and .11g channels (1 through 14) */
2231	for (i = 1; i <= 14; i++) {
2232		ic->ic_sup_channels[i].ich_freq =
2233		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
2234		ic->ic_sup_channels[i].ich_flags =
2235		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2236		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2237	}
2238
2239	ieee80211_attach(ic);
2240
2241	/* register WPA door */
2242	ieee80211_register_door(ic, ddi_driver_name(devinfo),
2243	    ddi_get_instance(devinfo));
2244
2245	/* override state transition machine */
2246	sc->sc_newstate = ic->ic_newstate;
2247	ic->ic_newstate = ural_newstate;
2248	ic->ic_watchdog = ural_watchdog;
2249	ieee80211_media_init(ic);
2250	ic->ic_def_txkey = 0;
2251
2252	sc->sc_rcr = 0;
2253	sc->dwelltime = 300;
2254	sc->sc_flags &= ~RAL_FLAG_RUNNING;
2255
2256	/*
2257	 * Provide initial settings for the WiFi plugin; whenever this
2258	 * information changes, we need to call mac_plugindata_update()
2259	 */
2260	wd.wd_opmode = ic->ic_opmode;
2261	wd.wd_secalloc = WIFI_SEC_NONE;
2262	IEEE80211_ADDR_COPY(wd.wd_bssid, ic->ic_bss->in_bssid);
2263
2264	if ((macp = mac_alloc(MAC_VERSION)) == NULL) {
2265		RAL_DEBUG(RAL_DBG_ERR, "ural_attach(): "
2266		    "MAC version mismatch\n");
2267		goto fail3;
2268	}
2269
2270	macp->m_type_ident	= MAC_PLUGIN_IDENT_WIFI;
2271	macp->m_driver		= sc;
2272	macp->m_dip		= devinfo;
2273	macp->m_src_addr	= ic->ic_macaddr;
2274	macp->m_callbacks	= &ural_m_callbacks;
2275	macp->m_min_sdu		= 0;
2276	macp->m_max_sdu		= IEEE80211_MTU;
2277	macp->m_pdata		= &wd;
2278	macp->m_pdata_size	= sizeof (wd);
2279
2280	err = mac_register(macp, &ic->ic_mach);
2281	mac_free(macp);
2282	if (err != 0) {
2283		RAL_DEBUG(RAL_DBG_ERR, "ural_attach(): "
2284		    "mac_register() err %x\n", err);
2285		goto fail3;
2286	}
2287
2288	if (usb_register_hotplug_cbs(devinfo, ural_offline,
2289	    ural_online) != USB_SUCCESS) {
2290		RAL_DEBUG(RAL_DBG_ERR,
2291		    "ural: ural_attach() failed to register events");
2292		goto fail4;
2293	}
2294
2295	/*
2296	 * Create minor node of type DDI_NT_NET_WIFI
2297	 */
2298	(void) snprintf(strbuf, sizeof (strbuf), "%s%d",
2299	    "ural", instance);
2300	err = ddi_create_minor_node(devinfo, strbuf, S_IFCHR,
2301	    instance + 1, DDI_NT_NET_WIFI, 0);
2302
2303	if (err != DDI_SUCCESS)
2304		RAL_DEBUG(RAL_DBG_ERR, "ddi_create_minor_node() failed\n");
2305
2306	/*
2307	 * Notify link is down now
2308	 */
2309	mac_link_update(ic->ic_mach, LINK_STATE_DOWN);
2310
2311	RAL_DEBUG(RAL_DBG_MSG, "ural_attach() done successfully.\n");
2312	return (DDI_SUCCESS);
2313fail4:
2314	(void) mac_unregister(ic->ic_mach);
2315fail3:
2316	mutex_destroy(&sc->sc_genlock);
2317	mutex_destroy(&sc->tx_lock);
2318	mutex_destroy(&sc->rx_lock);
2319fail2:
2320	usb_client_detach(sc->sc_dev, sc->sc_udev);
2321fail1:
2322	ddi_soft_state_free(ural_soft_state_p, ddi_get_instance(devinfo));
2323
2324	return (DDI_FAILURE);
2325}
2326
2327static int
2328ural_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
2329{
2330	struct ural_softc *sc;
2331
2332	RAL_DEBUG(RAL_DBG_MSG, "ural_detach()\n");
2333	sc = ddi_get_soft_state(ural_soft_state_p, ddi_get_instance(devinfo));
2334
2335	if (cmd != DDI_DETACH)
2336		return (DDI_FAILURE);
2337
2338	if (mac_disable(sc->sc_ic.ic_mach) != 0)
2339		return (DDI_FAILURE);
2340
2341	ural_stop(sc);
2342	usb_unregister_hotplug_cbs(devinfo);
2343
2344	/*
2345	 * Unregister from the MAC layer subsystem
2346	 */
2347	(void) mac_unregister(sc->sc_ic.ic_mach);
2348
2349	/*
2350	 * detach ieee80211 layer
2351	 */
2352	ieee80211_detach(&sc->sc_ic);
2353
2354	mutex_destroy(&sc->sc_genlock);
2355	mutex_destroy(&sc->tx_lock);
2356	mutex_destroy(&sc->rx_lock);
2357
2358	/* pipes will be close in ural_stop() */
2359	usb_client_detach(devinfo, sc->sc_udev);
2360	sc->sc_udev = NULL;
2361
2362	ddi_remove_minor_node(devinfo, NULL);
2363	ddi_soft_state_free(ural_soft_state_p, ddi_get_instance(devinfo));
2364
2365	return (DDI_SUCCESS);
2366}
2367
2368int
2369_info(struct modinfo *modinfop)
2370{
2371	return (mod_info(&modlinkage, modinfop));
2372}
2373
2374int
2375_init(void)
2376{
2377	int status;
2378
2379	status = ddi_soft_state_init(&ural_soft_state_p,
2380	    sizeof (struct ural_softc), 1);
2381	if (status != 0)
2382		return (status);
2383
2384	mac_init_ops(&ural_dev_ops, "ural");
2385	status = mod_install(&modlinkage);
2386	if (status != 0) {
2387		mac_fini_ops(&ural_dev_ops);
2388		ddi_soft_state_fini(&ural_soft_state_p);
2389	}
2390	return (status);
2391}
2392
2393int
2394_fini(void)
2395{
2396	int status;
2397
2398	status = mod_remove(&modlinkage);
2399	if (status == 0) {
2400		mac_fini_ops(&ural_dev_ops);
2401		ddi_soft_state_fini(&ural_soft_state_p);
2402	}
2403	return (status);
2404}
2405