sd.c revision 4876:ecd69ba0713a
133965Sjdp/*
260484Sobrien * CDDL HEADER START
333965Sjdp *
433965Sjdp * The contents of this file are subject to the terms of the
533965Sjdp * Common Development and Distribution License (the "License").
633965Sjdp * You may not use this file except in compliance with the License.
733965Sjdp *
833965Sjdp * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
933965Sjdp * or http://www.opensolaris.org/os/licensing.
1033965Sjdp * See the License for the specific language governing permissions
1133965Sjdp * and limitations under the License.
1233965Sjdp *
1333965Sjdp * When distributing Covered Code, include this CDDL HEADER in each
1433965Sjdp * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
1533965Sjdp * If applicable, add the following below this CDDL HEADER, with the
1633965Sjdp * fields enclosed by brackets "[]" replaced with your own identifying
1733965Sjdp * information: Portions Copyright [yyyy] [name of copyright owner]
1833965Sjdp *
1933965Sjdp * CDDL HEADER END
2033965Sjdp */
2133965Sjdp/*
2233965Sjdp * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
2333965Sjdp * Use is subject to license terms.
2433965Sjdp */
2533965Sjdp
2633965Sjdp#pragma ident	"%Z%%M%	%I%	%E% SMI"
2733965Sjdp
2833965Sjdp/*
2933965Sjdp * SCSI disk target driver.
3033965Sjdp */
3133965Sjdp#include <sys/scsi/scsi.h>
3233965Sjdp#include <sys/dkbad.h>
3333965Sjdp#include <sys/dklabel.h>
3433965Sjdp#include <sys/dkio.h>
3533965Sjdp#include <sys/fdio.h>
3633965Sjdp#include <sys/cdio.h>
3733965Sjdp#include <sys/mhd.h>
3833965Sjdp#include <sys/vtoc.h>
3933965Sjdp#include <sys/dktp/fdisk.h>
4033965Sjdp#include <sys/kstat.h>
4133965Sjdp#include <sys/vtrace.h>
4233965Sjdp#include <sys/note.h>
4333965Sjdp#include <sys/thread.h>
4433965Sjdp#include <sys/proc.h>
4533965Sjdp#include <sys/efi_partition.h>
4633965Sjdp#include <sys/var.h>
4733965Sjdp#include <sys/aio_req.h>
4833965Sjdp
4933965Sjdp#ifdef __lock_lint
5033965Sjdp#define	_LP64
5133965Sjdp#define	__amd64
5233965Sjdp#endif
5333965Sjdp
5433965Sjdp#if (defined(__fibre))
5533965Sjdp/* Note: is there a leadville version of the following? */
5633965Sjdp#include <sys/fc4/fcal_linkapp.h>
5733965Sjdp#endif
5833965Sjdp#include <sys/taskq.h>
5933965Sjdp#include <sys/uuid.h>
6033965Sjdp#include <sys/byteorder.h>
6133965Sjdp#include <sys/sdt.h>
6233965Sjdp
6333965Sjdp#include "sd_xbuf.h"
6477298Sobrien
6533965Sjdp#include <sys/scsi/targets/sddef.h>
6633965Sjdp#include <sys/cmlb.h>
6733965Sjdp
6833965Sjdp
6933965Sjdp/*
7033965Sjdp * Loadable module info.
7133965Sjdp */
7233965Sjdp#if (defined(__fibre))
7333965Sjdp#define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver %I%"
7433965Sjdpchar _depends_on[]	= "misc/scsi misc/cmlb drv/fcp";
7533965Sjdp#else
7633965Sjdp#define	SD_MODULE_NAME	"SCSI Disk Driver %I%"
7733965Sjdpchar _depends_on[]	= "misc/scsi misc/cmlb";
7833965Sjdp#endif
7933965Sjdp
8033965Sjdp/*
8133965Sjdp * Define the interconnect type, to allow the driver to distinguish
8233965Sjdp * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
8333965Sjdp *
8433965Sjdp * This is really for backward compatibility. In the future, the driver
8533965Sjdp * should actually check the "interconnect-type" property as reported by
8633965Sjdp * the HBA; however at present this property is not defined by all HBAs,
8777298Sobrien * so we will use this #define (1) to permit the driver to run in
8833965Sjdp * backward-compatibility mode; and (2) to print a notification message
8933965Sjdp * if an FC HBA does not support the "interconnect-type" property.  The
9033965Sjdp * behavior of the driver will be to assume parallel SCSI behaviors unless
9133965Sjdp * the "interconnect-type" property is defined by the HBA **AND** has a
9233965Sjdp * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
9333965Sjdp * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
9433965Sjdp * Channel behaviors (as per the old ssd).  (Note that the
9533965Sjdp * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
9633965Sjdp * will result in the driver assuming parallel SCSI behaviors.)
9733965Sjdp *
9833965Sjdp * (see common/sys/scsi/impl/services.h)
9933965Sjdp *
10033965Sjdp * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
10133965Sjdp * since some FC HBAs may already support that, and there is some code in
10233965Sjdp * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
10333965Sjdp * default would confuse that code, and besides things should work fine
10433965Sjdp * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
10533965Sjdp * "interconnect_type" property.
10633965Sjdp *
10733965Sjdp */
10833965Sjdp#if (defined(__fibre))
10933965Sjdp#define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
11033965Sjdp#else
11133965Sjdp#define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
11233965Sjdp#endif
11333965Sjdp
11433965Sjdp/*
11533965Sjdp * The name of the driver, established from the module name in _init.
11633965Sjdp */
11733965Sjdpstatic	char *sd_label			= NULL;
11833965Sjdp
11933965Sjdp/*
12033965Sjdp * Driver name is unfortunately prefixed on some driver.conf properties.
12133965Sjdp */
12233965Sjdp#if (defined(__fibre))
12333965Sjdp#define	sd_max_xfer_size		ssd_max_xfer_size
12433965Sjdp#define	sd_config_list			ssd_config_list
12533965Sjdpstatic	char *sd_max_xfer_size		= "ssd_max_xfer_size";
12633965Sjdpstatic	char *sd_config_list		= "ssd-config-list";
12733965Sjdp#else
12833965Sjdpstatic	char *sd_max_xfer_size		= "sd_max_xfer_size";
12933965Sjdpstatic	char *sd_config_list		= "sd-config-list";
13033965Sjdp#endif
13133965Sjdp
13233965Sjdp/*
13333965Sjdp * Driver global variables
13433965Sjdp */
13533965Sjdp
13633965Sjdp#if (defined(__fibre))
13733965Sjdp/*
13833965Sjdp * These #defines are to avoid namespace collisions that occur because this
13933965Sjdp * code is currently used to compile two separate driver modules: sd and ssd.
14033965Sjdp * All global variables need to be treated this way (even if declared static)
14133965Sjdp * in order to allow the debugger to resolve the names properly.
14233965Sjdp * It is anticipated that in the near future the ssd module will be obsoleted,
14333965Sjdp * at which time this namespace issue should go away.
14433965Sjdp */
14533965Sjdp#define	sd_state			ssd_state
14633965Sjdp#define	sd_io_time			ssd_io_time
14733965Sjdp#define	sd_failfast_enable		ssd_failfast_enable
14833965Sjdp#define	sd_ua_retry_count		ssd_ua_retry_count
14933965Sjdp#define	sd_report_pfa			ssd_report_pfa
15033965Sjdp#define	sd_max_throttle			ssd_max_throttle
15133965Sjdp#define	sd_min_throttle			ssd_min_throttle
15233965Sjdp#define	sd_rot_delay			ssd_rot_delay
15333965Sjdp
15433965Sjdp#define	sd_retry_on_reservation_conflict	\
15533965Sjdp					ssd_retry_on_reservation_conflict
15633965Sjdp#define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
15733965Sjdp#define	sd_resv_conflict_name		ssd_resv_conflict_name
15833965Sjdp
15933965Sjdp#define	sd_component_mask		ssd_component_mask
16033965Sjdp#define	sd_level_mask			ssd_level_mask
16133965Sjdp#define	sd_debug_un			ssd_debug_un
16233965Sjdp#define	sd_error_level			ssd_error_level
16333965Sjdp
16433965Sjdp#define	sd_xbuf_active_limit		ssd_xbuf_active_limit
16533965Sjdp#define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
16633965Sjdp
16777298Sobrien#define	sd_tr				ssd_tr
16833965Sjdp#define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
16933965Sjdp#define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
17033965Sjdp#define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
17133965Sjdp#define	sd_check_media_time		ssd_check_media_time
17233965Sjdp#define	sd_wait_cmds_complete		ssd_wait_cmds_complete
17333965Sjdp#define	sd_label_mutex			ssd_label_mutex
17433965Sjdp#define	sd_detach_mutex			ssd_detach_mutex
17533965Sjdp#define	sd_log_buf			ssd_log_buf
17633965Sjdp#define	sd_log_mutex			ssd_log_mutex
17733965Sjdp
17833965Sjdp#define	sd_disk_table			ssd_disk_table
17933965Sjdp#define	sd_disk_table_size		ssd_disk_table_size
18033965Sjdp#define	sd_sense_mutex			ssd_sense_mutex
18177298Sobrien#define	sd_cdbtab			ssd_cdbtab
18233965Sjdp
18333965Sjdp#define	sd_cb_ops			ssd_cb_ops
18433965Sjdp#define	sd_ops				ssd_ops
18533965Sjdp#define	sd_additional_codes		ssd_additional_codes
18633965Sjdp#define	sd_tgops			ssd_tgops
18733965Sjdp
18833965Sjdp#define	sd_minor_data			ssd_minor_data
18933965Sjdp#define	sd_minor_data_efi		ssd_minor_data_efi
19033965Sjdp
19133965Sjdp#define	sd_tq				ssd_tq
19233965Sjdp#define	sd_wmr_tq			ssd_wmr_tq
19333965Sjdp#define	sd_taskq_name			ssd_taskq_name
19433965Sjdp#define	sd_wmr_taskq_name		ssd_wmr_taskq_name
19533965Sjdp#define	sd_taskq_minalloc		ssd_taskq_minalloc
19633965Sjdp#define	sd_taskq_maxalloc		ssd_taskq_maxalloc
19733965Sjdp
19833965Sjdp#define	sd_dump_format_string		ssd_dump_format_string
19933965Sjdp
20033965Sjdp#define	sd_iostart_chain		ssd_iostart_chain
20133965Sjdp#define	sd_iodone_chain			ssd_iodone_chain
20233965Sjdp
20333965Sjdp#define	sd_pm_idletime			ssd_pm_idletime
20433965Sjdp
20533965Sjdp#define	sd_force_pm_supported		ssd_force_pm_supported
20633965Sjdp
20733965Sjdp#define	sd_dtype_optical_bind		ssd_dtype_optical_bind
20877298Sobrien
20933965Sjdp#endif
21033965Sjdp
21133965Sjdp
21233965Sjdp#ifdef	SDDEBUG
21333965Sjdpint	sd_force_pm_supported		= 0;
21433965Sjdp#endif	/* SDDEBUG */
21533965Sjdp
21633965Sjdpvoid *sd_state				= NULL;
21733965Sjdpint sd_io_time				= SD_IO_TIME;
21833965Sjdpint sd_failfast_enable			= 1;
21933965Sjdpint sd_ua_retry_count			= SD_UA_RETRY_COUNT;
22033965Sjdpint sd_report_pfa			= 1;
22133965Sjdpint sd_max_throttle			= SD_MAX_THROTTLE;
22233965Sjdpint sd_min_throttle			= SD_MIN_THROTTLE;
22333965Sjdpint sd_rot_delay			= 4; /* Default 4ms Rotation delay */
22433965Sjdpint sd_qfull_throttle_enable		= TRUE;
22533965Sjdp
22633965Sjdpint sd_retry_on_reservation_conflict	= 1;
22733965Sjdpint sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
22833965Sjdp_NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
22933965Sjdp
23033965Sjdpstatic int sd_dtype_optical_bind	= -1;
23133965Sjdp
23233965Sjdp/* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
23333965Sjdpstatic	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
23433965Sjdp
23560484Sobrien/*
23633965Sjdp * Global data for debug logging. To enable debug printing, sd_component_mask
23760484Sobrien * and sd_level_mask should be set to the desired bit patterns as outlined in
23833965Sjdp * sddef.h.
23933965Sjdp */
24033965Sjdpuint_t	sd_component_mask		= 0x0;
24133965Sjdpuint_t	sd_level_mask			= 0x0;
24233965Sjdpstruct	sd_lun *sd_debug_un		= NULL;
24333965Sjdpuint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
24433965Sjdp
24533965Sjdp/* Note: these may go away in the future... */
24633965Sjdpstatic uint32_t	sd_xbuf_active_limit	= 512;
24733965Sjdpstatic uint32_t sd_xbuf_reserve_limit	= 16;
24833965Sjdp
24933965Sjdpstatic struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
25033965Sjdp
25133965Sjdp/*
25233965Sjdp * Timer value used to reset the throttle after it has been reduced
25333965Sjdp * (typically in response to TRAN_BUSY or STATUS_QFULL)
25433965Sjdp */
25533965Sjdpstatic int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
25633965Sjdpstatic int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
25733965Sjdp
25833965Sjdp/*
25933965Sjdp * Interval value associated with the media change scsi watch.
26033965Sjdp */
26133965Sjdpstatic int sd_check_media_time		= 3000000;
26233965Sjdp
26333965Sjdp/*
26433965Sjdp * Wait value used for in progress operations during a DDI_SUSPEND
26533965Sjdp */
26633965Sjdpstatic int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
26733965Sjdp
26833965Sjdp/*
26933965Sjdp * sd_label_mutex protects a static buffer used in the disk label
27033965Sjdp * component of the driver
27133965Sjdp */
27233965Sjdpstatic kmutex_t sd_label_mutex;
27333965Sjdp
27433965Sjdp/*
27533965Sjdp * sd_detach_mutex protects un_layer_count, un_detach_count, and
27633965Sjdp * un_opens_in_progress in the sd_lun structure.
27733965Sjdp */
27833965Sjdpstatic kmutex_t sd_detach_mutex;
27933965Sjdp
28033965Sjdp_NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
28133965Sjdp	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
28233965Sjdp
28333965Sjdp/*
28433965Sjdp * Global buffer and mutex for debug logging
28533965Sjdp */
28633965Sjdpstatic char	sd_log_buf[1024];
28733965Sjdpstatic kmutex_t	sd_log_mutex;
28833965Sjdp
28933965Sjdp/*
29033965Sjdp * Structs and globals for recording attached lun information.
29133965Sjdp * This maintains a chain. Each node in the chain represents a SCSI controller.
29233965Sjdp * The structure records the number of luns attached to each target connected
29333965Sjdp * with the controller.
29433965Sjdp * For parallel scsi device only.
29533965Sjdp */
29633965Sjdpstruct sd_scsi_hba_tgt_lun {
29733965Sjdp	struct sd_scsi_hba_tgt_lun	*next;
29833965Sjdp	dev_info_t			*pdip;
29933965Sjdp	int				nlun[NTARGETS_WIDE];
30033965Sjdp};
30133965Sjdp
30233965Sjdp/*
30333965Sjdp * Flag to indicate the lun is attached or detached
30433965Sjdp */
30533965Sjdp#define	SD_SCSI_LUN_ATTACH	0
30633965Sjdp#define	SD_SCSI_LUN_DETACH	1
30733965Sjdp
30833965Sjdpstatic kmutex_t	sd_scsi_target_lun_mutex;
30933965Sjdpstatic struct sd_scsi_hba_tgt_lun	*sd_scsi_target_lun_head = NULL;
31033965Sjdp
31133965Sjdp_NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
31233965Sjdp    sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip))
31333965Sjdp
31433965Sjdp_NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
31533965Sjdp    sd_scsi_target_lun_head))
31633965Sjdp
31733965Sjdp/*
31833965Sjdp * "Smart" Probe Caching structs, globals, #defines, etc.
31933965Sjdp * For parallel scsi and non-self-identify device only.
32033965Sjdp */
32133965Sjdp
32233965Sjdp/*
32333965Sjdp * The following resources and routines are implemented to support
32433965Sjdp * "smart" probing, which caches the scsi_probe() results in an array,
32533965Sjdp * in order to help avoid long probe times.
32633965Sjdp */
32733965Sjdpstruct sd_scsi_probe_cache {
32833965Sjdp	struct	sd_scsi_probe_cache	*next;
32933965Sjdp	dev_info_t	*pdip;
33033965Sjdp	int		cache[NTARGETS_WIDE];
33133965Sjdp};
33233965Sjdp
33333965Sjdpstatic kmutex_t	sd_scsi_probe_cache_mutex;
33433965Sjdpstatic struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
33533965Sjdp
33633965Sjdp/*
33733965Sjdp * Really we only need protection on the head of the linked list, but
33833965Sjdp * better safe than sorry.
33933965Sjdp */
34033965Sjdp_NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
34133965Sjdp    sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
34233965Sjdp
34333965Sjdp_NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
34433965Sjdp    sd_scsi_probe_cache_head))
34533965Sjdp
34633965Sjdp
34733965Sjdp/*
34833965Sjdp * Vendor specific data name property declarations
34933965Sjdp */
35033965Sjdp
35133965Sjdp#if defined(__fibre) || defined(__i386) ||defined(__amd64)
35233965Sjdp
35333965Sjdpstatic sd_tunables seagate_properties = {
35433965Sjdp	SEAGATE_THROTTLE_VALUE,
35533965Sjdp	0,
35633965Sjdp	0,
35733965Sjdp	0,
35833965Sjdp	0,
35933965Sjdp	0,
36033965Sjdp	0,
36133965Sjdp	0,
36233965Sjdp	0
36333965Sjdp};
36433965Sjdp
36533965Sjdp
36633965Sjdpstatic sd_tunables fujitsu_properties = {
36733965Sjdp	FUJITSU_THROTTLE_VALUE,
36833965Sjdp	0,
36933965Sjdp	0,
37033965Sjdp	0,
37133965Sjdp	0,
37233965Sjdp	0,
37333965Sjdp	0,
37433965Sjdp	0,
37533965Sjdp	0
37633965Sjdp};
37733965Sjdp
37833965Sjdpstatic sd_tunables ibm_properties = {
37933965Sjdp	IBM_THROTTLE_VALUE,
38033965Sjdp	0,
38133965Sjdp	0,
38233965Sjdp	0,
38333965Sjdp	0,
38433965Sjdp	0,
38533965Sjdp	0,
38633965Sjdp	0,
38733965Sjdp	0
38833965Sjdp};
38933965Sjdp
39033965Sjdpstatic sd_tunables purple_properties = {
39133965Sjdp	PURPLE_THROTTLE_VALUE,
39233965Sjdp	0,
39333965Sjdp	0,
39433965Sjdp	PURPLE_BUSY_RETRIES,
39533965Sjdp	PURPLE_RESET_RETRY_COUNT,
39633965Sjdp	PURPLE_RESERVE_RELEASE_TIME,
39733965Sjdp	0,
39833965Sjdp	0,
39933965Sjdp	0
40033965Sjdp};
40133965Sjdp
40233965Sjdpstatic sd_tunables sve_properties = {
40333965Sjdp	SVE_THROTTLE_VALUE,
40433965Sjdp	0,
40533965Sjdp	0,
40633965Sjdp	SVE_BUSY_RETRIES,
40733965Sjdp	SVE_RESET_RETRY_COUNT,
40833965Sjdp	SVE_RESERVE_RELEASE_TIME,
40933965Sjdp	SVE_MIN_THROTTLE_VALUE,
41033965Sjdp	SVE_DISKSORT_DISABLED_FLAG,
41133965Sjdp	0
41233965Sjdp};
41333965Sjdp
41433965Sjdpstatic sd_tunables maserati_properties = {
41533965Sjdp	0,
41633965Sjdp	0,
41733965Sjdp	0,
41833965Sjdp	0,
41933965Sjdp	0,
42033965Sjdp	0,
42133965Sjdp	0,
42233965Sjdp	MASERATI_DISKSORT_DISABLED_FLAG,
42333965Sjdp	MASERATI_LUN_RESET_ENABLED_FLAG
42433965Sjdp};
42533965Sjdp
42633965Sjdpstatic sd_tunables pirus_properties = {
42733965Sjdp	PIRUS_THROTTLE_VALUE,
42833965Sjdp	0,
42933965Sjdp	PIRUS_NRR_COUNT,
43033965Sjdp	PIRUS_BUSY_RETRIES,
43133965Sjdp	PIRUS_RESET_RETRY_COUNT,
43233965Sjdp	0,
43333965Sjdp	PIRUS_MIN_THROTTLE_VALUE,
43433965Sjdp	PIRUS_DISKSORT_DISABLED_FLAG,
43533965Sjdp	PIRUS_LUN_RESET_ENABLED_FLAG
43633965Sjdp};
43733965Sjdp
43833965Sjdp#endif
43933965Sjdp
44033965Sjdp#if (defined(__sparc) && !defined(__fibre)) || \
44133965Sjdp	(defined(__i386) || defined(__amd64))
44233965Sjdp
44333965Sjdp
44433965Sjdpstatic sd_tunables elite_properties = {
44533965Sjdp	ELITE_THROTTLE_VALUE,
44633965Sjdp	0,
44733965Sjdp	0,
44833965Sjdp	0,
44933965Sjdp	0,
45033965Sjdp	0,
45133965Sjdp	0,
45233965Sjdp	0,
45333965Sjdp	0
45433965Sjdp};
45533965Sjdp
45633965Sjdpstatic sd_tunables st31200n_properties = {
45733965Sjdp	ST31200N_THROTTLE_VALUE,
45833965Sjdp	0,
45933965Sjdp	0,
46033965Sjdp	0,
46133965Sjdp	0,
46233965Sjdp	0,
46333965Sjdp	0,
46433965Sjdp	0,
46533965Sjdp	0
46633965Sjdp};
46733965Sjdp
46833965Sjdp#endif /* Fibre or not */
46933965Sjdp
47033965Sjdpstatic sd_tunables lsi_properties_scsi = {
47133965Sjdp	LSI_THROTTLE_VALUE,
47233965Sjdp	0,
47333965Sjdp	LSI_NOTREADY_RETRIES,
47433965Sjdp	0,
47533965Sjdp	0,
47633965Sjdp	0,
47733965Sjdp	0,
47833965Sjdp	0,
47933965Sjdp	0
48033965Sjdp};
48133965Sjdp
48233965Sjdpstatic sd_tunables symbios_properties = {
48333965Sjdp	SYMBIOS_THROTTLE_VALUE,
48433965Sjdp	0,
48533965Sjdp	SYMBIOS_NOTREADY_RETRIES,
48633965Sjdp	0,
48733965Sjdp	0,
48833965Sjdp	0,
48933965Sjdp	0,
49033965Sjdp	0,
49133965Sjdp	0
49233965Sjdp};
49333965Sjdp
49433965Sjdpstatic sd_tunables lsi_properties = {
49533965Sjdp	0,
49633965Sjdp	0,
49733965Sjdp	LSI_NOTREADY_RETRIES,
49833965Sjdp	0,
49933965Sjdp	0,
50033965Sjdp	0,
50133965Sjdp	0,
50233965Sjdp	0,
50333965Sjdp	0
50433965Sjdp};
50533965Sjdp
50660484Sobrienstatic sd_tunables lsi_oem_properties = {
50760484Sobrien	0,
50860484Sobrien	0,
50933965Sjdp	LSI_OEM_NOTREADY_RETRIES,
51033965Sjdp	0,
51133965Sjdp	0,
51233965Sjdp	0,
51333965Sjdp	0,
51433965Sjdp	0,
51533965Sjdp	0
51633965Sjdp};
51733965Sjdp
51833965Sjdp
51933965Sjdp
52033965Sjdp#if (defined(SD_PROP_TST))
52133965Sjdp
52233965Sjdp#define	SD_TST_CTYPE_VAL	CTYPE_CDROM
52333965Sjdp#define	SD_TST_THROTTLE_VAL	16
52433965Sjdp#define	SD_TST_NOTREADY_VAL	12
52533965Sjdp#define	SD_TST_BUSY_VAL		60
52633965Sjdp#define	SD_TST_RST_RETRY_VAL	36
52733965Sjdp#define	SD_TST_RSV_REL_TIME	60
52833965Sjdp
52933965Sjdpstatic sd_tunables tst_properties = {
53033965Sjdp	SD_TST_THROTTLE_VAL,
53133965Sjdp	SD_TST_CTYPE_VAL,
53233965Sjdp	SD_TST_NOTREADY_VAL,
53333965Sjdp	SD_TST_BUSY_VAL,
53433965Sjdp	SD_TST_RST_RETRY_VAL,
53533965Sjdp	SD_TST_RSV_REL_TIME,
53633965Sjdp	0,
53733965Sjdp	0,
53833965Sjdp	0
53933965Sjdp};
54033965Sjdp#endif
54133965Sjdp
54233965Sjdp/* This is similar to the ANSI toupper implementation */
54333965Sjdp#define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
54433965Sjdp
54533965Sjdp/*
54633965Sjdp * Static Driver Configuration Table
54733965Sjdp *
54833965Sjdp * This is the table of disks which need throttle adjustment (or, perhaps
54933965Sjdp * something else as defined by the flags at a future time.)  device_id
55033965Sjdp * is a string consisting of concatenated vid (vendor), pid (product/model)
55133965Sjdp * and revision strings as defined in the scsi_inquiry structure.  Offsets of
55233965Sjdp * the parts of the string are as defined by the sizes in the scsi_inquiry
55333965Sjdp * structure.  Device type is searched as far as the device_id string is
55433965Sjdp * defined.  Flags defines which values are to be set in the driver from the
55533965Sjdp * properties list.
55633965Sjdp *
55733965Sjdp * Entries below which begin and end with a "*" are a special case.
55833965Sjdp * These do not have a specific vendor, and the string which follows
55933965Sjdp * can appear anywhere in the 16 byte PID portion of the inquiry data.
56033965Sjdp *
56133965Sjdp * Entries below which begin and end with a " " (blank) are a special
56233965Sjdp * case. The comparison function will treat multiple consecutive blanks
56333965Sjdp * as equivalent to a single blank. For example, this causes a
56433965Sjdp * sd_disk_table entry of " NEC CDROM " to match a device's id string
56533965Sjdp * of  "NEC       CDROM".
56633965Sjdp *
56733965Sjdp * Note: The MD21 controller type has been obsoleted.
56833965Sjdp *	 ST318202F is a Legacy device
56933965Sjdp *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
57033965Sjdp *	 made with an FC connection. The entries here are a legacy.
57133965Sjdp */
57233965Sjdpstatic sd_disk_config_t sd_disk_table[] = {
57333965Sjdp#if defined(__fibre) || defined(__i386) || defined(__amd64)
57433965Sjdp	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
57533965Sjdp	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
57633965Sjdp	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
57733965Sjdp	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
57833965Sjdp	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
57933965Sjdp	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
58033965Sjdp	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
58177298Sobrien	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
58233965Sjdp	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
58333965Sjdp	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
58433965Sjdp	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
58533965Sjdp	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
58633965Sjdp	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
58733965Sjdp	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
58833965Sjdp	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
58933965Sjdp	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
59033965Sjdp	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
59133965Sjdp	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
59233965Sjdp	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
59333965Sjdp	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
59433965Sjdp	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
59533965Sjdp	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
59633965Sjdp	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
59733965Sjdp	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
59833965Sjdp	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
59933965Sjdp	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
60033965Sjdp	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
60133965Sjdp	{ "IBM     1724-100",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
60233965Sjdp	{ "IBM     1726-2xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
60333965Sjdp	{ "IBM     1726-22x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
60433965Sjdp	{ "IBM     1726-4xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
60538889Sjdp	{ "IBM     1726-42x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
60633965Sjdp	{ "IBM     1726-3xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
60733965Sjdp	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
60833965Sjdp	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
60933965Sjdp	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
61033965Sjdp	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
61133965Sjdp	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
61233965Sjdp	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
61333965Sjdp	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
61433965Sjdp	{ "IBM     1814",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
61533965Sjdp	{ "IBM     1814-200",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
61633965Sjdp	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
61733965Sjdp	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
61833965Sjdp	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
61933965Sjdp	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
62033965Sjdp	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
62133965Sjdp	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
62233965Sjdp	{ "Fujitsu SX300",	SD_CONF_BSET_THROTTLE,  &lsi_oem_properties },
62333965Sjdp	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
62433965Sjdp	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
62533965Sjdp			SD_CONF_BSET_BSY_RETRY_COUNT|
62633965Sjdp			SD_CONF_BSET_RST_RETRIES|
62733965Sjdp			SD_CONF_BSET_RSV_REL_TIME,
62833965Sjdp		&purple_properties },
62933965Sjdp	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
63033965Sjdp		SD_CONF_BSET_BSY_RETRY_COUNT|
63133965Sjdp		SD_CONF_BSET_RST_RETRIES|
63233965Sjdp		SD_CONF_BSET_RSV_REL_TIME|
63333965Sjdp		SD_CONF_BSET_MIN_THROTTLE|
63433965Sjdp		SD_CONF_BSET_DISKSORT_DISABLED,
63533965Sjdp		&sve_properties },
63633965Sjdp	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
63733965Sjdp			SD_CONF_BSET_BSY_RETRY_COUNT|
63833965Sjdp			SD_CONF_BSET_RST_RETRIES|
63933965Sjdp			SD_CONF_BSET_RSV_REL_TIME,
64033965Sjdp		&purple_properties },
64160484Sobrien	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
64260484Sobrien		SD_CONF_BSET_LUN_RESET_ENABLED,
64377298Sobrien		&maserati_properties },
64460484Sobrien	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
64533965Sjdp		SD_CONF_BSET_NRR_COUNT|
64633965Sjdp		SD_CONF_BSET_BSY_RETRY_COUNT|
647		SD_CONF_BSET_RST_RETRIES|
648		SD_CONF_BSET_MIN_THROTTLE|
649		SD_CONF_BSET_DISKSORT_DISABLED|
650		SD_CONF_BSET_LUN_RESET_ENABLED,
651		&pirus_properties },
652	{ "SUN     SE6940", SD_CONF_BSET_THROTTLE |
653		SD_CONF_BSET_NRR_COUNT|
654		SD_CONF_BSET_BSY_RETRY_COUNT|
655		SD_CONF_BSET_RST_RETRIES|
656		SD_CONF_BSET_MIN_THROTTLE|
657		SD_CONF_BSET_DISKSORT_DISABLED|
658		SD_CONF_BSET_LUN_RESET_ENABLED,
659		&pirus_properties },
660	{ "SUN     StorageTek 6920", SD_CONF_BSET_THROTTLE |
661		SD_CONF_BSET_NRR_COUNT|
662		SD_CONF_BSET_BSY_RETRY_COUNT|
663		SD_CONF_BSET_RST_RETRIES|
664		SD_CONF_BSET_MIN_THROTTLE|
665		SD_CONF_BSET_DISKSORT_DISABLED|
666		SD_CONF_BSET_LUN_RESET_ENABLED,
667		&pirus_properties },
668	{ "SUN     StorageTek 6940", SD_CONF_BSET_THROTTLE |
669		SD_CONF_BSET_NRR_COUNT|
670		SD_CONF_BSET_BSY_RETRY_COUNT|
671		SD_CONF_BSET_RST_RETRIES|
672		SD_CONF_BSET_MIN_THROTTLE|
673		SD_CONF_BSET_DISKSORT_DISABLED|
674		SD_CONF_BSET_LUN_RESET_ENABLED,
675		&pirus_properties },
676	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
677		SD_CONF_BSET_NRR_COUNT|
678		SD_CONF_BSET_BSY_RETRY_COUNT|
679		SD_CONF_BSET_RST_RETRIES|
680		SD_CONF_BSET_MIN_THROTTLE|
681		SD_CONF_BSET_DISKSORT_DISABLED|
682		SD_CONF_BSET_LUN_RESET_ENABLED,
683		&pirus_properties },
684	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
685		SD_CONF_BSET_NRR_COUNT|
686		SD_CONF_BSET_BSY_RETRY_COUNT|
687		SD_CONF_BSET_RST_RETRIES|
688		SD_CONF_BSET_MIN_THROTTLE|
689		SD_CONF_BSET_DISKSORT_DISABLED|
690		SD_CONF_BSET_LUN_RESET_ENABLED,
691		&pirus_properties },
692	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
693	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
694	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
695	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
696	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
697#endif /* fibre or NON-sparc platforms */
698#if ((defined(__sparc) && !defined(__fibre)) ||\
699	(defined(__i386) || defined(__amd64)))
700	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
701	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
702	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
703	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
704	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
705	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
706	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
707	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
708	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
709	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
710	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
711	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
712	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
713	    &symbios_properties },
714	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
715	    &lsi_properties_scsi },
716#if defined(__i386) || defined(__amd64)
717	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
718				    | SD_CONF_BSET_READSUB_BCD
719				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
720				    | SD_CONF_BSET_NO_READ_HEADER
721				    | SD_CONF_BSET_READ_CD_XD4), NULL },
722
723	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
724				    | SD_CONF_BSET_READSUB_BCD
725				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
726				    | SD_CONF_BSET_NO_READ_HEADER
727				    | SD_CONF_BSET_READ_CD_XD4), NULL },
728#endif /* __i386 || __amd64 */
729#endif /* sparc NON-fibre or NON-sparc platforms */
730
731#if (defined(SD_PROP_TST))
732	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
733				| SD_CONF_BSET_CTYPE
734				| SD_CONF_BSET_NRR_COUNT
735				| SD_CONF_BSET_FAB_DEVID
736				| SD_CONF_BSET_NOCACHE
737				| SD_CONF_BSET_BSY_RETRY_COUNT
738				| SD_CONF_BSET_PLAYMSF_BCD
739				| SD_CONF_BSET_READSUB_BCD
740				| SD_CONF_BSET_READ_TOC_TRK_BCD
741				| SD_CONF_BSET_READ_TOC_ADDR_BCD
742				| SD_CONF_BSET_NO_READ_HEADER
743				| SD_CONF_BSET_READ_CD_XD4
744				| SD_CONF_BSET_RST_RETRIES
745				| SD_CONF_BSET_RSV_REL_TIME
746				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
747#endif
748};
749
750static const int sd_disk_table_size =
751	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
752
753
754
755#define	SD_INTERCONNECT_PARALLEL	0
756#define	SD_INTERCONNECT_FABRIC		1
757#define	SD_INTERCONNECT_FIBRE		2
758#define	SD_INTERCONNECT_SSA		3
759#define	SD_INTERCONNECT_SATA		4
760#define	SD_IS_PARALLEL_SCSI(un)		\
761	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
762#define	SD_IS_SERIAL(un)		\
763	((un)->un_interconnect_type == SD_INTERCONNECT_SATA)
764
765/*
766 * Definitions used by device id registration routines
767 */
768#define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
769#define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
770#define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
771
772static kmutex_t sd_sense_mutex = {0};
773
774/*
775 * Macros for updates of the driver state
776 */
777#define	New_state(un, s)        \
778	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
779#define	Restore_state(un)	\
780	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
781
782static struct sd_cdbinfo sd_cdbtab[] = {
783	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
784	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
785	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
786	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
787};
788
789/*
790 * Specifies the number of seconds that must have elapsed since the last
791 * cmd. has completed for a device to be declared idle to the PM framework.
792 */
793static int sd_pm_idletime = 1;
794
795/*
796 * Internal function prototypes
797 */
798
799#if (defined(__fibre))
800/*
801 * These #defines are to avoid namespace collisions that occur because this
802 * code is currently used to compile two separate driver modules: sd and ssd.
803 * All function names need to be treated this way (even if declared static)
804 * in order to allow the debugger to resolve the names properly.
805 * It is anticipated that in the near future the ssd module will be obsoleted,
806 * at which time this ugliness should go away.
807 */
808#define	sd_log_trace			ssd_log_trace
809#define	sd_log_info			ssd_log_info
810#define	sd_log_err			ssd_log_err
811#define	sdprobe				ssdprobe
812#define	sdinfo				ssdinfo
813#define	sd_prop_op			ssd_prop_op
814#define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
815#define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
816#define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
817#define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
818#define	sd_scsi_target_lun_init		ssd_scsi_target_lun_init
819#define	sd_scsi_target_lun_fini		ssd_scsi_target_lun_fini
820#define	sd_scsi_get_target_lun_count	ssd_scsi_get_target_lun_count
821#define	sd_scsi_update_lun_on_target	ssd_scsi_update_lun_on_target
822#define	sd_spin_up_unit			ssd_spin_up_unit
823#define	sd_enable_descr_sense		ssd_enable_descr_sense
824#define	sd_reenable_dsense_task		ssd_reenable_dsense_task
825#define	sd_set_mmc_caps			ssd_set_mmc_caps
826#define	sd_read_unit_properties		ssd_read_unit_properties
827#define	sd_process_sdconf_file		ssd_process_sdconf_file
828#define	sd_process_sdconf_table		ssd_process_sdconf_table
829#define	sd_sdconf_id_match		ssd_sdconf_id_match
830#define	sd_blank_cmp			ssd_blank_cmp
831#define	sd_chk_vers1_data		ssd_chk_vers1_data
832#define	sd_set_vers1_properties		ssd_set_vers1_properties
833
834#define	sd_get_physical_geometry	ssd_get_physical_geometry
835#define	sd_get_virtual_geometry		ssd_get_virtual_geometry
836#define	sd_update_block_info		ssd_update_block_info
837#define	sd_register_devid		ssd_register_devid
838#define	sd_get_devid			ssd_get_devid
839#define	sd_create_devid			ssd_create_devid
840#define	sd_write_deviceid		ssd_write_deviceid
841#define	sd_check_vpd_page_support	ssd_check_vpd_page_support
842#define	sd_setup_pm			ssd_setup_pm
843#define	sd_create_pm_components		ssd_create_pm_components
844#define	sd_ddi_suspend			ssd_ddi_suspend
845#define	sd_ddi_pm_suspend		ssd_ddi_pm_suspend
846#define	sd_ddi_resume			ssd_ddi_resume
847#define	sd_ddi_pm_resume		ssd_ddi_pm_resume
848#define	sdpower				ssdpower
849#define	sdattach			ssdattach
850#define	sddetach			ssddetach
851#define	sd_unit_attach			ssd_unit_attach
852#define	sd_unit_detach			ssd_unit_detach
853#define	sd_set_unit_attributes		ssd_set_unit_attributes
854#define	sd_create_errstats		ssd_create_errstats
855#define	sd_set_errstats			ssd_set_errstats
856#define	sd_set_pstats			ssd_set_pstats
857#define	sddump				ssddump
858#define	sd_scsi_poll			ssd_scsi_poll
859#define	sd_send_polled_RQS		ssd_send_polled_RQS
860#define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
861#define	sd_init_event_callbacks		ssd_init_event_callbacks
862#define	sd_event_callback		ssd_event_callback
863#define	sd_cache_control		ssd_cache_control
864#define	sd_get_write_cache_enabled	ssd_get_write_cache_enabled
865#define	sd_make_device			ssd_make_device
866#define	sdopen				ssdopen
867#define	sdclose				ssdclose
868#define	sd_ready_and_valid		ssd_ready_and_valid
869#define	sdmin				ssdmin
870#define	sdread				ssdread
871#define	sdwrite				ssdwrite
872#define	sdaread				ssdaread
873#define	sdawrite			ssdawrite
874#define	sdstrategy			ssdstrategy
875#define	sdioctl				ssdioctl
876#define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
877#define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
878#define	sd_checksum_iostart		ssd_checksum_iostart
879#define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
880#define	sd_pm_iostart			ssd_pm_iostart
881#define	sd_core_iostart			ssd_core_iostart
882#define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
883#define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
884#define	sd_checksum_iodone		ssd_checksum_iodone
885#define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
886#define	sd_pm_iodone			ssd_pm_iodone
887#define	sd_initpkt_for_buf		ssd_initpkt_for_buf
888#define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
889#define	sd_setup_rw_pkt			ssd_setup_rw_pkt
890#define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
891#define	sd_buf_iodone			ssd_buf_iodone
892#define	sd_uscsi_strategy		ssd_uscsi_strategy
893#define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
894#define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
895#define	sd_uscsi_iodone			ssd_uscsi_iodone
896#define	sd_xbuf_strategy		ssd_xbuf_strategy
897#define	sd_xbuf_init			ssd_xbuf_init
898#define	sd_pm_entry			ssd_pm_entry
899#define	sd_pm_exit			ssd_pm_exit
900
901#define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
902#define	sd_pm_timeout_handler		ssd_pm_timeout_handler
903
904#define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
905#define	sdintr				ssdintr
906#define	sd_start_cmds			ssd_start_cmds
907#define	sd_send_scsi_cmd		ssd_send_scsi_cmd
908#define	sd_bioclone_alloc		ssd_bioclone_alloc
909#define	sd_bioclone_free		ssd_bioclone_free
910#define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
911#define	sd_shadow_buf_free		ssd_shadow_buf_free
912#define	sd_print_transport_rejected_message	\
913					ssd_print_transport_rejected_message
914#define	sd_retry_command		ssd_retry_command
915#define	sd_set_retry_bp			ssd_set_retry_bp
916#define	sd_send_request_sense_command	ssd_send_request_sense_command
917#define	sd_start_retry_command		ssd_start_retry_command
918#define	sd_start_direct_priority_command	\
919					ssd_start_direct_priority_command
920#define	sd_return_failed_command	ssd_return_failed_command
921#define	sd_return_failed_command_no_restart	\
922					ssd_return_failed_command_no_restart
923#define	sd_return_command		ssd_return_command
924#define	sd_sync_with_callback		ssd_sync_with_callback
925#define	sdrunout			ssdrunout
926#define	sd_mark_rqs_busy		ssd_mark_rqs_busy
927#define	sd_mark_rqs_idle		ssd_mark_rqs_idle
928#define	sd_reduce_throttle		ssd_reduce_throttle
929#define	sd_restore_throttle		ssd_restore_throttle
930#define	sd_print_incomplete_msg		ssd_print_incomplete_msg
931#define	sd_init_cdb_limits		ssd_init_cdb_limits
932#define	sd_pkt_status_good		ssd_pkt_status_good
933#define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
934#define	sd_pkt_status_busy		ssd_pkt_status_busy
935#define	sd_pkt_status_reservation_conflict	\
936					ssd_pkt_status_reservation_conflict
937#define	sd_pkt_status_qfull		ssd_pkt_status_qfull
938#define	sd_handle_request_sense		ssd_handle_request_sense
939#define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
940#define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
941#define	sd_validate_sense_data		ssd_validate_sense_data
942#define	sd_decode_sense			ssd_decode_sense
943#define	sd_print_sense_msg		ssd_print_sense_msg
944#define	sd_sense_key_no_sense		ssd_sense_key_no_sense
945#define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
946#define	sd_sense_key_not_ready		ssd_sense_key_not_ready
947#define	sd_sense_key_medium_or_hardware_error	\
948					ssd_sense_key_medium_or_hardware_error
949#define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
950#define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
951#define	sd_sense_key_fail_command	ssd_sense_key_fail_command
952#define	sd_sense_key_blank_check	ssd_sense_key_blank_check
953#define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
954#define	sd_sense_key_default		ssd_sense_key_default
955#define	sd_print_retry_msg		ssd_print_retry_msg
956#define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
957#define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
958#define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
959#define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
960#define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
961#define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
962#define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
963#define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
964#define	sd_pkt_reason_default		ssd_pkt_reason_default
965#define	sd_reset_target			ssd_reset_target
966#define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
967#define	sd_start_stop_unit_task		ssd_start_stop_unit_task
968#define	sd_taskq_create			ssd_taskq_create
969#define	sd_taskq_delete			ssd_taskq_delete
970#define	sd_media_change_task		ssd_media_change_task
971#define	sd_handle_mchange		ssd_handle_mchange
972#define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
973#define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
974#define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
975#define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
976#define	sd_send_scsi_feature_GET_CONFIGURATION	\
977					sd_send_scsi_feature_GET_CONFIGURATION
978#define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
979#define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
980#define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
981#define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
982					ssd_send_scsi_PERSISTENT_RESERVE_IN
983#define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
984					ssd_send_scsi_PERSISTENT_RESERVE_OUT
985#define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
986#define	sd_send_scsi_SYNCHRONIZE_CACHE_biodone	\
987					ssd_send_scsi_SYNCHRONIZE_CACHE_biodone
988#define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
989#define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
990#define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
991#define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
992#define	sd_alloc_rqs			ssd_alloc_rqs
993#define	sd_free_rqs			ssd_free_rqs
994#define	sd_dump_memory			ssd_dump_memory
995#define	sd_get_media_info		ssd_get_media_info
996#define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
997#define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
998#define	sd_setup_next_xfer		ssd_setup_next_xfer
999#define	sd_dkio_get_temp		ssd_dkio_get_temp
1000#define	sd_check_mhd			ssd_check_mhd
1001#define	sd_mhd_watch_cb			ssd_mhd_watch_cb
1002#define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
1003#define	sd_sname			ssd_sname
1004#define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
1005#define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
1006#define	sd_take_ownership		ssd_take_ownership
1007#define	sd_reserve_release		ssd_reserve_release
1008#define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
1009#define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
1010#define	sd_persistent_reservation_in_read_keys	\
1011					ssd_persistent_reservation_in_read_keys
1012#define	sd_persistent_reservation_in_read_resv	\
1013					ssd_persistent_reservation_in_read_resv
1014#define	sd_mhdioc_takeown		ssd_mhdioc_takeown
1015#define	sd_mhdioc_failfast		ssd_mhdioc_failfast
1016#define	sd_mhdioc_release		ssd_mhdioc_release
1017#define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
1018#define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
1019#define	sd_mhdioc_inresv		ssd_mhdioc_inresv
1020#define	sr_change_blkmode		ssr_change_blkmode
1021#define	sr_change_speed			ssr_change_speed
1022#define	sr_atapi_change_speed		ssr_atapi_change_speed
1023#define	sr_pause_resume			ssr_pause_resume
1024#define	sr_play_msf			ssr_play_msf
1025#define	sr_play_trkind			ssr_play_trkind
1026#define	sr_read_all_subcodes		ssr_read_all_subcodes
1027#define	sr_read_subchannel		ssr_read_subchannel
1028#define	sr_read_tocentry		ssr_read_tocentry
1029#define	sr_read_tochdr			ssr_read_tochdr
1030#define	sr_read_cdda			ssr_read_cdda
1031#define	sr_read_cdxa			ssr_read_cdxa
1032#define	sr_read_mode1			ssr_read_mode1
1033#define	sr_read_mode2			ssr_read_mode2
1034#define	sr_read_cd_mode2		ssr_read_cd_mode2
1035#define	sr_sector_mode			ssr_sector_mode
1036#define	sr_eject			ssr_eject
1037#define	sr_ejected			ssr_ejected
1038#define	sr_check_wp			ssr_check_wp
1039#define	sd_check_media			ssd_check_media
1040#define	sd_media_watch_cb		ssd_media_watch_cb
1041#define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1042#define	sr_volume_ctrl			ssr_volume_ctrl
1043#define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1044#define	sd_log_page_supported		ssd_log_page_supported
1045#define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1046#define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1047#define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1048#define	sd_range_lock			ssd_range_lock
1049#define	sd_get_range			ssd_get_range
1050#define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1051#define	sd_range_unlock			ssd_range_unlock
1052#define	sd_read_modify_write_task	ssd_read_modify_write_task
1053#define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1054
1055#define	sd_iostart_chain		ssd_iostart_chain
1056#define	sd_iodone_chain			ssd_iodone_chain
1057#define	sd_initpkt_map			ssd_initpkt_map
1058#define	sd_destroypkt_map		ssd_destroypkt_map
1059#define	sd_chain_type_map		ssd_chain_type_map
1060#define	sd_chain_index_map		ssd_chain_index_map
1061
1062#define	sd_failfast_flushctl		ssd_failfast_flushctl
1063#define	sd_failfast_flushq		ssd_failfast_flushq
1064#define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1065
1066#define	sd_is_lsi			ssd_is_lsi
1067#define	sd_tg_rdwr			ssd_tg_rdwr
1068#define	sd_tg_getinfo			ssd_tg_getinfo
1069
1070#endif	/* #if (defined(__fibre)) */
1071
1072
1073int _init(void);
1074int _fini(void);
1075int _info(struct modinfo *modinfop);
1076
1077/*PRINTFLIKE3*/
1078static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1079/*PRINTFLIKE3*/
1080static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1081/*PRINTFLIKE3*/
1082static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1083
1084static int sdprobe(dev_info_t *devi);
1085static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1086    void **result);
1087static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1088    int mod_flags, char *name, caddr_t valuep, int *lengthp);
1089
1090/*
1091 * Smart probe for parallel scsi
1092 */
1093static void sd_scsi_probe_cache_init(void);
1094static void sd_scsi_probe_cache_fini(void);
1095static void sd_scsi_clear_probe_cache(void);
1096static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1097
1098/*
1099 * Attached luns on target for parallel scsi
1100 */
1101static void sd_scsi_target_lun_init(void);
1102static void sd_scsi_target_lun_fini(void);
1103static int  sd_scsi_get_target_lun_count(dev_info_t *dip, int target);
1104static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag);
1105
1106static int	sd_spin_up_unit(struct sd_lun *un);
1107#ifdef _LP64
1108static void	sd_enable_descr_sense(struct sd_lun *un);
1109static void	sd_reenable_dsense_task(void *arg);
1110#endif /* _LP64 */
1111
1112static void	sd_set_mmc_caps(struct sd_lun *un);
1113
1114static void sd_read_unit_properties(struct sd_lun *un);
1115static int  sd_process_sdconf_file(struct sd_lun *un);
1116static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1117    int *data_list, sd_tunables *values);
1118static void sd_process_sdconf_table(struct sd_lun *un);
1119static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1120static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1121static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1122	int list_len, char *dataname_ptr);
1123static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1124    sd_tunables *prop_list);
1125
1126static void sd_register_devid(struct sd_lun *un, dev_info_t *devi,
1127    int reservation_flag);
1128static int  sd_get_devid(struct sd_lun *un);
1129static ddi_devid_t sd_create_devid(struct sd_lun *un);
1130static int  sd_write_deviceid(struct sd_lun *un);
1131static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1132static int  sd_check_vpd_page_support(struct sd_lun *un);
1133
1134static void sd_setup_pm(struct sd_lun *un, dev_info_t *devi);
1135static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1136
1137static int  sd_ddi_suspend(dev_info_t *devi);
1138static int  sd_ddi_pm_suspend(struct sd_lun *un);
1139static int  sd_ddi_resume(dev_info_t *devi);
1140static int  sd_ddi_pm_resume(struct sd_lun *un);
1141static int  sdpower(dev_info_t *devi, int component, int level);
1142
1143static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1144static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1145static int  sd_unit_attach(dev_info_t *devi);
1146static int  sd_unit_detach(dev_info_t *devi);
1147
1148static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi);
1149static void sd_create_errstats(struct sd_lun *un, int instance);
1150static void sd_set_errstats(struct sd_lun *un);
1151static void sd_set_pstats(struct sd_lun *un);
1152
1153static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1154static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1155static int  sd_send_polled_RQS(struct sd_lun *un);
1156static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1157
1158#if (defined(__fibre))
1159/*
1160 * Event callbacks (photon)
1161 */
1162static void sd_init_event_callbacks(struct sd_lun *un);
1163static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1164#endif
1165
1166/*
1167 * Defines for sd_cache_control
1168 */
1169
1170#define	SD_CACHE_ENABLE		1
1171#define	SD_CACHE_DISABLE	0
1172#define	SD_CACHE_NOCHANGE	-1
1173
1174static int   sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag);
1175static int   sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled);
1176static dev_t sd_make_device(dev_info_t *devi);
1177
1178static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1179	uint64_t capacity);
1180
1181/*
1182 * Driver entry point functions.
1183 */
1184static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1185static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1186static int  sd_ready_and_valid(struct sd_lun *un);
1187
1188static void sdmin(struct buf *bp);
1189static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1190static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1191static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1192static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1193
1194static int sdstrategy(struct buf *bp);
1195static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1196
1197/*
1198 * Function prototypes for layering functions in the iostart chain.
1199 */
1200static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1201	struct buf *bp);
1202static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1203	struct buf *bp);
1204static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1205static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1206	struct buf *bp);
1207static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1208static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1209
1210/*
1211 * Function prototypes for layering functions in the iodone chain.
1212 */
1213static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1214static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1215static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1216	struct buf *bp);
1217static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1218	struct buf *bp);
1219static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1220static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1221	struct buf *bp);
1222static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1223
1224/*
1225 * Prototypes for functions to support buf(9S) based IO.
1226 */
1227static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1228static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1229static void sd_destroypkt_for_buf(struct buf *);
1230static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1231	struct buf *bp, int flags,
1232	int (*callback)(caddr_t), caddr_t callback_arg,
1233	diskaddr_t lba, uint32_t blockcount);
1234#if defined(__i386) || defined(__amd64)
1235static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1236	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1237#endif /* defined(__i386) || defined(__amd64) */
1238
1239/*
1240 * Prototypes for functions to support USCSI IO.
1241 */
1242static int sd_uscsi_strategy(struct buf *bp);
1243static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1244static void sd_destroypkt_for_uscsi(struct buf *);
1245
1246static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1247	uchar_t chain_type, void *pktinfop);
1248
1249static int  sd_pm_entry(struct sd_lun *un);
1250static void sd_pm_exit(struct sd_lun *un);
1251
1252static void sd_pm_idletimeout_handler(void *arg);
1253
1254/*
1255 * sd_core internal functions (used at the sd_core_io layer).
1256 */
1257static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1258static void sdintr(struct scsi_pkt *pktp);
1259static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1260
1261static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1262	enum uio_seg dataspace, int path_flag);
1263
1264static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1265	daddr_t blkno, int (*func)(struct buf *));
1266static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1267	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1268static void sd_bioclone_free(struct buf *bp);
1269static void sd_shadow_buf_free(struct buf *bp);
1270
1271static void sd_print_transport_rejected_message(struct sd_lun *un,
1272	struct sd_xbuf *xp, int code);
1273static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp,
1274    void *arg, int code);
1275static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp,
1276    void *arg, int code);
1277static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp,
1278    void *arg, int code);
1279
1280static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1281	int retry_check_flag,
1282	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1283		int c),
1284	void *user_arg, int failure_code,  clock_t retry_delay,
1285	void (*statp)(kstat_io_t *));
1286
1287static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1288	clock_t retry_delay, void (*statp)(kstat_io_t *));
1289
1290static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1291	struct scsi_pkt *pktp);
1292static void sd_start_retry_command(void *arg);
1293static void sd_start_direct_priority_command(void *arg);
1294static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1295	int errcode);
1296static void sd_return_failed_command_no_restart(struct sd_lun *un,
1297	struct buf *bp, int errcode);
1298static void sd_return_command(struct sd_lun *un, struct buf *bp);
1299static void sd_sync_with_callback(struct sd_lun *un);
1300static int sdrunout(caddr_t arg);
1301
1302static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1303static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1304
1305static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1306static void sd_restore_throttle(void *arg);
1307
1308static void sd_init_cdb_limits(struct sd_lun *un);
1309
1310static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1311	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1312
1313/*
1314 * Error handling functions
1315 */
1316static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1317	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1318static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1319	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1320static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1321	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1322static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1323	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1324
1325static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1326	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1327static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1328	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1329static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1330	struct sd_xbuf *xp);
1331static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1332	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1333
1334static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1335	void *arg, int code);
1336
1337static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1338	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1339static void sd_sense_key_recoverable_error(struct sd_lun *un,
1340	uint8_t *sense_datap,
1341	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1342static void sd_sense_key_not_ready(struct sd_lun *un,
1343	uint8_t *sense_datap,
1344	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1345static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1346	uint8_t *sense_datap,
1347	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1348static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1349	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1350static void sd_sense_key_unit_attention(struct sd_lun *un,
1351	uint8_t *sense_datap,
1352	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1353static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1354	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1355static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1356	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1357static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1358	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1359static void sd_sense_key_default(struct sd_lun *un,
1360	uint8_t *sense_datap,
1361	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1362
1363static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1364	void *arg, int flag);
1365
1366static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1367	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1368static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1369	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1370static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1371	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1372static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1373	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1374static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1375	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1376static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1377	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1378static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1379	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1380static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1381	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1382
1383static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1384
1385static void sd_start_stop_unit_callback(void *arg);
1386static void sd_start_stop_unit_task(void *arg);
1387
1388static void sd_taskq_create(void);
1389static void sd_taskq_delete(void);
1390static void sd_media_change_task(void *arg);
1391
1392static int sd_handle_mchange(struct sd_lun *un);
1393static int sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag);
1394static int sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp,
1395	uint32_t *lbap, int path_flag);
1396static int sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
1397	uint32_t *lbap, int path_flag);
1398static int sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag,
1399	int path_flag);
1400static int sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr,
1401	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1402static int sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag);
1403static int sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un,
1404	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1405static int sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un,
1406	uchar_t usr_cmd, uchar_t *usr_bufp);
1407static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un,
1408	struct dk_callback *dkc);
1409static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp);
1410static int sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un,
1411	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1412	uchar_t *bufaddr, uint_t buflen, int path_flag);
1413static int sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
1414	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1415	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag);
1416static int sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize,
1417	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1418static int sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize,
1419	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1420static int sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
1421	size_t buflen, daddr_t start_block, int path_flag);
1422#define	sd_send_scsi_READ(un, bufaddr, buflen, start_block, path_flag)	\
1423	sd_send_scsi_RDWR(un, SCMD_READ, bufaddr, buflen, start_block, \
1424	path_flag)
1425#define	sd_send_scsi_WRITE(un, bufaddr, buflen, start_block, path_flag)	\
1426	sd_send_scsi_RDWR(un, SCMD_WRITE, bufaddr, buflen, start_block,\
1427	path_flag)
1428
1429static int sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr,
1430	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1431	uint16_t param_ptr, int path_flag);
1432
1433static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1434static void sd_free_rqs(struct sd_lun *un);
1435
1436static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1437	uchar_t *data, int len, int fmt);
1438static void sd_panic_for_res_conflict(struct sd_lun *un);
1439
1440/*
1441 * Disk Ioctl Function Prototypes
1442 */
1443static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1444static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1445static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1446
1447/*
1448 * Multi-host Ioctl Prototypes
1449 */
1450static int sd_check_mhd(dev_t dev, int interval);
1451static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1452static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1453static char *sd_sname(uchar_t status);
1454static void sd_mhd_resvd_recover(void *arg);
1455static void sd_resv_reclaim_thread();
1456static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1457static int sd_reserve_release(dev_t dev, int cmd);
1458static void sd_rmv_resv_reclaim_req(dev_t dev);
1459static void sd_mhd_reset_notify_cb(caddr_t arg);
1460static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1461	mhioc_inkeys_t *usrp, int flag);
1462static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1463	mhioc_inresvs_t *usrp, int flag);
1464static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1465static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1466static int sd_mhdioc_release(dev_t dev);
1467static int sd_mhdioc_register_devid(dev_t dev);
1468static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1469static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1470
1471/*
1472 * SCSI removable prototypes
1473 */
1474static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1475static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1476static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1477static int sr_pause_resume(dev_t dev, int mode);
1478static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1479static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1480static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1481static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1482static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1483static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1484static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1485static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1486static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1487static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1488static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1489static int sr_sector_mode(dev_t dev, uint32_t blksize);
1490static int sr_eject(dev_t dev);
1491static void sr_ejected(register struct sd_lun *un);
1492static int sr_check_wp(dev_t dev);
1493static int sd_check_media(dev_t dev, enum dkio_state state);
1494static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1495static void sd_delayed_cv_broadcast(void *arg);
1496static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1497static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1498
1499static int sd_log_page_supported(struct sd_lun *un, int log_page);
1500
1501/*
1502 * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1503 */
1504static void sd_check_for_writable_cd(struct sd_lun *un, int path_flag);
1505static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1506static void sd_wm_cache_destructor(void *wm, void *un);
1507static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1508	daddr_t endb, ushort_t typ);
1509static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1510	daddr_t endb);
1511static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1512static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1513static void sd_read_modify_write_task(void * arg);
1514static int
1515sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1516	struct buf **bpp);
1517
1518
1519/*
1520 * Function prototypes for failfast support.
1521 */
1522static void sd_failfast_flushq(struct sd_lun *un);
1523static int sd_failfast_flushq_callback(struct buf *bp);
1524
1525/*
1526 * Function prototypes to check for lsi devices
1527 */
1528static void sd_is_lsi(struct sd_lun *un);
1529
1530/*
1531 * Function prototypes for x86 support
1532 */
1533#if defined(__i386) || defined(__amd64)
1534static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1535		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1536#endif
1537
1538
1539/* Function prototypes for cmlb */
1540static int sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
1541    diskaddr_t start_block, size_t reqlength, void *tg_cookie);
1542
1543static int sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie);
1544
1545/*
1546 * Constants for failfast support:
1547 *
1548 * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1549 * failfast processing being performed.
1550 *
1551 * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1552 * failfast processing on all bufs with B_FAILFAST set.
1553 */
1554
1555#define	SD_FAILFAST_INACTIVE		0
1556#define	SD_FAILFAST_ACTIVE		1
1557
1558/*
1559 * Bitmask to control behavior of buf(9S) flushes when a transition to
1560 * the failfast state occurs. Optional bits include:
1561 *
1562 * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1563 * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1564 * be flushed.
1565 *
1566 * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1567 * driver, in addition to the regular wait queue. This includes the xbuf
1568 * queues. When clear, only the driver's wait queue will be flushed.
1569 */
1570#define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1571#define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1572
1573/*
1574 * The default behavior is to only flush bufs that have B_FAILFAST set, but
1575 * to flush all queues within the driver.
1576 */
1577static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1578
1579
1580/*
1581 * SD Testing Fault Injection
1582 */
1583#ifdef SD_FAULT_INJECTION
1584static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1585static void sd_faultinjection(struct scsi_pkt *pktp);
1586static void sd_injection_log(char *buf, struct sd_lun *un);
1587#endif
1588
1589/*
1590 * Device driver ops vector
1591 */
1592static struct cb_ops sd_cb_ops = {
1593	sdopen,			/* open */
1594	sdclose,		/* close */
1595	sdstrategy,		/* strategy */
1596	nodev,			/* print */
1597	sddump,			/* dump */
1598	sdread,			/* read */
1599	sdwrite,		/* write */
1600	sdioctl,		/* ioctl */
1601	nodev,			/* devmap */
1602	nodev,			/* mmap */
1603	nodev,			/* segmap */
1604	nochpoll,		/* poll */
1605	sd_prop_op,		/* cb_prop_op */
1606	0,			/* streamtab  */
1607	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1608	CB_REV,			/* cb_rev */
1609	sdaread, 		/* async I/O read entry point */
1610	sdawrite		/* async I/O write entry point */
1611};
1612
1613static struct dev_ops sd_ops = {
1614	DEVO_REV,		/* devo_rev, */
1615	0,			/* refcnt  */
1616	sdinfo,			/* info */
1617	nulldev,		/* identify */
1618	sdprobe,		/* probe */
1619	sdattach,		/* attach */
1620	sddetach,		/* detach */
1621	nodev,			/* reset */
1622	&sd_cb_ops,		/* driver operations */
1623	NULL,			/* bus operations */
1624	sdpower			/* power */
1625};
1626
1627
1628/*
1629 * This is the loadable module wrapper.
1630 */
1631#include <sys/modctl.h>
1632
1633static struct modldrv modldrv = {
1634	&mod_driverops,		/* Type of module. This one is a driver */
1635	SD_MODULE_NAME,		/* Module name. */
1636	&sd_ops			/* driver ops */
1637};
1638
1639
1640static struct modlinkage modlinkage = {
1641	MODREV_1,
1642	&modldrv,
1643	NULL
1644};
1645
1646static cmlb_tg_ops_t sd_tgops = {
1647	TG_DK_OPS_VERSION_1,
1648	sd_tg_rdwr,
1649	sd_tg_getinfo
1650	};
1651
1652static struct scsi_asq_key_strings sd_additional_codes[] = {
1653	0x81, 0, "Logical Unit is Reserved",
1654	0x85, 0, "Audio Address Not Valid",
1655	0xb6, 0, "Media Load Mechanism Failed",
1656	0xB9, 0, "Audio Play Operation Aborted",
1657	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1658	0x53, 2, "Medium removal prevented",
1659	0x6f, 0, "Authentication failed during key exchange",
1660	0x6f, 1, "Key not present",
1661	0x6f, 2, "Key not established",
1662	0x6f, 3, "Read without proper authentication",
1663	0x6f, 4, "Mismatched region to this logical unit",
1664	0x6f, 5, "Region reset count error",
1665	0xffff, 0x0, NULL
1666};
1667
1668
1669/*
1670 * Struct for passing printing information for sense data messages
1671 */
1672struct sd_sense_info {
1673	int	ssi_severity;
1674	int	ssi_pfa_flag;
1675};
1676
1677/*
1678 * Table of function pointers for iostart-side routines. Separate "chains"
1679 * of layered function calls are formed by placing the function pointers
1680 * sequentially in the desired order. Functions are called according to an
1681 * incrementing table index ordering. The last function in each chain must
1682 * be sd_core_iostart(). The corresponding iodone-side routines are expected
1683 * in the sd_iodone_chain[] array.
1684 *
1685 * Note: It may seem more natural to organize both the iostart and iodone
1686 * functions together, into an array of structures (or some similar
1687 * organization) with a common index, rather than two separate arrays which
1688 * must be maintained in synchronization. The purpose of this division is
1689 * to achieve improved performance: individual arrays allows for more
1690 * effective cache line utilization on certain platforms.
1691 */
1692
1693typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1694
1695
1696static sd_chain_t sd_iostart_chain[] = {
1697
1698	/* Chain for buf IO for disk drive targets (PM enabled) */
1699	sd_mapblockaddr_iostart,	/* Index: 0 */
1700	sd_pm_iostart,			/* Index: 1 */
1701	sd_core_iostart,		/* Index: 2 */
1702
1703	/* Chain for buf IO for disk drive targets (PM disabled) */
1704	sd_mapblockaddr_iostart,	/* Index: 3 */
1705	sd_core_iostart,		/* Index: 4 */
1706
1707	/* Chain for buf IO for removable-media targets (PM enabled) */
1708	sd_mapblockaddr_iostart,	/* Index: 5 */
1709	sd_mapblocksize_iostart,	/* Index: 6 */
1710	sd_pm_iostart,			/* Index: 7 */
1711	sd_core_iostart,		/* Index: 8 */
1712
1713	/* Chain for buf IO for removable-media targets (PM disabled) */
1714	sd_mapblockaddr_iostart,	/* Index: 9 */
1715	sd_mapblocksize_iostart,	/* Index: 10 */
1716	sd_core_iostart,		/* Index: 11 */
1717
1718	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1719	sd_mapblockaddr_iostart,	/* Index: 12 */
1720	sd_checksum_iostart,		/* Index: 13 */
1721	sd_pm_iostart,			/* Index: 14 */
1722	sd_core_iostart,		/* Index: 15 */
1723
1724	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1725	sd_mapblockaddr_iostart,	/* Index: 16 */
1726	sd_checksum_iostart,		/* Index: 17 */
1727	sd_core_iostart,		/* Index: 18 */
1728
1729	/* Chain for USCSI commands (all targets) */
1730	sd_pm_iostart,			/* Index: 19 */
1731	sd_core_iostart,		/* Index: 20 */
1732
1733	/* Chain for checksumming USCSI commands (all targets) */
1734	sd_checksum_uscsi_iostart,	/* Index: 21 */
1735	sd_pm_iostart,			/* Index: 22 */
1736	sd_core_iostart,		/* Index: 23 */
1737
1738	/* Chain for "direct" USCSI commands (all targets) */
1739	sd_core_iostart,		/* Index: 24 */
1740
1741	/* Chain for "direct priority" USCSI commands (all targets) */
1742	sd_core_iostart,		/* Index: 25 */
1743};
1744
1745/*
1746 * Macros to locate the first function of each iostart chain in the
1747 * sd_iostart_chain[] array. These are located by the index in the array.
1748 */
1749#define	SD_CHAIN_DISK_IOSTART			0
1750#define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1751#define	SD_CHAIN_RMMEDIA_IOSTART		5
1752#define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1753#define	SD_CHAIN_CHKSUM_IOSTART			12
1754#define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1755#define	SD_CHAIN_USCSI_CMD_IOSTART		19
1756#define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1757#define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1758#define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1759
1760
1761/*
1762 * Table of function pointers for the iodone-side routines for the driver-
1763 * internal layering mechanism.  The calling sequence for iodone routines
1764 * uses a decrementing table index, so the last routine called in a chain
1765 * must be at the lowest array index location for that chain.  The last
1766 * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1767 * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1768 * of the functions in an iodone side chain must correspond to the ordering
1769 * of the iostart routines for that chain.  Note that there is no iodone
1770 * side routine that corresponds to sd_core_iostart(), so there is no
1771 * entry in the table for this.
1772 */
1773
1774static sd_chain_t sd_iodone_chain[] = {
1775
1776	/* Chain for buf IO for disk drive targets (PM enabled) */
1777	sd_buf_iodone,			/* Index: 0 */
1778	sd_mapblockaddr_iodone,		/* Index: 1 */
1779	sd_pm_iodone,			/* Index: 2 */
1780
1781	/* Chain for buf IO for disk drive targets (PM disabled) */
1782	sd_buf_iodone,			/* Index: 3 */
1783	sd_mapblockaddr_iodone,		/* Index: 4 */
1784
1785	/* Chain for buf IO for removable-media targets (PM enabled) */
1786	sd_buf_iodone,			/* Index: 5 */
1787	sd_mapblockaddr_iodone,		/* Index: 6 */
1788	sd_mapblocksize_iodone,		/* Index: 7 */
1789	sd_pm_iodone,			/* Index: 8 */
1790
1791	/* Chain for buf IO for removable-media targets (PM disabled) */
1792	sd_buf_iodone,			/* Index: 9 */
1793	sd_mapblockaddr_iodone,		/* Index: 10 */
1794	sd_mapblocksize_iodone,		/* Index: 11 */
1795
1796	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1797	sd_buf_iodone,			/* Index: 12 */
1798	sd_mapblockaddr_iodone,		/* Index: 13 */
1799	sd_checksum_iodone,		/* Index: 14 */
1800	sd_pm_iodone,			/* Index: 15 */
1801
1802	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1803	sd_buf_iodone,			/* Index: 16 */
1804	sd_mapblockaddr_iodone,		/* Index: 17 */
1805	sd_checksum_iodone,		/* Index: 18 */
1806
1807	/* Chain for USCSI commands (non-checksum targets) */
1808	sd_uscsi_iodone,		/* Index: 19 */
1809	sd_pm_iodone,			/* Index: 20 */
1810
1811	/* Chain for USCSI commands (checksum targets) */
1812	sd_uscsi_iodone,		/* Index: 21 */
1813	sd_checksum_uscsi_iodone,	/* Index: 22 */
1814	sd_pm_iodone,			/* Index: 22 */
1815
1816	/* Chain for "direct" USCSI commands (all targets) */
1817	sd_uscsi_iodone,		/* Index: 24 */
1818
1819	/* Chain for "direct priority" USCSI commands (all targets) */
1820	sd_uscsi_iodone,		/* Index: 25 */
1821};
1822
1823
1824/*
1825 * Macros to locate the "first" function in the sd_iodone_chain[] array for
1826 * each iodone-side chain. These are located by the array index, but as the
1827 * iodone side functions are called in a decrementing-index order, the
1828 * highest index number in each chain must be specified (as these correspond
1829 * to the first function in the iodone chain that will be called by the core
1830 * at IO completion time).
1831 */
1832
1833#define	SD_CHAIN_DISK_IODONE			2
1834#define	SD_CHAIN_DISK_IODONE_NO_PM		4
1835#define	SD_CHAIN_RMMEDIA_IODONE			8
1836#define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
1837#define	SD_CHAIN_CHKSUM_IODONE			15
1838#define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
1839#define	SD_CHAIN_USCSI_CMD_IODONE		20
1840#define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
1841#define	SD_CHAIN_DIRECT_CMD_IODONE		24
1842#define	SD_CHAIN_PRIORITY_CMD_IODONE		25
1843
1844
1845
1846
1847/*
1848 * Array to map a layering chain index to the appropriate initpkt routine.
1849 * The redundant entries are present so that the index used for accessing
1850 * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1851 * with this table as well.
1852 */
1853typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
1854
1855static sd_initpkt_t	sd_initpkt_map[] = {
1856
1857	/* Chain for buf IO for disk drive targets (PM enabled) */
1858	sd_initpkt_for_buf,		/* Index: 0 */
1859	sd_initpkt_for_buf,		/* Index: 1 */
1860	sd_initpkt_for_buf,		/* Index: 2 */
1861
1862	/* Chain for buf IO for disk drive targets (PM disabled) */
1863	sd_initpkt_for_buf,		/* Index: 3 */
1864	sd_initpkt_for_buf,		/* Index: 4 */
1865
1866	/* Chain for buf IO for removable-media targets (PM enabled) */
1867	sd_initpkt_for_buf,		/* Index: 5 */
1868	sd_initpkt_for_buf,		/* Index: 6 */
1869	sd_initpkt_for_buf,		/* Index: 7 */
1870	sd_initpkt_for_buf,		/* Index: 8 */
1871
1872	/* Chain for buf IO for removable-media targets (PM disabled) */
1873	sd_initpkt_for_buf,		/* Index: 9 */
1874	sd_initpkt_for_buf,		/* Index: 10 */
1875	sd_initpkt_for_buf,		/* Index: 11 */
1876
1877	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1878	sd_initpkt_for_buf,		/* Index: 12 */
1879	sd_initpkt_for_buf,		/* Index: 13 */
1880	sd_initpkt_for_buf,		/* Index: 14 */
1881	sd_initpkt_for_buf,		/* Index: 15 */
1882
1883	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1884	sd_initpkt_for_buf,		/* Index: 16 */
1885	sd_initpkt_for_buf,		/* Index: 17 */
1886	sd_initpkt_for_buf,		/* Index: 18 */
1887
1888	/* Chain for USCSI commands (non-checksum targets) */
1889	sd_initpkt_for_uscsi,		/* Index: 19 */
1890	sd_initpkt_for_uscsi,		/* Index: 20 */
1891
1892	/* Chain for USCSI commands (checksum targets) */
1893	sd_initpkt_for_uscsi,		/* Index: 21 */
1894	sd_initpkt_for_uscsi,		/* Index: 22 */
1895	sd_initpkt_for_uscsi,		/* Index: 22 */
1896
1897	/* Chain for "direct" USCSI commands (all targets) */
1898	sd_initpkt_for_uscsi,		/* Index: 24 */
1899
1900	/* Chain for "direct priority" USCSI commands (all targets) */
1901	sd_initpkt_for_uscsi,		/* Index: 25 */
1902
1903};
1904
1905
1906/*
1907 * Array to map a layering chain index to the appropriate destroypktpkt routine.
1908 * The redundant entries are present so that the index used for accessing
1909 * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1910 * with this table as well.
1911 */
1912typedef void (*sd_destroypkt_t)(struct buf *);
1913
1914static sd_destroypkt_t	sd_destroypkt_map[] = {
1915
1916	/* Chain for buf IO for disk drive targets (PM enabled) */
1917	sd_destroypkt_for_buf,		/* Index: 0 */
1918	sd_destroypkt_for_buf,		/* Index: 1 */
1919	sd_destroypkt_for_buf,		/* Index: 2 */
1920
1921	/* Chain for buf IO for disk drive targets (PM disabled) */
1922	sd_destroypkt_for_buf,		/* Index: 3 */
1923	sd_destroypkt_for_buf,		/* Index: 4 */
1924
1925	/* Chain for buf IO for removable-media targets (PM enabled) */
1926	sd_destroypkt_for_buf,		/* Index: 5 */
1927	sd_destroypkt_for_buf,		/* Index: 6 */
1928	sd_destroypkt_for_buf,		/* Index: 7 */
1929	sd_destroypkt_for_buf,		/* Index: 8 */
1930
1931	/* Chain for buf IO for removable-media targets (PM disabled) */
1932	sd_destroypkt_for_buf,		/* Index: 9 */
1933	sd_destroypkt_for_buf,		/* Index: 10 */
1934	sd_destroypkt_for_buf,		/* Index: 11 */
1935
1936	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1937	sd_destroypkt_for_buf,		/* Index: 12 */
1938	sd_destroypkt_for_buf,		/* Index: 13 */
1939	sd_destroypkt_for_buf,		/* Index: 14 */
1940	sd_destroypkt_for_buf,		/* Index: 15 */
1941
1942	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1943	sd_destroypkt_for_buf,		/* Index: 16 */
1944	sd_destroypkt_for_buf,		/* Index: 17 */
1945	sd_destroypkt_for_buf,		/* Index: 18 */
1946
1947	/* Chain for USCSI commands (non-checksum targets) */
1948	sd_destroypkt_for_uscsi,	/* Index: 19 */
1949	sd_destroypkt_for_uscsi,	/* Index: 20 */
1950
1951	/* Chain for USCSI commands (checksum targets) */
1952	sd_destroypkt_for_uscsi,	/* Index: 21 */
1953	sd_destroypkt_for_uscsi,	/* Index: 22 */
1954	sd_destroypkt_for_uscsi,	/* Index: 22 */
1955
1956	/* Chain for "direct" USCSI commands (all targets) */
1957	sd_destroypkt_for_uscsi,	/* Index: 24 */
1958
1959	/* Chain for "direct priority" USCSI commands (all targets) */
1960	sd_destroypkt_for_uscsi,	/* Index: 25 */
1961
1962};
1963
1964
1965
1966/*
1967 * Array to map a layering chain index to the appropriate chain "type".
1968 * The chain type indicates a specific property/usage of the chain.
1969 * The redundant entries are present so that the index used for accessing
1970 * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1971 * with this table as well.
1972 */
1973
1974#define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
1975#define	SD_CHAIN_BUFIO			1	/* regular buf IO */
1976#define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
1977#define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
1978#define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
1979						/* (for error recovery) */
1980
1981static int sd_chain_type_map[] = {
1982
1983	/* Chain for buf IO for disk drive targets (PM enabled) */
1984	SD_CHAIN_BUFIO,			/* Index: 0 */
1985	SD_CHAIN_BUFIO,			/* Index: 1 */
1986	SD_CHAIN_BUFIO,			/* Index: 2 */
1987
1988	/* Chain for buf IO for disk drive targets (PM disabled) */
1989	SD_CHAIN_BUFIO,			/* Index: 3 */
1990	SD_CHAIN_BUFIO,			/* Index: 4 */
1991
1992	/* Chain for buf IO for removable-media targets (PM enabled) */
1993	SD_CHAIN_BUFIO,			/* Index: 5 */
1994	SD_CHAIN_BUFIO,			/* Index: 6 */
1995	SD_CHAIN_BUFIO,			/* Index: 7 */
1996	SD_CHAIN_BUFIO,			/* Index: 8 */
1997
1998	/* Chain for buf IO for removable-media targets (PM disabled) */
1999	SD_CHAIN_BUFIO,			/* Index: 9 */
2000	SD_CHAIN_BUFIO,			/* Index: 10 */
2001	SD_CHAIN_BUFIO,			/* Index: 11 */
2002
2003	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2004	SD_CHAIN_BUFIO,			/* Index: 12 */
2005	SD_CHAIN_BUFIO,			/* Index: 13 */
2006	SD_CHAIN_BUFIO,			/* Index: 14 */
2007	SD_CHAIN_BUFIO,			/* Index: 15 */
2008
2009	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2010	SD_CHAIN_BUFIO,			/* Index: 16 */
2011	SD_CHAIN_BUFIO,			/* Index: 17 */
2012	SD_CHAIN_BUFIO,			/* Index: 18 */
2013
2014	/* Chain for USCSI commands (non-checksum targets) */
2015	SD_CHAIN_USCSI,			/* Index: 19 */
2016	SD_CHAIN_USCSI,			/* Index: 20 */
2017
2018	/* Chain for USCSI commands (checksum targets) */
2019	SD_CHAIN_USCSI,			/* Index: 21 */
2020	SD_CHAIN_USCSI,			/* Index: 22 */
2021	SD_CHAIN_USCSI,			/* Index: 22 */
2022
2023	/* Chain for "direct" USCSI commands (all targets) */
2024	SD_CHAIN_DIRECT,		/* Index: 24 */
2025
2026	/* Chain for "direct priority" USCSI commands (all targets) */
2027	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2028};
2029
2030
2031/* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2032#define	SD_IS_BUFIO(xp)			\
2033	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2034
2035/* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2036#define	SD_IS_DIRECT_PRIORITY(xp)	\
2037	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2038
2039
2040
2041/*
2042 * Struct, array, and macros to map a specific chain to the appropriate
2043 * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2044 *
2045 * The sd_chain_index_map[] array is used at attach time to set the various
2046 * un_xxx_chain type members of the sd_lun softstate to the specific layering
2047 * chain to be used with the instance. This allows different instances to use
2048 * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2049 * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2050 * values at sd_xbuf init time, this allows (1) layering chains may be changed
2051 * dynamically & without the use of locking; and (2) a layer may update the
2052 * xb_chain_io[start|done] member in a given xbuf with its current index value,
2053 * to allow for deferred processing of an IO within the same chain from a
2054 * different execution context.
2055 */
2056
2057struct sd_chain_index {
2058	int	sci_iostart_index;
2059	int	sci_iodone_index;
2060};
2061
2062static struct sd_chain_index	sd_chain_index_map[] = {
2063	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2064	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2065	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2066	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2067	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2068	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2069	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2070	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2071	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2072	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2073};
2074
2075
2076/*
2077 * The following are indexes into the sd_chain_index_map[] array.
2078 */
2079
2080/* un->un_buf_chain_type must be set to one of these */
2081#define	SD_CHAIN_INFO_DISK		0
2082#define	SD_CHAIN_INFO_DISK_NO_PM	1
2083#define	SD_CHAIN_INFO_RMMEDIA		2
2084#define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2085#define	SD_CHAIN_INFO_CHKSUM		4
2086#define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2087
2088/* un->un_uscsi_chain_type must be set to one of these */
2089#define	SD_CHAIN_INFO_USCSI_CMD		6
2090/* USCSI with PM disabled is the same as DIRECT */
2091#define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2092#define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2093
2094/* un->un_direct_chain_type must be set to one of these */
2095#define	SD_CHAIN_INFO_DIRECT_CMD	8
2096
2097/* un->un_priority_chain_type must be set to one of these */
2098#define	SD_CHAIN_INFO_PRIORITY_CMD	9
2099
2100/* size for devid inquiries */
2101#define	MAX_INQUIRY_SIZE		0xF0
2102
2103/*
2104 * Macros used by functions to pass a given buf(9S) struct along to the
2105 * next function in the layering chain for further processing.
2106 *
2107 * In the following macros, passing more than three arguments to the called
2108 * routines causes the optimizer for the SPARC compiler to stop doing tail
2109 * call elimination which results in significant performance degradation.
2110 */
2111#define	SD_BEGIN_IOSTART(index, un, bp)	\
2112	((*(sd_iostart_chain[index]))(index, un, bp))
2113
2114#define	SD_BEGIN_IODONE(index, un, bp)	\
2115	((*(sd_iodone_chain[index]))(index, un, bp))
2116
2117#define	SD_NEXT_IOSTART(index, un, bp)				\
2118	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2119
2120#define	SD_NEXT_IODONE(index, un, bp)				\
2121	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2122
2123/*
2124 *    Function: _init
2125 *
2126 * Description: This is the driver _init(9E) entry point.
2127 *
2128 * Return Code: Returns the value from mod_install(9F) or
2129 *		ddi_soft_state_init(9F) as appropriate.
2130 *
2131 *     Context: Called when driver module loaded.
2132 */
2133
2134int
2135_init(void)
2136{
2137	int	err;
2138
2139	/* establish driver name from module name */
2140	sd_label = mod_modname(&modlinkage);
2141
2142	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2143	    SD_MAXUNIT);
2144
2145	if (err != 0) {
2146		return (err);
2147	}
2148
2149	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2150	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2151	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2152
2153	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2154	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2155	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2156
2157	/*
2158	 * it's ok to init here even for fibre device
2159	 */
2160	sd_scsi_probe_cache_init();
2161
2162	sd_scsi_target_lun_init();
2163
2164	/*
2165	 * Creating taskq before mod_install ensures that all callers (threads)
2166	 * that enter the module after a successfull mod_install encounter
2167	 * a valid taskq.
2168	 */
2169	sd_taskq_create();
2170
2171	err = mod_install(&modlinkage);
2172	if (err != 0) {
2173		/* delete taskq if install fails */
2174		sd_taskq_delete();
2175
2176		mutex_destroy(&sd_detach_mutex);
2177		mutex_destroy(&sd_log_mutex);
2178		mutex_destroy(&sd_label_mutex);
2179
2180		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2181		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2182		cv_destroy(&sd_tr.srq_inprocess_cv);
2183
2184		sd_scsi_probe_cache_fini();
2185
2186		sd_scsi_target_lun_fini();
2187
2188		ddi_soft_state_fini(&sd_state);
2189		return (err);
2190	}
2191
2192	return (err);
2193}
2194
2195
2196/*
2197 *    Function: _fini
2198 *
2199 * Description: This is the driver _fini(9E) entry point.
2200 *
2201 * Return Code: Returns the value from mod_remove(9F)
2202 *
2203 *     Context: Called when driver module is unloaded.
2204 */
2205
2206int
2207_fini(void)
2208{
2209	int err;
2210
2211	if ((err = mod_remove(&modlinkage)) != 0) {
2212		return (err);
2213	}
2214
2215	sd_taskq_delete();
2216
2217	mutex_destroy(&sd_detach_mutex);
2218	mutex_destroy(&sd_log_mutex);
2219	mutex_destroy(&sd_label_mutex);
2220	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2221
2222	sd_scsi_probe_cache_fini();
2223
2224	sd_scsi_target_lun_fini();
2225
2226	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2227	cv_destroy(&sd_tr.srq_inprocess_cv);
2228
2229	ddi_soft_state_fini(&sd_state);
2230
2231	return (err);
2232}
2233
2234
2235/*
2236 *    Function: _info
2237 *
2238 * Description: This is the driver _info(9E) entry point.
2239 *
2240 *   Arguments: modinfop - pointer to the driver modinfo structure
2241 *
2242 * Return Code: Returns the value from mod_info(9F).
2243 *
2244 *     Context: Kernel thread context
2245 */
2246
2247int
2248_info(struct modinfo *modinfop)
2249{
2250	return (mod_info(&modlinkage, modinfop));
2251}
2252
2253
2254/*
2255 * The following routines implement the driver message logging facility.
2256 * They provide component- and level- based debug output filtering.
2257 * Output may also be restricted to messages for a single instance by
2258 * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2259 * to NULL, then messages for all instances are printed.
2260 *
2261 * These routines have been cloned from each other due to the language
2262 * constraints of macros and variable argument list processing.
2263 */
2264
2265
2266/*
2267 *    Function: sd_log_err
2268 *
2269 * Description: This routine is called by the SD_ERROR macro for debug
2270 *		logging of error conditions.
2271 *
2272 *   Arguments: comp - driver component being logged
2273 *		dev  - pointer to driver info structure
2274 *		fmt  - error string and format to be logged
2275 */
2276
2277static void
2278sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2279{
2280	va_list		ap;
2281	dev_info_t	*dev;
2282
2283	ASSERT(un != NULL);
2284	dev = SD_DEVINFO(un);
2285	ASSERT(dev != NULL);
2286
2287	/*
2288	 * Filter messages based on the global component and level masks.
2289	 * Also print if un matches the value of sd_debug_un, or if
2290	 * sd_debug_un is set to NULL.
2291	 */
2292	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2293	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2294		mutex_enter(&sd_log_mutex);
2295		va_start(ap, fmt);
2296		(void) vsprintf(sd_log_buf, fmt, ap);
2297		va_end(ap);
2298		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2299		mutex_exit(&sd_log_mutex);
2300	}
2301#ifdef SD_FAULT_INJECTION
2302	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2303	if (un->sd_injection_mask & comp) {
2304		mutex_enter(&sd_log_mutex);
2305		va_start(ap, fmt);
2306		(void) vsprintf(sd_log_buf, fmt, ap);
2307		va_end(ap);
2308		sd_injection_log(sd_log_buf, un);
2309		mutex_exit(&sd_log_mutex);
2310	}
2311#endif
2312}
2313
2314
2315/*
2316 *    Function: sd_log_info
2317 *
2318 * Description: This routine is called by the SD_INFO macro for debug
2319 *		logging of general purpose informational conditions.
2320 *
2321 *   Arguments: comp - driver component being logged
2322 *		dev  - pointer to driver info structure
2323 *		fmt  - info string and format to be logged
2324 */
2325
2326static void
2327sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2328{
2329	va_list		ap;
2330	dev_info_t	*dev;
2331
2332	ASSERT(un != NULL);
2333	dev = SD_DEVINFO(un);
2334	ASSERT(dev != NULL);
2335
2336	/*
2337	 * Filter messages based on the global component and level masks.
2338	 * Also print if un matches the value of sd_debug_un, or if
2339	 * sd_debug_un is set to NULL.
2340	 */
2341	if ((sd_component_mask & component) &&
2342	    (sd_level_mask & SD_LOGMASK_INFO) &&
2343	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2344		mutex_enter(&sd_log_mutex);
2345		va_start(ap, fmt);
2346		(void) vsprintf(sd_log_buf, fmt, ap);
2347		va_end(ap);
2348		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2349		mutex_exit(&sd_log_mutex);
2350	}
2351#ifdef SD_FAULT_INJECTION
2352	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2353	if (un->sd_injection_mask & component) {
2354		mutex_enter(&sd_log_mutex);
2355		va_start(ap, fmt);
2356		(void) vsprintf(sd_log_buf, fmt, ap);
2357		va_end(ap);
2358		sd_injection_log(sd_log_buf, un);
2359		mutex_exit(&sd_log_mutex);
2360	}
2361#endif
2362}
2363
2364
2365/*
2366 *    Function: sd_log_trace
2367 *
2368 * Description: This routine is called by the SD_TRACE macro for debug
2369 *		logging of trace conditions (i.e. function entry/exit).
2370 *
2371 *   Arguments: comp - driver component being logged
2372 *		dev  - pointer to driver info structure
2373 *		fmt  - trace string and format to be logged
2374 */
2375
2376static void
2377sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2378{
2379	va_list		ap;
2380	dev_info_t	*dev;
2381
2382	ASSERT(un != NULL);
2383	dev = SD_DEVINFO(un);
2384	ASSERT(dev != NULL);
2385
2386	/*
2387	 * Filter messages based on the global component and level masks.
2388	 * Also print if un matches the value of sd_debug_un, or if
2389	 * sd_debug_un is set to NULL.
2390	 */
2391	if ((sd_component_mask & component) &&
2392	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2393	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2394		mutex_enter(&sd_log_mutex);
2395		va_start(ap, fmt);
2396		(void) vsprintf(sd_log_buf, fmt, ap);
2397		va_end(ap);
2398		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2399		mutex_exit(&sd_log_mutex);
2400	}
2401#ifdef SD_FAULT_INJECTION
2402	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2403	if (un->sd_injection_mask & component) {
2404		mutex_enter(&sd_log_mutex);
2405		va_start(ap, fmt);
2406		(void) vsprintf(sd_log_buf, fmt, ap);
2407		va_end(ap);
2408		sd_injection_log(sd_log_buf, un);
2409		mutex_exit(&sd_log_mutex);
2410	}
2411#endif
2412}
2413
2414
2415/*
2416 *    Function: sdprobe
2417 *
2418 * Description: This is the driver probe(9e) entry point function.
2419 *
2420 *   Arguments: devi - opaque device info handle
2421 *
2422 * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2423 *              DDI_PROBE_FAILURE: If the probe failed.
2424 *              DDI_PROBE_PARTIAL: If the instance is not present now,
2425 *				   but may be present in the future.
2426 */
2427
2428static int
2429sdprobe(dev_info_t *devi)
2430{
2431	struct scsi_device	*devp;
2432	int			rval;
2433	int			instance;
2434
2435	/*
2436	 * if it wasn't for pln, sdprobe could actually be nulldev
2437	 * in the "__fibre" case.
2438	 */
2439	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2440		return (DDI_PROBE_DONTCARE);
2441	}
2442
2443	devp = ddi_get_driver_private(devi);
2444
2445	if (devp == NULL) {
2446		/* Ooops... nexus driver is mis-configured... */
2447		return (DDI_PROBE_FAILURE);
2448	}
2449
2450	instance = ddi_get_instance(devi);
2451
2452	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2453		return (DDI_PROBE_PARTIAL);
2454	}
2455
2456	/*
2457	 * Call the SCSA utility probe routine to see if we actually
2458	 * have a target at this SCSI nexus.
2459	 */
2460	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2461	case SCSIPROBE_EXISTS:
2462		switch (devp->sd_inq->inq_dtype) {
2463		case DTYPE_DIRECT:
2464			rval = DDI_PROBE_SUCCESS;
2465			break;
2466		case DTYPE_RODIRECT:
2467			/* CDs etc. Can be removable media */
2468			rval = DDI_PROBE_SUCCESS;
2469			break;
2470		case DTYPE_OPTICAL:
2471			/*
2472			 * Rewritable optical driver HP115AA
2473			 * Can also be removable media
2474			 */
2475
2476			/*
2477			 * Do not attempt to bind to  DTYPE_OPTICAL if
2478			 * pre solaris 9 sparc sd behavior is required
2479			 *
2480			 * If first time through and sd_dtype_optical_bind
2481			 * has not been set in /etc/system check properties
2482			 */
2483
2484			if (sd_dtype_optical_bind  < 0) {
2485				sd_dtype_optical_bind = ddi_prop_get_int
2486				    (DDI_DEV_T_ANY, devi, 0,
2487				    "optical-device-bind", 1);
2488			}
2489
2490			if (sd_dtype_optical_bind == 0) {
2491				rval = DDI_PROBE_FAILURE;
2492			} else {
2493				rval = DDI_PROBE_SUCCESS;
2494			}
2495			break;
2496
2497		case DTYPE_NOTPRESENT:
2498		default:
2499			rval = DDI_PROBE_FAILURE;
2500			break;
2501		}
2502		break;
2503	default:
2504		rval = DDI_PROBE_PARTIAL;
2505		break;
2506	}
2507
2508	/*
2509	 * This routine checks for resource allocation prior to freeing,
2510	 * so it will take care of the "smart probing" case where a
2511	 * scsi_probe() may or may not have been issued and will *not*
2512	 * free previously-freed resources.
2513	 */
2514	scsi_unprobe(devp);
2515	return (rval);
2516}
2517
2518
2519/*
2520 *    Function: sdinfo
2521 *
2522 * Description: This is the driver getinfo(9e) entry point function.
2523 * 		Given the device number, return the devinfo pointer from
2524 *		the scsi_device structure or the instance number
2525 *		associated with the dev_t.
2526 *
2527 *   Arguments: dip     - pointer to device info structure
2528 *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2529 *			  DDI_INFO_DEVT2INSTANCE)
2530 *		arg     - driver dev_t
2531 *		resultp - user buffer for request response
2532 *
2533 * Return Code: DDI_SUCCESS
2534 *              DDI_FAILURE
2535 */
2536/* ARGSUSED */
2537static int
2538sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2539{
2540	struct sd_lun	*un;
2541	dev_t		dev;
2542	int		instance;
2543	int		error;
2544
2545	switch (infocmd) {
2546	case DDI_INFO_DEVT2DEVINFO:
2547		dev = (dev_t)arg;
2548		instance = SDUNIT(dev);
2549		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2550			return (DDI_FAILURE);
2551		}
2552		*result = (void *) SD_DEVINFO(un);
2553		error = DDI_SUCCESS;
2554		break;
2555	case DDI_INFO_DEVT2INSTANCE:
2556		dev = (dev_t)arg;
2557		instance = SDUNIT(dev);
2558		*result = (void *)(uintptr_t)instance;
2559		error = DDI_SUCCESS;
2560		break;
2561	default:
2562		error = DDI_FAILURE;
2563	}
2564	return (error);
2565}
2566
2567/*
2568 *    Function: sd_prop_op
2569 *
2570 * Description: This is the driver prop_op(9e) entry point function.
2571 *		Return the number of blocks for the partition in question
2572 *		or forward the request to the property facilities.
2573 *
2574 *   Arguments: dev       - device number
2575 *		dip       - pointer to device info structure
2576 *		prop_op   - property operator
2577 *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2578 *		name      - pointer to property name
2579 *		valuep    - pointer or address of the user buffer
2580 *		lengthp   - property length
2581 *
2582 * Return Code: DDI_PROP_SUCCESS
2583 *              DDI_PROP_NOT_FOUND
2584 *              DDI_PROP_UNDEFINED
2585 *              DDI_PROP_NO_MEMORY
2586 *              DDI_PROP_BUF_TOO_SMALL
2587 */
2588
2589static int
2590sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2591	char *name, caddr_t valuep, int *lengthp)
2592{
2593	int		instance = ddi_get_instance(dip);
2594	struct sd_lun	*un;
2595	uint64_t	nblocks64;
2596	uint_t		dblk;
2597
2598	/*
2599	 * Our dynamic properties are all device specific and size oriented.
2600	 * Requests issued under conditions where size is valid are passed
2601	 * to ddi_prop_op_nblocks with the size information, otherwise the
2602	 * request is passed to ddi_prop_op. Size depends on valid geometry.
2603	 */
2604	un = ddi_get_soft_state(sd_state, instance);
2605	if ((dev == DDI_DEV_T_ANY) || (un == NULL)) {
2606		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2607		    name, valuep, lengthp));
2608	} else if (!SD_IS_VALID_LABEL(un)) {
2609		return (ddi_prop_op(dev, dip, prop_op, mod_flags, name,
2610		    valuep, lengthp));
2611	}
2612
2613	/* get nblocks value */
2614	ASSERT(!mutex_owned(SD_MUTEX(un)));
2615
2616	(void) cmlb_partinfo(un->un_cmlbhandle, SDPART(dev),
2617	    (diskaddr_t *)&nblocks64, NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
2618
2619	/* report size in target size blocks */
2620	dblk = un->un_tgt_blocksize / un->un_sys_blocksize;
2621	return (ddi_prop_op_nblocks_blksize(dev, dip, prop_op, mod_flags,
2622	    name, valuep, lengthp, nblocks64 / dblk, un->un_tgt_blocksize));
2623}
2624
2625/*
2626 * The following functions are for smart probing:
2627 * sd_scsi_probe_cache_init()
2628 * sd_scsi_probe_cache_fini()
2629 * sd_scsi_clear_probe_cache()
2630 * sd_scsi_probe_with_cache()
2631 */
2632
2633/*
2634 *    Function: sd_scsi_probe_cache_init
2635 *
2636 * Description: Initializes the probe response cache mutex and head pointer.
2637 *
2638 *     Context: Kernel thread context
2639 */
2640
2641static void
2642sd_scsi_probe_cache_init(void)
2643{
2644	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2645	sd_scsi_probe_cache_head = NULL;
2646}
2647
2648
2649/*
2650 *    Function: sd_scsi_probe_cache_fini
2651 *
2652 * Description: Frees all resources associated with the probe response cache.
2653 *
2654 *     Context: Kernel thread context
2655 */
2656
2657static void
2658sd_scsi_probe_cache_fini(void)
2659{
2660	struct sd_scsi_probe_cache *cp;
2661	struct sd_scsi_probe_cache *ncp;
2662
2663	/* Clean up our smart probing linked list */
2664	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2665		ncp = cp->next;
2666		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2667	}
2668	sd_scsi_probe_cache_head = NULL;
2669	mutex_destroy(&sd_scsi_probe_cache_mutex);
2670}
2671
2672
2673/*
2674 *    Function: sd_scsi_clear_probe_cache
2675 *
2676 * Description: This routine clears the probe response cache. This is
2677 *		done when open() returns ENXIO so that when deferred
2678 *		attach is attempted (possibly after a device has been
2679 *		turned on) we will retry the probe. Since we don't know
2680 *		which target we failed to open, we just clear the
2681 *		entire cache.
2682 *
2683 *     Context: Kernel thread context
2684 */
2685
2686static void
2687sd_scsi_clear_probe_cache(void)
2688{
2689	struct sd_scsi_probe_cache	*cp;
2690	int				i;
2691
2692	mutex_enter(&sd_scsi_probe_cache_mutex);
2693	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2694		/*
2695		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2696		 * force probing to be performed the next time
2697		 * sd_scsi_probe_with_cache is called.
2698		 */
2699		for (i = 0; i < NTARGETS_WIDE; i++) {
2700			cp->cache[i] = SCSIPROBE_EXISTS;
2701		}
2702	}
2703	mutex_exit(&sd_scsi_probe_cache_mutex);
2704}
2705
2706
2707/*
2708 *    Function: sd_scsi_probe_with_cache
2709 *
2710 * Description: This routine implements support for a scsi device probe
2711 *		with cache. The driver maintains a cache of the target
2712 *		responses to scsi probes. If we get no response from a
2713 *		target during a probe inquiry, we remember that, and we
2714 *		avoid additional calls to scsi_probe on non-zero LUNs
2715 *		on the same target until the cache is cleared. By doing
2716 *		so we avoid the 1/4 sec selection timeout for nonzero
2717 *		LUNs. lun0 of a target is always probed.
2718 *
2719 *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2720 *              waitfunc - indicates what the allocator routines should
2721 *			   do when resources are not available. This value
2722 *			   is passed on to scsi_probe() when that routine
2723 *			   is called.
2724 *
2725 * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2726 *		otherwise the value returned by scsi_probe(9F).
2727 *
2728 *     Context: Kernel thread context
2729 */
2730
2731static int
2732sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
2733{
2734	struct sd_scsi_probe_cache	*cp;
2735	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
2736	int		lun, tgt;
2737
2738	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2739	    SCSI_ADDR_PROP_LUN, 0);
2740	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2741	    SCSI_ADDR_PROP_TARGET, -1);
2742
2743	/* Make sure caching enabled and target in range */
2744	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
2745		/* do it the old way (no cache) */
2746		return (scsi_probe(devp, waitfn));
2747	}
2748
2749	mutex_enter(&sd_scsi_probe_cache_mutex);
2750
2751	/* Find the cache for this scsi bus instance */
2752	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2753		if (cp->pdip == pdip) {
2754			break;
2755		}
2756	}
2757
2758	/* If we can't find a cache for this pdip, create one */
2759	if (cp == NULL) {
2760		int i;
2761
2762		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
2763		    KM_SLEEP);
2764		cp->pdip = pdip;
2765		cp->next = sd_scsi_probe_cache_head;
2766		sd_scsi_probe_cache_head = cp;
2767		for (i = 0; i < NTARGETS_WIDE; i++) {
2768			cp->cache[i] = SCSIPROBE_EXISTS;
2769		}
2770	}
2771
2772	mutex_exit(&sd_scsi_probe_cache_mutex);
2773
2774	/* Recompute the cache for this target if LUN zero */
2775	if (lun == 0) {
2776		cp->cache[tgt] = SCSIPROBE_EXISTS;
2777	}
2778
2779	/* Don't probe if cache remembers a NORESP from a previous LUN. */
2780	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
2781		return (SCSIPROBE_NORESP);
2782	}
2783
2784	/* Do the actual probe; save & return the result */
2785	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
2786}
2787
2788
2789/*
2790 *    Function: sd_scsi_target_lun_init
2791 *
2792 * Description: Initializes the attached lun chain mutex and head pointer.
2793 *
2794 *     Context: Kernel thread context
2795 */
2796
2797static void
2798sd_scsi_target_lun_init(void)
2799{
2800	mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL);
2801	sd_scsi_target_lun_head = NULL;
2802}
2803
2804
2805/*
2806 *    Function: sd_scsi_target_lun_fini
2807 *
2808 * Description: Frees all resources associated with the attached lun
2809 *              chain
2810 *
2811 *     Context: Kernel thread context
2812 */
2813
2814static void
2815sd_scsi_target_lun_fini(void)
2816{
2817	struct sd_scsi_hba_tgt_lun	*cp;
2818	struct sd_scsi_hba_tgt_lun	*ncp;
2819
2820	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) {
2821		ncp = cp->next;
2822		kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun));
2823	}
2824	sd_scsi_target_lun_head = NULL;
2825	mutex_destroy(&sd_scsi_target_lun_mutex);
2826}
2827
2828
2829/*
2830 *    Function: sd_scsi_get_target_lun_count
2831 *
2832 * Description: This routine will check in the attached lun chain to see
2833 * 		how many luns are attached on the required SCSI controller
2834 * 		and target. Currently, some capabilities like tagged queue
2835 *		are supported per target based by HBA. So all luns in a
2836 *		target have the same capabilities. Based on this assumption,
2837 * 		sd should only set these capabilities once per target. This
2838 *		function is called when sd needs to decide how many luns
2839 *		already attached on a target.
2840 *
2841 *   Arguments: dip	- Pointer to the system's dev_info_t for the SCSI
2842 *			  controller device.
2843 *              target	- The target ID on the controller's SCSI bus.
2844 *
2845 * Return Code: The number of luns attached on the required target and
2846 *		controller.
2847 *		-1 if target ID is not in parallel SCSI scope or the given
2848 * 		dip is not in the chain.
2849 *
2850 *     Context: Kernel thread context
2851 */
2852
2853static int
2854sd_scsi_get_target_lun_count(dev_info_t *dip, int target)
2855{
2856	struct sd_scsi_hba_tgt_lun	*cp;
2857
2858	if ((target < 0) || (target >= NTARGETS_WIDE)) {
2859		return (-1);
2860	}
2861
2862	mutex_enter(&sd_scsi_target_lun_mutex);
2863
2864	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2865		if (cp->pdip == dip) {
2866			break;
2867		}
2868	}
2869
2870	mutex_exit(&sd_scsi_target_lun_mutex);
2871
2872	if (cp == NULL) {
2873		return (-1);
2874	}
2875
2876	return (cp->nlun[target]);
2877}
2878
2879
2880/*
2881 *    Function: sd_scsi_update_lun_on_target
2882 *
2883 * Description: This routine is used to update the attached lun chain when a
2884 *		lun is attached or detached on a target.
2885 *
2886 *   Arguments: dip     - Pointer to the system's dev_info_t for the SCSI
2887 *                        controller device.
2888 *              target  - The target ID on the controller's SCSI bus.
2889 *		flag	- Indicate the lun is attached or detached.
2890 *
2891 *     Context: Kernel thread context
2892 */
2893
2894static void
2895sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag)
2896{
2897	struct sd_scsi_hba_tgt_lun	*cp;
2898
2899	mutex_enter(&sd_scsi_target_lun_mutex);
2900
2901	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2902		if (cp->pdip == dip) {
2903			break;
2904		}
2905	}
2906
2907	if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) {
2908		cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun),
2909		    KM_SLEEP);
2910		cp->pdip = dip;
2911		cp->next = sd_scsi_target_lun_head;
2912		sd_scsi_target_lun_head = cp;
2913	}
2914
2915	mutex_exit(&sd_scsi_target_lun_mutex);
2916
2917	if (cp != NULL) {
2918		if (flag == SD_SCSI_LUN_ATTACH) {
2919			cp->nlun[target] ++;
2920		} else {
2921			cp->nlun[target] --;
2922		}
2923	}
2924}
2925
2926
2927/*
2928 *    Function: sd_spin_up_unit
2929 *
2930 * Description: Issues the following commands to spin-up the device:
2931 *		START STOP UNIT, and INQUIRY.
2932 *
2933 *   Arguments: un - driver soft state (unit) structure
2934 *
2935 * Return Code: 0 - success
2936 *		EIO - failure
2937 *		EACCES - reservation conflict
2938 *
2939 *     Context: Kernel thread context
2940 */
2941
2942static int
2943sd_spin_up_unit(struct sd_lun *un)
2944{
2945	size_t	resid		= 0;
2946	int	has_conflict	= FALSE;
2947	uchar_t *bufaddr;
2948
2949	ASSERT(un != NULL);
2950
2951	/*
2952	 * Send a throwaway START UNIT command.
2953	 *
2954	 * If we fail on this, we don't care presently what precisely
2955	 * is wrong.  EMC's arrays will also fail this with a check
2956	 * condition (0x2/0x4/0x3) if the device is "inactive," but
2957	 * we don't want to fail the attach because it may become
2958	 * "active" later.
2959	 */
2960	if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, SD_PATH_DIRECT)
2961	    == EACCES)
2962		has_conflict = TRUE;
2963
2964	/*
2965	 * Send another INQUIRY command to the target. This is necessary for
2966	 * non-removable media direct access devices because their INQUIRY data
2967	 * may not be fully qualified until they are spun up (perhaps via the
2968	 * START command above).  Note: This seems to be needed for some
2969	 * legacy devices only.) The INQUIRY command should succeed even if a
2970	 * Reservation Conflict is present.
2971	 */
2972	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
2973	if (sd_send_scsi_INQUIRY(un, bufaddr, SUN_INQSIZE, 0, 0, &resid) != 0) {
2974		kmem_free(bufaddr, SUN_INQSIZE);
2975		return (EIO);
2976	}
2977
2978	/*
2979	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
2980	 * Note that this routine does not return a failure here even if the
2981	 * INQUIRY command did not return any data.  This is a legacy behavior.
2982	 */
2983	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
2984		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
2985	}
2986
2987	kmem_free(bufaddr, SUN_INQSIZE);
2988
2989	/* If we hit a reservation conflict above, tell the caller. */
2990	if (has_conflict == TRUE) {
2991		return (EACCES);
2992	}
2993
2994	return (0);
2995}
2996
2997#ifdef _LP64
2998/*
2999 *    Function: sd_enable_descr_sense
3000 *
3001 * Description: This routine attempts to select descriptor sense format
3002 *		using the Control mode page.  Devices that support 64 bit
3003 *		LBAs (for >2TB luns) should also implement descriptor
3004 *		sense data so we will call this function whenever we see
3005 *		a lun larger than 2TB.  If for some reason the device
3006 *		supports 64 bit LBAs but doesn't support descriptor sense
3007 *		presumably the mode select will fail.  Everything will
3008 *		continue to work normally except that we will not get
3009 *		complete sense data for commands that fail with an LBA
3010 *		larger than 32 bits.
3011 *
3012 *   Arguments: un - driver soft state (unit) structure
3013 *
3014 *     Context: Kernel thread context only
3015 */
3016
3017static void
3018sd_enable_descr_sense(struct sd_lun *un)
3019{
3020	uchar_t			*header;
3021	struct mode_control_scsi3 *ctrl_bufp;
3022	size_t			buflen;
3023	size_t			bd_len;
3024
3025	/*
3026	 * Read MODE SENSE page 0xA, Control Mode Page
3027	 */
3028	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
3029	    sizeof (struct mode_control_scsi3);
3030	header = kmem_zalloc(buflen, KM_SLEEP);
3031	if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
3032	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT) != 0) {
3033		SD_ERROR(SD_LOG_COMMON, un,
3034		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
3035		goto eds_exit;
3036	}
3037
3038	/*
3039	 * Determine size of Block Descriptors in order to locate
3040	 * the mode page data. ATAPI devices return 0, SCSI devices
3041	 * should return MODE_BLK_DESC_LENGTH.
3042	 */
3043	bd_len  = ((struct mode_header *)header)->bdesc_length;
3044
3045	/* Clear the mode data length field for MODE SELECT */
3046	((struct mode_header *)header)->length = 0;
3047
3048	ctrl_bufp = (struct mode_control_scsi3 *)
3049	    (header + MODE_HEADER_LENGTH + bd_len);
3050
3051	/*
3052	 * If the page length is smaller than the expected value,
3053	 * the target device doesn't support D_SENSE. Bail out here.
3054	 */
3055	if (ctrl_bufp->mode_page.length <
3056	    sizeof (struct mode_control_scsi3) - 2) {
3057		SD_ERROR(SD_LOG_COMMON, un,
3058		    "sd_enable_descr_sense: enable D_SENSE failed\n");
3059		goto eds_exit;
3060	}
3061
3062	/*
3063	 * Clear PS bit for MODE SELECT
3064	 */
3065	ctrl_bufp->mode_page.ps = 0;
3066
3067	/*
3068	 * Set D_SENSE to enable descriptor sense format.
3069	 */
3070	ctrl_bufp->d_sense = 1;
3071
3072	/*
3073	 * Use MODE SELECT to commit the change to the D_SENSE bit
3074	 */
3075	if (sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
3076	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT) != 0) {
3077		SD_INFO(SD_LOG_COMMON, un,
3078		    "sd_enable_descr_sense: mode select ctrl page failed\n");
3079		goto eds_exit;
3080	}
3081
3082eds_exit:
3083	kmem_free(header, buflen);
3084}
3085
3086/*
3087 *    Function: sd_reenable_dsense_task
3088 *
3089 * Description: Re-enable descriptor sense after device or bus reset
3090 *
3091 *     Context: Executes in a taskq() thread context
3092 */
3093static void
3094sd_reenable_dsense_task(void *arg)
3095{
3096	struct	sd_lun	*un = arg;
3097
3098	ASSERT(un != NULL);
3099	sd_enable_descr_sense(un);
3100}
3101#endif /* _LP64 */
3102
3103/*
3104 *    Function: sd_set_mmc_caps
3105 *
3106 * Description: This routine determines if the device is MMC compliant and if
3107 *		the device supports CDDA via a mode sense of the CDVD
3108 *		capabilities mode page. Also checks if the device is a
3109 *		dvdram writable device.
3110 *
3111 *   Arguments: un - driver soft state (unit) structure
3112 *
3113 *     Context: Kernel thread context only
3114 */
3115
3116static void
3117sd_set_mmc_caps(struct sd_lun *un)
3118{
3119	struct mode_header_grp2		*sense_mhp;
3120	uchar_t				*sense_page;
3121	caddr_t				buf;
3122	int				bd_len;
3123	int				status;
3124	struct uscsi_cmd		com;
3125	int				rtn;
3126	uchar_t				*out_data_rw, *out_data_hd;
3127	uchar_t				*rqbuf_rw, *rqbuf_hd;
3128
3129	ASSERT(un != NULL);
3130
3131	/*
3132	 * The flags which will be set in this function are - mmc compliant,
3133	 * dvdram writable device, cdda support. Initialize them to FALSE
3134	 * and if a capability is detected - it will be set to TRUE.
3135	 */
3136	un->un_f_mmc_cap = FALSE;
3137	un->un_f_dvdram_writable_device = FALSE;
3138	un->un_f_cfg_cdda = FALSE;
3139
3140	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3141	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3142	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3143
3144	if (status != 0) {
3145		/* command failed; just return */
3146		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3147		return;
3148	}
3149	/*
3150	 * If the mode sense request for the CDROM CAPABILITIES
3151	 * page (0x2A) succeeds the device is assumed to be MMC.
3152	 */
3153	un->un_f_mmc_cap = TRUE;
3154
3155	/* Get to the page data */
3156	sense_mhp = (struct mode_header_grp2 *)buf;
3157	bd_len = (sense_mhp->bdesc_length_hi << 8) |
3158	    sense_mhp->bdesc_length_lo;
3159	if (bd_len > MODE_BLK_DESC_LENGTH) {
3160		/*
3161		 * We did not get back the expected block descriptor
3162		 * length so we cannot determine if the device supports
3163		 * CDDA. However, we still indicate the device is MMC
3164		 * according to the successful response to the page
3165		 * 0x2A mode sense request.
3166		 */
3167		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3168		    "sd_set_mmc_caps: Mode Sense returned "
3169		    "invalid block descriptor length\n");
3170		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3171		return;
3172	}
3173
3174	/* See if read CDDA is supported */
3175	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
3176	    bd_len);
3177	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
3178
3179	/* See if writing DVD RAM is supported. */
3180	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
3181	if (un->un_f_dvdram_writable_device == TRUE) {
3182		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3183		return;
3184	}
3185
3186	/*
3187	 * If the device presents DVD or CD capabilities in the mode
3188	 * page, we can return here since a RRD will not have
3189	 * these capabilities.
3190	 */
3191	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3192		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3193		return;
3194	}
3195	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3196
3197	/*
3198	 * If un->un_f_dvdram_writable_device is still FALSE,
3199	 * check for a Removable Rigid Disk (RRD).  A RRD
3200	 * device is identified by the features RANDOM_WRITABLE and
3201	 * HARDWARE_DEFECT_MANAGEMENT.
3202	 */
3203	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3204	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3205
3206	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3207	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3208	    RANDOM_WRITABLE, SD_PATH_STANDARD);
3209	if (rtn != 0) {
3210		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3211		kmem_free(rqbuf_rw, SENSE_LENGTH);
3212		return;
3213	}
3214
3215	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3216	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3217
3218	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3219	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3220	    HARDWARE_DEFECT_MANAGEMENT, SD_PATH_STANDARD);
3221	if (rtn == 0) {
3222		/*
3223		 * We have good information, check for random writable
3224		 * and hardware defect features.
3225		 */
3226		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3227		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3228			un->un_f_dvdram_writable_device = TRUE;
3229		}
3230	}
3231
3232	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3233	kmem_free(rqbuf_rw, SENSE_LENGTH);
3234	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3235	kmem_free(rqbuf_hd, SENSE_LENGTH);
3236}
3237
3238/*
3239 *    Function: sd_check_for_writable_cd
3240 *
3241 * Description: This routine determines if the media in the device is
3242 *		writable or not. It uses the get configuration command (0x46)
3243 *		to determine if the media is writable
3244 *
3245 *   Arguments: un - driver soft state (unit) structure
3246 *              path_flag - SD_PATH_DIRECT to use the USCSI "direct"
3247 *                           chain and the normal command waitq, or
3248 *                           SD_PATH_DIRECT_PRIORITY to use the USCSI
3249 *                           "direct" chain and bypass the normal command
3250 *                           waitq.
3251 *
3252 *     Context: Never called at interrupt context.
3253 */
3254
3255static void
3256sd_check_for_writable_cd(struct sd_lun *un, int path_flag)
3257{
3258	struct uscsi_cmd		com;
3259	uchar_t				*out_data;
3260	uchar_t				*rqbuf;
3261	int				rtn;
3262	uchar_t				*out_data_rw, *out_data_hd;
3263	uchar_t				*rqbuf_rw, *rqbuf_hd;
3264	struct mode_header_grp2		*sense_mhp;
3265	uchar_t				*sense_page;
3266	caddr_t				buf;
3267	int				bd_len;
3268	int				status;
3269
3270	ASSERT(un != NULL);
3271	ASSERT(mutex_owned(SD_MUTEX(un)));
3272
3273	/*
3274	 * Initialize the writable media to false, if configuration info.
3275	 * tells us otherwise then only we will set it.
3276	 */
3277	un->un_f_mmc_writable_media = FALSE;
3278	mutex_exit(SD_MUTEX(un));
3279
3280	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3281	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3282
3283	rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf, SENSE_LENGTH,
3284	    out_data, SD_PROFILE_HEADER_LEN, path_flag);
3285
3286	mutex_enter(SD_MUTEX(un));
3287	if (rtn == 0) {
3288		/*
3289		 * We have good information, check for writable DVD.
3290		 */
3291		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3292			un->un_f_mmc_writable_media = TRUE;
3293			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3294			kmem_free(rqbuf, SENSE_LENGTH);
3295			return;
3296		}
3297	}
3298
3299	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3300	kmem_free(rqbuf, SENSE_LENGTH);
3301
3302	/*
3303	 * Determine if this is a RRD type device.
3304	 */
3305	mutex_exit(SD_MUTEX(un));
3306	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3307	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3308	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, path_flag);
3309	mutex_enter(SD_MUTEX(un));
3310	if (status != 0) {
3311		/* command failed; just return */
3312		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3313		return;
3314	}
3315
3316	/* Get to the page data */
3317	sense_mhp = (struct mode_header_grp2 *)buf;
3318	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3319	if (bd_len > MODE_BLK_DESC_LENGTH) {
3320		/*
3321		 * We did not get back the expected block descriptor length so
3322		 * we cannot check the mode page.
3323		 */
3324		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3325		    "sd_check_for_writable_cd: Mode Sense returned "
3326		    "invalid block descriptor length\n");
3327		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3328		return;
3329	}
3330
3331	/*
3332	 * If the device presents DVD or CD capabilities in the mode
3333	 * page, we can return here since a RRD device will not have
3334	 * these capabilities.
3335	 */
3336	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3337	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3338		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3339		return;
3340	}
3341	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3342
3343	/*
3344	 * If un->un_f_mmc_writable_media is still FALSE,
3345	 * check for RRD type media.  A RRD device is identified
3346	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3347	 */
3348	mutex_exit(SD_MUTEX(un));
3349	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3350	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3351
3352	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3353	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3354	    RANDOM_WRITABLE, path_flag);
3355	if (rtn != 0) {
3356		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3357		kmem_free(rqbuf_rw, SENSE_LENGTH);
3358		mutex_enter(SD_MUTEX(un));
3359		return;
3360	}
3361
3362	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3363	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3364
3365	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3366	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3367	    HARDWARE_DEFECT_MANAGEMENT, path_flag);
3368	mutex_enter(SD_MUTEX(un));
3369	if (rtn == 0) {
3370		/*
3371		 * We have good information, check for random writable
3372		 * and hardware defect features as current.
3373		 */
3374		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3375		    (out_data_rw[10] & 0x1) &&
3376		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3377		    (out_data_hd[10] & 0x1)) {
3378			un->un_f_mmc_writable_media = TRUE;
3379		}
3380	}
3381
3382	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3383	kmem_free(rqbuf_rw, SENSE_LENGTH);
3384	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3385	kmem_free(rqbuf_hd, SENSE_LENGTH);
3386}
3387
3388/*
3389 *    Function: sd_read_unit_properties
3390 *
3391 * Description: The following implements a property lookup mechanism.
3392 *		Properties for particular disks (keyed on vendor, model
3393 *		and rev numbers) are sought in the sd.conf file via
3394 *		sd_process_sdconf_file(), and if not found there, are
3395 *		looked for in a list hardcoded in this driver via
3396 *		sd_process_sdconf_table() Once located the properties
3397 *		are used to update the driver unit structure.
3398 *
3399 *   Arguments: un - driver soft state (unit) structure
3400 */
3401
3402static void
3403sd_read_unit_properties(struct sd_lun *un)
3404{
3405	/*
3406	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3407	 * the "sd-config-list" property (from the sd.conf file) or if
3408	 * there was not a match for the inquiry vid/pid. If this event
3409	 * occurs the static driver configuration table is searched for
3410	 * a match.
3411	 */
3412	ASSERT(un != NULL);
3413	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3414		sd_process_sdconf_table(un);
3415	}
3416
3417	/* check for LSI device */
3418	sd_is_lsi(un);
3419
3420
3421}
3422
3423
3424/*
3425 *    Function: sd_process_sdconf_file
3426 *
3427 * Description: Use ddi_getlongprop to obtain the properties from the
3428 *		driver's config file (ie, sd.conf) and update the driver
3429 *		soft state structure accordingly.
3430 *
3431 *   Arguments: un - driver soft state (unit) structure
3432 *
3433 * Return Code: SD_SUCCESS - The properties were successfully set according
3434 *			     to the driver configuration file.
3435 *		SD_FAILURE - The driver config list was not obtained or
3436 *			     there was no vid/pid match. This indicates that
3437 *			     the static config table should be used.
3438 *
3439 * The config file has a property, "sd-config-list", which consists of
3440 * one or more duplets as follows:
3441 *
3442 *  sd-config-list=
3443 *	<duplet>,
3444 *	[<duplet>,]
3445 *	[<duplet>];
3446 *
3447 * The structure of each duplet is as follows:
3448 *
3449 *  <duplet>:= <vid+pid>,<data-property-name_list>
3450 *
3451 * The first entry of the duplet is the device ID string (the concatenated
3452 * vid & pid; not to be confused with a device_id).  This is defined in
3453 * the same way as in the sd_disk_table.
3454 *
3455 * The second part of the duplet is a string that identifies a
3456 * data-property-name-list. The data-property-name-list is defined as
3457 * follows:
3458 *
3459 *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3460 *
3461 * The syntax of <data-property-name> depends on the <version> field.
3462 *
3463 * If version = SD_CONF_VERSION_1 we have the following syntax:
3464 *
3465 * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3466 *
3467 * where the prop0 value will be used to set prop0 if bit0 set in the
3468 * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3469 *
3470 */
3471
3472static int
3473sd_process_sdconf_file(struct sd_lun *un)
3474{
3475	char	*config_list = NULL;
3476	int	config_list_len;
3477	int	len;
3478	int	dupletlen = 0;
3479	char	*vidptr;
3480	int	vidlen;
3481	char	*dnlist_ptr;
3482	char	*dataname_ptr;
3483	int	dnlist_len;
3484	int	dataname_len;
3485	int	*data_list;
3486	int	data_list_len;
3487	int	rval = SD_FAILURE;
3488	int	i;
3489
3490	ASSERT(un != NULL);
3491
3492	/* Obtain the configuration list associated with the .conf file */
3493	if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), DDI_PROP_DONTPASS,
3494	    sd_config_list, (caddr_t)&config_list, &config_list_len)
3495	    != DDI_PROP_SUCCESS) {
3496		return (SD_FAILURE);
3497	}
3498
3499	/*
3500	 * Compare vids in each duplet to the inquiry vid - if a match is
3501	 * made, get the data value and update the soft state structure
3502	 * accordingly.
3503	 *
3504	 * Note: This algorithm is complex and difficult to maintain. It should
3505	 * be replaced with a more robust implementation.
3506	 */
3507	for (len = config_list_len, vidptr = config_list; len > 0;
3508	    vidptr += dupletlen, len -= dupletlen) {
3509		/*
3510		 * Note: The assumption here is that each vid entry is on
3511		 * a unique line from its associated duplet.
3512		 */
3513		vidlen = dupletlen = (int)strlen(vidptr);
3514		if ((vidlen == 0) ||
3515		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3516			dupletlen++;
3517			continue;
3518		}
3519
3520		/*
3521		 * dnlist contains 1 or more blank separated
3522		 * data-property-name entries
3523		 */
3524		dnlist_ptr = vidptr + vidlen + 1;
3525		dnlist_len = (int)strlen(dnlist_ptr);
3526		dupletlen += dnlist_len + 2;
3527
3528		/*
3529		 * Set a pointer for the first data-property-name
3530		 * entry in the list
3531		 */
3532		dataname_ptr = dnlist_ptr;
3533		dataname_len = 0;
3534
3535		/*
3536		 * Loop through all data-property-name entries in the
3537		 * data-property-name-list setting the properties for each.
3538		 */
3539		while (dataname_len < dnlist_len) {
3540			int version;
3541
3542			/*
3543			 * Determine the length of the current
3544			 * data-property-name entry by indexing until a
3545			 * blank or NULL is encountered. When the space is
3546			 * encountered reset it to a NULL for compliance
3547			 * with ddi_getlongprop().
3548			 */
3549			for (i = 0; ((dataname_ptr[i] != ' ') &&
3550			    (dataname_ptr[i] != '\0')); i++) {
3551				;
3552			}
3553
3554			dataname_len += i;
3555			/* If not null terminated, Make it so */
3556			if (dataname_ptr[i] == ' ') {
3557				dataname_ptr[i] = '\0';
3558			}
3559			dataname_len++;
3560			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3561			    "sd_process_sdconf_file: disk:%s, data:%s\n",
3562			    vidptr, dataname_ptr);
3563
3564			/* Get the data list */
3565			if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), 0,
3566			    dataname_ptr, (caddr_t)&data_list, &data_list_len)
3567			    != DDI_PROP_SUCCESS) {
3568				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3569				    "sd_process_sdconf_file: data property (%s)"
3570				    " has no value\n", dataname_ptr);
3571				dataname_ptr = dnlist_ptr + dataname_len;
3572				continue;
3573			}
3574
3575			version = data_list[0];
3576
3577			if (version == SD_CONF_VERSION_1) {
3578				sd_tunables values;
3579
3580				/* Set the properties */
3581				if (sd_chk_vers1_data(un, data_list[1],
3582				    &data_list[2], data_list_len, dataname_ptr)
3583				    == SD_SUCCESS) {
3584					sd_get_tunables_from_conf(un,
3585					    data_list[1], &data_list[2],
3586					    &values);
3587					sd_set_vers1_properties(un,
3588					    data_list[1], &values);
3589					rval = SD_SUCCESS;
3590				} else {
3591					rval = SD_FAILURE;
3592				}
3593			} else {
3594				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3595				    "data property %s version 0x%x is invalid.",
3596				    dataname_ptr, version);
3597				rval = SD_FAILURE;
3598			}
3599			kmem_free(data_list, data_list_len);
3600			dataname_ptr = dnlist_ptr + dataname_len;
3601		}
3602	}
3603
3604	/* free up the memory allocated by ddi_getlongprop */
3605	if (config_list) {
3606		kmem_free(config_list, config_list_len);
3607	}
3608
3609	return (rval);
3610}
3611
3612/*
3613 *    Function: sd_get_tunables_from_conf()
3614 *
3615 *
3616 *    This function reads the data list from the sd.conf file and pulls
3617 *    the values that can have numeric values as arguments and places
3618 *    the values in the appropriate sd_tunables member.
3619 *    Since the order of the data list members varies across platforms
3620 *    This function reads them from the data list in a platform specific
3621 *    order and places them into the correct sd_tunable member that is
3622 *    consistent across all platforms.
3623 */
3624static void
3625sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
3626    sd_tunables *values)
3627{
3628	int i;
3629	int mask;
3630
3631	bzero(values, sizeof (sd_tunables));
3632
3633	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3634
3635		mask = 1 << i;
3636		if (mask > flags) {
3637			break;
3638		}
3639
3640		switch (mask & flags) {
3641		case 0:	/* This mask bit not set in flags */
3642			continue;
3643		case SD_CONF_BSET_THROTTLE:
3644			values->sdt_throttle = data_list[i];
3645			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3646			    "sd_get_tunables_from_conf: throttle = %d\n",
3647			    values->sdt_throttle);
3648			break;
3649		case SD_CONF_BSET_CTYPE:
3650			values->sdt_ctype = data_list[i];
3651			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3652			    "sd_get_tunables_from_conf: ctype = %d\n",
3653			    values->sdt_ctype);
3654			break;
3655		case SD_CONF_BSET_NRR_COUNT:
3656			values->sdt_not_rdy_retries = data_list[i];
3657			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3658			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
3659			    values->sdt_not_rdy_retries);
3660			break;
3661		case SD_CONF_BSET_BSY_RETRY_COUNT:
3662			values->sdt_busy_retries = data_list[i];
3663			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3664			    "sd_get_tunables_from_conf: busy_retries = %d\n",
3665			    values->sdt_busy_retries);
3666			break;
3667		case SD_CONF_BSET_RST_RETRIES:
3668			values->sdt_reset_retries = data_list[i];
3669			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3670			    "sd_get_tunables_from_conf: reset_retries = %d\n",
3671			    values->sdt_reset_retries);
3672			break;
3673		case SD_CONF_BSET_RSV_REL_TIME:
3674			values->sdt_reserv_rel_time = data_list[i];
3675			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3676			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
3677			    values->sdt_reserv_rel_time);
3678			break;
3679		case SD_CONF_BSET_MIN_THROTTLE:
3680			values->sdt_min_throttle = data_list[i];
3681			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3682			    "sd_get_tunables_from_conf: min_throttle = %d\n",
3683			    values->sdt_min_throttle);
3684			break;
3685		case SD_CONF_BSET_DISKSORT_DISABLED:
3686			values->sdt_disk_sort_dis = data_list[i];
3687			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3688			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
3689			    values->sdt_disk_sort_dis);
3690			break;
3691		case SD_CONF_BSET_LUN_RESET_ENABLED:
3692			values->sdt_lun_reset_enable = data_list[i];
3693			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3694			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
3695			    "\n", values->sdt_lun_reset_enable);
3696			break;
3697		}
3698	}
3699}
3700
3701/*
3702 *    Function: sd_process_sdconf_table
3703 *
3704 * Description: Search the static configuration table for a match on the
3705 *		inquiry vid/pid and update the driver soft state structure
3706 *		according to the table property values for the device.
3707 *
3708 *		The form of a configuration table entry is:
3709 *		  <vid+pid>,<flags>,<property-data>
3710 *		  "SEAGATE ST42400N",1,63,0,0			(Fibre)
3711 *		  "SEAGATE ST42400N",1,63,0,0,0,0		(Sparc)
3712 *		  "SEAGATE ST42400N",1,63,0,0,0,0,0,0,0,0,0,0	(Intel)
3713 *
3714 *   Arguments: un - driver soft state (unit) structure
3715 */
3716
3717static void
3718sd_process_sdconf_table(struct sd_lun *un)
3719{
3720	char	*id = NULL;
3721	int	table_index;
3722	int	idlen;
3723
3724	ASSERT(un != NULL);
3725	for (table_index = 0; table_index < sd_disk_table_size;
3726	    table_index++) {
3727		id = sd_disk_table[table_index].device_id;
3728		idlen = strlen(id);
3729		if (idlen == 0) {
3730			continue;
3731		}
3732
3733		/*
3734		 * The static configuration table currently does not
3735		 * implement version 10 properties. Additionally,
3736		 * multiple data-property-name entries are not
3737		 * implemented in the static configuration table.
3738		 */
3739		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
3740			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3741			    "sd_process_sdconf_table: disk %s\n", id);
3742			sd_set_vers1_properties(un,
3743			    sd_disk_table[table_index].flags,
3744			    sd_disk_table[table_index].properties);
3745			break;
3746		}
3747	}
3748}
3749
3750
3751/*
3752 *    Function: sd_sdconf_id_match
3753 *
3754 * Description: This local function implements a case sensitive vid/pid
3755 *		comparison as well as the boundary cases of wild card and
3756 *		multiple blanks.
3757 *
3758 *		Note: An implicit assumption made here is that the scsi
3759 *		inquiry structure will always keep the vid, pid and
3760 *		revision strings in consecutive sequence, so they can be
3761 *		read as a single string. If this assumption is not the
3762 *		case, a separate string, to be used for the check, needs
3763 *		to be built with these strings concatenated.
3764 *
3765 *   Arguments: un - driver soft state (unit) structure
3766 *		id - table or config file vid/pid
3767 *		idlen  - length of the vid/pid (bytes)
3768 *
3769 * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3770 *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3771 */
3772
3773static int
3774sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
3775{
3776	struct scsi_inquiry	*sd_inq;
3777	int 			rval = SD_SUCCESS;
3778
3779	ASSERT(un != NULL);
3780	sd_inq = un->un_sd->sd_inq;
3781	ASSERT(id != NULL);
3782
3783	/*
3784	 * We use the inq_vid as a pointer to a buffer containing the
3785	 * vid and pid and use the entire vid/pid length of the table
3786	 * entry for the comparison. This works because the inq_pid
3787	 * data member follows inq_vid in the scsi_inquiry structure.
3788	 */
3789	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
3790		/*
3791		 * The user id string is compared to the inquiry vid/pid
3792		 * using a case insensitive comparison and ignoring
3793		 * multiple spaces.
3794		 */
3795		rval = sd_blank_cmp(un, id, idlen);
3796		if (rval != SD_SUCCESS) {
3797			/*
3798			 * User id strings that start and end with a "*"
3799			 * are a special case. These do not have a
3800			 * specific vendor, and the product string can
3801			 * appear anywhere in the 16 byte PID portion of
3802			 * the inquiry data. This is a simple strstr()
3803			 * type search for the user id in the inquiry data.
3804			 */
3805			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
3806				char	*pidptr = &id[1];
3807				int	i;
3808				int	j;
3809				int	pidstrlen = idlen - 2;
3810				j = sizeof (SD_INQUIRY(un)->inq_pid) -
3811				    pidstrlen;
3812
3813				if (j < 0) {
3814					return (SD_FAILURE);
3815				}
3816				for (i = 0; i < j; i++) {
3817					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
3818					    pidptr, pidstrlen) == 0) {
3819						rval = SD_SUCCESS;
3820						break;
3821					}
3822				}
3823			}
3824		}
3825	}
3826	return (rval);
3827}
3828
3829
3830/*
3831 *    Function: sd_blank_cmp
3832 *
3833 * Description: If the id string starts and ends with a space, treat
3834 *		multiple consecutive spaces as equivalent to a single
3835 *		space. For example, this causes a sd_disk_table entry
3836 *		of " NEC CDROM " to match a device's id string of
3837 *		"NEC       CDROM".
3838 *
3839 *		Note: The success exit condition for this routine is if
3840 *		the pointer to the table entry is '\0' and the cnt of
3841 *		the inquiry length is zero. This will happen if the inquiry
3842 *		string returned by the device is padded with spaces to be
3843 *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
3844 *		SCSI spec states that the inquiry string is to be padded with
3845 *		spaces.
3846 *
3847 *   Arguments: un - driver soft state (unit) structure
3848 *		id - table or config file vid/pid
3849 *		idlen  - length of the vid/pid (bytes)
3850 *
3851 * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3852 *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3853 */
3854
3855static int
3856sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
3857{
3858	char		*p1;
3859	char		*p2;
3860	int		cnt;
3861	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
3862	    sizeof (SD_INQUIRY(un)->inq_pid);
3863
3864	ASSERT(un != NULL);
3865	p2 = un->un_sd->sd_inq->inq_vid;
3866	ASSERT(id != NULL);
3867	p1 = id;
3868
3869	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
3870		/*
3871		 * Note: string p1 is terminated by a NUL but string p2
3872		 * isn't.  The end of p2 is determined by cnt.
3873		 */
3874		for (;;) {
3875			/* skip over any extra blanks in both strings */
3876			while ((*p1 != '\0') && (*p1 == ' ')) {
3877				p1++;
3878			}
3879			while ((cnt != 0) && (*p2 == ' ')) {
3880				p2++;
3881				cnt--;
3882			}
3883
3884			/* compare the two strings */
3885			if ((cnt == 0) ||
3886			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
3887				break;
3888			}
3889			while ((cnt > 0) &&
3890			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
3891				p1++;
3892				p2++;
3893				cnt--;
3894			}
3895		}
3896	}
3897
3898	/* return SD_SUCCESS if both strings match */
3899	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
3900}
3901
3902
3903/*
3904 *    Function: sd_chk_vers1_data
3905 *
3906 * Description: Verify the version 1 device properties provided by the
3907 *		user via the configuration file
3908 *
3909 *   Arguments: un	     - driver soft state (unit) structure
3910 *		flags	     - integer mask indicating properties to be set
3911 *		prop_list    - integer list of property values
3912 *		list_len     - length of user provided data
3913 *
3914 * Return Code: SD_SUCCESS - Indicates the user provided data is valid
3915 *		SD_FAILURE - Indicates the user provided data is invalid
3916 */
3917
3918static int
3919sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
3920    int list_len, char *dataname_ptr)
3921{
3922	int i;
3923	int mask = 1;
3924	int index = 0;
3925
3926	ASSERT(un != NULL);
3927
3928	/* Check for a NULL property name and list */
3929	if (dataname_ptr == NULL) {
3930		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3931		    "sd_chk_vers1_data: NULL data property name.");
3932		return (SD_FAILURE);
3933	}
3934	if (prop_list == NULL) {
3935		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3936		    "sd_chk_vers1_data: %s NULL data property list.",
3937		    dataname_ptr);
3938		return (SD_FAILURE);
3939	}
3940
3941	/* Display a warning if undefined bits are set in the flags */
3942	if (flags & ~SD_CONF_BIT_MASK) {
3943		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3944		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
3945		    "Properties not set.",
3946		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
3947		return (SD_FAILURE);
3948	}
3949
3950	/*
3951	 * Verify the length of the list by identifying the highest bit set
3952	 * in the flags and validating that the property list has a length
3953	 * up to the index of this bit.
3954	 */
3955	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3956		if (flags & mask) {
3957			index++;
3958		}
3959		mask = 1 << i;
3960	}
3961	if ((list_len / sizeof (int)) < (index + 2)) {
3962		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3963		    "sd_chk_vers1_data: "
3964		    "Data property list %s size is incorrect. "
3965		    "Properties not set.", dataname_ptr);
3966		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
3967		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
3968		return (SD_FAILURE);
3969	}
3970	return (SD_SUCCESS);
3971}
3972
3973
3974/*
3975 *    Function: sd_set_vers1_properties
3976 *
3977 * Description: Set version 1 device properties based on a property list
3978 *		retrieved from the driver configuration file or static
3979 *		configuration table. Version 1 properties have the format:
3980 *
3981 * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3982 *
3983 *		where the prop0 value will be used to set prop0 if bit0
3984 *		is set in the flags
3985 *
3986 *   Arguments: un	     - driver soft state (unit) structure
3987 *		flags	     - integer mask indicating properties to be set
3988 *		prop_list    - integer list of property values
3989 */
3990
3991static void
3992sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
3993{
3994	ASSERT(un != NULL);
3995
3996	/*
3997	 * Set the flag to indicate cache is to be disabled. An attempt
3998	 * to disable the cache via sd_cache_control() will be made
3999	 * later during attach once the basic initialization is complete.
4000	 */
4001	if (flags & SD_CONF_BSET_NOCACHE) {
4002		un->un_f_opt_disable_cache = TRUE;
4003		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4004		    "sd_set_vers1_properties: caching disabled flag set\n");
4005	}
4006
4007	/* CD-specific configuration parameters */
4008	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
4009		un->un_f_cfg_playmsf_bcd = TRUE;
4010		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4011		    "sd_set_vers1_properties: playmsf_bcd set\n");
4012	}
4013	if (flags & SD_CONF_BSET_READSUB_BCD) {
4014		un->un_f_cfg_readsub_bcd = TRUE;
4015		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4016		    "sd_set_vers1_properties: readsub_bcd set\n");
4017	}
4018	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
4019		un->un_f_cfg_read_toc_trk_bcd = TRUE;
4020		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4021		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
4022	}
4023	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
4024		un->un_f_cfg_read_toc_addr_bcd = TRUE;
4025		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4026		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
4027	}
4028	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
4029		un->un_f_cfg_no_read_header = TRUE;
4030		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4031		    "sd_set_vers1_properties: no_read_header set\n");
4032	}
4033	if (flags & SD_CONF_BSET_READ_CD_XD4) {
4034		un->un_f_cfg_read_cd_xd4 = TRUE;
4035		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4036		    "sd_set_vers1_properties: read_cd_xd4 set\n");
4037	}
4038
4039	/* Support for devices which do not have valid/unique serial numbers */
4040	if (flags & SD_CONF_BSET_FAB_DEVID) {
4041		un->un_f_opt_fab_devid = TRUE;
4042		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4043		    "sd_set_vers1_properties: fab_devid bit set\n");
4044	}
4045
4046	/* Support for user throttle configuration */
4047	if (flags & SD_CONF_BSET_THROTTLE) {
4048		ASSERT(prop_list != NULL);
4049		un->un_saved_throttle = un->un_throttle =
4050		    prop_list->sdt_throttle;
4051		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4052		    "sd_set_vers1_properties: throttle set to %d\n",
4053		    prop_list->sdt_throttle);
4054	}
4055
4056	/* Set the per disk retry count according to the conf file or table. */
4057	if (flags & SD_CONF_BSET_NRR_COUNT) {
4058		ASSERT(prop_list != NULL);
4059		if (prop_list->sdt_not_rdy_retries) {
4060			un->un_notready_retry_count =
4061			    prop_list->sdt_not_rdy_retries;
4062			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4063			    "sd_set_vers1_properties: not ready retry count"
4064			    " set to %d\n", un->un_notready_retry_count);
4065		}
4066	}
4067
4068	/* The controller type is reported for generic disk driver ioctls */
4069	if (flags & SD_CONF_BSET_CTYPE) {
4070		ASSERT(prop_list != NULL);
4071		switch (prop_list->sdt_ctype) {
4072		case CTYPE_CDROM:
4073			un->un_ctype = prop_list->sdt_ctype;
4074			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4075			    "sd_set_vers1_properties: ctype set to "
4076			    "CTYPE_CDROM\n");
4077			break;
4078		case CTYPE_CCS:
4079			un->un_ctype = prop_list->sdt_ctype;
4080			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4081			    "sd_set_vers1_properties: ctype set to "
4082			    "CTYPE_CCS\n");
4083			break;
4084		case CTYPE_ROD:		/* RW optical */
4085			un->un_ctype = prop_list->sdt_ctype;
4086			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4087			    "sd_set_vers1_properties: ctype set to "
4088			    "CTYPE_ROD\n");
4089			break;
4090		default:
4091			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4092			    "sd_set_vers1_properties: Could not set "
4093			    "invalid ctype value (%d)",
4094			    prop_list->sdt_ctype);
4095		}
4096	}
4097
4098	/* Purple failover timeout */
4099	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
4100		ASSERT(prop_list != NULL);
4101		un->un_busy_retry_count =
4102		    prop_list->sdt_busy_retries;
4103		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4104		    "sd_set_vers1_properties: "
4105		    "busy retry count set to %d\n",
4106		    un->un_busy_retry_count);
4107	}
4108
4109	/* Purple reset retry count */
4110	if (flags & SD_CONF_BSET_RST_RETRIES) {
4111		ASSERT(prop_list != NULL);
4112		un->un_reset_retry_count =
4113		    prop_list->sdt_reset_retries;
4114		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4115		    "sd_set_vers1_properties: "
4116		    "reset retry count set to %d\n",
4117		    un->un_reset_retry_count);
4118	}
4119
4120	/* Purple reservation release timeout */
4121	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
4122		ASSERT(prop_list != NULL);
4123		un->un_reserve_release_time =
4124		    prop_list->sdt_reserv_rel_time;
4125		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4126		    "sd_set_vers1_properties: "
4127		    "reservation release timeout set to %d\n",
4128		    un->un_reserve_release_time);
4129	}
4130
4131	/*
4132	 * Driver flag telling the driver to verify that no commands are pending
4133	 * for a device before issuing a Test Unit Ready. This is a workaround
4134	 * for a firmware bug in some Seagate eliteI drives.
4135	 */
4136	if (flags & SD_CONF_BSET_TUR_CHECK) {
4137		un->un_f_cfg_tur_check = TRUE;
4138		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4139		    "sd_set_vers1_properties: tur queue check set\n");
4140	}
4141
4142	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
4143		un->un_min_throttle = prop_list->sdt_min_throttle;
4144		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4145		    "sd_set_vers1_properties: min throttle set to %d\n",
4146		    un->un_min_throttle);
4147	}
4148
4149	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
4150		un->un_f_disksort_disabled =
4151		    (prop_list->sdt_disk_sort_dis != 0) ?
4152		    TRUE : FALSE;
4153		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4154		    "sd_set_vers1_properties: disksort disabled "
4155		    "flag set to %d\n",
4156		    prop_list->sdt_disk_sort_dis);
4157	}
4158
4159	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
4160		un->un_f_lun_reset_enabled =
4161		    (prop_list->sdt_lun_reset_enable != 0) ?
4162		    TRUE : FALSE;
4163		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4164		    "sd_set_vers1_properties: lun reset enabled "
4165		    "flag set to %d\n",
4166		    prop_list->sdt_lun_reset_enable);
4167	}
4168
4169	/*
4170	 * Validate the throttle values.
4171	 * If any of the numbers are invalid, set everything to defaults.
4172	 */
4173	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4174	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4175	    (un->un_min_throttle > un->un_throttle)) {
4176		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4177		un->un_min_throttle = sd_min_throttle;
4178	}
4179}
4180
4181/*
4182 *   Function: sd_is_lsi()
4183 *
4184 *   Description: Check for lsi devices, step through the static device
4185 *	table to match vid/pid.
4186 *
4187 *   Args: un - ptr to sd_lun
4188 *
4189 *   Notes:  When creating new LSI property, need to add the new LSI property
4190 *		to this function.
4191 */
4192static void
4193sd_is_lsi(struct sd_lun *un)
4194{
4195	char	*id = NULL;
4196	int	table_index;
4197	int	idlen;
4198	void	*prop;
4199
4200	ASSERT(un != NULL);
4201	for (table_index = 0; table_index < sd_disk_table_size;
4202	    table_index++) {
4203		id = sd_disk_table[table_index].device_id;
4204		idlen = strlen(id);
4205		if (idlen == 0) {
4206			continue;
4207		}
4208
4209		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4210			prop = sd_disk_table[table_index].properties;
4211			if (prop == &lsi_properties ||
4212			    prop == &lsi_oem_properties ||
4213			    prop == &lsi_properties_scsi ||
4214			    prop == &symbios_properties) {
4215				un->un_f_cfg_is_lsi = TRUE;
4216			}
4217			break;
4218		}
4219	}
4220}
4221
4222/*
4223 *    Function: sd_get_physical_geometry
4224 *
4225 * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
4226 *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
4227 *		target, and use this information to initialize the physical
4228 *		geometry cache specified by pgeom_p.
4229 *
4230 *		MODE SENSE is an optional command, so failure in this case
4231 *		does not necessarily denote an error. We want to use the
4232 *		MODE SENSE commands to derive the physical geometry of the
4233 *		device, but if either command fails, the logical geometry is
4234 *		used as the fallback for disk label geometry in cmlb.
4235 *
4236 *		This requires that un->un_blockcount and un->un_tgt_blocksize
4237 *		have already been initialized for the current target and
4238 *		that the current values be passed as args so that we don't
4239 *		end up ever trying to use -1 as a valid value. This could
4240 *		happen if either value is reset while we're not holding
4241 *		the mutex.
4242 *
4243 *   Arguments: un - driver soft state (unit) structure
4244 *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4245 *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4246 *			to use the USCSI "direct" chain and bypass the normal
4247 *			command waitq.
4248 *
4249 *     Context: Kernel thread only (can sleep).
4250 */
4251
4252static int
4253sd_get_physical_geometry(struct sd_lun *un, cmlb_geom_t *pgeom_p,
4254	diskaddr_t capacity, int lbasize, int path_flag)
4255{
4256	struct	mode_format	*page3p;
4257	struct	mode_geometry	*page4p;
4258	struct	mode_header	*headerp;
4259	int	sector_size;
4260	int	nsect;
4261	int	nhead;
4262	int	ncyl;
4263	int	intrlv;
4264	int	spc;
4265	diskaddr_t	modesense_capacity;
4266	int	rpm;
4267	int	bd_len;
4268	int	mode_header_length;
4269	uchar_t	*p3bufp;
4270	uchar_t	*p4bufp;
4271	int	cdbsize;
4272	int 	ret = EIO;
4273
4274	ASSERT(un != NULL);
4275
4276	if (lbasize == 0) {
4277		if (ISCD(un)) {
4278			lbasize = 2048;
4279		} else {
4280			lbasize = un->un_sys_blocksize;
4281		}
4282	}
4283	pgeom_p->g_secsize = (unsigned short)lbasize;
4284
4285	/*
4286	 * If the unit is a cd/dvd drive MODE SENSE page three
4287	 * and MODE SENSE page four are reserved (see SBC spec
4288	 * and MMC spec). To prevent soft errors just return
4289	 * using the default LBA size.
4290	 */
4291	if (ISCD(un))
4292		return (ret);
4293
4294	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
4295
4296	/*
4297	 * Retrieve MODE SENSE page 3 - Format Device Page
4298	 */
4299	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
4300	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p3bufp,
4301	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag)
4302	    != 0) {
4303		SD_ERROR(SD_LOG_COMMON, un,
4304		    "sd_get_physical_geometry: mode sense page 3 failed\n");
4305		goto page3_exit;
4306	}
4307
4308	/*
4309	 * Determine size of Block Descriptors in order to locate the mode
4310	 * page data.  ATAPI devices return 0, SCSI devices should return
4311	 * MODE_BLK_DESC_LENGTH.
4312	 */
4313	headerp = (struct mode_header *)p3bufp;
4314	if (un->un_f_cfg_is_atapi == TRUE) {
4315		struct mode_header_grp2 *mhp =
4316		    (struct mode_header_grp2 *)headerp;
4317		mode_header_length = MODE_HEADER_LENGTH_GRP2;
4318		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4319	} else {
4320		mode_header_length = MODE_HEADER_LENGTH;
4321		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4322	}
4323
4324	if (bd_len > MODE_BLK_DESC_LENGTH) {
4325		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4326		    "received unexpected bd_len of %d, page3\n", bd_len);
4327		goto page3_exit;
4328	}
4329
4330	page3p = (struct mode_format *)
4331	    ((caddr_t)headerp + mode_header_length + bd_len);
4332
4333	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
4334		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4335		    "mode sense pg3 code mismatch %d\n",
4336		    page3p->mode_page.code);
4337		goto page3_exit;
4338	}
4339
4340	/*
4341	 * Use this physical geometry data only if BOTH MODE SENSE commands
4342	 * complete successfully; otherwise, revert to the logical geometry.
4343	 * So, we need to save everything in temporary variables.
4344	 */
4345	sector_size = BE_16(page3p->data_bytes_sect);
4346
4347	/*
4348	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
4349	 */
4350	if (sector_size == 0) {
4351		sector_size = un->un_sys_blocksize;
4352	} else {
4353		sector_size &= ~(un->un_sys_blocksize - 1);
4354	}
4355
4356	nsect  = BE_16(page3p->sect_track);
4357	intrlv = BE_16(page3p->interleave);
4358
4359	SD_INFO(SD_LOG_COMMON, un,
4360	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
4361	SD_INFO(SD_LOG_COMMON, un,
4362	    "   mode page: %d; nsect: %d; sector size: %d;\n",
4363	    page3p->mode_page.code, nsect, sector_size);
4364	SD_INFO(SD_LOG_COMMON, un,
4365	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
4366	    BE_16(page3p->track_skew),
4367	    BE_16(page3p->cylinder_skew));
4368
4369
4370	/*
4371	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
4372	 */
4373	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
4374	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p4bufp,
4375	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag)
4376	    != 0) {
4377		SD_ERROR(SD_LOG_COMMON, un,
4378		    "sd_get_physical_geometry: mode sense page 4 failed\n");
4379		goto page4_exit;
4380	}
4381
4382	/*
4383	 * Determine size of Block Descriptors in order to locate the mode
4384	 * page data.  ATAPI devices return 0, SCSI devices should return
4385	 * MODE_BLK_DESC_LENGTH.
4386	 */
4387	headerp = (struct mode_header *)p4bufp;
4388	if (un->un_f_cfg_is_atapi == TRUE) {
4389		struct mode_header_grp2 *mhp =
4390		    (struct mode_header_grp2 *)headerp;
4391		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4392	} else {
4393		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4394	}
4395
4396	if (bd_len > MODE_BLK_DESC_LENGTH) {
4397		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4398		    "received unexpected bd_len of %d, page4\n", bd_len);
4399		goto page4_exit;
4400	}
4401
4402	page4p = (struct mode_geometry *)
4403	    ((caddr_t)headerp + mode_header_length + bd_len);
4404
4405	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
4406		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4407		    "mode sense pg4 code mismatch %d\n",
4408		    page4p->mode_page.code);
4409		goto page4_exit;
4410	}
4411
4412	/*
4413	 * Stash the data now, after we know that both commands completed.
4414	 */
4415
4416
4417	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
4418	spc   = nhead * nsect;
4419	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
4420	rpm   = BE_16(page4p->rpm);
4421
4422	modesense_capacity = spc * ncyl;
4423
4424	SD_INFO(SD_LOG_COMMON, un,
4425	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
4426	SD_INFO(SD_LOG_COMMON, un,
4427	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
4428	SD_INFO(SD_LOG_COMMON, un,
4429	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
4430	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
4431	    (void *)pgeom_p, capacity);
4432
4433	/*
4434	 * Compensate if the drive's geometry is not rectangular, i.e.,
4435	 * the product of C * H * S returned by MODE SENSE >= that returned
4436	 * by read capacity. This is an idiosyncrasy of the original x86
4437	 * disk subsystem.
4438	 */
4439	if (modesense_capacity >= capacity) {
4440		SD_INFO(SD_LOG_COMMON, un,
4441		    "sd_get_physical_geometry: adjusting acyl; "
4442		    "old: %d; new: %d\n", pgeom_p->g_acyl,
4443		    (modesense_capacity - capacity + spc - 1) / spc);
4444		if (sector_size != 0) {
4445			/* 1243403: NEC D38x7 drives don't support sec size */
4446			pgeom_p->g_secsize = (unsigned short)sector_size;
4447		}
4448		pgeom_p->g_nsect    = (unsigned short)nsect;
4449		pgeom_p->g_nhead    = (unsigned short)nhead;
4450		pgeom_p->g_capacity = capacity;
4451		pgeom_p->g_acyl	    =
4452		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
4453		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
4454	}
4455
4456	pgeom_p->g_rpm    = (unsigned short)rpm;
4457	pgeom_p->g_intrlv = (unsigned short)intrlv;
4458	ret = 0;
4459
4460	SD_INFO(SD_LOG_COMMON, un,
4461	    "sd_get_physical_geometry: mode sense geometry:\n");
4462	SD_INFO(SD_LOG_COMMON, un,
4463	    "   nsect: %d; sector size: %d; interlv: %d\n",
4464	    nsect, sector_size, intrlv);
4465	SD_INFO(SD_LOG_COMMON, un,
4466	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
4467	    nhead, ncyl, rpm, modesense_capacity);
4468	SD_INFO(SD_LOG_COMMON, un,
4469	    "sd_get_physical_geometry: (cached)\n");
4470	SD_INFO(SD_LOG_COMMON, un,
4471	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
4472	    pgeom_p->g_ncyl,  pgeom_p->g_acyl,
4473	    pgeom_p->g_nhead, pgeom_p->g_nsect);
4474	SD_INFO(SD_LOG_COMMON, un,
4475	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
4476	    pgeom_p->g_secsize, pgeom_p->g_capacity,
4477	    pgeom_p->g_intrlv, pgeom_p->g_rpm);
4478
4479page4_exit:
4480	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
4481page3_exit:
4482	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
4483
4484	return (ret);
4485}
4486
4487/*
4488 *    Function: sd_get_virtual_geometry
4489 *
4490 * Description: Ask the controller to tell us about the target device.
4491 *
4492 *   Arguments: un - pointer to softstate
4493 *		capacity - disk capacity in #blocks
4494 *		lbasize - disk block size in bytes
4495 *
4496 *     Context: Kernel thread only
4497 */
4498
4499static int
4500sd_get_virtual_geometry(struct sd_lun *un, cmlb_geom_t *lgeom_p,
4501    diskaddr_t capacity, int lbasize)
4502{
4503	uint_t	geombuf;
4504	int	spc;
4505
4506	ASSERT(un != NULL);
4507
4508	/* Set sector size, and total number of sectors */
4509	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
4510	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
4511
4512	/* Let the HBA tell us its geometry */
4513	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
4514
4515	/* A value of -1 indicates an undefined "geometry" property */
4516	if (geombuf == (-1)) {
4517		return (EINVAL);
4518	}
4519
4520	/* Initialize the logical geometry cache. */
4521	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
4522	lgeom_p->g_nsect   = geombuf & 0xffff;
4523	lgeom_p->g_secsize = un->un_sys_blocksize;
4524
4525	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
4526
4527	/*
4528	 * Note: The driver originally converted the capacity value from
4529	 * target blocks to system blocks. However, the capacity value passed
4530	 * to this routine is already in terms of system blocks (this scaling
4531	 * is done when the READ CAPACITY command is issued and processed).
4532	 * This 'error' may have gone undetected because the usage of g_ncyl
4533	 * (which is based upon g_capacity) is very limited within the driver
4534	 */
4535	lgeom_p->g_capacity = capacity;
4536
4537	/*
4538	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
4539	 * hba may return zero values if the device has been removed.
4540	 */
4541	if (spc == 0) {
4542		lgeom_p->g_ncyl = 0;
4543	} else {
4544		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
4545	}
4546	lgeom_p->g_acyl = 0;
4547
4548	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
4549	return (0);
4550
4551}
4552/*
4553 *    Function: sd_update_block_info
4554 *
4555 * Description: Calculate a byte count to sector count bitshift value
4556 *		from sector size.
4557 *
4558 *   Arguments: un: unit struct.
4559 *		lbasize: new target sector size
4560 *		capacity: new target capacity, ie. block count
4561 *
4562 *     Context: Kernel thread context
4563 */
4564
4565static void
4566sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
4567{
4568	uint_t		dblk;
4569
4570	if (lbasize != 0) {
4571		un->un_tgt_blocksize = lbasize;
4572		un->un_f_tgt_blocksize_is_valid	= TRUE;
4573	}
4574
4575	if (capacity != 0) {
4576		un->un_blockcount		= capacity;
4577		un->un_f_blockcount_is_valid	= TRUE;
4578	}
4579
4580	/*
4581	 * Update device capacity properties.
4582	 *
4583	 *   'device-nblocks'	number of blocks in target's units
4584	 *   'device-blksize'	data bearing size of target's block
4585	 *
4586	 * NOTE: math is complicated by the fact that un_tgt_blocksize may
4587	 * not be a power of two for checksumming disks with 520/528 byte
4588	 * sectors.
4589	 */
4590	if (un->un_f_tgt_blocksize_is_valid &&
4591	    un->un_f_blockcount_is_valid &&
4592	    un->un_sys_blocksize) {
4593		dblk = un->un_tgt_blocksize / un->un_sys_blocksize;
4594		(void) ddi_prop_update_int64(DDI_DEV_T_NONE, SD_DEVINFO(un),
4595		    "device-nblocks", un->un_blockcount / dblk);
4596		/*
4597		 * To save memory, only define "device-blksize" when its
4598		 * value is differnet than the default DEV_BSIZE value.
4599		 */
4600		if ((un->un_sys_blocksize * dblk) != DEV_BSIZE)
4601			(void) ddi_prop_update_int(DDI_DEV_T_NONE,
4602			    SD_DEVINFO(un), "device-blksize",
4603			    un->un_sys_blocksize * dblk);
4604	}
4605}
4606
4607
4608/*
4609 *    Function: sd_register_devid
4610 *
4611 * Description: This routine will obtain the device id information from the
4612 *		target, obtain the serial number, and register the device
4613 *		id with the ddi framework.
4614 *
4615 *   Arguments: devi - the system's dev_info_t for the device.
4616 *		un - driver soft state (unit) structure
4617 *		reservation_flag - indicates if a reservation conflict
4618 *		occurred during attach
4619 *
4620 *     Context: Kernel Thread
4621 */
4622static void
4623sd_register_devid(struct sd_lun *un, dev_info_t *devi, int reservation_flag)
4624{
4625	int		rval		= 0;
4626	uchar_t		*inq80		= NULL;
4627	size_t		inq80_len	= MAX_INQUIRY_SIZE;
4628	size_t		inq80_resid	= 0;
4629	uchar_t		*inq83		= NULL;
4630	size_t		inq83_len	= MAX_INQUIRY_SIZE;
4631	size_t		inq83_resid	= 0;
4632	int		dlen, len;
4633	char		*sn;
4634
4635	ASSERT(un != NULL);
4636	ASSERT(mutex_owned(SD_MUTEX(un)));
4637	ASSERT((SD_DEVINFO(un)) == devi);
4638
4639	/*
4640	 * If transport has already registered a devid for this target
4641	 * then that takes precedence over the driver's determination
4642	 * of the devid.
4643	 */
4644	if (ddi_devid_get(SD_DEVINFO(un), &un->un_devid) == DDI_SUCCESS) {
4645		ASSERT(un->un_devid);
4646		return; /* use devid registered by the transport */
4647	}
4648
4649	/*
4650	 * This is the case of antiquated Sun disk drives that have the
4651	 * FAB_DEVID property set in the disk_table.  These drives
4652	 * manage the devid's by storing them in last 2 available sectors
4653	 * on the drive and have them fabricated by the ddi layer by calling
4654	 * ddi_devid_init and passing the DEVID_FAB flag.
4655	 */
4656	if (un->un_f_opt_fab_devid == TRUE) {
4657		/*
4658		 * Depending on EINVAL isn't reliable, since a reserved disk
4659		 * may result in invalid geometry, so check to make sure a
4660		 * reservation conflict did not occur during attach.
4661		 */
4662		if ((sd_get_devid(un) == EINVAL) &&
4663		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
4664			/*
4665			 * The devid is invalid AND there is no reservation
4666			 * conflict.  Fabricate a new devid.
4667			 */
4668			(void) sd_create_devid(un);
4669		}
4670
4671		/* Register the devid if it exists */
4672		if (un->un_devid != NULL) {
4673			(void) ddi_devid_register(SD_DEVINFO(un),
4674			    un->un_devid);
4675			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4676			    "sd_register_devid: Devid Fabricated\n");
4677		}
4678		return;
4679	}
4680
4681	/*
4682	 * We check the availibility of the World Wide Name (0x83) and Unit
4683	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
4684	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
4685	 * 0x83 is availible, that is the best choice.  Our next choice is
4686	 * 0x80.  If neither are availible, we munge the devid from the device
4687	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
4688	 * to fabricate a devid for non-Sun qualified disks.
4689	 */
4690	if (sd_check_vpd_page_support(un) == 0) {
4691		/* collect page 80 data if available */
4692		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
4693
4694			mutex_exit(SD_MUTEX(un));
4695			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
4696			rval = sd_send_scsi_INQUIRY(un, inq80, inq80_len,
4697			    0x01, 0x80, &inq80_resid);
4698
4699			if (rval != 0) {
4700				kmem_free(inq80, inq80_len);
4701				inq80 = NULL;
4702				inq80_len = 0;
4703			} else if (ddi_prop_exists(
4704			    DDI_DEV_T_NONE, SD_DEVINFO(un),
4705			    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
4706			    INQUIRY_SERIAL_NO) == 0) {
4707				/*
4708				 * If we don't already have a serial number
4709				 * property, do quick verify of data returned
4710				 * and define property.
4711				 */
4712				dlen = inq80_len - inq80_resid;
4713				len = (size_t)inq80[3];
4714				if ((dlen >= 4) && ((len + 4) <= dlen)) {
4715					/*
4716					 * Ensure sn termination, skip leading
4717					 * blanks, and create property
4718					 * 'inquiry-serial-no'.
4719					 */
4720					sn = (char *)&inq80[4];
4721					sn[len] = 0;
4722					while (*sn && (*sn == ' '))
4723						sn++;
4724					if (*sn) {
4725						(void) ddi_prop_update_string(
4726						    DDI_DEV_T_NONE,
4727						    SD_DEVINFO(un),
4728						    INQUIRY_SERIAL_NO, sn);
4729					}
4730				}
4731			}
4732			mutex_enter(SD_MUTEX(un));
4733		}
4734
4735		/* collect page 83 data if available */
4736		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
4737			mutex_exit(SD_MUTEX(un));
4738			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
4739			rval = sd_send_scsi_INQUIRY(un, inq83, inq83_len,
4740			    0x01, 0x83, &inq83_resid);
4741
4742			if (rval != 0) {
4743				kmem_free(inq83, inq83_len);
4744				inq83 = NULL;
4745				inq83_len = 0;
4746			}
4747			mutex_enter(SD_MUTEX(un));
4748		}
4749	}
4750
4751	/* encode best devid possible based on data available */
4752	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
4753	    (char *)ddi_driver_name(SD_DEVINFO(un)),
4754	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
4755	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
4756	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
4757
4758		/* devid successfully encoded, register devid */
4759		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
4760
4761	} else {
4762		/*
4763		 * Unable to encode a devid based on data available.
4764		 * This is not a Sun qualified disk.  Older Sun disk
4765		 * drives that have the SD_FAB_DEVID property
4766		 * set in the disk_table and non Sun qualified
4767		 * disks are treated in the same manner.  These
4768		 * drives manage the devid's by storing them in
4769		 * last 2 available sectors on the drive and
4770		 * have them fabricated by the ddi layer by
4771		 * calling ddi_devid_init and passing the
4772		 * DEVID_FAB flag.
4773		 * Create a fabricate devid only if there's no
4774		 * fabricate devid existed.
4775		 */
4776		if (sd_get_devid(un) == EINVAL) {
4777			(void) sd_create_devid(un);
4778		}
4779		un->un_f_opt_fab_devid = TRUE;
4780
4781		/* Register the devid if it exists */
4782		if (un->un_devid != NULL) {
4783			(void) ddi_devid_register(SD_DEVINFO(un),
4784			    un->un_devid);
4785			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4786			    "sd_register_devid: devid fabricated using "
4787			    "ddi framework\n");
4788		}
4789	}
4790
4791	/* clean up resources */
4792	if (inq80 != NULL) {
4793		kmem_free(inq80, inq80_len);
4794	}
4795	if (inq83 != NULL) {
4796		kmem_free(inq83, inq83_len);
4797	}
4798}
4799
4800
4801
4802/*
4803 *    Function: sd_get_devid
4804 *
4805 * Description: This routine will return 0 if a valid device id has been
4806 *		obtained from the target and stored in the soft state. If a
4807 *		valid device id has not been previously read and stored, a
4808 *		read attempt will be made.
4809 *
4810 *   Arguments: un - driver soft state (unit) structure
4811 *
4812 * Return Code: 0 if we successfully get the device id
4813 *
4814 *     Context: Kernel Thread
4815 */
4816
4817static int
4818sd_get_devid(struct sd_lun *un)
4819{
4820	struct dk_devid		*dkdevid;
4821	ddi_devid_t		tmpid;
4822	uint_t			*ip;
4823	size_t			sz;
4824	diskaddr_t		blk;
4825	int			status;
4826	int			chksum;
4827	int			i;
4828	size_t			buffer_size;
4829
4830	ASSERT(un != NULL);
4831	ASSERT(mutex_owned(SD_MUTEX(un)));
4832
4833	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
4834	    un);
4835
4836	if (un->un_devid != NULL) {
4837		return (0);
4838	}
4839
4840	mutex_exit(SD_MUTEX(un));
4841	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
4842	    (void *)SD_PATH_DIRECT) != 0) {
4843		mutex_enter(SD_MUTEX(un));
4844		return (EINVAL);
4845	}
4846
4847	/*
4848	 * Read and verify device id, stored in the reserved cylinders at the
4849	 * end of the disk. Backup label is on the odd sectors of the last
4850	 * track of the last cylinder. Device id will be on track of the next
4851	 * to last cylinder.
4852	 */
4853	mutex_enter(SD_MUTEX(un));
4854	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
4855	mutex_exit(SD_MUTEX(un));
4856	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
4857	status = sd_send_scsi_READ(un, dkdevid, buffer_size, blk,
4858	    SD_PATH_DIRECT);
4859	if (status != 0) {
4860		goto error;
4861	}
4862
4863	/* Validate the revision */
4864	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
4865	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
4866		status = EINVAL;
4867		goto error;
4868	}
4869
4870	/* Calculate the checksum */
4871	chksum = 0;
4872	ip = (uint_t *)dkdevid;
4873	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
4874	    i++) {
4875		chksum ^= ip[i];
4876	}
4877
4878	/* Compare the checksums */
4879	if (DKD_GETCHKSUM(dkdevid) != chksum) {
4880		status = EINVAL;
4881		goto error;
4882	}
4883
4884	/* Validate the device id */
4885	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
4886		status = EINVAL;
4887		goto error;
4888	}
4889
4890	/*
4891	 * Store the device id in the driver soft state
4892	 */
4893	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
4894	tmpid = kmem_alloc(sz, KM_SLEEP);
4895
4896	mutex_enter(SD_MUTEX(un));
4897
4898	un->un_devid = tmpid;
4899	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
4900
4901	kmem_free(dkdevid, buffer_size);
4902
4903	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
4904
4905	return (status);
4906error:
4907	mutex_enter(SD_MUTEX(un));
4908	kmem_free(dkdevid, buffer_size);
4909	return (status);
4910}
4911
4912
4913/*
4914 *    Function: sd_create_devid
4915 *
4916 * Description: This routine will fabricate the device id and write it
4917 *		to the disk.
4918 *
4919 *   Arguments: un - driver soft state (unit) structure
4920 *
4921 * Return Code: value of the fabricated device id
4922 *
4923 *     Context: Kernel Thread
4924 */
4925
4926static ddi_devid_t
4927sd_create_devid(struct sd_lun *un)
4928{
4929	ASSERT(un != NULL);
4930
4931	/* Fabricate the devid */
4932	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
4933	    == DDI_FAILURE) {
4934		return (NULL);
4935	}
4936
4937	/* Write the devid to disk */
4938	if (sd_write_deviceid(un) != 0) {
4939		ddi_devid_free(un->un_devid);
4940		un->un_devid = NULL;
4941	}
4942
4943	return (un->un_devid);
4944}
4945
4946
4947/*
4948 *    Function: sd_write_deviceid
4949 *
4950 * Description: This routine will write the device id to the disk
4951 *		reserved sector.
4952 *
4953 *   Arguments: un - driver soft state (unit) structure
4954 *
4955 * Return Code: EINVAL
4956 *		value returned by sd_send_scsi_cmd
4957 *
4958 *     Context: Kernel Thread
4959 */
4960
4961static int
4962sd_write_deviceid(struct sd_lun *un)
4963{
4964	struct dk_devid		*dkdevid;
4965	diskaddr_t		blk;
4966	uint_t			*ip, chksum;
4967	int			status;
4968	int			i;
4969
4970	ASSERT(mutex_owned(SD_MUTEX(un)));
4971
4972	mutex_exit(SD_MUTEX(un));
4973	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
4974	    (void *)SD_PATH_DIRECT) != 0) {
4975		mutex_enter(SD_MUTEX(un));
4976		return (-1);
4977	}
4978
4979
4980	/* Allocate the buffer */
4981	dkdevid = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
4982
4983	/* Fill in the revision */
4984	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
4985	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
4986
4987	/* Copy in the device id */
4988	mutex_enter(SD_MUTEX(un));
4989	bcopy(un->un_devid, &dkdevid->dkd_devid,
4990	    ddi_devid_sizeof(un->un_devid));
4991	mutex_exit(SD_MUTEX(un));
4992
4993	/* Calculate the checksum */
4994	chksum = 0;
4995	ip = (uint_t *)dkdevid;
4996	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
4997	    i++) {
4998		chksum ^= ip[i];
4999	}
5000
5001	/* Fill-in checksum */
5002	DKD_FORMCHKSUM(chksum, dkdevid);
5003
5004	/* Write the reserved sector */
5005	status = sd_send_scsi_WRITE(un, dkdevid, un->un_sys_blocksize, blk,
5006	    SD_PATH_DIRECT);
5007
5008	kmem_free(dkdevid, un->un_sys_blocksize);
5009
5010	mutex_enter(SD_MUTEX(un));
5011	return (status);
5012}
5013
5014
5015/*
5016 *    Function: sd_check_vpd_page_support
5017 *
5018 * Description: This routine sends an inquiry command with the EVPD bit set and
5019 *		a page code of 0x00 to the device. It is used to determine which
5020 *		vital product pages are availible to find the devid. We are
5021 *		looking for pages 0x83 or 0x80.  If we return a negative 1, the
5022 *		device does not support that command.
5023 *
5024 *   Arguments: un  - driver soft state (unit) structure
5025 *
5026 * Return Code: 0 - success
5027 *		1 - check condition
5028 *
5029 *     Context: This routine can sleep.
5030 */
5031
5032static int
5033sd_check_vpd_page_support(struct sd_lun *un)
5034{
5035	uchar_t	*page_list	= NULL;
5036	uchar_t	page_length	= 0xff;	/* Use max possible length */
5037	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
5038	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
5039	int    	rval		= 0;
5040	int	counter;
5041
5042	ASSERT(un != NULL);
5043	ASSERT(mutex_owned(SD_MUTEX(un)));
5044
5045	mutex_exit(SD_MUTEX(un));
5046
5047	/*
5048	 * We'll set the page length to the maximum to save figuring it out
5049	 * with an additional call.
5050	 */
5051	page_list =  kmem_zalloc(page_length, KM_SLEEP);
5052
5053	rval = sd_send_scsi_INQUIRY(un, page_list, page_length, evpd,
5054	    page_code, NULL);
5055
5056	mutex_enter(SD_MUTEX(un));
5057
5058	/*
5059	 * Now we must validate that the device accepted the command, as some
5060	 * drives do not support it.  If the drive does support it, we will
5061	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
5062	 * not, we return -1.
5063	 */
5064	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
5065		/* Loop to find one of the 2 pages we need */
5066		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
5067
5068		/*
5069		 * Pages are returned in ascending order, and 0x83 is what we
5070		 * are hoping for.
5071		 */
5072		while ((page_list[counter] <= 0x83) &&
5073		    (counter <= (page_list[VPD_PAGE_LENGTH] +
5074		    VPD_HEAD_OFFSET))) {
5075			/*
5076			 * Add 3 because page_list[3] is the number of
5077			 * pages minus 3
5078			 */
5079
5080			switch (page_list[counter]) {
5081			case 0x00:
5082				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
5083				break;
5084			case 0x80:
5085				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
5086				break;
5087			case 0x81:
5088				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
5089				break;
5090			case 0x82:
5091				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
5092				break;
5093			case 0x83:
5094				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
5095				break;
5096			}
5097			counter++;
5098		}
5099
5100	} else {
5101		rval = -1;
5102
5103		SD_INFO(SD_LOG_ATTACH_DETACH, un,
5104		    "sd_check_vpd_page_support: This drive does not implement "
5105		    "VPD pages.\n");
5106	}
5107
5108	kmem_free(page_list, page_length);
5109
5110	return (rval);
5111}
5112
5113
5114/*
5115 *    Function: sd_setup_pm
5116 *
5117 * Description: Initialize Power Management on the device
5118 *
5119 *     Context: Kernel Thread
5120 */
5121
5122static void
5123sd_setup_pm(struct sd_lun *un, dev_info_t *devi)
5124{
5125	uint_t	log_page_size;
5126	uchar_t	*log_page_data;
5127	int	rval;
5128
5129	/*
5130	 * Since we are called from attach, holding a mutex for
5131	 * un is unnecessary. Because some of the routines called
5132	 * from here require SD_MUTEX to not be held, assert this
5133	 * right up front.
5134	 */
5135	ASSERT(!mutex_owned(SD_MUTEX(un)));
5136	/*
5137	 * Since the sd device does not have the 'reg' property,
5138	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
5139	 * The following code is to tell cpr that this device
5140	 * DOES need to be suspended and resumed.
5141	 */
5142	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
5143	    "pm-hardware-state", "needs-suspend-resume");
5144
5145	/*
5146	 * This complies with the new power management framework
5147	 * for certain desktop machines. Create the pm_components
5148	 * property as a string array property.
5149	 */
5150	if (un->un_f_pm_supported) {
5151		/*
5152		 * not all devices have a motor, try it first.
5153		 * some devices may return ILLEGAL REQUEST, some
5154		 * will hang
5155		 * The following START_STOP_UNIT is used to check if target
5156		 * device has a motor.
5157		 */
5158		un->un_f_start_stop_supported = TRUE;
5159		if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
5160		    SD_PATH_DIRECT) != 0) {
5161			un->un_f_start_stop_supported = FALSE;
5162		}
5163
5164		/*
5165		 * create pm properties anyways otherwise the parent can't
5166		 * go to sleep
5167		 */
5168		(void) sd_create_pm_components(devi, un);
5169		un->un_f_pm_is_enabled = TRUE;
5170		return;
5171	}
5172
5173	if (!un->un_f_log_sense_supported) {
5174		un->un_power_level = SD_SPINDLE_ON;
5175		un->un_f_pm_is_enabled = FALSE;
5176		return;
5177	}
5178
5179	rval = sd_log_page_supported(un, START_STOP_CYCLE_PAGE);
5180
5181#ifdef	SDDEBUG
5182	if (sd_force_pm_supported) {
5183		/* Force a successful result */
5184		rval = 1;
5185	}
5186#endif
5187
5188	/*
5189	 * If the start-stop cycle counter log page is not supported
5190	 * or if the pm-capable property is SD_PM_CAPABLE_FALSE (0)
5191	 * then we should not create the pm_components property.
5192	 */
5193	if (rval == -1) {
5194		/*
5195		 * Error.
5196		 * Reading log sense failed, most likely this is
5197		 * an older drive that does not support log sense.
5198		 * If this fails auto-pm is not supported.
5199		 */
5200		un->un_power_level = SD_SPINDLE_ON;
5201		un->un_f_pm_is_enabled = FALSE;
5202
5203	} else if (rval == 0) {
5204		/*
5205		 * Page not found.
5206		 * The start stop cycle counter is implemented as page
5207		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
5208		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
5209		 */
5210		if (sd_log_page_supported(un, START_STOP_CYCLE_VU_PAGE) == 1) {
5211			/*
5212			 * Page found, use this one.
5213			 */
5214			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
5215			un->un_f_pm_is_enabled = TRUE;
5216		} else {
5217			/*
5218			 * Error or page not found.
5219			 * auto-pm is not supported for this device.
5220			 */
5221			un->un_power_level = SD_SPINDLE_ON;
5222			un->un_f_pm_is_enabled = FALSE;
5223		}
5224	} else {
5225		/*
5226		 * Page found, use it.
5227		 */
5228		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
5229		un->un_f_pm_is_enabled = TRUE;
5230	}
5231
5232
5233	if (un->un_f_pm_is_enabled == TRUE) {
5234		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
5235		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
5236
5237		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
5238		    log_page_size, un->un_start_stop_cycle_page,
5239		    0x01, 0, SD_PATH_DIRECT);
5240#ifdef	SDDEBUG
5241		if (sd_force_pm_supported) {
5242			/* Force a successful result */
5243			rval = 0;
5244		}
5245#endif
5246
5247		/*
5248		 * If the Log sense for Page( Start/stop cycle counter page)
5249		 * succeeds, then power managment is supported and we can
5250		 * enable auto-pm.
5251		 */
5252		if (rval == 0)  {
5253			(void) sd_create_pm_components(devi, un);
5254		} else {
5255			un->un_power_level = SD_SPINDLE_ON;
5256			un->un_f_pm_is_enabled = FALSE;
5257		}
5258
5259		kmem_free(log_page_data, log_page_size);
5260	}
5261}
5262
5263
5264/*
5265 *    Function: sd_create_pm_components
5266 *
5267 * Description: Initialize PM property.
5268 *
5269 *     Context: Kernel thread context
5270 */
5271
5272static void
5273sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
5274{
5275	char *pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on", NULL };
5276
5277	ASSERT(!mutex_owned(SD_MUTEX(un)));
5278
5279	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
5280	    "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) {
5281		/*
5282		 * When components are initially created they are idle,
5283		 * power up any non-removables.
5284		 * Note: the return value of pm_raise_power can't be used
5285		 * for determining if PM should be enabled for this device.
5286		 * Even if you check the return values and remove this
5287		 * property created above, the PM framework will not honor the
5288		 * change after the first call to pm_raise_power. Hence,
5289		 * removal of that property does not help if pm_raise_power
5290		 * fails. In the case of removable media, the start/stop
5291		 * will fail if the media is not present.
5292		 */
5293		if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0,
5294		    SD_SPINDLE_ON) == DDI_SUCCESS)) {
5295			mutex_enter(SD_MUTEX(un));
5296			un->un_power_level = SD_SPINDLE_ON;
5297			mutex_enter(&un->un_pm_mutex);
5298			/* Set to on and not busy. */
5299			un->un_pm_count = 0;
5300		} else {
5301			mutex_enter(SD_MUTEX(un));
5302			un->un_power_level = SD_SPINDLE_OFF;
5303			mutex_enter(&un->un_pm_mutex);
5304			/* Set to off. */
5305			un->un_pm_count = -1;
5306		}
5307		mutex_exit(&un->un_pm_mutex);
5308		mutex_exit(SD_MUTEX(un));
5309	} else {
5310		un->un_power_level = SD_SPINDLE_ON;
5311		un->un_f_pm_is_enabled = FALSE;
5312	}
5313}
5314
5315
5316/*
5317 *    Function: sd_ddi_suspend
5318 *
5319 * Description: Performs system power-down operations. This includes
5320 *		setting the drive state to indicate its suspended so
5321 *		that no new commands will be accepted. Also, wait for
5322 *		all commands that are in transport or queued to a timer
5323 *		for retry to complete. All timeout threads are cancelled.
5324 *
5325 * Return Code: DDI_FAILURE or DDI_SUCCESS
5326 *
5327 *     Context: Kernel thread context
5328 */
5329
5330static int
5331sd_ddi_suspend(dev_info_t *devi)
5332{
5333	struct	sd_lun	*un;
5334	clock_t		wait_cmds_complete;
5335
5336	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
5337	if (un == NULL) {
5338		return (DDI_FAILURE);
5339	}
5340
5341	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
5342
5343	mutex_enter(SD_MUTEX(un));
5344
5345	/* Return success if the device is already suspended. */
5346	if (un->un_state == SD_STATE_SUSPENDED) {
5347		mutex_exit(SD_MUTEX(un));
5348		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5349		    "device already suspended, exiting\n");
5350		return (DDI_SUCCESS);
5351	}
5352
5353	/* Return failure if the device is being used by HA */
5354	if (un->un_resvd_status &
5355	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
5356		mutex_exit(SD_MUTEX(un));
5357		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5358		    "device in use by HA, exiting\n");
5359		return (DDI_FAILURE);
5360	}
5361
5362	/*
5363	 * Return failure if the device is in a resource wait
5364	 * or power changing state.
5365	 */
5366	if ((un->un_state == SD_STATE_RWAIT) ||
5367	    (un->un_state == SD_STATE_PM_CHANGING)) {
5368		mutex_exit(SD_MUTEX(un));
5369		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5370		    "device in resource wait state, exiting\n");
5371		return (DDI_FAILURE);
5372	}
5373
5374
5375	un->un_save_state = un->un_last_state;
5376	New_state(un, SD_STATE_SUSPENDED);
5377
5378	/*
5379	 * Wait for all commands that are in transport or queued to a timer
5380	 * for retry to complete.
5381	 *
5382	 * While waiting, no new commands will be accepted or sent because of
5383	 * the new state we set above.
5384	 *
5385	 * Wait till current operation has completed. If we are in the resource
5386	 * wait state (with an intr outstanding) then we need to wait till the
5387	 * intr completes and starts the next cmd. We want to wait for
5388	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
5389	 */
5390	wait_cmds_complete = ddi_get_lbolt() +
5391	    (sd_wait_cmds_complete * drv_usectohz(1000000));
5392
5393	while (un->un_ncmds_in_transport != 0) {
5394		/*
5395		 * Fail if commands do not finish in the specified time.
5396		 */
5397		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
5398		    wait_cmds_complete) == -1) {
5399			/*
5400			 * Undo the state changes made above. Everything
5401			 * must go back to it's original value.
5402			 */
5403			Restore_state(un);
5404			un->un_last_state = un->un_save_state;
5405			/* Wake up any threads that might be waiting. */
5406			cv_broadcast(&un->un_suspend_cv);
5407			mutex_exit(SD_MUTEX(un));
5408			SD_ERROR(SD_LOG_IO_PM, un,
5409			    "sd_ddi_suspend: failed due to outstanding cmds\n");
5410			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
5411			return (DDI_FAILURE);
5412		}
5413	}
5414
5415	/*
5416	 * Cancel SCSI watch thread and timeouts, if any are active
5417	 */
5418
5419	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
5420		opaque_t temp_token = un->un_swr_token;
5421		mutex_exit(SD_MUTEX(un));
5422		scsi_watch_suspend(temp_token);
5423		mutex_enter(SD_MUTEX(un));
5424	}
5425
5426	if (un->un_reset_throttle_timeid != NULL) {
5427		timeout_id_t temp_id = un->un_reset_throttle_timeid;
5428		un->un_reset_throttle_timeid = NULL;
5429		mutex_exit(SD_MUTEX(un));
5430		(void) untimeout(temp_id);
5431		mutex_enter(SD_MUTEX(un));
5432	}
5433
5434	if (un->un_dcvb_timeid != NULL) {
5435		timeout_id_t temp_id = un->un_dcvb_timeid;
5436		un->un_dcvb_timeid = NULL;
5437		mutex_exit(SD_MUTEX(un));
5438		(void) untimeout(temp_id);
5439		mutex_enter(SD_MUTEX(un));
5440	}
5441
5442	mutex_enter(&un->un_pm_mutex);
5443	if (un->un_pm_timeid != NULL) {
5444		timeout_id_t temp_id = un->un_pm_timeid;
5445		un->un_pm_timeid = NULL;
5446		mutex_exit(&un->un_pm_mutex);
5447		mutex_exit(SD_MUTEX(un));
5448		(void) untimeout(temp_id);
5449		mutex_enter(SD_MUTEX(un));
5450	} else {
5451		mutex_exit(&un->un_pm_mutex);
5452	}
5453
5454	if (un->un_retry_timeid != NULL) {
5455		timeout_id_t temp_id = un->un_retry_timeid;
5456		un->un_retry_timeid = NULL;
5457		mutex_exit(SD_MUTEX(un));
5458		(void) untimeout(temp_id);
5459		mutex_enter(SD_MUTEX(un));
5460	}
5461
5462	if (un->un_direct_priority_timeid != NULL) {
5463		timeout_id_t temp_id = un->un_direct_priority_timeid;
5464		un->un_direct_priority_timeid = NULL;
5465		mutex_exit(SD_MUTEX(un));
5466		(void) untimeout(temp_id);
5467		mutex_enter(SD_MUTEX(un));
5468	}
5469
5470	if (un->un_f_is_fibre == TRUE) {
5471		/*
5472		 * Remove callbacks for insert and remove events
5473		 */
5474		if (un->un_insert_event != NULL) {
5475			mutex_exit(SD_MUTEX(un));
5476			(void) ddi_remove_event_handler(un->un_insert_cb_id);
5477			mutex_enter(SD_MUTEX(un));
5478			un->un_insert_event = NULL;
5479		}
5480
5481		if (un->un_remove_event != NULL) {
5482			mutex_exit(SD_MUTEX(un));
5483			(void) ddi_remove_event_handler(un->un_remove_cb_id);
5484			mutex_enter(SD_MUTEX(un));
5485			un->un_remove_event = NULL;
5486		}
5487	}
5488
5489	mutex_exit(SD_MUTEX(un));
5490
5491	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
5492
5493	return (DDI_SUCCESS);
5494}
5495
5496
5497/*
5498 *    Function: sd_ddi_pm_suspend
5499 *
5500 * Description: Set the drive state to low power.
5501 *		Someone else is required to actually change the drive
5502 *		power level.
5503 *
5504 *   Arguments: un - driver soft state (unit) structure
5505 *
5506 * Return Code: DDI_FAILURE or DDI_SUCCESS
5507 *
5508 *     Context: Kernel thread context
5509 */
5510
5511static int
5512sd_ddi_pm_suspend(struct sd_lun *un)
5513{
5514	ASSERT(un != NULL);
5515	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: entry\n");
5516
5517	ASSERT(!mutex_owned(SD_MUTEX(un)));
5518	mutex_enter(SD_MUTEX(un));
5519
5520	/*
5521	 * Exit if power management is not enabled for this device, or if
5522	 * the device is being used by HA.
5523	 */
5524	if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
5525	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
5526		mutex_exit(SD_MUTEX(un));
5527		SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exiting\n");
5528		return (DDI_SUCCESS);
5529	}
5530
5531	SD_INFO(SD_LOG_POWER, un, "sd_ddi_pm_suspend: un_ncmds_in_driver=%ld\n",
5532	    un->un_ncmds_in_driver);
5533
5534	/*
5535	 * See if the device is not busy, ie.:
5536	 *    - we have no commands in the driver for this device
5537	 *    - not waiting for resources
5538	 */
5539	if ((un->un_ncmds_in_driver == 0) &&
5540	    (un->un_state != SD_STATE_RWAIT)) {
5541		/*
5542		 * The device is not busy, so it is OK to go to low power state.
5543		 * Indicate low power, but rely on someone else to actually
5544		 * change it.
5545		 */
5546		mutex_enter(&un->un_pm_mutex);
5547		un->un_pm_count = -1;
5548		mutex_exit(&un->un_pm_mutex);
5549		un->un_power_level = SD_SPINDLE_OFF;
5550	}
5551
5552	mutex_exit(SD_MUTEX(un));
5553
5554	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exit\n");
5555
5556	return (DDI_SUCCESS);
5557}
5558
5559
5560/*
5561 *    Function: sd_ddi_resume
5562 *
5563 * Description: Performs system power-up operations..
5564 *
5565 * Return Code: DDI_SUCCESS
5566 *		DDI_FAILURE
5567 *
5568 *     Context: Kernel thread context
5569 */
5570
5571static int
5572sd_ddi_resume(dev_info_t *devi)
5573{
5574	struct	sd_lun	*un;
5575
5576	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
5577	if (un == NULL) {
5578		return (DDI_FAILURE);
5579	}
5580
5581	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
5582
5583	mutex_enter(SD_MUTEX(un));
5584	Restore_state(un);
5585
5586	/*
5587	 * Restore the state which was saved to give the
5588	 * the right state in un_last_state
5589	 */
5590	un->un_last_state = un->un_save_state;
5591	/*
5592	 * Note: throttle comes back at full.
5593	 * Also note: this MUST be done before calling pm_raise_power
5594	 * otherwise the system can get hung in biowait. The scenario where
5595	 * this'll happen is under cpr suspend. Writing of the system
5596	 * state goes through sddump, which writes 0 to un_throttle. If
5597	 * writing the system state then fails, example if the partition is
5598	 * too small, then cpr attempts a resume. If throttle isn't restored
5599	 * from the saved value until after calling pm_raise_power then
5600	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
5601	 * in biowait.
5602	 */
5603	un->un_throttle = un->un_saved_throttle;
5604
5605	/*
5606	 * The chance of failure is very rare as the only command done in power
5607	 * entry point is START command when you transition from 0->1 or
5608	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
5609	 * which suspend was done. Ignore the return value as the resume should
5610	 * not be failed. In the case of removable media the media need not be
5611	 * inserted and hence there is a chance that raise power will fail with
5612	 * media not present.
5613	 */
5614	if (un->un_f_attach_spinup) {
5615		mutex_exit(SD_MUTEX(un));
5616		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
5617		mutex_enter(SD_MUTEX(un));
5618	}
5619
5620	/*
5621	 * Don't broadcast to the suspend cv and therefore possibly
5622	 * start I/O until after power has been restored.
5623	 */
5624	cv_broadcast(&un->un_suspend_cv);
5625	cv_broadcast(&un->un_state_cv);
5626
5627	/* restart thread */
5628	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
5629		scsi_watch_resume(un->un_swr_token);
5630	}
5631
5632#if (defined(__fibre))
5633	if (un->un_f_is_fibre == TRUE) {
5634		/*
5635		 * Add callbacks for insert and remove events
5636		 */
5637		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
5638			sd_init_event_callbacks(un);
5639		}
5640	}
5641#endif
5642
5643	/*
5644	 * Transport any pending commands to the target.
5645	 *
5646	 * If this is a low-activity device commands in queue will have to wait
5647	 * until new commands come in, which may take awhile. Also, we
5648	 * specifically don't check un_ncmds_in_transport because we know that
5649	 * there really are no commands in progress after the unit was
5650	 * suspended and we could have reached the throttle level, been
5651	 * suspended, and have no new commands coming in for awhile. Highly
5652	 * unlikely, but so is the low-activity disk scenario.
5653	 */
5654	ddi_xbuf_dispatch(un->un_xbuf_attr);
5655
5656	sd_start_cmds(un, NULL);
5657	mutex_exit(SD_MUTEX(un));
5658
5659	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
5660
5661	return (DDI_SUCCESS);
5662}
5663
5664
5665/*
5666 *    Function: sd_ddi_pm_resume
5667 *
5668 * Description: Set the drive state to powered on.
5669 *		Someone else is required to actually change the drive
5670 *		power level.
5671 *
5672 *   Arguments: un - driver soft state (unit) structure
5673 *
5674 * Return Code: DDI_SUCCESS
5675 *
5676 *     Context: Kernel thread context
5677 */
5678
5679static int
5680sd_ddi_pm_resume(struct sd_lun *un)
5681{
5682	ASSERT(un != NULL);
5683
5684	ASSERT(!mutex_owned(SD_MUTEX(un)));
5685	mutex_enter(SD_MUTEX(un));
5686	un->un_power_level = SD_SPINDLE_ON;
5687
5688	ASSERT(!mutex_owned(&un->un_pm_mutex));
5689	mutex_enter(&un->un_pm_mutex);
5690	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
5691		un->un_pm_count++;
5692		ASSERT(un->un_pm_count == 0);
5693		/*
5694		 * Note: no longer do the cv_broadcast on un_suspend_cv. The
5695		 * un_suspend_cv is for a system resume, not a power management
5696		 * device resume. (4297749)
5697		 *	 cv_broadcast(&un->un_suspend_cv);
5698		 */
5699	}
5700	mutex_exit(&un->un_pm_mutex);
5701	mutex_exit(SD_MUTEX(un));
5702
5703	return (DDI_SUCCESS);
5704}
5705
5706
5707/*
5708 *    Function: sd_pm_idletimeout_handler
5709 *
5710 * Description: A timer routine that's active only while a device is busy.
5711 *		The purpose is to extend slightly the pm framework's busy
5712 *		view of the device to prevent busy/idle thrashing for
5713 *		back-to-back commands. Do this by comparing the current time
5714 *		to the time at which the last command completed and when the
5715 *		difference is greater than sd_pm_idletime, call
5716 *		pm_idle_component. In addition to indicating idle to the pm
5717 *		framework, update the chain type to again use the internal pm
5718 *		layers of the driver.
5719 *
5720 *   Arguments: arg - driver soft state (unit) structure
5721 *
5722 *     Context: Executes in a timeout(9F) thread context
5723 */
5724
5725static void
5726sd_pm_idletimeout_handler(void *arg)
5727{
5728	struct sd_lun *un = arg;
5729
5730	time_t	now;
5731
5732	mutex_enter(&sd_detach_mutex);
5733	if (un->un_detach_count != 0) {
5734		/* Abort if the instance is detaching */
5735		mutex_exit(&sd_detach_mutex);
5736		return;
5737	}
5738	mutex_exit(&sd_detach_mutex);
5739
5740	now = ddi_get_time();
5741	/*
5742	 * Grab both mutexes, in the proper order, since we're accessing
5743	 * both PM and softstate variables.
5744	 */
5745	mutex_enter(SD_MUTEX(un));
5746	mutex_enter(&un->un_pm_mutex);
5747	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
5748	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
5749		/*
5750		 * Update the chain types.
5751		 * This takes affect on the next new command received.
5752		 */
5753		if (un->un_f_non_devbsize_supported) {
5754			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
5755		} else {
5756			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
5757		}
5758		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
5759
5760		SD_TRACE(SD_LOG_IO_PM, un,
5761		    "sd_pm_idletimeout_handler: idling device\n");
5762		(void) pm_idle_component(SD_DEVINFO(un), 0);
5763		un->un_pm_idle_timeid = NULL;
5764	} else {
5765		un->un_pm_idle_timeid =
5766		    timeout(sd_pm_idletimeout_handler, un,
5767		    (drv_usectohz((clock_t)300000))); /* 300 ms. */
5768	}
5769	mutex_exit(&un->un_pm_mutex);
5770	mutex_exit(SD_MUTEX(un));
5771}
5772
5773
5774/*
5775 *    Function: sd_pm_timeout_handler
5776 *
5777 * Description: Callback to tell framework we are idle.
5778 *
5779 *     Context: timeout(9f) thread context.
5780 */
5781
5782static void
5783sd_pm_timeout_handler(void *arg)
5784{
5785	struct sd_lun *un = arg;
5786
5787	(void) pm_idle_component(SD_DEVINFO(un), 0);
5788	mutex_enter(&un->un_pm_mutex);
5789	un->un_pm_timeid = NULL;
5790	mutex_exit(&un->un_pm_mutex);
5791}
5792
5793
5794/*
5795 *    Function: sdpower
5796 *
5797 * Description: PM entry point.
5798 *
5799 * Return Code: DDI_SUCCESS
5800 *		DDI_FAILURE
5801 *
5802 *     Context: Kernel thread context
5803 */
5804
5805static int
5806sdpower(dev_info_t *devi, int component, int level)
5807{
5808	struct sd_lun	*un;
5809	int		instance;
5810	int		rval = DDI_SUCCESS;
5811	uint_t		i, log_page_size, maxcycles, ncycles;
5812	uchar_t		*log_page_data;
5813	int		log_sense_page;
5814	int		medium_present;
5815	time_t		intvlp;
5816	dev_t		dev;
5817	struct pm_trans_data	sd_pm_tran_data;
5818	uchar_t		save_state;
5819	int		sval;
5820	uchar_t		state_before_pm;
5821	int		got_semaphore_here;
5822
5823	instance = ddi_get_instance(devi);
5824
5825	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
5826	    (SD_SPINDLE_OFF > level) || (level > SD_SPINDLE_ON) ||
5827	    component != 0) {
5828		return (DDI_FAILURE);
5829	}
5830
5831	dev = sd_make_device(SD_DEVINFO(un));
5832
5833	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
5834
5835	/*
5836	 * Must synchronize power down with close.
5837	 * Attempt to decrement/acquire the open/close semaphore,
5838	 * but do NOT wait on it. If it's not greater than zero,
5839	 * ie. it can't be decremented without waiting, then
5840	 * someone else, either open or close, already has it
5841	 * and the try returns 0. Use that knowledge here to determine
5842	 * if it's OK to change the device power level.
5843	 * Also, only increment it on exit if it was decremented, ie. gotten,
5844	 * here.
5845	 */
5846	got_semaphore_here = sema_tryp(&un->un_semoclose);
5847
5848	mutex_enter(SD_MUTEX(un));
5849
5850	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
5851	    un->un_ncmds_in_driver);
5852
5853	/*
5854	 * If un_ncmds_in_driver is non-zero it indicates commands are
5855	 * already being processed in the driver, or if the semaphore was
5856	 * not gotten here it indicates an open or close is being processed.
5857	 * At the same time somebody is requesting to go low power which
5858	 * can't happen, therefore we need to return failure.
5859	 */
5860	if ((level == SD_SPINDLE_OFF) &&
5861	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
5862		mutex_exit(SD_MUTEX(un));
5863
5864		if (got_semaphore_here != 0) {
5865			sema_v(&un->un_semoclose);
5866		}
5867		SD_TRACE(SD_LOG_IO_PM, un,
5868		    "sdpower: exit, device has queued cmds.\n");
5869		return (DDI_FAILURE);
5870	}
5871
5872	/*
5873	 * if it is OFFLINE that means the disk is completely dead
5874	 * in our case we have to put the disk in on or off by sending commands
5875	 * Of course that will fail anyway so return back here.
5876	 *
5877	 * Power changes to a device that's OFFLINE or SUSPENDED
5878	 * are not allowed.
5879	 */
5880	if ((un->un_state == SD_STATE_OFFLINE) ||
5881	    (un->un_state == SD_STATE_SUSPENDED)) {
5882		mutex_exit(SD_MUTEX(un));
5883
5884		if (got_semaphore_here != 0) {
5885			sema_v(&un->un_semoclose);
5886		}
5887		SD_TRACE(SD_LOG_IO_PM, un,
5888		    "sdpower: exit, device is off-line.\n");
5889		return (DDI_FAILURE);
5890	}
5891
5892	/*
5893	 * Change the device's state to indicate it's power level
5894	 * is being changed. Do this to prevent a power off in the
5895	 * middle of commands, which is especially bad on devices
5896	 * that are really powered off instead of just spun down.
5897	 */
5898	state_before_pm = un->un_state;
5899	un->un_state = SD_STATE_PM_CHANGING;
5900
5901	mutex_exit(SD_MUTEX(un));
5902
5903	/*
5904	 * If "pm-capable" property is set to TRUE by HBA drivers,
5905	 * bypass the following checking, otherwise, check the log
5906	 * sense information for this device
5907	 */
5908	if ((level == SD_SPINDLE_OFF) && un->un_f_log_sense_supported) {
5909		/*
5910		 * Get the log sense information to understand whether the
5911		 * the powercycle counts have gone beyond the threshhold.
5912		 */
5913		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
5914		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
5915
5916		mutex_enter(SD_MUTEX(un));
5917		log_sense_page = un->un_start_stop_cycle_page;
5918		mutex_exit(SD_MUTEX(un));
5919
5920		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
5921		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
5922#ifdef	SDDEBUG
5923		if (sd_force_pm_supported) {
5924			/* Force a successful result */
5925			rval = 0;
5926		}
5927#endif
5928		if (rval != 0) {
5929			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5930			    "Log Sense Failed\n");
5931			kmem_free(log_page_data, log_page_size);
5932			/* Cannot support power management on those drives */
5933
5934			if (got_semaphore_here != 0) {
5935				sema_v(&un->un_semoclose);
5936			}
5937			/*
5938			 * On exit put the state back to it's original value
5939			 * and broadcast to anyone waiting for the power
5940			 * change completion.
5941			 */
5942			mutex_enter(SD_MUTEX(un));
5943			un->un_state = state_before_pm;
5944			cv_broadcast(&un->un_suspend_cv);
5945			mutex_exit(SD_MUTEX(un));
5946			SD_TRACE(SD_LOG_IO_PM, un,
5947			    "sdpower: exit, Log Sense Failed.\n");
5948			return (DDI_FAILURE);
5949		}
5950
5951		/*
5952		 * From the page data - Convert the essential information to
5953		 * pm_trans_data
5954		 */
5955		maxcycles =
5956		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
5957		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
5958
5959		sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
5960
5961		ncycles =
5962		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
5963		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
5964
5965		sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
5966
5967		for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
5968			sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
5969			    log_page_data[8+i];
5970		}
5971
5972		kmem_free(log_page_data, log_page_size);
5973
5974		/*
5975		 * Call pm_trans_check routine to get the Ok from
5976		 * the global policy
5977		 */
5978
5979		sd_pm_tran_data.format = DC_SCSI_FORMAT;
5980		sd_pm_tran_data.un.scsi_cycles.flag = 0;
5981
5982		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
5983#ifdef	SDDEBUG
5984		if (sd_force_pm_supported) {
5985			/* Force a successful result */
5986			rval = 1;
5987		}
5988#endif
5989		switch (rval) {
5990		case 0:
5991			/*
5992			 * Not Ok to Power cycle or error in parameters passed
5993			 * Would have given the advised time to consider power
5994			 * cycle. Based on the new intvlp parameter we are
5995			 * supposed to pretend we are busy so that pm framework
5996			 * will never call our power entry point. Because of
5997			 * that install a timeout handler and wait for the
5998			 * recommended time to elapse so that power management
5999			 * can be effective again.
6000			 *
6001			 * To effect this behavior, call pm_busy_component to
6002			 * indicate to the framework this device is busy.
6003			 * By not adjusting un_pm_count the rest of PM in
6004			 * the driver will function normally, and independant
6005			 * of this but because the framework is told the device
6006			 * is busy it won't attempt powering down until it gets
6007			 * a matching idle. The timeout handler sends this.
6008			 * Note: sd_pm_entry can't be called here to do this
6009			 * because sdpower may have been called as a result
6010			 * of a call to pm_raise_power from within sd_pm_entry.
6011			 *
6012			 * If a timeout handler is already active then
6013			 * don't install another.
6014			 */
6015			mutex_enter(&un->un_pm_mutex);
6016			if (un->un_pm_timeid == NULL) {
6017				un->un_pm_timeid =
6018				    timeout(sd_pm_timeout_handler,
6019				    un, intvlp * drv_usectohz(1000000));
6020				mutex_exit(&un->un_pm_mutex);
6021				(void) pm_busy_component(SD_DEVINFO(un), 0);
6022			} else {
6023				mutex_exit(&un->un_pm_mutex);
6024			}
6025			if (got_semaphore_here != 0) {
6026				sema_v(&un->un_semoclose);
6027			}
6028			/*
6029			 * On exit put the state back to it's original value
6030			 * and broadcast to anyone waiting for the power
6031			 * change completion.
6032			 */
6033			mutex_enter(SD_MUTEX(un));
6034			un->un_state = state_before_pm;
6035			cv_broadcast(&un->un_suspend_cv);
6036			mutex_exit(SD_MUTEX(un));
6037
6038			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
6039			    "trans check Failed, not ok to power cycle.\n");
6040			return (DDI_FAILURE);
6041
6042		case -1:
6043			if (got_semaphore_here != 0) {
6044				sema_v(&un->un_semoclose);
6045			}
6046			/*
6047			 * On exit put the state back to it's original value
6048			 * and broadcast to anyone waiting for the power
6049			 * change completion.
6050			 */
6051			mutex_enter(SD_MUTEX(un));
6052			un->un_state = state_before_pm;
6053			cv_broadcast(&un->un_suspend_cv);
6054			mutex_exit(SD_MUTEX(un));
6055			SD_TRACE(SD_LOG_IO_PM, un,
6056			    "sdpower: exit, trans check command Failed.\n");
6057			return (DDI_FAILURE);
6058		}
6059	}
6060
6061	if (level == SD_SPINDLE_OFF) {
6062		/*
6063		 * Save the last state... if the STOP FAILS we need it
6064		 * for restoring
6065		 */
6066		mutex_enter(SD_MUTEX(un));
6067		save_state = un->un_last_state;
6068		/*
6069		 * There must not be any cmds. getting processed
6070		 * in the driver when we get here. Power to the
6071		 * device is potentially going off.
6072		 */
6073		ASSERT(un->un_ncmds_in_driver == 0);
6074		mutex_exit(SD_MUTEX(un));
6075
6076		/*
6077		 * For now suspend the device completely before spindle is
6078		 * turned off
6079		 */
6080		if ((rval = sd_ddi_pm_suspend(un)) == DDI_FAILURE) {
6081			if (got_semaphore_here != 0) {
6082				sema_v(&un->un_semoclose);
6083			}
6084			/*
6085			 * On exit put the state back to it's original value
6086			 * and broadcast to anyone waiting for the power
6087			 * change completion.
6088			 */
6089			mutex_enter(SD_MUTEX(un));
6090			un->un_state = state_before_pm;
6091			cv_broadcast(&un->un_suspend_cv);
6092			mutex_exit(SD_MUTEX(un));
6093			SD_TRACE(SD_LOG_IO_PM, un,
6094			    "sdpower: exit, PM suspend Failed.\n");
6095			return (DDI_FAILURE);
6096		}
6097	}
6098
6099	/*
6100	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
6101	 * close, or strategy. Dump no long uses this routine, it uses it's
6102	 * own code so it can be done in polled mode.
6103	 */
6104
6105	medium_present = TRUE;
6106
6107	/*
6108	 * When powering up, issue a TUR in case the device is at unit
6109	 * attention.  Don't do retries. Bypass the PM layer, otherwise
6110	 * a deadlock on un_pm_busy_cv will occur.
6111	 */
6112	if (level == SD_SPINDLE_ON) {
6113		(void) sd_send_scsi_TEST_UNIT_READY(un,
6114		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
6115	}
6116
6117	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
6118	    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
6119
6120	sval = sd_send_scsi_START_STOP_UNIT(un,
6121	    ((level == SD_SPINDLE_ON) ? SD_TARGET_START : SD_TARGET_STOP),
6122	    SD_PATH_DIRECT);
6123	/* Command failed, check for media present. */
6124	if ((sval == ENXIO) && un->un_f_has_removable_media) {
6125		medium_present = FALSE;
6126	}
6127
6128	/*
6129	 * The conditions of interest here are:
6130	 *   if a spindle off with media present fails,
6131	 *	then restore the state and return an error.
6132	 *   else if a spindle on fails,
6133	 *	then return an error (there's no state to restore).
6134	 * In all other cases we setup for the new state
6135	 * and return success.
6136	 */
6137	switch (level) {
6138	case SD_SPINDLE_OFF:
6139		if ((medium_present == TRUE) && (sval != 0)) {
6140			/* The stop command from above failed */
6141			rval = DDI_FAILURE;
6142			/*
6143			 * The stop command failed, and we have media
6144			 * present. Put the level back by calling the
6145			 * sd_pm_resume() and set the state back to
6146			 * it's previous value.
6147			 */
6148			(void) sd_ddi_pm_resume(un);
6149			mutex_enter(SD_MUTEX(un));
6150			un->un_last_state = save_state;
6151			mutex_exit(SD_MUTEX(un));
6152			break;
6153		}
6154		/*
6155		 * The stop command from above succeeded.
6156		 */
6157		if (un->un_f_monitor_media_state) {
6158			/*
6159			 * Terminate watch thread in case of removable media
6160			 * devices going into low power state. This is as per
6161			 * the requirements of pm framework, otherwise commands
6162			 * will be generated for the device (through watch
6163			 * thread), even when the device is in low power state.
6164			 */
6165			mutex_enter(SD_MUTEX(un));
6166			un->un_f_watcht_stopped = FALSE;
6167			if (un->un_swr_token != NULL) {
6168				opaque_t temp_token = un->un_swr_token;
6169				un->un_f_watcht_stopped = TRUE;
6170				un->un_swr_token = NULL;
6171				mutex_exit(SD_MUTEX(un));
6172				(void) scsi_watch_request_terminate(temp_token,
6173				    SCSI_WATCH_TERMINATE_WAIT);
6174			} else {
6175				mutex_exit(SD_MUTEX(un));
6176			}
6177		}
6178		break;
6179
6180	default:	/* The level requested is spindle on... */
6181		/*
6182		 * Legacy behavior: return success on a failed spinup
6183		 * if there is no media in the drive.
6184		 * Do this by looking at medium_present here.
6185		 */
6186		if ((sval != 0) && medium_present) {
6187			/* The start command from above failed */
6188			rval = DDI_FAILURE;
6189			break;
6190		}
6191		/*
6192		 * The start command from above succeeded
6193		 * Resume the devices now that we have
6194		 * started the disks
6195		 */
6196		(void) sd_ddi_pm_resume(un);
6197
6198		/*
6199		 * Resume the watch thread since it was suspended
6200		 * when the device went into low power mode.
6201		 */
6202		if (un->un_f_monitor_media_state) {
6203			mutex_enter(SD_MUTEX(un));
6204			if (un->un_f_watcht_stopped == TRUE) {
6205				opaque_t temp_token;
6206
6207				un->un_f_watcht_stopped = FALSE;
6208				mutex_exit(SD_MUTEX(un));
6209				temp_token = scsi_watch_request_submit(
6210				    SD_SCSI_DEVP(un),
6211				    sd_check_media_time,
6212				    SENSE_LENGTH, sd_media_watch_cb,
6213				    (caddr_t)dev);
6214				mutex_enter(SD_MUTEX(un));
6215				un->un_swr_token = temp_token;
6216			}
6217			mutex_exit(SD_MUTEX(un));
6218		}
6219	}
6220	if (got_semaphore_here != 0) {
6221		sema_v(&un->un_semoclose);
6222	}
6223	/*
6224	 * On exit put the state back to it's original value
6225	 * and broadcast to anyone waiting for the power
6226	 * change completion.
6227	 */
6228	mutex_enter(SD_MUTEX(un));
6229	un->un_state = state_before_pm;
6230	cv_broadcast(&un->un_suspend_cv);
6231	mutex_exit(SD_MUTEX(un));
6232
6233	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
6234
6235	return (rval);
6236}
6237
6238
6239
6240/*
6241 *    Function: sdattach
6242 *
6243 * Description: Driver's attach(9e) entry point function.
6244 *
6245 *   Arguments: devi - opaque device info handle
6246 *		cmd  - attach  type
6247 *
6248 * Return Code: DDI_SUCCESS
6249 *		DDI_FAILURE
6250 *
6251 *     Context: Kernel thread context
6252 */
6253
6254static int
6255sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
6256{
6257	switch (cmd) {
6258	case DDI_ATTACH:
6259		return (sd_unit_attach(devi));
6260	case DDI_RESUME:
6261		return (sd_ddi_resume(devi));
6262	default:
6263		break;
6264	}
6265	return (DDI_FAILURE);
6266}
6267
6268
6269/*
6270 *    Function: sddetach
6271 *
6272 * Description: Driver's detach(9E) entry point function.
6273 *
6274 *   Arguments: devi - opaque device info handle
6275 *		cmd  - detach  type
6276 *
6277 * Return Code: DDI_SUCCESS
6278 *		DDI_FAILURE
6279 *
6280 *     Context: Kernel thread context
6281 */
6282
6283static int
6284sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
6285{
6286	switch (cmd) {
6287	case DDI_DETACH:
6288		return (sd_unit_detach(devi));
6289	case DDI_SUSPEND:
6290		return (sd_ddi_suspend(devi));
6291	default:
6292		break;
6293	}
6294	return (DDI_FAILURE);
6295}
6296
6297
6298/*
6299 *     Function: sd_sync_with_callback
6300 *
6301 *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
6302 *		 state while the callback routine is active.
6303 *
6304 *    Arguments: un: softstate structure for the instance
6305 *
6306 *	Context: Kernel thread context
6307 */
6308
6309static void
6310sd_sync_with_callback(struct sd_lun *un)
6311{
6312	ASSERT(un != NULL);
6313
6314	mutex_enter(SD_MUTEX(un));
6315
6316	ASSERT(un->un_in_callback >= 0);
6317
6318	while (un->un_in_callback > 0) {
6319		mutex_exit(SD_MUTEX(un));
6320		delay(2);
6321		mutex_enter(SD_MUTEX(un));
6322	}
6323
6324	mutex_exit(SD_MUTEX(un));
6325}
6326
6327/*
6328 *    Function: sd_unit_attach
6329 *
6330 * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
6331 *		the soft state structure for the device and performs
6332 *		all necessary structure and device initializations.
6333 *
6334 *   Arguments: devi: the system's dev_info_t for the device.
6335 *
6336 * Return Code: DDI_SUCCESS if attach is successful.
6337 *		DDI_FAILURE if any part of the attach fails.
6338 *
6339 *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
6340 *		Kernel thread context only.  Can sleep.
6341 */
6342
6343static int
6344sd_unit_attach(dev_info_t *devi)
6345{
6346	struct	scsi_device	*devp;
6347	struct	sd_lun		*un;
6348	char			*variantp;
6349	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
6350	int	instance;
6351	int	rval;
6352	int	wc_enabled;
6353	int	tgt;
6354	uint64_t	capacity;
6355	uint_t		lbasize = 0;
6356	dev_info_t	*pdip = ddi_get_parent(devi);
6357	int		offbyone = 0;
6358	int		geom_label_valid = 0;
6359
6360	/*
6361	 * Retrieve the target driver's private data area. This was set
6362	 * up by the HBA.
6363	 */
6364	devp = ddi_get_driver_private(devi);
6365
6366	/*
6367	 * Retrieve the target ID of the device.
6368	 */
6369	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
6370	    SCSI_ADDR_PROP_TARGET, -1);
6371
6372	/*
6373	 * Since we have no idea what state things were left in by the last
6374	 * user of the device, set up some 'default' settings, ie. turn 'em
6375	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
6376	 * Do this before the scsi_probe, which sends an inquiry.
6377	 * This is a fix for bug (4430280).
6378	 * Of special importance is wide-xfer. The drive could have been left
6379	 * in wide transfer mode by the last driver to communicate with it,
6380	 * this includes us. If that's the case, and if the following is not
6381	 * setup properly or we don't re-negotiate with the drive prior to
6382	 * transferring data to/from the drive, it causes bus parity errors,
6383	 * data overruns, and unexpected interrupts. This first occurred when
6384	 * the fix for bug (4378686) was made.
6385	 */
6386	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
6387	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
6388	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
6389
6390	/*
6391	 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs
6392	 * on a target. Setting it per lun instance actually sets the
6393	 * capability of this target, which affects those luns already
6394	 * attached on the same target. So during attach, we can only disable
6395	 * this capability only when no other lun has been attached on this
6396	 * target. By doing this, we assume a target has the same tagged-qing
6397	 * capability for every lun. The condition can be removed when HBA
6398	 * is changed to support per lun based tagged-qing capability.
6399	 */
6400	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
6401		(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
6402	}
6403
6404	/*
6405	 * Use scsi_probe() to issue an INQUIRY command to the device.
6406	 * This call will allocate and fill in the scsi_inquiry structure
6407	 * and point the sd_inq member of the scsi_device structure to it.
6408	 * If the attach succeeds, then this memory will not be de-allocated
6409	 * (via scsi_unprobe()) until the instance is detached.
6410	 */
6411	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
6412		goto probe_failed;
6413	}
6414
6415	/*
6416	 * Check the device type as specified in the inquiry data and
6417	 * claim it if it is of a type that we support.
6418	 */
6419	switch (devp->sd_inq->inq_dtype) {
6420	case DTYPE_DIRECT:
6421		break;
6422	case DTYPE_RODIRECT:
6423		break;
6424	case DTYPE_OPTICAL:
6425		break;
6426	case DTYPE_NOTPRESENT:
6427	default:
6428		/* Unsupported device type; fail the attach. */
6429		goto probe_failed;
6430	}
6431
6432	/*
6433	 * Allocate the soft state structure for this unit.
6434	 *
6435	 * We rely upon this memory being set to all zeroes by
6436	 * ddi_soft_state_zalloc().  We assume that any member of the
6437	 * soft state structure that is not explicitly initialized by
6438	 * this routine will have a value of zero.
6439	 */
6440	instance = ddi_get_instance(devp->sd_dev);
6441	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
6442		goto probe_failed;
6443	}
6444
6445	/*
6446	 * Retrieve a pointer to the newly-allocated soft state.
6447	 *
6448	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
6449	 * was successful, unless something has gone horribly wrong and the
6450	 * ddi's soft state internals are corrupt (in which case it is
6451	 * probably better to halt here than just fail the attach....)
6452	 */
6453	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
6454		panic("sd_unit_attach: NULL soft state on instance:0x%x",
6455		    instance);
6456		/*NOTREACHED*/
6457	}
6458
6459	/*
6460	 * Link the back ptr of the driver soft state to the scsi_device
6461	 * struct for this lun.
6462	 * Save a pointer to the softstate in the driver-private area of
6463	 * the scsi_device struct.
6464	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
6465	 * we first set un->un_sd below.
6466	 */
6467	un->un_sd = devp;
6468	devp->sd_private = (opaque_t)un;
6469
6470	/*
6471	 * The following must be after devp is stored in the soft state struct.
6472	 */
6473#ifdef SDDEBUG
6474	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6475	    "%s_unit_attach: un:0x%p instance:%d\n",
6476	    ddi_driver_name(devi), un, instance);
6477#endif
6478
6479	/*
6480	 * Set up the device type and node type (for the minor nodes).
6481	 * By default we assume that the device can at least support the
6482	 * Common Command Set. Call it a CD-ROM if it reports itself
6483	 * as a RODIRECT device.
6484	 */
6485	switch (devp->sd_inq->inq_dtype) {
6486	case DTYPE_RODIRECT:
6487		un->un_node_type = DDI_NT_CD_CHAN;
6488		un->un_ctype	 = CTYPE_CDROM;
6489		break;
6490	case DTYPE_OPTICAL:
6491		un->un_node_type = DDI_NT_BLOCK_CHAN;
6492		un->un_ctype	 = CTYPE_ROD;
6493		break;
6494	default:
6495		un->un_node_type = DDI_NT_BLOCK_CHAN;
6496		un->un_ctype	 = CTYPE_CCS;
6497		break;
6498	}
6499
6500	/*
6501	 * Try to read the interconnect type from the HBA.
6502	 *
6503	 * Note: This driver is currently compiled as two binaries, a parallel
6504	 * scsi version (sd) and a fibre channel version (ssd). All functional
6505	 * differences are determined at compile time. In the future a single
6506	 * binary will be provided and the inteconnect type will be used to
6507	 * differentiate between fibre and parallel scsi behaviors. At that time
6508	 * it will be necessary for all fibre channel HBAs to support this
6509	 * property.
6510	 *
6511	 * set un_f_is_fiber to TRUE ( default fiber )
6512	 */
6513	un->un_f_is_fibre = TRUE;
6514	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
6515	case INTERCONNECT_SSA:
6516		un->un_interconnect_type = SD_INTERCONNECT_SSA;
6517		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6518		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
6519		break;
6520	case INTERCONNECT_PARALLEL:
6521		un->un_f_is_fibre = FALSE;
6522		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
6523		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6524		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
6525		break;
6526	case INTERCONNECT_SATA:
6527		un->un_f_is_fibre = FALSE;
6528		un->un_interconnect_type = SD_INTERCONNECT_SATA;
6529		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6530		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un);
6531		break;
6532	case INTERCONNECT_FIBRE:
6533		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
6534		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6535		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
6536		break;
6537	case INTERCONNECT_FABRIC:
6538		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
6539		un->un_node_type = DDI_NT_BLOCK_FABRIC;
6540		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6541		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
6542		break;
6543	default:
6544#ifdef SD_DEFAULT_INTERCONNECT_TYPE
6545		/*
6546		 * The HBA does not support the "interconnect-type" property
6547		 * (or did not provide a recognized type).
6548		 *
6549		 * Note: This will be obsoleted when a single fibre channel
6550		 * and parallel scsi driver is delivered. In the meantime the
6551		 * interconnect type will be set to the platform default.If that
6552		 * type is not parallel SCSI, it means that we should be
6553		 * assuming "ssd" semantics. However, here this also means that
6554		 * the FC HBA is not supporting the "interconnect-type" property
6555		 * like we expect it to, so log this occurrence.
6556		 */
6557		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
6558		if (!SD_IS_PARALLEL_SCSI(un)) {
6559			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6560			    "sd_unit_attach: un:0x%p Assuming "
6561			    "INTERCONNECT_FIBRE\n", un);
6562		} else {
6563			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6564			    "sd_unit_attach: un:0x%p Assuming "
6565			    "INTERCONNECT_PARALLEL\n", un);
6566			un->un_f_is_fibre = FALSE;
6567		}
6568#else
6569		/*
6570		 * Note: This source will be implemented when a single fibre
6571		 * channel and parallel scsi driver is delivered. The default
6572		 * will be to assume that if a device does not support the
6573		 * "interconnect-type" property it is a parallel SCSI HBA and
6574		 * we will set the interconnect type for parallel scsi.
6575		 */
6576		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
6577		un->un_f_is_fibre = FALSE;
6578#endif
6579		break;
6580	}
6581
6582	if (un->un_f_is_fibre == TRUE) {
6583		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
6584		    SCSI_VERSION_3) {
6585			switch (un->un_interconnect_type) {
6586			case SD_INTERCONNECT_FIBRE:
6587			case SD_INTERCONNECT_SSA:
6588				un->un_node_type = DDI_NT_BLOCK_WWN;
6589				break;
6590			default:
6591				break;
6592			}
6593		}
6594	}
6595
6596	/*
6597	 * Initialize the Request Sense command for the target
6598	 */
6599	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
6600		goto alloc_rqs_failed;
6601	}
6602
6603	/*
6604	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
6605	 * with separate binary for sd and ssd.
6606	 *
6607	 * x86 has 1 binary, un_retry_count is set base on connection type.
6608	 * The hardcoded values will go away when Sparc uses 1 binary
6609	 * for sd and ssd.  This hardcoded values need to match
6610	 * SD_RETRY_COUNT in sddef.h
6611	 * The value used is base on interconnect type.
6612	 * fibre = 3, parallel = 5
6613	 */
6614#if defined(__i386) || defined(__amd64)
6615	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
6616#else
6617	un->un_retry_count = SD_RETRY_COUNT;
6618#endif
6619
6620	/*
6621	 * Set the per disk retry count to the default number of retries
6622	 * for disks and CDROMs. This value can be overridden by the
6623	 * disk property list or an entry in sd.conf.
6624	 */
6625	un->un_notready_retry_count =
6626	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
6627	    : DISK_NOT_READY_RETRY_COUNT(un);
6628
6629	/*
6630	 * Set the busy retry count to the default value of un_retry_count.
6631	 * This can be overridden by entries in sd.conf or the device
6632	 * config table.
6633	 */
6634	un->un_busy_retry_count = un->un_retry_count;
6635
6636	/*
6637	 * Init the reset threshold for retries.  This number determines
6638	 * how many retries must be performed before a reset can be issued
6639	 * (for certain error conditions). This can be overridden by entries
6640	 * in sd.conf or the device config table.
6641	 */
6642	un->un_reset_retry_count = (un->un_retry_count / 2);
6643
6644	/*
6645	 * Set the victim_retry_count to the default un_retry_count
6646	 */
6647	un->un_victim_retry_count = (2 * un->un_retry_count);
6648
6649	/*
6650	 * Set the reservation release timeout to the default value of
6651	 * 5 seconds. This can be overridden by entries in ssd.conf or the
6652	 * device config table.
6653	 */
6654	un->un_reserve_release_time = 5;
6655
6656	/*
6657	 * Set up the default maximum transfer size. Note that this may
6658	 * get updated later in the attach, when setting up default wide
6659	 * operations for disks.
6660	 */
6661#if defined(__i386) || defined(__amd64)
6662	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
6663#else
6664	un->un_max_xfer_size = (uint_t)maxphys;
6665#endif
6666
6667	/*
6668	 * Get "allow bus device reset" property (defaults to "enabled" if
6669	 * the property was not defined). This is to disable bus resets for
6670	 * certain kinds of error recovery. Note: In the future when a run-time
6671	 * fibre check is available the soft state flag should default to
6672	 * enabled.
6673	 */
6674	if (un->un_f_is_fibre == TRUE) {
6675		un->un_f_allow_bus_device_reset = TRUE;
6676	} else {
6677		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
6678		    "allow-bus-device-reset", 1) != 0) {
6679			un->un_f_allow_bus_device_reset = TRUE;
6680			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6681			    "sd_unit_attach: un:0x%p Bus device reset "
6682			    "enabled\n", un);
6683		} else {
6684			un->un_f_allow_bus_device_reset = FALSE;
6685			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6686			    "sd_unit_attach: un:0x%p Bus device reset "
6687			    "disabled\n", un);
6688		}
6689	}
6690
6691	/*
6692	 * Check if this is an ATAPI device. ATAPI devices use Group 1
6693	 * Read/Write commands and Group 2 Mode Sense/Select commands.
6694	 *
6695	 * Note: The "obsolete" way of doing this is to check for the "atapi"
6696	 * property. The new "variant" property with a value of "atapi" has been
6697	 * introduced so that future 'variants' of standard SCSI behavior (like
6698	 * atapi) could be specified by the underlying HBA drivers by supplying
6699	 * a new value for the "variant" property, instead of having to define a
6700	 * new property.
6701	 */
6702	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
6703		un->un_f_cfg_is_atapi = TRUE;
6704		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6705		    "sd_unit_attach: un:0x%p Atapi device\n", un);
6706	}
6707	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
6708	    &variantp) == DDI_PROP_SUCCESS) {
6709		if (strcmp(variantp, "atapi") == 0) {
6710			un->un_f_cfg_is_atapi = TRUE;
6711			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6712			    "sd_unit_attach: un:0x%p Atapi device\n", un);
6713		}
6714		ddi_prop_free(variantp);
6715	}
6716
6717	un->un_cmd_timeout	= SD_IO_TIME;
6718
6719	/* Info on current states, statuses, etc. (Updated frequently) */
6720	un->un_state		= SD_STATE_NORMAL;
6721	un->un_last_state	= SD_STATE_NORMAL;
6722
6723	/* Control & status info for command throttling */
6724	un->un_throttle		= sd_max_throttle;
6725	un->un_saved_throttle	= sd_max_throttle;
6726	un->un_min_throttle	= sd_min_throttle;
6727
6728	if (un->un_f_is_fibre == TRUE) {
6729		un->un_f_use_adaptive_throttle = TRUE;
6730	} else {
6731		un->un_f_use_adaptive_throttle = FALSE;
6732	}
6733
6734	/* Removable media support. */
6735	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
6736	un->un_mediastate		= DKIO_NONE;
6737	un->un_specified_mediastate	= DKIO_NONE;
6738
6739	/* CVs for suspend/resume (PM or DR) */
6740	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
6741	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
6742
6743	/* Power management support. */
6744	un->un_power_level = SD_SPINDLE_UNINIT;
6745
6746	cv_init(&un->un_wcc_cv,   NULL, CV_DRIVER, NULL);
6747	un->un_f_wcc_inprog = 0;
6748
6749	/*
6750	 * The open/close semaphore is used to serialize threads executing
6751	 * in the driver's open & close entry point routines for a given
6752	 * instance.
6753	 */
6754	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
6755
6756	/*
6757	 * The conf file entry and softstate variable is a forceful override,
6758	 * meaning a non-zero value must be entered to change the default.
6759	 */
6760	un->un_f_disksort_disabled = FALSE;
6761
6762	/*
6763	 * Retrieve the properties from the static driver table or the driver
6764	 * configuration file (.conf) for this unit and update the soft state
6765	 * for the device as needed for the indicated properties.
6766	 * Note: the property configuration needs to occur here as some of the
6767	 * following routines may have dependancies on soft state flags set
6768	 * as part of the driver property configuration.
6769	 */
6770	sd_read_unit_properties(un);
6771	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6772	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
6773
6774	/*
6775	 * Only if a device has "hotpluggable" property, it is
6776	 * treated as hotpluggable device. Otherwise, it is
6777	 * regarded as non-hotpluggable one.
6778	 */
6779	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable",
6780	    -1) != -1) {
6781		un->un_f_is_hotpluggable = TRUE;
6782	}
6783
6784	/*
6785	 * set unit's attributes(flags) according to "hotpluggable" and
6786	 * RMB bit in INQUIRY data.
6787	 */
6788	sd_set_unit_attributes(un, devi);
6789
6790	/*
6791	 * By default, we mark the capacity, lbasize, and geometry
6792	 * as invalid. Only if we successfully read a valid capacity
6793	 * will we update the un_blockcount and un_tgt_blocksize with the
6794	 * valid values (the geometry will be validated later).
6795	 */
6796	un->un_f_blockcount_is_valid	= FALSE;
6797	un->un_f_tgt_blocksize_is_valid	= FALSE;
6798
6799	/*
6800	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
6801	 * otherwise.
6802	 */
6803	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
6804	un->un_blockcount = 0;
6805
6806	/*
6807	 * Set up the per-instance info needed to determine the correct
6808	 * CDBs and other info for issuing commands to the target.
6809	 */
6810	sd_init_cdb_limits(un);
6811
6812	/*
6813	 * Set up the IO chains to use, based upon the target type.
6814	 */
6815	if (un->un_f_non_devbsize_supported) {
6816		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
6817	} else {
6818		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
6819	}
6820	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
6821	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
6822	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
6823
6824	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
6825	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
6826	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
6827	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
6828
6829
6830	if (ISCD(un)) {
6831		un->un_additional_codes = sd_additional_codes;
6832	} else {
6833		un->un_additional_codes = NULL;
6834	}
6835
6836	/*
6837	 * Create the kstats here so they can be available for attach-time
6838	 * routines that send commands to the unit (either polled or via
6839	 * sd_send_scsi_cmd).
6840	 *
6841	 * Note: This is a critical sequence that needs to be maintained:
6842	 *	1) Instantiate the kstats here, before any routines using the
6843	 *	   iopath (i.e. sd_send_scsi_cmd).
6844	 *	2) Instantiate and initialize the partition stats
6845	 *	   (sd_set_pstats).
6846	 *	3) Initialize the error stats (sd_set_errstats), following
6847	 *	   sd_validate_geometry(),sd_register_devid(),
6848	 *	   and sd_cache_control().
6849	 */
6850
6851	un->un_stats = kstat_create(sd_label, instance,
6852	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
6853	if (un->un_stats != NULL) {
6854		un->un_stats->ks_lock = SD_MUTEX(un);
6855		kstat_install(un->un_stats);
6856	}
6857	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6858	    "sd_unit_attach: un:0x%p un_stats created\n", un);
6859
6860	sd_create_errstats(un, instance);
6861	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6862	    "sd_unit_attach: un:0x%p errstats created\n", un);
6863
6864	/*
6865	 * The following if/else code was relocated here from below as part
6866	 * of the fix for bug (4430280). However with the default setup added
6867	 * on entry to this routine, it's no longer absolutely necessary for
6868	 * this to be before the call to sd_spin_up_unit.
6869	 */
6870	if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) {
6871		/*
6872		 * If SCSI-2 tagged queueing is supported by the target
6873		 * and by the host adapter then we will enable it.
6874		 */
6875		un->un_tagflags = 0;
6876		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) &&
6877		    (devp->sd_inq->inq_cmdque) &&
6878		    (un->un_f_arq_enabled == TRUE)) {
6879			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
6880			    1, 1) == 1) {
6881				un->un_tagflags = FLAG_STAG;
6882				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6883				    "sd_unit_attach: un:0x%p tag queueing "
6884				    "enabled\n", un);
6885			} else if (scsi_ifgetcap(SD_ADDRESS(un),
6886			    "untagged-qing", 0) == 1) {
6887				un->un_f_opt_queueing = TRUE;
6888				un->un_saved_throttle = un->un_throttle =
6889				    min(un->un_throttle, 3);
6890			} else {
6891				un->un_f_opt_queueing = FALSE;
6892				un->un_saved_throttle = un->un_throttle = 1;
6893			}
6894		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
6895		    == 1) && (un->un_f_arq_enabled == TRUE)) {
6896			/* The Host Adapter supports internal queueing. */
6897			un->un_f_opt_queueing = TRUE;
6898			un->un_saved_throttle = un->un_throttle =
6899			    min(un->un_throttle, 3);
6900		} else {
6901			un->un_f_opt_queueing = FALSE;
6902			un->un_saved_throttle = un->un_throttle = 1;
6903			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6904			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
6905		}
6906
6907		/*
6908		 * Enable large transfers for SATA/SAS drives
6909		 */
6910		if (SD_IS_SERIAL(un)) {
6911			un->un_max_xfer_size =
6912			    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
6913			    sd_max_xfer_size, SD_MAX_XFER_SIZE);
6914			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6915			    "sd_unit_attach: un:0x%p max transfer "
6916			    "size=0x%x\n", un, un->un_max_xfer_size);
6917
6918		}
6919
6920		/* Setup or tear down default wide operations for disks */
6921
6922		/*
6923		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
6924		 * and "ssd_max_xfer_size" to exist simultaneously on the same
6925		 * system and be set to different values. In the future this
6926		 * code may need to be updated when the ssd module is
6927		 * obsoleted and removed from the system. (4299588)
6928		 */
6929		if (SD_IS_PARALLEL_SCSI(un) &&
6930		    (devp->sd_inq->inq_rdf == RDF_SCSI2) &&
6931		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
6932			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
6933			    1, 1) == 1) {
6934				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6935				    "sd_unit_attach: un:0x%p Wide Transfer "
6936				    "enabled\n", un);
6937			}
6938
6939			/*
6940			 * If tagged queuing has also been enabled, then
6941			 * enable large xfers
6942			 */
6943			if (un->un_saved_throttle == sd_max_throttle) {
6944				un->un_max_xfer_size =
6945				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
6946				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
6947				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6948				    "sd_unit_attach: un:0x%p max transfer "
6949				    "size=0x%x\n", un, un->un_max_xfer_size);
6950			}
6951		} else {
6952			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
6953			    0, 1) == 1) {
6954				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6955				    "sd_unit_attach: un:0x%p "
6956				    "Wide Transfer disabled\n", un);
6957			}
6958		}
6959	} else {
6960		un->un_tagflags = FLAG_STAG;
6961		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
6962		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
6963	}
6964
6965	/*
6966	 * If this target supports LUN reset, try to enable it.
6967	 */
6968	if (un->un_f_lun_reset_enabled) {
6969		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
6970			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
6971			    "un:0x%p lun_reset capability set\n", un);
6972		} else {
6973			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
6974			    "un:0x%p lun-reset capability not set\n", un);
6975		}
6976	}
6977
6978	/*
6979	 * At this point in the attach, we have enough info in the
6980	 * soft state to be able to issue commands to the target.
6981	 *
6982	 * All command paths used below MUST issue their commands as
6983	 * SD_PATH_DIRECT. This is important as intermediate layers
6984	 * are not all initialized yet (such as PM).
6985	 */
6986
6987	/*
6988	 * Send a TEST UNIT READY command to the device. This should clear
6989	 * any outstanding UNIT ATTENTION that may be present.
6990	 *
6991	 * Note: Don't check for success, just track if there is a reservation,
6992	 * this is a throw away command to clear any unit attentions.
6993	 *
6994	 * Note: This MUST be the first command issued to the target during
6995	 * attach to ensure power on UNIT ATTENTIONS are cleared.
6996	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
6997	 * with attempts at spinning up a device with no media.
6998	 */
6999	if (sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR) == EACCES) {
7000		reservation_flag = SD_TARGET_IS_RESERVED;
7001	}
7002
7003	/*
7004	 * If the device is NOT a removable media device, attempt to spin
7005	 * it up (using the START_STOP_UNIT command) and read its capacity
7006	 * (using the READ CAPACITY command).  Note, however, that either
7007	 * of these could fail and in some cases we would continue with
7008	 * the attach despite the failure (see below).
7009	 */
7010	if (un->un_f_descr_format_supported) {
7011		switch (sd_spin_up_unit(un)) {
7012		case 0:
7013			/*
7014			 * Spin-up was successful; now try to read the
7015			 * capacity.  If successful then save the results
7016			 * and mark the capacity & lbasize as valid.
7017			 */
7018			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7019			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
7020
7021			switch (sd_send_scsi_READ_CAPACITY(un, &capacity,
7022			    &lbasize, SD_PATH_DIRECT)) {
7023			case 0: {
7024				if (capacity > DK_MAX_BLOCKS) {
7025#ifdef _LP64
7026					if (capacity + 1 >
7027					    SD_GROUP1_MAX_ADDRESS) {
7028						/*
7029						 * Enable descriptor format
7030						 * sense data so that we can
7031						 * get 64 bit sense data
7032						 * fields.
7033						 */
7034						sd_enable_descr_sense(un);
7035					}
7036#else
7037					/* 32-bit kernels can't handle this */
7038					scsi_log(SD_DEVINFO(un),
7039					    sd_label, CE_WARN,
7040					    "disk has %llu blocks, which "
7041					    "is too large for a 32-bit "
7042					    "kernel", capacity);
7043
7044#if defined(__i386) || defined(__amd64)
7045					/*
7046					 * 1TB disk was treated as (1T - 512)B
7047					 * in the past, so that it might have
7048					 * valid VTOC and solaris partitions,
7049					 * we have to allow it to continue to
7050					 * work.
7051					 */
7052					if (capacity -1 > DK_MAX_BLOCKS)
7053#endif
7054					goto spinup_failed;
7055#endif
7056				}
7057
7058				/*
7059				 * Here it's not necessary to check the case:
7060				 * the capacity of the device is bigger than
7061				 * what the max hba cdb can support. Because
7062				 * sd_send_scsi_READ_CAPACITY will retrieve
7063				 * the capacity by sending USCSI command, which
7064				 * is constrained by the max hba cdb. Actually,
7065				 * sd_send_scsi_READ_CAPACITY will return
7066				 * EINVAL when using bigger cdb than required
7067				 * cdb length. Will handle this case in
7068				 * "case EINVAL".
7069				 */
7070
7071				/*
7072				 * The following relies on
7073				 * sd_send_scsi_READ_CAPACITY never
7074				 * returning 0 for capacity and/or lbasize.
7075				 */
7076				sd_update_block_info(un, lbasize, capacity);
7077
7078				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7079				    "sd_unit_attach: un:0x%p capacity = %ld "
7080				    "blocks; lbasize= %ld.\n", un,
7081				    un->un_blockcount, un->un_tgt_blocksize);
7082
7083				break;
7084			}
7085			case EINVAL:
7086				/*
7087				 * In the case where the max-cdb-length property
7088				 * is smaller than the required CDB length for
7089				 * a SCSI device, a target driver can fail to
7090				 * attach to that device.
7091				 */
7092				scsi_log(SD_DEVINFO(un),
7093				    sd_label, CE_WARN,
7094				    "disk capacity is too large "
7095				    "for current cdb length");
7096				goto spinup_failed;
7097			case EACCES:
7098				/*
7099				 * Should never get here if the spin-up
7100				 * succeeded, but code it in anyway.
7101				 * From here, just continue with the attach...
7102				 */
7103				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7104				    "sd_unit_attach: un:0x%p "
7105				    "sd_send_scsi_READ_CAPACITY "
7106				    "returned reservation conflict\n", un);
7107				reservation_flag = SD_TARGET_IS_RESERVED;
7108				break;
7109			default:
7110				/*
7111				 * Likewise, should never get here if the
7112				 * spin-up succeeded. Just continue with
7113				 * the attach...
7114				 */
7115				break;
7116			}
7117			break;
7118		case EACCES:
7119			/*
7120			 * Device is reserved by another host.  In this case
7121			 * we could not spin it up or read the capacity, but
7122			 * we continue with the attach anyway.
7123			 */
7124			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7125			    "sd_unit_attach: un:0x%p spin-up reservation "
7126			    "conflict.\n", un);
7127			reservation_flag = SD_TARGET_IS_RESERVED;
7128			break;
7129		default:
7130			/* Fail the attach if the spin-up failed. */
7131			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7132			    "sd_unit_attach: un:0x%p spin-up failed.", un);
7133			goto spinup_failed;
7134		}
7135	}
7136
7137	/*
7138	 * Check to see if this is a MMC drive
7139	 */
7140	if (ISCD(un)) {
7141		sd_set_mmc_caps(un);
7142	}
7143
7144
7145	/*
7146	 * Add a zero-length attribute to tell the world we support
7147	 * kernel ioctls (for layered drivers)
7148	 */
7149	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
7150	    DDI_KERNEL_IOCTL, NULL, 0);
7151
7152	/*
7153	 * Add a boolean property to tell the world we support
7154	 * the B_FAILFAST flag (for layered drivers)
7155	 */
7156	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
7157	    "ddi-failfast-supported", NULL, 0);
7158
7159	/*
7160	 * Initialize power management
7161	 */
7162	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
7163	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
7164	sd_setup_pm(un, devi);
7165	if (un->un_f_pm_is_enabled == FALSE) {
7166		/*
7167		 * For performance, point to a jump table that does
7168		 * not include pm.
7169		 * The direct and priority chains don't change with PM.
7170		 *
7171		 * Note: this is currently done based on individual device
7172		 * capabilities. When an interface for determining system
7173		 * power enabled state becomes available, or when additional
7174		 * layers are added to the command chain, these values will
7175		 * have to be re-evaluated for correctness.
7176		 */
7177		if (un->un_f_non_devbsize_supported) {
7178			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
7179		} else {
7180			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
7181		}
7182		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
7183	}
7184
7185	/*
7186	 * This property is set to 0 by HA software to avoid retries
7187	 * on a reserved disk. (The preferred property name is
7188	 * "retry-on-reservation-conflict") (1189689)
7189	 *
7190	 * Note: The use of a global here can have unintended consequences. A
7191	 * per instance variable is preferrable to match the capabilities of
7192	 * different underlying hba's (4402600)
7193	 */
7194	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
7195	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
7196	    sd_retry_on_reservation_conflict);
7197	if (sd_retry_on_reservation_conflict != 0) {
7198		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
7199		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
7200		    sd_retry_on_reservation_conflict);
7201	}
7202
7203	/* Set up options for QFULL handling. */
7204	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7205	    "qfull-retries", -1)) != -1) {
7206		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
7207		    rval, 1);
7208	}
7209	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7210	    "qfull-retry-interval", -1)) != -1) {
7211		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
7212		    rval, 1);
7213	}
7214
7215	/*
7216	 * This just prints a message that announces the existence of the
7217	 * device. The message is always printed in the system logfile, but
7218	 * only appears on the console if the system is booted with the
7219	 * -v (verbose) argument.
7220	 */
7221	ddi_report_dev(devi);
7222
7223	un->un_mediastate = DKIO_NONE;
7224
7225	cmlb_alloc_handle(&un->un_cmlbhandle);
7226
7227#if defined(__i386) || defined(__amd64)
7228	/*
7229	 * On x86, compensate for off-by-1 legacy error
7230	 */
7231	if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable &&
7232	    (lbasize == un->un_sys_blocksize))
7233		offbyone = CMLB_OFF_BY_ONE;
7234#endif
7235
7236	if (cmlb_attach(devi, &sd_tgops, (int)devp->sd_inq->inq_dtype,
7237	    un->un_f_has_removable_media, un->un_f_is_hotpluggable,
7238	    un->un_node_type, offbyone, un->un_cmlbhandle,
7239	    (void *)SD_PATH_DIRECT) != 0) {
7240		goto cmlb_attach_failed;
7241	}
7242
7243
7244	/*
7245	 * Read and validate the device's geometry (ie, disk label)
7246	 * A new unformatted drive will not have a valid geometry, but
7247	 * the driver needs to successfully attach to this device so
7248	 * the drive can be formatted via ioctls.
7249	 */
7250	geom_label_valid = (cmlb_validate(un->un_cmlbhandle, 0,
7251	    (void *)SD_PATH_DIRECT) == 0) ? 1: 0;
7252
7253	mutex_enter(SD_MUTEX(un));
7254
7255	/*
7256	 * Read and initialize the devid for the unit.
7257	 */
7258	ASSERT(un->un_errstats != NULL);
7259	if (un->un_f_devid_supported) {
7260		sd_register_devid(un, devi, reservation_flag);
7261	}
7262	mutex_exit(SD_MUTEX(un));
7263
7264#if (defined(__fibre))
7265	/*
7266	 * Register callbacks for fibre only.  You can't do this soley
7267	 * on the basis of the devid_type because this is hba specific.
7268	 * We need to query our hba capabilities to find out whether to
7269	 * register or not.
7270	 */
7271	if (un->un_f_is_fibre) {
7272		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
7273			sd_init_event_callbacks(un);
7274			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7275			    "sd_unit_attach: un:0x%p event callbacks inserted",
7276			    un);
7277		}
7278	}
7279#endif
7280
7281	if (un->un_f_opt_disable_cache == TRUE) {
7282		/*
7283		 * Disable both read cache and write cache.  This is
7284		 * the historic behavior of the keywords in the config file.
7285		 */
7286		if (sd_cache_control(un, SD_CACHE_DISABLE, SD_CACHE_DISABLE) !=
7287		    0) {
7288			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7289			    "sd_unit_attach: un:0x%p Could not disable "
7290			    "caching", un);
7291			goto devid_failed;
7292		}
7293	}
7294
7295	/*
7296	 * Check the value of the WCE bit now and
7297	 * set un_f_write_cache_enabled accordingly.
7298	 */
7299	(void) sd_get_write_cache_enabled(un, &wc_enabled);
7300	mutex_enter(SD_MUTEX(un));
7301	un->un_f_write_cache_enabled = (wc_enabled != 0);
7302	mutex_exit(SD_MUTEX(un));
7303
7304	/*
7305	 * Find out what type of reservation this disk supports.
7306	 */
7307	switch (sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS, 0, NULL)) {
7308	case 0:
7309		/*
7310		 * SCSI-3 reservations are supported.
7311		 */
7312		un->un_reservation_type = SD_SCSI3_RESERVATION;
7313		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7314		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
7315		break;
7316	case ENOTSUP:
7317		/*
7318		 * The PERSISTENT RESERVE IN command would not be recognized by
7319		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
7320		 */
7321		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7322		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
7323		un->un_reservation_type = SD_SCSI2_RESERVATION;
7324		break;
7325	default:
7326		/*
7327		 * default to SCSI-3 reservations
7328		 */
7329		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7330		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
7331		un->un_reservation_type = SD_SCSI3_RESERVATION;
7332		break;
7333	}
7334
7335	/*
7336	 * Set the pstat and error stat values here, so data obtained during the
7337	 * previous attach-time routines is available.
7338	 *
7339	 * Note: This is a critical sequence that needs to be maintained:
7340	 *	1) Instantiate the kstats before any routines using the iopath
7341	 *	   (i.e. sd_send_scsi_cmd).
7342	 *	2) Initialize the error stats (sd_set_errstats) and partition
7343	 *	   stats (sd_set_pstats)here, following
7344	 *	   cmlb_validate_geometry(), sd_register_devid(), and
7345	 *	   sd_cache_control().
7346	 */
7347
7348	if (un->un_f_pkstats_enabled && geom_label_valid) {
7349		sd_set_pstats(un);
7350		SD_TRACE(SD_LOG_IO_PARTITION, un,
7351		    "sd_unit_attach: un:0x%p pstats created and set\n", un);
7352	}
7353
7354	sd_set_errstats(un);
7355	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7356	    "sd_unit_attach: un:0x%p errstats set\n", un);
7357
7358
7359	/*
7360	 * After successfully attaching an instance, we record the information
7361	 * of how many luns have been attached on the relative target and
7362	 * controller for parallel SCSI. This information is used when sd tries
7363	 * to set the tagged queuing capability in HBA.
7364	 */
7365	if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) {
7366		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH);
7367	}
7368
7369	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7370	    "sd_unit_attach: un:0x%p exit success\n", un);
7371
7372	return (DDI_SUCCESS);
7373
7374	/*
7375	 * An error occurred during the attach; clean up & return failure.
7376	 */
7377
7378devid_failed:
7379
7380setup_pm_failed:
7381	ddi_remove_minor_node(devi, NULL);
7382
7383cmlb_attach_failed:
7384	/*
7385	 * Cleanup from the scsi_ifsetcap() calls (437868)
7386	 */
7387	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
7388	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
7389
7390	/*
7391	 * Refer to the comments of setting tagged-qing in the beginning of
7392	 * sd_unit_attach. We can only disable tagged queuing when there is
7393	 * no lun attached on the target.
7394	 */
7395	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
7396		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
7397	}
7398
7399	if (un->un_f_is_fibre == FALSE) {
7400		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
7401	}
7402
7403spinup_failed:
7404
7405	mutex_enter(SD_MUTEX(un));
7406
7407	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
7408	if (un->un_direct_priority_timeid != NULL) {
7409		timeout_id_t temp_id = un->un_direct_priority_timeid;
7410		un->un_direct_priority_timeid = NULL;
7411		mutex_exit(SD_MUTEX(un));
7412		(void) untimeout(temp_id);
7413		mutex_enter(SD_MUTEX(un));
7414	}
7415
7416	/* Cancel any pending start/stop timeouts */
7417	if (un->un_startstop_timeid != NULL) {
7418		timeout_id_t temp_id = un->un_startstop_timeid;
7419		un->un_startstop_timeid = NULL;
7420		mutex_exit(SD_MUTEX(un));
7421		(void) untimeout(temp_id);
7422		mutex_enter(SD_MUTEX(un));
7423	}
7424
7425	/* Cancel any pending reset-throttle timeouts */
7426	if (un->un_reset_throttle_timeid != NULL) {
7427		timeout_id_t temp_id = un->un_reset_throttle_timeid;
7428		un->un_reset_throttle_timeid = NULL;
7429		mutex_exit(SD_MUTEX(un));
7430		(void) untimeout(temp_id);
7431		mutex_enter(SD_MUTEX(un));
7432	}
7433
7434	/* Cancel any pending retry timeouts */
7435	if (un->un_retry_timeid != NULL) {
7436		timeout_id_t temp_id = un->un_retry_timeid;
7437		un->un_retry_timeid = NULL;
7438		mutex_exit(SD_MUTEX(un));
7439		(void) untimeout(temp_id);
7440		mutex_enter(SD_MUTEX(un));
7441	}
7442
7443	/* Cancel any pending delayed cv broadcast timeouts */
7444	if (un->un_dcvb_timeid != NULL) {
7445		timeout_id_t temp_id = un->un_dcvb_timeid;
7446		un->un_dcvb_timeid = NULL;
7447		mutex_exit(SD_MUTEX(un));
7448		(void) untimeout(temp_id);
7449		mutex_enter(SD_MUTEX(un));
7450	}
7451
7452	mutex_exit(SD_MUTEX(un));
7453
7454	/* There should not be any in-progress I/O so ASSERT this check */
7455	ASSERT(un->un_ncmds_in_transport == 0);
7456	ASSERT(un->un_ncmds_in_driver == 0);
7457
7458	/* Do not free the softstate if the callback routine is active */
7459	sd_sync_with_callback(un);
7460
7461	/*
7462	 * Partition stats apparently are not used with removables. These would
7463	 * not have been created during attach, so no need to clean them up...
7464	 */
7465	if (un->un_stats != NULL) {
7466		kstat_delete(un->un_stats);
7467		un->un_stats = NULL;
7468	}
7469	if (un->un_errstats != NULL) {
7470		kstat_delete(un->un_errstats);
7471		un->un_errstats = NULL;
7472	}
7473
7474	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
7475	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
7476
7477	ddi_prop_remove_all(devi);
7478	sema_destroy(&un->un_semoclose);
7479	cv_destroy(&un->un_state_cv);
7480
7481getrbuf_failed:
7482
7483	sd_free_rqs(un);
7484
7485alloc_rqs_failed:
7486
7487	devp->sd_private = NULL;
7488	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
7489
7490get_softstate_failed:
7491	/*
7492	 * Note: the man pages are unclear as to whether or not doing a
7493	 * ddi_soft_state_free(sd_state, instance) is the right way to
7494	 * clean up after the ddi_soft_state_zalloc() if the subsequent
7495	 * ddi_get_soft_state() fails.  The implication seems to be
7496	 * that the get_soft_state cannot fail if the zalloc succeeds.
7497	 */
7498	ddi_soft_state_free(sd_state, instance);
7499
7500probe_failed:
7501	scsi_unprobe(devp);
7502#ifdef SDDEBUG
7503	if ((sd_component_mask & SD_LOG_ATTACH_DETACH) &&
7504	    (sd_level_mask & SD_LOGMASK_TRACE)) {
7505		cmn_err(CE_CONT, "sd_unit_attach: un:0x%p exit failure\n",
7506		    (void *)un);
7507	}
7508#endif
7509	return (DDI_FAILURE);
7510}
7511
7512
7513/*
7514 *    Function: sd_unit_detach
7515 *
7516 * Description: Performs DDI_DETACH processing for sddetach().
7517 *
7518 * Return Code: DDI_SUCCESS
7519 *		DDI_FAILURE
7520 *
7521 *     Context: Kernel thread context
7522 */
7523
7524static int
7525sd_unit_detach(dev_info_t *devi)
7526{
7527	struct scsi_device	*devp;
7528	struct sd_lun		*un;
7529	int			i;
7530	int			tgt;
7531	dev_t			dev;
7532	dev_info_t		*pdip = ddi_get_parent(devi);
7533	int			instance = ddi_get_instance(devi);
7534
7535	mutex_enter(&sd_detach_mutex);
7536
7537	/*
7538	 * Fail the detach for any of the following:
7539	 *  - Unable to get the sd_lun struct for the instance
7540	 *  - A layered driver has an outstanding open on the instance
7541	 *  - Another thread is already detaching this instance
7542	 *  - Another thread is currently performing an open
7543	 */
7544	devp = ddi_get_driver_private(devi);
7545	if ((devp == NULL) ||
7546	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
7547	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
7548	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
7549		mutex_exit(&sd_detach_mutex);
7550		return (DDI_FAILURE);
7551	}
7552
7553	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
7554
7555	/*
7556	 * Mark this instance as currently in a detach, to inhibit any
7557	 * opens from a layered driver.
7558	 */
7559	un->un_detach_count++;
7560	mutex_exit(&sd_detach_mutex);
7561
7562	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7563	    SCSI_ADDR_PROP_TARGET, -1);
7564
7565	dev = sd_make_device(SD_DEVINFO(un));
7566
7567#ifndef lint
7568	_NOTE(COMPETING_THREADS_NOW);
7569#endif
7570
7571	mutex_enter(SD_MUTEX(un));
7572
7573	/*
7574	 * Fail the detach if there are any outstanding layered
7575	 * opens on this device.
7576	 */
7577	for (i = 0; i < NDKMAP; i++) {
7578		if (un->un_ocmap.lyropen[i] != 0) {
7579			goto err_notclosed;
7580		}
7581	}
7582
7583	/*
7584	 * Verify there are NO outstanding commands issued to this device.
7585	 * ie, un_ncmds_in_transport == 0.
7586	 * It's possible to have outstanding commands through the physio
7587	 * code path, even though everything's closed.
7588	 */
7589	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
7590	    (un->un_direct_priority_timeid != NULL) ||
7591	    (un->un_state == SD_STATE_RWAIT)) {
7592		mutex_exit(SD_MUTEX(un));
7593		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7594		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
7595		goto err_stillbusy;
7596	}
7597
7598	/*
7599	 * If we have the device reserved, release the reservation.
7600	 */
7601	if ((un->un_resvd_status & SD_RESERVE) &&
7602	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
7603		mutex_exit(SD_MUTEX(un));
7604		/*
7605		 * Note: sd_reserve_release sends a command to the device
7606		 * via the sd_ioctlcmd() path, and can sleep.
7607		 */
7608		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
7609			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7610			    "sd_dr_detach: Cannot release reservation \n");
7611		}
7612	} else {
7613		mutex_exit(SD_MUTEX(un));
7614	}
7615
7616	/*
7617	 * Untimeout any reserve recover, throttle reset, restart unit
7618	 * and delayed broadcast timeout threads. Protect the timeout pointer
7619	 * from getting nulled by their callback functions.
7620	 */
7621	mutex_enter(SD_MUTEX(un));
7622	if (un->un_resvd_timeid != NULL) {
7623		timeout_id_t temp_id = un->un_resvd_timeid;
7624		un->un_resvd_timeid = NULL;
7625		mutex_exit(SD_MUTEX(un));
7626		(void) untimeout(temp_id);
7627		mutex_enter(SD_MUTEX(un));
7628	}
7629
7630	if (un->un_reset_throttle_timeid != NULL) {
7631		timeout_id_t temp_id = un->un_reset_throttle_timeid;
7632		un->un_reset_throttle_timeid = NULL;
7633		mutex_exit(SD_MUTEX(un));
7634		(void) untimeout(temp_id);
7635		mutex_enter(SD_MUTEX(un));
7636	}
7637
7638	if (un->un_startstop_timeid != NULL) {
7639		timeout_id_t temp_id = un->un_startstop_timeid;
7640		un->un_startstop_timeid = NULL;
7641		mutex_exit(SD_MUTEX(un));
7642		(void) untimeout(temp_id);
7643		mutex_enter(SD_MUTEX(un));
7644	}
7645
7646	if (un->un_dcvb_timeid != NULL) {
7647		timeout_id_t temp_id = un->un_dcvb_timeid;
7648		un->un_dcvb_timeid = NULL;
7649		mutex_exit(SD_MUTEX(un));
7650		(void) untimeout(temp_id);
7651	} else {
7652		mutex_exit(SD_MUTEX(un));
7653	}
7654
7655	/* Remove any pending reservation reclaim requests for this device */
7656	sd_rmv_resv_reclaim_req(dev);
7657
7658	mutex_enter(SD_MUTEX(un));
7659
7660	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
7661	if (un->un_direct_priority_timeid != NULL) {
7662		timeout_id_t temp_id = un->un_direct_priority_timeid;
7663		un->un_direct_priority_timeid = NULL;
7664		mutex_exit(SD_MUTEX(un));
7665		(void) untimeout(temp_id);
7666		mutex_enter(SD_MUTEX(un));
7667	}
7668
7669	/* Cancel any active multi-host disk watch thread requests */
7670	if (un->un_mhd_token != NULL) {
7671		mutex_exit(SD_MUTEX(un));
7672		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
7673		if (scsi_watch_request_terminate(un->un_mhd_token,
7674		    SCSI_WATCH_TERMINATE_NOWAIT)) {
7675			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7676			    "sd_dr_detach: Cannot cancel mhd watch request\n");
7677			/*
7678			 * Note: We are returning here after having removed
7679			 * some driver timeouts above. This is consistent with
7680			 * the legacy implementation but perhaps the watch
7681			 * terminate call should be made with the wait flag set.
7682			 */
7683			goto err_stillbusy;
7684		}
7685		mutex_enter(SD_MUTEX(un));
7686		un->un_mhd_token = NULL;
7687	}
7688
7689	if (un->un_swr_token != NULL) {
7690		mutex_exit(SD_MUTEX(un));
7691		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
7692		if (scsi_watch_request_terminate(un->un_swr_token,
7693		    SCSI_WATCH_TERMINATE_NOWAIT)) {
7694			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7695			    "sd_dr_detach: Cannot cancel swr watch request\n");
7696			/*
7697			 * Note: We are returning here after having removed
7698			 * some driver timeouts above. This is consistent with
7699			 * the legacy implementation but perhaps the watch
7700			 * terminate call should be made with the wait flag set.
7701			 */
7702			goto err_stillbusy;
7703		}
7704		mutex_enter(SD_MUTEX(un));
7705		un->un_swr_token = NULL;
7706	}
7707
7708	mutex_exit(SD_MUTEX(un));
7709
7710	/*
7711	 * Clear any scsi_reset_notifies. We clear the reset notifies
7712	 * if we have not registered one.
7713	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
7714	 */
7715	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
7716	    sd_mhd_reset_notify_cb, (caddr_t)un);
7717
7718	/*
7719	 * protect the timeout pointers from getting nulled by
7720	 * their callback functions during the cancellation process.
7721	 * In such a scenario untimeout can be invoked with a null value.
7722	 */
7723	_NOTE(NO_COMPETING_THREADS_NOW);
7724
7725	mutex_enter(&un->un_pm_mutex);
7726	if (un->un_pm_idle_timeid != NULL) {
7727		timeout_id_t temp_id = un->un_pm_idle_timeid;
7728		un->un_pm_idle_timeid = NULL;
7729		mutex_exit(&un->un_pm_mutex);
7730
7731		/*
7732		 * Timeout is active; cancel it.
7733		 * Note that it'll never be active on a device
7734		 * that does not support PM therefore we don't
7735		 * have to check before calling pm_idle_component.
7736		 */
7737		(void) untimeout(temp_id);
7738		(void) pm_idle_component(SD_DEVINFO(un), 0);
7739		mutex_enter(&un->un_pm_mutex);
7740	}
7741
7742	/*
7743	 * Check whether there is already a timeout scheduled for power
7744	 * management. If yes then don't lower the power here, that's.
7745	 * the timeout handler's job.
7746	 */
7747	if (un->un_pm_timeid != NULL) {
7748		timeout_id_t temp_id = un->un_pm_timeid;
7749		un->un_pm_timeid = NULL;
7750		mutex_exit(&un->un_pm_mutex);
7751		/*
7752		 * Timeout is active; cancel it.
7753		 * Note that it'll never be active on a device
7754		 * that does not support PM therefore we don't
7755		 * have to check before calling pm_idle_component.
7756		 */
7757		(void) untimeout(temp_id);
7758		(void) pm_idle_component(SD_DEVINFO(un), 0);
7759
7760	} else {
7761		mutex_exit(&un->un_pm_mutex);
7762		if ((un->un_f_pm_is_enabled == TRUE) &&
7763		    (pm_lower_power(SD_DEVINFO(un), 0, SD_SPINDLE_OFF) !=
7764		    DDI_SUCCESS)) {
7765			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7766		    "sd_dr_detach: Lower power request failed, ignoring.\n");
7767			/*
7768			 * Fix for bug: 4297749, item # 13
7769			 * The above test now includes a check to see if PM is
7770			 * supported by this device before call
7771			 * pm_lower_power().
7772			 * Note, the following is not dead code. The call to
7773			 * pm_lower_power above will generate a call back into
7774			 * our sdpower routine which might result in a timeout
7775			 * handler getting activated. Therefore the following
7776			 * code is valid and necessary.
7777			 */
7778			mutex_enter(&un->un_pm_mutex);
7779			if (un->un_pm_timeid != NULL) {
7780				timeout_id_t temp_id = un->un_pm_timeid;
7781				un->un_pm_timeid = NULL;
7782				mutex_exit(&un->un_pm_mutex);
7783				(void) untimeout(temp_id);
7784				(void) pm_idle_component(SD_DEVINFO(un), 0);
7785			} else {
7786				mutex_exit(&un->un_pm_mutex);
7787			}
7788		}
7789	}
7790
7791	/*
7792	 * Cleanup from the scsi_ifsetcap() calls (437868)
7793	 * Relocated here from above to be after the call to
7794	 * pm_lower_power, which was getting errors.
7795	 */
7796	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
7797	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
7798
7799	/*
7800	 * Currently, tagged queuing is supported per target based by HBA.
7801	 * Setting this per lun instance actually sets the capability of this
7802	 * target in HBA, which affects those luns already attached on the
7803	 * same target. So during detach, we can only disable this capability
7804	 * only when this is the only lun left on this target. By doing
7805	 * this, we assume a target has the same tagged queuing capability
7806	 * for every lun. The condition can be removed when HBA is changed to
7807	 * support per lun based tagged queuing capability.
7808	 */
7809	if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) {
7810		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
7811	}
7812
7813	if (un->un_f_is_fibre == FALSE) {
7814		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
7815	}
7816
7817	/*
7818	 * Remove any event callbacks, fibre only
7819	 */
7820	if (un->un_f_is_fibre == TRUE) {
7821		if ((un->un_insert_event != NULL) &&
7822		    (ddi_remove_event_handler(un->un_insert_cb_id) !=
7823		    DDI_SUCCESS)) {
7824			/*
7825			 * Note: We are returning here after having done
7826			 * substantial cleanup above. This is consistent
7827			 * with the legacy implementation but this may not
7828			 * be the right thing to do.
7829			 */
7830			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7831			    "sd_dr_detach: Cannot cancel insert event\n");
7832			goto err_remove_event;
7833		}
7834		un->un_insert_event = NULL;
7835
7836		if ((un->un_remove_event != NULL) &&
7837		    (ddi_remove_event_handler(un->un_remove_cb_id) !=
7838		    DDI_SUCCESS)) {
7839			/*
7840			 * Note: We are returning here after having done
7841			 * substantial cleanup above. This is consistent
7842			 * with the legacy implementation but this may not
7843			 * be the right thing to do.
7844			 */
7845			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7846			    "sd_dr_detach: Cannot cancel remove event\n");
7847			goto err_remove_event;
7848		}
7849		un->un_remove_event = NULL;
7850	}
7851
7852	/* Do not free the softstate if the callback routine is active */
7853	sd_sync_with_callback(un);
7854
7855	cmlb_detach(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
7856	cmlb_free_handle(&un->un_cmlbhandle);
7857
7858	/*
7859	 * Hold the detach mutex here, to make sure that no other threads ever
7860	 * can access a (partially) freed soft state structure.
7861	 */
7862	mutex_enter(&sd_detach_mutex);
7863
7864	/*
7865	 * Clean up the soft state struct.
7866	 * Cleanup is done in reverse order of allocs/inits.
7867	 * At this point there should be no competing threads anymore.
7868	 */
7869
7870	/* Unregister and free device id. */
7871	ddi_devid_unregister(devi);
7872	if (un->un_devid) {
7873		ddi_devid_free(un->un_devid);
7874		un->un_devid = NULL;
7875	}
7876
7877	/*
7878	 * Destroy wmap cache if it exists.
7879	 */
7880	if (un->un_wm_cache != NULL) {
7881		kmem_cache_destroy(un->un_wm_cache);
7882		un->un_wm_cache = NULL;
7883	}
7884
7885	/*
7886	 * kstat cleanup is done in detach for all device types (4363169).
7887	 * We do not want to fail detach if the device kstats are not deleted
7888	 * since there is a confusion about the devo_refcnt for the device.
7889	 * We just delete the kstats and let detach complete successfully.
7890	 */
7891	if (un->un_stats != NULL) {
7892		kstat_delete(un->un_stats);
7893		un->un_stats = NULL;
7894	}
7895	if (un->un_errstats != NULL) {
7896		kstat_delete(un->un_errstats);
7897		un->un_errstats = NULL;
7898	}
7899
7900	/* Remove partition stats */
7901	if (un->un_f_pkstats_enabled) {
7902		for (i = 0; i < NSDMAP; i++) {
7903			if (un->un_pstats[i] != NULL) {
7904				kstat_delete(un->un_pstats[i]);
7905				un->un_pstats[i] = NULL;
7906			}
7907		}
7908	}
7909
7910	/* Remove xbuf registration */
7911	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
7912	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
7913
7914	/* Remove driver properties */
7915	ddi_prop_remove_all(devi);
7916
7917	mutex_destroy(&un->un_pm_mutex);
7918	cv_destroy(&un->un_pm_busy_cv);
7919
7920	cv_destroy(&un->un_wcc_cv);
7921
7922	/* Open/close semaphore */
7923	sema_destroy(&un->un_semoclose);
7924
7925	/* Removable media condvar. */
7926	cv_destroy(&un->un_state_cv);
7927
7928	/* Suspend/resume condvar. */
7929	cv_destroy(&un->un_suspend_cv);
7930	cv_destroy(&un->un_disk_busy_cv);
7931
7932	sd_free_rqs(un);
7933
7934	/* Free up soft state */
7935	devp->sd_private = NULL;
7936
7937	bzero(un, sizeof (struct sd_lun));
7938	ddi_soft_state_free(sd_state, instance);
7939
7940	mutex_exit(&sd_detach_mutex);
7941
7942	/* This frees up the INQUIRY data associated with the device. */
7943	scsi_unprobe(devp);
7944
7945	/*
7946	 * After successfully detaching an instance, we update the information
7947	 * of how many luns have been attached in the relative target and
7948	 * controller for parallel SCSI. This information is used when sd tries
7949	 * to set the tagged queuing capability in HBA.
7950	 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to
7951	 * check if the device is parallel SCSI. However, we don't need to
7952	 * check here because we've already checked during attach. No device
7953	 * that is not parallel SCSI is in the chain.
7954	 */
7955	if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) {
7956		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH);
7957	}
7958
7959	return (DDI_SUCCESS);
7960
7961err_notclosed:
7962	mutex_exit(SD_MUTEX(un));
7963
7964err_stillbusy:
7965	_NOTE(NO_COMPETING_THREADS_NOW);
7966
7967err_remove_event:
7968	mutex_enter(&sd_detach_mutex);
7969	un->un_detach_count--;
7970	mutex_exit(&sd_detach_mutex);
7971
7972	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
7973	return (DDI_FAILURE);
7974}
7975
7976
7977/*
7978 *    Function: sd_create_errstats
7979 *
7980 * Description: This routine instantiates the device error stats.
7981 *
7982 *		Note: During attach the stats are instantiated first so they are
7983 *		available for attach-time routines that utilize the driver
7984 *		iopath to send commands to the device. The stats are initialized
7985 *		separately so data obtained during some attach-time routines is
7986 *		available. (4362483)
7987 *
7988 *   Arguments: un - driver soft state (unit) structure
7989 *		instance - driver instance
7990 *
7991 *     Context: Kernel thread context
7992 */
7993
7994static void
7995sd_create_errstats(struct sd_lun *un, int instance)
7996{
7997	struct	sd_errstats	*stp;
7998	char	kstatmodule_err[KSTAT_STRLEN];
7999	char	kstatname[KSTAT_STRLEN];
8000	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
8001
8002	ASSERT(un != NULL);
8003
8004	if (un->un_errstats != NULL) {
8005		return;
8006	}
8007
8008	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
8009	    "%serr", sd_label);
8010	(void) snprintf(kstatname, sizeof (kstatname),
8011	    "%s%d,err", sd_label, instance);
8012
8013	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
8014	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
8015
8016	if (un->un_errstats == NULL) {
8017		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8018		    "sd_create_errstats: Failed kstat_create\n");
8019		return;
8020	}
8021
8022	stp = (struct sd_errstats *)un->un_errstats->ks_data;
8023	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
8024	    KSTAT_DATA_UINT32);
8025	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
8026	    KSTAT_DATA_UINT32);
8027	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
8028	    KSTAT_DATA_UINT32);
8029	kstat_named_init(&stp->sd_vid,		"Vendor",
8030	    KSTAT_DATA_CHAR);
8031	kstat_named_init(&stp->sd_pid,		"Product",
8032	    KSTAT_DATA_CHAR);
8033	kstat_named_init(&stp->sd_revision,	"Revision",
8034	    KSTAT_DATA_CHAR);
8035	kstat_named_init(&stp->sd_serial,	"Serial No",
8036	    KSTAT_DATA_CHAR);
8037	kstat_named_init(&stp->sd_capacity,	"Size",
8038	    KSTAT_DATA_ULONGLONG);
8039	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
8040	    KSTAT_DATA_UINT32);
8041	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
8042	    KSTAT_DATA_UINT32);
8043	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
8044	    KSTAT_DATA_UINT32);
8045	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
8046	    KSTAT_DATA_UINT32);
8047	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
8048	    KSTAT_DATA_UINT32);
8049	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
8050	    KSTAT_DATA_UINT32);
8051
8052	un->un_errstats->ks_private = un;
8053	un->un_errstats->ks_update  = nulldev;
8054
8055	kstat_install(un->un_errstats);
8056}
8057
8058
8059/*
8060 *    Function: sd_set_errstats
8061 *
8062 * Description: This routine sets the value of the vendor id, product id,
8063 *		revision, serial number, and capacity device error stats.
8064 *
8065 *		Note: During attach the stats are instantiated first so they are
8066 *		available for attach-time routines that utilize the driver
8067 *		iopath to send commands to the device. The stats are initialized
8068 *		separately so data obtained during some attach-time routines is
8069 *		available. (4362483)
8070 *
8071 *   Arguments: un - driver soft state (unit) structure
8072 *
8073 *     Context: Kernel thread context
8074 */
8075
8076static void
8077sd_set_errstats(struct sd_lun *un)
8078{
8079	struct	sd_errstats	*stp;
8080
8081	ASSERT(un != NULL);
8082	ASSERT(un->un_errstats != NULL);
8083	stp = (struct sd_errstats *)un->un_errstats->ks_data;
8084	ASSERT(stp != NULL);
8085	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
8086	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
8087	(void) strncpy(stp->sd_revision.value.c,
8088	    un->un_sd->sd_inq->inq_revision, 4);
8089
8090	/*
8091	 * All the errstats are persistent across detach/attach,
8092	 * so reset all the errstats here in case of the hot
8093	 * replacement of disk drives, except for not changed
8094	 * Sun qualified drives.
8095	 */
8096	if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) ||
8097	    (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
8098	    sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) {
8099		stp->sd_softerrs.value.ui32 = 0;
8100		stp->sd_harderrs.value.ui32 = 0;
8101		stp->sd_transerrs.value.ui32 = 0;
8102		stp->sd_rq_media_err.value.ui32 = 0;
8103		stp->sd_rq_ntrdy_err.value.ui32 = 0;
8104		stp->sd_rq_nodev_err.value.ui32 = 0;
8105		stp->sd_rq_recov_err.value.ui32 = 0;
8106		stp->sd_rq_illrq_err.value.ui32 = 0;
8107		stp->sd_rq_pfa_err.value.ui32 = 0;
8108	}
8109
8110	/*
8111	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
8112	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
8113	 * (4376302))
8114	 */
8115	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
8116		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
8117		    sizeof (SD_INQUIRY(un)->inq_serial));
8118	}
8119
8120	if (un->un_f_blockcount_is_valid != TRUE) {
8121		/*
8122		 * Set capacity error stat to 0 for no media. This ensures
8123		 * a valid capacity is displayed in response to 'iostat -E'
8124		 * when no media is present in the device.
8125		 */
8126		stp->sd_capacity.value.ui64 = 0;
8127	} else {
8128		/*
8129		 * Multiply un_blockcount by un->un_sys_blocksize to get
8130		 * capacity.
8131		 *
8132		 * Note: for non-512 blocksize devices "un_blockcount" has been
8133		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
8134		 * (un_tgt_blocksize / un->un_sys_blocksize).
8135		 */
8136		stp->sd_capacity.value.ui64 = (uint64_t)
8137		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
8138	}
8139}
8140
8141
8142/*
8143 *    Function: sd_set_pstats
8144 *
8145 * Description: This routine instantiates and initializes the partition
8146 *              stats for each partition with more than zero blocks.
8147 *		(4363169)
8148 *
8149 *   Arguments: un - driver soft state (unit) structure
8150 *
8151 *     Context: Kernel thread context
8152 */
8153
8154static void
8155sd_set_pstats(struct sd_lun *un)
8156{
8157	char	kstatname[KSTAT_STRLEN];
8158	int	instance;
8159	int	i;
8160	diskaddr_t	nblks = 0;
8161	char	*partname = NULL;
8162
8163	ASSERT(un != NULL);
8164
8165	instance = ddi_get_instance(SD_DEVINFO(un));
8166
8167	/* Note:x86: is this a VTOC8/VTOC16 difference? */
8168	for (i = 0; i < NSDMAP; i++) {
8169
8170		if (cmlb_partinfo(un->un_cmlbhandle, i,
8171		    &nblks, NULL, &partname, NULL, (void *)SD_PATH_DIRECT) != 0)
8172			continue;
8173		mutex_enter(SD_MUTEX(un));
8174
8175		if ((un->un_pstats[i] == NULL) &&
8176		    (nblks != 0)) {
8177
8178			(void) snprintf(kstatname, sizeof (kstatname),
8179			    "%s%d,%s", sd_label, instance,
8180			    partname);
8181
8182			un->un_pstats[i] = kstat_create(sd_label,
8183			    instance, kstatname, "partition", KSTAT_TYPE_IO,
8184			    1, KSTAT_FLAG_PERSISTENT);
8185			if (un->un_pstats[i] != NULL) {
8186				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
8187				kstat_install(un->un_pstats[i]);
8188			}
8189		}
8190		mutex_exit(SD_MUTEX(un));
8191	}
8192}
8193
8194
8195#if (defined(__fibre))
8196/*
8197 *    Function: sd_init_event_callbacks
8198 *
8199 * Description: This routine initializes the insertion and removal event
8200 *		callbacks. (fibre only)
8201 *
8202 *   Arguments: un - driver soft state (unit) structure
8203 *
8204 *     Context: Kernel thread context
8205 */
8206
8207static void
8208sd_init_event_callbacks(struct sd_lun *un)
8209{
8210	ASSERT(un != NULL);
8211
8212	if ((un->un_insert_event == NULL) &&
8213	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
8214	    &un->un_insert_event) == DDI_SUCCESS)) {
8215		/*
8216		 * Add the callback for an insertion event
8217		 */
8218		(void) ddi_add_event_handler(SD_DEVINFO(un),
8219		    un->un_insert_event, sd_event_callback, (void *)un,
8220		    &(un->un_insert_cb_id));
8221	}
8222
8223	if ((un->un_remove_event == NULL) &&
8224	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
8225	    &un->un_remove_event) == DDI_SUCCESS)) {
8226		/*
8227		 * Add the callback for a removal event
8228		 */
8229		(void) ddi_add_event_handler(SD_DEVINFO(un),
8230		    un->un_remove_event, sd_event_callback, (void *)un,
8231		    &(un->un_remove_cb_id));
8232	}
8233}
8234
8235
8236/*
8237 *    Function: sd_event_callback
8238 *
8239 * Description: This routine handles insert/remove events (photon). The
8240 *		state is changed to OFFLINE which can be used to supress
8241 *		error msgs. (fibre only)
8242 *
8243 *   Arguments: un - driver soft state (unit) structure
8244 *
8245 *     Context: Callout thread context
8246 */
8247/* ARGSUSED */
8248static void
8249sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
8250    void *bus_impldata)
8251{
8252	struct sd_lun *un = (struct sd_lun *)arg;
8253
8254	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
8255	if (event == un->un_insert_event) {
8256		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
8257		mutex_enter(SD_MUTEX(un));
8258		if (un->un_state == SD_STATE_OFFLINE) {
8259			if (un->un_last_state != SD_STATE_SUSPENDED) {
8260				un->un_state = un->un_last_state;
8261			} else {
8262				/*
8263				 * We have gone through SUSPEND/RESUME while
8264				 * we were offline. Restore the last state
8265				 */
8266				un->un_state = un->un_save_state;
8267			}
8268		}
8269		mutex_exit(SD_MUTEX(un));
8270
8271	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
8272	} else if (event == un->un_remove_event) {
8273		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
8274		mutex_enter(SD_MUTEX(un));
8275		/*
8276		 * We need to handle an event callback that occurs during
8277		 * the suspend operation, since we don't prevent it.
8278		 */
8279		if (un->un_state != SD_STATE_OFFLINE) {
8280			if (un->un_state != SD_STATE_SUSPENDED) {
8281				New_state(un, SD_STATE_OFFLINE);
8282			} else {
8283				un->un_last_state = SD_STATE_OFFLINE;
8284			}
8285		}
8286		mutex_exit(SD_MUTEX(un));
8287	} else {
8288		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
8289		    "!Unknown event\n");
8290	}
8291
8292}
8293#endif
8294
8295/*
8296 *    Function: sd_cache_control()
8297 *
8298 * Description: This routine is the driver entry point for setting
8299 *		read and write caching by modifying the WCE (write cache
8300 *		enable) and RCD (read cache disable) bits of mode
8301 *		page 8 (MODEPAGE_CACHING).
8302 *
8303 *   Arguments: un - driver soft state (unit) structure
8304 *		rcd_flag - flag for controlling the read cache
8305 *		wce_flag - flag for controlling the write cache
8306 *
8307 * Return Code: EIO
8308 *		code returned by sd_send_scsi_MODE_SENSE and
8309 *		sd_send_scsi_MODE_SELECT
8310 *
8311 *     Context: Kernel Thread
8312 */
8313
8314static int
8315sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag)
8316{
8317	struct mode_caching	*mode_caching_page;
8318	uchar_t			*header;
8319	size_t			buflen;
8320	int			hdrlen;
8321	int			bd_len;
8322	int			rval = 0;
8323	struct mode_header_grp2	*mhp;
8324
8325	ASSERT(un != NULL);
8326
8327	/*
8328	 * Do a test unit ready, otherwise a mode sense may not work if this
8329	 * is the first command sent to the device after boot.
8330	 */
8331	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
8332
8333	if (un->un_f_cfg_is_atapi == TRUE) {
8334		hdrlen = MODE_HEADER_LENGTH_GRP2;
8335	} else {
8336		hdrlen = MODE_HEADER_LENGTH;
8337	}
8338
8339	/*
8340	 * Allocate memory for the retrieved mode page and its headers.  Set
8341	 * a pointer to the page itself.  Use mode_cache_scsi3 to insure
8342	 * we get all of the mode sense data otherwise, the mode select
8343	 * will fail.  mode_cache_scsi3 is a superset of mode_caching.
8344	 */
8345	buflen = hdrlen + MODE_BLK_DESC_LENGTH +
8346	    sizeof (struct mode_cache_scsi3);
8347
8348	header = kmem_zalloc(buflen, KM_SLEEP);
8349
8350	/* Get the information from the device. */
8351	if (un->un_f_cfg_is_atapi == TRUE) {
8352		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
8353		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8354	} else {
8355		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
8356		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8357	}
8358	if (rval != 0) {
8359		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
8360		    "sd_cache_control: Mode Sense Failed\n");
8361		kmem_free(header, buflen);
8362		return (rval);
8363	}
8364
8365	/*
8366	 * Determine size of Block Descriptors in order to locate
8367	 * the mode page data. ATAPI devices return 0, SCSI devices
8368	 * should return MODE_BLK_DESC_LENGTH.
8369	 */
8370	if (un->un_f_cfg_is_atapi == TRUE) {
8371		mhp	= (struct mode_header_grp2 *)header;
8372		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
8373	} else {
8374		bd_len  = ((struct mode_header *)header)->bdesc_length;
8375	}
8376
8377	if (bd_len > MODE_BLK_DESC_LENGTH) {
8378		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
8379		    "sd_cache_control: Mode Sense returned invalid "
8380		    "block descriptor length\n");
8381		kmem_free(header, buflen);
8382		return (EIO);
8383	}
8384
8385	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
8386	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
8387		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
8388		    " caching page code mismatch %d\n",
8389		    mode_caching_page->mode_page.code);
8390		kmem_free(header, buflen);
8391		return (EIO);
8392	}
8393
8394	/* Check the relevant bits on successful mode sense. */
8395	if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) ||
8396	    (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) ||
8397	    (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) ||
8398	    (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) {
8399
8400		size_t sbuflen;
8401		uchar_t save_pg;
8402
8403		/*
8404		 * Construct select buffer length based on the
8405		 * length of the sense data returned.
8406		 */
8407		sbuflen =  hdrlen + MODE_BLK_DESC_LENGTH +
8408		    sizeof (struct mode_page) +
8409		    (int)mode_caching_page->mode_page.length;
8410
8411		/*
8412		 * Set the caching bits as requested.
8413		 */
8414		if (rcd_flag == SD_CACHE_ENABLE)
8415			mode_caching_page->rcd = 0;
8416		else if (rcd_flag == SD_CACHE_DISABLE)
8417			mode_caching_page->rcd = 1;
8418
8419		if (wce_flag == SD_CACHE_ENABLE)
8420			mode_caching_page->wce = 1;
8421		else if (wce_flag == SD_CACHE_DISABLE)
8422			mode_caching_page->wce = 0;
8423
8424		/*
8425		 * Save the page if the mode sense says the
8426		 * drive supports it.
8427		 */
8428		save_pg = mode_caching_page->mode_page.ps ?
8429		    SD_SAVE_PAGE : SD_DONTSAVE_PAGE;
8430
8431		/* Clear reserved bits before mode select. */
8432		mode_caching_page->mode_page.ps = 0;
8433
8434		/*
8435		 * Clear out mode header for mode select.
8436		 * The rest of the retrieved page will be reused.
8437		 */
8438		bzero(header, hdrlen);
8439
8440		if (un->un_f_cfg_is_atapi == TRUE) {
8441			mhp = (struct mode_header_grp2 *)header;
8442			mhp->bdesc_length_hi = bd_len >> 8;
8443			mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff;
8444		} else {
8445			((struct mode_header *)header)->bdesc_length = bd_len;
8446		}
8447
8448		/* Issue mode select to change the cache settings */
8449		if (un->un_f_cfg_is_atapi == TRUE) {
8450			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, header,
8451			    sbuflen, save_pg, SD_PATH_DIRECT);
8452		} else {
8453			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
8454			    sbuflen, save_pg, SD_PATH_DIRECT);
8455		}
8456	}
8457
8458	kmem_free(header, buflen);
8459	return (rval);
8460}
8461
8462
8463/*
8464 *    Function: sd_get_write_cache_enabled()
8465 *
8466 * Description: This routine is the driver entry point for determining if
8467 *		write caching is enabled.  It examines the WCE (write cache
8468 *		enable) bits of mode page 8 (MODEPAGE_CACHING).
8469 *
8470 *   Arguments: un - driver soft state (unit) structure
8471 *		is_enabled - pointer to int where write cache enabled state
8472 *		is returned (non-zero -> write cache enabled)
8473 *
8474 *
8475 * Return Code: EIO
8476 *		code returned by sd_send_scsi_MODE_SENSE
8477 *
8478 *     Context: Kernel Thread
8479 *
8480 * NOTE: If ioctl is added to disable write cache, this sequence should
8481 * be followed so that no locking is required for accesses to
8482 * un->un_f_write_cache_enabled:
8483 * 	do mode select to clear wce
8484 * 	do synchronize cache to flush cache
8485 * 	set un->un_f_write_cache_enabled = FALSE
8486 *
8487 * Conversely, an ioctl to enable the write cache should be done
8488 * in this order:
8489 * 	set un->un_f_write_cache_enabled = TRUE
8490 * 	do mode select to set wce
8491 */
8492
8493static int
8494sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled)
8495{
8496	struct mode_caching	*mode_caching_page;
8497	uchar_t			*header;
8498	size_t			buflen;
8499	int			hdrlen;
8500	int			bd_len;
8501	int			rval = 0;
8502
8503	ASSERT(un != NULL);
8504	ASSERT(is_enabled != NULL);
8505
8506	/* in case of error, flag as enabled */
8507	*is_enabled = TRUE;
8508
8509	/*
8510	 * Do a test unit ready, otherwise a mode sense may not work if this
8511	 * is the first command sent to the device after boot.
8512	 */
8513	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
8514
8515	if (un->un_f_cfg_is_atapi == TRUE) {
8516		hdrlen = MODE_HEADER_LENGTH_GRP2;
8517	} else {
8518		hdrlen = MODE_HEADER_LENGTH;
8519	}
8520
8521	/*
8522	 * Allocate memory for the retrieved mode page and its headers.  Set
8523	 * a pointer to the page itself.
8524	 */
8525	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
8526	header = kmem_zalloc(buflen, KM_SLEEP);
8527
8528	/* Get the information from the device. */
8529	if (un->un_f_cfg_is_atapi == TRUE) {
8530		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
8531		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8532	} else {
8533		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
8534		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8535	}
8536	if (rval != 0) {
8537		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
8538		    "sd_get_write_cache_enabled: Mode Sense Failed\n");
8539		kmem_free(header, buflen);
8540		return (rval);
8541	}
8542
8543	/*
8544	 * Determine size of Block Descriptors in order to locate
8545	 * the mode page data. ATAPI devices return 0, SCSI devices
8546	 * should return MODE_BLK_DESC_LENGTH.
8547	 */
8548	if (un->un_f_cfg_is_atapi == TRUE) {
8549		struct mode_header_grp2	*mhp;
8550		mhp	= (struct mode_header_grp2 *)header;
8551		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
8552	} else {
8553		bd_len  = ((struct mode_header *)header)->bdesc_length;
8554	}
8555
8556	if (bd_len > MODE_BLK_DESC_LENGTH) {
8557		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
8558		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
8559		    "block descriptor length\n");
8560		kmem_free(header, buflen);
8561		return (EIO);
8562	}
8563
8564	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
8565	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
8566		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
8567		    " caching page code mismatch %d\n",
8568		    mode_caching_page->mode_page.code);
8569		kmem_free(header, buflen);
8570		return (EIO);
8571	}
8572	*is_enabled = mode_caching_page->wce;
8573
8574	kmem_free(header, buflen);
8575	return (0);
8576}
8577
8578
8579/*
8580 *    Function: sd_make_device
8581 *
8582 * Description: Utility routine to return the Solaris device number from
8583 *		the data in the device's dev_info structure.
8584 *
8585 * Return Code: The Solaris device number
8586 *
8587 *     Context: Any
8588 */
8589
8590static dev_t
8591sd_make_device(dev_info_t *devi)
8592{
8593	return (makedevice(ddi_name_to_major(ddi_get_name(devi)),
8594	    ddi_get_instance(devi) << SDUNIT_SHIFT));
8595}
8596
8597
8598/*
8599 *    Function: sd_pm_entry
8600 *
8601 * Description: Called at the start of a new command to manage power
8602 *		and busy status of a device. This includes determining whether
8603 *		the current power state of the device is sufficient for
8604 *		performing the command or whether it must be changed.
8605 *		The PM framework is notified appropriately.
8606 *		Only with a return status of DDI_SUCCESS will the
8607 *		component be busy to the framework.
8608 *
8609 *		All callers of sd_pm_entry must check the return status
8610 *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
8611 *		of DDI_FAILURE indicates the device failed to power up.
8612 *		In this case un_pm_count has been adjusted so the result
8613 *		on exit is still powered down, ie. count is less than 0.
8614 *		Calling sd_pm_exit with this count value hits an ASSERT.
8615 *
8616 * Return Code: DDI_SUCCESS or DDI_FAILURE
8617 *
8618 *     Context: Kernel thread context.
8619 */
8620
8621static int
8622sd_pm_entry(struct sd_lun *un)
8623{
8624	int return_status = DDI_SUCCESS;
8625
8626	ASSERT(!mutex_owned(SD_MUTEX(un)));
8627	ASSERT(!mutex_owned(&un->un_pm_mutex));
8628
8629	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
8630
8631	if (un->un_f_pm_is_enabled == FALSE) {
8632		SD_TRACE(SD_LOG_IO_PM, un,
8633		    "sd_pm_entry: exiting, PM not enabled\n");
8634		return (return_status);
8635	}
8636
8637	/*
8638	 * Just increment a counter if PM is enabled. On the transition from
8639	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
8640	 * the count with each IO and mark the device as idle when the count
8641	 * hits 0.
8642	 *
8643	 * If the count is less than 0 the device is powered down. If a powered
8644	 * down device is successfully powered up then the count must be
8645	 * incremented to reflect the power up. Note that it'll get incremented
8646	 * a second time to become busy.
8647	 *
8648	 * Because the following has the potential to change the device state
8649	 * and must release the un_pm_mutex to do so, only one thread can be
8650	 * allowed through at a time.
8651	 */
8652
8653	mutex_enter(&un->un_pm_mutex);
8654	while (un->un_pm_busy == TRUE) {
8655		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
8656	}
8657	un->un_pm_busy = TRUE;
8658
8659	if (un->un_pm_count < 1) {
8660
8661		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
8662
8663		/*
8664		 * Indicate we are now busy so the framework won't attempt to
8665		 * power down the device. This call will only fail if either
8666		 * we passed a bad component number or the device has no
8667		 * components. Neither of these should ever happen.
8668		 */
8669		mutex_exit(&un->un_pm_mutex);
8670		return_status = pm_busy_component(SD_DEVINFO(un), 0);
8671		ASSERT(return_status == DDI_SUCCESS);
8672
8673		mutex_enter(&un->un_pm_mutex);
8674
8675		if (un->un_pm_count < 0) {
8676			mutex_exit(&un->un_pm_mutex);
8677
8678			SD_TRACE(SD_LOG_IO_PM, un,
8679			    "sd_pm_entry: power up component\n");
8680
8681			/*
8682			 * pm_raise_power will cause sdpower to be called
8683			 * which brings the device power level to the
8684			 * desired state, ON in this case. If successful,
8685			 * un_pm_count and un_power_level will be updated
8686			 * appropriately.
8687			 */
8688			return_status = pm_raise_power(SD_DEVINFO(un), 0,
8689			    SD_SPINDLE_ON);
8690
8691			mutex_enter(&un->un_pm_mutex);
8692
8693			if (return_status != DDI_SUCCESS) {
8694				/*
8695				 * Power up failed.
8696				 * Idle the device and adjust the count
8697				 * so the result on exit is that we're
8698				 * still powered down, ie. count is less than 0.
8699				 */
8700				SD_TRACE(SD_LOG_IO_PM, un,
8701				    "sd_pm_entry: power up failed,"
8702				    " idle the component\n");
8703
8704				(void) pm_idle_component(SD_DEVINFO(un), 0);
8705				un->un_pm_count--;
8706			} else {
8707				/*
8708				 * Device is powered up, verify the
8709				 * count is non-negative.
8710				 * This is debug only.
8711				 */
8712				ASSERT(un->un_pm_count == 0);
8713			}
8714		}
8715
8716		if (return_status == DDI_SUCCESS) {
8717			/*
8718			 * For performance, now that the device has been tagged
8719			 * as busy, and it's known to be powered up, update the
8720			 * chain types to use jump tables that do not include
8721			 * pm. This significantly lowers the overhead and
8722			 * therefore improves performance.
8723			 */
8724
8725			mutex_exit(&un->un_pm_mutex);
8726			mutex_enter(SD_MUTEX(un));
8727			SD_TRACE(SD_LOG_IO_PM, un,
8728			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
8729			    un->un_uscsi_chain_type);
8730
8731			if (un->un_f_non_devbsize_supported) {
8732				un->un_buf_chain_type =
8733				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
8734			} else {
8735				un->un_buf_chain_type =
8736				    SD_CHAIN_INFO_DISK_NO_PM;
8737			}
8738			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
8739
8740			SD_TRACE(SD_LOG_IO_PM, un,
8741			    "             changed  uscsi_chain_type to   %d\n",
8742			    un->un_uscsi_chain_type);
8743			mutex_exit(SD_MUTEX(un));
8744			mutex_enter(&un->un_pm_mutex);
8745
8746			if (un->un_pm_idle_timeid == NULL) {
8747				/* 300 ms. */
8748				un->un_pm_idle_timeid =
8749				    timeout(sd_pm_idletimeout_handler, un,
8750				    (drv_usectohz((clock_t)300000)));
8751				/*
8752				 * Include an extra call to busy which keeps the
8753				 * device busy with-respect-to the PM layer
8754				 * until the timer fires, at which time it'll
8755				 * get the extra idle call.
8756				 */
8757				(void) pm_busy_component(SD_DEVINFO(un), 0);
8758			}
8759		}
8760	}
8761	un->un_pm_busy = FALSE;
8762	/* Next... */
8763	cv_signal(&un->un_pm_busy_cv);
8764
8765	un->un_pm_count++;
8766
8767	SD_TRACE(SD_LOG_IO_PM, un,
8768	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
8769
8770	mutex_exit(&un->un_pm_mutex);
8771
8772	return (return_status);
8773}
8774
8775
8776/*
8777 *    Function: sd_pm_exit
8778 *
8779 * Description: Called at the completion of a command to manage busy
8780 *		status for the device. If the device becomes idle the
8781 *		PM framework is notified.
8782 *
8783 *     Context: Kernel thread context
8784 */
8785
8786static void
8787sd_pm_exit(struct sd_lun *un)
8788{
8789	ASSERT(!mutex_owned(SD_MUTEX(un)));
8790	ASSERT(!mutex_owned(&un->un_pm_mutex));
8791
8792	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
8793
8794	/*
8795	 * After attach the following flag is only read, so don't
8796	 * take the penalty of acquiring a mutex for it.
8797	 */
8798	if (un->un_f_pm_is_enabled == TRUE) {
8799
8800		mutex_enter(&un->un_pm_mutex);
8801		un->un_pm_count--;
8802
8803		SD_TRACE(SD_LOG_IO_PM, un,
8804		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
8805
8806		ASSERT(un->un_pm_count >= 0);
8807		if (un->un_pm_count == 0) {
8808			mutex_exit(&un->un_pm_mutex);
8809
8810			SD_TRACE(SD_LOG_IO_PM, un,
8811			    "sd_pm_exit: idle component\n");
8812
8813			(void) pm_idle_component(SD_DEVINFO(un), 0);
8814
8815		} else {
8816			mutex_exit(&un->un_pm_mutex);
8817		}
8818	}
8819
8820	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
8821}
8822
8823
8824/*
8825 *    Function: sdopen
8826 *
8827 * Description: Driver's open(9e) entry point function.
8828 *
8829 *   Arguments: dev_i   - pointer to device number
8830 *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
8831 *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
8832 *		cred_p  - user credential pointer
8833 *
8834 * Return Code: EINVAL
8835 *		ENXIO
8836 *		EIO
8837 *		EROFS
8838 *		EBUSY
8839 *
8840 *     Context: Kernel thread context
8841 */
8842/* ARGSUSED */
8843static int
8844sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
8845{
8846	struct sd_lun	*un;
8847	int		nodelay;
8848	int		part;
8849	uint64_t	partmask;
8850	int		instance;
8851	dev_t		dev;
8852	int		rval = EIO;
8853	diskaddr_t	nblks = 0;
8854
8855	/* Validate the open type */
8856	if (otyp >= OTYPCNT) {
8857		return (EINVAL);
8858	}
8859
8860	dev = *dev_p;
8861	instance = SDUNIT(dev);
8862	mutex_enter(&sd_detach_mutex);
8863
8864	/*
8865	 * Fail the open if there is no softstate for the instance, or
8866	 * if another thread somewhere is trying to detach the instance.
8867	 */
8868	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
8869	    (un->un_detach_count != 0)) {
8870		mutex_exit(&sd_detach_mutex);
8871		/*
8872		 * The probe cache only needs to be cleared when open (9e) fails
8873		 * with ENXIO (4238046).
8874		 */
8875		/*
8876		 * un-conditionally clearing probe cache is ok with
8877		 * separate sd/ssd binaries
8878		 * x86 platform can be an issue with both parallel
8879		 * and fibre in 1 binary
8880		 */
8881		sd_scsi_clear_probe_cache();
8882		return (ENXIO);
8883	}
8884
8885	/*
8886	 * The un_layer_count is to prevent another thread in specfs from
8887	 * trying to detach the instance, which can happen when we are
8888	 * called from a higher-layer driver instead of thru specfs.
8889	 * This will not be needed when DDI provides a layered driver
8890	 * interface that allows specfs to know that an instance is in
8891	 * use by a layered driver & should not be detached.
8892	 *
8893	 * Note: the semantics for layered driver opens are exactly one
8894	 * close for every open.
8895	 */
8896	if (otyp == OTYP_LYR) {
8897		un->un_layer_count++;
8898	}
8899
8900	/*
8901	 * Keep a count of the current # of opens in progress. This is because
8902	 * some layered drivers try to call us as a regular open. This can
8903	 * cause problems that we cannot prevent, however by keeping this count
8904	 * we can at least keep our open and detach routines from racing against
8905	 * each other under such conditions.
8906	 */
8907	un->un_opens_in_progress++;
8908	mutex_exit(&sd_detach_mutex);
8909
8910	nodelay  = (flag & (FNDELAY | FNONBLOCK));
8911	part	 = SDPART(dev);
8912	partmask = 1 << part;
8913
8914	/*
8915	 * We use a semaphore here in order to serialize
8916	 * open and close requests on the device.
8917	 */
8918	sema_p(&un->un_semoclose);
8919
8920	mutex_enter(SD_MUTEX(un));
8921
8922	/*
8923	 * All device accesses go thru sdstrategy() where we check
8924	 * on suspend status but there could be a scsi_poll command,
8925	 * which bypasses sdstrategy(), so we need to check pm
8926	 * status.
8927	 */
8928
8929	if (!nodelay) {
8930		while ((un->un_state == SD_STATE_SUSPENDED) ||
8931		    (un->un_state == SD_STATE_PM_CHANGING)) {
8932			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
8933		}
8934
8935		mutex_exit(SD_MUTEX(un));
8936		if (sd_pm_entry(un) != DDI_SUCCESS) {
8937			rval = EIO;
8938			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
8939			    "sdopen: sd_pm_entry failed\n");
8940			goto open_failed_with_pm;
8941		}
8942		mutex_enter(SD_MUTEX(un));
8943	}
8944
8945	/* check for previous exclusive open */
8946	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
8947	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
8948	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
8949	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
8950
8951	if (un->un_exclopen & (partmask)) {
8952		goto excl_open_fail;
8953	}
8954
8955	if (flag & FEXCL) {
8956		int i;
8957		if (un->un_ocmap.lyropen[part]) {
8958			goto excl_open_fail;
8959		}
8960		for (i = 0; i < (OTYPCNT - 1); i++) {
8961			if (un->un_ocmap.regopen[i] & (partmask)) {
8962				goto excl_open_fail;
8963			}
8964		}
8965	}
8966
8967	/*
8968	 * Check the write permission if this is a removable media device,
8969	 * NDELAY has not been set, and writable permission is requested.
8970	 *
8971	 * Note: If NDELAY was set and this is write-protected media the WRITE
8972	 * attempt will fail with EIO as part of the I/O processing. This is a
8973	 * more permissive implementation that allows the open to succeed and
8974	 * WRITE attempts to fail when appropriate.
8975	 */
8976	if (un->un_f_chk_wp_open) {
8977		if ((flag & FWRITE) && (!nodelay)) {
8978			mutex_exit(SD_MUTEX(un));
8979			/*
8980			 * Defer the check for write permission on writable
8981			 * DVD drive till sdstrategy and will not fail open even
8982			 * if FWRITE is set as the device can be writable
8983			 * depending upon the media and the media can change
8984			 * after the call to open().
8985			 */
8986			if (un->un_f_dvdram_writable_device == FALSE) {
8987				if (ISCD(un) || sr_check_wp(dev)) {
8988				rval = EROFS;
8989				mutex_enter(SD_MUTEX(un));
8990				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
8991				    "write to cd or write protected media\n");
8992				goto open_fail;
8993				}
8994			}
8995			mutex_enter(SD_MUTEX(un));
8996		}
8997	}
8998
8999	/*
9000	 * If opening in NDELAY/NONBLOCK mode, just return.
9001	 * Check if disk is ready and has a valid geometry later.
9002	 */
9003	if (!nodelay) {
9004		mutex_exit(SD_MUTEX(un));
9005		rval = sd_ready_and_valid(un);
9006		mutex_enter(SD_MUTEX(un));
9007		/*
9008		 * Fail if device is not ready or if the number of disk
9009		 * blocks is zero or negative for non CD devices.
9010		 */
9011
9012		nblks = 0;
9013
9014		if (rval == SD_READY_VALID && (!ISCD(un))) {
9015			/* if cmlb_partinfo fails, nblks remains 0 */
9016			mutex_exit(SD_MUTEX(un));
9017			(void) cmlb_partinfo(un->un_cmlbhandle, part, &nblks,
9018			    NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
9019			mutex_enter(SD_MUTEX(un));
9020		}
9021
9022		if ((rval != SD_READY_VALID) ||
9023		    (!ISCD(un) && nblks <= 0)) {
9024			rval = un->un_f_has_removable_media ? ENXIO : EIO;
9025			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9026			    "device not ready or invalid disk block value\n");
9027			goto open_fail;
9028		}
9029#if defined(__i386) || defined(__amd64)
9030	} else {
9031		uchar_t *cp;
9032		/*
9033		 * x86 requires special nodelay handling, so that p0 is
9034		 * always defined and accessible.
9035		 * Invalidate geometry only if device is not already open.
9036		 */
9037		cp = &un->un_ocmap.chkd[0];
9038		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
9039			if (*cp != (uchar_t)0) {
9040				break;
9041			}
9042			cp++;
9043		}
9044		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
9045			mutex_exit(SD_MUTEX(un));
9046			cmlb_invalidate(un->un_cmlbhandle,
9047			    (void *)SD_PATH_DIRECT);
9048			mutex_enter(SD_MUTEX(un));
9049		}
9050
9051#endif
9052	}
9053
9054	if (otyp == OTYP_LYR) {
9055		un->un_ocmap.lyropen[part]++;
9056	} else {
9057		un->un_ocmap.regopen[otyp] |= partmask;
9058	}
9059
9060	/* Set up open and exclusive open flags */
9061	if (flag & FEXCL) {
9062		un->un_exclopen |= (partmask);
9063	}
9064
9065	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9066	    "open of part %d type %d\n", part, otyp);
9067
9068	mutex_exit(SD_MUTEX(un));
9069	if (!nodelay) {
9070		sd_pm_exit(un);
9071	}
9072
9073	sema_v(&un->un_semoclose);
9074
9075	mutex_enter(&sd_detach_mutex);
9076	un->un_opens_in_progress--;
9077	mutex_exit(&sd_detach_mutex);
9078
9079	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
9080	return (DDI_SUCCESS);
9081
9082excl_open_fail:
9083	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
9084	rval = EBUSY;
9085
9086open_fail:
9087	mutex_exit(SD_MUTEX(un));
9088
9089	/*
9090	 * On a failed open we must exit the pm management.
9091	 */
9092	if (!nodelay) {
9093		sd_pm_exit(un);
9094	}
9095open_failed_with_pm:
9096	sema_v(&un->un_semoclose);
9097
9098	mutex_enter(&sd_detach_mutex);
9099	un->un_opens_in_progress--;
9100	if (otyp == OTYP_LYR) {
9101		un->un_layer_count--;
9102	}
9103	mutex_exit(&sd_detach_mutex);
9104
9105	return (rval);
9106}
9107
9108
9109/*
9110 *    Function: sdclose
9111 *
9112 * Description: Driver's close(9e) entry point function.
9113 *
9114 *   Arguments: dev    - device number
9115 *		flag   - file status flag, informational only
9116 *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
9117 *		cred_p - user credential pointer
9118 *
9119 * Return Code: ENXIO
9120 *
9121 *     Context: Kernel thread context
9122 */
9123/* ARGSUSED */
9124static int
9125sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
9126{
9127	struct sd_lun	*un;
9128	uchar_t		*cp;
9129	int		part;
9130	int		nodelay;
9131	int		rval = 0;
9132
9133	/* Validate the open type */
9134	if (otyp >= OTYPCNT) {
9135		return (ENXIO);
9136	}
9137
9138	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9139		return (ENXIO);
9140	}
9141
9142	part = SDPART(dev);
9143	nodelay = flag & (FNDELAY | FNONBLOCK);
9144
9145	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
9146	    "sdclose: close of part %d type %d\n", part, otyp);
9147
9148	/*
9149	 * We use a semaphore here in order to serialize
9150	 * open and close requests on the device.
9151	 */
9152	sema_p(&un->un_semoclose);
9153
9154	mutex_enter(SD_MUTEX(un));
9155
9156	/* Don't proceed if power is being changed. */
9157	while (un->un_state == SD_STATE_PM_CHANGING) {
9158		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9159	}
9160
9161	if (un->un_exclopen & (1 << part)) {
9162		un->un_exclopen &= ~(1 << part);
9163	}
9164
9165	/* Update the open partition map */
9166	if (otyp == OTYP_LYR) {
9167		un->un_ocmap.lyropen[part] -= 1;
9168	} else {
9169		un->un_ocmap.regopen[otyp] &= ~(1 << part);
9170	}
9171
9172	cp = &un->un_ocmap.chkd[0];
9173	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
9174		if (*cp != NULL) {
9175			break;
9176		}
9177		cp++;
9178	}
9179
9180	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
9181		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
9182
9183		/*
9184		 * We avoid persistance upon the last close, and set
9185		 * the throttle back to the maximum.
9186		 */
9187		un->un_throttle = un->un_saved_throttle;
9188
9189		if (un->un_state == SD_STATE_OFFLINE) {
9190			if (un->un_f_is_fibre == FALSE) {
9191				scsi_log(SD_DEVINFO(un), sd_label,
9192				    CE_WARN, "offline\n");
9193			}
9194			mutex_exit(SD_MUTEX(un));
9195			cmlb_invalidate(un->un_cmlbhandle,
9196			    (void *)SD_PATH_DIRECT);
9197			mutex_enter(SD_MUTEX(un));
9198
9199		} else {
9200			/*
9201			 * Flush any outstanding writes in NVRAM cache.
9202			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
9203			 * cmd, it may not work for non-Pluto devices.
9204			 * SYNCHRONIZE CACHE is not required for removables,
9205			 * except DVD-RAM drives.
9206			 *
9207			 * Also note: because SYNCHRONIZE CACHE is currently
9208			 * the only command issued here that requires the
9209			 * drive be powered up, only do the power up before
9210			 * sending the Sync Cache command. If additional
9211			 * commands are added which require a powered up
9212			 * drive, the following sequence may have to change.
9213			 *
9214			 * And finally, note that parallel SCSI on SPARC
9215			 * only issues a Sync Cache to DVD-RAM, a newly
9216			 * supported device.
9217			 */
9218#if defined(__i386) || defined(__amd64)
9219			if (un->un_f_sync_cache_supported ||
9220			    un->un_f_dvdram_writable_device == TRUE) {
9221#else
9222			if (un->un_f_dvdram_writable_device == TRUE) {
9223#endif
9224				mutex_exit(SD_MUTEX(un));
9225				if (sd_pm_entry(un) == DDI_SUCCESS) {
9226					rval =
9227					    sd_send_scsi_SYNCHRONIZE_CACHE(un,
9228					    NULL);
9229					/* ignore error if not supported */
9230					if (rval == ENOTSUP) {
9231						rval = 0;
9232					} else if (rval != 0) {
9233						rval = EIO;
9234					}
9235					sd_pm_exit(un);
9236				} else {
9237					rval = EIO;
9238				}
9239				mutex_enter(SD_MUTEX(un));
9240			}
9241
9242			/*
9243			 * For devices which supports DOOR_LOCK, send an ALLOW
9244			 * MEDIA REMOVAL command, but don't get upset if it
9245			 * fails. We need to raise the power of the drive before
9246			 * we can call sd_send_scsi_DOORLOCK()
9247			 */
9248			if (un->un_f_doorlock_supported) {
9249				mutex_exit(SD_MUTEX(un));
9250				if (sd_pm_entry(un) == DDI_SUCCESS) {
9251					rval = sd_send_scsi_DOORLOCK(un,
9252					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
9253
9254					sd_pm_exit(un);
9255					if (ISCD(un) && (rval != 0) &&
9256					    (nodelay != 0)) {
9257						rval = ENXIO;
9258					}
9259				} else {
9260					rval = EIO;
9261				}
9262				mutex_enter(SD_MUTEX(un));
9263			}
9264
9265			/*
9266			 * If a device has removable media, invalidate all
9267			 * parameters related to media, such as geometry,
9268			 * blocksize, and blockcount.
9269			 */
9270			if (un->un_f_has_removable_media) {
9271				sr_ejected(un);
9272			}
9273
9274			/*
9275			 * Destroy the cache (if it exists) which was
9276			 * allocated for the write maps since this is
9277			 * the last close for this media.
9278			 */
9279			if (un->un_wm_cache) {
9280				/*
9281				 * Check if there are pending commands.
9282				 * and if there are give a warning and
9283				 * do not destroy the cache.
9284				 */
9285				if (un->un_ncmds_in_driver > 0) {
9286					scsi_log(SD_DEVINFO(un),
9287					    sd_label, CE_WARN,
9288					    "Unable to clean up memory "
9289					    "because of pending I/O\n");
9290				} else {
9291					kmem_cache_destroy(
9292					    un->un_wm_cache);
9293					un->un_wm_cache = NULL;
9294				}
9295			}
9296		}
9297	}
9298
9299	mutex_exit(SD_MUTEX(un));
9300	sema_v(&un->un_semoclose);
9301
9302	if (otyp == OTYP_LYR) {
9303		mutex_enter(&sd_detach_mutex);
9304		/*
9305		 * The detach routine may run when the layer count
9306		 * drops to zero.
9307		 */
9308		un->un_layer_count--;
9309		mutex_exit(&sd_detach_mutex);
9310	}
9311
9312	return (rval);
9313}
9314
9315
9316/*
9317 *    Function: sd_ready_and_valid
9318 *
9319 * Description: Test if device is ready and has a valid geometry.
9320 *
9321 *   Arguments: dev - device number
9322 *		un  - driver soft state (unit) structure
9323 *
9324 * Return Code: SD_READY_VALID		ready and valid label
9325 *		SD_NOT_READY_VALID	not ready, no label
9326 *		SD_RESERVED_BY_OTHERS	reservation conflict
9327 *
9328 *     Context: Never called at interrupt context.
9329 */
9330
9331static int
9332sd_ready_and_valid(struct sd_lun *un)
9333{
9334	struct sd_errstats	*stp;
9335	uint64_t		capacity;
9336	uint_t			lbasize;
9337	int			rval = SD_READY_VALID;
9338	char			name_str[48];
9339	int			is_valid;
9340
9341	ASSERT(un != NULL);
9342	ASSERT(!mutex_owned(SD_MUTEX(un)));
9343
9344	mutex_enter(SD_MUTEX(un));
9345	/*
9346	 * If a device has removable media, we must check if media is
9347	 * ready when checking if this device is ready and valid.
9348	 */
9349	if (un->un_f_has_removable_media) {
9350		mutex_exit(SD_MUTEX(un));
9351		if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) {
9352			rval = SD_NOT_READY_VALID;
9353			mutex_enter(SD_MUTEX(un));
9354			goto done;
9355		}
9356
9357		is_valid = SD_IS_VALID_LABEL(un);
9358		mutex_enter(SD_MUTEX(un));
9359		if (!is_valid ||
9360		    (un->un_f_blockcount_is_valid == FALSE) ||
9361		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
9362
9363			/* capacity has to be read every open. */
9364			mutex_exit(SD_MUTEX(un));
9365			if (sd_send_scsi_READ_CAPACITY(un, &capacity,
9366			    &lbasize, SD_PATH_DIRECT) != 0) {
9367				cmlb_invalidate(un->un_cmlbhandle,
9368				    (void *)SD_PATH_DIRECT);
9369				mutex_enter(SD_MUTEX(un));
9370				rval = SD_NOT_READY_VALID;
9371				goto done;
9372			} else {
9373				mutex_enter(SD_MUTEX(un));
9374				sd_update_block_info(un, lbasize, capacity);
9375			}
9376		}
9377
9378		/*
9379		 * Check if the media in the device is writable or not.
9380		 */
9381		if (!is_valid && ISCD(un)) {
9382			sd_check_for_writable_cd(un, SD_PATH_DIRECT);
9383		}
9384
9385	} else {
9386		/*
9387		 * Do a test unit ready to clear any unit attention from non-cd
9388		 * devices.
9389		 */
9390		mutex_exit(SD_MUTEX(un));
9391		(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
9392		mutex_enter(SD_MUTEX(un));
9393	}
9394
9395
9396	/*
9397	 * If this is a non 512 block device, allocate space for
9398	 * the wmap cache. This is being done here since every time
9399	 * a media is changed this routine will be called and the
9400	 * block size is a function of media rather than device.
9401	 */
9402	if (un->un_f_non_devbsize_supported && NOT_DEVBSIZE(un)) {
9403		if (!(un->un_wm_cache)) {
9404			(void) snprintf(name_str, sizeof (name_str),
9405			    "%s%d_cache",
9406			    ddi_driver_name(SD_DEVINFO(un)),
9407			    ddi_get_instance(SD_DEVINFO(un)));
9408			un->un_wm_cache = kmem_cache_create(
9409			    name_str, sizeof (struct sd_w_map),
9410			    8, sd_wm_cache_constructor,
9411			    sd_wm_cache_destructor, NULL,
9412			    (void *)un, NULL, 0);
9413			if (!(un->un_wm_cache)) {
9414					rval = ENOMEM;
9415					goto done;
9416			}
9417		}
9418	}
9419
9420	if (un->un_state == SD_STATE_NORMAL) {
9421		/*
9422		 * If the target is not yet ready here (defined by a TUR
9423		 * failure), invalidate the geometry and print an 'offline'
9424		 * message. This is a legacy message, as the state of the
9425		 * target is not actually changed to SD_STATE_OFFLINE.
9426		 *
9427		 * If the TUR fails for EACCES (Reservation Conflict),
9428		 * SD_RESERVED_BY_OTHERS will be returned to indicate
9429		 * reservation conflict. If the TUR fails for other
9430		 * reasons, SD_NOT_READY_VALID will be returned.
9431		 */
9432		int err;
9433
9434		mutex_exit(SD_MUTEX(un));
9435		err = sd_send_scsi_TEST_UNIT_READY(un, 0);
9436		mutex_enter(SD_MUTEX(un));
9437
9438		if (err != 0) {
9439			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
9440			    "offline or reservation conflict\n");
9441			mutex_exit(SD_MUTEX(un));
9442			cmlb_invalidate(un->un_cmlbhandle,
9443			    (void *)SD_PATH_DIRECT);
9444			mutex_enter(SD_MUTEX(un));
9445			if (err == EACCES) {
9446				rval = SD_RESERVED_BY_OTHERS;
9447			} else {
9448				rval = SD_NOT_READY_VALID;
9449			}
9450			goto done;
9451		}
9452	}
9453
9454	if (un->un_f_format_in_progress == FALSE) {
9455		mutex_exit(SD_MUTEX(un));
9456		if (cmlb_validate(un->un_cmlbhandle, 0,
9457		    (void *)SD_PATH_DIRECT) != 0) {
9458			rval = SD_NOT_READY_VALID;
9459			mutex_enter(SD_MUTEX(un));
9460			goto done;
9461		}
9462		if (un->un_f_pkstats_enabled) {
9463			sd_set_pstats(un);
9464			SD_TRACE(SD_LOG_IO_PARTITION, un,
9465			    "sd_ready_and_valid: un:0x%p pstats created and "
9466			    "set\n", un);
9467		}
9468		mutex_enter(SD_MUTEX(un));
9469	}
9470
9471	/*
9472	 * If this device supports DOOR_LOCK command, try and send
9473	 * this command to PREVENT MEDIA REMOVAL, but don't get upset
9474	 * if it fails. For a CD, however, it is an error
9475	 */
9476	if (un->un_f_doorlock_supported) {
9477		mutex_exit(SD_MUTEX(un));
9478		if ((sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
9479		    SD_PATH_DIRECT) != 0) && ISCD(un)) {
9480			rval = SD_NOT_READY_VALID;
9481			mutex_enter(SD_MUTEX(un));
9482			goto done;
9483		}
9484		mutex_enter(SD_MUTEX(un));
9485	}
9486
9487	/* The state has changed, inform the media watch routines */
9488	un->un_mediastate = DKIO_INSERTED;
9489	cv_broadcast(&un->un_state_cv);
9490	rval = SD_READY_VALID;
9491
9492done:
9493
9494	/*
9495	 * Initialize the capacity kstat value, if no media previously
9496	 * (capacity kstat is 0) and a media has been inserted
9497	 * (un_blockcount > 0).
9498	 */
9499	if (un->un_errstats != NULL) {
9500		stp = (struct sd_errstats *)un->un_errstats->ks_data;
9501		if ((stp->sd_capacity.value.ui64 == 0) &&
9502		    (un->un_f_blockcount_is_valid == TRUE)) {
9503			stp->sd_capacity.value.ui64 =
9504			    (uint64_t)((uint64_t)un->un_blockcount *
9505			    un->un_sys_blocksize);
9506		}
9507	}
9508
9509	mutex_exit(SD_MUTEX(un));
9510	return (rval);
9511}
9512
9513
9514/*
9515 *    Function: sdmin
9516 *
9517 * Description: Routine to limit the size of a data transfer. Used in
9518 *		conjunction with physio(9F).
9519 *
9520 *   Arguments: bp - pointer to the indicated buf(9S) struct.
9521 *
9522 *     Context: Kernel thread context.
9523 */
9524
9525static void
9526sdmin(struct buf *bp)
9527{
9528	struct sd_lun	*un;
9529	int		instance;
9530
9531	instance = SDUNIT(bp->b_edev);
9532
9533	un = ddi_get_soft_state(sd_state, instance);
9534	ASSERT(un != NULL);
9535
9536	if (bp->b_bcount > un->un_max_xfer_size) {
9537		bp->b_bcount = un->un_max_xfer_size;
9538	}
9539}
9540
9541
9542/*
9543 *    Function: sdread
9544 *
9545 * Description: Driver's read(9e) entry point function.
9546 *
9547 *   Arguments: dev   - device number
9548 *		uio   - structure pointer describing where data is to be stored
9549 *			in user's space
9550 *		cred_p  - user credential pointer
9551 *
9552 * Return Code: ENXIO
9553 *		EIO
9554 *		EINVAL
9555 *		value returned by physio
9556 *
9557 *     Context: Kernel thread context.
9558 */
9559/* ARGSUSED */
9560static int
9561sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
9562{
9563	struct sd_lun	*un = NULL;
9564	int		secmask;
9565	int		err;
9566
9567	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9568		return (ENXIO);
9569	}
9570
9571	ASSERT(!mutex_owned(SD_MUTEX(un)));
9572
9573	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9574		mutex_enter(SD_MUTEX(un));
9575		/*
9576		 * Because the call to sd_ready_and_valid will issue I/O we
9577		 * must wait here if either the device is suspended or
9578		 * if it's power level is changing.
9579		 */
9580		while ((un->un_state == SD_STATE_SUSPENDED) ||
9581		    (un->un_state == SD_STATE_PM_CHANGING)) {
9582			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9583		}
9584		un->un_ncmds_in_driver++;
9585		mutex_exit(SD_MUTEX(un));
9586		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9587			mutex_enter(SD_MUTEX(un));
9588			un->un_ncmds_in_driver--;
9589			ASSERT(un->un_ncmds_in_driver >= 0);
9590			mutex_exit(SD_MUTEX(un));
9591			return (EIO);
9592		}
9593		mutex_enter(SD_MUTEX(un));
9594		un->un_ncmds_in_driver--;
9595		ASSERT(un->un_ncmds_in_driver >= 0);
9596		mutex_exit(SD_MUTEX(un));
9597	}
9598
9599	/*
9600	 * Read requests are restricted to multiples of the system block size.
9601	 */
9602	secmask = un->un_sys_blocksize - 1;
9603
9604	if (uio->uio_loffset & ((offset_t)(secmask))) {
9605		SD_ERROR(SD_LOG_READ_WRITE, un,
9606		    "sdread: file offset not modulo %d\n",
9607		    un->un_sys_blocksize);
9608		err = EINVAL;
9609	} else if (uio->uio_iov->iov_len & (secmask)) {
9610		SD_ERROR(SD_LOG_READ_WRITE, un,
9611		    "sdread: transfer length not modulo %d\n",
9612		    un->un_sys_blocksize);
9613		err = EINVAL;
9614	} else {
9615		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
9616	}
9617	return (err);
9618}
9619
9620
9621/*
9622 *    Function: sdwrite
9623 *
9624 * Description: Driver's write(9e) entry point function.
9625 *
9626 *   Arguments: dev   - device number
9627 *		uio   - structure pointer describing where data is stored in
9628 *			user's space
9629 *		cred_p  - user credential pointer
9630 *
9631 * Return Code: ENXIO
9632 *		EIO
9633 *		EINVAL
9634 *		value returned by physio
9635 *
9636 *     Context: Kernel thread context.
9637 */
9638/* ARGSUSED */
9639static int
9640sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
9641{
9642	struct sd_lun	*un = NULL;
9643	int		secmask;
9644	int		err;
9645
9646	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9647		return (ENXIO);
9648	}
9649
9650	ASSERT(!mutex_owned(SD_MUTEX(un)));
9651
9652	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9653		mutex_enter(SD_MUTEX(un));
9654		/*
9655		 * Because the call to sd_ready_and_valid will issue I/O we
9656		 * must wait here if either the device is suspended or
9657		 * if it's power level is changing.
9658		 */
9659		while ((un->un_state == SD_STATE_SUSPENDED) ||
9660		    (un->un_state == SD_STATE_PM_CHANGING)) {
9661			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9662		}
9663		un->un_ncmds_in_driver++;
9664		mutex_exit(SD_MUTEX(un));
9665		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9666			mutex_enter(SD_MUTEX(un));
9667			un->un_ncmds_in_driver--;
9668			ASSERT(un->un_ncmds_in_driver >= 0);
9669			mutex_exit(SD_MUTEX(un));
9670			return (EIO);
9671		}
9672		mutex_enter(SD_MUTEX(un));
9673		un->un_ncmds_in_driver--;
9674		ASSERT(un->un_ncmds_in_driver >= 0);
9675		mutex_exit(SD_MUTEX(un));
9676	}
9677
9678	/*
9679	 * Write requests are restricted to multiples of the system block size.
9680	 */
9681	secmask = un->un_sys_blocksize - 1;
9682
9683	if (uio->uio_loffset & ((offset_t)(secmask))) {
9684		SD_ERROR(SD_LOG_READ_WRITE, un,
9685		    "sdwrite: file offset not modulo %d\n",
9686		    un->un_sys_blocksize);
9687		err = EINVAL;
9688	} else if (uio->uio_iov->iov_len & (secmask)) {
9689		SD_ERROR(SD_LOG_READ_WRITE, un,
9690		    "sdwrite: transfer length not modulo %d\n",
9691		    un->un_sys_blocksize);
9692		err = EINVAL;
9693	} else {
9694		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
9695	}
9696	return (err);
9697}
9698
9699
9700/*
9701 *    Function: sdaread
9702 *
9703 * Description: Driver's aread(9e) entry point function.
9704 *
9705 *   Arguments: dev   - device number
9706 *		aio   - structure pointer describing where data is to be stored
9707 *		cred_p  - user credential pointer
9708 *
9709 * Return Code: ENXIO
9710 *		EIO
9711 *		EINVAL
9712 *		value returned by aphysio
9713 *
9714 *     Context: Kernel thread context.
9715 */
9716/* ARGSUSED */
9717static int
9718sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
9719{
9720	struct sd_lun	*un = NULL;
9721	struct uio	*uio = aio->aio_uio;
9722	int		secmask;
9723	int		err;
9724
9725	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9726		return (ENXIO);
9727	}
9728
9729	ASSERT(!mutex_owned(SD_MUTEX(un)));
9730
9731	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9732		mutex_enter(SD_MUTEX(un));
9733		/*
9734		 * Because the call to sd_ready_and_valid will issue I/O we
9735		 * must wait here if either the device is suspended or
9736		 * if it's power level is changing.
9737		 */
9738		while ((un->un_state == SD_STATE_SUSPENDED) ||
9739		    (un->un_state == SD_STATE_PM_CHANGING)) {
9740			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9741		}
9742		un->un_ncmds_in_driver++;
9743		mutex_exit(SD_MUTEX(un));
9744		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9745			mutex_enter(SD_MUTEX(un));
9746			un->un_ncmds_in_driver--;
9747			ASSERT(un->un_ncmds_in_driver >= 0);
9748			mutex_exit(SD_MUTEX(un));
9749			return (EIO);
9750		}
9751		mutex_enter(SD_MUTEX(un));
9752		un->un_ncmds_in_driver--;
9753		ASSERT(un->un_ncmds_in_driver >= 0);
9754		mutex_exit(SD_MUTEX(un));
9755	}
9756
9757	/*
9758	 * Read requests are restricted to multiples of the system block size.
9759	 */
9760	secmask = un->un_sys_blocksize - 1;
9761
9762	if (uio->uio_loffset & ((offset_t)(secmask))) {
9763		SD_ERROR(SD_LOG_READ_WRITE, un,
9764		    "sdaread: file offset not modulo %d\n",
9765		    un->un_sys_blocksize);
9766		err = EINVAL;
9767	} else if (uio->uio_iov->iov_len & (secmask)) {
9768		SD_ERROR(SD_LOG_READ_WRITE, un,
9769		    "sdaread: transfer length not modulo %d\n",
9770		    un->un_sys_blocksize);
9771		err = EINVAL;
9772	} else {
9773		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
9774	}
9775	return (err);
9776}
9777
9778
9779/*
9780 *    Function: sdawrite
9781 *
9782 * Description: Driver's awrite(9e) entry point function.
9783 *
9784 *   Arguments: dev   - device number
9785 *		aio   - structure pointer describing where data is stored
9786 *		cred_p  - user credential pointer
9787 *
9788 * Return Code: ENXIO
9789 *		EIO
9790 *		EINVAL
9791 *		value returned by aphysio
9792 *
9793 *     Context: Kernel thread context.
9794 */
9795/* ARGSUSED */
9796static int
9797sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
9798{
9799	struct sd_lun	*un = NULL;
9800	struct uio	*uio = aio->aio_uio;
9801	int		secmask;
9802	int		err;
9803
9804	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9805		return (ENXIO);
9806	}
9807
9808	ASSERT(!mutex_owned(SD_MUTEX(un)));
9809
9810	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9811		mutex_enter(SD_MUTEX(un));
9812		/*
9813		 * Because the call to sd_ready_and_valid will issue I/O we
9814		 * must wait here if either the device is suspended or
9815		 * if it's power level is changing.
9816		 */
9817		while ((un->un_state == SD_STATE_SUSPENDED) ||
9818		    (un->un_state == SD_STATE_PM_CHANGING)) {
9819			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9820		}
9821		un->un_ncmds_in_driver++;
9822		mutex_exit(SD_MUTEX(un));
9823		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9824			mutex_enter(SD_MUTEX(un));
9825			un->un_ncmds_in_driver--;
9826			ASSERT(un->un_ncmds_in_driver >= 0);
9827			mutex_exit(SD_MUTEX(un));
9828			return (EIO);
9829		}
9830		mutex_enter(SD_MUTEX(un));
9831		un->un_ncmds_in_driver--;
9832		ASSERT(un->un_ncmds_in_driver >= 0);
9833		mutex_exit(SD_MUTEX(un));
9834	}
9835
9836	/*
9837	 * Write requests are restricted to multiples of the system block size.
9838	 */
9839	secmask = un->un_sys_blocksize - 1;
9840
9841	if (uio->uio_loffset & ((offset_t)(secmask))) {
9842		SD_ERROR(SD_LOG_READ_WRITE, un,
9843		    "sdawrite: file offset not modulo %d\n",
9844		    un->un_sys_blocksize);
9845		err = EINVAL;
9846	} else if (uio->uio_iov->iov_len & (secmask)) {
9847		SD_ERROR(SD_LOG_READ_WRITE, un,
9848		    "sdawrite: transfer length not modulo %d\n",
9849		    un->un_sys_blocksize);
9850		err = EINVAL;
9851	} else {
9852		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
9853	}
9854	return (err);
9855}
9856
9857
9858
9859
9860
9861/*
9862 * Driver IO processing follows the following sequence:
9863 *
9864 *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
9865 *         |                |                     ^
9866 *         v                v                     |
9867 * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
9868 *         |                |                     |                   |
9869 *         v                |                     |                   |
9870 * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
9871 *         |                |                     ^                   ^
9872 *         v                v                     |                   |
9873 * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
9874 *         |                |                     |                   |
9875 *     +---+                |                     +------------+      +-------+
9876 *     |                    |                                  |              |
9877 *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
9878 *     |                    v                                  |              |
9879 *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
9880 *     |                    |                                  ^              |
9881 *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
9882 *     |                    v                                  |              |
9883 *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
9884 *     |                    |                                  ^              |
9885 *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
9886 *     |                    v                                  |              |
9887 *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
9888 *     |                    |                                  ^              |
9889 *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
9890 *     |                    v                                  |              |
9891 *     |              sd_pm_iostart()                     sd_pm_iodone()      |
9892 *     |                    |                                  ^              |
9893 *     |                    |                                  |              |
9894 *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
9895 *                          |                           ^
9896 *                          v                           |
9897 *                   sd_core_iostart()                  |
9898 *                          |                           |
9899 *                          |                           +------>(*destroypkt)()
9900 *                          +-> sd_start_cmds() <-+     |           |
9901 *                          |                     |     |           v
9902 *                          |                     |     |  scsi_destroy_pkt(9F)
9903 *                          |                     |     |
9904 *                          +->(*initpkt)()       +- sdintr()
9905 *                          |  |                        |  |
9906 *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
9907 *                          |  +-> scsi_setup_cdb(9F)   |
9908 *                          |                           |
9909 *                          +--> scsi_transport(9F)     |
9910 *                                     |                |
9911 *                                     +----> SCSA ---->+
9912 *
9913 *
9914 * This code is based upon the following presumptions:
9915 *
9916 *   - iostart and iodone functions operate on buf(9S) structures. These
9917 *     functions perform the necessary operations on the buf(9S) and pass
9918 *     them along to the next function in the chain by using the macros
9919 *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
9920 *     (for iodone side functions).
9921 *
9922 *   - The iostart side functions may sleep. The iodone side functions
9923 *     are called under interrupt context and may NOT sleep. Therefore
9924 *     iodone side functions also may not call iostart side functions.
9925 *     (NOTE: iostart side functions should NOT sleep for memory, as
9926 *     this could result in deadlock.)
9927 *
9928 *   - An iostart side function may call its corresponding iodone side
9929 *     function directly (if necessary).
9930 *
9931 *   - In the event of an error, an iostart side function can return a buf(9S)
9932 *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
9933 *     b_error in the usual way of course).
9934 *
9935 *   - The taskq mechanism may be used by the iodone side functions to dispatch
9936 *     requests to the iostart side functions.  The iostart side functions in
9937 *     this case would be called under the context of a taskq thread, so it's
9938 *     OK for them to block/sleep/spin in this case.
9939 *
9940 *   - iostart side functions may allocate "shadow" buf(9S) structs and
9941 *     pass them along to the next function in the chain.  The corresponding
9942 *     iodone side functions must coalesce the "shadow" bufs and return
9943 *     the "original" buf to the next higher layer.
9944 *
9945 *   - The b_private field of the buf(9S) struct holds a pointer to
9946 *     an sd_xbuf struct, which contains information needed to
9947 *     construct the scsi_pkt for the command.
9948 *
9949 *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
9950 *     layer must acquire & release the SD_MUTEX(un) as needed.
9951 */
9952
9953
9954/*
9955 * Create taskq for all targets in the system. This is created at
9956 * _init(9E) and destroyed at _fini(9E).
9957 *
9958 * Note: here we set the minalloc to a reasonably high number to ensure that
9959 * we will have an adequate supply of task entries available at interrupt time.
9960 * This is used in conjunction with the TASKQ_PREPOPULATE flag in
9961 * sd_create_taskq().  Since we do not want to sleep for allocations at
9962 * interrupt time, set maxalloc equal to minalloc. That way we will just fail
9963 * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
9964 * requests any one instant in time.
9965 */
9966#define	SD_TASKQ_NUMTHREADS	8
9967#define	SD_TASKQ_MINALLOC	256
9968#define	SD_TASKQ_MAXALLOC	256
9969
9970static taskq_t	*sd_tq = NULL;
9971_NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq))
9972
9973static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
9974static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
9975
9976/*
9977 * The following task queue is being created for the write part of
9978 * read-modify-write of non-512 block size devices.
9979 * Limit the number of threads to 1 for now. This number has been chosen
9980 * considering the fact that it applies only to dvd ram drives/MO drives
9981 * currently. Performance for which is not main criteria at this stage.
9982 * Note: It needs to be explored if we can use a single taskq in future
9983 */
9984#define	SD_WMR_TASKQ_NUMTHREADS	1
9985static taskq_t	*sd_wmr_tq = NULL;
9986_NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq))
9987
9988/*
9989 *    Function: sd_taskq_create
9990 *
9991 * Description: Create taskq thread(s) and preallocate task entries
9992 *
9993 * Return Code: Returns a pointer to the allocated taskq_t.
9994 *
9995 *     Context: Can sleep. Requires blockable context.
9996 *
9997 *       Notes: - The taskq() facility currently is NOT part of the DDI.
9998 *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
9999 *		- taskq_create() will block for memory, also it will panic
10000 *		  if it cannot create the requested number of threads.
10001 *		- Currently taskq_create() creates threads that cannot be
10002 *		  swapped.
10003 *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
10004 *		  supply of taskq entries at interrupt time (ie, so that we
10005 *		  do not have to sleep for memory)
10006 */
10007
10008static void
10009sd_taskq_create(void)
10010{
10011	char	taskq_name[TASKQ_NAMELEN];
10012
10013	ASSERT(sd_tq == NULL);
10014	ASSERT(sd_wmr_tq == NULL);
10015
10016	(void) snprintf(taskq_name, sizeof (taskq_name),
10017	    "%s_drv_taskq", sd_label);
10018	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
10019	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
10020	    TASKQ_PREPOPULATE));
10021
10022	(void) snprintf(taskq_name, sizeof (taskq_name),
10023	    "%s_rmw_taskq", sd_label);
10024	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
10025	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
10026	    TASKQ_PREPOPULATE));
10027}
10028
10029
10030/*
10031 *    Function: sd_taskq_delete
10032 *
10033 * Description: Complementary cleanup routine for sd_taskq_create().
10034 *
10035 *     Context: Kernel thread context.
10036 */
10037
10038static void
10039sd_taskq_delete(void)
10040{
10041	ASSERT(sd_tq != NULL);
10042	ASSERT(sd_wmr_tq != NULL);
10043	taskq_destroy(sd_tq);
10044	taskq_destroy(sd_wmr_tq);
10045	sd_tq = NULL;
10046	sd_wmr_tq = NULL;
10047}
10048
10049
10050/*
10051 *    Function: sdstrategy
10052 *
10053 * Description: Driver's strategy (9E) entry point function.
10054 *
10055 *   Arguments: bp - pointer to buf(9S)
10056 *
10057 * Return Code: Always returns zero
10058 *
10059 *     Context: Kernel thread context.
10060 */
10061
10062static int
10063sdstrategy(struct buf *bp)
10064{
10065	struct sd_lun *un;
10066
10067	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
10068	if (un == NULL) {
10069		bioerror(bp, EIO);
10070		bp->b_resid = bp->b_bcount;
10071		biodone(bp);
10072		return (0);
10073	}
10074	/* As was done in the past, fail new cmds. if state is dumping. */
10075	if (un->un_state == SD_STATE_DUMPING) {
10076		bioerror(bp, ENXIO);
10077		bp->b_resid = bp->b_bcount;
10078		biodone(bp);
10079		return (0);
10080	}
10081
10082	ASSERT(!mutex_owned(SD_MUTEX(un)));
10083
10084	/*
10085	 * Commands may sneak in while we released the mutex in
10086	 * DDI_SUSPEND, we should block new commands. However, old
10087	 * commands that are still in the driver at this point should
10088	 * still be allowed to drain.
10089	 */
10090	mutex_enter(SD_MUTEX(un));
10091	/*
10092	 * Must wait here if either the device is suspended or
10093	 * if it's power level is changing.
10094	 */
10095	while ((un->un_state == SD_STATE_SUSPENDED) ||
10096	    (un->un_state == SD_STATE_PM_CHANGING)) {
10097		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10098	}
10099
10100	un->un_ncmds_in_driver++;
10101
10102	/*
10103	 * atapi: Since we are running the CD for now in PIO mode we need to
10104	 * call bp_mapin here to avoid bp_mapin called interrupt context under
10105	 * the HBA's init_pkt routine.
10106	 */
10107	if (un->un_f_cfg_is_atapi == TRUE) {
10108		mutex_exit(SD_MUTEX(un));
10109		bp_mapin(bp);
10110		mutex_enter(SD_MUTEX(un));
10111	}
10112	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
10113	    un->un_ncmds_in_driver);
10114
10115	mutex_exit(SD_MUTEX(un));
10116
10117	/*
10118	 * This will (eventually) allocate the sd_xbuf area and
10119	 * call sd_xbuf_strategy().  We just want to return the
10120	 * result of ddi_xbuf_qstrategy so that we have an opt-
10121	 * imized tail call which saves us a stack frame.
10122	 */
10123	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
10124}
10125
10126
10127/*
10128 *    Function: sd_xbuf_strategy
10129 *
10130 * Description: Function for initiating IO operations via the
10131 *		ddi_xbuf_qstrategy() mechanism.
10132 *
10133 *     Context: Kernel thread context.
10134 */
10135
10136static void
10137sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
10138{
10139	struct sd_lun *un = arg;
10140
10141	ASSERT(bp != NULL);
10142	ASSERT(xp != NULL);
10143	ASSERT(un != NULL);
10144	ASSERT(!mutex_owned(SD_MUTEX(un)));
10145
10146	/*
10147	 * Initialize the fields in the xbuf and save a pointer to the
10148	 * xbuf in bp->b_private.
10149	 */
10150	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
10151
10152	/* Send the buf down the iostart chain */
10153	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
10154}
10155
10156
10157/*
10158 *    Function: sd_xbuf_init
10159 *
10160 * Description: Prepare the given sd_xbuf struct for use.
10161 *
10162 *   Arguments: un - ptr to softstate
10163 *		bp - ptr to associated buf(9S)
10164 *		xp - ptr to associated sd_xbuf
10165 *		chain_type - IO chain type to use:
10166 *			SD_CHAIN_NULL
10167 *			SD_CHAIN_BUFIO
10168 *			SD_CHAIN_USCSI
10169 *			SD_CHAIN_DIRECT
10170 *			SD_CHAIN_DIRECT_PRIORITY
10171 *		pktinfop - ptr to private data struct for scsi_pkt(9S)
10172 *			initialization; may be NULL if none.
10173 *
10174 *     Context: Kernel thread context
10175 */
10176
10177static void
10178sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
10179	uchar_t chain_type, void *pktinfop)
10180{
10181	int index;
10182
10183	ASSERT(un != NULL);
10184	ASSERT(bp != NULL);
10185	ASSERT(xp != NULL);
10186
10187	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
10188	    bp, chain_type);
10189
10190	xp->xb_un	= un;
10191	xp->xb_pktp	= NULL;
10192	xp->xb_pktinfo	= pktinfop;
10193	xp->xb_private	= bp->b_private;
10194	xp->xb_blkno	= (daddr_t)bp->b_blkno;
10195
10196	/*
10197	 * Set up the iostart and iodone chain indexes in the xbuf, based
10198	 * upon the specified chain type to use.
10199	 */
10200	switch (chain_type) {
10201	case SD_CHAIN_NULL:
10202		/*
10203		 * Fall thru to just use the values for the buf type, even
10204		 * tho for the NULL chain these values will never be used.
10205		 */
10206		/* FALLTHRU */
10207	case SD_CHAIN_BUFIO:
10208		index = un->un_buf_chain_type;
10209		break;
10210	case SD_CHAIN_USCSI:
10211		index = un->un_uscsi_chain_type;
10212		break;
10213	case SD_CHAIN_DIRECT:
10214		index = un->un_direct_chain_type;
10215		break;
10216	case SD_CHAIN_DIRECT_PRIORITY:
10217		index = un->un_priority_chain_type;
10218		break;
10219	default:
10220		/* We're really broken if we ever get here... */
10221		panic("sd_xbuf_init: illegal chain type!");
10222		/*NOTREACHED*/
10223	}
10224
10225	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
10226	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
10227
10228	/*
10229	 * It might be a bit easier to simply bzero the entire xbuf above,
10230	 * but it turns out that since we init a fair number of members anyway,
10231	 * we save a fair number cycles by doing explicit assignment of zero.
10232	 */
10233	xp->xb_pkt_flags	= 0;
10234	xp->xb_dma_resid	= 0;
10235	xp->xb_retry_count	= 0;
10236	xp->xb_victim_retry_count = 0;
10237	xp->xb_ua_retry_count	= 0;
10238	xp->xb_nr_retry_count	= 0;
10239	xp->xb_sense_bp		= NULL;
10240	xp->xb_sense_status	= 0;
10241	xp->xb_sense_state	= 0;
10242	xp->xb_sense_resid	= 0;
10243
10244	bp->b_private	= xp;
10245	bp->b_flags	&= ~(B_DONE | B_ERROR);
10246	bp->b_resid	= 0;
10247	bp->av_forw	= NULL;
10248	bp->av_back	= NULL;
10249	bioerror(bp, 0);
10250
10251	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
10252}
10253
10254
10255/*
10256 *    Function: sd_uscsi_strategy
10257 *
10258 * Description: Wrapper for calling into the USCSI chain via physio(9F)
10259 *
10260 *   Arguments: bp - buf struct ptr
10261 *
10262 * Return Code: Always returns 0
10263 *
10264 *     Context: Kernel thread context
10265 */
10266
10267static int
10268sd_uscsi_strategy(struct buf *bp)
10269{
10270	struct sd_lun		*un;
10271	struct sd_uscsi_info	*uip;
10272	struct sd_xbuf		*xp;
10273	uchar_t			chain_type;
10274
10275	ASSERT(bp != NULL);
10276
10277	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
10278	if (un == NULL) {
10279		bioerror(bp, EIO);
10280		bp->b_resid = bp->b_bcount;
10281		biodone(bp);
10282		return (0);
10283	}
10284
10285	ASSERT(!mutex_owned(SD_MUTEX(un)));
10286
10287	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
10288
10289	mutex_enter(SD_MUTEX(un));
10290	/*
10291	 * atapi: Since we are running the CD for now in PIO mode we need to
10292	 * call bp_mapin here to avoid bp_mapin called interrupt context under
10293	 * the HBA's init_pkt routine.
10294	 */
10295	if (un->un_f_cfg_is_atapi == TRUE) {
10296		mutex_exit(SD_MUTEX(un));
10297		bp_mapin(bp);
10298		mutex_enter(SD_MUTEX(un));
10299	}
10300	un->un_ncmds_in_driver++;
10301	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
10302	    un->un_ncmds_in_driver);
10303	mutex_exit(SD_MUTEX(un));
10304
10305	/*
10306	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
10307	 */
10308	ASSERT(bp->b_private != NULL);
10309	uip = (struct sd_uscsi_info *)bp->b_private;
10310
10311	switch (uip->ui_flags) {
10312	case SD_PATH_DIRECT:
10313		chain_type = SD_CHAIN_DIRECT;
10314		break;
10315	case SD_PATH_DIRECT_PRIORITY:
10316		chain_type = SD_CHAIN_DIRECT_PRIORITY;
10317		break;
10318	default:
10319		chain_type = SD_CHAIN_USCSI;
10320		break;
10321	}
10322
10323	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
10324	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
10325
10326	/* Use the index obtained within xbuf_init */
10327	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
10328
10329	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
10330
10331	return (0);
10332}
10333
10334/*
10335 *    Function: sd_send_scsi_cmd
10336 *
10337 * Description: Runs a USCSI command for user (when called thru sdioctl),
10338 *		or for the driver
10339 *
10340 *   Arguments: dev - the dev_t for the device
10341 *		incmd - ptr to a valid uscsi_cmd struct
10342 *		flag - bit flag, indicating open settings, 32/64 bit type
10343 *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
10344 *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
10345 *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
10346 *			to use the USCSI "direct" chain and bypass the normal
10347 *			command waitq.
10348 *
10349 * Return Code: 0 -  successful completion of the given command
10350 *		EIO - scsi_uscsi_handle_command() failed
10351 *		ENXIO  - soft state not found for specified dev
10352 *		EINVAL
10353 *		EFAULT - copyin/copyout error
10354 *		return code of scsi_uscsi_handle_command():
10355 *			EIO
10356 *			ENXIO
10357 *			EACCES
10358 *
10359 *     Context: Waits for command to complete. Can sleep.
10360 */
10361
10362static int
10363sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
10364	enum uio_seg dataspace, int path_flag)
10365{
10366	struct sd_uscsi_info	*uip;
10367	struct uscsi_cmd	*uscmd;
10368	struct sd_lun	*un;
10369	int	format = 0;
10370	int	rval;
10371
10372	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
10373	if (un == NULL) {
10374		return (ENXIO);
10375	}
10376
10377	ASSERT(!mutex_owned(SD_MUTEX(un)));
10378
10379#ifdef SDDEBUG
10380	switch (dataspace) {
10381	case UIO_USERSPACE:
10382		SD_TRACE(SD_LOG_IO, un,
10383		    "sd_send_scsi_cmd: entry: un:0x%p UIO_USERSPACE\n", un);
10384		break;
10385	case UIO_SYSSPACE:
10386		SD_TRACE(SD_LOG_IO, un,
10387		    "sd_send_scsi_cmd: entry: un:0x%p UIO_SYSSPACE\n", un);
10388		break;
10389	default:
10390		SD_TRACE(SD_LOG_IO, un,
10391		    "sd_send_scsi_cmd: entry: un:0x%p UNEXPECTED SPACE\n", un);
10392		break;
10393	}
10394#endif
10395
10396	rval = scsi_uscsi_alloc_and_copyin((intptr_t)incmd, flag,
10397	    SD_ADDRESS(un), &uscmd);
10398	if (rval != 0) {
10399		SD_TRACE(SD_LOG_IO, un, "sd_sense_scsi_cmd: "
10400		    "scsi_uscsi_alloc_and_copyin failed\n", un);
10401		return (rval);
10402	}
10403
10404	if ((uscmd->uscsi_cdb != NULL) &&
10405	    (uscmd->uscsi_cdb[0] == SCMD_FORMAT)) {
10406		mutex_enter(SD_MUTEX(un));
10407		un->un_f_format_in_progress = TRUE;
10408		mutex_exit(SD_MUTEX(un));
10409		format = 1;
10410	}
10411
10412	/*
10413	 * Allocate an sd_uscsi_info struct and fill it with the info
10414	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
10415	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
10416	 * since we allocate the buf here in this function, we do not
10417	 * need to preserve the prior contents of b_private.
10418	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
10419	 */
10420	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
10421	uip->ui_flags = path_flag;
10422	uip->ui_cmdp = uscmd;
10423
10424	/*
10425	 * Commands sent with priority are intended for error recovery
10426	 * situations, and do not have retries performed.
10427	 */
10428	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
10429		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
10430	}
10431	uscmd->uscsi_flags &= ~USCSI_NOINTR;
10432
10433	rval = scsi_uscsi_handle_cmd(dev, dataspace, uscmd,
10434	    sd_uscsi_strategy, NULL, uip);
10435
10436#ifdef SDDEBUG
10437	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
10438	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
10439	    uscmd->uscsi_status, uscmd->uscsi_resid);
10440	if (uscmd->uscsi_bufaddr != NULL) {
10441		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
10442		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
10443		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
10444		if (dataspace == UIO_SYSSPACE) {
10445			SD_DUMP_MEMORY(un, SD_LOG_IO,
10446			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
10447			    uscmd->uscsi_buflen, SD_LOG_HEX);
10448		}
10449	}
10450#endif
10451
10452	if (format == 1) {
10453		mutex_enter(SD_MUTEX(un));
10454		un->un_f_format_in_progress = FALSE;
10455		mutex_exit(SD_MUTEX(un));
10456	}
10457
10458	(void) scsi_uscsi_copyout_and_free((intptr_t)incmd, uscmd);
10459	kmem_free(uip, sizeof (struct sd_uscsi_info));
10460
10461	return (rval);
10462}
10463
10464
10465/*
10466 *    Function: sd_buf_iodone
10467 *
10468 * Description: Frees the sd_xbuf & returns the buf to its originator.
10469 *
10470 *     Context: May be called from interrupt context.
10471 */
10472/* ARGSUSED */
10473static void
10474sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
10475{
10476	struct sd_xbuf *xp;
10477
10478	ASSERT(un != NULL);
10479	ASSERT(bp != NULL);
10480	ASSERT(!mutex_owned(SD_MUTEX(un)));
10481
10482	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
10483
10484	xp = SD_GET_XBUF(bp);
10485	ASSERT(xp != NULL);
10486
10487	mutex_enter(SD_MUTEX(un));
10488
10489	/*
10490	 * Grab time when the cmd completed.
10491	 * This is used for determining if the system has been
10492	 * idle long enough to make it idle to the PM framework.
10493	 * This is for lowering the overhead, and therefore improving
10494	 * performance per I/O operation.
10495	 */
10496	un->un_pm_idle_time = ddi_get_time();
10497
10498	un->un_ncmds_in_driver--;
10499	ASSERT(un->un_ncmds_in_driver >= 0);
10500	SD_INFO(SD_LOG_IO, un, "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
10501	    un->un_ncmds_in_driver);
10502
10503	mutex_exit(SD_MUTEX(un));
10504
10505	ddi_xbuf_done(bp, un->un_xbuf_attr);	/* xbuf is gone after this */
10506	biodone(bp);				/* bp is gone after this */
10507
10508	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
10509}
10510
10511
10512/*
10513 *    Function: sd_uscsi_iodone
10514 *
10515 * Description: Frees the sd_xbuf & returns the buf to its originator.
10516 *
10517 *     Context: May be called from interrupt context.
10518 */
10519/* ARGSUSED */
10520static void
10521sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
10522{
10523	struct sd_xbuf *xp;
10524
10525	ASSERT(un != NULL);
10526	ASSERT(bp != NULL);
10527
10528	xp = SD_GET_XBUF(bp);
10529	ASSERT(xp != NULL);
10530	ASSERT(!mutex_owned(SD_MUTEX(un)));
10531
10532	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
10533
10534	bp->b_private = xp->xb_private;
10535
10536	mutex_enter(SD_MUTEX(un));
10537
10538	/*
10539	 * Grab time when the cmd completed.
10540	 * This is used for determining if the system has been
10541	 * idle long enough to make it idle to the PM framework.
10542	 * This is for lowering the overhead, and therefore improving
10543	 * performance per I/O operation.
10544	 */
10545	un->un_pm_idle_time = ddi_get_time();
10546
10547	un->un_ncmds_in_driver--;
10548	ASSERT(un->un_ncmds_in_driver >= 0);
10549	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
10550	    un->un_ncmds_in_driver);
10551
10552	mutex_exit(SD_MUTEX(un));
10553
10554	kmem_free(xp, sizeof (struct sd_xbuf));
10555	biodone(bp);
10556
10557	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
10558}
10559
10560
10561/*
10562 *    Function: sd_mapblockaddr_iostart
10563 *
10564 * Description: Verify request lies within the partition limits for
10565 *		the indicated minor device.  Issue "overrun" buf if
10566 *		request would exceed partition range.  Converts
10567 *		partition-relative block address to absolute.
10568 *
10569 *     Context: Can sleep
10570 *
10571 *      Issues: This follows what the old code did, in terms of accessing
10572 *		some of the partition info in the unit struct without holding
10573 *		the mutext.  This is a general issue, if the partition info
10574 *		can be altered while IO is in progress... as soon as we send
10575 *		a buf, its partitioning can be invalid before it gets to the
10576 *		device.  Probably the right fix is to move partitioning out
10577 *		of the driver entirely.
10578 */
10579
10580static void
10581sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
10582{
10583	diskaddr_t	nblocks;	/* #blocks in the given partition */
10584	daddr_t	blocknum;	/* Block number specified by the buf */
10585	size_t	requested_nblocks;
10586	size_t	available_nblocks;
10587	int	partition;
10588	diskaddr_t	partition_offset;
10589	struct sd_xbuf *xp;
10590
10591
10592	ASSERT(un != NULL);
10593	ASSERT(bp != NULL);
10594	ASSERT(!mutex_owned(SD_MUTEX(un)));
10595
10596	SD_TRACE(SD_LOG_IO_PARTITION, un,
10597	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
10598
10599	xp = SD_GET_XBUF(bp);
10600	ASSERT(xp != NULL);
10601
10602	/*
10603	 * If the geometry is not indicated as valid, attempt to access
10604	 * the unit & verify the geometry/label. This can be the case for
10605	 * removable-media devices, of if the device was opened in
10606	 * NDELAY/NONBLOCK mode.
10607	 */
10608	if (!SD_IS_VALID_LABEL(un) &&
10609	    (sd_ready_and_valid(un) != SD_READY_VALID)) {
10610		/*
10611		 * For removable devices it is possible to start an I/O
10612		 * without a media by opening the device in nodelay mode.
10613		 * Also for writable CDs there can be many scenarios where
10614		 * there is no geometry yet but volume manager is trying to
10615		 * issue a read() just because it can see TOC on the CD. So
10616		 * do not print a message for removables.
10617		 */
10618		if (!un->un_f_has_removable_media) {
10619			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10620			    "i/o to invalid geometry\n");
10621		}
10622		bioerror(bp, EIO);
10623		bp->b_resid = bp->b_bcount;
10624		SD_BEGIN_IODONE(index, un, bp);
10625		return;
10626	}
10627
10628	partition = SDPART(bp->b_edev);
10629
10630	nblocks = 0;
10631	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
10632	    &nblocks, &partition_offset, NULL, NULL, (void *)SD_PATH_DIRECT);
10633
10634	/*
10635	 * blocknum is the starting block number of the request. At this
10636	 * point it is still relative to the start of the minor device.
10637	 */
10638	blocknum = xp->xb_blkno;
10639
10640	/*
10641	 * Legacy: If the starting block number is one past the last block
10642	 * in the partition, do not set B_ERROR in the buf.
10643	 */
10644	if (blocknum == nblocks)  {
10645		goto error_exit;
10646	}
10647
10648	/*
10649	 * Confirm that the first block of the request lies within the
10650	 * partition limits. Also the requested number of bytes must be
10651	 * a multiple of the system block size.
10652	 */
10653	if ((blocknum < 0) || (blocknum >= nblocks) ||
10654	    ((bp->b_bcount & (un->un_sys_blocksize - 1)) != 0)) {
10655		bp->b_flags |= B_ERROR;
10656		goto error_exit;
10657	}
10658
10659	/*
10660	 * If the requsted # blocks exceeds the available # blocks, that
10661	 * is an overrun of the partition.
10662	 */
10663	requested_nblocks = SD_BYTES2SYSBLOCKS(un, bp->b_bcount);
10664	available_nblocks = (size_t)(nblocks - blocknum);
10665	ASSERT(nblocks >= blocknum);
10666
10667	if (requested_nblocks > available_nblocks) {
10668		/*
10669		 * Allocate an "overrun" buf to allow the request to proceed
10670		 * for the amount of space available in the partition. The
10671		 * amount not transferred will be added into the b_resid
10672		 * when the operation is complete. The overrun buf
10673		 * replaces the original buf here, and the original buf
10674		 * is saved inside the overrun buf, for later use.
10675		 */
10676		size_t resid = SD_SYSBLOCKS2BYTES(un,
10677		    (offset_t)(requested_nblocks - available_nblocks));
10678		size_t count = bp->b_bcount - resid;
10679		/*
10680		 * Note: count is an unsigned entity thus it'll NEVER
10681		 * be less than 0 so ASSERT the original values are
10682		 * correct.
10683		 */
10684		ASSERT(bp->b_bcount >= resid);
10685
10686		bp = sd_bioclone_alloc(bp, count, blocknum,
10687		    (int (*)(struct buf *)) sd_mapblockaddr_iodone);
10688		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
10689		ASSERT(xp != NULL);
10690	}
10691
10692	/* At this point there should be no residual for this buf. */
10693	ASSERT(bp->b_resid == 0);
10694
10695	/* Convert the block number to an absolute address. */
10696	xp->xb_blkno += partition_offset;
10697
10698	SD_NEXT_IOSTART(index, un, bp);
10699
10700	SD_TRACE(SD_LOG_IO_PARTITION, un,
10701	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
10702
10703	return;
10704
10705error_exit:
10706	bp->b_resid = bp->b_bcount;
10707	SD_BEGIN_IODONE(index, un, bp);
10708	SD_TRACE(SD_LOG_IO_PARTITION, un,
10709	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
10710}
10711
10712
10713/*
10714 *    Function: sd_mapblockaddr_iodone
10715 *
10716 * Description: Completion-side processing for partition management.
10717 *
10718 *     Context: May be called under interrupt context
10719 */
10720
10721static void
10722sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
10723{
10724	/* int	partition; */	/* Not used, see below. */
10725	ASSERT(un != NULL);
10726	ASSERT(bp != NULL);
10727	ASSERT(!mutex_owned(SD_MUTEX(un)));
10728
10729	SD_TRACE(SD_LOG_IO_PARTITION, un,
10730	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
10731
10732	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
10733		/*
10734		 * We have an "overrun" buf to deal with...
10735		 */
10736		struct sd_xbuf	*xp;
10737		struct buf	*obp;	/* ptr to the original buf */
10738
10739		xp = SD_GET_XBUF(bp);
10740		ASSERT(xp != NULL);
10741
10742		/* Retrieve the pointer to the original buf */
10743		obp = (struct buf *)xp->xb_private;
10744		ASSERT(obp != NULL);
10745
10746		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
10747		bioerror(obp, bp->b_error);
10748
10749		sd_bioclone_free(bp);
10750
10751		/*
10752		 * Get back the original buf.
10753		 * Note that since the restoration of xb_blkno below
10754		 * was removed, the sd_xbuf is not needed.
10755		 */
10756		bp = obp;
10757		/*
10758		 * xp = SD_GET_XBUF(bp);
10759		 * ASSERT(xp != NULL);
10760		 */
10761	}
10762
10763	/*
10764	 * Convert sd->xb_blkno back to a minor-device relative value.
10765	 * Note: this has been commented out, as it is not needed in the
10766	 * current implementation of the driver (ie, since this function
10767	 * is at the top of the layering chains, so the info will be
10768	 * discarded) and it is in the "hot" IO path.
10769	 *
10770	 * partition = getminor(bp->b_edev) & SDPART_MASK;
10771	 * xp->xb_blkno -= un->un_offset[partition];
10772	 */
10773
10774	SD_NEXT_IODONE(index, un, bp);
10775
10776	SD_TRACE(SD_LOG_IO_PARTITION, un,
10777	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
10778}
10779
10780
10781/*
10782 *    Function: sd_mapblocksize_iostart
10783 *
10784 * Description: Convert between system block size (un->un_sys_blocksize)
10785 *		and target block size (un->un_tgt_blocksize).
10786 *
10787 *     Context: Can sleep to allocate resources.
10788 *
10789 * Assumptions: A higher layer has already performed any partition validation,
10790 *		and converted the xp->xb_blkno to an absolute value relative
10791 *		to the start of the device.
10792 *
10793 *		It is also assumed that the higher layer has implemented
10794 *		an "overrun" mechanism for the case where the request would
10795 *		read/write beyond the end of a partition.  In this case we
10796 *		assume (and ASSERT) that bp->b_resid == 0.
10797 *
10798 *		Note: The implementation for this routine assumes the target
10799 *		block size remains constant between allocation and transport.
10800 */
10801
10802static void
10803sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
10804{
10805	struct sd_mapblocksize_info	*bsp;
10806	struct sd_xbuf			*xp;
10807	offset_t first_byte;
10808	daddr_t	start_block, end_block;
10809	daddr_t	request_bytes;
10810	ushort_t is_aligned = FALSE;
10811
10812	ASSERT(un != NULL);
10813	ASSERT(bp != NULL);
10814	ASSERT(!mutex_owned(SD_MUTEX(un)));
10815	ASSERT(bp->b_resid == 0);
10816
10817	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
10818	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
10819
10820	/*
10821	 * For a non-writable CD, a write request is an error
10822	 */
10823	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
10824	    (un->un_f_mmc_writable_media == FALSE)) {
10825		bioerror(bp, EIO);
10826		bp->b_resid = bp->b_bcount;
10827		SD_BEGIN_IODONE(index, un, bp);
10828		return;
10829	}
10830
10831	/*
10832	 * We do not need a shadow buf if the device is using
10833	 * un->un_sys_blocksize as its block size or if bcount == 0.
10834	 * In this case there is no layer-private data block allocated.
10835	 */
10836	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
10837	    (bp->b_bcount == 0)) {
10838		goto done;
10839	}
10840
10841#if defined(__i386) || defined(__amd64)
10842	/* We do not support non-block-aligned transfers for ROD devices */
10843	ASSERT(!ISROD(un));
10844#endif
10845
10846	xp = SD_GET_XBUF(bp);
10847	ASSERT(xp != NULL);
10848
10849	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
10850	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
10851	    un->un_tgt_blocksize, un->un_sys_blocksize);
10852	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
10853	    "request start block:0x%x\n", xp->xb_blkno);
10854	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
10855	    "request len:0x%x\n", bp->b_bcount);
10856
10857	/*
10858	 * Allocate the layer-private data area for the mapblocksize layer.
10859	 * Layers are allowed to use the xp_private member of the sd_xbuf
10860	 * struct to store the pointer to their layer-private data block, but
10861	 * each layer also has the responsibility of restoring the prior
10862	 * contents of xb_private before returning the buf/xbuf to the
10863	 * higher layer that sent it.
10864	 *
10865	 * Here we save the prior contents of xp->xb_private into the
10866	 * bsp->mbs_oprivate field of our layer-private data area. This value
10867	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
10868	 * the layer-private area and returning the buf/xbuf to the layer
10869	 * that sent it.
10870	 *
10871	 * Note that here we use kmem_zalloc for the allocation as there are
10872	 * parts of the mapblocksize code that expect certain fields to be
10873	 * zero unless explicitly set to a required value.
10874	 */
10875	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
10876	bsp->mbs_oprivate = xp->xb_private;
10877	xp->xb_private = bsp;
10878
10879	/*
10880	 * This treats the data on the disk (target) as an array of bytes.
10881	 * first_byte is the byte offset, from the beginning of the device,
10882	 * to the location of the request. This is converted from a
10883	 * un->un_sys_blocksize block address to a byte offset, and then back
10884	 * to a block address based upon a un->un_tgt_blocksize block size.
10885	 *
10886	 * xp->xb_blkno should be absolute upon entry into this function,
10887	 * but, but it is based upon partitions that use the "system"
10888	 * block size. It must be adjusted to reflect the block size of
10889	 * the target.
10890	 *
10891	 * Note that end_block is actually the block that follows the last
10892	 * block of the request, but that's what is needed for the computation.
10893	 */
10894	first_byte  = SD_SYSBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
10895	start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
10896	end_block   = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) /
10897	    un->un_tgt_blocksize;
10898
10899	/* request_bytes is rounded up to a multiple of the target block size */
10900	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
10901
10902	/*
10903	 * See if the starting address of the request and the request
10904	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
10905	 * then we do not need to allocate a shadow buf to handle the request.
10906	 */
10907	if (((first_byte   % un->un_tgt_blocksize) == 0) &&
10908	    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
10909		is_aligned = TRUE;
10910	}
10911
10912	if ((bp->b_flags & B_READ) == 0) {
10913		/*
10914		 * Lock the range for a write operation. An aligned request is
10915		 * considered a simple write; otherwise the request must be a
10916		 * read-modify-write.
10917		 */
10918		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
10919		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
10920	}
10921
10922	/*
10923	 * Alloc a shadow buf if the request is not aligned. Also, this is
10924	 * where the READ command is generated for a read-modify-write. (The
10925	 * write phase is deferred until after the read completes.)
10926	 */
10927	if (is_aligned == FALSE) {
10928
10929		struct sd_mapblocksize_info	*shadow_bsp;
10930		struct sd_xbuf	*shadow_xp;
10931		struct buf	*shadow_bp;
10932
10933		/*
10934		 * Allocate the shadow buf and it associated xbuf. Note that
10935		 * after this call the xb_blkno value in both the original
10936		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
10937		 * same: absolute relative to the start of the device, and
10938		 * adjusted for the target block size. The b_blkno in the
10939		 * shadow buf will also be set to this value. We should never
10940		 * change b_blkno in the original bp however.
10941		 *
10942		 * Note also that the shadow buf will always need to be a
10943		 * READ command, regardless of whether the incoming command
10944		 * is a READ or a WRITE.
10945		 */
10946		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
10947		    xp->xb_blkno,
10948		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
10949
10950		shadow_xp = SD_GET_XBUF(shadow_bp);
10951
10952		/*
10953		 * Allocate the layer-private data for the shadow buf.
10954		 * (No need to preserve xb_private in the shadow xbuf.)
10955		 */
10956		shadow_xp->xb_private = shadow_bsp =
10957		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
10958
10959		/*
10960		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
10961		 * to figure out where the start of the user data is (based upon
10962		 * the system block size) in the data returned by the READ
10963		 * command (which will be based upon the target blocksize). Note
10964		 * that this is only really used if the request is unaligned.
10965		 */
10966		bsp->mbs_copy_offset = (ssize_t)(first_byte -
10967		    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
10968		ASSERT((bsp->mbs_copy_offset >= 0) &&
10969		    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
10970
10971		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
10972
10973		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
10974
10975		/* Transfer the wmap (if any) to the shadow buf */
10976		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
10977		bsp->mbs_wmp = NULL;
10978
10979		/*
10980		 * The shadow buf goes on from here in place of the
10981		 * original buf.
10982		 */
10983		shadow_bsp->mbs_orig_bp = bp;
10984		bp = shadow_bp;
10985	}
10986
10987	SD_INFO(SD_LOG_IO_RMMEDIA, un,
10988	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
10989	SD_INFO(SD_LOG_IO_RMMEDIA, un,
10990	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
10991	    request_bytes);
10992	SD_INFO(SD_LOG_IO_RMMEDIA, un,
10993	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
10994
10995done:
10996	SD_NEXT_IOSTART(index, un, bp);
10997
10998	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
10999	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
11000}
11001
11002
11003/*
11004 *    Function: sd_mapblocksize_iodone
11005 *
11006 * Description: Completion side processing for block-size mapping.
11007 *
11008 *     Context: May be called under interrupt context
11009 */
11010
11011static void
11012sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
11013{
11014	struct sd_mapblocksize_info	*bsp;
11015	struct sd_xbuf	*xp;
11016	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
11017	struct buf	*orig_bp;	/* ptr to the original buf */
11018	offset_t	shadow_end;
11019	offset_t	request_end;
11020	offset_t	shadow_start;
11021	ssize_t		copy_offset;
11022	size_t		copy_length;
11023	size_t		shortfall;
11024	uint_t		is_write;	/* TRUE if this bp is a WRITE */
11025	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
11026
11027	ASSERT(un != NULL);
11028	ASSERT(bp != NULL);
11029
11030	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
11031	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
11032
11033	/*
11034	 * There is no shadow buf or layer-private data if the target is
11035	 * using un->un_sys_blocksize as its block size or if bcount == 0.
11036	 */
11037	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
11038	    (bp->b_bcount == 0)) {
11039		goto exit;
11040	}
11041
11042	xp = SD_GET_XBUF(bp);
11043	ASSERT(xp != NULL);
11044
11045	/* Retrieve the pointer to the layer-private data area from the xbuf. */
11046	bsp = xp->xb_private;
11047
11048	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
11049	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
11050
11051	if (is_write) {
11052		/*
11053		 * For a WRITE request we must free up the block range that
11054		 * we have locked up.  This holds regardless of whether this is
11055		 * an aligned write request or a read-modify-write request.
11056		 */
11057		sd_range_unlock(un, bsp->mbs_wmp);
11058		bsp->mbs_wmp = NULL;
11059	}
11060
11061	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
11062		/*
11063		 * An aligned read or write command will have no shadow buf;
11064		 * there is not much else to do with it.
11065		 */
11066		goto done;
11067	}
11068
11069	orig_bp = bsp->mbs_orig_bp;
11070	ASSERT(orig_bp != NULL);
11071	orig_xp = SD_GET_XBUF(orig_bp);
11072	ASSERT(orig_xp != NULL);
11073	ASSERT(!mutex_owned(SD_MUTEX(un)));
11074
11075	if (!is_write && has_wmap) {
11076		/*
11077		 * A READ with a wmap means this is the READ phase of a
11078		 * read-modify-write. If an error occurred on the READ then
11079		 * we do not proceed with the WRITE phase or copy any data.
11080		 * Just release the write maps and return with an error.
11081		 */
11082		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
11083			orig_bp->b_resid = orig_bp->b_bcount;
11084			bioerror(orig_bp, bp->b_error);
11085			sd_range_unlock(un, bsp->mbs_wmp);
11086			goto freebuf_done;
11087		}
11088	}
11089
11090	/*
11091	 * Here is where we set up to copy the data from the shadow buf
11092	 * into the space associated with the original buf.
11093	 *
11094	 * To deal with the conversion between block sizes, these
11095	 * computations treat the data as an array of bytes, with the
11096	 * first byte (byte 0) corresponding to the first byte in the
11097	 * first block on the disk.
11098	 */
11099
11100	/*
11101	 * shadow_start and shadow_len indicate the location and size of
11102	 * the data returned with the shadow IO request.
11103	 */
11104	shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
11105	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
11106
11107	/*
11108	 * copy_offset gives the offset (in bytes) from the start of the first
11109	 * block of the READ request to the beginning of the data.  We retrieve
11110	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
11111	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
11112	 * data to be copied (in bytes).
11113	 */
11114	copy_offset  = bsp->mbs_copy_offset;
11115	ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize));
11116	copy_length  = orig_bp->b_bcount;
11117	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
11118
11119	/*
11120	 * Set up the resid and error fields of orig_bp as appropriate.
11121	 */
11122	if (shadow_end >= request_end) {
11123		/* We got all the requested data; set resid to zero */
11124		orig_bp->b_resid = 0;
11125	} else {
11126		/*
11127		 * We failed to get enough data to fully satisfy the original
11128		 * request. Just copy back whatever data we got and set
11129		 * up the residual and error code as required.
11130		 *
11131		 * 'shortfall' is the amount by which the data received with the
11132		 * shadow buf has "fallen short" of the requested amount.
11133		 */
11134		shortfall = (size_t)(request_end - shadow_end);
11135
11136		if (shortfall > orig_bp->b_bcount) {
11137			/*
11138			 * We did not get enough data to even partially
11139			 * fulfill the original request.  The residual is
11140			 * equal to the amount requested.
11141			 */
11142			orig_bp->b_resid = orig_bp->b_bcount;
11143		} else {
11144			/*
11145			 * We did not get all the data that we requested
11146			 * from the device, but we will try to return what
11147			 * portion we did get.
11148			 */
11149			orig_bp->b_resid = shortfall;
11150		}
11151		ASSERT(copy_length >= orig_bp->b_resid);
11152		copy_length  -= orig_bp->b_resid;
11153	}
11154
11155	/* Propagate the error code from the shadow buf to the original buf */
11156	bioerror(orig_bp, bp->b_error);
11157
11158	if (is_write) {
11159		goto freebuf_done;	/* No data copying for a WRITE */
11160	}
11161
11162	if (has_wmap) {
11163		/*
11164		 * This is a READ command from the READ phase of a
11165		 * read-modify-write request. We have to copy the data given
11166		 * by the user OVER the data returned by the READ command,
11167		 * then convert the command from a READ to a WRITE and send
11168		 * it back to the target.
11169		 */
11170		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
11171		    copy_length);
11172
11173		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
11174
11175		/*
11176		 * Dispatch the WRITE command to the taskq thread, which
11177		 * will in turn send the command to the target. When the
11178		 * WRITE command completes, we (sd_mapblocksize_iodone())
11179		 * will get called again as part of the iodone chain
11180		 * processing for it. Note that we will still be dealing
11181		 * with the shadow buf at that point.
11182		 */
11183		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
11184		    KM_NOSLEEP) != 0) {
11185			/*
11186			 * Dispatch was successful so we are done. Return
11187			 * without going any higher up the iodone chain. Do
11188			 * not free up any layer-private data until after the
11189			 * WRITE completes.
11190			 */
11191			return;
11192		}
11193
11194		/*
11195		 * Dispatch of the WRITE command failed; set up the error
11196		 * condition and send this IO back up the iodone chain.
11197		 */
11198		bioerror(orig_bp, EIO);
11199		orig_bp->b_resid = orig_bp->b_bcount;
11200
11201	} else {
11202		/*
11203		 * This is a regular READ request (ie, not a RMW). Copy the
11204		 * data from the shadow buf into the original buf. The
11205		 * copy_offset compensates for any "misalignment" between the
11206		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
11207		 * original buf (with its un->un_sys_blocksize blocks).
11208		 */
11209		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
11210		    copy_length);
11211	}
11212
11213freebuf_done:
11214
11215	/*
11216	 * At this point we still have both the shadow buf AND the original
11217	 * buf to deal with, as well as the layer-private data area in each.
11218	 * Local variables are as follows:
11219	 *
11220	 * bp -- points to shadow buf
11221	 * xp -- points to xbuf of shadow buf
11222	 * bsp -- points to layer-private data area of shadow buf
11223	 * orig_bp -- points to original buf
11224	 *
11225	 * First free the shadow buf and its associated xbuf, then free the
11226	 * layer-private data area from the shadow buf. There is no need to
11227	 * restore xb_private in the shadow xbuf.
11228	 */
11229	sd_shadow_buf_free(bp);
11230	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
11231
11232	/*
11233	 * Now update the local variables to point to the original buf, xbuf,
11234	 * and layer-private area.
11235	 */
11236	bp = orig_bp;
11237	xp = SD_GET_XBUF(bp);
11238	ASSERT(xp != NULL);
11239	ASSERT(xp == orig_xp);
11240	bsp = xp->xb_private;
11241	ASSERT(bsp != NULL);
11242
11243done:
11244	/*
11245	 * Restore xb_private to whatever it was set to by the next higher
11246	 * layer in the chain, then free the layer-private data area.
11247	 */
11248	xp->xb_private = bsp->mbs_oprivate;
11249	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
11250
11251exit:
11252	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
11253	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
11254
11255	SD_NEXT_IODONE(index, un, bp);
11256}
11257
11258
11259/*
11260 *    Function: sd_checksum_iostart
11261 *
11262 * Description: A stub function for a layer that's currently not used.
11263 *		For now just a placeholder.
11264 *
11265 *     Context: Kernel thread context
11266 */
11267
11268static void
11269sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
11270{
11271	ASSERT(un != NULL);
11272	ASSERT(bp != NULL);
11273	ASSERT(!mutex_owned(SD_MUTEX(un)));
11274	SD_NEXT_IOSTART(index, un, bp);
11275}
11276
11277
11278/*
11279 *    Function: sd_checksum_iodone
11280 *
11281 * Description: A stub function for a layer that's currently not used.
11282 *		For now just a placeholder.
11283 *
11284 *     Context: May be called under interrupt context
11285 */
11286
11287static void
11288sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
11289{
11290	ASSERT(un != NULL);
11291	ASSERT(bp != NULL);
11292	ASSERT(!mutex_owned(SD_MUTEX(un)));
11293	SD_NEXT_IODONE(index, un, bp);
11294}
11295
11296
11297/*
11298 *    Function: sd_checksum_uscsi_iostart
11299 *
11300 * Description: A stub function for a layer that's currently not used.
11301 *		For now just a placeholder.
11302 *
11303 *     Context: Kernel thread context
11304 */
11305
11306static void
11307sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
11308{
11309	ASSERT(un != NULL);
11310	ASSERT(bp != NULL);
11311	ASSERT(!mutex_owned(SD_MUTEX(un)));
11312	SD_NEXT_IOSTART(index, un, bp);
11313}
11314
11315
11316/*
11317 *    Function: sd_checksum_uscsi_iodone
11318 *
11319 * Description: A stub function for a layer that's currently not used.
11320 *		For now just a placeholder.
11321 *
11322 *     Context: May be called under interrupt context
11323 */
11324
11325static void
11326sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
11327{
11328	ASSERT(un != NULL);
11329	ASSERT(bp != NULL);
11330	ASSERT(!mutex_owned(SD_MUTEX(un)));
11331	SD_NEXT_IODONE(index, un, bp);
11332}
11333
11334
11335/*
11336 *    Function: sd_pm_iostart
11337 *
11338 * Description: iostart-side routine for Power mangement.
11339 *
11340 *     Context: Kernel thread context
11341 */
11342
11343static void
11344sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
11345{
11346	ASSERT(un != NULL);
11347	ASSERT(bp != NULL);
11348	ASSERT(!mutex_owned(SD_MUTEX(un)));
11349	ASSERT(!mutex_owned(&un->un_pm_mutex));
11350
11351	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
11352
11353	if (sd_pm_entry(un) != DDI_SUCCESS) {
11354		/*
11355		 * Set up to return the failed buf back up the 'iodone'
11356		 * side of the calling chain.
11357		 */
11358		bioerror(bp, EIO);
11359		bp->b_resid = bp->b_bcount;
11360
11361		SD_BEGIN_IODONE(index, un, bp);
11362
11363		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
11364		return;
11365	}
11366
11367	SD_NEXT_IOSTART(index, un, bp);
11368
11369	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
11370}
11371
11372
11373/*
11374 *    Function: sd_pm_iodone
11375 *
11376 * Description: iodone-side routine for power mangement.
11377 *
11378 *     Context: may be called from interrupt context
11379 */
11380
11381static void
11382sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
11383{
11384	ASSERT(un != NULL);
11385	ASSERT(bp != NULL);
11386	ASSERT(!mutex_owned(&un->un_pm_mutex));
11387
11388	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
11389
11390	/*
11391	 * After attach the following flag is only read, so don't
11392	 * take the penalty of acquiring a mutex for it.
11393	 */
11394	if (un->un_f_pm_is_enabled == TRUE) {
11395		sd_pm_exit(un);
11396	}
11397
11398	SD_NEXT_IODONE(index, un, bp);
11399
11400	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
11401}
11402
11403
11404/*
11405 *    Function: sd_core_iostart
11406 *
11407 * Description: Primary driver function for enqueuing buf(9S) structs from
11408 *		the system and initiating IO to the target device
11409 *
11410 *     Context: Kernel thread context. Can sleep.
11411 *
11412 * Assumptions:  - The given xp->xb_blkno is absolute
11413 *		   (ie, relative to the start of the device).
11414 *		 - The IO is to be done using the native blocksize of
11415 *		   the device, as specified in un->un_tgt_blocksize.
11416 */
11417/* ARGSUSED */
11418static void
11419sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
11420{
11421	struct sd_xbuf *xp;
11422
11423	ASSERT(un != NULL);
11424	ASSERT(bp != NULL);
11425	ASSERT(!mutex_owned(SD_MUTEX(un)));
11426	ASSERT(bp->b_resid == 0);
11427
11428	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
11429
11430	xp = SD_GET_XBUF(bp);
11431	ASSERT(xp != NULL);
11432
11433	mutex_enter(SD_MUTEX(un));
11434
11435	/*
11436	 * If we are currently in the failfast state, fail any new IO
11437	 * that has B_FAILFAST set, then return.
11438	 */
11439	if ((bp->b_flags & B_FAILFAST) &&
11440	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
11441		mutex_exit(SD_MUTEX(un));
11442		bioerror(bp, EIO);
11443		bp->b_resid = bp->b_bcount;
11444		SD_BEGIN_IODONE(index, un, bp);
11445		return;
11446	}
11447
11448	if (SD_IS_DIRECT_PRIORITY(xp)) {
11449		/*
11450		 * Priority command -- transport it immediately.
11451		 *
11452		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
11453		 * because all direct priority commands should be associated
11454		 * with error recovery actions which we don't want to retry.
11455		 */
11456		sd_start_cmds(un, bp);
11457	} else {
11458		/*
11459		 * Normal command -- add it to the wait queue, then start
11460		 * transporting commands from the wait queue.
11461		 */
11462		sd_add_buf_to_waitq(un, bp);
11463		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
11464		sd_start_cmds(un, NULL);
11465	}
11466
11467	mutex_exit(SD_MUTEX(un));
11468
11469	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
11470}
11471
11472
11473/*
11474 *    Function: sd_init_cdb_limits
11475 *
11476 * Description: This is to handle scsi_pkt initialization differences
11477 *		between the driver platforms.
11478 *
11479 *		Legacy behaviors:
11480 *
11481 *		If the block number or the sector count exceeds the
11482 *		capabilities of a Group 0 command, shift over to a
11483 *		Group 1 command. We don't blindly use Group 1
11484 *		commands because a) some drives (CDC Wren IVs) get a
11485 *		bit confused, and b) there is probably a fair amount
11486 *		of speed difference for a target to receive and decode
11487 *		a 10 byte command instead of a 6 byte command.
11488 *
11489 *		The xfer time difference of 6 vs 10 byte CDBs is
11490 *		still significant so this code is still worthwhile.
11491 *		10 byte CDBs are very inefficient with the fas HBA driver
11492 *		and older disks. Each CDB byte took 1 usec with some
11493 *		popular disks.
11494 *
11495 *     Context: Must be called at attach time
11496 */
11497
11498static void
11499sd_init_cdb_limits(struct sd_lun *un)
11500{
11501	int hba_cdb_limit;
11502
11503	/*
11504	 * Use CDB_GROUP1 commands for most devices except for
11505	 * parallel SCSI fixed drives in which case we get better
11506	 * performance using CDB_GROUP0 commands (where applicable).
11507	 */
11508	un->un_mincdb = SD_CDB_GROUP1;
11509#if !defined(__fibre)
11510	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
11511	    !un->un_f_has_removable_media) {
11512		un->un_mincdb = SD_CDB_GROUP0;
11513	}
11514#endif
11515
11516	/*
11517	 * Try to read the max-cdb-length supported by HBA.
11518	 */
11519	un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1);
11520	if (0 >= un->un_max_hba_cdb) {
11521		un->un_max_hba_cdb = CDB_GROUP4;
11522		hba_cdb_limit = SD_CDB_GROUP4;
11523	} else if (0 < un->un_max_hba_cdb &&
11524	    un->un_max_hba_cdb < CDB_GROUP1) {
11525		hba_cdb_limit = SD_CDB_GROUP0;
11526	} else if (CDB_GROUP1 <= un->un_max_hba_cdb &&
11527	    un->un_max_hba_cdb < CDB_GROUP5) {
11528		hba_cdb_limit = SD_CDB_GROUP1;
11529	} else if (CDB_GROUP5 <= un->un_max_hba_cdb &&
11530	    un->un_max_hba_cdb < CDB_GROUP4) {
11531		hba_cdb_limit = SD_CDB_GROUP5;
11532	} else {
11533		hba_cdb_limit = SD_CDB_GROUP4;
11534	}
11535
11536	/*
11537	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
11538	 * commands for fixed disks unless we are building for a 32 bit
11539	 * kernel.
11540	 */
11541#ifdef _LP64
11542	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
11543	    min(hba_cdb_limit, SD_CDB_GROUP4);
11544#else
11545	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
11546	    min(hba_cdb_limit, SD_CDB_GROUP1);
11547#endif
11548
11549	/*
11550	 * x86 systems require the PKT_DMA_PARTIAL flag
11551	 */
11552#if defined(__x86)
11553	un->un_pkt_flags = PKT_DMA_PARTIAL;
11554#else
11555	un->un_pkt_flags = 0;
11556#endif
11557
11558	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
11559	    ? sizeof (struct scsi_arq_status) : 1);
11560	un->un_cmd_timeout = (ushort_t)sd_io_time;
11561	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
11562}
11563
11564
11565/*
11566 *    Function: sd_initpkt_for_buf
11567 *
11568 * Description: Allocate and initialize for transport a scsi_pkt struct,
11569 *		based upon the info specified in the given buf struct.
11570 *
11571 *		Assumes the xb_blkno in the request is absolute (ie,
11572 *		relative to the start of the device (NOT partition!).
11573 *		Also assumes that the request is using the native block
11574 *		size of the device (as returned by the READ CAPACITY
11575 *		command).
11576 *
11577 * Return Code: SD_PKT_ALLOC_SUCCESS
11578 *		SD_PKT_ALLOC_FAILURE
11579 *		SD_PKT_ALLOC_FAILURE_NO_DMA
11580 *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
11581 *
11582 *     Context: Kernel thread and may be called from software interrupt context
11583 *		as part of a sdrunout callback. This function may not block or
11584 *		call routines that block
11585 */
11586
11587static int
11588sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
11589{
11590	struct sd_xbuf	*xp;
11591	struct scsi_pkt *pktp = NULL;
11592	struct sd_lun	*un;
11593	size_t		blockcount;
11594	daddr_t		startblock;
11595	int		rval;
11596	int		cmd_flags;
11597
11598	ASSERT(bp != NULL);
11599	ASSERT(pktpp != NULL);
11600	xp = SD_GET_XBUF(bp);
11601	ASSERT(xp != NULL);
11602	un = SD_GET_UN(bp);
11603	ASSERT(un != NULL);
11604	ASSERT(mutex_owned(SD_MUTEX(un)));
11605	ASSERT(bp->b_resid == 0);
11606
11607	SD_TRACE(SD_LOG_IO_CORE, un,
11608	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
11609
11610#if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
11611	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
11612		/*
11613		 * Already have a scsi_pkt -- just need DMA resources.
11614		 * We must recompute the CDB in case the mapping returns
11615		 * a nonzero pkt_resid.
11616		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
11617		 * that is being retried, the unmap/remap of the DMA resouces
11618		 * will result in the entire transfer starting over again
11619		 * from the very first block.
11620		 */
11621		ASSERT(xp->xb_pktp != NULL);
11622		pktp = xp->xb_pktp;
11623	} else {
11624		pktp = NULL;
11625	}
11626#endif /* __i386 || __amd64 */
11627
11628	startblock = xp->xb_blkno;	/* Absolute block num. */
11629	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
11630
11631#if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
11632
11633	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
11634
11635#else
11636
11637	cmd_flags = un->un_pkt_flags | xp->xb_pkt_flags;
11638
11639#endif
11640
11641	/*
11642	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
11643	 * call scsi_init_pkt, and build the CDB.
11644	 */
11645	rval = sd_setup_rw_pkt(un, &pktp, bp,
11646	    cmd_flags, sdrunout, (caddr_t)un,
11647	    startblock, blockcount);
11648
11649	if (rval == 0) {
11650		/*
11651		 * Success.
11652		 *
11653		 * If partial DMA is being used and required for this transfer.
11654		 * set it up here.
11655		 */
11656		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
11657		    (pktp->pkt_resid != 0)) {
11658
11659			/*
11660			 * Save the CDB length and pkt_resid for the
11661			 * next xfer
11662			 */
11663			xp->xb_dma_resid = pktp->pkt_resid;
11664
11665			/* rezero resid */
11666			pktp->pkt_resid = 0;
11667
11668		} else {
11669			xp->xb_dma_resid = 0;
11670		}
11671
11672		pktp->pkt_flags = un->un_tagflags;
11673		pktp->pkt_time  = un->un_cmd_timeout;
11674		pktp->pkt_comp  = sdintr;
11675
11676		pktp->pkt_private = bp;
11677		*pktpp = pktp;
11678
11679		SD_TRACE(SD_LOG_IO_CORE, un,
11680		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
11681
11682#if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
11683		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
11684#endif
11685
11686		return (SD_PKT_ALLOC_SUCCESS);
11687
11688	}
11689
11690	/*
11691	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
11692	 * from sd_setup_rw_pkt.
11693	 */
11694	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
11695
11696	if (rval == SD_PKT_ALLOC_FAILURE) {
11697		*pktpp = NULL;
11698		/*
11699		 * Set the driver state to RWAIT to indicate the driver
11700		 * is waiting on resource allocations. The driver will not
11701		 * suspend, pm_suspend, or detatch while the state is RWAIT.
11702		 */
11703		New_state(un, SD_STATE_RWAIT);
11704
11705		SD_ERROR(SD_LOG_IO_CORE, un,
11706		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
11707
11708		if ((bp->b_flags & B_ERROR) != 0) {
11709			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
11710		}
11711		return (SD_PKT_ALLOC_FAILURE);
11712	} else {
11713		/*
11714		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
11715		 *
11716		 * This should never happen.  Maybe someone messed with the
11717		 * kernel's minphys?
11718		 */
11719		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
11720		    "Request rejected: too large for CDB: "
11721		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
11722		SD_ERROR(SD_LOG_IO_CORE, un,
11723		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
11724		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
11725
11726	}
11727}
11728
11729
11730/*
11731 *    Function: sd_destroypkt_for_buf
11732 *
11733 * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
11734 *
11735 *     Context: Kernel thread or interrupt context
11736 */
11737
11738static void
11739sd_destroypkt_for_buf(struct buf *bp)
11740{
11741	ASSERT(bp != NULL);
11742	ASSERT(SD_GET_UN(bp) != NULL);
11743
11744	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
11745	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
11746
11747	ASSERT(SD_GET_PKTP(bp) != NULL);
11748	scsi_destroy_pkt(SD_GET_PKTP(bp));
11749
11750	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
11751	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
11752}
11753
11754/*
11755 *    Function: sd_setup_rw_pkt
11756 *
11757 * Description: Determines appropriate CDB group for the requested LBA
11758 *		and transfer length, calls scsi_init_pkt, and builds
11759 *		the CDB.  Do not use for partial DMA transfers except
11760 *		for the initial transfer since the CDB size must
11761 *		remain constant.
11762 *
11763 *     Context: Kernel thread and may be called from software interrupt
11764 *		context as part of a sdrunout callback. This function may not
11765 *		block or call routines that block
11766 */
11767
11768
11769int
11770sd_setup_rw_pkt(struct sd_lun *un,
11771    struct scsi_pkt **pktpp, struct buf *bp, int flags,
11772    int (*callback)(caddr_t), caddr_t callback_arg,
11773    diskaddr_t lba, uint32_t blockcount)
11774{
11775	struct scsi_pkt *return_pktp;
11776	union scsi_cdb *cdbp;
11777	struct sd_cdbinfo *cp = NULL;
11778	int i;
11779
11780	/*
11781	 * See which size CDB to use, based upon the request.
11782	 */
11783	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
11784
11785		/*
11786		 * Check lba and block count against sd_cdbtab limits.
11787		 * In the partial DMA case, we have to use the same size
11788		 * CDB for all the transfers.  Check lba + blockcount
11789		 * against the max LBA so we know that segment of the
11790		 * transfer can use the CDB we select.
11791		 */
11792		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
11793		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
11794
11795			/*
11796			 * The command will fit into the CDB type
11797			 * specified by sd_cdbtab[i].
11798			 */
11799			cp = sd_cdbtab + i;
11800
11801			/*
11802			 * Call scsi_init_pkt so we can fill in the
11803			 * CDB.
11804			 */
11805			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
11806			    bp, cp->sc_grpcode, un->un_status_len, 0,
11807			    flags, callback, callback_arg);
11808
11809			if (return_pktp != NULL) {
11810
11811				/*
11812				 * Return new value of pkt
11813				 */
11814				*pktpp = return_pktp;
11815
11816				/*
11817				 * To be safe, zero the CDB insuring there is
11818				 * no leftover data from a previous command.
11819				 */
11820				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
11821
11822				/*
11823				 * Handle partial DMA mapping
11824				 */
11825				if (return_pktp->pkt_resid != 0) {
11826
11827					/*
11828					 * Not going to xfer as many blocks as
11829					 * originally expected
11830					 */
11831					blockcount -=
11832					    SD_BYTES2TGTBLOCKS(un,
11833					    return_pktp->pkt_resid);
11834				}
11835
11836				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
11837
11838				/*
11839				 * Set command byte based on the CDB
11840				 * type we matched.
11841				 */
11842				cdbp->scc_cmd = cp->sc_grpmask |
11843				    ((bp->b_flags & B_READ) ?
11844				    SCMD_READ : SCMD_WRITE);
11845
11846				SD_FILL_SCSI1_LUN(un, return_pktp);
11847
11848				/*
11849				 * Fill in LBA and length
11850				 */
11851				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
11852				    (cp->sc_grpcode == CDB_GROUP4) ||
11853				    (cp->sc_grpcode == CDB_GROUP0) ||
11854				    (cp->sc_grpcode == CDB_GROUP5));
11855
11856				if (cp->sc_grpcode == CDB_GROUP1) {
11857					FORMG1ADDR(cdbp, lba);
11858					FORMG1COUNT(cdbp, blockcount);
11859					return (0);
11860				} else if (cp->sc_grpcode == CDB_GROUP4) {
11861					FORMG4LONGADDR(cdbp, lba);
11862					FORMG4COUNT(cdbp, blockcount);
11863					return (0);
11864				} else if (cp->sc_grpcode == CDB_GROUP0) {
11865					FORMG0ADDR(cdbp, lba);
11866					FORMG0COUNT(cdbp, blockcount);
11867					return (0);
11868				} else if (cp->sc_grpcode == CDB_GROUP5) {
11869					FORMG5ADDR(cdbp, lba);
11870					FORMG5COUNT(cdbp, blockcount);
11871					return (0);
11872				}
11873
11874				/*
11875				 * It should be impossible to not match one
11876				 * of the CDB types above, so we should never
11877				 * reach this point.  Set the CDB command byte
11878				 * to test-unit-ready to avoid writing
11879				 * to somewhere we don't intend.
11880				 */
11881				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
11882				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
11883			} else {
11884				/*
11885				 * Couldn't get scsi_pkt
11886				 */
11887				return (SD_PKT_ALLOC_FAILURE);
11888			}
11889		}
11890	}
11891
11892	/*
11893	 * None of the available CDB types were suitable.  This really
11894	 * should never happen:  on a 64 bit system we support
11895	 * READ16/WRITE16 which will hold an entire 64 bit disk address
11896	 * and on a 32 bit system we will refuse to bind to a device
11897	 * larger than 2TB so addresses will never be larger than 32 bits.
11898	 */
11899	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
11900}
11901
11902#if defined(__i386) || defined(__amd64)
11903/*
11904 *    Function: sd_setup_next_rw_pkt
11905 *
11906 * Description: Setup packet for partial DMA transfers, except for the
11907 * 		initial transfer.  sd_setup_rw_pkt should be used for
11908 *		the initial transfer.
11909 *
11910 *     Context: Kernel thread and may be called from interrupt context.
11911 */
11912
11913int
11914sd_setup_next_rw_pkt(struct sd_lun *un,
11915    struct scsi_pkt *pktp, struct buf *bp,
11916    diskaddr_t lba, uint32_t blockcount)
11917{
11918	uchar_t com;
11919	union scsi_cdb *cdbp;
11920	uchar_t cdb_group_id;
11921
11922	ASSERT(pktp != NULL);
11923	ASSERT(pktp->pkt_cdbp != NULL);
11924
11925	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
11926	com = cdbp->scc_cmd;
11927	cdb_group_id = CDB_GROUPID(com);
11928
11929	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
11930	    (cdb_group_id == CDB_GROUPID_1) ||
11931	    (cdb_group_id == CDB_GROUPID_4) ||
11932	    (cdb_group_id == CDB_GROUPID_5));
11933
11934	/*
11935	 * Move pkt to the next portion of the xfer.
11936	 * func is NULL_FUNC so we do not have to release
11937	 * the disk mutex here.
11938	 */
11939	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
11940	    NULL_FUNC, NULL) == pktp) {
11941		/* Success.  Handle partial DMA */
11942		if (pktp->pkt_resid != 0) {
11943			blockcount -=
11944			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
11945		}
11946
11947		cdbp->scc_cmd = com;
11948		SD_FILL_SCSI1_LUN(un, pktp);
11949		if (cdb_group_id == CDB_GROUPID_1) {
11950			FORMG1ADDR(cdbp, lba);
11951			FORMG1COUNT(cdbp, blockcount);
11952			return (0);
11953		} else if (cdb_group_id == CDB_GROUPID_4) {
11954			FORMG4LONGADDR(cdbp, lba);
11955			FORMG4COUNT(cdbp, blockcount);
11956			return (0);
11957		} else if (cdb_group_id == CDB_GROUPID_0) {
11958			FORMG0ADDR(cdbp, lba);
11959			FORMG0COUNT(cdbp, blockcount);
11960			return (0);
11961		} else if (cdb_group_id == CDB_GROUPID_5) {
11962			FORMG5ADDR(cdbp, lba);
11963			FORMG5COUNT(cdbp, blockcount);
11964			return (0);
11965		}
11966
11967		/* Unreachable */
11968		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
11969	}
11970
11971	/*
11972	 * Error setting up next portion of cmd transfer.
11973	 * Something is definitely very wrong and this
11974	 * should not happen.
11975	 */
11976	return (SD_PKT_ALLOC_FAILURE);
11977}
11978#endif /* defined(__i386) || defined(__amd64) */
11979
11980/*
11981 *    Function: sd_initpkt_for_uscsi
11982 *
11983 * Description: Allocate and initialize for transport a scsi_pkt struct,
11984 *		based upon the info specified in the given uscsi_cmd struct.
11985 *
11986 * Return Code: SD_PKT_ALLOC_SUCCESS
11987 *		SD_PKT_ALLOC_FAILURE
11988 *		SD_PKT_ALLOC_FAILURE_NO_DMA
11989 *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
11990 *
11991 *     Context: Kernel thread and may be called from software interrupt context
11992 *		as part of a sdrunout callback. This function may not block or
11993 *		call routines that block
11994 */
11995
11996static int
11997sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
11998{
11999	struct uscsi_cmd *uscmd;
12000	struct sd_xbuf	*xp;
12001	struct scsi_pkt	*pktp;
12002	struct sd_lun	*un;
12003	uint32_t	flags = 0;
12004
12005	ASSERT(bp != NULL);
12006	ASSERT(pktpp != NULL);
12007	xp = SD_GET_XBUF(bp);
12008	ASSERT(xp != NULL);
12009	un = SD_GET_UN(bp);
12010	ASSERT(un != NULL);
12011	ASSERT(mutex_owned(SD_MUTEX(un)));
12012
12013	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
12014	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
12015	ASSERT(uscmd != NULL);
12016
12017	SD_TRACE(SD_LOG_IO_CORE, un,
12018	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
12019
12020	/*
12021	 * Allocate the scsi_pkt for the command.
12022	 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
12023	 *	 during scsi_init_pkt time and will continue to use the
12024	 *	 same path as long as the same scsi_pkt is used without
12025	 *	 intervening scsi_dma_free(). Since uscsi command does
12026	 *	 not call scsi_dmafree() before retry failed command, it
12027	 *	 is necessary to make sure PKT_DMA_PARTIAL flag is NOT
12028	 *	 set such that scsi_vhci can use other available path for
12029	 *	 retry. Besides, ucsci command does not allow DMA breakup,
12030	 *	 so there is no need to set PKT_DMA_PARTIAL flag.
12031	 */
12032	pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
12033	    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
12034	    sizeof (struct scsi_arq_status), 0,
12035	    (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
12036	    sdrunout, (caddr_t)un);
12037
12038	if (pktp == NULL) {
12039		*pktpp = NULL;
12040		/*
12041		 * Set the driver state to RWAIT to indicate the driver
12042		 * is waiting on resource allocations. The driver will not
12043		 * suspend, pm_suspend, or detatch while the state is RWAIT.
12044		 */
12045		New_state(un, SD_STATE_RWAIT);
12046
12047		SD_ERROR(SD_LOG_IO_CORE, un,
12048		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
12049
12050		if ((bp->b_flags & B_ERROR) != 0) {
12051			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
12052		}
12053		return (SD_PKT_ALLOC_FAILURE);
12054	}
12055
12056	/*
12057	 * We do not do DMA breakup for USCSI commands, so return failure
12058	 * here if all the needed DMA resources were not allocated.
12059	 */
12060	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
12061	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
12062		scsi_destroy_pkt(pktp);
12063		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
12064		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
12065		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
12066	}
12067
12068	/* Init the cdb from the given uscsi struct */
12069	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
12070	    uscmd->uscsi_cdb[0], 0, 0, 0);
12071
12072	SD_FILL_SCSI1_LUN(un, pktp);
12073
12074	/*
12075	 * Set up the optional USCSI flags. See the uscsi (7I) man page
12076	 * for listing of the supported flags.
12077	 */
12078
12079	if (uscmd->uscsi_flags & USCSI_SILENT) {
12080		flags |= FLAG_SILENT;
12081	}
12082
12083	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
12084		flags |= FLAG_DIAGNOSE;
12085	}
12086
12087	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
12088		flags |= FLAG_ISOLATE;
12089	}
12090
12091	if (un->un_f_is_fibre == FALSE) {
12092		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
12093			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
12094		}
12095	}
12096
12097	/*
12098	 * Set the pkt flags here so we save time later.
12099	 * Note: These flags are NOT in the uscsi man page!!!
12100	 */
12101	if (uscmd->uscsi_flags & USCSI_HEAD) {
12102		flags |= FLAG_HEAD;
12103	}
12104
12105	if (uscmd->uscsi_flags & USCSI_NOINTR) {
12106		flags |= FLAG_NOINTR;
12107	}
12108
12109	/*
12110	 * For tagged queueing, things get a bit complicated.
12111	 * Check first for head of queue and last for ordered queue.
12112	 * If neither head nor order, use the default driver tag flags.
12113	 */
12114	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
12115		if (uscmd->uscsi_flags & USCSI_HTAG) {
12116			flags |= FLAG_HTAG;
12117		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
12118			flags |= FLAG_OTAG;
12119		} else {
12120			flags |= un->un_tagflags & FLAG_TAGMASK;
12121		}
12122	}
12123
12124	if (uscmd->uscsi_flags & USCSI_NODISCON) {
12125		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
12126	}
12127
12128	pktp->pkt_flags = flags;
12129
12130	/* Copy the caller's CDB into the pkt... */
12131	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
12132
12133	if (uscmd->uscsi_timeout == 0) {
12134		pktp->pkt_time = un->un_uscsi_timeout;
12135	} else {
12136		pktp->pkt_time = uscmd->uscsi_timeout;
12137	}
12138
12139	/* need it later to identify USCSI request in sdintr */
12140	xp->xb_pkt_flags |= SD_XB_USCSICMD;
12141
12142	xp->xb_sense_resid = uscmd->uscsi_rqresid;
12143
12144	pktp->pkt_private = bp;
12145	pktp->pkt_comp = sdintr;
12146	*pktpp = pktp;
12147
12148	SD_TRACE(SD_LOG_IO_CORE, un,
12149	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
12150
12151	return (SD_PKT_ALLOC_SUCCESS);
12152}
12153
12154
12155/*
12156 *    Function: sd_destroypkt_for_uscsi
12157 *
12158 * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
12159 *		IOs.. Also saves relevant info into the associated uscsi_cmd
12160 *		struct.
12161 *
12162 *     Context: May be called under interrupt context
12163 */
12164
12165static void
12166sd_destroypkt_for_uscsi(struct buf *bp)
12167{
12168	struct uscsi_cmd *uscmd;
12169	struct sd_xbuf	*xp;
12170	struct scsi_pkt	*pktp;
12171	struct sd_lun	*un;
12172
12173	ASSERT(bp != NULL);
12174	xp = SD_GET_XBUF(bp);
12175	ASSERT(xp != NULL);
12176	un = SD_GET_UN(bp);
12177	ASSERT(un != NULL);
12178	ASSERT(!mutex_owned(SD_MUTEX(un)));
12179	pktp = SD_GET_PKTP(bp);
12180	ASSERT(pktp != NULL);
12181
12182	SD_TRACE(SD_LOG_IO_CORE, un,
12183	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
12184
12185	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
12186	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
12187	ASSERT(uscmd != NULL);
12188
12189	/* Save the status and the residual into the uscsi_cmd struct */
12190	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
12191	uscmd->uscsi_resid  = bp->b_resid;
12192
12193	/*
12194	 * If enabled, copy any saved sense data into the area specified
12195	 * by the uscsi command.
12196	 */
12197	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
12198	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
12199		/*
12200		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
12201		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
12202		 */
12203		uscmd->uscsi_rqstatus = xp->xb_sense_status;
12204		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
12205		bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf, SENSE_LENGTH);
12206	}
12207
12208	/* We are done with the scsi_pkt; free it now */
12209	ASSERT(SD_GET_PKTP(bp) != NULL);
12210	scsi_destroy_pkt(SD_GET_PKTP(bp));
12211
12212	SD_TRACE(SD_LOG_IO_CORE, un,
12213	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
12214}
12215
12216
12217/*
12218 *    Function: sd_bioclone_alloc
12219 *
12220 * Description: Allocate a buf(9S) and init it as per the given buf
12221 *		and the various arguments.  The associated sd_xbuf
12222 *		struct is (nearly) duplicated.  The struct buf *bp
12223 *		argument is saved in new_xp->xb_private.
12224 *
12225 *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
12226 *		datalen - size of data area for the shadow bp
12227 *		blkno - starting LBA
12228 *		func - function pointer for b_iodone in the shadow buf. (May
12229 *			be NULL if none.)
12230 *
12231 * Return Code: Pointer to allocates buf(9S) struct
12232 *
12233 *     Context: Can sleep.
12234 */
12235
12236static struct buf *
12237sd_bioclone_alloc(struct buf *bp, size_t datalen,
12238	daddr_t blkno, int (*func)(struct buf *))
12239{
12240	struct	sd_lun	*un;
12241	struct	sd_xbuf	*xp;
12242	struct	sd_xbuf	*new_xp;
12243	struct	buf	*new_bp;
12244
12245	ASSERT(bp != NULL);
12246	xp = SD_GET_XBUF(bp);
12247	ASSERT(xp != NULL);
12248	un = SD_GET_UN(bp);
12249	ASSERT(un != NULL);
12250	ASSERT(!mutex_owned(SD_MUTEX(un)));
12251
12252	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
12253	    NULL, KM_SLEEP);
12254
12255	new_bp->b_lblkno	= blkno;
12256
12257	/*
12258	 * Allocate an xbuf for the shadow bp and copy the contents of the
12259	 * original xbuf into it.
12260	 */
12261	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
12262	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
12263
12264	/*
12265	 * The given bp is automatically saved in the xb_private member
12266	 * of the new xbuf.  Callers are allowed to depend on this.
12267	 */
12268	new_xp->xb_private = bp;
12269
12270	new_bp->b_private  = new_xp;
12271
12272	return (new_bp);
12273}
12274
12275/*
12276 *    Function: sd_shadow_buf_alloc
12277 *
12278 * Description: Allocate a buf(9S) and init it as per the given buf
12279 *		and the various arguments.  The associated sd_xbuf
12280 *		struct is (nearly) duplicated.  The struct buf *bp
12281 *		argument is saved in new_xp->xb_private.
12282 *
12283 *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
12284 *		datalen - size of data area for the shadow bp
12285 *		bflags - B_READ or B_WRITE (pseudo flag)
12286 *		blkno - starting LBA
12287 *		func - function pointer for b_iodone in the shadow buf. (May
12288 *			be NULL if none.)
12289 *
12290 * Return Code: Pointer to allocates buf(9S) struct
12291 *
12292 *     Context: Can sleep.
12293 */
12294
12295static struct buf *
12296sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
12297	daddr_t blkno, int (*func)(struct buf *))
12298{
12299	struct	sd_lun	*un;
12300	struct	sd_xbuf	*xp;
12301	struct	sd_xbuf	*new_xp;
12302	struct	buf	*new_bp;
12303
12304	ASSERT(bp != NULL);
12305	xp = SD_GET_XBUF(bp);
12306	ASSERT(xp != NULL);
12307	un = SD_GET_UN(bp);
12308	ASSERT(un != NULL);
12309	ASSERT(!mutex_owned(SD_MUTEX(un)));
12310
12311	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
12312		bp_mapin(bp);
12313	}
12314
12315	bflags &= (B_READ | B_WRITE);
12316#if defined(__i386) || defined(__amd64)
12317	new_bp = getrbuf(KM_SLEEP);
12318	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
12319	new_bp->b_bcount = datalen;
12320	new_bp->b_flags = bflags |
12321	    (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW));
12322#else
12323	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
12324	    datalen, bflags, SLEEP_FUNC, NULL);
12325#endif
12326	new_bp->av_forw	= NULL;
12327	new_bp->av_back	= NULL;
12328	new_bp->b_dev	= bp->b_dev;
12329	new_bp->b_blkno	= blkno;
12330	new_bp->b_iodone = func;
12331	new_bp->b_edev	= bp->b_edev;
12332	new_bp->b_resid	= 0;
12333
12334	/* We need to preserve the B_FAILFAST flag */
12335	if (bp->b_flags & B_FAILFAST) {
12336		new_bp->b_flags |= B_FAILFAST;
12337	}
12338
12339	/*
12340	 * Allocate an xbuf for the shadow bp and copy the contents of the
12341	 * original xbuf into it.
12342	 */
12343	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
12344	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
12345
12346	/* Need later to copy data between the shadow buf & original buf! */
12347	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
12348
12349	/*
12350	 * The given bp is automatically saved in the xb_private member
12351	 * of the new xbuf.  Callers are allowed to depend on this.
12352	 */
12353	new_xp->xb_private = bp;
12354
12355	new_bp->b_private  = new_xp;
12356
12357	return (new_bp);
12358}
12359
12360/*
12361 *    Function: sd_bioclone_free
12362 *
12363 * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
12364 *		in the larger than partition operation.
12365 *
12366 *     Context: May be called under interrupt context
12367 */
12368
12369static void
12370sd_bioclone_free(struct buf *bp)
12371{
12372	struct sd_xbuf	*xp;
12373
12374	ASSERT(bp != NULL);
12375	xp = SD_GET_XBUF(bp);
12376	ASSERT(xp != NULL);
12377
12378	/*
12379	 * Call bp_mapout() before freeing the buf,  in case a lower
12380	 * layer or HBA  had done a bp_mapin().  we must do this here
12381	 * as we are the "originator" of the shadow buf.
12382	 */
12383	bp_mapout(bp);
12384
12385	/*
12386	 * Null out b_iodone before freeing the bp, to ensure that the driver
12387	 * never gets confused by a stale value in this field. (Just a little
12388	 * extra defensiveness here.)
12389	 */
12390	bp->b_iodone = NULL;
12391
12392	freerbuf(bp);
12393
12394	kmem_free(xp, sizeof (struct sd_xbuf));
12395}
12396
12397/*
12398 *    Function: sd_shadow_buf_free
12399 *
12400 * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
12401 *
12402 *     Context: May be called under interrupt context
12403 */
12404
12405static void
12406sd_shadow_buf_free(struct buf *bp)
12407{
12408	struct sd_xbuf	*xp;
12409
12410	ASSERT(bp != NULL);
12411	xp = SD_GET_XBUF(bp);
12412	ASSERT(xp != NULL);
12413
12414#if defined(__sparc)
12415	/*
12416	 * Call bp_mapout() before freeing the buf,  in case a lower
12417	 * layer or HBA  had done a bp_mapin().  we must do this here
12418	 * as we are the "originator" of the shadow buf.
12419	 */
12420	bp_mapout(bp);
12421#endif
12422
12423	/*
12424	 * Null out b_iodone before freeing the bp, to ensure that the driver
12425	 * never gets confused by a stale value in this field. (Just a little
12426	 * extra defensiveness here.)
12427	 */
12428	bp->b_iodone = NULL;
12429
12430#if defined(__i386) || defined(__amd64)
12431	kmem_free(bp->b_un.b_addr, bp->b_bcount);
12432	freerbuf(bp);
12433#else
12434	scsi_free_consistent_buf(bp);
12435#endif
12436
12437	kmem_free(xp, sizeof (struct sd_xbuf));
12438}
12439
12440
12441/*
12442 *    Function: sd_print_transport_rejected_message
12443 *
12444 * Description: This implements the ludicrously complex rules for printing
12445 *		a "transport rejected" message.  This is to address the
12446 *		specific problem of having a flood of this error message
12447 *		produced when a failover occurs.
12448 *
12449 *     Context: Any.
12450 */
12451
12452static void
12453sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
12454	int code)
12455{
12456	ASSERT(un != NULL);
12457	ASSERT(mutex_owned(SD_MUTEX(un)));
12458	ASSERT(xp != NULL);
12459
12460	/*
12461	 * Print the "transport rejected" message under the following
12462	 * conditions:
12463	 *
12464	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
12465	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
12466	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
12467	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
12468	 *   scsi_transport(9F) (which indicates that the target might have
12469	 *   gone off-line).  This uses the un->un_tran_fatal_count
12470	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
12471	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
12472	 *   from scsi_transport().
12473	 *
12474	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
12475	 * the preceeding cases in order for the message to be printed.
12476	 */
12477	if ((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) {
12478		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
12479		    (code != TRAN_FATAL_ERROR) ||
12480		    (un->un_tran_fatal_count == 1)) {
12481			switch (code) {
12482			case TRAN_BADPKT:
12483				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12484				    "transport rejected bad packet\n");
12485				break;
12486			case TRAN_FATAL_ERROR:
12487				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12488				    "transport rejected fatal error\n");
12489				break;
12490			default:
12491				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12492				    "transport rejected (%d)\n", code);
12493				break;
12494			}
12495		}
12496	}
12497}
12498
12499
12500/*
12501 *    Function: sd_add_buf_to_waitq
12502 *
12503 * Description: Add the given buf(9S) struct to the wait queue for the
12504 *		instance.  If sorting is enabled, then the buf is added
12505 *		to the queue via an elevator sort algorithm (a la
12506 *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
12507 *		If sorting is not enabled, then the buf is just added
12508 *		to the end of the wait queue.
12509 *
12510 * Return Code: void
12511 *
12512 *     Context: Does not sleep/block, therefore technically can be called
12513 *		from any context.  However if sorting is enabled then the
12514 *		execution time is indeterminate, and may take long if
12515 *		the wait queue grows large.
12516 */
12517
12518static void
12519sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
12520{
12521	struct buf *ap;
12522
12523	ASSERT(bp != NULL);
12524	ASSERT(un != NULL);
12525	ASSERT(mutex_owned(SD_MUTEX(un)));
12526
12527	/* If the queue is empty, add the buf as the only entry & return. */
12528	if (un->un_waitq_headp == NULL) {
12529		ASSERT(un->un_waitq_tailp == NULL);
12530		un->un_waitq_headp = un->un_waitq_tailp = bp;
12531		bp->av_forw = NULL;
12532		return;
12533	}
12534
12535	ASSERT(un->un_waitq_tailp != NULL);
12536
12537	/*
12538	 * If sorting is disabled, just add the buf to the tail end of
12539	 * the wait queue and return.
12540	 */
12541	if (un->un_f_disksort_disabled) {
12542		un->un_waitq_tailp->av_forw = bp;
12543		un->un_waitq_tailp = bp;
12544		bp->av_forw = NULL;
12545		return;
12546	}
12547
12548	/*
12549	 * Sort thru the list of requests currently on the wait queue
12550	 * and add the new buf request at the appropriate position.
12551	 *
12552	 * The un->un_waitq_headp is an activity chain pointer on which
12553	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
12554	 * first queue holds those requests which are positioned after
12555	 * the current SD_GET_BLKNO() (in the first request); the second holds
12556	 * requests which came in after their SD_GET_BLKNO() number was passed.
12557	 * Thus we implement a one way scan, retracting after reaching
12558	 * the end of the drive to the first request on the second
12559	 * queue, at which time it becomes the first queue.
12560	 * A one-way scan is natural because of the way UNIX read-ahead
12561	 * blocks are allocated.
12562	 *
12563	 * If we lie after the first request, then we must locate the
12564	 * second request list and add ourselves to it.
12565	 */
12566	ap = un->un_waitq_headp;
12567	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
12568		while (ap->av_forw != NULL) {
12569			/*
12570			 * Look for an "inversion" in the (normally
12571			 * ascending) block numbers. This indicates
12572			 * the start of the second request list.
12573			 */
12574			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
12575				/*
12576				 * Search the second request list for the
12577				 * first request at a larger block number.
12578				 * We go before that; however if there is
12579				 * no such request, we go at the end.
12580				 */
12581				do {
12582					if (SD_GET_BLKNO(bp) <
12583					    SD_GET_BLKNO(ap->av_forw)) {
12584						goto insert;
12585					}
12586					ap = ap->av_forw;
12587				} while (ap->av_forw != NULL);
12588				goto insert;		/* after last */
12589			}
12590			ap = ap->av_forw;
12591		}
12592
12593		/*
12594		 * No inversions... we will go after the last, and
12595		 * be the first request in the second request list.
12596		 */
12597		goto insert;
12598	}
12599
12600	/*
12601	 * Request is at/after the current request...
12602	 * sort in the first request list.
12603	 */
12604	while (ap->av_forw != NULL) {
12605		/*
12606		 * We want to go after the current request (1) if
12607		 * there is an inversion after it (i.e. it is the end
12608		 * of the first request list), or (2) if the next
12609		 * request is a larger block no. than our request.
12610		 */
12611		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
12612		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
12613			goto insert;
12614		}
12615		ap = ap->av_forw;
12616	}
12617
12618	/*
12619	 * Neither a second list nor a larger request, therefore
12620	 * we go at the end of the first list (which is the same
12621	 * as the end of the whole schebang).
12622	 */
12623insert:
12624	bp->av_forw = ap->av_forw;
12625	ap->av_forw = bp;
12626
12627	/*
12628	 * If we inserted onto the tail end of the waitq, make sure the
12629	 * tail pointer is updated.
12630	 */
12631	if (ap == un->un_waitq_tailp) {
12632		un->un_waitq_tailp = bp;
12633	}
12634}
12635
12636
12637/*
12638 *    Function: sd_start_cmds
12639 *
12640 * Description: Remove and transport cmds from the driver queues.
12641 *
12642 *   Arguments: un - pointer to the unit (soft state) struct for the target.
12643 *
12644 *		immed_bp - ptr to a buf to be transported immediately. Only
12645 *		the immed_bp is transported; bufs on the waitq are not
12646 *		processed and the un_retry_bp is not checked.  If immed_bp is
12647 *		NULL, then normal queue processing is performed.
12648 *
12649 *     Context: May be called from kernel thread context, interrupt context,
12650 *		or runout callback context. This function may not block or
12651 *		call routines that block.
12652 */
12653
12654static void
12655sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
12656{
12657	struct	sd_xbuf	*xp;
12658	struct	buf	*bp;
12659	void	(*statp)(kstat_io_t *);
12660#if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12661	void	(*saved_statp)(kstat_io_t *);
12662#endif
12663	int	rval;
12664
12665	ASSERT(un != NULL);
12666	ASSERT(mutex_owned(SD_MUTEX(un)));
12667	ASSERT(un->un_ncmds_in_transport >= 0);
12668	ASSERT(un->un_throttle >= 0);
12669
12670	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
12671
12672	do {
12673#if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12674		saved_statp = NULL;
12675#endif
12676
12677		/*
12678		 * If we are syncing or dumping, fail the command to
12679		 * avoid recursively calling back into scsi_transport().
12680		 * The dump I/O itself uses a separate code path so this
12681		 * only prevents non-dump I/O from being sent while dumping.
12682		 * File system sync takes place before dumping begins.
12683		 * During panic, filesystem I/O is allowed provided
12684		 * un_in_callback is <= 1.  This is to prevent recursion
12685		 * such as sd_start_cmds -> scsi_transport -> sdintr ->
12686		 * sd_start_cmds and so on.  See panic.c for more information
12687		 * about the states the system can be in during panic.
12688		 */
12689		if ((un->un_state == SD_STATE_DUMPING) ||
12690		    (ddi_in_panic() && (un->un_in_callback > 1))) {
12691			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12692			    "sd_start_cmds: panicking\n");
12693			goto exit;
12694		}
12695
12696		if ((bp = immed_bp) != NULL) {
12697			/*
12698			 * We have a bp that must be transported immediately.
12699			 * It's OK to transport the immed_bp here without doing
12700			 * the throttle limit check because the immed_bp is
12701			 * always used in a retry/recovery case. This means
12702			 * that we know we are not at the throttle limit by
12703			 * virtue of the fact that to get here we must have
12704			 * already gotten a command back via sdintr(). This also
12705			 * relies on (1) the command on un_retry_bp preventing
12706			 * further commands from the waitq from being issued;
12707			 * and (2) the code in sd_retry_command checking the
12708			 * throttle limit before issuing a delayed or immediate
12709			 * retry. This holds even if the throttle limit is
12710			 * currently ratcheted down from its maximum value.
12711			 */
12712			statp = kstat_runq_enter;
12713			if (bp == un->un_retry_bp) {
12714				ASSERT((un->un_retry_statp == NULL) ||
12715				    (un->un_retry_statp == kstat_waitq_enter) ||
12716				    (un->un_retry_statp ==
12717				    kstat_runq_back_to_waitq));
12718				/*
12719				 * If the waitq kstat was incremented when
12720				 * sd_set_retry_bp() queued this bp for a retry,
12721				 * then we must set up statp so that the waitq
12722				 * count will get decremented correctly below.
12723				 * Also we must clear un->un_retry_statp to
12724				 * ensure that we do not act on a stale value
12725				 * in this field.
12726				 */
12727				if ((un->un_retry_statp == kstat_waitq_enter) ||
12728				    (un->un_retry_statp ==
12729				    kstat_runq_back_to_waitq)) {
12730					statp = kstat_waitq_to_runq;
12731				}
12732#if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12733				saved_statp = un->un_retry_statp;
12734#endif
12735				un->un_retry_statp = NULL;
12736
12737				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
12738				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
12739				    "un_throttle:%d un_ncmds_in_transport:%d\n",
12740				    un, un->un_retry_bp, un->un_throttle,
12741				    un->un_ncmds_in_transport);
12742			} else {
12743				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
12744				    "processing priority bp:0x%p\n", bp);
12745			}
12746
12747		} else if ((bp = un->un_waitq_headp) != NULL) {
12748			/*
12749			 * A command on the waitq is ready to go, but do not
12750			 * send it if:
12751			 *
12752			 * (1) the throttle limit has been reached, or
12753			 * (2) a retry is pending, or
12754			 * (3) a START_STOP_UNIT callback pending, or
12755			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
12756			 *	command is pending.
12757			 *
12758			 * For all of these conditions, IO processing will
12759			 * restart after the condition is cleared.
12760			 */
12761			if (un->un_ncmds_in_transport >= un->un_throttle) {
12762				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12763				    "sd_start_cmds: exiting, "
12764				    "throttle limit reached!\n");
12765				goto exit;
12766			}
12767			if (un->un_retry_bp != NULL) {
12768				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12769				    "sd_start_cmds: exiting, retry pending!\n");
12770				goto exit;
12771			}
12772			if (un->un_startstop_timeid != NULL) {
12773				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12774				    "sd_start_cmds: exiting, "
12775				    "START_STOP pending!\n");
12776				goto exit;
12777			}
12778			if (un->un_direct_priority_timeid != NULL) {
12779				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12780				    "sd_start_cmds: exiting, "
12781				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
12782				goto exit;
12783			}
12784
12785			/* Dequeue the command */
12786			un->un_waitq_headp = bp->av_forw;
12787			if (un->un_waitq_headp == NULL) {
12788				un->un_waitq_tailp = NULL;
12789			}
12790			bp->av_forw = NULL;
12791			statp = kstat_waitq_to_runq;
12792			SD_TRACE(SD_LOG_IO_CORE, un,
12793			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
12794
12795		} else {
12796			/* No work to do so bail out now */
12797			SD_TRACE(SD_LOG_IO_CORE, un,
12798			    "sd_start_cmds: no more work, exiting!\n");
12799			goto exit;
12800		}
12801
12802		/*
12803		 * Reset the state to normal. This is the mechanism by which
12804		 * the state transitions from either SD_STATE_RWAIT or
12805		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
12806		 * If state is SD_STATE_PM_CHANGING then this command is
12807		 * part of the device power control and the state must
12808		 * not be put back to normal. Doing so would would
12809		 * allow new commands to proceed when they shouldn't,
12810		 * the device may be going off.
12811		 */
12812		if ((un->un_state != SD_STATE_SUSPENDED) &&
12813		    (un->un_state != SD_STATE_PM_CHANGING)) {
12814			New_state(un, SD_STATE_NORMAL);
12815		}
12816
12817		xp = SD_GET_XBUF(bp);
12818		ASSERT(xp != NULL);
12819
12820#if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12821		/*
12822		 * Allocate the scsi_pkt if we need one, or attach DMA
12823		 * resources if we have a scsi_pkt that needs them. The
12824		 * latter should only occur for commands that are being
12825		 * retried.
12826		 */
12827		if ((xp->xb_pktp == NULL) ||
12828		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
12829#else
12830		if (xp->xb_pktp == NULL) {
12831#endif
12832			/*
12833			 * There is no scsi_pkt allocated for this buf. Call
12834			 * the initpkt function to allocate & init one.
12835			 *
12836			 * The scsi_init_pkt runout callback functionality is
12837			 * implemented as follows:
12838			 *
12839			 * 1) The initpkt function always calls
12840			 *    scsi_init_pkt(9F) with sdrunout specified as the
12841			 *    callback routine.
12842			 * 2) A successful packet allocation is initialized and
12843			 *    the I/O is transported.
12844			 * 3) The I/O associated with an allocation resource
12845			 *    failure is left on its queue to be retried via
12846			 *    runout or the next I/O.
12847			 * 4) The I/O associated with a DMA error is removed
12848			 *    from the queue and failed with EIO. Processing of
12849			 *    the transport queues is also halted to be
12850			 *    restarted via runout or the next I/O.
12851			 * 5) The I/O associated with a CDB size or packet
12852			 *    size error is removed from the queue and failed
12853			 *    with EIO. Processing of the transport queues is
12854			 *    continued.
12855			 *
12856			 * Note: there is no interface for canceling a runout
12857			 * callback. To prevent the driver from detaching or
12858			 * suspending while a runout is pending the driver
12859			 * state is set to SD_STATE_RWAIT
12860			 *
12861			 * Note: using the scsi_init_pkt callback facility can
12862			 * result in an I/O request persisting at the head of
12863			 * the list which cannot be satisfied even after
12864			 * multiple retries. In the future the driver may
12865			 * implement some kind of maximum runout count before
12866			 * failing an I/O.
12867			 *
12868			 * Note: the use of funcp below may seem superfluous,
12869			 * but it helps warlock figure out the correct
12870			 * initpkt function calls (see [s]sd.wlcmd).
12871			 */
12872			struct scsi_pkt	*pktp;
12873			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
12874
12875			ASSERT(bp != un->un_rqs_bp);
12876
12877			funcp = sd_initpkt_map[xp->xb_chain_iostart];
12878			switch ((*funcp)(bp, &pktp)) {
12879			case  SD_PKT_ALLOC_SUCCESS:
12880				xp->xb_pktp = pktp;
12881				SD_TRACE(SD_LOG_IO_CORE, un,
12882				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
12883				    pktp);
12884				goto got_pkt;
12885
12886			case SD_PKT_ALLOC_FAILURE:
12887				/*
12888				 * Temporary (hopefully) resource depletion.
12889				 * Since retries and RQS commands always have a
12890				 * scsi_pkt allocated, these cases should never
12891				 * get here. So the only cases this needs to
12892				 * handle is a bp from the waitq (which we put
12893				 * back onto the waitq for sdrunout), or a bp
12894				 * sent as an immed_bp (which we just fail).
12895				 */
12896				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12897				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
12898
12899#if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12900
12901				if (bp == immed_bp) {
12902					/*
12903					 * If SD_XB_DMA_FREED is clear, then
12904					 * this is a failure to allocate a
12905					 * scsi_pkt, and we must fail the
12906					 * command.
12907					 */
12908					if ((xp->xb_pkt_flags &
12909					    SD_XB_DMA_FREED) == 0) {
12910						break;
12911					}
12912
12913					/*
12914					 * If this immediate command is NOT our
12915					 * un_retry_bp, then we must fail it.
12916					 */
12917					if (bp != un->un_retry_bp) {
12918						break;
12919					}
12920
12921					/*
12922					 * We get here if this cmd is our
12923					 * un_retry_bp that was DMAFREED, but
12924					 * scsi_init_pkt() failed to reallocate
12925					 * DMA resources when we attempted to
12926					 * retry it. This can happen when an
12927					 * mpxio failover is in progress, but
12928					 * we don't want to just fail the
12929					 * command in this case.
12930					 *
12931					 * Use timeout(9F) to restart it after
12932					 * a 100ms delay.  We don't want to
12933					 * let sdrunout() restart it, because
12934					 * sdrunout() is just supposed to start
12935					 * commands that are sitting on the
12936					 * wait queue.  The un_retry_bp stays
12937					 * set until the command completes, but
12938					 * sdrunout can be called many times
12939					 * before that happens.  Since sdrunout
12940					 * cannot tell if the un_retry_bp is
12941					 * already in the transport, it could
12942					 * end up calling scsi_transport() for
12943					 * the un_retry_bp multiple times.
12944					 *
12945					 * Also: don't schedule the callback
12946					 * if some other callback is already
12947					 * pending.
12948					 */
12949					if (un->un_retry_statp == NULL) {
12950						/*
12951						 * restore the kstat pointer to
12952						 * keep kstat counts coherent
12953						 * when we do retry the command.
12954						 */
12955						un->un_retry_statp =
12956						    saved_statp;
12957					}
12958
12959					if ((un->un_startstop_timeid == NULL) &&
12960					    (un->un_retry_timeid == NULL) &&
12961					    (un->un_direct_priority_timeid ==
12962					    NULL)) {
12963
12964						un->un_retry_timeid =
12965						    timeout(
12966						    sd_start_retry_command,
12967						    un, SD_RESTART_TIMEOUT);
12968					}
12969					goto exit;
12970				}
12971
12972#else
12973				if (bp == immed_bp) {
12974					break;	/* Just fail the command */
12975				}
12976#endif
12977
12978				/* Add the buf back to the head of the waitq */
12979				bp->av_forw = un->un_waitq_headp;
12980				un->un_waitq_headp = bp;
12981				if (un->un_waitq_tailp == NULL) {
12982					un->un_waitq_tailp = bp;
12983				}
12984				goto exit;
12985
12986			case SD_PKT_ALLOC_FAILURE_NO_DMA:
12987				/*
12988				 * HBA DMA resource failure. Fail the command
12989				 * and continue processing of the queues.
12990				 */
12991				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12992				    "sd_start_cmds: "
12993				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
12994				break;
12995
12996			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
12997				/*
12998				 * Note:x86: Partial DMA mapping not supported
12999				 * for USCSI commands, and all the needed DMA
13000				 * resources were not allocated.
13001				 */
13002				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13003				    "sd_start_cmds: "
13004				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
13005				break;
13006
13007			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
13008				/*
13009				 * Note:x86: Request cannot fit into CDB based
13010				 * on lba and len.
13011				 */
13012				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13013				    "sd_start_cmds: "
13014				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
13015				break;
13016
13017			default:
13018				/* Should NEVER get here! */
13019				panic("scsi_initpkt error");
13020				/*NOTREACHED*/
13021			}
13022
13023			/*
13024			 * Fatal error in allocating a scsi_pkt for this buf.
13025			 * Update kstats & return the buf with an error code.
13026			 * We must use sd_return_failed_command_no_restart() to
13027			 * avoid a recursive call back into sd_start_cmds().
13028			 * However this also means that we must keep processing
13029			 * the waitq here in order to avoid stalling.
13030			 */
13031			if (statp == kstat_waitq_to_runq) {
13032				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
13033			}
13034			sd_return_failed_command_no_restart(un, bp, EIO);
13035			if (bp == immed_bp) {
13036				/* immed_bp is gone by now, so clear this */
13037				immed_bp = NULL;
13038			}
13039			continue;
13040		}
13041got_pkt:
13042		if (bp == immed_bp) {
13043			/* goto the head of the class.... */
13044			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
13045		}
13046
13047		un->un_ncmds_in_transport++;
13048		SD_UPDATE_KSTATS(un, statp, bp);
13049
13050		/*
13051		 * Call scsi_transport() to send the command to the target.
13052		 * According to SCSA architecture, we must drop the mutex here
13053		 * before calling scsi_transport() in order to avoid deadlock.
13054		 * Note that the scsi_pkt's completion routine can be executed
13055		 * (from interrupt context) even before the call to
13056		 * scsi_transport() returns.
13057		 */
13058		SD_TRACE(SD_LOG_IO_CORE, un,
13059		    "sd_start_cmds: calling scsi_transport()\n");
13060		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
13061
13062		mutex_exit(SD_MUTEX(un));
13063		rval = scsi_transport(xp->xb_pktp);
13064		mutex_enter(SD_MUTEX(un));
13065
13066		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13067		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
13068
13069		switch (rval) {
13070		case TRAN_ACCEPT:
13071			/* Clear this with every pkt accepted by the HBA */
13072			un->un_tran_fatal_count = 0;
13073			break;	/* Success; try the next cmd (if any) */
13074
13075		case TRAN_BUSY:
13076			un->un_ncmds_in_transport--;
13077			ASSERT(un->un_ncmds_in_transport >= 0);
13078
13079			/*
13080			 * Don't retry request sense, the sense data
13081			 * is lost when another request is sent.
13082			 * Free up the rqs buf and retry
13083			 * the original failed cmd.  Update kstat.
13084			 */
13085			if (bp == un->un_rqs_bp) {
13086				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
13087				bp = sd_mark_rqs_idle(un, xp);
13088				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
13089				    NULL, NULL, EIO, SD_BSY_TIMEOUT / 500,
13090				    kstat_waitq_enter);
13091				goto exit;
13092			}
13093
13094#if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13095			/*
13096			 * Free the DMA resources for the  scsi_pkt. This will
13097			 * allow mpxio to select another path the next time
13098			 * we call scsi_transport() with this scsi_pkt.
13099			 * See sdintr() for the rationalization behind this.
13100			 */
13101			if ((un->un_f_is_fibre == TRUE) &&
13102			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
13103			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
13104				scsi_dmafree(xp->xb_pktp);
13105				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
13106			}
13107#endif
13108
13109			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
13110				/*
13111				 * Commands that are SD_PATH_DIRECT_PRIORITY
13112				 * are for error recovery situations. These do
13113				 * not use the normal command waitq, so if they
13114				 * get a TRAN_BUSY we cannot put them back onto
13115				 * the waitq for later retry. One possible
13116				 * problem is that there could already be some
13117				 * other command on un_retry_bp that is waiting
13118				 * for this one to complete, so we would be
13119				 * deadlocked if we put this command back onto
13120				 * the waitq for later retry (since un_retry_bp
13121				 * must complete before the driver gets back to
13122				 * commands on the waitq).
13123				 *
13124				 * To avoid deadlock we must schedule a callback
13125				 * that will restart this command after a set
13126				 * interval.  This should keep retrying for as
13127				 * long as the underlying transport keeps
13128				 * returning TRAN_BUSY (just like for other
13129				 * commands).  Use the same timeout interval as
13130				 * for the ordinary TRAN_BUSY retry.
13131				 */
13132				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13133				    "sd_start_cmds: scsi_transport() returned "
13134				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
13135
13136				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
13137				un->un_direct_priority_timeid =
13138				    timeout(sd_start_direct_priority_command,
13139				    bp, SD_BSY_TIMEOUT / 500);
13140
13141				goto exit;
13142			}
13143
13144			/*
13145			 * For TRAN_BUSY, we want to reduce the throttle value,
13146			 * unless we are retrying a command.
13147			 */
13148			if (bp != un->un_retry_bp) {
13149				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
13150			}
13151
13152			/*
13153			 * Set up the bp to be tried again 10 ms later.
13154			 * Note:x86: Is there a timeout value in the sd_lun
13155			 * for this condition?
13156			 */
13157			sd_set_retry_bp(un, bp, SD_BSY_TIMEOUT / 500,
13158			    kstat_runq_back_to_waitq);
13159			goto exit;
13160
13161		case TRAN_FATAL_ERROR:
13162			un->un_tran_fatal_count++;
13163			/* FALLTHRU */
13164
13165		case TRAN_BADPKT:
13166		default:
13167			un->un_ncmds_in_transport--;
13168			ASSERT(un->un_ncmds_in_transport >= 0);
13169
13170			/*
13171			 * If this is our REQUEST SENSE command with a
13172			 * transport error, we must get back the pointers
13173			 * to the original buf, and mark the REQUEST
13174			 * SENSE command as "available".
13175			 */
13176			if (bp == un->un_rqs_bp) {
13177				bp = sd_mark_rqs_idle(un, xp);
13178				xp = SD_GET_XBUF(bp);
13179			} else {
13180				/*
13181				 * Legacy behavior: do not update transport
13182				 * error count for request sense commands.
13183				 */
13184				SD_UPDATE_ERRSTATS(un, sd_transerrs);
13185			}
13186
13187			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
13188			sd_print_transport_rejected_message(un, xp, rval);
13189
13190			/*
13191			 * We must use sd_return_failed_command_no_restart() to
13192			 * avoid a recursive call back into sd_start_cmds().
13193			 * However this also means that we must keep processing
13194			 * the waitq here in order to avoid stalling.
13195			 */
13196			sd_return_failed_command_no_restart(un, bp, EIO);
13197
13198			/*
13199			 * Notify any threads waiting in sd_ddi_suspend() that
13200			 * a command completion has occurred.
13201			 */
13202			if (un->un_state == SD_STATE_SUSPENDED) {
13203				cv_broadcast(&un->un_disk_busy_cv);
13204			}
13205
13206			if (bp == immed_bp) {
13207				/* immed_bp is gone by now, so clear this */
13208				immed_bp = NULL;
13209			}
13210			break;
13211		}
13212
13213	} while (immed_bp == NULL);
13214
13215exit:
13216	ASSERT(mutex_owned(SD_MUTEX(un)));
13217	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
13218}
13219
13220
13221/*
13222 *    Function: sd_return_command
13223 *
13224 * Description: Returns a command to its originator (with or without an
13225 *		error).  Also starts commands waiting to be transported
13226 *		to the target.
13227 *
13228 *     Context: May be called from interrupt, kernel, or timeout context
13229 */
13230
13231static void
13232sd_return_command(struct sd_lun *un, struct buf *bp)
13233{
13234	struct sd_xbuf *xp;
13235#if defined(__i386) || defined(__amd64)
13236	struct scsi_pkt *pktp;
13237#endif
13238
13239	ASSERT(bp != NULL);
13240	ASSERT(un != NULL);
13241	ASSERT(mutex_owned(SD_MUTEX(un)));
13242	ASSERT(bp != un->un_rqs_bp);
13243	xp = SD_GET_XBUF(bp);
13244	ASSERT(xp != NULL);
13245
13246#if defined(__i386) || defined(__amd64)
13247	pktp = SD_GET_PKTP(bp);
13248#endif
13249
13250	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
13251
13252#if defined(__i386) || defined(__amd64)
13253	/*
13254	 * Note:x86: check for the "sdrestart failed" case.
13255	 */
13256	if (((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
13257	    (geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
13258	    (xp->xb_pktp->pkt_resid == 0)) {
13259
13260		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
13261			/*
13262			 * Successfully set up next portion of cmd
13263			 * transfer, try sending it
13264			 */
13265			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
13266			    NULL, NULL, 0, (clock_t)0, NULL);
13267			sd_start_cmds(un, NULL);
13268			return;	/* Note:x86: need a return here? */
13269		}
13270	}
13271#endif
13272
13273	/*
13274	 * If this is the failfast bp, clear it from un_failfast_bp. This
13275	 * can happen if upon being re-tried the failfast bp either
13276	 * succeeded or encountered another error (possibly even a different
13277	 * error than the one that precipitated the failfast state, but in
13278	 * that case it would have had to exhaust retries as well). Regardless,
13279	 * this should not occur whenever the instance is in the active
13280	 * failfast state.
13281	 */
13282	if (bp == un->un_failfast_bp) {
13283		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
13284		un->un_failfast_bp = NULL;
13285	}
13286
13287	/*
13288	 * Clear the failfast state upon successful completion of ANY cmd.
13289	 */
13290	if (bp->b_error == 0) {
13291		un->un_failfast_state = SD_FAILFAST_INACTIVE;
13292	}
13293
13294	/*
13295	 * This is used if the command was retried one or more times. Show that
13296	 * we are done with it, and allow processing of the waitq to resume.
13297	 */
13298	if (bp == un->un_retry_bp) {
13299		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13300		    "sd_return_command: un:0x%p: "
13301		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
13302		un->un_retry_bp = NULL;
13303		un->un_retry_statp = NULL;
13304	}
13305
13306	SD_UPDATE_RDWR_STATS(un, bp);
13307	SD_UPDATE_PARTITION_STATS(un, bp);
13308
13309	switch (un->un_state) {
13310	case SD_STATE_SUSPENDED:
13311		/*
13312		 * Notify any threads waiting in sd_ddi_suspend() that
13313		 * a command completion has occurred.
13314		 */
13315		cv_broadcast(&un->un_disk_busy_cv);
13316		break;
13317	default:
13318		sd_start_cmds(un, NULL);
13319		break;
13320	}
13321
13322	/* Return this command up the iodone chain to its originator. */
13323	mutex_exit(SD_MUTEX(un));
13324
13325	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
13326	xp->xb_pktp = NULL;
13327
13328	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
13329
13330	ASSERT(!mutex_owned(SD_MUTEX(un)));
13331	mutex_enter(SD_MUTEX(un));
13332
13333	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
13334}
13335
13336
13337/*
13338 *    Function: sd_return_failed_command
13339 *
13340 * Description: Command completion when an error occurred.
13341 *
13342 *     Context: May be called from interrupt context
13343 */
13344
13345static void
13346sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
13347{
13348	ASSERT(bp != NULL);
13349	ASSERT(un != NULL);
13350	ASSERT(mutex_owned(SD_MUTEX(un)));
13351
13352	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13353	    "sd_return_failed_command: entry\n");
13354
13355	/*
13356	 * b_resid could already be nonzero due to a partial data
13357	 * transfer, so do not change it here.
13358	 */
13359	SD_BIOERROR(bp, errcode);
13360
13361	sd_return_command(un, bp);
13362	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13363	    "sd_return_failed_command: exit\n");
13364}
13365
13366
13367/*
13368 *    Function: sd_return_failed_command_no_restart
13369 *
13370 * Description: Same as sd_return_failed_command, but ensures that no
13371 *		call back into sd_start_cmds will be issued.
13372 *
13373 *     Context: May be called from interrupt context
13374 */
13375
13376static void
13377sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
13378	int errcode)
13379{
13380	struct sd_xbuf *xp;
13381
13382	ASSERT(bp != NULL);
13383	ASSERT(un != NULL);
13384	ASSERT(mutex_owned(SD_MUTEX(un)));
13385	xp = SD_GET_XBUF(bp);
13386	ASSERT(xp != NULL);
13387	ASSERT(errcode != 0);
13388
13389	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13390	    "sd_return_failed_command_no_restart: entry\n");
13391
13392	/*
13393	 * b_resid could already be nonzero due to a partial data
13394	 * transfer, so do not change it here.
13395	 */
13396	SD_BIOERROR(bp, errcode);
13397
13398	/*
13399	 * If this is the failfast bp, clear it. This can happen if the
13400	 * failfast bp encounterd a fatal error when we attempted to
13401	 * re-try it (such as a scsi_transport(9F) failure).  However
13402	 * we should NOT be in an active failfast state if the failfast
13403	 * bp is not NULL.
13404	 */
13405	if (bp == un->un_failfast_bp) {
13406		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
13407		un->un_failfast_bp = NULL;
13408	}
13409
13410	if (bp == un->un_retry_bp) {
13411		/*
13412		 * This command was retried one or more times. Show that we are
13413		 * done with it, and allow processing of the waitq to resume.
13414		 */
13415		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13416		    "sd_return_failed_command_no_restart: "
13417		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
13418		un->un_retry_bp = NULL;
13419		un->un_retry_statp = NULL;
13420	}
13421
13422	SD_UPDATE_RDWR_STATS(un, bp);
13423	SD_UPDATE_PARTITION_STATS(un, bp);
13424
13425	mutex_exit(SD_MUTEX(un));
13426
13427	if (xp->xb_pktp != NULL) {
13428		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
13429		xp->xb_pktp = NULL;
13430	}
13431
13432	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
13433
13434	mutex_enter(SD_MUTEX(un));
13435
13436	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13437	    "sd_return_failed_command_no_restart: exit\n");
13438}
13439
13440
13441/*
13442 *    Function: sd_retry_command
13443 *
13444 * Description: queue up a command for retry, or (optionally) fail it
13445 *		if retry counts are exhausted.
13446 *
13447 *   Arguments: un - Pointer to the sd_lun struct for the target.
13448 *
13449 *		bp - Pointer to the buf for the command to be retried.
13450 *
13451 *		retry_check_flag - Flag to see which (if any) of the retry
13452 *		   counts should be decremented/checked. If the indicated
13453 *		   retry count is exhausted, then the command will not be
13454 *		   retried; it will be failed instead. This should use a
13455 *		   value equal to one of the following:
13456 *
13457 *			SD_RETRIES_NOCHECK
13458 *			SD_RESD_RETRIES_STANDARD
13459 *			SD_RETRIES_VICTIM
13460 *
13461 *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
13462 *		   if the check should be made to see of FLAG_ISOLATE is set
13463 *		   in the pkt. If FLAG_ISOLATE is set, then the command is
13464 *		   not retried, it is simply failed.
13465 *
13466 *		user_funcp - Ptr to function to call before dispatching the
13467 *		   command. May be NULL if no action needs to be performed.
13468 *		   (Primarily intended for printing messages.)
13469 *
13470 *		user_arg - Optional argument to be passed along to
13471 *		   the user_funcp call.
13472 *
13473 *		failure_code - errno return code to set in the bp if the
13474 *		   command is going to be failed.
13475 *
13476 *		retry_delay - Retry delay interval in (clock_t) units. May
13477 *		   be zero which indicates that the retry should be retried
13478 *		   immediately (ie, without an intervening delay).
13479 *
13480 *		statp - Ptr to kstat function to be updated if the command
13481 *		   is queued for a delayed retry. May be NULL if no kstat
13482 *		   update is desired.
13483 *
13484 *     Context: May be called from interrupt context.
13485 */
13486
13487static void
13488sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
13489	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
13490	code), void *user_arg, int failure_code,  clock_t retry_delay,
13491	void (*statp)(kstat_io_t *))
13492{
13493	struct sd_xbuf	*xp;
13494	struct scsi_pkt	*pktp;
13495
13496	ASSERT(un != NULL);
13497	ASSERT(mutex_owned(SD_MUTEX(un)));
13498	ASSERT(bp != NULL);
13499	xp = SD_GET_XBUF(bp);
13500	ASSERT(xp != NULL);
13501	pktp = SD_GET_PKTP(bp);
13502	ASSERT(pktp != NULL);
13503
13504	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
13505	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
13506
13507	/*
13508	 * If we are syncing or dumping, fail the command to avoid
13509	 * recursively calling back into scsi_transport().
13510	 */
13511	if (ddi_in_panic()) {
13512		goto fail_command_no_log;
13513	}
13514
13515	/*
13516	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
13517	 * log an error and fail the command.
13518	 */
13519	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
13520		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
13521		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
13522		sd_dump_memory(un, SD_LOG_IO, "CDB",
13523		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
13524		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
13525		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
13526		goto fail_command;
13527	}
13528
13529	/*
13530	 * If we are suspended, then put the command onto head of the
13531	 * wait queue since we don't want to start more commands, and
13532	 * clear the un_retry_bp. Next time when we are resumed, will
13533	 * handle the command in the wait queue.
13534	 */
13535	switch (un->un_state) {
13536	case SD_STATE_SUSPENDED:
13537	case SD_STATE_DUMPING:
13538		bp->av_forw = un->un_waitq_headp;
13539		un->un_waitq_headp = bp;
13540		if (un->un_waitq_tailp == NULL) {
13541			un->un_waitq_tailp = bp;
13542		}
13543		if (bp == un->un_retry_bp) {
13544			un->un_retry_bp = NULL;
13545			un->un_retry_statp = NULL;
13546		}
13547		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
13548		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
13549		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
13550		return;
13551	default:
13552		break;
13553	}
13554
13555	/*
13556	 * If the caller wants us to check FLAG_ISOLATE, then see if that
13557	 * is set; if it is then we do not want to retry the command.
13558	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
13559	 */
13560	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
13561		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
13562			goto fail_command;
13563		}
13564	}
13565
13566
13567	/*
13568	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
13569	 * command timeout or a selection timeout has occurred. This means
13570	 * that we were unable to establish an kind of communication with
13571	 * the target, and subsequent retries and/or commands are likely
13572	 * to encounter similar results and take a long time to complete.
13573	 *
13574	 * If this is a failfast error condition, we need to update the
13575	 * failfast state, even if this bp does not have B_FAILFAST set.
13576	 */
13577	if (retry_check_flag & SD_RETRIES_FAILFAST) {
13578		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
13579			ASSERT(un->un_failfast_bp == NULL);
13580			/*
13581			 * If we are already in the active failfast state, and
13582			 * another failfast error condition has been detected,
13583			 * then fail this command if it has B_FAILFAST set.
13584			 * If B_FAILFAST is clear, then maintain the legacy
13585			 * behavior of retrying heroically, even tho this will
13586			 * take a lot more time to fail the command.
13587			 */
13588			if (bp->b_flags & B_FAILFAST) {
13589				goto fail_command;
13590			}
13591		} else {
13592			/*
13593			 * We're not in the active failfast state, but we
13594			 * have a failfast error condition, so we must begin
13595			 * transition to the next state. We do this regardless
13596			 * of whether or not this bp has B_FAILFAST set.
13597			 */
13598			if (un->un_failfast_bp == NULL) {
13599				/*
13600				 * This is the first bp to meet a failfast
13601				 * condition so save it on un_failfast_bp &
13602				 * do normal retry processing. Do not enter
13603				 * active failfast state yet. This marks
13604				 * entry into the "failfast pending" state.
13605				 */
13606				un->un_failfast_bp = bp;
13607
13608			} else if (un->un_failfast_bp == bp) {
13609				/*
13610				 * This is the second time *this* bp has
13611				 * encountered a failfast error condition,
13612				 * so enter active failfast state & flush
13613				 * queues as appropriate.
13614				 */
13615				un->un_failfast_state = SD_FAILFAST_ACTIVE;
13616				un->un_failfast_bp = NULL;
13617				sd_failfast_flushq(un);
13618
13619				/*
13620				 * Fail this bp now if B_FAILFAST set;
13621				 * otherwise continue with retries. (It would
13622				 * be pretty ironic if this bp succeeded on a
13623				 * subsequent retry after we just flushed all
13624				 * the queues).
13625				 */
13626				if (bp->b_flags & B_FAILFAST) {
13627					goto fail_command;
13628				}
13629
13630#if !defined(lint) && !defined(__lint)
13631			} else {
13632				/*
13633				 * If neither of the preceeding conditionals
13634				 * was true, it means that there is some
13635				 * *other* bp that has met an inital failfast
13636				 * condition and is currently either being
13637				 * retried or is waiting to be retried. In
13638				 * that case we should perform normal retry
13639				 * processing on *this* bp, since there is a
13640				 * chance that the current failfast condition
13641				 * is transient and recoverable. If that does
13642				 * not turn out to be the case, then retries
13643				 * will be cleared when the wait queue is
13644				 * flushed anyway.
13645				 */
13646#endif
13647			}
13648		}
13649	} else {
13650		/*
13651		 * SD_RETRIES_FAILFAST is clear, which indicates that we
13652		 * likely were able to at least establish some level of
13653		 * communication with the target and subsequent commands
13654		 * and/or retries are likely to get through to the target,
13655		 * In this case we want to be aggressive about clearing
13656		 * the failfast state. Note that this does not affect
13657		 * the "failfast pending" condition.
13658		 */
13659		un->un_failfast_state = SD_FAILFAST_INACTIVE;
13660	}
13661
13662
13663	/*
13664	 * Check the specified retry count to see if we can still do
13665	 * any retries with this pkt before we should fail it.
13666	 */
13667	switch (retry_check_flag & SD_RETRIES_MASK) {
13668	case SD_RETRIES_VICTIM:
13669		/*
13670		 * Check the victim retry count. If exhausted, then fall
13671		 * thru & check against the standard retry count.
13672		 */
13673		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
13674			/* Increment count & proceed with the retry */
13675			xp->xb_victim_retry_count++;
13676			break;
13677		}
13678		/* Victim retries exhausted, fall back to std. retries... */
13679		/* FALLTHRU */
13680
13681	case SD_RETRIES_STANDARD:
13682		if (xp->xb_retry_count >= un->un_retry_count) {
13683			/* Retries exhausted, fail the command */
13684			SD_TRACE(SD_LOG_IO_CORE, un,
13685			    "sd_retry_command: retries exhausted!\n");
13686			/*
13687			 * update b_resid for failed SCMD_READ & SCMD_WRITE
13688			 * commands with nonzero pkt_resid.
13689			 */
13690			if ((pktp->pkt_reason == CMD_CMPLT) &&
13691			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
13692			    (pktp->pkt_resid != 0)) {
13693				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
13694				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
13695					SD_UPDATE_B_RESID(bp, pktp);
13696				}
13697			}
13698			goto fail_command;
13699		}
13700		xp->xb_retry_count++;
13701		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13702		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
13703		break;
13704
13705	case SD_RETRIES_UA:
13706		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
13707			/* Retries exhausted, fail the command */
13708			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13709			    "Unit Attention retries exhausted. "
13710			    "Check the target.\n");
13711			goto fail_command;
13712		}
13713		xp->xb_ua_retry_count++;
13714		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13715		    "sd_retry_command: retry count:%d\n",
13716		    xp->xb_ua_retry_count);
13717		break;
13718
13719	case SD_RETRIES_BUSY:
13720		if (xp->xb_retry_count >= un->un_busy_retry_count) {
13721			/* Retries exhausted, fail the command */
13722			SD_TRACE(SD_LOG_IO_CORE, un,
13723			    "sd_retry_command: retries exhausted!\n");
13724			goto fail_command;
13725		}
13726		xp->xb_retry_count++;
13727		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13728		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
13729		break;
13730
13731	case SD_RETRIES_NOCHECK:
13732	default:
13733		/* No retry count to check. Just proceed with the retry */
13734		break;
13735	}
13736
13737	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
13738
13739	/*
13740	 * If we were given a zero timeout, we must attempt to retry the
13741	 * command immediately (ie, without a delay).
13742	 */
13743	if (retry_delay == 0) {
13744		/*
13745		 * Check some limiting conditions to see if we can actually
13746		 * do the immediate retry.  If we cannot, then we must
13747		 * fall back to queueing up a delayed retry.
13748		 */
13749		if (un->un_ncmds_in_transport >= un->un_throttle) {
13750			/*
13751			 * We are at the throttle limit for the target,
13752			 * fall back to delayed retry.
13753			 */
13754			retry_delay = SD_BSY_TIMEOUT;
13755			statp = kstat_waitq_enter;
13756			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13757			    "sd_retry_command: immed. retry hit "
13758			    "throttle!\n");
13759		} else {
13760			/*
13761			 * We're clear to proceed with the immediate retry.
13762			 * First call the user-provided function (if any)
13763			 */
13764			if (user_funcp != NULL) {
13765				(*user_funcp)(un, bp, user_arg,
13766				    SD_IMMEDIATE_RETRY_ISSUED);
13767#ifdef __lock_lint
13768				sd_print_incomplete_msg(un, bp, user_arg,
13769				    SD_IMMEDIATE_RETRY_ISSUED);
13770				sd_print_cmd_incomplete_msg(un, bp, user_arg,
13771				    SD_IMMEDIATE_RETRY_ISSUED);
13772				sd_print_sense_failed_msg(un, bp, user_arg,
13773				    SD_IMMEDIATE_RETRY_ISSUED);
13774#endif
13775			}
13776
13777			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13778			    "sd_retry_command: issuing immediate retry\n");
13779
13780			/*
13781			 * Call sd_start_cmds() to transport the command to
13782			 * the target.
13783			 */
13784			sd_start_cmds(un, bp);
13785
13786			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13787			    "sd_retry_command exit\n");
13788			return;
13789		}
13790	}
13791
13792	/*
13793	 * Set up to retry the command after a delay.
13794	 * First call the user-provided function (if any)
13795	 */
13796	if (user_funcp != NULL) {
13797		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
13798	}
13799
13800	sd_set_retry_bp(un, bp, retry_delay, statp);
13801
13802	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
13803	return;
13804
13805fail_command:
13806
13807	if (user_funcp != NULL) {
13808		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
13809	}
13810
13811fail_command_no_log:
13812
13813	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13814	    "sd_retry_command: returning failed command\n");
13815
13816	sd_return_failed_command(un, bp, failure_code);
13817
13818	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
13819}
13820
13821
13822/*
13823 *    Function: sd_set_retry_bp
13824 *
13825 * Description: Set up the given bp for retry.
13826 *
13827 *   Arguments: un - ptr to associated softstate
13828 *		bp - ptr to buf(9S) for the command
13829 *		retry_delay - time interval before issuing retry (may be 0)
13830 *		statp - optional pointer to kstat function
13831 *
13832 *     Context: May be called under interrupt context
13833 */
13834
13835static void
13836sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
13837	void (*statp)(kstat_io_t *))
13838{
13839	ASSERT(un != NULL);
13840	ASSERT(mutex_owned(SD_MUTEX(un)));
13841	ASSERT(bp != NULL);
13842
13843	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
13844	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
13845
13846	/*
13847	 * Indicate that the command is being retried. This will not allow any
13848	 * other commands on the wait queue to be transported to the target
13849	 * until this command has been completed (success or failure). The
13850	 * "retry command" is not transported to the target until the given
13851	 * time delay expires, unless the user specified a 0 retry_delay.
13852	 *
13853	 * Note: the timeout(9F) callback routine is what actually calls
13854	 * sd_start_cmds() to transport the command, with the exception of a
13855	 * zero retry_delay. The only current implementor of a zero retry delay
13856	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
13857	 */
13858	if (un->un_retry_bp == NULL) {
13859		ASSERT(un->un_retry_statp == NULL);
13860		un->un_retry_bp = bp;
13861
13862		/*
13863		 * If the user has not specified a delay the command should
13864		 * be queued and no timeout should be scheduled.
13865		 */
13866		if (retry_delay == 0) {
13867			/*
13868			 * Save the kstat pointer that will be used in the
13869			 * call to SD_UPDATE_KSTATS() below, so that
13870			 * sd_start_cmds() can correctly decrement the waitq
13871			 * count when it is time to transport this command.
13872			 */
13873			un->un_retry_statp = statp;
13874			goto done;
13875		}
13876	}
13877
13878	if (un->un_retry_bp == bp) {
13879		/*
13880		 * Save the kstat pointer that will be used in the call to
13881		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
13882		 * correctly decrement the waitq count when it is time to
13883		 * transport this command.
13884		 */
13885		un->un_retry_statp = statp;
13886
13887		/*
13888		 * Schedule a timeout if:
13889		 *   1) The user has specified a delay.
13890		 *   2) There is not a START_STOP_UNIT callback pending.
13891		 *
13892		 * If no delay has been specified, then it is up to the caller
13893		 * to ensure that IO processing continues without stalling.
13894		 * Effectively, this means that the caller will issue the
13895		 * required call to sd_start_cmds(). The START_STOP_UNIT
13896		 * callback does this after the START STOP UNIT command has
13897		 * completed. In either of these cases we should not schedule
13898		 * a timeout callback here.  Also don't schedule the timeout if
13899		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
13900		 */
13901		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
13902		    (un->un_direct_priority_timeid == NULL)) {
13903			un->un_retry_timeid =
13904			    timeout(sd_start_retry_command, un, retry_delay);
13905			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13906			    "sd_set_retry_bp: setting timeout: un: 0x%p"
13907			    " bp:0x%p un_retry_timeid:0x%p\n",
13908			    un, bp, un->un_retry_timeid);
13909		}
13910	} else {
13911		/*
13912		 * We only get in here if there is already another command
13913		 * waiting to be retried.  In this case, we just put the
13914		 * given command onto the wait queue, so it can be transported
13915		 * after the current retry command has completed.
13916		 *
13917		 * Also we have to make sure that if the command at the head
13918		 * of the wait queue is the un_failfast_bp, that we do not
13919		 * put ahead of it any other commands that are to be retried.
13920		 */
13921		if ((un->un_failfast_bp != NULL) &&
13922		    (un->un_failfast_bp == un->un_waitq_headp)) {
13923			/*
13924			 * Enqueue this command AFTER the first command on
13925			 * the wait queue (which is also un_failfast_bp).
13926			 */
13927			bp->av_forw = un->un_waitq_headp->av_forw;
13928			un->un_waitq_headp->av_forw = bp;
13929			if (un->un_waitq_headp == un->un_waitq_tailp) {
13930				un->un_waitq_tailp = bp;
13931			}
13932		} else {
13933			/* Enqueue this command at the head of the waitq. */
13934			bp->av_forw = un->un_waitq_headp;
13935			un->un_waitq_headp = bp;
13936			if (un->un_waitq_tailp == NULL) {
13937				un->un_waitq_tailp = bp;
13938			}
13939		}
13940
13941		if (statp == NULL) {
13942			statp = kstat_waitq_enter;
13943		}
13944		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13945		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
13946	}
13947
13948done:
13949	if (statp != NULL) {
13950		SD_UPDATE_KSTATS(un, statp, bp);
13951	}
13952
13953	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13954	    "sd_set_retry_bp: exit un:0x%p\n", un);
13955}
13956
13957
13958/*
13959 *    Function: sd_start_retry_command
13960 *
13961 * Description: Start the command that has been waiting on the target's
13962 *		retry queue.  Called from timeout(9F) context after the
13963 *		retry delay interval has expired.
13964 *
13965 *   Arguments: arg - pointer to associated softstate for the device.
13966 *
13967 *     Context: timeout(9F) thread context.  May not sleep.
13968 */
13969
13970static void
13971sd_start_retry_command(void *arg)
13972{
13973	struct sd_lun *un = arg;
13974
13975	ASSERT(un != NULL);
13976	ASSERT(!mutex_owned(SD_MUTEX(un)));
13977
13978	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13979	    "sd_start_retry_command: entry\n");
13980
13981	mutex_enter(SD_MUTEX(un));
13982
13983	un->un_retry_timeid = NULL;
13984
13985	if (un->un_retry_bp != NULL) {
13986		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13987		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
13988		    un, un->un_retry_bp);
13989		sd_start_cmds(un, un->un_retry_bp);
13990	}
13991
13992	mutex_exit(SD_MUTEX(un));
13993
13994	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13995	    "sd_start_retry_command: exit\n");
13996}
13997
13998
13999/*
14000 *    Function: sd_start_direct_priority_command
14001 *
14002 * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
14003 *		received TRAN_BUSY when we called scsi_transport() to send it
14004 *		to the underlying HBA. This function is called from timeout(9F)
14005 *		context after the delay interval has expired.
14006 *
14007 *   Arguments: arg - pointer to associated buf(9S) to be restarted.
14008 *
14009 *     Context: timeout(9F) thread context.  May not sleep.
14010 */
14011
14012static void
14013sd_start_direct_priority_command(void *arg)
14014{
14015	struct buf	*priority_bp = arg;
14016	struct sd_lun	*un;
14017
14018	ASSERT(priority_bp != NULL);
14019	un = SD_GET_UN(priority_bp);
14020	ASSERT(un != NULL);
14021	ASSERT(!mutex_owned(SD_MUTEX(un)));
14022
14023	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14024	    "sd_start_direct_priority_command: entry\n");
14025
14026	mutex_enter(SD_MUTEX(un));
14027	un->un_direct_priority_timeid = NULL;
14028	sd_start_cmds(un, priority_bp);
14029	mutex_exit(SD_MUTEX(un));
14030
14031	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14032	    "sd_start_direct_priority_command: exit\n");
14033}
14034
14035
14036/*
14037 *    Function: sd_send_request_sense_command
14038 *
14039 * Description: Sends a REQUEST SENSE command to the target
14040 *
14041 *     Context: May be called from interrupt context.
14042 */
14043
14044static void
14045sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
14046	struct scsi_pkt *pktp)
14047{
14048	ASSERT(bp != NULL);
14049	ASSERT(un != NULL);
14050	ASSERT(mutex_owned(SD_MUTEX(un)));
14051
14052	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
14053	    "entry: buf:0x%p\n", bp);
14054
14055	/*
14056	 * If we are syncing or dumping, then fail the command to avoid a
14057	 * recursive callback into scsi_transport(). Also fail the command
14058	 * if we are suspended (legacy behavior).
14059	 */
14060	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
14061	    (un->un_state == SD_STATE_DUMPING)) {
14062		sd_return_failed_command(un, bp, EIO);
14063		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14064		    "sd_send_request_sense_command: syncing/dumping, exit\n");
14065		return;
14066	}
14067
14068	/*
14069	 * Retry the failed command and don't issue the request sense if:
14070	 *    1) the sense buf is busy
14071	 *    2) we have 1 or more outstanding commands on the target
14072	 *    (the sense data will be cleared or invalidated any way)
14073	 *
14074	 * Note: There could be an issue with not checking a retry limit here,
14075	 * the problem is determining which retry limit to check.
14076	 */
14077	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
14078		/* Don't retry if the command is flagged as non-retryable */
14079		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
14080			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
14081			    NULL, NULL, 0, SD_BSY_TIMEOUT, kstat_waitq_enter);
14082			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14083			    "sd_send_request_sense_command: "
14084			    "at full throttle, retrying exit\n");
14085		} else {
14086			sd_return_failed_command(un, bp, EIO);
14087			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14088			    "sd_send_request_sense_command: "
14089			    "at full throttle, non-retryable exit\n");
14090		}
14091		return;
14092	}
14093
14094	sd_mark_rqs_busy(un, bp);
14095	sd_start_cmds(un, un->un_rqs_bp);
14096
14097	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14098	    "sd_send_request_sense_command: exit\n");
14099}
14100
14101
14102/*
14103 *    Function: sd_mark_rqs_busy
14104 *
14105 * Description: Indicate that the request sense bp for this instance is
14106 *		in use.
14107 *
14108 *     Context: May be called under interrupt context
14109 */
14110
14111static void
14112sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
14113{
14114	struct sd_xbuf	*sense_xp;
14115
14116	ASSERT(un != NULL);
14117	ASSERT(bp != NULL);
14118	ASSERT(mutex_owned(SD_MUTEX(un)));
14119	ASSERT(un->un_sense_isbusy == 0);
14120
14121	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
14122	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
14123
14124	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
14125	ASSERT(sense_xp != NULL);
14126
14127	SD_INFO(SD_LOG_IO, un,
14128	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
14129
14130	ASSERT(sense_xp->xb_pktp != NULL);
14131	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
14132	    == (FLAG_SENSING | FLAG_HEAD));
14133
14134	un->un_sense_isbusy = 1;
14135	un->un_rqs_bp->b_resid = 0;
14136	sense_xp->xb_pktp->pkt_resid  = 0;
14137	sense_xp->xb_pktp->pkt_reason = 0;
14138
14139	/* So we can get back the bp at interrupt time! */
14140	sense_xp->xb_sense_bp = bp;
14141
14142	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
14143
14144	/*
14145	 * Mark this buf as awaiting sense data. (This is already set in
14146	 * the pkt_flags for the RQS packet.)
14147	 */
14148	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
14149
14150	sense_xp->xb_retry_count	= 0;
14151	sense_xp->xb_victim_retry_count = 0;
14152	sense_xp->xb_ua_retry_count	= 0;
14153	sense_xp->xb_nr_retry_count 	= 0;
14154	sense_xp->xb_dma_resid  = 0;
14155
14156	/* Clean up the fields for auto-request sense */
14157	sense_xp->xb_sense_status = 0;
14158	sense_xp->xb_sense_state  = 0;
14159	sense_xp->xb_sense_resid  = 0;
14160	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
14161
14162	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
14163}
14164
14165
14166/*
14167 *    Function: sd_mark_rqs_idle
14168 *
14169 * Description: SD_MUTEX must be held continuously through this routine
14170 *		to prevent reuse of the rqs struct before the caller can
14171 *		complete it's processing.
14172 *
14173 * Return Code: Pointer to the RQS buf
14174 *
14175 *     Context: May be called under interrupt context
14176 */
14177
14178static struct buf *
14179sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
14180{
14181	struct buf *bp;
14182	ASSERT(un != NULL);
14183	ASSERT(sense_xp != NULL);
14184	ASSERT(mutex_owned(SD_MUTEX(un)));
14185	ASSERT(un->un_sense_isbusy != 0);
14186
14187	un->un_sense_isbusy = 0;
14188	bp = sense_xp->xb_sense_bp;
14189	sense_xp->xb_sense_bp = NULL;
14190
14191	/* This pkt is no longer interested in getting sense data */
14192	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
14193
14194	return (bp);
14195}
14196
14197
14198
14199/*
14200 *    Function: sd_alloc_rqs
14201 *
14202 * Description: Set up the unit to receive auto request sense data
14203 *
14204 * Return Code: DDI_SUCCESS or DDI_FAILURE
14205 *
14206 *     Context: Called under attach(9E) context
14207 */
14208
14209static int
14210sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
14211{
14212	struct sd_xbuf *xp;
14213
14214	ASSERT(un != NULL);
14215	ASSERT(!mutex_owned(SD_MUTEX(un)));
14216	ASSERT(un->un_rqs_bp == NULL);
14217	ASSERT(un->un_rqs_pktp == NULL);
14218
14219	/*
14220	 * First allocate the required buf and scsi_pkt structs, then set up
14221	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
14222	 */
14223	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
14224	    SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
14225	if (un->un_rqs_bp == NULL) {
14226		return (DDI_FAILURE);
14227	}
14228
14229	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
14230	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
14231
14232	if (un->un_rqs_pktp == NULL) {
14233		sd_free_rqs(un);
14234		return (DDI_FAILURE);
14235	}
14236
14237	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
14238	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
14239	    SCMD_REQUEST_SENSE, 0, SENSE_LENGTH, 0);
14240
14241	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
14242
14243	/* Set up the other needed members in the ARQ scsi_pkt. */
14244	un->un_rqs_pktp->pkt_comp   = sdintr;
14245	un->un_rqs_pktp->pkt_time   = sd_io_time;
14246	un->un_rqs_pktp->pkt_flags |=
14247	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
14248
14249	/*
14250	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
14251	 * provide any intpkt, destroypkt routines as we take care of
14252	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
14253	 */
14254	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14255	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
14256	xp->xb_pktp = un->un_rqs_pktp;
14257	SD_INFO(SD_LOG_ATTACH_DETACH, un,
14258	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
14259	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
14260
14261	/*
14262	 * Save the pointer to the request sense private bp so it can
14263	 * be retrieved in sdintr.
14264	 */
14265	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
14266	ASSERT(un->un_rqs_bp->b_private == xp);
14267
14268	/*
14269	 * See if the HBA supports auto-request sense for the specified
14270	 * target/lun. If it does, then try to enable it (if not already
14271	 * enabled).
14272	 *
14273	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
14274	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
14275	 * return success.  However, in both of these cases ARQ is always
14276	 * enabled and scsi_ifgetcap will always return true. The best approach
14277	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
14278	 *
14279	 * The 3rd case is the HBA (adp) always return enabled on
14280	 * scsi_ifgetgetcap even when it's not enable, the best approach
14281	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
14282	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
14283	 */
14284
14285	if (un->un_f_is_fibre == TRUE) {
14286		un->un_f_arq_enabled = TRUE;
14287	} else {
14288#if defined(__i386) || defined(__amd64)
14289		/*
14290		 * Circumvent the Adaptec bug, remove this code when
14291		 * the bug is fixed
14292		 */
14293		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
14294#endif
14295		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
14296		case 0:
14297			SD_INFO(SD_LOG_ATTACH_DETACH, un,
14298			    "sd_alloc_rqs: HBA supports ARQ\n");
14299			/*
14300			 * ARQ is supported by this HBA but currently is not
14301			 * enabled. Attempt to enable it and if successful then
14302			 * mark this instance as ARQ enabled.
14303			 */
14304			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
14305			    == 1) {
14306				/* Successfully enabled ARQ in the HBA */
14307				SD_INFO(SD_LOG_ATTACH_DETACH, un,
14308				    "sd_alloc_rqs: ARQ enabled\n");
14309				un->un_f_arq_enabled = TRUE;
14310			} else {
14311				/* Could not enable ARQ in the HBA */
14312				SD_INFO(SD_LOG_ATTACH_DETACH, un,
14313				    "sd_alloc_rqs: failed ARQ enable\n");
14314				un->un_f_arq_enabled = FALSE;
14315			}
14316			break;
14317		case 1:
14318			/*
14319			 * ARQ is supported by this HBA and is already enabled.
14320			 * Just mark ARQ as enabled for this instance.
14321			 */
14322			SD_INFO(SD_LOG_ATTACH_DETACH, un,
14323			    "sd_alloc_rqs: ARQ already enabled\n");
14324			un->un_f_arq_enabled = TRUE;
14325			break;
14326		default:
14327			/*
14328			 * ARQ is not supported by this HBA; disable it for this
14329			 * instance.
14330			 */
14331			SD_INFO(SD_LOG_ATTACH_DETACH, un,
14332			    "sd_alloc_rqs: HBA does not support ARQ\n");
14333			un->un_f_arq_enabled = FALSE;
14334			break;
14335		}
14336	}
14337
14338	return (DDI_SUCCESS);
14339}
14340
14341
14342/*
14343 *    Function: sd_free_rqs
14344 *
14345 * Description: Cleanup for the pre-instance RQS command.
14346 *
14347 *     Context: Kernel thread context
14348 */
14349
14350static void
14351sd_free_rqs(struct sd_lun *un)
14352{
14353	ASSERT(un != NULL);
14354
14355	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
14356
14357	/*
14358	 * If consistent memory is bound to a scsi_pkt, the pkt
14359	 * has to be destroyed *before* freeing the consistent memory.
14360	 * Don't change the sequence of this operations.
14361	 * scsi_destroy_pkt() might access memory, which isn't allowed,
14362	 * after it was freed in scsi_free_consistent_buf().
14363	 */
14364	if (un->un_rqs_pktp != NULL) {
14365		scsi_destroy_pkt(un->un_rqs_pktp);
14366		un->un_rqs_pktp = NULL;
14367	}
14368
14369	if (un->un_rqs_bp != NULL) {
14370		kmem_free(SD_GET_XBUF(un->un_rqs_bp), sizeof (struct sd_xbuf));
14371		scsi_free_consistent_buf(un->un_rqs_bp);
14372		un->un_rqs_bp = NULL;
14373	}
14374	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
14375}
14376
14377
14378
14379/*
14380 *    Function: sd_reduce_throttle
14381 *
14382 * Description: Reduces the maximum # of outstanding commands on a
14383 *		target to the current number of outstanding commands.
14384 *		Queues a tiemout(9F) callback to restore the limit
14385 *		after a specified interval has elapsed.
14386 *		Typically used when we get a TRAN_BUSY return code
14387 *		back from scsi_transport().
14388 *
14389 *   Arguments: un - ptr to the sd_lun softstate struct
14390 *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
14391 *
14392 *     Context: May be called from interrupt context
14393 */
14394
14395static void
14396sd_reduce_throttle(struct sd_lun *un, int throttle_type)
14397{
14398	ASSERT(un != NULL);
14399	ASSERT(mutex_owned(SD_MUTEX(un)));
14400	ASSERT(un->un_ncmds_in_transport >= 0);
14401
14402	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
14403	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
14404	    un, un->un_throttle, un->un_ncmds_in_transport);
14405
14406	if (un->un_throttle > 1) {
14407		if (un->un_f_use_adaptive_throttle == TRUE) {
14408			switch (throttle_type) {
14409			case SD_THROTTLE_TRAN_BUSY:
14410				if (un->un_busy_throttle == 0) {
14411					un->un_busy_throttle = un->un_throttle;
14412				}
14413				break;
14414			case SD_THROTTLE_QFULL:
14415				un->un_busy_throttle = 0;
14416				break;
14417			default:
14418				ASSERT(FALSE);
14419			}
14420
14421			if (un->un_ncmds_in_transport > 0) {
14422				un->un_throttle = un->un_ncmds_in_transport;
14423			}
14424
14425		} else {
14426			if (un->un_ncmds_in_transport == 0) {
14427				un->un_throttle = 1;
14428			} else {
14429				un->un_throttle = un->un_ncmds_in_transport;
14430			}
14431		}
14432	}
14433
14434	/* Reschedule the timeout if none is currently active */
14435	if (un->un_reset_throttle_timeid == NULL) {
14436		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
14437		    un, SD_THROTTLE_RESET_INTERVAL);
14438		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14439		    "sd_reduce_throttle: timeout scheduled!\n");
14440	}
14441
14442	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
14443	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
14444}
14445
14446
14447
14448/*
14449 *    Function: sd_restore_throttle
14450 *
14451 * Description: Callback function for timeout(9F).  Resets the current
14452 *		value of un->un_throttle to its default.
14453 *
14454 *   Arguments: arg - pointer to associated softstate for the device.
14455 *
14456 *     Context: May be called from interrupt context
14457 */
14458
14459static void
14460sd_restore_throttle(void *arg)
14461{
14462	struct sd_lun	*un = arg;
14463
14464	ASSERT(un != NULL);
14465	ASSERT(!mutex_owned(SD_MUTEX(un)));
14466
14467	mutex_enter(SD_MUTEX(un));
14468
14469	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
14470	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
14471
14472	un->un_reset_throttle_timeid = NULL;
14473
14474	if (un->un_f_use_adaptive_throttle == TRUE) {
14475		/*
14476		 * If un_busy_throttle is nonzero, then it contains the
14477		 * value that un_throttle was when we got a TRAN_BUSY back
14478		 * from scsi_transport(). We want to revert back to this
14479		 * value.
14480		 *
14481		 * In the QFULL case, the throttle limit will incrementally
14482		 * increase until it reaches max throttle.
14483		 */
14484		if (un->un_busy_throttle > 0) {
14485			un->un_throttle = un->un_busy_throttle;
14486			un->un_busy_throttle = 0;
14487		} else {
14488			/*
14489			 * increase throttle by 10% open gate slowly, schedule
14490			 * another restore if saved throttle has not been
14491			 * reached
14492			 */
14493			short throttle;
14494			if (sd_qfull_throttle_enable) {
14495				throttle = un->un_throttle +
14496				    max((un->un_throttle / 10), 1);
14497				un->un_throttle =
14498				    (throttle < un->un_saved_throttle) ?
14499				    throttle : un->un_saved_throttle;
14500				if (un->un_throttle < un->un_saved_throttle) {
14501					un->un_reset_throttle_timeid =
14502					    timeout(sd_restore_throttle,
14503					    un,
14504					    SD_QFULL_THROTTLE_RESET_INTERVAL);
14505				}
14506			}
14507		}
14508
14509		/*
14510		 * If un_throttle has fallen below the low-water mark, we
14511		 * restore the maximum value here (and allow it to ratchet
14512		 * down again if necessary).
14513		 */
14514		if (un->un_throttle < un->un_min_throttle) {
14515			un->un_throttle = un->un_saved_throttle;
14516		}
14517	} else {
14518		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
14519		    "restoring limit from 0x%x to 0x%x\n",
14520		    un->un_throttle, un->un_saved_throttle);
14521		un->un_throttle = un->un_saved_throttle;
14522	}
14523
14524	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14525	    "sd_restore_throttle: calling sd_start_cmds!\n");
14526
14527	sd_start_cmds(un, NULL);
14528
14529	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14530	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
14531	    un, un->un_throttle);
14532
14533	mutex_exit(SD_MUTEX(un));
14534
14535	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
14536}
14537
14538/*
14539 *    Function: sdrunout
14540 *
14541 * Description: Callback routine for scsi_init_pkt when a resource allocation
14542 *		fails.
14543 *
14544 *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
14545 *		soft state instance.
14546 *
14547 * Return Code: The scsi_init_pkt routine allows for the callback function to
14548 *		return a 0 indicating the callback should be rescheduled or a 1
14549 *		indicating not to reschedule. This routine always returns 1
14550 *		because the driver always provides a callback function to
14551 *		scsi_init_pkt. This results in a callback always being scheduled
14552 *		(via the scsi_init_pkt callback implementation) if a resource
14553 *		failure occurs.
14554 *
14555 *     Context: This callback function may not block or call routines that block
14556 *
14557 *        Note: Using the scsi_init_pkt callback facility can result in an I/O
14558 *		request persisting at the head of the list which cannot be
14559 *		satisfied even after multiple retries. In the future the driver
14560 *		may implement some time of maximum runout count before failing
14561 *		an I/O.
14562 */
14563
14564static int
14565sdrunout(caddr_t arg)
14566{
14567	struct sd_lun	*un = (struct sd_lun *)arg;
14568
14569	ASSERT(un != NULL);
14570	ASSERT(!mutex_owned(SD_MUTEX(un)));
14571
14572	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
14573
14574	mutex_enter(SD_MUTEX(un));
14575	sd_start_cmds(un, NULL);
14576	mutex_exit(SD_MUTEX(un));
14577	/*
14578	 * This callback routine always returns 1 (i.e. do not reschedule)
14579	 * because we always specify sdrunout as the callback handler for
14580	 * scsi_init_pkt inside the call to sd_start_cmds.
14581	 */
14582	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
14583	return (1);
14584}
14585
14586
14587/*
14588 *    Function: sdintr
14589 *
14590 * Description: Completion callback routine for scsi_pkt(9S) structs
14591 *		sent to the HBA driver via scsi_transport(9F).
14592 *
14593 *     Context: Interrupt context
14594 */
14595
14596static void
14597sdintr(struct scsi_pkt *pktp)
14598{
14599	struct buf	*bp;
14600	struct sd_xbuf	*xp;
14601	struct sd_lun	*un;
14602
14603	ASSERT(pktp != NULL);
14604	bp = (struct buf *)pktp->pkt_private;
14605	ASSERT(bp != NULL);
14606	xp = SD_GET_XBUF(bp);
14607	ASSERT(xp != NULL);
14608	ASSERT(xp->xb_pktp != NULL);
14609	un = SD_GET_UN(bp);
14610	ASSERT(un != NULL);
14611	ASSERT(!mutex_owned(SD_MUTEX(un)));
14612
14613#ifdef SD_FAULT_INJECTION
14614
14615	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
14616	/* SD FaultInjection */
14617	sd_faultinjection(pktp);
14618
14619#endif /* SD_FAULT_INJECTION */
14620
14621	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
14622	    " xp:0x%p, un:0x%p\n", bp, xp, un);
14623
14624	mutex_enter(SD_MUTEX(un));
14625
14626	/* Reduce the count of the #commands currently in transport */
14627	un->un_ncmds_in_transport--;
14628	ASSERT(un->un_ncmds_in_transport >= 0);
14629
14630	/* Increment counter to indicate that the callback routine is active */
14631	un->un_in_callback++;
14632
14633	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14634
14635#ifdef	SDDEBUG
14636	if (bp == un->un_retry_bp) {
14637		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
14638		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
14639		    un, un->un_retry_bp, un->un_ncmds_in_transport);
14640	}
14641#endif
14642
14643	/*
14644	 * If pkt_reason is CMD_DEV_GONE, fail the command, and update the media
14645	 * state if needed.
14646	 */
14647	if (pktp->pkt_reason == CMD_DEV_GONE) {
14648		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
14649		    "Device is gone\n");
14650		if (un->un_mediastate != DKIO_DEV_GONE) {
14651			un->un_mediastate = DKIO_DEV_GONE;
14652			cv_broadcast(&un->un_state_cv);
14653		}
14654		sd_return_failed_command(un, bp, EIO);
14655		goto exit;
14656	}
14657
14658	/*
14659	 * First see if the pkt has auto-request sense data with it....
14660	 * Look at the packet state first so we don't take a performance
14661	 * hit looking at the arq enabled flag unless absolutely necessary.
14662	 */
14663	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
14664	    (un->un_f_arq_enabled == TRUE)) {
14665		/*
14666		 * The HBA did an auto request sense for this command so check
14667		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
14668		 * driver command that should not be retried.
14669		 */
14670		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
14671			/*
14672			 * Save the relevant sense info into the xp for the
14673			 * original cmd.
14674			 */
14675			struct scsi_arq_status *asp;
14676			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
14677			xp->xb_sense_status =
14678			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
14679			xp->xb_sense_state  = asp->sts_rqpkt_state;
14680			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
14681			bcopy(&asp->sts_sensedata, xp->xb_sense_data,
14682			    min(sizeof (struct scsi_extended_sense),
14683			    SENSE_LENGTH));
14684
14685			/* fail the command */
14686			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14687			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
14688			sd_return_failed_command(un, bp, EIO);
14689			goto exit;
14690		}
14691
14692#if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
14693		/*
14694		 * We want to either retry or fail this command, so free
14695		 * the DMA resources here.  If we retry the command then
14696		 * the DMA resources will be reallocated in sd_start_cmds().
14697		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
14698		 * causes the *entire* transfer to start over again from the
14699		 * beginning of the request, even for PARTIAL chunks that
14700		 * have already transferred successfully.
14701		 */
14702		if ((un->un_f_is_fibre == TRUE) &&
14703		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
14704		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
14705			scsi_dmafree(pktp);
14706			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
14707		}
14708#endif
14709
14710		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14711		    "sdintr: arq done, sd_handle_auto_request_sense\n");
14712
14713		sd_handle_auto_request_sense(un, bp, xp, pktp);
14714		goto exit;
14715	}
14716
14717	/* Next see if this is the REQUEST SENSE pkt for the instance */
14718	if (pktp->pkt_flags & FLAG_SENSING)  {
14719		/* This pktp is from the unit's REQUEST_SENSE command */
14720		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14721		    "sdintr: sd_handle_request_sense\n");
14722		sd_handle_request_sense(un, bp, xp, pktp);
14723		goto exit;
14724	}
14725
14726	/*
14727	 * Check to see if the command successfully completed as requested;
14728	 * this is the most common case (and also the hot performance path).
14729	 *
14730	 * Requirements for successful completion are:
14731	 * pkt_reason is CMD_CMPLT and packet status is status good.
14732	 * In addition:
14733	 * - A residual of zero indicates successful completion no matter what
14734	 *   the command is.
14735	 * - If the residual is not zero and the command is not a read or
14736	 *   write, then it's still defined as successful completion. In other
14737	 *   words, if the command is a read or write the residual must be
14738	 *   zero for successful completion.
14739	 * - If the residual is not zero and the command is a read or
14740	 *   write, and it's a USCSICMD, then it's still defined as
14741	 *   successful completion.
14742	 */
14743	if ((pktp->pkt_reason == CMD_CMPLT) &&
14744	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
14745
14746		/*
14747		 * Since this command is returned with a good status, we
14748		 * can reset the count for Sonoma failover.
14749		 */
14750		un->un_sonoma_failure_count = 0;
14751
14752		/*
14753		 * Return all USCSI commands on good status
14754		 */
14755		if (pktp->pkt_resid == 0) {
14756			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14757			    "sdintr: returning command for resid == 0\n");
14758		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
14759		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
14760			SD_UPDATE_B_RESID(bp, pktp);
14761			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14762			    "sdintr: returning command for resid != 0\n");
14763		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
14764			SD_UPDATE_B_RESID(bp, pktp);
14765			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14766			    "sdintr: returning uscsi command\n");
14767		} else {
14768			goto not_successful;
14769		}
14770		sd_return_command(un, bp);
14771
14772		/*
14773		 * Decrement counter to indicate that the callback routine
14774		 * is done.
14775		 */
14776		un->un_in_callback--;
14777		ASSERT(un->un_in_callback >= 0);
14778		mutex_exit(SD_MUTEX(un));
14779
14780		return;
14781	}
14782
14783not_successful:
14784
14785#if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
14786	/*
14787	 * The following is based upon knowledge of the underlying transport
14788	 * and its use of DMA resources.  This code should be removed when
14789	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
14790	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
14791	 * and sd_start_cmds().
14792	 *
14793	 * Free any DMA resources associated with this command if there
14794	 * is a chance it could be retried or enqueued for later retry.
14795	 * If we keep the DMA binding then mpxio cannot reissue the
14796	 * command on another path whenever a path failure occurs.
14797	 *
14798	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
14799	 * causes the *entire* transfer to start over again from the
14800	 * beginning of the request, even for PARTIAL chunks that
14801	 * have already transferred successfully.
14802	 *
14803	 * This is only done for non-uscsi commands (and also skipped for the
14804	 * driver's internal RQS command). Also just do this for Fibre Channel
14805	 * devices as these are the only ones that support mpxio.
14806	 */
14807	if ((un->un_f_is_fibre == TRUE) &&
14808	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
14809	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
14810		scsi_dmafree(pktp);
14811		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
14812	}
14813#endif
14814
14815	/*
14816	 * The command did not successfully complete as requested so check
14817	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
14818	 * driver command that should not be retried so just return. If
14819	 * FLAG_DIAGNOSE is not set the error will be processed below.
14820	 */
14821	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
14822		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14823		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
14824		/*
14825		 * Issue a request sense if a check condition caused the error
14826		 * (we handle the auto request sense case above), otherwise
14827		 * just fail the command.
14828		 */
14829		if ((pktp->pkt_reason == CMD_CMPLT) &&
14830		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
14831			sd_send_request_sense_command(un, bp, pktp);
14832		} else {
14833			sd_return_failed_command(un, bp, EIO);
14834		}
14835		goto exit;
14836	}
14837
14838	/*
14839	 * The command did not successfully complete as requested so process
14840	 * the error, retry, and/or attempt recovery.
14841	 */
14842	switch (pktp->pkt_reason) {
14843	case CMD_CMPLT:
14844		switch (SD_GET_PKT_STATUS(pktp)) {
14845		case STATUS_GOOD:
14846			/*
14847			 * The command completed successfully with a non-zero
14848			 * residual
14849			 */
14850			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14851			    "sdintr: STATUS_GOOD \n");
14852			sd_pkt_status_good(un, bp, xp, pktp);
14853			break;
14854
14855		case STATUS_CHECK:
14856		case STATUS_TERMINATED:
14857			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14858			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
14859			sd_pkt_status_check_condition(un, bp, xp, pktp);
14860			break;
14861
14862		case STATUS_BUSY:
14863			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14864			    "sdintr: STATUS_BUSY\n");
14865			sd_pkt_status_busy(un, bp, xp, pktp);
14866			break;
14867
14868		case STATUS_RESERVATION_CONFLICT:
14869			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14870			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
14871			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
14872			break;
14873
14874		case STATUS_QFULL:
14875			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14876			    "sdintr: STATUS_QFULL\n");
14877			sd_pkt_status_qfull(un, bp, xp, pktp);
14878			break;
14879
14880		case STATUS_MET:
14881		case STATUS_INTERMEDIATE:
14882		case STATUS_SCSI2:
14883		case STATUS_INTERMEDIATE_MET:
14884		case STATUS_ACA_ACTIVE:
14885			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
14886			    "Unexpected SCSI status received: 0x%x\n",
14887			    SD_GET_PKT_STATUS(pktp));
14888			sd_return_failed_command(un, bp, EIO);
14889			break;
14890
14891		default:
14892			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
14893			    "Invalid SCSI status received: 0x%x\n",
14894			    SD_GET_PKT_STATUS(pktp));
14895			sd_return_failed_command(un, bp, EIO);
14896			break;
14897
14898		}
14899		break;
14900
14901	case CMD_INCOMPLETE:
14902		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14903		    "sdintr:  CMD_INCOMPLETE\n");
14904		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
14905		break;
14906	case CMD_TRAN_ERR:
14907		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14908		    "sdintr: CMD_TRAN_ERR\n");
14909		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
14910		break;
14911	case CMD_RESET:
14912		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14913		    "sdintr: CMD_RESET \n");
14914		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
14915		break;
14916	case CMD_ABORTED:
14917		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14918		    "sdintr: CMD_ABORTED \n");
14919		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
14920		break;
14921	case CMD_TIMEOUT:
14922		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14923		    "sdintr: CMD_TIMEOUT\n");
14924		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
14925		break;
14926	case CMD_UNX_BUS_FREE:
14927		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14928		    "sdintr: CMD_UNX_BUS_FREE \n");
14929		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
14930		break;
14931	case CMD_TAG_REJECT:
14932		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14933		    "sdintr: CMD_TAG_REJECT\n");
14934		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
14935		break;
14936	default:
14937		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14938		    "sdintr: default\n");
14939		sd_pkt_reason_default(un, bp, xp, pktp);
14940		break;
14941	}
14942
14943exit:
14944	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
14945
14946	/* Decrement counter to indicate that the callback routine is done. */
14947	un->un_in_callback--;
14948	ASSERT(un->un_in_callback >= 0);
14949
14950	/*
14951	 * At this point, the pkt has been dispatched, ie, it is either
14952	 * being re-tried or has been returned to its caller and should
14953	 * not be referenced.
14954	 */
14955
14956	mutex_exit(SD_MUTEX(un));
14957}
14958
14959
14960/*
14961 *    Function: sd_print_incomplete_msg
14962 *
14963 * Description: Prints the error message for a CMD_INCOMPLETE error.
14964 *
14965 *   Arguments: un - ptr to associated softstate for the device.
14966 *		bp - ptr to the buf(9S) for the command.
14967 *		arg - message string ptr
14968 *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
14969 *			or SD_NO_RETRY_ISSUED.
14970 *
14971 *     Context: May be called under interrupt context
14972 */
14973
14974static void
14975sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
14976{
14977	struct scsi_pkt	*pktp;
14978	char	*msgp;
14979	char	*cmdp = arg;
14980
14981	ASSERT(un != NULL);
14982	ASSERT(mutex_owned(SD_MUTEX(un)));
14983	ASSERT(bp != NULL);
14984	ASSERT(arg != NULL);
14985	pktp = SD_GET_PKTP(bp);
14986	ASSERT(pktp != NULL);
14987
14988	switch (code) {
14989	case SD_DELAYED_RETRY_ISSUED:
14990	case SD_IMMEDIATE_RETRY_ISSUED:
14991		msgp = "retrying";
14992		break;
14993	case SD_NO_RETRY_ISSUED:
14994	default:
14995		msgp = "giving up";
14996		break;
14997	}
14998
14999	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
15000		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15001		    "incomplete %s- %s\n", cmdp, msgp);
15002	}
15003}
15004
15005
15006
15007/*
15008 *    Function: sd_pkt_status_good
15009 *
15010 * Description: Processing for a STATUS_GOOD code in pkt_status.
15011 *
15012 *     Context: May be called under interrupt context
15013 */
15014
15015static void
15016sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
15017	struct sd_xbuf *xp, struct scsi_pkt *pktp)
15018{
15019	char	*cmdp;
15020
15021	ASSERT(un != NULL);
15022	ASSERT(mutex_owned(SD_MUTEX(un)));
15023	ASSERT(bp != NULL);
15024	ASSERT(xp != NULL);
15025	ASSERT(pktp != NULL);
15026	ASSERT(pktp->pkt_reason == CMD_CMPLT);
15027	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
15028	ASSERT(pktp->pkt_resid != 0);
15029
15030	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
15031
15032	SD_UPDATE_ERRSTATS(un, sd_harderrs);
15033	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
15034	case SCMD_READ:
15035		cmdp = "read";
15036		break;
15037	case SCMD_WRITE:
15038		cmdp = "write";
15039		break;
15040	default:
15041		SD_UPDATE_B_RESID(bp, pktp);
15042		sd_return_command(un, bp);
15043		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
15044		return;
15045	}
15046
15047	/*
15048	 * See if we can retry the read/write, preferrably immediately.
15049	 * If retries are exhaused, then sd_retry_command() will update
15050	 * the b_resid count.
15051	 */
15052	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
15053	    cmdp, EIO, (clock_t)0, NULL);
15054
15055	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
15056}
15057
15058
15059
15060
15061
15062/*
15063 *    Function: sd_handle_request_sense
15064 *
15065 * Description: Processing for non-auto Request Sense command.
15066 *
15067 *   Arguments: un - ptr to associated softstate
15068 *		sense_bp - ptr to buf(9S) for the RQS command
15069 *		sense_xp - ptr to the sd_xbuf for the RQS command
15070 *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
15071 *
15072 *     Context: May be called under interrupt context
15073 */
15074
15075static void
15076sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
15077	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
15078{
15079	struct buf	*cmd_bp;	/* buf for the original command */
15080	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
15081	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
15082
15083	ASSERT(un != NULL);
15084	ASSERT(mutex_owned(SD_MUTEX(un)));
15085	ASSERT(sense_bp != NULL);
15086	ASSERT(sense_xp != NULL);
15087	ASSERT(sense_pktp != NULL);
15088
15089	/*
15090	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
15091	 * RQS command and not the original command.
15092	 */
15093	ASSERT(sense_pktp == un->un_rqs_pktp);
15094	ASSERT(sense_bp   == un->un_rqs_bp);
15095	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
15096	    (FLAG_SENSING | FLAG_HEAD));
15097	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
15098	    FLAG_SENSING) == FLAG_SENSING);
15099
15100	/* These are the bp, xp, and pktp for the original command */
15101	cmd_bp = sense_xp->xb_sense_bp;
15102	cmd_xp = SD_GET_XBUF(cmd_bp);
15103	cmd_pktp = SD_GET_PKTP(cmd_bp);
15104
15105	if (sense_pktp->pkt_reason != CMD_CMPLT) {
15106		/*
15107		 * The REQUEST SENSE command failed.  Release the REQUEST
15108		 * SENSE command for re-use, get back the bp for the original
15109		 * command, and attempt to re-try the original command if
15110		 * FLAG_DIAGNOSE is not set in the original packet.
15111		 */
15112		SD_UPDATE_ERRSTATS(un, sd_harderrs);
15113		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15114			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
15115			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
15116			    NULL, NULL, EIO, (clock_t)0, NULL);
15117			return;
15118		}
15119	}
15120
15121	/*
15122	 * Save the relevant sense info into the xp for the original cmd.
15123	 *
15124	 * Note: if the request sense failed the state info will be zero
15125	 * as set in sd_mark_rqs_busy()
15126	 */
15127	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
15128	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
15129	cmd_xp->xb_sense_resid  = sense_pktp->pkt_resid;
15130	bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data, SENSE_LENGTH);
15131
15132	/*
15133	 *  Free up the RQS command....
15134	 *  NOTE:
15135	 *	Must do this BEFORE calling sd_validate_sense_data!
15136	 *	sd_validate_sense_data may return the original command in
15137	 *	which case the pkt will be freed and the flags can no
15138	 *	longer be touched.
15139	 *	SD_MUTEX is held through this process until the command
15140	 *	is dispatched based upon the sense data, so there are
15141	 *	no race conditions.
15142	 */
15143	(void) sd_mark_rqs_idle(un, sense_xp);
15144
15145	/*
15146	 * For a retryable command see if we have valid sense data, if so then
15147	 * turn it over to sd_decode_sense() to figure out the right course of
15148	 * action. Just fail a non-retryable command.
15149	 */
15150	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15151		if (sd_validate_sense_data(un, cmd_bp, cmd_xp) ==
15152		    SD_SENSE_DATA_IS_VALID) {
15153			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
15154		}
15155	} else {
15156		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
15157		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15158		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
15159		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
15160		sd_return_failed_command(un, cmd_bp, EIO);
15161	}
15162}
15163
15164
15165
15166
15167/*
15168 *    Function: sd_handle_auto_request_sense
15169 *
15170 * Description: Processing for auto-request sense information.
15171 *
15172 *   Arguments: un - ptr to associated softstate
15173 *		bp - ptr to buf(9S) for the command
15174 *		xp - ptr to the sd_xbuf for the command
15175 *		pktp - ptr to the scsi_pkt(9S) for the command
15176 *
15177 *     Context: May be called under interrupt context
15178 */
15179
15180static void
15181sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
15182	struct sd_xbuf *xp, struct scsi_pkt *pktp)
15183{
15184	struct scsi_arq_status *asp;
15185
15186	ASSERT(un != NULL);
15187	ASSERT(mutex_owned(SD_MUTEX(un)));
15188	ASSERT(bp != NULL);
15189	ASSERT(xp != NULL);
15190	ASSERT(pktp != NULL);
15191	ASSERT(pktp != un->un_rqs_pktp);
15192	ASSERT(bp   != un->un_rqs_bp);
15193
15194	/*
15195	 * For auto-request sense, we get a scsi_arq_status back from
15196	 * the HBA, with the sense data in the sts_sensedata member.
15197	 * The pkt_scbp of the packet points to this scsi_arq_status.
15198	 */
15199	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
15200
15201	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
15202		/*
15203		 * The auto REQUEST SENSE failed; see if we can re-try
15204		 * the original command.
15205		 */
15206		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15207		    "auto request sense failed (reason=%s)\n",
15208		    scsi_rname(asp->sts_rqpkt_reason));
15209
15210		sd_reset_target(un, pktp);
15211
15212		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15213		    NULL, NULL, EIO, (clock_t)0, NULL);
15214		return;
15215	}
15216
15217	/* Save the relevant sense info into the xp for the original cmd. */
15218	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
15219	xp->xb_sense_state  = asp->sts_rqpkt_state;
15220	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
15221	bcopy(&asp->sts_sensedata, xp->xb_sense_data,
15222	    min(sizeof (struct scsi_extended_sense), SENSE_LENGTH));
15223
15224	/*
15225	 * See if we have valid sense data, if so then turn it over to
15226	 * sd_decode_sense() to figure out the right course of action.
15227	 */
15228	if (sd_validate_sense_data(un, bp, xp) == SD_SENSE_DATA_IS_VALID) {
15229		sd_decode_sense(un, bp, xp, pktp);
15230	}
15231}
15232
15233
15234/*
15235 *    Function: sd_print_sense_failed_msg
15236 *
15237 * Description: Print log message when RQS has failed.
15238 *
15239 *   Arguments: un - ptr to associated softstate
15240 *		bp - ptr to buf(9S) for the command
15241 *		arg - generic message string ptr
15242 *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
15243 *			or SD_NO_RETRY_ISSUED
15244 *
15245 *     Context: May be called from interrupt context
15246 */
15247
15248static void
15249sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
15250	int code)
15251{
15252	char	*msgp = arg;
15253
15254	ASSERT(un != NULL);
15255	ASSERT(mutex_owned(SD_MUTEX(un)));
15256	ASSERT(bp != NULL);
15257
15258	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
15259		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
15260	}
15261}
15262
15263
15264/*
15265 *    Function: sd_validate_sense_data
15266 *
15267 * Description: Check the given sense data for validity.
15268 *		If the sense data is not valid, the command will
15269 *		be either failed or retried!
15270 *
15271 * Return Code: SD_SENSE_DATA_IS_INVALID
15272 *		SD_SENSE_DATA_IS_VALID
15273 *
15274 *     Context: May be called from interrupt context
15275 */
15276
15277static int
15278sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp)
15279{
15280	struct scsi_extended_sense *esp;
15281	struct	scsi_pkt *pktp;
15282	size_t	actual_len;
15283	char	*msgp = NULL;
15284
15285	ASSERT(un != NULL);
15286	ASSERT(mutex_owned(SD_MUTEX(un)));
15287	ASSERT(bp != NULL);
15288	ASSERT(bp != un->un_rqs_bp);
15289	ASSERT(xp != NULL);
15290
15291	pktp = SD_GET_PKTP(bp);
15292	ASSERT(pktp != NULL);
15293
15294	/*
15295	 * Check the status of the RQS command (auto or manual).
15296	 */
15297	switch (xp->xb_sense_status & STATUS_MASK) {
15298	case STATUS_GOOD:
15299		break;
15300
15301	case STATUS_RESERVATION_CONFLICT:
15302		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
15303		return (SD_SENSE_DATA_IS_INVALID);
15304
15305	case STATUS_BUSY:
15306		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15307		    "Busy Status on REQUEST SENSE\n");
15308		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
15309		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
15310		return (SD_SENSE_DATA_IS_INVALID);
15311
15312	case STATUS_QFULL:
15313		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15314		    "QFULL Status on REQUEST SENSE\n");
15315		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
15316		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
15317		return (SD_SENSE_DATA_IS_INVALID);
15318
15319	case STATUS_CHECK:
15320	case STATUS_TERMINATED:
15321		msgp = "Check Condition on REQUEST SENSE\n";
15322		goto sense_failed;
15323
15324	default:
15325		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
15326		goto sense_failed;
15327	}
15328
15329	/*
15330	 * See if we got the minimum required amount of sense data.
15331	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
15332	 * or less.
15333	 */
15334	actual_len = (int)(SENSE_LENGTH - xp->xb_sense_resid);
15335	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
15336	    (actual_len == 0)) {
15337		msgp = "Request Sense couldn't get sense data\n";
15338		goto sense_failed;
15339	}
15340
15341	if (actual_len < SUN_MIN_SENSE_LENGTH) {
15342		msgp = "Not enough sense information\n";
15343		goto sense_failed;
15344	}
15345
15346	/*
15347	 * We require the extended sense data
15348	 */
15349	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
15350	if (esp->es_class != CLASS_EXTENDED_SENSE) {
15351		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
15352			static char tmp[8];
15353			static char buf[148];
15354			char *p = (char *)(xp->xb_sense_data);
15355			int i;
15356
15357			mutex_enter(&sd_sense_mutex);
15358			(void) strcpy(buf, "undecodable sense information:");
15359			for (i = 0; i < actual_len; i++) {
15360				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
15361				(void) strcpy(&buf[strlen(buf)], tmp);
15362			}
15363			i = strlen(buf);
15364			(void) strcpy(&buf[i], "-(assumed fatal)\n");
15365			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, buf);
15366			mutex_exit(&sd_sense_mutex);
15367		}
15368		/* Note: Legacy behavior, fail the command with no retry */
15369		sd_return_failed_command(un, bp, EIO);
15370		return (SD_SENSE_DATA_IS_INVALID);
15371	}
15372
15373	/*
15374	 * Check that es_code is valid (es_class concatenated with es_code
15375	 * make up the "response code" field.  es_class will always be 7, so
15376	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
15377	 * format.
15378	 */
15379	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
15380	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
15381	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
15382	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
15383	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
15384		goto sense_failed;
15385	}
15386
15387	return (SD_SENSE_DATA_IS_VALID);
15388
15389sense_failed:
15390	/*
15391	 * If the request sense failed (for whatever reason), attempt
15392	 * to retry the original command.
15393	 */
15394#if defined(__i386) || defined(__amd64)
15395	/*
15396	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
15397	 * sddef.h for Sparc platform, and x86 uses 1 binary
15398	 * for both SCSI/FC.
15399	 * The SD_RETRY_DELAY value need to be adjusted here
15400	 * when SD_RETRY_DELAY change in sddef.h
15401	 */
15402	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15403	    sd_print_sense_failed_msg, msgp, EIO,
15404	    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
15405#else
15406	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15407	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
15408#endif
15409
15410	return (SD_SENSE_DATA_IS_INVALID);
15411}
15412
15413
15414
15415/*
15416 *    Function: sd_decode_sense
15417 *
15418 * Description: Take recovery action(s) when SCSI Sense Data is received.
15419 *
15420 *     Context: Interrupt context.
15421 */
15422
15423static void
15424sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
15425	struct scsi_pkt *pktp)
15426{
15427	uint8_t sense_key;
15428
15429	ASSERT(un != NULL);
15430	ASSERT(mutex_owned(SD_MUTEX(un)));
15431	ASSERT(bp != NULL);
15432	ASSERT(bp != un->un_rqs_bp);
15433	ASSERT(xp != NULL);
15434	ASSERT(pktp != NULL);
15435
15436	sense_key = scsi_sense_key(xp->xb_sense_data);
15437
15438	switch (sense_key) {
15439	case KEY_NO_SENSE:
15440		sd_sense_key_no_sense(un, bp, xp, pktp);
15441		break;
15442	case KEY_RECOVERABLE_ERROR:
15443		sd_sense_key_recoverable_error(un, xp->xb_sense_data,
15444		    bp, xp, pktp);
15445		break;
15446	case KEY_NOT_READY:
15447		sd_sense_key_not_ready(un, xp->xb_sense_data,
15448		    bp, xp, pktp);
15449		break;
15450	case KEY_MEDIUM_ERROR:
15451	case KEY_HARDWARE_ERROR:
15452		sd_sense_key_medium_or_hardware_error(un,
15453		    xp->xb_sense_data, bp, xp, pktp);
15454		break;
15455	case KEY_ILLEGAL_REQUEST:
15456		sd_sense_key_illegal_request(un, bp, xp, pktp);
15457		break;
15458	case KEY_UNIT_ATTENTION:
15459		sd_sense_key_unit_attention(un, xp->xb_sense_data,
15460		    bp, xp, pktp);
15461		break;
15462	case KEY_WRITE_PROTECT:
15463	case KEY_VOLUME_OVERFLOW:
15464	case KEY_MISCOMPARE:
15465		sd_sense_key_fail_command(un, bp, xp, pktp);
15466		break;
15467	case KEY_BLANK_CHECK:
15468		sd_sense_key_blank_check(un, bp, xp, pktp);
15469		break;
15470	case KEY_ABORTED_COMMAND:
15471		sd_sense_key_aborted_command(un, bp, xp, pktp);
15472		break;
15473	case KEY_VENDOR_UNIQUE:
15474	case KEY_COPY_ABORTED:
15475	case KEY_EQUAL:
15476	case KEY_RESERVED:
15477	default:
15478		sd_sense_key_default(un, xp->xb_sense_data,
15479		    bp, xp, pktp);
15480		break;
15481	}
15482}
15483
15484
15485/*
15486 *    Function: sd_dump_memory
15487 *
15488 * Description: Debug logging routine to print the contents of a user provided
15489 *		buffer. The output of the buffer is broken up into 256 byte
15490 *		segments due to a size constraint of the scsi_log.
15491 *		implementation.
15492 *
15493 *   Arguments: un - ptr to softstate
15494 *		comp - component mask
15495 *		title - "title" string to preceed data when printed
15496 *		data - ptr to data block to be printed
15497 *		len - size of data block to be printed
15498 *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
15499 *
15500 *     Context: May be called from interrupt context
15501 */
15502
15503#define	SD_DUMP_MEMORY_BUF_SIZE	256
15504
15505static char *sd_dump_format_string[] = {
15506		" 0x%02x",
15507		" %c"
15508};
15509
15510static void
15511sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
15512    int len, int fmt)
15513{
15514	int	i, j;
15515	int	avail_count;
15516	int	start_offset;
15517	int	end_offset;
15518	size_t	entry_len;
15519	char	*bufp;
15520	char	*local_buf;
15521	char	*format_string;
15522
15523	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
15524
15525	/*
15526	 * In the debug version of the driver, this function is called from a
15527	 * number of places which are NOPs in the release driver.
15528	 * The debug driver therefore has additional methods of filtering
15529	 * debug output.
15530	 */
15531#ifdef SDDEBUG
15532	/*
15533	 * In the debug version of the driver we can reduce the amount of debug
15534	 * messages by setting sd_error_level to something other than
15535	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
15536	 * sd_component_mask.
15537	 */
15538	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
15539	    (sd_error_level != SCSI_ERR_ALL)) {
15540		return;
15541	}
15542	if (((sd_component_mask & comp) == 0) ||
15543	    (sd_error_level != SCSI_ERR_ALL)) {
15544		return;
15545	}
15546#else
15547	if (sd_error_level != SCSI_ERR_ALL) {
15548		return;
15549	}
15550#endif
15551
15552	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
15553	bufp = local_buf;
15554	/*
15555	 * Available length is the length of local_buf[], minus the
15556	 * length of the title string, minus one for the ":", minus
15557	 * one for the newline, minus one for the NULL terminator.
15558	 * This gives the #bytes available for holding the printed
15559	 * values from the given data buffer.
15560	 */
15561	if (fmt == SD_LOG_HEX) {
15562		format_string = sd_dump_format_string[0];
15563	} else /* SD_LOG_CHAR */ {
15564		format_string = sd_dump_format_string[1];
15565	}
15566	/*
15567	 * Available count is the number of elements from the given
15568	 * data buffer that we can fit into the available length.
15569	 * This is based upon the size of the format string used.
15570	 * Make one entry and find it's size.
15571	 */
15572	(void) sprintf(bufp, format_string, data[0]);
15573	entry_len = strlen(bufp);
15574	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
15575
15576	j = 0;
15577	while (j < len) {
15578		bufp = local_buf;
15579		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
15580		start_offset = j;
15581
15582		end_offset = start_offset + avail_count;
15583
15584		(void) sprintf(bufp, "%s:", title);
15585		bufp += strlen(bufp);
15586		for (i = start_offset; ((i < end_offset) && (j < len));
15587		    i++, j++) {
15588			(void) sprintf(bufp, format_string, data[i]);
15589			bufp += entry_len;
15590		}
15591		(void) sprintf(bufp, "\n");
15592
15593		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
15594	}
15595	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
15596}
15597
15598/*
15599 *    Function: sd_print_sense_msg
15600 *
15601 * Description: Log a message based upon the given sense data.
15602 *
15603 *   Arguments: un - ptr to associated softstate
15604 *		bp - ptr to buf(9S) for the command
15605 *		arg - ptr to associate sd_sense_info struct
15606 *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
15607 *			or SD_NO_RETRY_ISSUED
15608 *
15609 *     Context: May be called from interrupt context
15610 */
15611
15612static void
15613sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
15614{
15615	struct sd_xbuf	*xp;
15616	struct scsi_pkt	*pktp;
15617	uint8_t *sensep;
15618	daddr_t request_blkno;
15619	diskaddr_t err_blkno;
15620	int severity;
15621	int pfa_flag;
15622	extern struct scsi_key_strings scsi_cmds[];
15623
15624	ASSERT(un != NULL);
15625	ASSERT(mutex_owned(SD_MUTEX(un)));
15626	ASSERT(bp != NULL);
15627	xp = SD_GET_XBUF(bp);
15628	ASSERT(xp != NULL);
15629	pktp = SD_GET_PKTP(bp);
15630	ASSERT(pktp != NULL);
15631	ASSERT(arg != NULL);
15632
15633	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
15634	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
15635
15636	if ((code == SD_DELAYED_RETRY_ISSUED) ||
15637	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
15638		severity = SCSI_ERR_RETRYABLE;
15639	}
15640
15641	/* Use absolute block number for the request block number */
15642	request_blkno = xp->xb_blkno;
15643
15644	/*
15645	 * Now try to get the error block number from the sense data
15646	 */
15647	sensep = xp->xb_sense_data;
15648
15649	if (scsi_sense_info_uint64(sensep, SENSE_LENGTH,
15650	    (uint64_t *)&err_blkno)) {
15651		/*
15652		 * We retrieved the error block number from the information
15653		 * portion of the sense data.
15654		 *
15655		 * For USCSI commands we are better off using the error
15656		 * block no. as the requested block no. (This is the best
15657		 * we can estimate.)
15658		 */
15659		if ((SD_IS_BUFIO(xp) == FALSE) &&
15660		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
15661			request_blkno = err_blkno;
15662		}
15663	} else {
15664		/*
15665		 * Without the es_valid bit set (for fixed format) or an
15666		 * information descriptor (for descriptor format) we cannot
15667		 * be certain of the error blkno, so just use the
15668		 * request_blkno.
15669		 */
15670		err_blkno = (diskaddr_t)request_blkno;
15671	}
15672
15673	/*
15674	 * The following will log the buffer contents for the release driver
15675	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
15676	 * level is set to verbose.
15677	 */
15678	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
15679	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15680	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
15681	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
15682
15683	if (pfa_flag == FALSE) {
15684		/* This is normally only set for USCSI */
15685		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
15686			return;
15687		}
15688
15689		if ((SD_IS_BUFIO(xp) == TRUE) &&
15690		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
15691		    (severity < sd_error_level))) {
15692			return;
15693		}
15694	}
15695
15696	/*
15697	 * Check for Sonoma Failover and keep a count of how many failed I/O's
15698	 */
15699	if ((SD_IS_LSI(un)) &&
15700	    (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) &&
15701	    (scsi_sense_asc(sensep) == 0x94) &&
15702	    (scsi_sense_ascq(sensep) == 0x01)) {
15703		un->un_sonoma_failure_count++;
15704		if (un->un_sonoma_failure_count > 1) {
15705			return;
15706		}
15707	}
15708
15709	scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
15710	    request_blkno, err_blkno, scsi_cmds,
15711	    (struct scsi_extended_sense *)sensep,
15712	    un->un_additional_codes, NULL);
15713}
15714
15715/*
15716 *    Function: sd_sense_key_no_sense
15717 *
15718 * Description: Recovery action when sense data was not received.
15719 *
15720 *     Context: May be called from interrupt context
15721 */
15722
15723static void
15724sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
15725	struct sd_xbuf *xp, struct scsi_pkt *pktp)
15726{
15727	struct sd_sense_info	si;
15728
15729	ASSERT(un != NULL);
15730	ASSERT(mutex_owned(SD_MUTEX(un)));
15731	ASSERT(bp != NULL);
15732	ASSERT(xp != NULL);
15733	ASSERT(pktp != NULL);
15734
15735	si.ssi_severity = SCSI_ERR_FATAL;
15736	si.ssi_pfa_flag = FALSE;
15737
15738	SD_UPDATE_ERRSTATS(un, sd_softerrs);
15739
15740	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
15741	    &si, EIO, (clock_t)0, NULL);
15742}
15743
15744
15745/*
15746 *    Function: sd_sense_key_recoverable_error
15747 *
15748 * Description: Recovery actions for a SCSI "Recovered Error" sense key.
15749 *
15750 *     Context: May be called from interrupt context
15751 */
15752
15753static void
15754sd_sense_key_recoverable_error(struct sd_lun *un,
15755	uint8_t *sense_datap,
15756	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
15757{
15758	struct sd_sense_info	si;
15759	uint8_t asc = scsi_sense_asc(sense_datap);
15760
15761	ASSERT(un != NULL);
15762	ASSERT(mutex_owned(SD_MUTEX(un)));
15763	ASSERT(bp != NULL);
15764	ASSERT(xp != NULL);
15765	ASSERT(pktp != NULL);
15766
15767	/*
15768	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
15769	 */
15770	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
15771		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
15772		si.ssi_severity = SCSI_ERR_INFO;
15773		si.ssi_pfa_flag = TRUE;
15774	} else {
15775		SD_UPDATE_ERRSTATS(un, sd_softerrs);
15776		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
15777		si.ssi_severity = SCSI_ERR_RECOVERED;
15778		si.ssi_pfa_flag = FALSE;
15779	}
15780
15781	if (pktp->pkt_resid == 0) {
15782		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
15783		sd_return_command(un, bp);
15784		return;
15785	}
15786
15787	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
15788	    &si, EIO, (clock_t)0, NULL);
15789}
15790
15791
15792
15793
15794/*
15795 *    Function: sd_sense_key_not_ready
15796 *
15797 * Description: Recovery actions for a SCSI "Not Ready" sense key.
15798 *
15799 *     Context: May be called from interrupt context
15800 */
15801
15802static void
15803sd_sense_key_not_ready(struct sd_lun *un,
15804	uint8_t *sense_datap,
15805	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
15806{
15807	struct sd_sense_info	si;
15808	uint8_t asc = scsi_sense_asc(sense_datap);
15809	uint8_t ascq = scsi_sense_ascq(sense_datap);
15810
15811	ASSERT(un != NULL);
15812	ASSERT(mutex_owned(SD_MUTEX(un)));
15813	ASSERT(bp != NULL);
15814	ASSERT(xp != NULL);
15815	ASSERT(pktp != NULL);
15816
15817	si.ssi_severity = SCSI_ERR_FATAL;
15818	si.ssi_pfa_flag = FALSE;
15819
15820	/*
15821	 * Update error stats after first NOT READY error. Disks may have
15822	 * been powered down and may need to be restarted.  For CDROMs,
15823	 * report NOT READY errors only if media is present.
15824	 */
15825	if ((ISCD(un) && (asc == 0x3A)) ||
15826	    (xp->xb_nr_retry_count > 0)) {
15827		SD_UPDATE_ERRSTATS(un, sd_harderrs);
15828		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
15829	}
15830
15831	/*
15832	 * Just fail if the "not ready" retry limit has been reached.
15833	 */
15834	if (xp->xb_nr_retry_count >= un->un_notready_retry_count) {
15835		/* Special check for error message printing for removables. */
15836		if (un->un_f_has_removable_media && (asc == 0x04) &&
15837		    (ascq >= 0x04)) {
15838			si.ssi_severity = SCSI_ERR_ALL;
15839		}
15840		goto fail_command;
15841	}
15842
15843	/*
15844	 * Check the ASC and ASCQ in the sense data as needed, to determine
15845	 * what to do.
15846	 */
15847	switch (asc) {
15848	case 0x04:	/* LOGICAL UNIT NOT READY */
15849		/*
15850		 * disk drives that don't spin up result in a very long delay
15851		 * in format without warning messages. We will log a message
15852		 * if the error level is set to verbose.
15853		 */
15854		if (sd_error_level < SCSI_ERR_RETRYABLE) {
15855			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15856			    "logical unit not ready, resetting disk\n");
15857		}
15858
15859		/*
15860		 * There are different requirements for CDROMs and disks for
15861		 * the number of retries.  If a CD-ROM is giving this, it is
15862		 * probably reading TOC and is in the process of getting
15863		 * ready, so we should keep on trying for a long time to make
15864		 * sure that all types of media are taken in account (for
15865		 * some media the drive takes a long time to read TOC).  For
15866		 * disks we do not want to retry this too many times as this
15867		 * can cause a long hang in format when the drive refuses to
15868		 * spin up (a very common failure).
15869		 */
15870		switch (ascq) {
15871		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
15872			/*
15873			 * Disk drives frequently refuse to spin up which
15874			 * results in a very long hang in format without
15875			 * warning messages.
15876			 *
15877			 * Note: This code preserves the legacy behavior of
15878			 * comparing xb_nr_retry_count against zero for fibre
15879			 * channel targets instead of comparing against the
15880			 * un_reset_retry_count value.  The reason for this
15881			 * discrepancy has been so utterly lost beneath the
15882			 * Sands of Time that even Indiana Jones could not
15883			 * find it.
15884			 */
15885			if (un->un_f_is_fibre == TRUE) {
15886				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
15887				    (xp->xb_nr_retry_count > 0)) &&
15888				    (un->un_startstop_timeid == NULL)) {
15889					scsi_log(SD_DEVINFO(un), sd_label,
15890					    CE_WARN, "logical unit not ready, "
15891					    "resetting disk\n");
15892					sd_reset_target(un, pktp);
15893				}
15894			} else {
15895				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
15896				    (xp->xb_nr_retry_count >
15897				    un->un_reset_retry_count)) &&
15898				    (un->un_startstop_timeid == NULL)) {
15899					scsi_log(SD_DEVINFO(un), sd_label,
15900					    CE_WARN, "logical unit not ready, "
15901					    "resetting disk\n");
15902					sd_reset_target(un, pktp);
15903				}
15904			}
15905			break;
15906
15907		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
15908			/*
15909			 * If the target is in the process of becoming
15910			 * ready, just proceed with the retry. This can
15911			 * happen with CD-ROMs that take a long time to
15912			 * read TOC after a power cycle or reset.
15913			 */
15914			goto do_retry;
15915
15916		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
15917			break;
15918
15919		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
15920			/*
15921			 * Retries cannot help here so just fail right away.
15922			 */
15923			goto fail_command;
15924
15925		case 0x88:
15926			/*
15927			 * Vendor-unique code for T3/T4: it indicates a
15928			 * path problem in a mutipathed config, but as far as
15929			 * the target driver is concerned it equates to a fatal
15930			 * error, so we should just fail the command right away
15931			 * (without printing anything to the console). If this
15932			 * is not a T3/T4, fall thru to the default recovery
15933			 * action.
15934			 * T3/T4 is FC only, don't need to check is_fibre
15935			 */
15936			if (SD_IS_T3(un) || SD_IS_T4(un)) {
15937				sd_return_failed_command(un, bp, EIO);
15938				return;
15939			}
15940			/* FALLTHRU */
15941
15942		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
15943		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
15944		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
15945		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
15946		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
15947		default:    /* Possible future codes in SCSI spec? */
15948			/*
15949			 * For removable-media devices, do not retry if
15950			 * ASCQ > 2 as these result mostly from USCSI commands
15951			 * on MMC devices issued to check status of an
15952			 * operation initiated in immediate mode.  Also for
15953			 * ASCQ >= 4 do not print console messages as these
15954			 * mainly represent a user-initiated operation
15955			 * instead of a system failure.
15956			 */
15957			if (un->un_f_has_removable_media) {
15958				si.ssi_severity = SCSI_ERR_ALL;
15959				goto fail_command;
15960			}
15961			break;
15962		}
15963
15964		/*
15965		 * As part of our recovery attempt for the NOT READY
15966		 * condition, we issue a START STOP UNIT command. However
15967		 * we want to wait for a short delay before attempting this
15968		 * as there may still be more commands coming back from the
15969		 * target with the check condition. To do this we use
15970		 * timeout(9F) to call sd_start_stop_unit_callback() after
15971		 * the delay interval expires. (sd_start_stop_unit_callback()
15972		 * dispatches sd_start_stop_unit_task(), which will issue
15973		 * the actual START STOP UNIT command. The delay interval
15974		 * is one-half of the delay that we will use to retry the
15975		 * command that generated the NOT READY condition.
15976		 *
15977		 * Note that we could just dispatch sd_start_stop_unit_task()
15978		 * from here and allow it to sleep for the delay interval,
15979		 * but then we would be tying up the taskq thread
15980		 * uncesessarily for the duration of the delay.
15981		 *
15982		 * Do not issue the START STOP UNIT if the current command
15983		 * is already a START STOP UNIT.
15984		 */
15985		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
15986			break;
15987		}
15988
15989		/*
15990		 * Do not schedule the timeout if one is already pending.
15991		 */
15992		if (un->un_startstop_timeid != NULL) {
15993			SD_INFO(SD_LOG_ERROR, un,
15994			    "sd_sense_key_not_ready: restart already issued to"
15995			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
15996			    ddi_get_instance(SD_DEVINFO(un)));
15997			break;
15998		}
15999
16000		/*
16001		 * Schedule the START STOP UNIT command, then queue the command
16002		 * for a retry.
16003		 *
16004		 * Note: A timeout is not scheduled for this retry because we
16005		 * want the retry to be serial with the START_STOP_UNIT. The
16006		 * retry will be started when the START_STOP_UNIT is completed
16007		 * in sd_start_stop_unit_task.
16008		 */
16009		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
16010		    un, SD_BSY_TIMEOUT / 2);
16011		xp->xb_nr_retry_count++;
16012		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
16013		return;
16014
16015	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
16016		if (sd_error_level < SCSI_ERR_RETRYABLE) {
16017			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16018			    "unit does not respond to selection\n");
16019		}
16020		break;
16021
16022	case 0x3A:	/* MEDIUM NOT PRESENT */
16023		if (sd_error_level >= SCSI_ERR_FATAL) {
16024			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16025			    "Caddy not inserted in drive\n");
16026		}
16027
16028		sr_ejected(un);
16029		un->un_mediastate = DKIO_EJECTED;
16030		/* The state has changed, inform the media watch routines */
16031		cv_broadcast(&un->un_state_cv);
16032		/* Just fail if no media is present in the drive. */
16033		goto fail_command;
16034
16035	default:
16036		if (sd_error_level < SCSI_ERR_RETRYABLE) {
16037			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
16038			    "Unit not Ready. Additional sense code 0x%x\n",
16039			    asc);
16040		}
16041		break;
16042	}
16043
16044do_retry:
16045
16046	/*
16047	 * Retry the command, as some targets may report NOT READY for
16048	 * several seconds after being reset.
16049	 */
16050	xp->xb_nr_retry_count++;
16051	si.ssi_severity = SCSI_ERR_RETRYABLE;
16052	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
16053	    &si, EIO, SD_BSY_TIMEOUT, NULL);
16054
16055	return;
16056
16057fail_command:
16058	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16059	sd_return_failed_command(un, bp, EIO);
16060}
16061
16062
16063
16064/*
16065 *    Function: sd_sense_key_medium_or_hardware_error
16066 *
16067 * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
16068 *		sense key.
16069 *
16070 *     Context: May be called from interrupt context
16071 */
16072
16073static void
16074sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
16075	uint8_t *sense_datap,
16076	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16077{
16078	struct sd_sense_info	si;
16079	uint8_t sense_key = scsi_sense_key(sense_datap);
16080	uint8_t asc = scsi_sense_asc(sense_datap);
16081
16082	ASSERT(un != NULL);
16083	ASSERT(mutex_owned(SD_MUTEX(un)));
16084	ASSERT(bp != NULL);
16085	ASSERT(xp != NULL);
16086	ASSERT(pktp != NULL);
16087
16088	si.ssi_severity = SCSI_ERR_FATAL;
16089	si.ssi_pfa_flag = FALSE;
16090
16091	if (sense_key == KEY_MEDIUM_ERROR) {
16092		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
16093	}
16094
16095	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16096
16097	if ((un->un_reset_retry_count != 0) &&
16098	    (xp->xb_retry_count == un->un_reset_retry_count)) {
16099		mutex_exit(SD_MUTEX(un));
16100		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
16101		if (un->un_f_allow_bus_device_reset == TRUE) {
16102
16103			boolean_t try_resetting_target = B_TRUE;
16104
16105			/*
16106			 * We need to be able to handle specific ASC when we are
16107			 * handling a KEY_HARDWARE_ERROR. In particular
16108			 * taking the default action of resetting the target may
16109			 * not be the appropriate way to attempt recovery.
16110			 * Resetting a target because of a single LUN failure
16111			 * victimizes all LUNs on that target.
16112			 *
16113			 * This is true for the LSI arrays, if an LSI
16114			 * array controller returns an ASC of 0x84 (LUN Dead) we
16115			 * should trust it.
16116			 */
16117
16118			if (sense_key == KEY_HARDWARE_ERROR) {
16119				switch (asc) {
16120				case 0x84:
16121					if (SD_IS_LSI(un)) {
16122						try_resetting_target = B_FALSE;
16123					}
16124					break;
16125				default:
16126					break;
16127				}
16128			}
16129
16130			if (try_resetting_target == B_TRUE) {
16131				int reset_retval = 0;
16132				if (un->un_f_lun_reset_enabled == TRUE) {
16133					SD_TRACE(SD_LOG_IO_CORE, un,
16134					    "sd_sense_key_medium_or_hardware_"
16135					    "error: issuing RESET_LUN\n");
16136					reset_retval =
16137					    scsi_reset(SD_ADDRESS(un),
16138					    RESET_LUN);
16139				}
16140				if (reset_retval == 0) {
16141					SD_TRACE(SD_LOG_IO_CORE, un,
16142					    "sd_sense_key_medium_or_hardware_"
16143					    "error: issuing RESET_TARGET\n");
16144					(void) scsi_reset(SD_ADDRESS(un),
16145					    RESET_TARGET);
16146				}
16147			}
16148		}
16149		mutex_enter(SD_MUTEX(un));
16150	}
16151
16152	/*
16153	 * This really ought to be a fatal error, but we will retry anyway
16154	 * as some drives report this as a spurious error.
16155	 */
16156	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16157	    &si, EIO, (clock_t)0, NULL);
16158}
16159
16160
16161
16162/*
16163 *    Function: sd_sense_key_illegal_request
16164 *
16165 * Description: Recovery actions for a SCSI "Illegal Request" sense key.
16166 *
16167 *     Context: May be called from interrupt context
16168 */
16169
16170static void
16171sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
16172	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16173{
16174	struct sd_sense_info	si;
16175
16176	ASSERT(un != NULL);
16177	ASSERT(mutex_owned(SD_MUTEX(un)));
16178	ASSERT(bp != NULL);
16179	ASSERT(xp != NULL);
16180	ASSERT(pktp != NULL);
16181
16182	SD_UPDATE_ERRSTATS(un, sd_softerrs);
16183	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
16184
16185	si.ssi_severity = SCSI_ERR_INFO;
16186	si.ssi_pfa_flag = FALSE;
16187
16188	/* Pointless to retry if the target thinks it's an illegal request */
16189	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16190	sd_return_failed_command(un, bp, EIO);
16191}
16192
16193
16194
16195
16196/*
16197 *    Function: sd_sense_key_unit_attention
16198 *
16199 * Description: Recovery actions for a SCSI "Unit Attention" sense key.
16200 *
16201 *     Context: May be called from interrupt context
16202 */
16203
16204static void
16205sd_sense_key_unit_attention(struct sd_lun *un,
16206	uint8_t *sense_datap,
16207	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16208{
16209	/*
16210	 * For UNIT ATTENTION we allow retries for one minute. Devices
16211	 * like Sonoma can return UNIT ATTENTION close to a minute
16212	 * under certain conditions.
16213	 */
16214	int	retry_check_flag = SD_RETRIES_UA;
16215	boolean_t	kstat_updated = B_FALSE;
16216	struct	sd_sense_info		si;
16217	uint8_t asc = scsi_sense_asc(sense_datap);
16218
16219	ASSERT(un != NULL);
16220	ASSERT(mutex_owned(SD_MUTEX(un)));
16221	ASSERT(bp != NULL);
16222	ASSERT(xp != NULL);
16223	ASSERT(pktp != NULL);
16224
16225	si.ssi_severity = SCSI_ERR_INFO;
16226	si.ssi_pfa_flag = FALSE;
16227
16228
16229	switch (asc) {
16230	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
16231		if (sd_report_pfa != 0) {
16232			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
16233			si.ssi_pfa_flag = TRUE;
16234			retry_check_flag = SD_RETRIES_STANDARD;
16235			goto do_retry;
16236		}
16237
16238		break;
16239
16240	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
16241		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
16242			un->un_resvd_status |=
16243			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
16244		}
16245#ifdef _LP64
16246		if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) {
16247			if (taskq_dispatch(sd_tq, sd_reenable_dsense_task,
16248			    un, KM_NOSLEEP) == 0) {
16249				/*
16250				 * If we can't dispatch the task we'll just
16251				 * live without descriptor sense.  We can
16252				 * try again on the next "unit attention"
16253				 */
16254				SD_ERROR(SD_LOG_ERROR, un,
16255				    "sd_sense_key_unit_attention: "
16256				    "Could not dispatch "
16257				    "sd_reenable_dsense_task\n");
16258			}
16259		}
16260#endif /* _LP64 */
16261		/* FALLTHRU */
16262
16263	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
16264		if (!un->un_f_has_removable_media) {
16265			break;
16266		}
16267
16268		/*
16269		 * When we get a unit attention from a removable-media device,
16270		 * it may be in a state that will take a long time to recover
16271		 * (e.g., from a reset).  Since we are executing in interrupt
16272		 * context here, we cannot wait around for the device to come
16273		 * back. So hand this command off to sd_media_change_task()
16274		 * for deferred processing under taskq thread context. (Note
16275		 * that the command still may be failed if a problem is
16276		 * encountered at a later time.)
16277		 */
16278		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
16279		    KM_NOSLEEP) == 0) {
16280			/*
16281			 * Cannot dispatch the request so fail the command.
16282			 */
16283			SD_UPDATE_ERRSTATS(un, sd_harderrs);
16284			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
16285			si.ssi_severity = SCSI_ERR_FATAL;
16286			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16287			sd_return_failed_command(un, bp, EIO);
16288		}
16289
16290		/*
16291		 * If failed to dispatch sd_media_change_task(), we already
16292		 * updated kstat. If succeed to dispatch sd_media_change_task(),
16293		 * we should update kstat later if it encounters an error. So,
16294		 * we update kstat_updated flag here.
16295		 */
16296		kstat_updated = B_TRUE;
16297
16298		/*
16299		 * Either the command has been successfully dispatched to a
16300		 * task Q for retrying, or the dispatch failed. In either case
16301		 * do NOT retry again by calling sd_retry_command. This sets up
16302		 * two retries of the same command and when one completes and
16303		 * frees the resources the other will access freed memory,
16304		 * a bad thing.
16305		 */
16306		return;
16307
16308	default:
16309		break;
16310	}
16311
16312	/*
16313	 * Update kstat if we haven't done that.
16314	 */
16315	if (!kstat_updated) {
16316		SD_UPDATE_ERRSTATS(un, sd_harderrs);
16317		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
16318	}
16319
16320do_retry:
16321	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
16322	    EIO, SD_UA_RETRY_DELAY, NULL);
16323}
16324
16325
16326
16327/*
16328 *    Function: sd_sense_key_fail_command
16329 *
16330 * Description: Use to fail a command when we don't like the sense key that
16331 *		was returned.
16332 *
16333 *     Context: May be called from interrupt context
16334 */
16335
16336static void
16337sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
16338	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16339{
16340	struct sd_sense_info	si;
16341
16342	ASSERT(un != NULL);
16343	ASSERT(mutex_owned(SD_MUTEX(un)));
16344	ASSERT(bp != NULL);
16345	ASSERT(xp != NULL);
16346	ASSERT(pktp != NULL);
16347
16348	si.ssi_severity = SCSI_ERR_FATAL;
16349	si.ssi_pfa_flag = FALSE;
16350
16351	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16352	sd_return_failed_command(un, bp, EIO);
16353}
16354
16355
16356
16357/*
16358 *    Function: sd_sense_key_blank_check
16359 *
16360 * Description: Recovery actions for a SCSI "Blank Check" sense key.
16361 *		Has no monetary connotation.
16362 *
16363 *     Context: May be called from interrupt context
16364 */
16365
16366static void
16367sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
16368	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16369{
16370	struct sd_sense_info	si;
16371
16372	ASSERT(un != NULL);
16373	ASSERT(mutex_owned(SD_MUTEX(un)));
16374	ASSERT(bp != NULL);
16375	ASSERT(xp != NULL);
16376	ASSERT(pktp != NULL);
16377
16378	/*
16379	 * Blank check is not fatal for removable devices, therefore
16380	 * it does not require a console message.
16381	 */
16382	si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL :
16383	    SCSI_ERR_FATAL;
16384	si.ssi_pfa_flag = FALSE;
16385
16386	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16387	sd_return_failed_command(un, bp, EIO);
16388}
16389
16390
16391
16392
16393/*
16394 *    Function: sd_sense_key_aborted_command
16395 *
16396 * Description: Recovery actions for a SCSI "Aborted Command" sense key.
16397 *
16398 *     Context: May be called from interrupt context
16399 */
16400
16401static void
16402sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
16403	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16404{
16405	struct sd_sense_info	si;
16406
16407	ASSERT(un != NULL);
16408	ASSERT(mutex_owned(SD_MUTEX(un)));
16409	ASSERT(bp != NULL);
16410	ASSERT(xp != NULL);
16411	ASSERT(pktp != NULL);
16412
16413	si.ssi_severity = SCSI_ERR_FATAL;
16414	si.ssi_pfa_flag = FALSE;
16415
16416	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16417
16418	/*
16419	 * This really ought to be a fatal error, but we will retry anyway
16420	 * as some drives report this as a spurious error.
16421	 */
16422	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16423	    &si, EIO, drv_usectohz(100000), NULL);
16424}
16425
16426
16427
16428/*
16429 *    Function: sd_sense_key_default
16430 *
16431 * Description: Default recovery action for several SCSI sense keys (basically
16432 *		attempts a retry).
16433 *
16434 *     Context: May be called from interrupt context
16435 */
16436
16437static void
16438sd_sense_key_default(struct sd_lun *un,
16439	uint8_t *sense_datap,
16440	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16441{
16442	struct sd_sense_info	si;
16443	uint8_t sense_key = scsi_sense_key(sense_datap);
16444
16445	ASSERT(un != NULL);
16446	ASSERT(mutex_owned(SD_MUTEX(un)));
16447	ASSERT(bp != NULL);
16448	ASSERT(xp != NULL);
16449	ASSERT(pktp != NULL);
16450
16451	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16452
16453	/*
16454	 * Undecoded sense key.	Attempt retries and hope that will fix
16455	 * the problem.  Otherwise, we're dead.
16456	 */
16457	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16458		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16459		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
16460	}
16461
16462	si.ssi_severity = SCSI_ERR_FATAL;
16463	si.ssi_pfa_flag = FALSE;
16464
16465	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16466	    &si, EIO, (clock_t)0, NULL);
16467}
16468
16469
16470
16471/*
16472 *    Function: sd_print_retry_msg
16473 *
16474 * Description: Print a message indicating the retry action being taken.
16475 *
16476 *   Arguments: un - ptr to associated softstate
16477 *		bp - ptr to buf(9S) for the command
16478 *		arg - not used.
16479 *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16480 *			or SD_NO_RETRY_ISSUED
16481 *
16482 *     Context: May be called from interrupt context
16483 */
16484/* ARGSUSED */
16485static void
16486sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
16487{
16488	struct sd_xbuf	*xp;
16489	struct scsi_pkt *pktp;
16490	char *reasonp;
16491	char *msgp;
16492
16493	ASSERT(un != NULL);
16494	ASSERT(mutex_owned(SD_MUTEX(un)));
16495	ASSERT(bp != NULL);
16496	pktp = SD_GET_PKTP(bp);
16497	ASSERT(pktp != NULL);
16498	xp = SD_GET_XBUF(bp);
16499	ASSERT(xp != NULL);
16500
16501	ASSERT(!mutex_owned(&un->un_pm_mutex));
16502	mutex_enter(&un->un_pm_mutex);
16503	if ((un->un_state == SD_STATE_SUSPENDED) ||
16504	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
16505	    (pktp->pkt_flags & FLAG_SILENT)) {
16506		mutex_exit(&un->un_pm_mutex);
16507		goto update_pkt_reason;
16508	}
16509	mutex_exit(&un->un_pm_mutex);
16510
16511	/*
16512	 * Suppress messages if they are all the same pkt_reason; with
16513	 * TQ, many (up to 256) are returned with the same pkt_reason.
16514	 * If we are in panic, then suppress the retry messages.
16515	 */
16516	switch (flag) {
16517	case SD_NO_RETRY_ISSUED:
16518		msgp = "giving up";
16519		break;
16520	case SD_IMMEDIATE_RETRY_ISSUED:
16521	case SD_DELAYED_RETRY_ISSUED:
16522		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
16523		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
16524		    (sd_error_level != SCSI_ERR_ALL))) {
16525			return;
16526		}
16527		msgp = "retrying command";
16528		break;
16529	default:
16530		goto update_pkt_reason;
16531	}
16532
16533	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
16534	    scsi_rname(pktp->pkt_reason));
16535
16536	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16537	    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
16538
16539update_pkt_reason:
16540	/*
16541	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
16542	 * This is to prevent multiple console messages for the same failure
16543	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
16544	 * when the command is retried successfully because there still may be
16545	 * more commands coming back with the same value of pktp->pkt_reason.
16546	 */
16547	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
16548		un->un_last_pkt_reason = pktp->pkt_reason;
16549	}
16550}
16551
16552
16553/*
16554 *    Function: sd_print_cmd_incomplete_msg
16555 *
16556 * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
16557 *
16558 *   Arguments: un - ptr to associated softstate
16559 *		bp - ptr to buf(9S) for the command
16560 *		arg - passed to sd_print_retry_msg()
16561 *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16562 *			or SD_NO_RETRY_ISSUED
16563 *
16564 *     Context: May be called from interrupt context
16565 */
16566
16567static void
16568sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
16569	int code)
16570{
16571	dev_info_t	*dip;
16572
16573	ASSERT(un != NULL);
16574	ASSERT(mutex_owned(SD_MUTEX(un)));
16575	ASSERT(bp != NULL);
16576
16577	switch (code) {
16578	case SD_NO_RETRY_ISSUED:
16579		/* Command was failed. Someone turned off this target? */
16580		if (un->un_state != SD_STATE_OFFLINE) {
16581			/*
16582			 * Suppress message if we are detaching and
16583			 * device has been disconnected
16584			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
16585			 * private interface and not part of the DDI
16586			 */
16587			dip = un->un_sd->sd_dev;
16588			if (!(DEVI_IS_DETACHING(dip) &&
16589			    DEVI_IS_DEVICE_REMOVED(dip))) {
16590				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16591				"disk not responding to selection\n");
16592			}
16593			New_state(un, SD_STATE_OFFLINE);
16594		}
16595		break;
16596
16597	case SD_DELAYED_RETRY_ISSUED:
16598	case SD_IMMEDIATE_RETRY_ISSUED:
16599	default:
16600		/* Command was successfully queued for retry */
16601		sd_print_retry_msg(un, bp, arg, code);
16602		break;
16603	}
16604}
16605
16606
16607/*
16608 *    Function: sd_pkt_reason_cmd_incomplete
16609 *
16610 * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
16611 *
16612 *     Context: May be called from interrupt context
16613 */
16614
16615static void
16616sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
16617	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16618{
16619	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
16620
16621	ASSERT(un != NULL);
16622	ASSERT(mutex_owned(SD_MUTEX(un)));
16623	ASSERT(bp != NULL);
16624	ASSERT(xp != NULL);
16625	ASSERT(pktp != NULL);
16626
16627	/* Do not do a reset if selection did not complete */
16628	/* Note: Should this not just check the bit? */
16629	if (pktp->pkt_state != STATE_GOT_BUS) {
16630		SD_UPDATE_ERRSTATS(un, sd_transerrs);
16631		sd_reset_target(un, pktp);
16632	}
16633
16634	/*
16635	 * If the target was not successfully selected, then set
16636	 * SD_RETRIES_FAILFAST to indicate that we lost communication
16637	 * with the target, and further retries and/or commands are
16638	 * likely to take a long time.
16639	 */
16640	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
16641		flag |= SD_RETRIES_FAILFAST;
16642	}
16643
16644	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16645
16646	sd_retry_command(un, bp, flag,
16647	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16648}
16649
16650
16651
16652/*
16653 *    Function: sd_pkt_reason_cmd_tran_err
16654 *
16655 * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
16656 *
16657 *     Context: May be called from interrupt context
16658 */
16659
16660static void
16661sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
16662	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16663{
16664	ASSERT(un != NULL);
16665	ASSERT(mutex_owned(SD_MUTEX(un)));
16666	ASSERT(bp != NULL);
16667	ASSERT(xp != NULL);
16668	ASSERT(pktp != NULL);
16669
16670	/*
16671	 * Do not reset if we got a parity error, or if
16672	 * selection did not complete.
16673	 */
16674	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16675	/* Note: Should this not just check the bit for pkt_state? */
16676	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
16677	    (pktp->pkt_state != STATE_GOT_BUS)) {
16678		SD_UPDATE_ERRSTATS(un, sd_transerrs);
16679		sd_reset_target(un, pktp);
16680	}
16681
16682	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16683
16684	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
16685	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16686}
16687
16688
16689
16690/*
16691 *    Function: sd_pkt_reason_cmd_reset
16692 *
16693 * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
16694 *
16695 *     Context: May be called from interrupt context
16696 */
16697
16698static void
16699sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
16700	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16701{
16702	ASSERT(un != NULL);
16703	ASSERT(mutex_owned(SD_MUTEX(un)));
16704	ASSERT(bp != NULL);
16705	ASSERT(xp != NULL);
16706	ASSERT(pktp != NULL);
16707
16708	/* The target may still be running the command, so try to reset. */
16709	SD_UPDATE_ERRSTATS(un, sd_transerrs);
16710	sd_reset_target(un, pktp);
16711
16712	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16713
16714	/*
16715	 * If pkt_reason is CMD_RESET chances are that this pkt got
16716	 * reset because another target on this bus caused it. The target
16717	 * that caused it should get CMD_TIMEOUT with pkt_statistics
16718	 * of STAT_TIMEOUT/STAT_DEV_RESET.
16719	 */
16720
16721	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
16722	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16723}
16724
16725
16726
16727
16728/*
16729 *    Function: sd_pkt_reason_cmd_aborted
16730 *
16731 * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
16732 *
16733 *     Context: May be called from interrupt context
16734 */
16735
16736static void
16737sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
16738	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16739{
16740	ASSERT(un != NULL);
16741	ASSERT(mutex_owned(SD_MUTEX(un)));
16742	ASSERT(bp != NULL);
16743	ASSERT(xp != NULL);
16744	ASSERT(pktp != NULL);
16745
16746	/* The target may still be running the command, so try to reset. */
16747	SD_UPDATE_ERRSTATS(un, sd_transerrs);
16748	sd_reset_target(un, pktp);
16749
16750	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16751
16752	/*
16753	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
16754	 * aborted because another target on this bus caused it. The target
16755	 * that caused it should get CMD_TIMEOUT with pkt_statistics
16756	 * of STAT_TIMEOUT/STAT_DEV_RESET.
16757	 */
16758
16759	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
16760	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16761}
16762
16763
16764
16765/*
16766 *    Function: sd_pkt_reason_cmd_timeout
16767 *
16768 * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
16769 *
16770 *     Context: May be called from interrupt context
16771 */
16772
16773static void
16774sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
16775	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16776{
16777	ASSERT(un != NULL);
16778	ASSERT(mutex_owned(SD_MUTEX(un)));
16779	ASSERT(bp != NULL);
16780	ASSERT(xp != NULL);
16781	ASSERT(pktp != NULL);
16782
16783
16784	SD_UPDATE_ERRSTATS(un, sd_transerrs);
16785	sd_reset_target(un, pktp);
16786
16787	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16788
16789	/*
16790	 * A command timeout indicates that we could not establish
16791	 * communication with the target, so set SD_RETRIES_FAILFAST
16792	 * as further retries/commands are likely to take a long time.
16793	 */
16794	sd_retry_command(un, bp,
16795	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
16796	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16797}
16798
16799
16800
16801/*
16802 *    Function: sd_pkt_reason_cmd_unx_bus_free
16803 *
16804 * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
16805 *
16806 *     Context: May be called from interrupt context
16807 */
16808
16809static void
16810sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
16811	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16812{
16813	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
16814
16815	ASSERT(un != NULL);
16816	ASSERT(mutex_owned(SD_MUTEX(un)));
16817	ASSERT(bp != NULL);
16818	ASSERT(xp != NULL);
16819	ASSERT(pktp != NULL);
16820
16821	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16822	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16823
16824	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
16825	    sd_print_retry_msg : NULL;
16826
16827	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
16828	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16829}
16830
16831
16832/*
16833 *    Function: sd_pkt_reason_cmd_tag_reject
16834 *
16835 * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
16836 *
16837 *     Context: May be called from interrupt context
16838 */
16839
16840static void
16841sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
16842	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16843{
16844	ASSERT(un != NULL);
16845	ASSERT(mutex_owned(SD_MUTEX(un)));
16846	ASSERT(bp != NULL);
16847	ASSERT(xp != NULL);
16848	ASSERT(pktp != NULL);
16849
16850	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16851	pktp->pkt_flags = 0;
16852	un->un_tagflags = 0;
16853	if (un->un_f_opt_queueing == TRUE) {
16854		un->un_throttle = min(un->un_throttle, 3);
16855	} else {
16856		un->un_throttle = 1;
16857	}
16858	mutex_exit(SD_MUTEX(un));
16859	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
16860	mutex_enter(SD_MUTEX(un));
16861
16862	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16863
16864	/* Legacy behavior not to check retry counts here. */
16865	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
16866	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16867}
16868
16869
16870/*
16871 *    Function: sd_pkt_reason_default
16872 *
16873 * Description: Default recovery actions for SCSA pkt_reason values that
16874 *		do not have more explicit recovery actions.
16875 *
16876 *     Context: May be called from interrupt context
16877 */
16878
16879static void
16880sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
16881	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16882{
16883	ASSERT(un != NULL);
16884	ASSERT(mutex_owned(SD_MUTEX(un)));
16885	ASSERT(bp != NULL);
16886	ASSERT(xp != NULL);
16887	ASSERT(pktp != NULL);
16888
16889	SD_UPDATE_ERRSTATS(un, sd_transerrs);
16890	sd_reset_target(un, pktp);
16891
16892	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16893
16894	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
16895	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16896}
16897
16898
16899
16900/*
16901 *    Function: sd_pkt_status_check_condition
16902 *
16903 * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
16904 *
16905 *     Context: May be called from interrupt context
16906 */
16907
16908static void
16909sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
16910	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16911{
16912	ASSERT(un != NULL);
16913	ASSERT(mutex_owned(SD_MUTEX(un)));
16914	ASSERT(bp != NULL);
16915	ASSERT(xp != NULL);
16916	ASSERT(pktp != NULL);
16917
16918	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
16919	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
16920
16921	/*
16922	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
16923	 * command will be retried after the request sense). Otherwise, retry
16924	 * the command. Note: we are issuing the request sense even though the
16925	 * retry limit may have been reached for the failed command.
16926	 */
16927	if (un->un_f_arq_enabled == FALSE) {
16928		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
16929		    "no ARQ, sending request sense command\n");
16930		sd_send_request_sense_command(un, bp, pktp);
16931	} else {
16932		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
16933		    "ARQ,retrying request sense command\n");
16934#if defined(__i386) || defined(__amd64)
16935		/*
16936		 * The SD_RETRY_DELAY value need to be adjusted here
16937		 * when SD_RETRY_DELAY change in sddef.h
16938		 */
16939		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
16940		    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
16941		    NULL);
16942#else
16943		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
16944		    EIO, SD_RETRY_DELAY, NULL);
16945#endif
16946	}
16947
16948	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
16949}
16950
16951
16952/*
16953 *    Function: sd_pkt_status_busy
16954 *
16955 * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
16956 *
16957 *     Context: May be called from interrupt context
16958 */
16959
16960static void
16961sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
16962	struct scsi_pkt *pktp)
16963{
16964	ASSERT(un != NULL);
16965	ASSERT(mutex_owned(SD_MUTEX(un)));
16966	ASSERT(bp != NULL);
16967	ASSERT(xp != NULL);
16968	ASSERT(pktp != NULL);
16969
16970	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16971	    "sd_pkt_status_busy: entry\n");
16972
16973	/* If retries are exhausted, just fail the command. */
16974	if (xp->xb_retry_count >= un->un_busy_retry_count) {
16975		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16976		    "device busy too long\n");
16977		sd_return_failed_command(un, bp, EIO);
16978		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16979		    "sd_pkt_status_busy: exit\n");
16980		return;
16981	}
16982	xp->xb_retry_count++;
16983
16984	/*
16985	 * Try to reset the target. However, we do not want to perform
16986	 * more than one reset if the device continues to fail. The reset
16987	 * will be performed when the retry count reaches the reset
16988	 * threshold.  This threshold should be set such that at least
16989	 * one retry is issued before the reset is performed.
16990	 */
16991	if (xp->xb_retry_count ==
16992	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
16993		int rval = 0;
16994		mutex_exit(SD_MUTEX(un));
16995		if (un->un_f_allow_bus_device_reset == TRUE) {
16996			/*
16997			 * First try to reset the LUN; if we cannot then
16998			 * try to reset the target.
16999			 */
17000			if (un->un_f_lun_reset_enabled == TRUE) {
17001				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17002				    "sd_pkt_status_busy: RESET_LUN\n");
17003				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
17004			}
17005			if (rval == 0) {
17006				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17007				    "sd_pkt_status_busy: RESET_TARGET\n");
17008				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
17009			}
17010		}
17011		if (rval == 0) {
17012			/*
17013			 * If the RESET_LUN and/or RESET_TARGET failed,
17014			 * try RESET_ALL
17015			 */
17016			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17017			    "sd_pkt_status_busy: RESET_ALL\n");
17018			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
17019		}
17020		mutex_enter(SD_MUTEX(un));
17021		if (rval == 0) {
17022			/*
17023			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
17024			 * At this point we give up & fail the command.
17025			 */
17026			sd_return_failed_command(un, bp, EIO);
17027			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17028			    "sd_pkt_status_busy: exit (failed cmd)\n");
17029			return;
17030		}
17031	}
17032
17033	/*
17034	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
17035	 * we have already checked the retry counts above.
17036	 */
17037	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
17038	    EIO, SD_BSY_TIMEOUT, NULL);
17039
17040	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17041	    "sd_pkt_status_busy: exit\n");
17042}
17043
17044
17045/*
17046 *    Function: sd_pkt_status_reservation_conflict
17047 *
17048 * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
17049 *		command status.
17050 *
17051 *     Context: May be called from interrupt context
17052 */
17053
17054static void
17055sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
17056	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17057{
17058	ASSERT(un != NULL);
17059	ASSERT(mutex_owned(SD_MUTEX(un)));
17060	ASSERT(bp != NULL);
17061	ASSERT(xp != NULL);
17062	ASSERT(pktp != NULL);
17063
17064	/*
17065	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
17066	 * conflict could be due to various reasons like incorrect keys, not
17067	 * registered or not reserved etc. So, we return EACCES to the caller.
17068	 */
17069	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
17070		int cmd = SD_GET_PKT_OPCODE(pktp);
17071		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
17072		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
17073			sd_return_failed_command(un, bp, EACCES);
17074			return;
17075		}
17076	}
17077
17078	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
17079
17080	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
17081		if (sd_failfast_enable != 0) {
17082			/* By definition, we must panic here.... */
17083			sd_panic_for_res_conflict(un);
17084			/*NOTREACHED*/
17085		}
17086		SD_ERROR(SD_LOG_IO, un,
17087		    "sd_handle_resv_conflict: Disk Reserved\n");
17088		sd_return_failed_command(un, bp, EACCES);
17089		return;
17090	}
17091
17092	/*
17093	 * 1147670: retry only if sd_retry_on_reservation_conflict
17094	 * property is set (default is 1). Retries will not succeed
17095	 * on a disk reserved by another initiator. HA systems
17096	 * may reset this via sd.conf to avoid these retries.
17097	 *
17098	 * Note: The legacy return code for this failure is EIO, however EACCES
17099	 * seems more appropriate for a reservation conflict.
17100	 */
17101	if (sd_retry_on_reservation_conflict == 0) {
17102		SD_ERROR(SD_LOG_IO, un,
17103		    "sd_handle_resv_conflict: Device Reserved\n");
17104		sd_return_failed_command(un, bp, EIO);
17105		return;
17106	}
17107
17108	/*
17109	 * Retry the command if we can.
17110	 *
17111	 * Note: The legacy return code for this failure is EIO, however EACCES
17112	 * seems more appropriate for a reservation conflict.
17113	 */
17114	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
17115	    (clock_t)2, NULL);
17116}
17117
17118
17119
17120/*
17121 *    Function: sd_pkt_status_qfull
17122 *
17123 * Description: Handle a QUEUE FULL condition from the target.  This can
17124 *		occur if the HBA does not handle the queue full condition.
17125 *		(Basically this means third-party HBAs as Sun HBAs will
17126 *		handle the queue full condition.)  Note that if there are
17127 *		some commands already in the transport, then the queue full
17128 *		has occurred because the queue for this nexus is actually
17129 *		full. If there are no commands in the transport, then the
17130 *		queue full is resulting from some other initiator or lun
17131 *		consuming all the resources at the target.
17132 *
17133 *     Context: May be called from interrupt context
17134 */
17135
17136static void
17137sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
17138	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17139{
17140	ASSERT(un != NULL);
17141	ASSERT(mutex_owned(SD_MUTEX(un)));
17142	ASSERT(bp != NULL);
17143	ASSERT(xp != NULL);
17144	ASSERT(pktp != NULL);
17145
17146	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17147	    "sd_pkt_status_qfull: entry\n");
17148
17149	/*
17150	 * Just lower the QFULL throttle and retry the command.  Note that
17151	 * we do not limit the number of retries here.
17152	 */
17153	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
17154	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
17155	    SD_RESTART_TIMEOUT, NULL);
17156
17157	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17158	    "sd_pkt_status_qfull: exit\n");
17159}
17160
17161
17162/*
17163 *    Function: sd_reset_target
17164 *
17165 * Description: Issue a scsi_reset(9F), with either RESET_LUN,
17166 *		RESET_TARGET, or RESET_ALL.
17167 *
17168 *     Context: May be called under interrupt context.
17169 */
17170
17171static void
17172sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
17173{
17174	int rval = 0;
17175
17176	ASSERT(un != NULL);
17177	ASSERT(mutex_owned(SD_MUTEX(un)));
17178	ASSERT(pktp != NULL);
17179
17180	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
17181
17182	/*
17183	 * No need to reset if the transport layer has already done so.
17184	 */
17185	if ((pktp->pkt_statistics &
17186	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
17187		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17188		    "sd_reset_target: no reset\n");
17189		return;
17190	}
17191
17192	mutex_exit(SD_MUTEX(un));
17193
17194	if (un->un_f_allow_bus_device_reset == TRUE) {
17195		if (un->un_f_lun_reset_enabled == TRUE) {
17196			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17197			    "sd_reset_target: RESET_LUN\n");
17198			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
17199		}
17200		if (rval == 0) {
17201			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17202			    "sd_reset_target: RESET_TARGET\n");
17203			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
17204		}
17205	}
17206
17207	if (rval == 0) {
17208		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17209		    "sd_reset_target: RESET_ALL\n");
17210		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
17211	}
17212
17213	mutex_enter(SD_MUTEX(un));
17214
17215	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
17216}
17217
17218
17219/*
17220 *    Function: sd_media_change_task
17221 *
17222 * Description: Recovery action for CDROM to become available.
17223 *
17224 *     Context: Executes in a taskq() thread context
17225 */
17226
17227static void
17228sd_media_change_task(void *arg)
17229{
17230	struct	scsi_pkt	*pktp = arg;
17231	struct	sd_lun		*un;
17232	struct	buf		*bp;
17233	struct	sd_xbuf		*xp;
17234	int	err		= 0;
17235	int	retry_count	= 0;
17236	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
17237	struct	sd_sense_info	si;
17238
17239	ASSERT(pktp != NULL);
17240	bp = (struct buf *)pktp->pkt_private;
17241	ASSERT(bp != NULL);
17242	xp = SD_GET_XBUF(bp);
17243	ASSERT(xp != NULL);
17244	un = SD_GET_UN(bp);
17245	ASSERT(un != NULL);
17246	ASSERT(!mutex_owned(SD_MUTEX(un)));
17247	ASSERT(un->un_f_monitor_media_state);
17248
17249	si.ssi_severity = SCSI_ERR_INFO;
17250	si.ssi_pfa_flag = FALSE;
17251
17252	/*
17253	 * When a reset is issued on a CDROM, it takes a long time to
17254	 * recover. First few attempts to read capacity and other things
17255	 * related to handling unit attention fail (with a ASC 0x4 and
17256	 * ASCQ 0x1). In that case we want to do enough retries and we want
17257	 * to limit the retries in other cases of genuine failures like
17258	 * no media in drive.
17259	 */
17260	while (retry_count++ < retry_limit) {
17261		if ((err = sd_handle_mchange(un)) == 0) {
17262			break;
17263		}
17264		if (err == EAGAIN) {
17265			retry_limit = SD_UNIT_ATTENTION_RETRY;
17266		}
17267		/* Sleep for 0.5 sec. & try again */
17268		delay(drv_usectohz(500000));
17269	}
17270
17271	/*
17272	 * Dispatch (retry or fail) the original command here,
17273	 * along with appropriate console messages....
17274	 *
17275	 * Must grab the mutex before calling sd_retry_command,
17276	 * sd_print_sense_msg and sd_return_failed_command.
17277	 */
17278	mutex_enter(SD_MUTEX(un));
17279	if (err != SD_CMD_SUCCESS) {
17280		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17281		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17282		si.ssi_severity = SCSI_ERR_FATAL;
17283		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17284		sd_return_failed_command(un, bp, EIO);
17285	} else {
17286		sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
17287		    &si, EIO, (clock_t)0, NULL);
17288	}
17289	mutex_exit(SD_MUTEX(un));
17290}
17291
17292
17293
17294/*
17295 *    Function: sd_handle_mchange
17296 *
17297 * Description: Perform geometry validation & other recovery when CDROM
17298 *		has been removed from drive.
17299 *
17300 * Return Code: 0 for success
17301 *		errno-type return code of either sd_send_scsi_DOORLOCK() or
17302 *		sd_send_scsi_READ_CAPACITY()
17303 *
17304 *     Context: Executes in a taskq() thread context
17305 */
17306
17307static int
17308sd_handle_mchange(struct sd_lun *un)
17309{
17310	uint64_t	capacity;
17311	uint32_t	lbasize;
17312	int		rval;
17313
17314	ASSERT(!mutex_owned(SD_MUTEX(un)));
17315	ASSERT(un->un_f_monitor_media_state);
17316
17317	if ((rval = sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
17318	    SD_PATH_DIRECT_PRIORITY)) != 0) {
17319		return (rval);
17320	}
17321
17322	mutex_enter(SD_MUTEX(un));
17323	sd_update_block_info(un, lbasize, capacity);
17324
17325	if (un->un_errstats != NULL) {
17326		struct	sd_errstats *stp =
17327		    (struct sd_errstats *)un->un_errstats->ks_data;
17328		stp->sd_capacity.value.ui64 = (uint64_t)
17329		    ((uint64_t)un->un_blockcount *
17330		    (uint64_t)un->un_tgt_blocksize);
17331	}
17332
17333
17334	/*
17335	 * Check if the media in the device is writable or not
17336	 */
17337	if (ISCD(un))
17338		sd_check_for_writable_cd(un, SD_PATH_DIRECT_PRIORITY);
17339
17340	/*
17341	 * Note: Maybe let the strategy/partitioning chain worry about getting
17342	 * valid geometry.
17343	 */
17344	mutex_exit(SD_MUTEX(un));
17345	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
17346
17347
17348	if (cmlb_validate(un->un_cmlbhandle, 0,
17349	    (void *)SD_PATH_DIRECT_PRIORITY) != 0) {
17350		return (EIO);
17351	} else {
17352		if (un->un_f_pkstats_enabled) {
17353			sd_set_pstats(un);
17354			SD_TRACE(SD_LOG_IO_PARTITION, un,
17355			    "sd_handle_mchange: un:0x%p pstats created and "
17356			    "set\n", un);
17357		}
17358	}
17359
17360
17361	/*
17362	 * Try to lock the door
17363	 */
17364	return (sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
17365	    SD_PATH_DIRECT_PRIORITY));
17366}
17367
17368
17369/*
17370 *    Function: sd_send_scsi_DOORLOCK
17371 *
17372 * Description: Issue the scsi DOOR LOCK command
17373 *
17374 *   Arguments: un    - pointer to driver soft state (unit) structure for
17375 *			this target.
17376 *		flag  - SD_REMOVAL_ALLOW
17377 *			SD_REMOVAL_PREVENT
17378 *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17379 *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17380 *			to use the USCSI "direct" chain and bypass the normal
17381 *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
17382 *			command is issued as part of an error recovery action.
17383 *
17384 * Return Code: 0   - Success
17385 *		errno return code from sd_send_scsi_cmd()
17386 *
17387 *     Context: Can sleep.
17388 */
17389
17390static int
17391sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag)
17392{
17393	union scsi_cdb		cdb;
17394	struct uscsi_cmd	ucmd_buf;
17395	struct scsi_extended_sense	sense_buf;
17396	int			status;
17397
17398	ASSERT(un != NULL);
17399	ASSERT(!mutex_owned(SD_MUTEX(un)));
17400
17401	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
17402
17403	/* already determined doorlock is not supported, fake success */
17404	if (un->un_f_doorlock_supported == FALSE) {
17405		return (0);
17406	}
17407
17408	/*
17409	 * If we are ejecting and see an SD_REMOVAL_PREVENT
17410	 * ignore the command so we can complete the eject
17411	 * operation.
17412	 */
17413	if (flag == SD_REMOVAL_PREVENT) {
17414		mutex_enter(SD_MUTEX(un));
17415		if (un->un_f_ejecting == TRUE) {
17416			mutex_exit(SD_MUTEX(un));
17417			return (EAGAIN);
17418		}
17419		mutex_exit(SD_MUTEX(un));
17420	}
17421
17422	bzero(&cdb, sizeof (cdb));
17423	bzero(&ucmd_buf, sizeof (ucmd_buf));
17424
17425	cdb.scc_cmd = SCMD_DOORLOCK;
17426	cdb.cdb_opaque[4] = (uchar_t)flag;
17427
17428	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17429	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
17430	ucmd_buf.uscsi_bufaddr	= NULL;
17431	ucmd_buf.uscsi_buflen	= 0;
17432	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17433	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
17434	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
17435	ucmd_buf.uscsi_timeout	= 15;
17436
17437	SD_TRACE(SD_LOG_IO, un,
17438	    "sd_send_scsi_DOORLOCK: returning sd_send_scsi_cmd()\n");
17439
17440	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17441	    UIO_SYSSPACE, path_flag);
17442
17443	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
17444	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
17445	    (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) {
17446		/* fake success and skip subsequent doorlock commands */
17447		un->un_f_doorlock_supported = FALSE;
17448		return (0);
17449	}
17450
17451	return (status);
17452}
17453
17454/*
17455 *    Function: sd_send_scsi_READ_CAPACITY
17456 *
17457 * Description: This routine uses the scsi READ CAPACITY command to determine
17458 *		the device capacity in number of blocks and the device native
17459 *		block size. If this function returns a failure, then the
17460 *		values in *capp and *lbap are undefined.  If the capacity
17461 *		returned is 0xffffffff then the lun is too large for a
17462 *		normal READ CAPACITY command and the results of a
17463 *		READ CAPACITY 16 will be used instead.
17464 *
17465 *   Arguments: un   - ptr to soft state struct for the target
17466 *		capp - ptr to unsigned 64-bit variable to receive the
17467 *			capacity value from the command.
17468 *		lbap - ptr to unsigned 32-bit varaible to receive the
17469 *			block size value from the command
17470 *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17471 *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17472 *			to use the USCSI "direct" chain and bypass the normal
17473 *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
17474 *			command is issued as part of an error recovery action.
17475 *
17476 * Return Code: 0   - Success
17477 *		EIO - IO error
17478 *		EACCES - Reservation conflict detected
17479 *		EAGAIN - Device is becoming ready
17480 *		errno return code from sd_send_scsi_cmd()
17481 *
17482 *     Context: Can sleep.  Blocks until command completes.
17483 */
17484
17485#define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
17486
17487static int
17488sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp, uint32_t *lbap,
17489	int path_flag)
17490{
17491	struct	scsi_extended_sense	sense_buf;
17492	struct	uscsi_cmd	ucmd_buf;
17493	union	scsi_cdb	cdb;
17494	uint32_t		*capacity_buf;
17495	uint64_t		capacity;
17496	uint32_t		lbasize;
17497	int			status;
17498
17499	ASSERT(un != NULL);
17500	ASSERT(!mutex_owned(SD_MUTEX(un)));
17501	ASSERT(capp != NULL);
17502	ASSERT(lbap != NULL);
17503
17504	SD_TRACE(SD_LOG_IO, un,
17505	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
17506
17507	/*
17508	 * First send a READ_CAPACITY command to the target.
17509	 * (This command is mandatory under SCSI-2.)
17510	 *
17511	 * Set up the CDB for the READ_CAPACITY command.  The Partial
17512	 * Medium Indicator bit is cleared.  The address field must be
17513	 * zero if the PMI bit is zero.
17514	 */
17515	bzero(&cdb, sizeof (cdb));
17516	bzero(&ucmd_buf, sizeof (ucmd_buf));
17517
17518	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
17519
17520	cdb.scc_cmd = SCMD_READ_CAPACITY;
17521
17522	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17523	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
17524	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
17525	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
17526	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17527	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
17528	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
17529	ucmd_buf.uscsi_timeout	= 60;
17530
17531	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17532	    UIO_SYSSPACE, path_flag);
17533
17534	switch (status) {
17535	case 0:
17536		/* Return failure if we did not get valid capacity data. */
17537		if (ucmd_buf.uscsi_resid != 0) {
17538			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17539			return (EIO);
17540		}
17541
17542		/*
17543		 * Read capacity and block size from the READ CAPACITY 10 data.
17544		 * This data may be adjusted later due to device specific
17545		 * issues.
17546		 *
17547		 * According to the SCSI spec, the READ CAPACITY 10
17548		 * command returns the following:
17549		 *
17550		 *  bytes 0-3: Maximum logical block address available.
17551		 *		(MSB in byte:0 & LSB in byte:3)
17552		 *
17553		 *  bytes 4-7: Block length in bytes
17554		 *		(MSB in byte:4 & LSB in byte:7)
17555		 *
17556		 */
17557		capacity = BE_32(capacity_buf[0]);
17558		lbasize = BE_32(capacity_buf[1]);
17559
17560		/*
17561		 * Done with capacity_buf
17562		 */
17563		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17564
17565		/*
17566		 * if the reported capacity is set to all 0xf's, then
17567		 * this disk is too large and requires SBC-2 commands.
17568		 * Reissue the request using READ CAPACITY 16.
17569		 */
17570		if (capacity == 0xffffffff) {
17571			status = sd_send_scsi_READ_CAPACITY_16(un, &capacity,
17572			    &lbasize, path_flag);
17573			if (status != 0) {
17574				return (status);
17575			}
17576		}
17577		break;	/* Success! */
17578	case EIO:
17579		switch (ucmd_buf.uscsi_status) {
17580		case STATUS_RESERVATION_CONFLICT:
17581			status = EACCES;
17582			break;
17583		case STATUS_CHECK:
17584			/*
17585			 * Check condition; look for ASC/ASCQ of 0x04/0x01
17586			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
17587			 */
17588			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
17589			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
17590			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
17591				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17592				return (EAGAIN);
17593			}
17594			break;
17595		default:
17596			break;
17597		}
17598		/* FALLTHRU */
17599	default:
17600		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17601		return (status);
17602	}
17603
17604	/*
17605	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
17606	 * (2352 and 0 are common) so for these devices always force the value
17607	 * to 2048 as required by the ATAPI specs.
17608	 */
17609	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
17610		lbasize = 2048;
17611	}
17612
17613	/*
17614	 * Get the maximum LBA value from the READ CAPACITY data.
17615	 * Here we assume that the Partial Medium Indicator (PMI) bit
17616	 * was cleared when issuing the command. This means that the LBA
17617	 * returned from the device is the LBA of the last logical block
17618	 * on the logical unit.  The actual logical block count will be
17619	 * this value plus one.
17620	 *
17621	 * Currently the capacity is saved in terms of un->un_sys_blocksize,
17622	 * so scale the capacity value to reflect this.
17623	 */
17624	capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize);
17625
17626	/*
17627	 * Copy the values from the READ CAPACITY command into the space
17628	 * provided by the caller.
17629	 */
17630	*capp = capacity;
17631	*lbap = lbasize;
17632
17633	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
17634	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
17635
17636	/*
17637	 * Both the lbasize and capacity from the device must be nonzero,
17638	 * otherwise we assume that the values are not valid and return
17639	 * failure to the caller. (4203735)
17640	 */
17641	if ((capacity == 0) || (lbasize == 0)) {
17642		return (EIO);
17643	}
17644
17645	return (0);
17646}
17647
17648/*
17649 *    Function: sd_send_scsi_READ_CAPACITY_16
17650 *
17651 * Description: This routine uses the scsi READ CAPACITY 16 command to
17652 *		determine the device capacity in number of blocks and the
17653 *		device native block size.  If this function returns a failure,
17654 *		then the values in *capp and *lbap are undefined.
17655 *		This routine should always be called by
17656 *		sd_send_scsi_READ_CAPACITY which will appy any device
17657 *		specific adjustments to capacity and lbasize.
17658 *
17659 *   Arguments: un   - ptr to soft state struct for the target
17660 *		capp - ptr to unsigned 64-bit variable to receive the
17661 *			capacity value from the command.
17662 *		lbap - ptr to unsigned 32-bit varaible to receive the
17663 *			block size value from the command
17664 *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17665 *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17666 *			to use the USCSI "direct" chain and bypass the normal
17667 *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
17668 *			this command is issued as part of an error recovery
17669 *			action.
17670 *
17671 * Return Code: 0   - Success
17672 *		EIO - IO error
17673 *		EACCES - Reservation conflict detected
17674 *		EAGAIN - Device is becoming ready
17675 *		errno return code from sd_send_scsi_cmd()
17676 *
17677 *     Context: Can sleep.  Blocks until command completes.
17678 */
17679
17680#define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
17681
17682static int
17683sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
17684	uint32_t *lbap, int path_flag)
17685{
17686	struct	scsi_extended_sense	sense_buf;
17687	struct	uscsi_cmd	ucmd_buf;
17688	union	scsi_cdb	cdb;
17689	uint64_t		*capacity16_buf;
17690	uint64_t		capacity;
17691	uint32_t		lbasize;
17692	int			status;
17693
17694	ASSERT(un != NULL);
17695	ASSERT(!mutex_owned(SD_MUTEX(un)));
17696	ASSERT(capp != NULL);
17697	ASSERT(lbap != NULL);
17698
17699	SD_TRACE(SD_LOG_IO, un,
17700	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
17701
17702	/*
17703	 * First send a READ_CAPACITY_16 command to the target.
17704	 *
17705	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
17706	 * Medium Indicator bit is cleared.  The address field must be
17707	 * zero if the PMI bit is zero.
17708	 */
17709	bzero(&cdb, sizeof (cdb));
17710	bzero(&ucmd_buf, sizeof (ucmd_buf));
17711
17712	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
17713
17714	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17715	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
17716	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
17717	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
17718	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17719	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
17720	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
17721	ucmd_buf.uscsi_timeout	= 60;
17722
17723	/*
17724	 * Read Capacity (16) is a Service Action In command.  One
17725	 * command byte (0x9E) is overloaded for multiple operations,
17726	 * with the second CDB byte specifying the desired operation
17727	 */
17728	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
17729	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
17730
17731	/*
17732	 * Fill in allocation length field
17733	 */
17734	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
17735
17736	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17737	    UIO_SYSSPACE, path_flag);
17738
17739	switch (status) {
17740	case 0:
17741		/* Return failure if we did not get valid capacity data. */
17742		if (ucmd_buf.uscsi_resid > 20) {
17743			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
17744			return (EIO);
17745		}
17746
17747		/*
17748		 * Read capacity and block size from the READ CAPACITY 10 data.
17749		 * This data may be adjusted later due to device specific
17750		 * issues.
17751		 *
17752		 * According to the SCSI spec, the READ CAPACITY 10
17753		 * command returns the following:
17754		 *
17755		 *  bytes 0-7: Maximum logical block address available.
17756		 *		(MSB in byte:0 & LSB in byte:7)
17757		 *
17758		 *  bytes 8-11: Block length in bytes
17759		 *		(MSB in byte:8 & LSB in byte:11)
17760		 *
17761		 */
17762		capacity = BE_64(capacity16_buf[0]);
17763		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
17764
17765		/*
17766		 * Done with capacity16_buf
17767		 */
17768		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
17769
17770		/*
17771		 * if the reported capacity is set to all 0xf's, then
17772		 * this disk is too large.  This could only happen with
17773		 * a device that supports LBAs larger than 64 bits which
17774		 * are not defined by any current T10 standards.
17775		 */
17776		if (capacity == 0xffffffffffffffff) {
17777			return (EIO);
17778		}
17779		break;	/* Success! */
17780	case EIO:
17781		switch (ucmd_buf.uscsi_status) {
17782		case STATUS_RESERVATION_CONFLICT:
17783			status = EACCES;
17784			break;
17785		case STATUS_CHECK:
17786			/*
17787			 * Check condition; look for ASC/ASCQ of 0x04/0x01
17788			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
17789			 */
17790			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
17791			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
17792			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
17793				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
17794				return (EAGAIN);
17795			}
17796			break;
17797		default:
17798			break;
17799		}
17800		/* FALLTHRU */
17801	default:
17802		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
17803		return (status);
17804	}
17805
17806	*capp = capacity;
17807	*lbap = lbasize;
17808
17809	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
17810	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
17811
17812	return (0);
17813}
17814
17815
17816/*
17817 *    Function: sd_send_scsi_START_STOP_UNIT
17818 *
17819 * Description: Issue a scsi START STOP UNIT command to the target.
17820 *
17821 *   Arguments: un    - pointer to driver soft state (unit) structure for
17822 *			this target.
17823 *		flag  - SD_TARGET_START
17824 *			SD_TARGET_STOP
17825 *			SD_TARGET_EJECT
17826 *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17827 *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17828 *			to use the USCSI "direct" chain and bypass the normal
17829 *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
17830 *			command is issued as part of an error recovery action.
17831 *
17832 * Return Code: 0   - Success
17833 *		EIO - IO error
17834 *		EACCES - Reservation conflict detected
17835 *		ENXIO  - Not Ready, medium not present
17836 *		errno return code from sd_send_scsi_cmd()
17837 *
17838 *     Context: Can sleep.
17839 */
17840
17841static int
17842sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag, int path_flag)
17843{
17844	struct	scsi_extended_sense	sense_buf;
17845	union scsi_cdb		cdb;
17846	struct uscsi_cmd	ucmd_buf;
17847	int			status;
17848
17849	ASSERT(un != NULL);
17850	ASSERT(!mutex_owned(SD_MUTEX(un)));
17851
17852	SD_TRACE(SD_LOG_IO, un,
17853	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
17854
17855	if (un->un_f_check_start_stop &&
17856	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
17857	    (un->un_f_start_stop_supported != TRUE)) {
17858		return (0);
17859	}
17860
17861	/*
17862	 * If we are performing an eject operation and
17863	 * we receive any command other than SD_TARGET_EJECT
17864	 * we should immediately return.
17865	 */
17866	if (flag != SD_TARGET_EJECT) {
17867		mutex_enter(SD_MUTEX(un));
17868		if (un->un_f_ejecting == TRUE) {
17869			mutex_exit(SD_MUTEX(un));
17870			return (EAGAIN);
17871		}
17872		mutex_exit(SD_MUTEX(un));
17873	}
17874
17875	bzero(&cdb, sizeof (cdb));
17876	bzero(&ucmd_buf, sizeof (ucmd_buf));
17877	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
17878
17879	cdb.scc_cmd = SCMD_START_STOP;
17880	cdb.cdb_opaque[4] = (uchar_t)flag;
17881
17882	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17883	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
17884	ucmd_buf.uscsi_bufaddr	= NULL;
17885	ucmd_buf.uscsi_buflen	= 0;
17886	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17887	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
17888	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
17889	ucmd_buf.uscsi_timeout	= 200;
17890
17891	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17892	    UIO_SYSSPACE, path_flag);
17893
17894	switch (status) {
17895	case 0:
17896		break;	/* Success! */
17897	case EIO:
17898		switch (ucmd_buf.uscsi_status) {
17899		case STATUS_RESERVATION_CONFLICT:
17900			status = EACCES;
17901			break;
17902		case STATUS_CHECK:
17903			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
17904				switch (scsi_sense_key(
17905				    (uint8_t *)&sense_buf)) {
17906				case KEY_ILLEGAL_REQUEST:
17907					status = ENOTSUP;
17908					break;
17909				case KEY_NOT_READY:
17910					if (scsi_sense_asc(
17911					    (uint8_t *)&sense_buf)
17912					    == 0x3A) {
17913						status = ENXIO;
17914					}
17915					break;
17916				default:
17917					break;
17918				}
17919			}
17920			break;
17921		default:
17922			break;
17923		}
17924		break;
17925	default:
17926		break;
17927	}
17928
17929	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
17930
17931	return (status);
17932}
17933
17934
17935/*
17936 *    Function: sd_start_stop_unit_callback
17937 *
17938 * Description: timeout(9F) callback to begin recovery process for a
17939 *		device that has spun down.
17940 *
17941 *   Arguments: arg - pointer to associated softstate struct.
17942 *
17943 *     Context: Executes in a timeout(9F) thread context
17944 */
17945
17946static void
17947sd_start_stop_unit_callback(void *arg)
17948{
17949	struct sd_lun	*un = arg;
17950	ASSERT(un != NULL);
17951	ASSERT(!mutex_owned(SD_MUTEX(un)));
17952
17953	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
17954
17955	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
17956}
17957
17958
17959/*
17960 *    Function: sd_start_stop_unit_task
17961 *
17962 * Description: Recovery procedure when a drive is spun down.
17963 *
17964 *   Arguments: arg - pointer to associated softstate struct.
17965 *
17966 *     Context: Executes in a taskq() thread context
17967 */
17968
17969static void
17970sd_start_stop_unit_task(void *arg)
17971{
17972	struct sd_lun	*un = arg;
17973
17974	ASSERT(un != NULL);
17975	ASSERT(!mutex_owned(SD_MUTEX(un)));
17976
17977	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
17978
17979	/*
17980	 * Some unformatted drives report not ready error, no need to
17981	 * restart if format has been initiated.
17982	 */
17983	mutex_enter(SD_MUTEX(un));
17984	if (un->un_f_format_in_progress == TRUE) {
17985		mutex_exit(SD_MUTEX(un));
17986		return;
17987	}
17988	mutex_exit(SD_MUTEX(un));
17989
17990	/*
17991	 * When a START STOP command is issued from here, it is part of a
17992	 * failure recovery operation and must be issued before any other
17993	 * commands, including any pending retries. Thus it must be sent
17994	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
17995	 * succeeds or not, we will start I/O after the attempt.
17996	 */
17997	(void) sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
17998	    SD_PATH_DIRECT_PRIORITY);
17999
18000	/*
18001	 * The above call blocks until the START_STOP_UNIT command completes.
18002	 * Now that it has completed, we must re-try the original IO that
18003	 * received the NOT READY condition in the first place. There are
18004	 * three possible conditions here:
18005	 *
18006	 *  (1) The original IO is on un_retry_bp.
18007	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
18008	 *	is NULL.
18009	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
18010	 *	points to some other, unrelated bp.
18011	 *
18012	 * For each case, we must call sd_start_cmds() with un_retry_bp
18013	 * as the argument. If un_retry_bp is NULL, this will initiate
18014	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
18015	 * then this will process the bp on un_retry_bp. That may or may not
18016	 * be the original IO, but that does not matter: the important thing
18017	 * is to keep the IO processing going at this point.
18018	 *
18019	 * Note: This is a very specific error recovery sequence associated
18020	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
18021	 * serialize the I/O with completion of the spin-up.
18022	 */
18023	mutex_enter(SD_MUTEX(un));
18024	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18025	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
18026	    un, un->un_retry_bp);
18027	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
18028	sd_start_cmds(un, un->un_retry_bp);
18029	mutex_exit(SD_MUTEX(un));
18030
18031	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
18032}
18033
18034
18035/*
18036 *    Function: sd_send_scsi_INQUIRY
18037 *
18038 * Description: Issue the scsi INQUIRY command.
18039 *
18040 *   Arguments: un
18041 *		bufaddr
18042 *		buflen
18043 *		evpd
18044 *		page_code
18045 *		page_length
18046 *
18047 * Return Code: 0   - Success
18048 *		errno return code from sd_send_scsi_cmd()
18049 *
18050 *     Context: Can sleep. Does not return until command is completed.
18051 */
18052
18053static int
18054sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr, size_t buflen,
18055	uchar_t evpd, uchar_t page_code, size_t *residp)
18056{
18057	union scsi_cdb		cdb;
18058	struct uscsi_cmd	ucmd_buf;
18059	int			status;
18060
18061	ASSERT(un != NULL);
18062	ASSERT(!mutex_owned(SD_MUTEX(un)));
18063	ASSERT(bufaddr != NULL);
18064
18065	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
18066
18067	bzero(&cdb, sizeof (cdb));
18068	bzero(&ucmd_buf, sizeof (ucmd_buf));
18069	bzero(bufaddr, buflen);
18070
18071	cdb.scc_cmd = SCMD_INQUIRY;
18072	cdb.cdb_opaque[1] = evpd;
18073	cdb.cdb_opaque[2] = page_code;
18074	FORMG0COUNT(&cdb, buflen);
18075
18076	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18077	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
18078	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
18079	ucmd_buf.uscsi_buflen	= buflen;
18080	ucmd_buf.uscsi_rqbuf	= NULL;
18081	ucmd_buf.uscsi_rqlen	= 0;
18082	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
18083	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
18084
18085	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18086	    UIO_SYSSPACE, SD_PATH_DIRECT);
18087
18088	if ((status == 0) && (residp != NULL)) {
18089		*residp = ucmd_buf.uscsi_resid;
18090	}
18091
18092	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
18093
18094	return (status);
18095}
18096
18097
18098/*
18099 *    Function: sd_send_scsi_TEST_UNIT_READY
18100 *
18101 * Description: Issue the scsi TEST UNIT READY command.
18102 *		This routine can be told to set the flag USCSI_DIAGNOSE to
18103 *		prevent retrying failed commands. Use this when the intent
18104 *		is either to check for device readiness, to clear a Unit
18105 *		Attention, or to clear any outstanding sense data.
18106 *		However under specific conditions the expected behavior
18107 *		is for retries to bring a device ready, so use the flag
18108 *		with caution.
18109 *
18110 *   Arguments: un
18111 *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
18112 *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
18113 *			0: dont check for media present, do retries on cmd.
18114 *
18115 * Return Code: 0   - Success
18116 *		EIO - IO error
18117 *		EACCES - Reservation conflict detected
18118 *		ENXIO  - Not Ready, medium not present
18119 *		errno return code from sd_send_scsi_cmd()
18120 *
18121 *     Context: Can sleep. Does not return until command is completed.
18122 */
18123
18124static int
18125sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag)
18126{
18127	struct	scsi_extended_sense	sense_buf;
18128	union scsi_cdb		cdb;
18129	struct uscsi_cmd	ucmd_buf;
18130	int			status;
18131
18132	ASSERT(un != NULL);
18133	ASSERT(!mutex_owned(SD_MUTEX(un)));
18134
18135	SD_TRACE(SD_LOG_IO, un,
18136	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
18137
18138	/*
18139	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
18140	 * timeouts when they receive a TUR and the queue is not empty. Check
18141	 * the configuration flag set during attach (indicating the drive has
18142	 * this firmware bug) and un_ncmds_in_transport before issuing the
18143	 * TUR. If there are
18144	 * pending commands return success, this is a bit arbitrary but is ok
18145	 * for non-removables (i.e. the eliteI disks) and non-clustering
18146	 * configurations.
18147	 */
18148	if (un->un_f_cfg_tur_check == TRUE) {
18149		mutex_enter(SD_MUTEX(un));
18150		if (un->un_ncmds_in_transport != 0) {
18151			mutex_exit(SD_MUTEX(un));
18152			return (0);
18153		}
18154		mutex_exit(SD_MUTEX(un));
18155	}
18156
18157	bzero(&cdb, sizeof (cdb));
18158	bzero(&ucmd_buf, sizeof (ucmd_buf));
18159	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18160
18161	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
18162
18163	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18164	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
18165	ucmd_buf.uscsi_bufaddr	= NULL;
18166	ucmd_buf.uscsi_buflen	= 0;
18167	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18168	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18169	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
18170
18171	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
18172	if ((flag & SD_DONT_RETRY_TUR) != 0) {
18173		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
18174	}
18175	ucmd_buf.uscsi_timeout	= 60;
18176
18177	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18178	    UIO_SYSSPACE, ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT :
18179	    SD_PATH_STANDARD));
18180
18181	switch (status) {
18182	case 0:
18183		break;	/* Success! */
18184	case EIO:
18185		switch (ucmd_buf.uscsi_status) {
18186		case STATUS_RESERVATION_CONFLICT:
18187			status = EACCES;
18188			break;
18189		case STATUS_CHECK:
18190			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
18191				break;
18192			}
18193			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18194			    (scsi_sense_key((uint8_t *)&sense_buf) ==
18195			    KEY_NOT_READY) &&
18196			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) {
18197				status = ENXIO;
18198			}
18199			break;
18200		default:
18201			break;
18202		}
18203		break;
18204	default:
18205		break;
18206	}
18207
18208	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
18209
18210	return (status);
18211}
18212
18213
18214/*
18215 *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
18216 *
18217 * Description: Issue the scsi PERSISTENT RESERVE IN command.
18218 *
18219 *   Arguments: un
18220 *
18221 * Return Code: 0   - Success
18222 *		EACCES
18223 *		ENOTSUP
18224 *		errno return code from sd_send_scsi_cmd()
18225 *
18226 *     Context: Can sleep. Does not return until command is completed.
18227 */
18228
18229static int
18230sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un, uchar_t  usr_cmd,
18231	uint16_t data_len, uchar_t *data_bufp)
18232{
18233	struct scsi_extended_sense	sense_buf;
18234	union scsi_cdb		cdb;
18235	struct uscsi_cmd	ucmd_buf;
18236	int			status;
18237	int			no_caller_buf = FALSE;
18238
18239	ASSERT(un != NULL);
18240	ASSERT(!mutex_owned(SD_MUTEX(un)));
18241	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
18242
18243	SD_TRACE(SD_LOG_IO, un,
18244	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
18245
18246	bzero(&cdb, sizeof (cdb));
18247	bzero(&ucmd_buf, sizeof (ucmd_buf));
18248	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18249	if (data_bufp == NULL) {
18250		/* Allocate a default buf if the caller did not give one */
18251		ASSERT(data_len == 0);
18252		data_len  = MHIOC_RESV_KEY_SIZE;
18253		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
18254		no_caller_buf = TRUE;
18255	}
18256
18257	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
18258	cdb.cdb_opaque[1] = usr_cmd;
18259	FORMG1COUNT(&cdb, data_len);
18260
18261	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18262	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
18263	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
18264	ucmd_buf.uscsi_buflen	= data_len;
18265	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18266	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18267	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
18268	ucmd_buf.uscsi_timeout	= 60;
18269
18270	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18271	    UIO_SYSSPACE, SD_PATH_STANDARD);
18272
18273	switch (status) {
18274	case 0:
18275		break;	/* Success! */
18276	case EIO:
18277		switch (ucmd_buf.uscsi_status) {
18278		case STATUS_RESERVATION_CONFLICT:
18279			status = EACCES;
18280			break;
18281		case STATUS_CHECK:
18282			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18283			    (scsi_sense_key((uint8_t *)&sense_buf) ==
18284			    KEY_ILLEGAL_REQUEST)) {
18285				status = ENOTSUP;
18286			}
18287			break;
18288		default:
18289			break;
18290		}
18291		break;
18292	default:
18293		break;
18294	}
18295
18296	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
18297
18298	if (no_caller_buf == TRUE) {
18299		kmem_free(data_bufp, data_len);
18300	}
18301
18302	return (status);
18303}
18304
18305
18306/*
18307 *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
18308 *
18309 * Description: This routine is the driver entry point for handling CD-ROM
18310 *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
18311 *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
18312 *		device.
18313 *
18314 *   Arguments: un  -   Pointer to soft state struct for the target.
18315 *		usr_cmd SCSI-3 reservation facility command (one of
18316 *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
18317 *			SD_SCSI3_PREEMPTANDABORT)
18318 *		usr_bufp - user provided pointer register, reserve descriptor or
18319 *			preempt and abort structure (mhioc_register_t,
18320 *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
18321 *
18322 * Return Code: 0   - Success
18323 *		EACCES
18324 *		ENOTSUP
18325 *		errno return code from sd_send_scsi_cmd()
18326 *
18327 *     Context: Can sleep. Does not return until command is completed.
18328 */
18329
18330static int
18331sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un, uchar_t usr_cmd,
18332	uchar_t	*usr_bufp)
18333{
18334	struct scsi_extended_sense	sense_buf;
18335	union scsi_cdb		cdb;
18336	struct uscsi_cmd	ucmd_buf;
18337	int			status;
18338	uchar_t			data_len = sizeof (sd_prout_t);
18339	sd_prout_t		*prp;
18340
18341	ASSERT(un != NULL);
18342	ASSERT(!mutex_owned(SD_MUTEX(un)));
18343	ASSERT(data_len == 24);	/* required by scsi spec */
18344
18345	SD_TRACE(SD_LOG_IO, un,
18346	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
18347
18348	if (usr_bufp == NULL) {
18349		return (EINVAL);
18350	}
18351
18352	bzero(&cdb, sizeof (cdb));
18353	bzero(&ucmd_buf, sizeof (ucmd_buf));
18354	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18355	prp = kmem_zalloc(data_len, KM_SLEEP);
18356
18357	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
18358	cdb.cdb_opaque[1] = usr_cmd;
18359	FORMG1COUNT(&cdb, data_len);
18360
18361	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18362	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
18363	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
18364	ucmd_buf.uscsi_buflen	= data_len;
18365	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18366	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18367	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
18368	ucmd_buf.uscsi_timeout	= 60;
18369
18370	switch (usr_cmd) {
18371	case SD_SCSI3_REGISTER: {
18372		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
18373
18374		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
18375		bcopy(ptr->newkey.key, prp->service_key,
18376		    MHIOC_RESV_KEY_SIZE);
18377		prp->aptpl = ptr->aptpl;
18378		break;
18379	}
18380	case SD_SCSI3_RESERVE:
18381	case SD_SCSI3_RELEASE: {
18382		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
18383
18384		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
18385		prp->scope_address = BE_32(ptr->scope_specific_addr);
18386		cdb.cdb_opaque[2] = ptr->type;
18387		break;
18388	}
18389	case SD_SCSI3_PREEMPTANDABORT: {
18390		mhioc_preemptandabort_t *ptr =
18391		    (mhioc_preemptandabort_t *)usr_bufp;
18392
18393		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
18394		bcopy(ptr->victim_key.key, prp->service_key,
18395		    MHIOC_RESV_KEY_SIZE);
18396		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
18397		cdb.cdb_opaque[2] = ptr->resvdesc.type;
18398		ucmd_buf.uscsi_flags |= USCSI_HEAD;
18399		break;
18400	}
18401	case SD_SCSI3_REGISTERANDIGNOREKEY:
18402	{
18403		mhioc_registerandignorekey_t *ptr;
18404		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
18405		bcopy(ptr->newkey.key,
18406		    prp->service_key, MHIOC_RESV_KEY_SIZE);
18407		prp->aptpl = ptr->aptpl;
18408		break;
18409	}
18410	default:
18411		ASSERT(FALSE);
18412		break;
18413	}
18414
18415	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18416	    UIO_SYSSPACE, SD_PATH_STANDARD);
18417
18418	switch (status) {
18419	case 0:
18420		break;	/* Success! */
18421	case EIO:
18422		switch (ucmd_buf.uscsi_status) {
18423		case STATUS_RESERVATION_CONFLICT:
18424			status = EACCES;
18425			break;
18426		case STATUS_CHECK:
18427			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18428			    (scsi_sense_key((uint8_t *)&sense_buf) ==
18429			    KEY_ILLEGAL_REQUEST)) {
18430				status = ENOTSUP;
18431			}
18432			break;
18433		default:
18434			break;
18435		}
18436		break;
18437	default:
18438		break;
18439	}
18440
18441	kmem_free(prp, data_len);
18442	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
18443	return (status);
18444}
18445
18446
18447/*
18448 *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
18449 *
18450 * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
18451 *
18452 *   Arguments: un - pointer to the target's soft state struct
18453 *
18454 * Return Code: 0 - success
18455 *		errno-type error code
18456 *
18457 *     Context: kernel thread context only.
18458 */
18459
18460static int
18461sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc)
18462{
18463	struct sd_uscsi_info	*uip;
18464	struct uscsi_cmd	*uscmd;
18465	union scsi_cdb		*cdb;
18466	struct buf		*bp;
18467	int			rval = 0;
18468
18469	SD_TRACE(SD_LOG_IO, un,
18470	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
18471
18472	ASSERT(un != NULL);
18473	ASSERT(!mutex_owned(SD_MUTEX(un)));
18474
18475	cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP);
18476	cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE;
18477
18478	/*
18479	 * First get some memory for the uscsi_cmd struct and cdb
18480	 * and initialize for SYNCHRONIZE_CACHE cmd.
18481	 */
18482	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
18483	uscmd->uscsi_cdblen = CDB_GROUP1;
18484	uscmd->uscsi_cdb = (caddr_t)cdb;
18485	uscmd->uscsi_bufaddr = NULL;
18486	uscmd->uscsi_buflen = 0;
18487	uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
18488	uscmd->uscsi_rqlen = SENSE_LENGTH;
18489	uscmd->uscsi_rqresid = SENSE_LENGTH;
18490	uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT;
18491	uscmd->uscsi_timeout = sd_io_time;
18492
18493	/*
18494	 * Allocate an sd_uscsi_info struct and fill it with the info
18495	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
18496	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
18497	 * since we allocate the buf here in this function, we do not
18498	 * need to preserve the prior contents of b_private.
18499	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
18500	 */
18501	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
18502	uip->ui_flags = SD_PATH_DIRECT;
18503	uip->ui_cmdp  = uscmd;
18504
18505	bp = getrbuf(KM_SLEEP);
18506	bp->b_private = uip;
18507
18508	/*
18509	 * Setup buffer to carry uscsi request.
18510	 */
18511	bp->b_flags  = B_BUSY;
18512	bp->b_bcount = 0;
18513	bp->b_blkno  = 0;
18514
18515	if (dkc != NULL) {
18516		bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone;
18517		uip->ui_dkc = *dkc;
18518	}
18519
18520	bp->b_edev = SD_GET_DEV(un);
18521	bp->b_dev = cmpdev(bp->b_edev);	/* maybe unnecessary? */
18522
18523	(void) sd_uscsi_strategy(bp);
18524
18525	/*
18526	 * If synchronous request, wait for completion
18527	 * If async just return and let b_iodone callback
18528	 * cleanup.
18529	 * NOTE: On return, u_ncmds_in_driver will be decremented,
18530	 * but it was also incremented in sd_uscsi_strategy(), so
18531	 * we should be ok.
18532	 */
18533	if (dkc == NULL) {
18534		(void) biowait(bp);
18535		rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp);
18536	}
18537
18538	return (rval);
18539}
18540
18541
18542static int
18543sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp)
18544{
18545	struct sd_uscsi_info *uip;
18546	struct uscsi_cmd *uscmd;
18547	uint8_t *sense_buf;
18548	struct sd_lun *un;
18549	int status;
18550
18551	uip = (struct sd_uscsi_info *)(bp->b_private);
18552	ASSERT(uip != NULL);
18553
18554	uscmd = uip->ui_cmdp;
18555	ASSERT(uscmd != NULL);
18556
18557	sense_buf = (uint8_t *)uscmd->uscsi_rqbuf;
18558	ASSERT(sense_buf != NULL);
18559
18560	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
18561	ASSERT(un != NULL);
18562
18563	status = geterror(bp);
18564	switch (status) {
18565	case 0:
18566		break;	/* Success! */
18567	case EIO:
18568		switch (uscmd->uscsi_status) {
18569		case STATUS_RESERVATION_CONFLICT:
18570			/* Ignore reservation conflict */
18571			status = 0;
18572			goto done;
18573
18574		case STATUS_CHECK:
18575			if ((uscmd->uscsi_rqstatus == STATUS_GOOD) &&
18576			    (scsi_sense_key(sense_buf) ==
18577			    KEY_ILLEGAL_REQUEST)) {
18578				/* Ignore Illegal Request error */
18579				mutex_enter(SD_MUTEX(un));
18580				un->un_f_sync_cache_supported = FALSE;
18581				mutex_exit(SD_MUTEX(un));
18582				status = ENOTSUP;
18583				goto done;
18584			}
18585			break;
18586		default:
18587			break;
18588		}
18589		/* FALLTHRU */
18590	default:
18591		/*
18592		 * Don't log an error message if this device
18593		 * has removable media.
18594		 */
18595		if (!un->un_f_has_removable_media) {
18596			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18597			    "SYNCHRONIZE CACHE command failed (%d)\n", status);
18598		}
18599		break;
18600	}
18601
18602done:
18603	if (uip->ui_dkc.dkc_callback != NULL) {
18604		(*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status);
18605	}
18606
18607	ASSERT((bp->b_flags & B_REMAPPED) == 0);
18608	freerbuf(bp);
18609	kmem_free(uip, sizeof (struct sd_uscsi_info));
18610	kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
18611	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
18612	kmem_free(uscmd, sizeof (struct uscsi_cmd));
18613
18614	return (status);
18615}
18616
18617
18618/*
18619 *    Function: sd_send_scsi_GET_CONFIGURATION
18620 *
18621 * Description: Issues the get configuration command to the device.
18622 *		Called from sd_check_for_writable_cd & sd_get_media_info
18623 *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
18624 *   Arguments: un
18625 *		ucmdbuf
18626 *		rqbuf
18627 *		rqbuflen
18628 *		bufaddr
18629 *		buflen
18630 *		path_flag
18631 *
18632 * Return Code: 0   - Success
18633 *		errno return code from sd_send_scsi_cmd()
18634 *
18635 *     Context: Can sleep. Does not return until command is completed.
18636 *
18637 */
18638
18639static int
18640sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un, struct uscsi_cmd *ucmdbuf,
18641	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen,
18642	int path_flag)
18643{
18644	char	cdb[CDB_GROUP1];
18645	int	status;
18646
18647	ASSERT(un != NULL);
18648	ASSERT(!mutex_owned(SD_MUTEX(un)));
18649	ASSERT(bufaddr != NULL);
18650	ASSERT(ucmdbuf != NULL);
18651	ASSERT(rqbuf != NULL);
18652
18653	SD_TRACE(SD_LOG_IO, un,
18654	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
18655
18656	bzero(cdb, sizeof (cdb));
18657	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
18658	bzero(rqbuf, rqbuflen);
18659	bzero(bufaddr, buflen);
18660
18661	/*
18662	 * Set up cdb field for the get configuration command.
18663	 */
18664	cdb[0] = SCMD_GET_CONFIGURATION;
18665	cdb[1] = 0x02;  /* Requested Type */
18666	cdb[8] = SD_PROFILE_HEADER_LEN;
18667	ucmdbuf->uscsi_cdb = cdb;
18668	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
18669	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
18670	ucmdbuf->uscsi_buflen = buflen;
18671	ucmdbuf->uscsi_timeout = sd_io_time;
18672	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
18673	ucmdbuf->uscsi_rqlen = rqbuflen;
18674	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
18675
18676	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, FKIOCTL,
18677	    UIO_SYSSPACE, path_flag);
18678
18679	switch (status) {
18680	case 0:
18681		break;  /* Success! */
18682	case EIO:
18683		switch (ucmdbuf->uscsi_status) {
18684		case STATUS_RESERVATION_CONFLICT:
18685			status = EACCES;
18686			break;
18687		default:
18688			break;
18689		}
18690		break;
18691	default:
18692		break;
18693	}
18694
18695	if (status == 0) {
18696		SD_DUMP_MEMORY(un, SD_LOG_IO,
18697		    "sd_send_scsi_GET_CONFIGURATION: data",
18698		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
18699	}
18700
18701	SD_TRACE(SD_LOG_IO, un,
18702	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
18703
18704	return (status);
18705}
18706
18707/*
18708 *    Function: sd_send_scsi_feature_GET_CONFIGURATION
18709 *
18710 * Description: Issues the get configuration command to the device to
18711 *              retrieve a specific feature. Called from
18712 *		sd_check_for_writable_cd & sd_set_mmc_caps.
18713 *   Arguments: un
18714 *              ucmdbuf
18715 *              rqbuf
18716 *              rqbuflen
18717 *              bufaddr
18718 *              buflen
18719 *		feature
18720 *
18721 * Return Code: 0   - Success
18722 *              errno return code from sd_send_scsi_cmd()
18723 *
18724 *     Context: Can sleep. Does not return until command is completed.
18725 *
18726 */
18727static int
18728sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
18729	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
18730	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag)
18731{
18732	char    cdb[CDB_GROUP1];
18733	int	status;
18734
18735	ASSERT(un != NULL);
18736	ASSERT(!mutex_owned(SD_MUTEX(un)));
18737	ASSERT(bufaddr != NULL);
18738	ASSERT(ucmdbuf != NULL);
18739	ASSERT(rqbuf != NULL);
18740
18741	SD_TRACE(SD_LOG_IO, un,
18742	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
18743
18744	bzero(cdb, sizeof (cdb));
18745	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
18746	bzero(rqbuf, rqbuflen);
18747	bzero(bufaddr, buflen);
18748
18749	/*
18750	 * Set up cdb field for the get configuration command.
18751	 */
18752	cdb[0] = SCMD_GET_CONFIGURATION;
18753	cdb[1] = 0x02;  /* Requested Type */
18754	cdb[3] = feature;
18755	cdb[8] = buflen;
18756	ucmdbuf->uscsi_cdb = cdb;
18757	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
18758	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
18759	ucmdbuf->uscsi_buflen = buflen;
18760	ucmdbuf->uscsi_timeout = sd_io_time;
18761	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
18762	ucmdbuf->uscsi_rqlen = rqbuflen;
18763	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
18764
18765	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, FKIOCTL,
18766	    UIO_SYSSPACE, path_flag);
18767
18768	switch (status) {
18769	case 0:
18770		break;  /* Success! */
18771	case EIO:
18772		switch (ucmdbuf->uscsi_status) {
18773		case STATUS_RESERVATION_CONFLICT:
18774			status = EACCES;
18775			break;
18776		default:
18777			break;
18778		}
18779		break;
18780	default:
18781		break;
18782	}
18783
18784	if (status == 0) {
18785		SD_DUMP_MEMORY(un, SD_LOG_IO,
18786		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
18787		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
18788	}
18789
18790	SD_TRACE(SD_LOG_IO, un,
18791	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
18792
18793	return (status);
18794}
18795
18796
18797/*
18798 *    Function: sd_send_scsi_MODE_SENSE
18799 *
18800 * Description: Utility function for issuing a scsi MODE SENSE command.
18801 *		Note: This routine uses a consistent implementation for Group0,
18802 *		Group1, and Group2 commands across all platforms. ATAPI devices
18803 *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
18804 *
18805 *   Arguments: un - pointer to the softstate struct for the target.
18806 *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
18807 *			  CDB_GROUP[1|2] (10 byte).
18808 *		bufaddr - buffer for page data retrieved from the target.
18809 *		buflen - size of page to be retrieved.
18810 *		page_code - page code of data to be retrieved from the target.
18811 *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18812 *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18813 *			to use the USCSI "direct" chain and bypass the normal
18814 *			command waitq.
18815 *
18816 * Return Code: 0   - Success
18817 *		errno return code from sd_send_scsi_cmd()
18818 *
18819 *     Context: Can sleep. Does not return until command is completed.
18820 */
18821
18822static int
18823sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
18824	size_t buflen,  uchar_t page_code, int path_flag)
18825{
18826	struct	scsi_extended_sense	sense_buf;
18827	union scsi_cdb		cdb;
18828	struct uscsi_cmd	ucmd_buf;
18829	int			status;
18830	int			headlen;
18831
18832	ASSERT(un != NULL);
18833	ASSERT(!mutex_owned(SD_MUTEX(un)));
18834	ASSERT(bufaddr != NULL);
18835	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
18836	    (cdbsize == CDB_GROUP2));
18837
18838	SD_TRACE(SD_LOG_IO, un,
18839	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
18840
18841	bzero(&cdb, sizeof (cdb));
18842	bzero(&ucmd_buf, sizeof (ucmd_buf));
18843	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18844	bzero(bufaddr, buflen);
18845
18846	if (cdbsize == CDB_GROUP0) {
18847		cdb.scc_cmd = SCMD_MODE_SENSE;
18848		cdb.cdb_opaque[2] = page_code;
18849		FORMG0COUNT(&cdb, buflen);
18850		headlen = MODE_HEADER_LENGTH;
18851	} else {
18852		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
18853		cdb.cdb_opaque[2] = page_code;
18854		FORMG1COUNT(&cdb, buflen);
18855		headlen = MODE_HEADER_LENGTH_GRP2;
18856	}
18857
18858	ASSERT(headlen <= buflen);
18859	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
18860
18861	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18862	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
18863	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
18864	ucmd_buf.uscsi_buflen	= buflen;
18865	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18866	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18867	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
18868	ucmd_buf.uscsi_timeout	= 60;
18869
18870	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18871	    UIO_SYSSPACE, path_flag);
18872
18873	switch (status) {
18874	case 0:
18875		/*
18876		 * sr_check_wp() uses 0x3f page code and check the header of
18877		 * mode page to determine if target device is write-protected.
18878		 * But some USB devices return 0 bytes for 0x3f page code. For
18879		 * this case, make sure that mode page header is returned at
18880		 * least.
18881		 */
18882		if (buflen - ucmd_buf.uscsi_resid <  headlen)
18883			status = EIO;
18884		break;	/* Success! */
18885	case EIO:
18886		switch (ucmd_buf.uscsi_status) {
18887		case STATUS_RESERVATION_CONFLICT:
18888			status = EACCES;
18889			break;
18890		default:
18891			break;
18892		}
18893		break;
18894	default:
18895		break;
18896	}
18897
18898	if (status == 0) {
18899		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
18900		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
18901	}
18902	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
18903
18904	return (status);
18905}
18906
18907
18908/*
18909 *    Function: sd_send_scsi_MODE_SELECT
18910 *
18911 * Description: Utility function for issuing a scsi MODE SELECT command.
18912 *		Note: This routine uses a consistent implementation for Group0,
18913 *		Group1, and Group2 commands across all platforms. ATAPI devices
18914 *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
18915 *
18916 *   Arguments: un - pointer to the softstate struct for the target.
18917 *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
18918 *			  CDB_GROUP[1|2] (10 byte).
18919 *		bufaddr - buffer for page data retrieved from the target.
18920 *		buflen - size of page to be retrieved.
18921 *		save_page - boolean to determin if SP bit should be set.
18922 *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18923 *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18924 *			to use the USCSI "direct" chain and bypass the normal
18925 *			command waitq.
18926 *
18927 * Return Code: 0   - Success
18928 *		errno return code from sd_send_scsi_cmd()
18929 *
18930 *     Context: Can sleep. Does not return until command is completed.
18931 */
18932
18933static int
18934sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
18935	size_t buflen,  uchar_t save_page, int path_flag)
18936{
18937	struct	scsi_extended_sense	sense_buf;
18938	union scsi_cdb		cdb;
18939	struct uscsi_cmd	ucmd_buf;
18940	int			status;
18941
18942	ASSERT(un != NULL);
18943	ASSERT(!mutex_owned(SD_MUTEX(un)));
18944	ASSERT(bufaddr != NULL);
18945	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
18946	    (cdbsize == CDB_GROUP2));
18947
18948	SD_TRACE(SD_LOG_IO, un,
18949	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
18950
18951	bzero(&cdb, sizeof (cdb));
18952	bzero(&ucmd_buf, sizeof (ucmd_buf));
18953	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18954
18955	/* Set the PF bit for many third party drives */
18956	cdb.cdb_opaque[1] = 0x10;
18957
18958	/* Set the savepage(SP) bit if given */
18959	if (save_page == SD_SAVE_PAGE) {
18960		cdb.cdb_opaque[1] |= 0x01;
18961	}
18962
18963	if (cdbsize == CDB_GROUP0) {
18964		cdb.scc_cmd = SCMD_MODE_SELECT;
18965		FORMG0COUNT(&cdb, buflen);
18966	} else {
18967		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
18968		FORMG1COUNT(&cdb, buflen);
18969	}
18970
18971	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
18972
18973	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18974	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
18975	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
18976	ucmd_buf.uscsi_buflen	= buflen;
18977	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18978	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18979	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
18980	ucmd_buf.uscsi_timeout	= 60;
18981
18982	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18983	    UIO_SYSSPACE, path_flag);
18984
18985	switch (status) {
18986	case 0:
18987		break;	/* Success! */
18988	case EIO:
18989		switch (ucmd_buf.uscsi_status) {
18990		case STATUS_RESERVATION_CONFLICT:
18991			status = EACCES;
18992			break;
18993		default:
18994			break;
18995		}
18996		break;
18997	default:
18998		break;
18999	}
19000
19001	if (status == 0) {
19002		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
19003		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19004	}
19005	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
19006
19007	return (status);
19008}
19009
19010
19011/*
19012 *    Function: sd_send_scsi_RDWR
19013 *
19014 * Description: Issue a scsi READ or WRITE command with the given parameters.
19015 *
19016 *   Arguments: un:      Pointer to the sd_lun struct for the target.
19017 *		cmd:	 SCMD_READ or SCMD_WRITE
19018 *		bufaddr: Address of caller's buffer to receive the RDWR data
19019 *		buflen:  Length of caller's buffer receive the RDWR data.
19020 *		start_block: Block number for the start of the RDWR operation.
19021 *			 (Assumes target-native block size.)
19022 *		residp:  Pointer to variable to receive the redisual of the
19023 *			 RDWR operation (may be NULL of no residual requested).
19024 *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19025 *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19026 *			to use the USCSI "direct" chain and bypass the normal
19027 *			command waitq.
19028 *
19029 * Return Code: 0   - Success
19030 *		errno return code from sd_send_scsi_cmd()
19031 *
19032 *     Context: Can sleep. Does not return until command is completed.
19033 */
19034
19035static int
19036sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
19037	size_t buflen, daddr_t start_block, int path_flag)
19038{
19039	struct	scsi_extended_sense	sense_buf;
19040	union scsi_cdb		cdb;
19041	struct uscsi_cmd	ucmd_buf;
19042	uint32_t		block_count;
19043	int			status;
19044	int			cdbsize;
19045	uchar_t			flag;
19046
19047	ASSERT(un != NULL);
19048	ASSERT(!mutex_owned(SD_MUTEX(un)));
19049	ASSERT(bufaddr != NULL);
19050	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
19051
19052	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
19053
19054	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
19055		return (EINVAL);
19056	}
19057
19058	mutex_enter(SD_MUTEX(un));
19059	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
19060	mutex_exit(SD_MUTEX(un));
19061
19062	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
19063
19064	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
19065	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
19066	    bufaddr, buflen, start_block, block_count);
19067
19068	bzero(&cdb, sizeof (cdb));
19069	bzero(&ucmd_buf, sizeof (ucmd_buf));
19070	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19071
19072	/* Compute CDB size to use */
19073	if (start_block > 0xffffffff)
19074		cdbsize = CDB_GROUP4;
19075	else if ((start_block & 0xFFE00000) ||
19076	    (un->un_f_cfg_is_atapi == TRUE))
19077		cdbsize = CDB_GROUP1;
19078	else
19079		cdbsize = CDB_GROUP0;
19080
19081	switch (cdbsize) {
19082	case CDB_GROUP0:	/* 6-byte CDBs */
19083		cdb.scc_cmd = cmd;
19084		FORMG0ADDR(&cdb, start_block);
19085		FORMG0COUNT(&cdb, block_count);
19086		break;
19087	case CDB_GROUP1:	/* 10-byte CDBs */
19088		cdb.scc_cmd = cmd | SCMD_GROUP1;
19089		FORMG1ADDR(&cdb, start_block);
19090		FORMG1COUNT(&cdb, block_count);
19091		break;
19092	case CDB_GROUP4:	/* 16-byte CDBs */
19093		cdb.scc_cmd = cmd | SCMD_GROUP4;
19094		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
19095		FORMG4COUNT(&cdb, block_count);
19096		break;
19097	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
19098	default:
19099		/* All others reserved */
19100		return (EINVAL);
19101	}
19102
19103	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
19104	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
19105
19106	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19107	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
19108	ucmd_buf.uscsi_bufaddr	= bufaddr;
19109	ucmd_buf.uscsi_buflen	= buflen;
19110	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19111	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19112	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
19113	ucmd_buf.uscsi_timeout	= 60;
19114	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19115	    UIO_SYSSPACE, path_flag);
19116	switch (status) {
19117	case 0:
19118		break;	/* Success! */
19119	case EIO:
19120		switch (ucmd_buf.uscsi_status) {
19121		case STATUS_RESERVATION_CONFLICT:
19122			status = EACCES;
19123			break;
19124		default:
19125			break;
19126		}
19127		break;
19128	default:
19129		break;
19130	}
19131
19132	if (status == 0) {
19133		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
19134		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19135	}
19136
19137	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
19138
19139	return (status);
19140}
19141
19142
19143/*
19144 *    Function: sd_send_scsi_LOG_SENSE
19145 *
19146 * Description: Issue a scsi LOG_SENSE command with the given parameters.
19147 *
19148 *   Arguments: un:      Pointer to the sd_lun struct for the target.
19149 *
19150 * Return Code: 0   - Success
19151 *		errno return code from sd_send_scsi_cmd()
19152 *
19153 *     Context: Can sleep. Does not return until command is completed.
19154 */
19155
19156static int
19157sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr, uint16_t buflen,
19158	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
19159	int path_flag)
19160
19161{
19162	struct	scsi_extended_sense	sense_buf;
19163	union scsi_cdb		cdb;
19164	struct uscsi_cmd	ucmd_buf;
19165	int			status;
19166
19167	ASSERT(un != NULL);
19168	ASSERT(!mutex_owned(SD_MUTEX(un)));
19169
19170	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
19171
19172	bzero(&cdb, sizeof (cdb));
19173	bzero(&ucmd_buf, sizeof (ucmd_buf));
19174	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19175
19176	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
19177	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
19178	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
19179	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
19180	FORMG1COUNT(&cdb, buflen);
19181
19182	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19183	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19184	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19185	ucmd_buf.uscsi_buflen	= buflen;
19186	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19187	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19188	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19189	ucmd_buf.uscsi_timeout	= 60;
19190
19191	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19192	    UIO_SYSSPACE, path_flag);
19193
19194	switch (status) {
19195	case 0:
19196		break;
19197	case EIO:
19198		switch (ucmd_buf.uscsi_status) {
19199		case STATUS_RESERVATION_CONFLICT:
19200			status = EACCES;
19201			break;
19202		case STATUS_CHECK:
19203			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19204			    (scsi_sense_key((uint8_t *)&sense_buf) ==
19205				KEY_ILLEGAL_REQUEST) &&
19206			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) {
19207				/*
19208				 * ASC 0x24: INVALID FIELD IN CDB
19209				 */
19210				switch (page_code) {
19211				case START_STOP_CYCLE_PAGE:
19212					/*
19213					 * The start stop cycle counter is
19214					 * implemented as page 0x31 in earlier
19215					 * generation disks. In new generation
19216					 * disks the start stop cycle counter is
19217					 * implemented as page 0xE. To properly
19218					 * handle this case if an attempt for
19219					 * log page 0xE is made and fails we
19220					 * will try again using page 0x31.
19221					 *
19222					 * Network storage BU committed to
19223					 * maintain the page 0x31 for this
19224					 * purpose and will not have any other
19225					 * page implemented with page code 0x31
19226					 * until all disks transition to the
19227					 * standard page.
19228					 */
19229					mutex_enter(SD_MUTEX(un));
19230					un->un_start_stop_cycle_page =
19231					    START_STOP_CYCLE_VU_PAGE;
19232					cdb.cdb_opaque[2] =
19233					    (char)(page_control << 6) |
19234					    un->un_start_stop_cycle_page;
19235					mutex_exit(SD_MUTEX(un));
19236					status = sd_send_scsi_cmd(
19237					    SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19238					    UIO_SYSSPACE, path_flag);
19239
19240					break;
19241				case TEMPERATURE_PAGE:
19242					status = ENOTTY;
19243					break;
19244				default:
19245					break;
19246				}
19247			}
19248			break;
19249		default:
19250			break;
19251		}
19252		break;
19253	default:
19254		break;
19255	}
19256
19257	if (status == 0) {
19258		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
19259		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19260	}
19261
19262	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
19263
19264	return (status);
19265}
19266
19267
19268/*
19269 *    Function: sdioctl
19270 *
19271 * Description: Driver's ioctl(9e) entry point function.
19272 *
19273 *   Arguments: dev     - device number
19274 *		cmd     - ioctl operation to be performed
19275 *		arg     - user argument, contains data to be set or reference
19276 *			  parameter for get
19277 *		flag    - bit flag, indicating open settings, 32/64 bit type
19278 *		cred_p  - user credential pointer
19279 *		rval_p  - calling process return value (OPT)
19280 *
19281 * Return Code: EINVAL
19282 *		ENOTTY
19283 *		ENXIO
19284 *		EIO
19285 *		EFAULT
19286 *		ENOTSUP
19287 *		EPERM
19288 *
19289 *     Context: Called from the device switch at normal priority.
19290 */
19291
19292static int
19293sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
19294{
19295	struct sd_lun	*un = NULL;
19296	int		err = 0;
19297	int		i = 0;
19298	cred_t		*cr;
19299	int		tmprval = EINVAL;
19300	int 		is_valid;
19301
19302	/*
19303	 * All device accesses go thru sdstrategy where we check on suspend
19304	 * status
19305	 */
19306	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
19307		return (ENXIO);
19308	}
19309
19310	ASSERT(!mutex_owned(SD_MUTEX(un)));
19311
19312
19313	is_valid = SD_IS_VALID_LABEL(un);
19314
19315	/*
19316	 * Moved this wait from sd_uscsi_strategy to here for
19317	 * reasons of deadlock prevention. Internal driver commands,
19318	 * specifically those to change a devices power level, result
19319	 * in a call to sd_uscsi_strategy.
19320	 */
19321	mutex_enter(SD_MUTEX(un));
19322	while ((un->un_state == SD_STATE_SUSPENDED) ||
19323	    (un->un_state == SD_STATE_PM_CHANGING)) {
19324		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
19325	}
19326	/*
19327	 * Twiddling the counter here protects commands from now
19328	 * through to the top of sd_uscsi_strategy. Without the
19329	 * counter inc. a power down, for example, could get in
19330	 * after the above check for state is made and before
19331	 * execution gets to the top of sd_uscsi_strategy.
19332	 * That would cause problems.
19333	 */
19334	un->un_ncmds_in_driver++;
19335
19336	if (!is_valid &&
19337	    (flag & (FNDELAY | FNONBLOCK))) {
19338		switch (cmd) {
19339		case DKIOCGGEOM:	/* SD_PATH_DIRECT */
19340		case DKIOCGVTOC:
19341		case DKIOCGAPART:
19342		case DKIOCPARTINFO:
19343		case DKIOCSGEOM:
19344		case DKIOCSAPART:
19345		case DKIOCGETEFI:
19346		case DKIOCPARTITION:
19347		case DKIOCSVTOC:
19348		case DKIOCSETEFI:
19349		case DKIOCGMBOOT:
19350		case DKIOCSMBOOT:
19351		case DKIOCG_PHYGEOM:
19352		case DKIOCG_VIRTGEOM:
19353			/* let cmlb handle it */
19354			goto skip_ready_valid;
19355
19356		case CDROMPAUSE:
19357		case CDROMRESUME:
19358		case CDROMPLAYMSF:
19359		case CDROMPLAYTRKIND:
19360		case CDROMREADTOCHDR:
19361		case CDROMREADTOCENTRY:
19362		case CDROMSTOP:
19363		case CDROMSTART:
19364		case CDROMVOLCTRL:
19365		case CDROMSUBCHNL:
19366		case CDROMREADMODE2:
19367		case CDROMREADMODE1:
19368		case CDROMREADOFFSET:
19369		case CDROMSBLKMODE:
19370		case CDROMGBLKMODE:
19371		case CDROMGDRVSPEED:
19372		case CDROMSDRVSPEED:
19373		case CDROMCDDA:
19374		case CDROMCDXA:
19375		case CDROMSUBCODE:
19376			if (!ISCD(un)) {
19377				un->un_ncmds_in_driver--;
19378				ASSERT(un->un_ncmds_in_driver >= 0);
19379				mutex_exit(SD_MUTEX(un));
19380				return (ENOTTY);
19381			}
19382			break;
19383		case FDEJECT:
19384		case DKIOCEJECT:
19385		case CDROMEJECT:
19386			if (!un->un_f_eject_media_supported) {
19387				un->un_ncmds_in_driver--;
19388				ASSERT(un->un_ncmds_in_driver >= 0);
19389				mutex_exit(SD_MUTEX(un));
19390				return (ENOTTY);
19391			}
19392			break;
19393		case DKIOCFLUSHWRITECACHE:
19394			mutex_exit(SD_MUTEX(un));
19395			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
19396			if (err != 0) {
19397				mutex_enter(SD_MUTEX(un));
19398				un->un_ncmds_in_driver--;
19399				ASSERT(un->un_ncmds_in_driver >= 0);
19400				mutex_exit(SD_MUTEX(un));
19401				return (EIO);
19402			}
19403			mutex_enter(SD_MUTEX(un));
19404			/* FALLTHROUGH */
19405		case DKIOCREMOVABLE:
19406		case DKIOCHOTPLUGGABLE:
19407		case DKIOCINFO:
19408		case DKIOCGMEDIAINFO:
19409		case MHIOCENFAILFAST:
19410		case MHIOCSTATUS:
19411		case MHIOCTKOWN:
19412		case MHIOCRELEASE:
19413		case MHIOCGRP_INKEYS:
19414		case MHIOCGRP_INRESV:
19415		case MHIOCGRP_REGISTER:
19416		case MHIOCGRP_RESERVE:
19417		case MHIOCGRP_PREEMPTANDABORT:
19418		case MHIOCGRP_REGISTERANDIGNOREKEY:
19419		case CDROMCLOSETRAY:
19420		case USCSICMD:
19421			goto skip_ready_valid;
19422		default:
19423			break;
19424		}
19425
19426		mutex_exit(SD_MUTEX(un));
19427		err = sd_ready_and_valid(un);
19428		mutex_enter(SD_MUTEX(un));
19429
19430		if (err != SD_READY_VALID) {
19431			switch (cmd) {
19432			case DKIOCSTATE:
19433			case CDROMGDRVSPEED:
19434			case CDROMSDRVSPEED:
19435			case FDEJECT:	/* for eject command */
19436			case DKIOCEJECT:
19437			case CDROMEJECT:
19438			case DKIOCREMOVABLE:
19439			case DKIOCHOTPLUGGABLE:
19440				break;
19441			default:
19442				if (un->un_f_has_removable_media) {
19443					err = ENXIO;
19444				} else {
19445				/* Do not map SD_RESERVED_BY_OTHERS to EIO */
19446					if (err == SD_RESERVED_BY_OTHERS) {
19447						err = EACCES;
19448					} else {
19449						err = EIO;
19450					}
19451				}
19452				un->un_ncmds_in_driver--;
19453				ASSERT(un->un_ncmds_in_driver >= 0);
19454				mutex_exit(SD_MUTEX(un));
19455				return (err);
19456			}
19457		}
19458	}
19459
19460skip_ready_valid:
19461	mutex_exit(SD_MUTEX(un));
19462
19463	switch (cmd) {
19464	case DKIOCINFO:
19465		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
19466		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
19467		break;
19468
19469	case DKIOCGMEDIAINFO:
19470		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
19471		err = sd_get_media_info(dev, (caddr_t)arg, flag);
19472		break;
19473
19474	case DKIOCGGEOM:
19475	case DKIOCGVTOC:
19476	case DKIOCGAPART:
19477	case DKIOCPARTINFO:
19478	case DKIOCSGEOM:
19479	case DKIOCSAPART:
19480	case DKIOCGETEFI:
19481	case DKIOCPARTITION:
19482	case DKIOCSVTOC:
19483	case DKIOCSETEFI:
19484	case DKIOCGMBOOT:
19485	case DKIOCSMBOOT:
19486	case DKIOCG_PHYGEOM:
19487	case DKIOCG_VIRTGEOM:
19488		SD_TRACE(SD_LOG_IOCTL, un, "DKIOC %d\n", cmd);
19489
19490		/* TUR should spin up */
19491
19492		if (un->un_f_has_removable_media)
19493			err = sd_send_scsi_TEST_UNIT_READY(un,
19494			    SD_CHECK_FOR_MEDIA);
19495		else
19496			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
19497
19498		if (err != 0)
19499			break;
19500
19501		err = cmlb_ioctl(un->un_cmlbhandle, dev,
19502		    cmd, arg, flag, cred_p, rval_p, (void *)SD_PATH_DIRECT);
19503
19504		if ((err == 0) &&
19505		    ((cmd == DKIOCSETEFI) ||
19506		    (un->un_f_pkstats_enabled) &&
19507		    (cmd == DKIOCSAPART || cmd == DKIOCSVTOC))) {
19508
19509			tmprval = cmlb_validate(un->un_cmlbhandle, CMLB_SILENT,
19510			    (void *)SD_PATH_DIRECT);
19511			if ((tmprval == 0) && un->un_f_pkstats_enabled) {
19512				sd_set_pstats(un);
19513				SD_TRACE(SD_LOG_IO_PARTITION, un,
19514				    "sd_ioctl: un:0x%p pstats created and "
19515				    "set\n", un);
19516			}
19517		}
19518
19519		if ((cmd == DKIOCSVTOC) ||
19520		    ((cmd == DKIOCSETEFI) && (tmprval == 0))) {
19521
19522			mutex_enter(SD_MUTEX(un));
19523			if (un->un_f_devid_supported &&
19524			    (un->un_f_opt_fab_devid == TRUE)) {
19525				if (un->un_devid == NULL) {
19526					sd_register_devid(un, SD_DEVINFO(un),
19527					    SD_TARGET_IS_UNRESERVED);
19528				} else {
19529					/*
19530					 * The device id for this disk
19531					 * has been fabricated. The
19532					 * device id must be preserved
19533					 * by writing it back out to
19534					 * disk.
19535					 */
19536					if (sd_write_deviceid(un) != 0) {
19537						ddi_devid_free(un->un_devid);
19538						un->un_devid = NULL;
19539					}
19540				}
19541			}
19542			mutex_exit(SD_MUTEX(un));
19543		}
19544
19545		break;
19546
19547	case DKIOCLOCK:
19548		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
19549		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
19550		    SD_PATH_STANDARD);
19551		break;
19552
19553	case DKIOCUNLOCK:
19554		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
19555		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
19556		    SD_PATH_STANDARD);
19557		break;
19558
19559	case DKIOCSTATE: {
19560		enum dkio_state		state;
19561		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
19562
19563		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
19564			err = EFAULT;
19565		} else {
19566			err = sd_check_media(dev, state);
19567			if (err == 0) {
19568				if (ddi_copyout(&un->un_mediastate, (void *)arg,
19569				    sizeof (int), flag) != 0)
19570					err = EFAULT;
19571			}
19572		}
19573		break;
19574	}
19575
19576	case DKIOCREMOVABLE:
19577		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
19578		i = un->un_f_has_removable_media ? 1 : 0;
19579		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
19580			err = EFAULT;
19581		} else {
19582			err = 0;
19583		}
19584		break;
19585
19586	case DKIOCHOTPLUGGABLE:
19587		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n");
19588		i = un->un_f_is_hotpluggable ? 1 : 0;
19589		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
19590			err = EFAULT;
19591		} else {
19592			err = 0;
19593		}
19594		break;
19595
19596	case DKIOCGTEMPERATURE:
19597		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
19598		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
19599		break;
19600
19601	case MHIOCENFAILFAST:
19602		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
19603		if ((err = drv_priv(cred_p)) == 0) {
19604			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
19605		}
19606		break;
19607
19608	case MHIOCTKOWN:
19609		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
19610		if ((err = drv_priv(cred_p)) == 0) {
19611			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
19612		}
19613		break;
19614
19615	case MHIOCRELEASE:
19616		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
19617		if ((err = drv_priv(cred_p)) == 0) {
19618			err = sd_mhdioc_release(dev);
19619		}
19620		break;
19621
19622	case MHIOCSTATUS:
19623		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
19624		if ((err = drv_priv(cred_p)) == 0) {
19625			switch (sd_send_scsi_TEST_UNIT_READY(un, 0)) {
19626			case 0:
19627				err = 0;
19628				break;
19629			case EACCES:
19630				*rval_p = 1;
19631				err = 0;
19632				break;
19633			default:
19634				err = EIO;
19635				break;
19636			}
19637		}
19638		break;
19639
19640	case MHIOCQRESERVE:
19641		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
19642		if ((err = drv_priv(cred_p)) == 0) {
19643			err = sd_reserve_release(dev, SD_RESERVE);
19644		}
19645		break;
19646
19647	case MHIOCREREGISTERDEVID:
19648		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
19649		if (drv_priv(cred_p) == EPERM) {
19650			err = EPERM;
19651		} else if (!un->un_f_devid_supported) {
19652			err = ENOTTY;
19653		} else {
19654			err = sd_mhdioc_register_devid(dev);
19655		}
19656		break;
19657
19658	case MHIOCGRP_INKEYS:
19659		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
19660		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
19661			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
19662				err = ENOTSUP;
19663			} else {
19664				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
19665				    flag);
19666			}
19667		}
19668		break;
19669
19670	case MHIOCGRP_INRESV:
19671		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
19672		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
19673			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
19674				err = ENOTSUP;
19675			} else {
19676				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
19677			}
19678		}
19679		break;
19680
19681	case MHIOCGRP_REGISTER:
19682		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
19683		if ((err = drv_priv(cred_p)) != EPERM) {
19684			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
19685				err = ENOTSUP;
19686			} else if (arg != NULL) {
19687				mhioc_register_t reg;
19688				if (ddi_copyin((void *)arg, &reg,
19689				    sizeof (mhioc_register_t), flag) != 0) {
19690					err = EFAULT;
19691				} else {
19692					err =
19693					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
19694					    un, SD_SCSI3_REGISTER,
19695					    (uchar_t *)&reg);
19696				}
19697			}
19698		}
19699		break;
19700
19701	case MHIOCGRP_RESERVE:
19702		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
19703		if ((err = drv_priv(cred_p)) != EPERM) {
19704			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
19705				err = ENOTSUP;
19706			} else if (arg != NULL) {
19707				mhioc_resv_desc_t resv_desc;
19708				if (ddi_copyin((void *)arg, &resv_desc,
19709				    sizeof (mhioc_resv_desc_t), flag) != 0) {
19710					err = EFAULT;
19711				} else {
19712					err =
19713					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
19714					    un, SD_SCSI3_RESERVE,
19715					    (uchar_t *)&resv_desc);
19716				}
19717			}
19718		}
19719		break;
19720
19721	case MHIOCGRP_PREEMPTANDABORT:
19722		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
19723		if ((err = drv_priv(cred_p)) != EPERM) {
19724			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
19725				err = ENOTSUP;
19726			} else if (arg != NULL) {
19727				mhioc_preemptandabort_t preempt_abort;
19728				if (ddi_copyin((void *)arg, &preempt_abort,
19729				    sizeof (mhioc_preemptandabort_t),
19730				    flag) != 0) {
19731					err = EFAULT;
19732				} else {
19733					err =
19734					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
19735					    un, SD_SCSI3_PREEMPTANDABORT,
19736					    (uchar_t *)&preempt_abort);
19737				}
19738			}
19739		}
19740		break;
19741
19742	case MHIOCGRP_REGISTERANDIGNOREKEY:
19743		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTERANDIGNOREKEY\n");
19744		if ((err = drv_priv(cred_p)) != EPERM) {
19745			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
19746				err = ENOTSUP;
19747			} else if (arg != NULL) {
19748				mhioc_registerandignorekey_t r_and_i;
19749				if (ddi_copyin((void *)arg, (void *)&r_and_i,
19750				    sizeof (mhioc_registerandignorekey_t),
19751				    flag) != 0) {
19752					err = EFAULT;
19753				} else {
19754					err =
19755					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
19756					    un, SD_SCSI3_REGISTERANDIGNOREKEY,
19757					    (uchar_t *)&r_and_i);
19758				}
19759			}
19760		}
19761		break;
19762
19763	case USCSICMD:
19764		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
19765		cr = ddi_get_cred();
19766		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
19767			err = EPERM;
19768		} else {
19769			enum uio_seg	uioseg;
19770			uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE :
19771			    UIO_USERSPACE;
19772			if (un->un_f_format_in_progress == TRUE) {
19773				err = EAGAIN;
19774				break;
19775			}
19776			err = sd_send_scsi_cmd(dev, (struct uscsi_cmd *)arg,
19777			    flag, uioseg, SD_PATH_STANDARD);
19778		}
19779		break;
19780
19781	case CDROMPAUSE:
19782	case CDROMRESUME:
19783		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
19784		if (!ISCD(un)) {
19785			err = ENOTTY;
19786		} else {
19787			err = sr_pause_resume(dev, cmd);
19788		}
19789		break;
19790
19791	case CDROMPLAYMSF:
19792		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
19793		if (!ISCD(un)) {
19794			err = ENOTTY;
19795		} else {
19796			err = sr_play_msf(dev, (caddr_t)arg, flag);
19797		}
19798		break;
19799
19800	case CDROMPLAYTRKIND:
19801		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
19802#if defined(__i386) || defined(__amd64)
19803		/*
19804		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
19805		 */
19806		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
19807#else
19808		if (!ISCD(un)) {
19809#endif
19810			err = ENOTTY;
19811		} else {
19812			err = sr_play_trkind(dev, (caddr_t)arg, flag);
19813		}
19814		break;
19815
19816	case CDROMREADTOCHDR:
19817		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
19818		if (!ISCD(un)) {
19819			err = ENOTTY;
19820		} else {
19821			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
19822		}
19823		break;
19824
19825	case CDROMREADTOCENTRY:
19826		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
19827		if (!ISCD(un)) {
19828			err = ENOTTY;
19829		} else {
19830			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
19831		}
19832		break;
19833
19834	case CDROMSTOP:
19835		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
19836		if (!ISCD(un)) {
19837			err = ENOTTY;
19838		} else {
19839			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_STOP,
19840			    SD_PATH_STANDARD);
19841		}
19842		break;
19843
19844	case CDROMSTART:
19845		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
19846		if (!ISCD(un)) {
19847			err = ENOTTY;
19848		} else {
19849			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
19850			    SD_PATH_STANDARD);
19851		}
19852		break;
19853
19854	case CDROMCLOSETRAY:
19855		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
19856		if (!ISCD(un)) {
19857			err = ENOTTY;
19858		} else {
19859			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_CLOSE,
19860			    SD_PATH_STANDARD);
19861		}
19862		break;
19863
19864	case FDEJECT:	/* for eject command */
19865	case DKIOCEJECT:
19866	case CDROMEJECT:
19867		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
19868		if (!un->un_f_eject_media_supported) {
19869			err = ENOTTY;
19870		} else {
19871			err = sr_eject(dev);
19872		}
19873		break;
19874
19875	case CDROMVOLCTRL:
19876		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
19877		if (!ISCD(un)) {
19878			err = ENOTTY;
19879		} else {
19880			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
19881		}
19882		break;
19883
19884	case CDROMSUBCHNL:
19885		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
19886		if (!ISCD(un)) {
19887			err = ENOTTY;
19888		} else {
19889			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
19890		}
19891		break;
19892
19893	case CDROMREADMODE2:
19894		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
19895		if (!ISCD(un)) {
19896			err = ENOTTY;
19897		} else if (un->un_f_cfg_is_atapi == TRUE) {
19898			/*
19899			 * If the drive supports READ CD, use that instead of
19900			 * switching the LBA size via a MODE SELECT
19901			 * Block Descriptor
19902			 */
19903			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
19904		} else {
19905			err = sr_read_mode2(dev, (caddr_t)arg, flag);
19906		}
19907		break;
19908
19909	case CDROMREADMODE1:
19910		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
19911		if (!ISCD(un)) {
19912			err = ENOTTY;
19913		} else {
19914			err = sr_read_mode1(dev, (caddr_t)arg, flag);
19915		}
19916		break;
19917
19918	case CDROMREADOFFSET:
19919		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
19920		if (!ISCD(un)) {
19921			err = ENOTTY;
19922		} else {
19923			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
19924			    flag);
19925		}
19926		break;
19927
19928	case CDROMSBLKMODE:
19929		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
19930		/*
19931		 * There is no means of changing block size in case of atapi
19932		 * drives, thus return ENOTTY if drive type is atapi
19933		 */
19934		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
19935			err = ENOTTY;
19936		} else if (un->un_f_mmc_cap == TRUE) {
19937
19938			/*
19939			 * MMC Devices do not support changing the
19940			 * logical block size
19941			 *
19942			 * Note: EINVAL is being returned instead of ENOTTY to
19943			 * maintain consistancy with the original mmc
19944			 * driver update.
19945			 */
19946			err = EINVAL;
19947		} else {
19948			mutex_enter(SD_MUTEX(un));
19949			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
19950			    (un->un_ncmds_in_transport > 0)) {
19951				mutex_exit(SD_MUTEX(un));
19952				err = EINVAL;
19953			} else {
19954				mutex_exit(SD_MUTEX(un));
19955				err = sr_change_blkmode(dev, cmd, arg, flag);
19956			}
19957		}
19958		break;
19959
19960	case CDROMGBLKMODE:
19961		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
19962		if (!ISCD(un)) {
19963			err = ENOTTY;
19964		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
19965		    (un->un_f_blockcount_is_valid != FALSE)) {
19966			/*
19967			 * Drive is an ATAPI drive so return target block
19968			 * size for ATAPI drives since we cannot change the
19969			 * blocksize on ATAPI drives. Used primarily to detect
19970			 * if an ATAPI cdrom is present.
19971			 */
19972			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
19973			    sizeof (int), flag) != 0) {
19974				err = EFAULT;
19975			} else {
19976				err = 0;
19977			}
19978
19979		} else {
19980			/*
19981			 * Drive supports changing block sizes via a Mode
19982			 * Select.
19983			 */
19984			err = sr_change_blkmode(dev, cmd, arg, flag);
19985		}
19986		break;
19987
19988	case CDROMGDRVSPEED:
19989	case CDROMSDRVSPEED:
19990		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
19991		if (!ISCD(un)) {
19992			err = ENOTTY;
19993		} else if (un->un_f_mmc_cap == TRUE) {
19994			/*
19995			 * Note: In the future the driver implementation
19996			 * for getting and
19997			 * setting cd speed should entail:
19998			 * 1) If non-mmc try the Toshiba mode page
19999			 *    (sr_change_speed)
20000			 * 2) If mmc but no support for Real Time Streaming try
20001			 *    the SET CD SPEED (0xBB) command
20002			 *   (sr_atapi_change_speed)
20003			 * 3) If mmc and support for Real Time Streaming
20004			 *    try the GET PERFORMANCE and SET STREAMING
20005			 *    commands (not yet implemented, 4380808)
20006			 */
20007			/*
20008			 * As per recent MMC spec, CD-ROM speed is variable
20009			 * and changes with LBA. Since there is no such
20010			 * things as drive speed now, fail this ioctl.
20011			 *
20012			 * Note: EINVAL is returned for consistancy of original
20013			 * implementation which included support for getting
20014			 * the drive speed of mmc devices but not setting
20015			 * the drive speed. Thus EINVAL would be returned
20016			 * if a set request was made for an mmc device.
20017			 * We no longer support get or set speed for
20018			 * mmc but need to remain consistent with regard
20019			 * to the error code returned.
20020			 */
20021			err = EINVAL;
20022		} else if (un->un_f_cfg_is_atapi == TRUE) {
20023			err = sr_atapi_change_speed(dev, cmd, arg, flag);
20024		} else {
20025			err = sr_change_speed(dev, cmd, arg, flag);
20026		}
20027		break;
20028
20029	case CDROMCDDA:
20030		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
20031		if (!ISCD(un)) {
20032			err = ENOTTY;
20033		} else {
20034			err = sr_read_cdda(dev, (void *)arg, flag);
20035		}
20036		break;
20037
20038	case CDROMCDXA:
20039		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
20040		if (!ISCD(un)) {
20041			err = ENOTTY;
20042		} else {
20043			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
20044		}
20045		break;
20046
20047	case CDROMSUBCODE:
20048		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
20049		if (!ISCD(un)) {
20050			err = ENOTTY;
20051		} else {
20052			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
20053		}
20054		break;
20055
20056
20057#ifdef SDDEBUG
20058/* RESET/ABORTS testing ioctls */
20059	case DKIOCRESET: {
20060		int	reset_level;
20061
20062		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
20063			err = EFAULT;
20064		} else {
20065			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
20066			    "reset_level = 0x%lx\n", reset_level);
20067			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
20068				err = 0;
20069			} else {
20070				err = EIO;
20071			}
20072		}
20073		break;
20074	}
20075
20076	case DKIOCABORT:
20077		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
20078		if (scsi_abort(SD_ADDRESS(un), NULL)) {
20079			err = 0;
20080		} else {
20081			err = EIO;
20082		}
20083		break;
20084#endif
20085
20086#ifdef SD_FAULT_INJECTION
20087/* SDIOC FaultInjection testing ioctls */
20088	case SDIOCSTART:
20089	case SDIOCSTOP:
20090	case SDIOCINSERTPKT:
20091	case SDIOCINSERTXB:
20092	case SDIOCINSERTUN:
20093	case SDIOCINSERTARQ:
20094	case SDIOCPUSH:
20095	case SDIOCRETRIEVE:
20096	case SDIOCRUN:
20097		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
20098		    "SDIOC detected cmd:0x%X:\n", cmd);
20099		/* call error generator */
20100		sd_faultinjection_ioctl(cmd, arg, un);
20101		err = 0;
20102		break;
20103
20104#endif /* SD_FAULT_INJECTION */
20105
20106	case DKIOCFLUSHWRITECACHE:
20107		{
20108			struct dk_callback *dkc = (struct dk_callback *)arg;
20109
20110			mutex_enter(SD_MUTEX(un));
20111			if (!un->un_f_sync_cache_supported ||
20112			    !un->un_f_write_cache_enabled) {
20113				err = un->un_f_sync_cache_supported ?
20114				    0 : ENOTSUP;
20115				mutex_exit(SD_MUTEX(un));
20116				if ((flag & FKIOCTL) && dkc != NULL &&
20117				    dkc->dkc_callback != NULL) {
20118					(*dkc->dkc_callback)(dkc->dkc_cookie,
20119					    err);
20120					/*
20121					 * Did callback and reported error.
20122					 * Since we did a callback, ioctl
20123					 * should return 0.
20124					 */
20125					err = 0;
20126				}
20127				break;
20128			}
20129			mutex_exit(SD_MUTEX(un));
20130
20131			if ((flag & FKIOCTL) && dkc != NULL &&
20132			    dkc->dkc_callback != NULL) {
20133				/* async SYNC CACHE request */
20134				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
20135			} else {
20136				/* synchronous SYNC CACHE request */
20137				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
20138			}
20139		}
20140		break;
20141
20142	case DKIOCGETWCE: {
20143
20144		int wce;
20145
20146		if ((err = sd_get_write_cache_enabled(un, &wce)) != 0) {
20147			break;
20148		}
20149
20150		if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) {
20151			err = EFAULT;
20152		}
20153		break;
20154	}
20155
20156	case DKIOCSETWCE: {
20157
20158		int wce, sync_supported;
20159
20160		if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) {
20161			err = EFAULT;
20162			break;
20163		}
20164
20165		/*
20166		 * Synchronize multiple threads trying to enable
20167		 * or disable the cache via the un_f_wcc_cv
20168		 * condition variable.
20169		 */
20170		mutex_enter(SD_MUTEX(un));
20171
20172		/*
20173		 * Don't allow the cache to be enabled if the
20174		 * config file has it disabled.
20175		 */
20176		if (un->un_f_opt_disable_cache && wce) {
20177			mutex_exit(SD_MUTEX(un));
20178			err = EINVAL;
20179			break;
20180		}
20181
20182		/*
20183		 * Wait for write cache change in progress
20184		 * bit to be clear before proceeding.
20185		 */
20186		while (un->un_f_wcc_inprog)
20187			cv_wait(&un->un_wcc_cv, SD_MUTEX(un));
20188
20189		un->un_f_wcc_inprog = 1;
20190
20191		if (un->un_f_write_cache_enabled && wce == 0) {
20192			/*
20193			 * Disable the write cache.  Don't clear
20194			 * un_f_write_cache_enabled until after
20195			 * the mode select and flush are complete.
20196			 */
20197			sync_supported = un->un_f_sync_cache_supported;
20198			mutex_exit(SD_MUTEX(un));
20199			if ((err = sd_cache_control(un, SD_CACHE_NOCHANGE,
20200			    SD_CACHE_DISABLE)) == 0 && sync_supported) {
20201				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
20202			}
20203
20204			mutex_enter(SD_MUTEX(un));
20205			if (err == 0) {
20206				un->un_f_write_cache_enabled = 0;
20207			}
20208
20209		} else if (!un->un_f_write_cache_enabled && wce != 0) {
20210			/*
20211			 * Set un_f_write_cache_enabled first, so there is
20212			 * no window where the cache is enabled, but the
20213			 * bit says it isn't.
20214			 */
20215			un->un_f_write_cache_enabled = 1;
20216			mutex_exit(SD_MUTEX(un));
20217
20218			err = sd_cache_control(un, SD_CACHE_NOCHANGE,
20219			    SD_CACHE_ENABLE);
20220
20221			mutex_enter(SD_MUTEX(un));
20222
20223			if (err) {
20224				un->un_f_write_cache_enabled = 0;
20225			}
20226		}
20227
20228		un->un_f_wcc_inprog = 0;
20229		cv_broadcast(&un->un_wcc_cv);
20230		mutex_exit(SD_MUTEX(un));
20231		break;
20232	}
20233
20234	default:
20235		err = ENOTTY;
20236		break;
20237	}
20238	mutex_enter(SD_MUTEX(un));
20239	un->un_ncmds_in_driver--;
20240	ASSERT(un->un_ncmds_in_driver >= 0);
20241	mutex_exit(SD_MUTEX(un));
20242
20243	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
20244	return (err);
20245}
20246
20247
20248/*
20249 *    Function: sd_dkio_ctrl_info
20250 *
20251 * Description: This routine is the driver entry point for handling controller
20252 *		information ioctl requests (DKIOCINFO).
20253 *
20254 *   Arguments: dev  - the device number
20255 *		arg  - pointer to user provided dk_cinfo structure
20256 *		       specifying the controller type and attributes.
20257 *		flag - this argument is a pass through to ddi_copyxxx()
20258 *		       directly from the mode argument of ioctl().
20259 *
20260 * Return Code: 0
20261 *		EFAULT
20262 *		ENXIO
20263 */
20264
20265static int
20266sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
20267{
20268	struct sd_lun	*un = NULL;
20269	struct dk_cinfo	*info;
20270	dev_info_t	*pdip;
20271	int		lun, tgt;
20272
20273	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20274		return (ENXIO);
20275	}
20276
20277	info = (struct dk_cinfo *)
20278	    kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
20279
20280	switch (un->un_ctype) {
20281	case CTYPE_CDROM:
20282		info->dki_ctype = DKC_CDROM;
20283		break;
20284	default:
20285		info->dki_ctype = DKC_SCSI_CCS;
20286		break;
20287	}
20288	pdip = ddi_get_parent(SD_DEVINFO(un));
20289	info->dki_cnum = ddi_get_instance(pdip);
20290	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
20291		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
20292	} else {
20293		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
20294		    DK_DEVLEN - 1);
20295	}
20296
20297	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
20298	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
20299	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
20300	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
20301
20302	/* Unit Information */
20303	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
20304	info->dki_slave = ((tgt << 3) | lun);
20305	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
20306	    DK_DEVLEN - 1);
20307	info->dki_flags = DKI_FMTVOL;
20308	info->dki_partition = SDPART(dev);
20309
20310	/* Max Transfer size of this device in blocks */
20311	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
20312	info->dki_addr = 0;
20313	info->dki_space = 0;
20314	info->dki_prio = 0;
20315	info->dki_vec = 0;
20316
20317	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
20318		kmem_free(info, sizeof (struct dk_cinfo));
20319		return (EFAULT);
20320	} else {
20321		kmem_free(info, sizeof (struct dk_cinfo));
20322		return (0);
20323	}
20324}
20325
20326
20327/*
20328 *    Function: sd_get_media_info
20329 *
20330 * Description: This routine is the driver entry point for handling ioctl
20331 *		requests for the media type or command set profile used by the
20332 *		drive to operate on the media (DKIOCGMEDIAINFO).
20333 *
20334 *   Arguments: dev	- the device number
20335 *		arg	- pointer to user provided dk_minfo structure
20336 *			  specifying the media type, logical block size and
20337 *			  drive capacity.
20338 *		flag	- this argument is a pass through to ddi_copyxxx()
20339 *			  directly from the mode argument of ioctl().
20340 *
20341 * Return Code: 0
20342 *		EACCESS
20343 *		EFAULT
20344 *		ENXIO
20345 *		EIO
20346 */
20347
20348static int
20349sd_get_media_info(dev_t dev, caddr_t arg, int flag)
20350{
20351	struct sd_lun		*un = NULL;
20352	struct uscsi_cmd	com;
20353	struct scsi_inquiry	*sinq;
20354	struct dk_minfo		media_info;
20355	u_longlong_t		media_capacity;
20356	uint64_t		capacity;
20357	uint_t			lbasize;
20358	uchar_t			*out_data;
20359	uchar_t			*rqbuf;
20360	int			rval = 0;
20361	int			rtn;
20362
20363	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
20364	    (un->un_state == SD_STATE_OFFLINE)) {
20365		return (ENXIO);
20366	}
20367
20368	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n");
20369
20370	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
20371	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
20372
20373	/* Issue a TUR to determine if the drive is ready with media present */
20374	rval = sd_send_scsi_TEST_UNIT_READY(un, SD_CHECK_FOR_MEDIA);
20375	if (rval == ENXIO) {
20376		goto done;
20377	}
20378
20379	/* Now get configuration data */
20380	if (ISCD(un)) {
20381		media_info.dki_media_type = DK_CDROM;
20382
20383		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
20384		if (un->un_f_mmc_cap == TRUE) {
20385			rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf,
20386			    SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN,
20387			    SD_PATH_STANDARD);
20388
20389			if (rtn) {
20390				/*
20391				 * Failed for other than an illegal request
20392				 * or command not supported
20393				 */
20394				if ((com.uscsi_status == STATUS_CHECK) &&
20395				    (com.uscsi_rqstatus == STATUS_GOOD)) {
20396					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
20397					    (rqbuf[12] != 0x20)) {
20398						rval = EIO;
20399						goto done;
20400					}
20401				}
20402			} else {
20403				/*
20404				 * The GET CONFIGURATION command succeeded
20405				 * so set the media type according to the
20406				 * returned data
20407				 */
20408				media_info.dki_media_type = out_data[6];
20409				media_info.dki_media_type <<= 8;
20410				media_info.dki_media_type |= out_data[7];
20411			}
20412		}
20413	} else {
20414		/*
20415		 * The profile list is not available, so we attempt to identify
20416		 * the media type based on the inquiry data
20417		 */
20418		sinq = un->un_sd->sd_inq;
20419		if ((sinq->inq_dtype == DTYPE_DIRECT) ||
20420		    (sinq->inq_dtype == DTYPE_OPTICAL)) {
20421			/* This is a direct access device  or optical disk */
20422			media_info.dki_media_type = DK_FIXED_DISK;
20423
20424			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
20425			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
20426				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
20427					media_info.dki_media_type = DK_ZIP;
20428				} else if (
20429				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
20430					media_info.dki_media_type = DK_JAZ;
20431				}
20432			}
20433		} else {
20434			/*
20435			 * Not a CD, direct access or optical disk so return
20436			 * unknown media
20437			 */
20438			media_info.dki_media_type = DK_UNKNOWN;
20439		}
20440	}
20441
20442	/* Now read the capacity so we can provide the lbasize and capacity */
20443	switch (sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
20444	    SD_PATH_DIRECT)) {
20445	case 0:
20446		break;
20447	case EACCES:
20448		rval = EACCES;
20449		goto done;
20450	default:
20451		rval = EIO;
20452		goto done;
20453	}
20454
20455	media_info.dki_lbsize = lbasize;
20456	media_capacity = capacity;
20457
20458	/*
20459	 * sd_send_scsi_READ_CAPACITY() reports capacity in
20460	 * un->un_sys_blocksize chunks. So we need to convert it into
20461	 * cap.lbasize chunks.
20462	 */
20463	media_capacity *= un->un_sys_blocksize;
20464	media_capacity /= lbasize;
20465	media_info.dki_capacity = media_capacity;
20466
20467	if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) {
20468		rval = EFAULT;
20469		/* Put goto. Anybody might add some code below in future */
20470		goto done;
20471	}
20472done:
20473	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
20474	kmem_free(rqbuf, SENSE_LENGTH);
20475	return (rval);
20476}
20477
20478
20479/*
20480 *    Function: sd_check_media
20481 *
20482 * Description: This utility routine implements the functionality for the
20483 *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
20484 *		driver state changes from that specified by the user
20485 *		(inserted or ejected). For example, if the user specifies
20486 *		DKIO_EJECTED and the current media state is inserted this
20487 *		routine will immediately return DKIO_INSERTED. However, if the
20488 *		current media state is not inserted the user thread will be
20489 *		blocked until the drive state changes. If DKIO_NONE is specified
20490 *		the user thread will block until a drive state change occurs.
20491 *
20492 *   Arguments: dev  - the device number
20493 *		state  - user pointer to a dkio_state, updated with the current
20494 *			drive state at return.
20495 *
20496 * Return Code: ENXIO
20497 *		EIO
20498 *		EAGAIN
20499 *		EINTR
20500 */
20501
20502static int
20503sd_check_media(dev_t dev, enum dkio_state state)
20504{
20505	struct sd_lun		*un = NULL;
20506	enum dkio_state		prev_state;
20507	opaque_t		token = NULL;
20508	int			rval = 0;
20509
20510	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20511		return (ENXIO);
20512	}
20513
20514	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
20515
20516	mutex_enter(SD_MUTEX(un));
20517
20518	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
20519	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
20520
20521	prev_state = un->un_mediastate;
20522
20523	/* is there anything to do? */
20524	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
20525		/*
20526		 * submit the request to the scsi_watch service;
20527		 * scsi_media_watch_cb() does the real work
20528		 */
20529		mutex_exit(SD_MUTEX(un));
20530
20531		/*
20532		 * This change handles the case where a scsi watch request is
20533		 * added to a device that is powered down. To accomplish this
20534		 * we power up the device before adding the scsi watch request,
20535		 * since the scsi watch sends a TUR directly to the device
20536		 * which the device cannot handle if it is powered down.
20537		 */
20538		if (sd_pm_entry(un) != DDI_SUCCESS) {
20539			mutex_enter(SD_MUTEX(un));
20540			goto done;
20541		}
20542
20543		token = scsi_watch_request_submit(SD_SCSI_DEVP(un),
20544		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
20545		    (caddr_t)dev);
20546
20547		sd_pm_exit(un);
20548
20549		mutex_enter(SD_MUTEX(un));
20550		if (token == NULL) {
20551			rval = EAGAIN;
20552			goto done;
20553		}
20554
20555		/*
20556		 * This is a special case IOCTL that doesn't return
20557		 * until the media state changes. Routine sdpower
20558		 * knows about and handles this so don't count it
20559		 * as an active cmd in the driver, which would
20560		 * keep the device busy to the pm framework.
20561		 * If the count isn't decremented the device can't
20562		 * be powered down.
20563		 */
20564		un->un_ncmds_in_driver--;
20565		ASSERT(un->un_ncmds_in_driver >= 0);
20566
20567		/*
20568		 * if a prior request had been made, this will be the same
20569		 * token, as scsi_watch was designed that way.
20570		 */
20571		un->un_swr_token = token;
20572		un->un_specified_mediastate = state;
20573
20574		/*
20575		 * now wait for media change
20576		 * we will not be signalled unless mediastate == state but it is
20577		 * still better to test for this condition, since there is a
20578		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
20579		 */
20580		SD_TRACE(SD_LOG_COMMON, un,
20581		    "sd_check_media: waiting for media state change\n");
20582		while (un->un_mediastate == state) {
20583			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
20584				SD_TRACE(SD_LOG_COMMON, un,
20585				    "sd_check_media: waiting for media state "
20586				    "was interrupted\n");
20587				un->un_ncmds_in_driver++;
20588				rval = EINTR;
20589				goto done;
20590			}
20591			SD_TRACE(SD_LOG_COMMON, un,
20592			    "sd_check_media: received signal, state=%x\n",
20593			    un->un_mediastate);
20594		}
20595		/*
20596		 * Inc the counter to indicate the device once again
20597		 * has an active outstanding cmd.
20598		 */
20599		un->un_ncmds_in_driver++;
20600	}
20601
20602	/* invalidate geometry */
20603	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
20604		sr_ejected(un);
20605	}
20606
20607	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
20608		uint64_t	capacity;
20609		uint_t		lbasize;
20610
20611		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
20612		mutex_exit(SD_MUTEX(un));
20613		/*
20614		 * Since the following routines use SD_PATH_DIRECT, we must
20615		 * call PM directly before the upcoming disk accesses. This
20616		 * may cause the disk to be power/spin up.
20617		 */
20618
20619		if (sd_pm_entry(un) == DDI_SUCCESS) {
20620			rval = sd_send_scsi_READ_CAPACITY(un,
20621			    &capacity,
20622			    &lbasize, SD_PATH_DIRECT);
20623			if (rval != 0) {
20624				sd_pm_exit(un);
20625				mutex_enter(SD_MUTEX(un));
20626				goto done;
20627			}
20628		} else {
20629			rval = EIO;
20630			mutex_enter(SD_MUTEX(un));
20631			goto done;
20632		}
20633		mutex_enter(SD_MUTEX(un));
20634
20635		sd_update_block_info(un, lbasize, capacity);
20636
20637		/*
20638		 *  Check if the media in the device is writable or not
20639		 */
20640		if (ISCD(un))
20641			sd_check_for_writable_cd(un, SD_PATH_DIRECT);
20642
20643		mutex_exit(SD_MUTEX(un));
20644		cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
20645		if ((cmlb_validate(un->un_cmlbhandle, 0,
20646		    (void *)SD_PATH_DIRECT) == 0) && un->un_f_pkstats_enabled) {
20647			sd_set_pstats(un);
20648			SD_TRACE(SD_LOG_IO_PARTITION, un,
20649			    "sd_check_media: un:0x%p pstats created and "
20650			    "set\n", un);
20651		}
20652
20653		rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
20654		    SD_PATH_DIRECT);
20655		sd_pm_exit(un);
20656
20657		mutex_enter(SD_MUTEX(un));
20658	}
20659done:
20660	un->un_f_watcht_stopped = FALSE;
20661	if (un->un_swr_token) {
20662		/*
20663		 * Use of this local token and the mutex ensures that we avoid
20664		 * some race conditions associated with terminating the
20665		 * scsi watch.
20666		 */
20667		token = un->un_swr_token;
20668		un->un_swr_token = (opaque_t)NULL;
20669		mutex_exit(SD_MUTEX(un));
20670		(void) scsi_watch_request_terminate(token,
20671		    SCSI_WATCH_TERMINATE_WAIT);
20672		mutex_enter(SD_MUTEX(un));
20673	}
20674
20675	/*
20676	 * Update the capacity kstat value, if no media previously
20677	 * (capacity kstat is 0) and a media has been inserted
20678	 * (un_f_blockcount_is_valid == TRUE)
20679	 */
20680	if (un->un_errstats) {
20681		struct sd_errstats	*stp = NULL;
20682
20683		stp = (struct sd_errstats *)un->un_errstats->ks_data;
20684		if ((stp->sd_capacity.value.ui64 == 0) &&
20685		    (un->un_f_blockcount_is_valid == TRUE)) {
20686			stp->sd_capacity.value.ui64 =
20687			    (uint64_t)((uint64_t)un->un_blockcount *
20688			    un->un_sys_blocksize);
20689		}
20690	}
20691	mutex_exit(SD_MUTEX(un));
20692	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
20693	return (rval);
20694}
20695
20696
20697/*
20698 *    Function: sd_delayed_cv_broadcast
20699 *
20700 * Description: Delayed cv_broadcast to allow for target to recover from media
20701 *		insertion.
20702 *
20703 *   Arguments: arg - driver soft state (unit) structure
20704 */
20705
20706static void
20707sd_delayed_cv_broadcast(void *arg)
20708{
20709	struct sd_lun *un = arg;
20710
20711	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
20712
20713	mutex_enter(SD_MUTEX(un));
20714	un->un_dcvb_timeid = NULL;
20715	cv_broadcast(&un->un_state_cv);
20716	mutex_exit(SD_MUTEX(un));
20717}
20718
20719
20720/*
20721 *    Function: sd_media_watch_cb
20722 *
20723 * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
20724 *		routine processes the TUR sense data and updates the driver
20725 *		state if a transition has occurred. The user thread
20726 *		(sd_check_media) is then signalled.
20727 *
20728 *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
20729 *			among multiple watches that share this callback function
20730 *		resultp - scsi watch facility result packet containing scsi
20731 *			  packet, status byte and sense data
20732 *
20733 * Return Code: 0 for success, -1 for failure
20734 */
20735
20736static int
20737sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
20738{
20739	struct sd_lun			*un;
20740	struct scsi_status		*statusp = resultp->statusp;
20741	uint8_t				*sensep = (uint8_t *)resultp->sensep;
20742	enum dkio_state			state = DKIO_NONE;
20743	dev_t				dev = (dev_t)arg;
20744	uchar_t				actual_sense_length;
20745	uint8_t				skey, asc, ascq;
20746
20747	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20748		return (-1);
20749	}
20750	actual_sense_length = resultp->actual_sense_length;
20751
20752	mutex_enter(SD_MUTEX(un));
20753	SD_TRACE(SD_LOG_COMMON, un,
20754	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
20755	    *((char *)statusp), (void *)sensep, actual_sense_length);
20756
20757	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
20758		un->un_mediastate = DKIO_DEV_GONE;
20759		cv_broadcast(&un->un_state_cv);
20760		mutex_exit(SD_MUTEX(un));
20761
20762		return (0);
20763	}
20764
20765	/*
20766	 * If there was a check condition then sensep points to valid sense data
20767	 * If status was not a check condition but a reservation or busy status
20768	 * then the new state is DKIO_NONE
20769	 */
20770	if (sensep != NULL) {
20771		skey = scsi_sense_key(sensep);
20772		asc = scsi_sense_asc(sensep);
20773		ascq = scsi_sense_ascq(sensep);
20774
20775		SD_INFO(SD_LOG_COMMON, un,
20776		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
20777		    skey, asc, ascq);
20778		/* This routine only uses up to 13 bytes of sense data. */
20779		if (actual_sense_length >= 13) {
20780			if (skey == KEY_UNIT_ATTENTION) {
20781				if (asc == 0x28) {
20782					state = DKIO_INSERTED;
20783				}
20784			} else if (skey == KEY_NOT_READY) {
20785				/*
20786				 * if 02/04/02  means that the host
20787				 * should send start command. Explicitly
20788				 * leave the media state as is
20789				 * (inserted) as the media is inserted
20790				 * and host has stopped device for PM
20791				 * reasons. Upon next true read/write
20792				 * to this media will bring the
20793				 * device to the right state good for
20794				 * media access.
20795				 */
20796				if (asc == 0x3a) {
20797					state = DKIO_EJECTED;
20798				} else {
20799					/*
20800					 * If the drive is busy with an
20801					 * operation or long write, keep the
20802					 * media in an inserted state.
20803					 */
20804
20805					if ((asc == 0x04) &&
20806					    ((ascq == 0x02) ||
20807					    (ascq == 0x07) ||
20808					    (ascq == 0x08))) {
20809						state = DKIO_INSERTED;
20810					}
20811				}
20812			} else if (skey == KEY_NO_SENSE) {
20813				if ((asc == 0x00) && (ascq == 0x00)) {
20814					/*
20815					 * Sense Data 00/00/00 does not provide
20816					 * any information about the state of
20817					 * the media. Ignore it.
20818					 */
20819					mutex_exit(SD_MUTEX(un));
20820					return (0);
20821				}
20822			}
20823		}
20824	} else if ((*((char *)statusp) == STATUS_GOOD) &&
20825	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
20826		state = DKIO_INSERTED;
20827	}
20828
20829	SD_TRACE(SD_LOG_COMMON, un,
20830	    "sd_media_watch_cb: state=%x, specified=%x\n",
20831	    state, un->un_specified_mediastate);
20832
20833	/*
20834	 * now signal the waiting thread if this is *not* the specified state;
20835	 * delay the signal if the state is DKIO_INSERTED to allow the target
20836	 * to recover
20837	 */
20838	if (state != un->un_specified_mediastate) {
20839		un->un_mediastate = state;
20840		if (state == DKIO_INSERTED) {
20841			/*
20842			 * delay the signal to give the drive a chance
20843			 * to do what it apparently needs to do
20844			 */
20845			SD_TRACE(SD_LOG_COMMON, un,
20846			    "sd_media_watch_cb: delayed cv_broadcast\n");
20847			if (un->un_dcvb_timeid == NULL) {
20848				un->un_dcvb_timeid =
20849				    timeout(sd_delayed_cv_broadcast, un,
20850				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
20851			}
20852		} else {
20853			SD_TRACE(SD_LOG_COMMON, un,
20854			    "sd_media_watch_cb: immediate cv_broadcast\n");
20855			cv_broadcast(&un->un_state_cv);
20856		}
20857	}
20858	mutex_exit(SD_MUTEX(un));
20859	return (0);
20860}
20861
20862
20863/*
20864 *    Function: sd_dkio_get_temp
20865 *
20866 * Description: This routine is the driver entry point for handling ioctl
20867 *		requests to get the disk temperature.
20868 *
20869 *   Arguments: dev  - the device number
20870 *		arg  - pointer to user provided dk_temperature structure.
20871 *		flag - this argument is a pass through to ddi_copyxxx()
20872 *		       directly from the mode argument of ioctl().
20873 *
20874 * Return Code: 0
20875 *		EFAULT
20876 *		ENXIO
20877 *		EAGAIN
20878 */
20879
20880static int
20881sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
20882{
20883	struct sd_lun		*un = NULL;
20884	struct dk_temperature	*dktemp = NULL;
20885	uchar_t			*temperature_page;
20886	int			rval = 0;
20887	int			path_flag = SD_PATH_STANDARD;
20888
20889	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20890		return (ENXIO);
20891	}
20892
20893	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
20894
20895	/* copyin the disk temp argument to get the user flags */
20896	if (ddi_copyin((void *)arg, dktemp,
20897	    sizeof (struct dk_temperature), flag) != 0) {
20898		rval = EFAULT;
20899		goto done;
20900	}
20901
20902	/* Initialize the temperature to invalid. */
20903	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
20904	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
20905
20906	/*
20907	 * Note: Investigate removing the "bypass pm" semantic.
20908	 * Can we just bypass PM always?
20909	 */
20910	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
20911		path_flag = SD_PATH_DIRECT;
20912		ASSERT(!mutex_owned(&un->un_pm_mutex));
20913		mutex_enter(&un->un_pm_mutex);
20914		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
20915			/*
20916			 * If DKT_BYPASS_PM is set, and the drive happens to be
20917			 * in low power mode, we can not wake it up, Need to
20918			 * return EAGAIN.
20919			 */
20920			mutex_exit(&un->un_pm_mutex);
20921			rval = EAGAIN;
20922			goto done;
20923		} else {
20924			/*
20925			 * Indicate to PM the device is busy. This is required
20926			 * to avoid a race - i.e. the ioctl is issuing a
20927			 * command and the pm framework brings down the device
20928			 * to low power mode (possible power cut-off on some
20929			 * platforms).
20930			 */
20931			mutex_exit(&un->un_pm_mutex);
20932			if (sd_pm_entry(un) != DDI_SUCCESS) {
20933				rval = EAGAIN;
20934				goto done;
20935			}
20936		}
20937	}
20938
20939	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
20940
20941	if ((rval = sd_send_scsi_LOG_SENSE(un, temperature_page,
20942	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag)) != 0) {
20943		goto done2;
20944	}
20945
20946	/*
20947	 * For the current temperature verify that the parameter length is 0x02
20948	 * and the parameter code is 0x00
20949	 */
20950	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
20951	    (temperature_page[5] == 0x00)) {
20952		if (temperature_page[9] == 0xFF) {
20953			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
20954		} else {
20955			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
20956		}
20957	}
20958
20959	/*
20960	 * For the reference temperature verify that the parameter
20961	 * length is 0x02 and the parameter code is 0x01
20962	 */
20963	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
20964	    (temperature_page[11] == 0x01)) {
20965		if (temperature_page[15] == 0xFF) {
20966			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
20967		} else {
20968			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
20969		}
20970	}
20971
20972	/* Do the copyout regardless of the temperature commands status. */
20973	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
20974	    flag) != 0) {
20975		rval = EFAULT;
20976	}
20977
20978done2:
20979	if (path_flag == SD_PATH_DIRECT) {
20980		sd_pm_exit(un);
20981	}
20982
20983	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
20984done:
20985	if (dktemp != NULL) {
20986		kmem_free(dktemp, sizeof (struct dk_temperature));
20987	}
20988
20989	return (rval);
20990}
20991
20992
20993/*
20994 *    Function: sd_log_page_supported
20995 *
20996 * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
20997 *		supported log pages.
20998 *
20999 *   Arguments: un -
21000 *		log_page -
21001 *
21002 * Return Code: -1 - on error (log sense is optional and may not be supported).
21003 *		0  - log page not found.
21004 *  		1  - log page found.
21005 */
21006
21007static int
21008sd_log_page_supported(struct sd_lun *un, int log_page)
21009{
21010	uchar_t *log_page_data;
21011	int	i;
21012	int	match = 0;
21013	int	log_size;
21014
21015	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
21016
21017	if (sd_send_scsi_LOG_SENSE(un, log_page_data, 0xFF, 0, 0x01, 0,
21018	    SD_PATH_DIRECT) != 0) {
21019		SD_ERROR(SD_LOG_COMMON, un,
21020		    "sd_log_page_supported: failed log page retrieval\n");
21021		kmem_free(log_page_data, 0xFF);
21022		return (-1);
21023	}
21024	log_size = log_page_data[3];
21025
21026	/*
21027	 * The list of supported log pages start from the fourth byte. Check
21028	 * until we run out of log pages or a match is found.
21029	 */
21030	for (i = 4; (i < (log_size + 4)) && !match; i++) {
21031		if (log_page_data[i] == log_page) {
21032			match++;
21033		}
21034	}
21035	kmem_free(log_page_data, 0xFF);
21036	return (match);
21037}
21038
21039
21040/*
21041 *    Function: sd_mhdioc_failfast
21042 *
21043 * Description: This routine is the driver entry point for handling ioctl
21044 *		requests to enable/disable the multihost failfast option.
21045 *		(MHIOCENFAILFAST)
21046 *
21047 *   Arguments: dev	- the device number
21048 *		arg	- user specified probing interval.
21049 *		flag	- this argument is a pass through to ddi_copyxxx()
21050 *			  directly from the mode argument of ioctl().
21051 *
21052 * Return Code: 0
21053 *		EFAULT
21054 *		ENXIO
21055 */
21056
21057static int
21058sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
21059{
21060	struct sd_lun	*un = NULL;
21061	int		mh_time;
21062	int		rval = 0;
21063
21064	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21065		return (ENXIO);
21066	}
21067
21068	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
21069		return (EFAULT);
21070
21071	if (mh_time) {
21072		mutex_enter(SD_MUTEX(un));
21073		un->un_resvd_status |= SD_FAILFAST;
21074		mutex_exit(SD_MUTEX(un));
21075		/*
21076		 * If mh_time is INT_MAX, then this ioctl is being used for
21077		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
21078		 */
21079		if (mh_time != INT_MAX) {
21080			rval = sd_check_mhd(dev, mh_time);
21081		}
21082	} else {
21083		(void) sd_check_mhd(dev, 0);
21084		mutex_enter(SD_MUTEX(un));
21085		un->un_resvd_status &= ~SD_FAILFAST;
21086		mutex_exit(SD_MUTEX(un));
21087	}
21088	return (rval);
21089}
21090
21091
21092/*
21093 *    Function: sd_mhdioc_takeown
21094 *
21095 * Description: This routine is the driver entry point for handling ioctl
21096 *		requests to forcefully acquire exclusive access rights to the
21097 *		multihost disk (MHIOCTKOWN).
21098 *
21099 *   Arguments: dev	- the device number
21100 *		arg	- user provided structure specifying the delay
21101 *			  parameters in milliseconds
21102 *		flag	- this argument is a pass through to ddi_copyxxx()
21103 *			  directly from the mode argument of ioctl().
21104 *
21105 * Return Code: 0
21106 *		EFAULT
21107 *		ENXIO
21108 */
21109
21110static int
21111sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
21112{
21113	struct sd_lun		*un = NULL;
21114	struct mhioctkown	*tkown = NULL;
21115	int			rval = 0;
21116
21117	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21118		return (ENXIO);
21119	}
21120
21121	if (arg != NULL) {
21122		tkown = (struct mhioctkown *)
21123		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
21124		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
21125		if (rval != 0) {
21126			rval = EFAULT;
21127			goto error;
21128		}
21129	}
21130
21131	rval = sd_take_ownership(dev, tkown);
21132	mutex_enter(SD_MUTEX(un));
21133	if (rval == 0) {
21134		un->un_resvd_status |= SD_RESERVE;
21135		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
21136			sd_reinstate_resv_delay =
21137			    tkown->reinstate_resv_delay * 1000;
21138		} else {
21139			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
21140		}
21141		/*
21142		 * Give the scsi_watch routine interval set by
21143		 * the MHIOCENFAILFAST ioctl precedence here.
21144		 */
21145		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
21146			mutex_exit(SD_MUTEX(un));
21147			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
21148			SD_TRACE(SD_LOG_IOCTL_MHD, un,
21149			    "sd_mhdioc_takeown : %d\n",
21150			    sd_reinstate_resv_delay);
21151		} else {
21152			mutex_exit(SD_MUTEX(un));
21153		}
21154		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
21155		    sd_mhd_reset_notify_cb, (caddr_t)un);
21156	} else {
21157		un->un_resvd_status &= ~SD_RESERVE;
21158		mutex_exit(SD_MUTEX(un));
21159	}
21160
21161error:
21162	if (tkown != NULL) {
21163		kmem_free(tkown, sizeof (struct mhioctkown));
21164	}
21165	return (rval);
21166}
21167
21168
21169/*
21170 *    Function: sd_mhdioc_release
21171 *
21172 * Description: This routine is the driver entry point for handling ioctl
21173 *		requests to release exclusive access rights to the multihost
21174 *		disk (MHIOCRELEASE).
21175 *
21176 *   Arguments: dev	- the device number
21177 *
21178 * Return Code: 0
21179 *		ENXIO
21180 */
21181
21182static int
21183sd_mhdioc_release(dev_t dev)
21184{
21185	struct sd_lun		*un = NULL;
21186	timeout_id_t		resvd_timeid_save;
21187	int			resvd_status_save;
21188	int			rval = 0;
21189
21190	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21191		return (ENXIO);
21192	}
21193
21194	mutex_enter(SD_MUTEX(un));
21195	resvd_status_save = un->un_resvd_status;
21196	un->un_resvd_status &=
21197	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
21198	if (un->un_resvd_timeid) {
21199		resvd_timeid_save = un->un_resvd_timeid;
21200		un->un_resvd_timeid = NULL;
21201		mutex_exit(SD_MUTEX(un));
21202		(void) untimeout(resvd_timeid_save);
21203	} else {
21204		mutex_exit(SD_MUTEX(un));
21205	}
21206
21207	/*
21208	 * destroy any pending timeout thread that may be attempting to
21209	 * reinstate reservation on this device.
21210	 */
21211	sd_rmv_resv_reclaim_req(dev);
21212
21213	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
21214		mutex_enter(SD_MUTEX(un));
21215		if ((un->un_mhd_token) &&
21216		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
21217			mutex_exit(SD_MUTEX(un));
21218			(void) sd_check_mhd(dev, 0);
21219		} else {
21220			mutex_exit(SD_MUTEX(un));
21221		}
21222		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
21223		    sd_mhd_reset_notify_cb, (caddr_t)un);
21224	} else {
21225		/*
21226		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
21227		 */
21228		mutex_enter(SD_MUTEX(un));
21229		un->un_resvd_status = resvd_status_save;
21230		mutex_exit(SD_MUTEX(un));
21231	}
21232	return (rval);
21233}
21234
21235
21236/*
21237 *    Function: sd_mhdioc_register_devid
21238 *
21239 * Description: This routine is the driver entry point for handling ioctl
21240 *		requests to register the device id (MHIOCREREGISTERDEVID).
21241 *
21242 *		Note: The implementation for this ioctl has been updated to
21243 *		be consistent with the original PSARC case (1999/357)
21244 *		(4375899, 4241671, 4220005)
21245 *
21246 *   Arguments: dev	- the device number
21247 *
21248 * Return Code: 0
21249 *		ENXIO
21250 */
21251
21252static int
21253sd_mhdioc_register_devid(dev_t dev)
21254{
21255	struct sd_lun	*un = NULL;
21256	int		rval = 0;
21257
21258	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21259		return (ENXIO);
21260	}
21261
21262	ASSERT(!mutex_owned(SD_MUTEX(un)));
21263
21264	mutex_enter(SD_MUTEX(un));
21265
21266	/* If a devid already exists, de-register it */
21267	if (un->un_devid != NULL) {
21268		ddi_devid_unregister(SD_DEVINFO(un));
21269		/*
21270		 * After unregister devid, needs to free devid memory
21271		 */
21272		ddi_devid_free(un->un_devid);
21273		un->un_devid = NULL;
21274	}
21275
21276	/* Check for reservation conflict */
21277	mutex_exit(SD_MUTEX(un));
21278	rval = sd_send_scsi_TEST_UNIT_READY(un, 0);
21279	mutex_enter(SD_MUTEX(un));
21280
21281	switch (rval) {
21282	case 0:
21283		sd_register_devid(un, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
21284		break;
21285	case EACCES:
21286		break;
21287	default:
21288		rval = EIO;
21289	}
21290
21291	mutex_exit(SD_MUTEX(un));
21292	return (rval);
21293}
21294
21295
21296/*
21297 *    Function: sd_mhdioc_inkeys
21298 *
21299 * Description: This routine is the driver entry point for handling ioctl
21300 *		requests to issue the SCSI-3 Persistent In Read Keys command
21301 *		to the device (MHIOCGRP_INKEYS).
21302 *
21303 *   Arguments: dev	- the device number
21304 *		arg	- user provided in_keys structure
21305 *		flag	- this argument is a pass through to ddi_copyxxx()
21306 *			  directly from the mode argument of ioctl().
21307 *
21308 * Return Code: code returned by sd_persistent_reservation_in_read_keys()
21309 *		ENXIO
21310 *		EFAULT
21311 */
21312
21313static int
21314sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
21315{
21316	struct sd_lun		*un;
21317	mhioc_inkeys_t		inkeys;
21318	int			rval = 0;
21319
21320	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21321		return (ENXIO);
21322	}
21323
21324#ifdef _MULTI_DATAMODEL
21325	switch (ddi_model_convert_from(flag & FMODELS)) {
21326	case DDI_MODEL_ILP32: {
21327		struct mhioc_inkeys32	inkeys32;
21328
21329		if (ddi_copyin(arg, &inkeys32,
21330		    sizeof (struct mhioc_inkeys32), flag) != 0) {
21331			return (EFAULT);
21332		}
21333		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
21334		if ((rval = sd_persistent_reservation_in_read_keys(un,
21335		    &inkeys, flag)) != 0) {
21336			return (rval);
21337		}
21338		inkeys32.generation = inkeys.generation;
21339		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
21340		    flag) != 0) {
21341			return (EFAULT);
21342		}
21343		break;
21344	}
21345	case DDI_MODEL_NONE:
21346		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
21347		    flag) != 0) {
21348			return (EFAULT);
21349		}
21350		if ((rval = sd_persistent_reservation_in_read_keys(un,
21351		    &inkeys, flag)) != 0) {
21352			return (rval);
21353		}
21354		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
21355		    flag) != 0) {
21356			return (EFAULT);
21357		}
21358		break;
21359	}
21360
21361#else /* ! _MULTI_DATAMODEL */
21362
21363	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
21364		return (EFAULT);
21365	}
21366	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
21367	if (rval != 0) {
21368		return (rval);
21369	}
21370	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
21371		return (EFAULT);
21372	}
21373
21374#endif /* _MULTI_DATAMODEL */
21375
21376	return (rval);
21377}
21378
21379
21380/*
21381 *    Function: sd_mhdioc_inresv
21382 *
21383 * Description: This routine is the driver entry point for handling ioctl
21384 *		requests to issue the SCSI-3 Persistent In Read Reservations
21385 *		command to the device (MHIOCGRP_INKEYS).
21386 *
21387 *   Arguments: dev	- the device number
21388 *		arg	- user provided in_resv structure
21389 *		flag	- this argument is a pass through to ddi_copyxxx()
21390 *			  directly from the mode argument of ioctl().
21391 *
21392 * Return Code: code returned by sd_persistent_reservation_in_read_resv()
21393 *		ENXIO
21394 *		EFAULT
21395 */
21396
21397static int
21398sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
21399{
21400	struct sd_lun		*un;
21401	mhioc_inresvs_t		inresvs;
21402	int			rval = 0;
21403
21404	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21405		return (ENXIO);
21406	}
21407
21408#ifdef _MULTI_DATAMODEL
21409
21410	switch (ddi_model_convert_from(flag & FMODELS)) {
21411	case DDI_MODEL_ILP32: {
21412		struct mhioc_inresvs32	inresvs32;
21413
21414		if (ddi_copyin(arg, &inresvs32,
21415		    sizeof (struct mhioc_inresvs32), flag) != 0) {
21416			return (EFAULT);
21417		}
21418		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
21419		if ((rval = sd_persistent_reservation_in_read_resv(un,
21420		    &inresvs, flag)) != 0) {
21421			return (rval);
21422		}
21423		inresvs32.generation = inresvs.generation;
21424		if (ddi_copyout(&inresvs32, arg,
21425		    sizeof (struct mhioc_inresvs32), flag) != 0) {
21426			return (EFAULT);
21427		}
21428		break;
21429	}
21430	case DDI_MODEL_NONE:
21431		if (ddi_copyin(arg, &inresvs,
21432		    sizeof (mhioc_inresvs_t), flag) != 0) {
21433			return (EFAULT);
21434		}
21435		if ((rval = sd_persistent_reservation_in_read_resv(un,
21436		    &inresvs, flag)) != 0) {
21437			return (rval);
21438		}
21439		if (ddi_copyout(&inresvs, arg,
21440		    sizeof (mhioc_inresvs_t), flag) != 0) {
21441			return (EFAULT);
21442		}
21443		break;
21444	}
21445
21446#else /* ! _MULTI_DATAMODEL */
21447
21448	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
21449		return (EFAULT);
21450	}
21451	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
21452	if (rval != 0) {
21453		return (rval);
21454	}
21455	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
21456		return (EFAULT);
21457	}
21458
21459#endif /* ! _MULTI_DATAMODEL */
21460
21461	return (rval);
21462}
21463
21464
21465/*
21466 * The following routines support the clustering functionality described below
21467 * and implement lost reservation reclaim functionality.
21468 *
21469 * Clustering
21470 * ----------
21471 * The clustering code uses two different, independent forms of SCSI
21472 * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
21473 * Persistent Group Reservations. For any particular disk, it will use either
21474 * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
21475 *
21476 * SCSI-2
21477 * The cluster software takes ownership of a multi-hosted disk by issuing the
21478 * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
21479 * MHIOCRELEASE ioctl.  Closely related is the MHIOCENFAILFAST ioctl -- a
21480 * cluster, just after taking ownership of the disk with the MHIOCTKOWN ioctl
21481 * then issues the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the
21482 * driver. The meaning of failfast is that if the driver (on this host) ever
21483 * encounters the scsi error return code RESERVATION_CONFLICT from the device,
21484 * it should immediately panic the host. The motivation for this ioctl is that
21485 * if this host does encounter reservation conflict, the underlying cause is
21486 * that some other host of the cluster has decided that this host is no longer
21487 * in the cluster and has seized control of the disks for itself. Since this
21488 * host is no longer in the cluster, it ought to panic itself. The
21489 * MHIOCENFAILFAST ioctl does two things:
21490 *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
21491 *      error to panic the host
21492 *      (b) it sets up a periodic timer to test whether this host still has
21493 *      "access" (in that no other host has reserved the device):  if the
21494 *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
21495 *      purpose of that periodic timer is to handle scenarios where the host is
21496 *      otherwise temporarily quiescent, temporarily doing no real i/o.
21497 * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
21498 * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
21499 * the device itself.
21500 *
21501 * SCSI-3 PGR
21502 * A direct semantic implementation of the SCSI-3 Persistent Reservation
21503 * facility is supported through the shared multihost disk ioctls
21504 * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
21505 * MHIOCGRP_PREEMPTANDABORT)
21506 *
21507 * Reservation Reclaim:
21508 * --------------------
21509 * To support the lost reservation reclaim operations this driver creates a
21510 * single thread to handle reinstating reservations on all devices that have
21511 * lost reservations sd_resv_reclaim_requests are logged for all devices that
21512 * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
21513 * and the reservation reclaim thread loops through the requests to regain the
21514 * lost reservations.
21515 */
21516
21517/*
21518 *    Function: sd_check_mhd()
21519 *
21520 * Description: This function sets up and submits a scsi watch request or
21521 *		terminates an existing watch request. This routine is used in
21522 *		support of reservation reclaim.
21523 *
21524 *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
21525 *			 among multiple watches that share the callback function
21526 *		interval - the number of microseconds specifying the watch
21527 *			   interval for issuing TEST UNIT READY commands. If
21528 *			   set to 0 the watch should be terminated. If the
21529 *			   interval is set to 0 and if the device is required
21530 *			   to hold reservation while disabling failfast, the
21531 *			   watch is restarted with an interval of
21532 *			   reinstate_resv_delay.
21533 *
21534 * Return Code: 0	   - Successful submit/terminate of scsi watch request
21535 *		ENXIO      - Indicates an invalid device was specified
21536 *		EAGAIN     - Unable to submit the scsi watch request
21537 */
21538
21539static int
21540sd_check_mhd(dev_t dev, int interval)
21541{
21542	struct sd_lun	*un;
21543	opaque_t	token;
21544
21545	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21546		return (ENXIO);
21547	}
21548
21549	/* is this a watch termination request? */
21550	if (interval == 0) {
21551		mutex_enter(SD_MUTEX(un));
21552		/* if there is an existing watch task then terminate it */
21553		if (un->un_mhd_token) {
21554			token = un->un_mhd_token;
21555			un->un_mhd_token = NULL;
21556			mutex_exit(SD_MUTEX(un));
21557			(void) scsi_watch_request_terminate(token,
21558			    SCSI_WATCH_TERMINATE_WAIT);
21559			mutex_enter(SD_MUTEX(un));
21560		} else {
21561			mutex_exit(SD_MUTEX(un));
21562			/*
21563			 * Note: If we return here we don't check for the
21564			 * failfast case. This is the original legacy
21565			 * implementation but perhaps we should be checking
21566			 * the failfast case.
21567			 */
21568			return (0);
21569		}
21570		/*
21571		 * If the device is required to hold reservation while
21572		 * disabling failfast, we need to restart the scsi_watch
21573		 * routine with an interval of reinstate_resv_delay.
21574		 */
21575		if (un->un_resvd_status & SD_RESERVE) {
21576			interval = sd_reinstate_resv_delay/1000;
21577		} else {
21578			/* no failfast so bail */
21579			mutex_exit(SD_MUTEX(un));
21580			return (0);
21581		}
21582		mutex_exit(SD_MUTEX(un));
21583	}
21584
21585	/*
21586	 * adjust minimum time interval to 1 second,
21587	 * and convert from msecs to usecs
21588	 */
21589	if (interval > 0 && interval < 1000) {
21590		interval = 1000;
21591	}
21592	interval *= 1000;
21593
21594	/*
21595	 * submit the request to the scsi_watch service
21596	 */
21597	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
21598	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
21599	if (token == NULL) {
21600		return (EAGAIN);
21601	}
21602
21603	/*
21604	 * save token for termination later on
21605	 */
21606	mutex_enter(SD_MUTEX(un));
21607	un->un_mhd_token = token;
21608	mutex_exit(SD_MUTEX(un));
21609	return (0);
21610}
21611
21612
21613/*
21614 *    Function: sd_mhd_watch_cb()
21615 *
21616 * Description: This function is the call back function used by the scsi watch
21617 *		facility. The scsi watch facility sends the "Test Unit Ready"
21618 *		and processes the status. If applicable (i.e. a "Unit Attention"
21619 *		status and automatic "Request Sense" not used) the scsi watch
21620 *		facility will send a "Request Sense" and retrieve the sense data
21621 *		to be passed to this callback function. In either case the
21622 *		automatic "Request Sense" or the facility submitting one, this
21623 *		callback is passed the status and sense data.
21624 *
21625 *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
21626 *			among multiple watches that share this callback function
21627 *		resultp - scsi watch facility result packet containing scsi
21628 *			  packet, status byte and sense data
21629 *
21630 * Return Code: 0 - continue the watch task
21631 *		non-zero - terminate the watch task
21632 */
21633
21634static int
21635sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
21636{
21637	struct sd_lun			*un;
21638	struct scsi_status		*statusp;
21639	uint8_t				*sensep;
21640	struct scsi_pkt			*pkt;
21641	uchar_t				actual_sense_length;
21642	dev_t  				dev = (dev_t)arg;
21643
21644	ASSERT(resultp != NULL);
21645	statusp			= resultp->statusp;
21646	sensep			= (uint8_t *)resultp->sensep;
21647	pkt			= resultp->pkt;
21648	actual_sense_length	= resultp->actual_sense_length;
21649
21650	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21651		return (ENXIO);
21652	}
21653
21654	SD_TRACE(SD_LOG_IOCTL_MHD, un,
21655	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
21656	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
21657
21658	/* Begin processing of the status and/or sense data */
21659	if (pkt->pkt_reason != CMD_CMPLT) {
21660		/* Handle the incomplete packet */
21661		sd_mhd_watch_incomplete(un, pkt);
21662		return (0);
21663	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
21664		if (*((unsigned char *)statusp)
21665		    == STATUS_RESERVATION_CONFLICT) {
21666			/*
21667			 * Handle a reservation conflict by panicking if
21668			 * configured for failfast or by logging the conflict
21669			 * and updating the reservation status
21670			 */
21671			mutex_enter(SD_MUTEX(un));
21672			if ((un->un_resvd_status & SD_FAILFAST) &&
21673			    (sd_failfast_enable)) {
21674				sd_panic_for_res_conflict(un);
21675				/*NOTREACHED*/
21676			}
21677			SD_INFO(SD_LOG_IOCTL_MHD, un,
21678			    "sd_mhd_watch_cb: Reservation Conflict\n");
21679			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
21680			mutex_exit(SD_MUTEX(un));
21681		}
21682	}
21683
21684	if (sensep != NULL) {
21685		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
21686			mutex_enter(SD_MUTEX(un));
21687			if ((scsi_sense_asc(sensep) ==
21688			    SD_SCSI_RESET_SENSE_CODE) &&
21689			    (un->un_resvd_status & SD_RESERVE)) {
21690				/*
21691				 * The additional sense code indicates a power
21692				 * on or bus device reset has occurred; update
21693				 * the reservation status.
21694				 */
21695				un->un_resvd_status |=
21696				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
21697				SD_INFO(SD_LOG_IOCTL_MHD, un,
21698				    "sd_mhd_watch_cb: Lost Reservation\n");
21699			}
21700		} else {
21701			return (0);
21702		}
21703	} else {
21704		mutex_enter(SD_MUTEX(un));
21705	}
21706
21707	if ((un->un_resvd_status & SD_RESERVE) &&
21708	    (un->un_resvd_status & SD_LOST_RESERVE)) {
21709		if (un->un_resvd_status & SD_WANT_RESERVE) {
21710			/*
21711			 * A reset occurred in between the last probe and this
21712			 * one so if a timeout is pending cancel it.
21713			 */
21714			if (un->un_resvd_timeid) {
21715				timeout_id_t temp_id = un->un_resvd_timeid;
21716				un->un_resvd_timeid = NULL;
21717				mutex_exit(SD_MUTEX(un));
21718				(void) untimeout(temp_id);
21719				mutex_enter(SD_MUTEX(un));
21720			}
21721			un->un_resvd_status &= ~SD_WANT_RESERVE;
21722		}
21723		if (un->un_resvd_timeid == 0) {
21724			/* Schedule a timeout to handle the lost reservation */
21725			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
21726			    (void *)dev,
21727			    drv_usectohz(sd_reinstate_resv_delay));
21728		}
21729	}
21730	mutex_exit(SD_MUTEX(un));
21731	return (0);
21732}
21733
21734
21735/*
21736 *    Function: sd_mhd_watch_incomplete()
21737 *
21738 * Description: This function is used to find out why a scsi pkt sent by the
21739 *		scsi watch facility was not completed. Under some scenarios this
21740 *		routine will return. Otherwise it will send a bus reset to see
21741 *		if the drive is still online.
21742 *
21743 *   Arguments: un  - driver soft state (unit) structure
21744 *		pkt - incomplete scsi pkt
21745 */
21746
21747static void
21748sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
21749{
21750	int	be_chatty;
21751	int	perr;
21752
21753	ASSERT(pkt != NULL);
21754	ASSERT(un != NULL);
21755	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
21756	perr		= (pkt->pkt_statistics & STAT_PERR);
21757
21758	mutex_enter(SD_MUTEX(un));
21759	if (un->un_state == SD_STATE_DUMPING) {
21760		mutex_exit(SD_MUTEX(un));
21761		return;
21762	}
21763
21764	switch (pkt->pkt_reason) {
21765	case CMD_UNX_BUS_FREE:
21766		/*
21767		 * If we had a parity error that caused the target to drop BSY*,
21768		 * don't be chatty about it.
21769		 */
21770		if (perr && be_chatty) {
21771			be_chatty = 0;
21772		}
21773		break;
21774	case CMD_TAG_REJECT:
21775		/*
21776		 * The SCSI-2 spec states that a tag reject will be sent by the
21777		 * target if tagged queuing is not supported. A tag reject may
21778		 * also be sent during certain initialization periods or to
21779		 * control internal resources. For the latter case the target
21780		 * may also return Queue Full.
21781		 *
21782		 * If this driver receives a tag reject from a target that is
21783		 * going through an init period or controlling internal
21784		 * resources tagged queuing will be disabled. This is a less
21785		 * than optimal behavior but the driver is unable to determine
21786		 * the target state and assumes tagged queueing is not supported
21787		 */
21788		pkt->pkt_flags = 0;
21789		un->un_tagflags = 0;
21790
21791		if (un->un_f_opt_queueing == TRUE) {
21792			un->un_throttle = min(un->un_throttle, 3);
21793		} else {
21794			un->un_throttle = 1;
21795		}
21796		mutex_exit(SD_MUTEX(un));
21797		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
21798		mutex_enter(SD_MUTEX(un));
21799		break;
21800	case CMD_INCOMPLETE:
21801		/*
21802		 * The transport stopped with an abnormal state, fallthrough and
21803		 * reset the target and/or bus unless selection did not complete
21804		 * (indicated by STATE_GOT_BUS) in which case we don't want to
21805		 * go through a target/bus reset
21806		 */
21807		if (pkt->pkt_state == STATE_GOT_BUS) {
21808			break;
21809		}
21810		/*FALLTHROUGH*/
21811
21812	case CMD_TIMEOUT:
21813	default:
21814		/*
21815		 * The lun may still be running the command, so a lun reset
21816		 * should be attempted. If the lun reset fails or cannot be
21817		 * issued, than try a target reset. Lastly try a bus reset.
21818		 */
21819		if ((pkt->pkt_statistics &
21820		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
21821			int reset_retval = 0;
21822			mutex_exit(SD_MUTEX(un));
21823			if (un->un_f_allow_bus_device_reset == TRUE) {
21824				if (un->un_f_lun_reset_enabled == TRUE) {
21825					reset_retval =
21826					    scsi_reset(SD_ADDRESS(un),
21827					    RESET_LUN);
21828				}
21829				if (reset_retval == 0) {
21830					reset_retval =
21831					    scsi_reset(SD_ADDRESS(un),
21832					    RESET_TARGET);
21833				}
21834			}
21835			if (reset_retval == 0) {
21836				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
21837			}
21838			mutex_enter(SD_MUTEX(un));
21839		}
21840		break;
21841	}
21842
21843	/* A device/bus reset has occurred; update the reservation status. */
21844	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
21845	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
21846		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
21847			un->un_resvd_status |=
21848			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
21849			SD_INFO(SD_LOG_IOCTL_MHD, un,
21850			    "sd_mhd_watch_incomplete: Lost Reservation\n");
21851		}
21852	}
21853
21854	/*
21855	 * The disk has been turned off; Update the device state.
21856	 *
21857	 * Note: Should we be offlining the disk here?
21858	 */
21859	if (pkt->pkt_state == STATE_GOT_BUS) {
21860		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
21861		    "Disk not responding to selection\n");
21862		if (un->un_state != SD_STATE_OFFLINE) {
21863			New_state(un, SD_STATE_OFFLINE);
21864		}
21865	} else if (be_chatty) {
21866		/*
21867		 * suppress messages if they are all the same pkt reason;
21868		 * with TQ, many (up to 256) are returned with the same
21869		 * pkt_reason
21870		 */
21871		if (pkt->pkt_reason != un->un_last_pkt_reason) {
21872			SD_ERROR(SD_LOG_IOCTL_MHD, un,
21873			    "sd_mhd_watch_incomplete: "
21874			    "SCSI transport failed: reason '%s'\n",
21875			    scsi_rname(pkt->pkt_reason));
21876		}
21877	}
21878	un->un_last_pkt_reason = pkt->pkt_reason;
21879	mutex_exit(SD_MUTEX(un));
21880}
21881
21882
21883/*
21884 *    Function: sd_sname()
21885 *
21886 * Description: This is a simple little routine to return a string containing
21887 *		a printable description of command status byte for use in
21888 *		logging.
21889 *
21890 *   Arguments: status - pointer to a status byte
21891 *
21892 * Return Code: char * - string containing status description.
21893 */
21894
21895static char *
21896sd_sname(uchar_t status)
21897{
21898	switch (status & STATUS_MASK) {
21899	case STATUS_GOOD:
21900		return ("good status");
21901	case STATUS_CHECK:
21902		return ("check condition");
21903	case STATUS_MET:
21904		return ("condition met");
21905	case STATUS_BUSY:
21906		return ("busy");
21907	case STATUS_INTERMEDIATE:
21908		return ("intermediate");
21909	case STATUS_INTERMEDIATE_MET:
21910		return ("intermediate - condition met");
21911	case STATUS_RESERVATION_CONFLICT:
21912		return ("reservation_conflict");
21913	case STATUS_TERMINATED:
21914		return ("command terminated");
21915	case STATUS_QFULL:
21916		return ("queue full");
21917	default:
21918		return ("<unknown status>");
21919	}
21920}
21921
21922
21923/*
21924 *    Function: sd_mhd_resvd_recover()
21925 *
21926 * Description: This function adds a reservation entry to the
21927 *		sd_resv_reclaim_request list and signals the reservation
21928 *		reclaim thread that there is work pending. If the reservation
21929 *		reclaim thread has not been previously created this function
21930 *		will kick it off.
21931 *
21932 *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
21933 *			among multiple watches that share this callback function
21934 *
21935 *     Context: This routine is called by timeout() and is run in interrupt
21936 *		context. It must not sleep or call other functions which may
21937 *		sleep.
21938 */
21939
21940static void
21941sd_mhd_resvd_recover(void *arg)
21942{
21943	dev_t			dev = (dev_t)arg;
21944	struct sd_lun		*un;
21945	struct sd_thr_request	*sd_treq = NULL;
21946	struct sd_thr_request	*sd_cur = NULL;
21947	struct sd_thr_request	*sd_prev = NULL;
21948	int			already_there = 0;
21949
21950	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21951		return;
21952	}
21953
21954	mutex_enter(SD_MUTEX(un));
21955	un->un_resvd_timeid = NULL;
21956	if (un->un_resvd_status & SD_WANT_RESERVE) {
21957		/*
21958		 * There was a reset so don't issue the reserve, allow the
21959		 * sd_mhd_watch_cb callback function to notice this and
21960		 * reschedule the timeout for reservation.
21961		 */
21962		mutex_exit(SD_MUTEX(un));
21963		return;
21964	}
21965	mutex_exit(SD_MUTEX(un));
21966
21967	/*
21968	 * Add this device to the sd_resv_reclaim_request list and the
21969	 * sd_resv_reclaim_thread should take care of the rest.
21970	 *
21971	 * Note: We can't sleep in this context so if the memory allocation
21972	 * fails allow the sd_mhd_watch_cb callback function to notice this and
21973	 * reschedule the timeout for reservation.  (4378460)
21974	 */
21975	sd_treq = (struct sd_thr_request *)
21976	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
21977	if (sd_treq == NULL) {
21978		return;
21979	}
21980
21981	sd_treq->sd_thr_req_next = NULL;
21982	sd_treq->dev = dev;
21983	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
21984	if (sd_tr.srq_thr_req_head == NULL) {
21985		sd_tr.srq_thr_req_head = sd_treq;
21986	} else {
21987		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
21988		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
21989			if (sd_cur->dev == dev) {
21990				/*
21991				 * already in Queue so don't log
21992				 * another request for the device
21993				 */
21994				already_there = 1;
21995				break;
21996			}
21997			sd_prev = sd_cur;
21998		}
21999		if (!already_there) {
22000			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
22001			    "logging request for %lx\n", dev);
22002			sd_prev->sd_thr_req_next = sd_treq;
22003		} else {
22004			kmem_free(sd_treq, sizeof (struct sd_thr_request));
22005		}
22006	}
22007
22008	/*
22009	 * Create a kernel thread to do the reservation reclaim and free up this
22010	 * thread. We cannot block this thread while we go away to do the
22011	 * reservation reclaim
22012	 */
22013	if (sd_tr.srq_resv_reclaim_thread == NULL)
22014		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
22015		    sd_resv_reclaim_thread, NULL,
22016		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
22017
22018	/* Tell the reservation reclaim thread that it has work to do */
22019	cv_signal(&sd_tr.srq_resv_reclaim_cv);
22020	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22021}
22022
22023/*
22024 *    Function: sd_resv_reclaim_thread()
22025 *
22026 * Description: This function implements the reservation reclaim operations
22027 *
22028 *   Arguments: arg - the device 'dev_t' is used for context to discriminate
22029 *		      among multiple watches that share this callback function
22030 */
22031
22032static void
22033sd_resv_reclaim_thread()
22034{
22035	struct sd_lun		*un;
22036	struct sd_thr_request	*sd_mhreq;
22037
22038	/* Wait for work */
22039	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22040	if (sd_tr.srq_thr_req_head == NULL) {
22041		cv_wait(&sd_tr.srq_resv_reclaim_cv,
22042		    &sd_tr.srq_resv_reclaim_mutex);
22043	}
22044
22045	/* Loop while we have work */
22046	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
22047		un = ddi_get_soft_state(sd_state,
22048		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
22049		if (un == NULL) {
22050			/*
22051			 * softstate structure is NULL so just
22052			 * dequeue the request and continue
22053			 */
22054			sd_tr.srq_thr_req_head =
22055			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
22056			kmem_free(sd_tr.srq_thr_cur_req,
22057			    sizeof (struct sd_thr_request));
22058			continue;
22059		}
22060
22061		/* dequeue the request */
22062		sd_mhreq = sd_tr.srq_thr_cur_req;
22063		sd_tr.srq_thr_req_head =
22064		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
22065		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22066
22067		/*
22068		 * Reclaim reservation only if SD_RESERVE is still set. There
22069		 * may have been a call to MHIOCRELEASE before we got here.
22070		 */
22071		mutex_enter(SD_MUTEX(un));
22072		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
22073			/*
22074			 * Note: The SD_LOST_RESERVE flag is cleared before
22075			 * reclaiming the reservation. If this is done after the
22076			 * call to sd_reserve_release a reservation loss in the
22077			 * window between pkt completion of reserve cmd and
22078			 * mutex_enter below may not be recognized
22079			 */
22080			un->un_resvd_status &= ~SD_LOST_RESERVE;
22081			mutex_exit(SD_MUTEX(un));
22082
22083			if (sd_reserve_release(sd_mhreq->dev,
22084			    SD_RESERVE) == 0) {
22085				mutex_enter(SD_MUTEX(un));
22086				un->un_resvd_status |= SD_RESERVE;
22087				mutex_exit(SD_MUTEX(un));
22088				SD_INFO(SD_LOG_IOCTL_MHD, un,
22089				    "sd_resv_reclaim_thread: "
22090				    "Reservation Recovered\n");
22091			} else {
22092				mutex_enter(SD_MUTEX(un));
22093				un->un_resvd_status |= SD_LOST_RESERVE;
22094				mutex_exit(SD_MUTEX(un));
22095				SD_INFO(SD_LOG_IOCTL_MHD, un,
22096				    "sd_resv_reclaim_thread: Failed "
22097				    "Reservation Recovery\n");
22098			}
22099		} else {
22100			mutex_exit(SD_MUTEX(un));
22101		}
22102		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22103		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
22104		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
22105		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
22106		/*
22107		 * wakeup the destroy thread if anyone is waiting on
22108		 * us to complete.
22109		 */
22110		cv_signal(&sd_tr.srq_inprocess_cv);
22111		SD_TRACE(SD_LOG_IOCTL_MHD, un,
22112		    "sd_resv_reclaim_thread: cv_signalling current request \n");
22113	}
22114
22115	/*
22116	 * cleanup the sd_tr structure now that this thread will not exist
22117	 */
22118	ASSERT(sd_tr.srq_thr_req_head == NULL);
22119	ASSERT(sd_tr.srq_thr_cur_req == NULL);
22120	sd_tr.srq_resv_reclaim_thread = NULL;
22121	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22122	thread_exit();
22123}
22124
22125
22126/*
22127 *    Function: sd_rmv_resv_reclaim_req()
22128 *
22129 * Description: This function removes any pending reservation reclaim requests
22130 *		for the specified device.
22131 *
22132 *   Arguments: dev - the device 'dev_t'
22133 */
22134
22135static void
22136sd_rmv_resv_reclaim_req(dev_t dev)
22137{
22138	struct sd_thr_request *sd_mhreq;
22139	struct sd_thr_request *sd_prev;
22140
22141	/* Remove a reservation reclaim request from the list */
22142	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22143	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
22144		/*
22145		 * We are attempting to reinstate reservation for
22146		 * this device. We wait for sd_reserve_release()
22147		 * to return before we return.
22148		 */
22149		cv_wait(&sd_tr.srq_inprocess_cv,
22150		    &sd_tr.srq_resv_reclaim_mutex);
22151	} else {
22152		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
22153		if (sd_mhreq && sd_mhreq->dev == dev) {
22154			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
22155			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
22156			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22157			return;
22158		}
22159		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
22160			if (sd_mhreq && sd_mhreq->dev == dev) {
22161				break;
22162			}
22163			sd_prev = sd_mhreq;
22164		}
22165		if (sd_mhreq != NULL) {
22166			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
22167			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
22168		}
22169	}
22170	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22171}
22172
22173
22174/*
22175 *    Function: sd_mhd_reset_notify_cb()
22176 *
22177 * Description: This is a call back function for scsi_reset_notify. This
22178 *		function updates the softstate reserved status and logs the
22179 *		reset. The driver scsi watch facility callback function
22180 *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
22181 *		will reclaim the reservation.
22182 *
22183 *   Arguments: arg  - driver soft state (unit) structure
22184 */
22185
22186static void
22187sd_mhd_reset_notify_cb(caddr_t arg)
22188{
22189	struct sd_lun *un = (struct sd_lun *)arg;
22190
22191	mutex_enter(SD_MUTEX(un));
22192	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
22193		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
22194		SD_INFO(SD_LOG_IOCTL_MHD, un,
22195		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
22196	}
22197	mutex_exit(SD_MUTEX(un));
22198}
22199
22200
22201/*
22202 *    Function: sd_take_ownership()
22203 *
22204 * Description: This routine implements an algorithm to achieve a stable
22205 *		reservation on disks which don't implement priority reserve,
22206 *		and makes sure that other host lose re-reservation attempts.
22207 *		This algorithm contains of a loop that keeps issuing the RESERVE
22208 *		for some period of time (min_ownership_delay, default 6 seconds)
22209 *		During that loop, it looks to see if there has been a bus device
22210 *		reset or bus reset (both of which cause an existing reservation
22211 *		to be lost). If the reservation is lost issue RESERVE until a
22212 *		period of min_ownership_delay with no resets has gone by, or
22213 *		until max_ownership_delay has expired. This loop ensures that
22214 *		the host really did manage to reserve the device, in spite of
22215 *		resets. The looping for min_ownership_delay (default six
22216 *		seconds) is important to early generation clustering products,
22217 *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
22218 *		MHIOCENFAILFAST periodic timer of two seconds. By having
22219 *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
22220 *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
22221 *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
22222 *		have already noticed, via the MHIOCENFAILFAST polling, that it
22223 *		no longer "owns" the disk and will have panicked itself.  Thus,
22224 *		the host issuing the MHIOCTKOWN is assured (with timing
22225 *		dependencies) that by the time it actually starts to use the
22226 *		disk for real work, the old owner is no longer accessing it.
22227 *
22228 *		min_ownership_delay is the minimum amount of time for which the
22229 *		disk must be reserved continuously devoid of resets before the
22230 *		MHIOCTKOWN ioctl will return success.
22231 *
22232 *		max_ownership_delay indicates the amount of time by which the
22233 *		take ownership should succeed or timeout with an error.
22234 *
22235 *   Arguments: dev - the device 'dev_t'
22236 *		*p  - struct containing timing info.
22237 *
22238 * Return Code: 0 for success or error code
22239 */
22240
22241static int
22242sd_take_ownership(dev_t dev, struct mhioctkown *p)
22243{
22244	struct sd_lun	*un;
22245	int		rval;
22246	int		err;
22247	int		reservation_count   = 0;
22248	int		min_ownership_delay =  6000000; /* in usec */
22249	int		max_ownership_delay = 30000000; /* in usec */
22250	clock_t		start_time;	/* starting time of this algorithm */
22251	clock_t		end_time;	/* time limit for giving up */
22252	clock_t		ownership_time;	/* time limit for stable ownership */
22253	clock_t		current_time;
22254	clock_t		previous_current_time;
22255
22256	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22257		return (ENXIO);
22258	}
22259
22260	/*
22261	 * Attempt a device reservation. A priority reservation is requested.
22262	 */
22263	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
22264	    != SD_SUCCESS) {
22265		SD_ERROR(SD_LOG_IOCTL_MHD, un,
22266		    "sd_take_ownership: return(1)=%d\n", rval);
22267		return (rval);
22268	}
22269
22270	/* Update the softstate reserved status to indicate the reservation */
22271	mutex_enter(SD_MUTEX(un));
22272	un->un_resvd_status |= SD_RESERVE;
22273	un->un_resvd_status &=
22274	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
22275	mutex_exit(SD_MUTEX(un));
22276
22277	if (p != NULL) {
22278		if (p->min_ownership_delay != 0) {
22279			min_ownership_delay = p->min_ownership_delay * 1000;
22280		}
22281		if (p->max_ownership_delay != 0) {
22282			max_ownership_delay = p->max_ownership_delay * 1000;
22283		}
22284	}
22285	SD_INFO(SD_LOG_IOCTL_MHD, un,
22286	    "sd_take_ownership: min, max delays: %d, %d\n",
22287	    min_ownership_delay, max_ownership_delay);
22288
22289	start_time = ddi_get_lbolt();
22290	current_time	= start_time;
22291	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
22292	end_time	= start_time + drv_usectohz(max_ownership_delay);
22293
22294	while (current_time - end_time < 0) {
22295		delay(drv_usectohz(500000));
22296
22297		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
22298			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
22299				mutex_enter(SD_MUTEX(un));
22300				rval = (un->un_resvd_status &
22301				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
22302				mutex_exit(SD_MUTEX(un));
22303				break;
22304			}
22305		}
22306		previous_current_time = current_time;
22307		current_time = ddi_get_lbolt();
22308		mutex_enter(SD_MUTEX(un));
22309		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
22310			ownership_time = ddi_get_lbolt() +
22311			    drv_usectohz(min_ownership_delay);
22312			reservation_count = 0;
22313		} else {
22314			reservation_count++;
22315		}
22316		un->un_resvd_status |= SD_RESERVE;
22317		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
22318		mutex_exit(SD_MUTEX(un));
22319
22320		SD_INFO(SD_LOG_IOCTL_MHD, un,
22321		    "sd_take_ownership: ticks for loop iteration=%ld, "
22322		    "reservation=%s\n", (current_time - previous_current_time),
22323		    reservation_count ? "ok" : "reclaimed");
22324
22325		if (current_time - ownership_time >= 0 &&
22326		    reservation_count >= 4) {
22327			rval = 0; /* Achieved a stable ownership */
22328			break;
22329		}
22330		if (current_time - end_time >= 0) {
22331			rval = EACCES; /* No ownership in max possible time */
22332			break;
22333		}
22334	}
22335	SD_TRACE(SD_LOG_IOCTL_MHD, un,
22336	    "sd_take_ownership: return(2)=%d\n", rval);
22337	return (rval);
22338}
22339
22340
22341/*
22342 *    Function: sd_reserve_release()
22343 *
22344 * Description: This function builds and sends scsi RESERVE, RELEASE, and
22345 *		PRIORITY RESERVE commands based on a user specified command type
22346 *
22347 *   Arguments: dev - the device 'dev_t'
22348 *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
22349 *		      SD_RESERVE, SD_RELEASE
22350 *
22351 * Return Code: 0 or Error Code
22352 */
22353
22354static int
22355sd_reserve_release(dev_t dev, int cmd)
22356{
22357	struct uscsi_cmd	*com = NULL;
22358	struct sd_lun		*un = NULL;
22359	char			cdb[CDB_GROUP0];
22360	int			rval;
22361
22362	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
22363	    (cmd == SD_PRIORITY_RESERVE));
22364
22365	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22366		return (ENXIO);
22367	}
22368
22369	/* instantiate and initialize the command and cdb */
22370	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
22371	bzero(cdb, CDB_GROUP0);
22372	com->uscsi_flags   = USCSI_SILENT;
22373	com->uscsi_timeout = un->un_reserve_release_time;
22374	com->uscsi_cdblen  = CDB_GROUP0;
22375	com->uscsi_cdb	   = cdb;
22376	if (cmd == SD_RELEASE) {
22377		cdb[0] = SCMD_RELEASE;
22378	} else {
22379		cdb[0] = SCMD_RESERVE;
22380	}
22381
22382	/* Send the command. */
22383	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
22384	    SD_PATH_STANDARD);
22385
22386	/*
22387	 * "break" a reservation that is held by another host, by issuing a
22388	 * reset if priority reserve is desired, and we could not get the
22389	 * device.
22390	 */
22391	if ((cmd == SD_PRIORITY_RESERVE) &&
22392	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
22393		/*
22394		 * First try to reset the LUN. If we cannot, then try a target
22395		 * reset, followed by a bus reset if the target reset fails.
22396		 */
22397		int reset_retval = 0;
22398		if (un->un_f_lun_reset_enabled == TRUE) {
22399			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
22400		}
22401		if (reset_retval == 0) {
22402			/* The LUN reset either failed or was not issued */
22403			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
22404		}
22405		if ((reset_retval == 0) &&
22406		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
22407			rval = EIO;
22408			kmem_free(com, sizeof (*com));
22409			return (rval);
22410		}
22411
22412		bzero(com, sizeof (struct uscsi_cmd));
22413		com->uscsi_flags   = USCSI_SILENT;
22414		com->uscsi_cdb	   = cdb;
22415		com->uscsi_cdblen  = CDB_GROUP0;
22416		com->uscsi_timeout = 5;
22417
22418		/*
22419		 * Reissue the last reserve command, this time without request
22420		 * sense.  Assume that it is just a regular reserve command.
22421		 */
22422		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
22423		    SD_PATH_STANDARD);
22424	}
22425
22426	/* Return an error if still getting a reservation conflict. */
22427	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
22428		rval = EACCES;
22429	}
22430
22431	kmem_free(com, sizeof (*com));
22432	return (rval);
22433}
22434
22435
22436#define	SD_NDUMP_RETRIES	12
22437/*
22438 *	System Crash Dump routine
22439 */
22440
22441static int
22442sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
22443{
22444	int		instance;
22445	int		partition;
22446	int		i;
22447	int		err;
22448	struct sd_lun	*un;
22449	struct scsi_pkt *wr_pktp;
22450	struct buf	*wr_bp;
22451	struct buf	wr_buf;
22452	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
22453	daddr_t		tgt_blkno;	/* rmw - blkno for target */
22454	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
22455	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
22456	size_t		io_start_offset;
22457	int		doing_rmw = FALSE;
22458	int		rval;
22459#if defined(__i386) || defined(__amd64)
22460	ssize_t dma_resid;
22461	daddr_t oblkno;
22462#endif
22463	diskaddr_t	nblks = 0;
22464	diskaddr_t	start_block;
22465
22466	instance = SDUNIT(dev);
22467	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
22468	    !SD_IS_VALID_LABEL(un) || ISCD(un)) {
22469		return (ENXIO);
22470	}
22471
22472	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
22473
22474	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
22475
22476	partition = SDPART(dev);
22477	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
22478
22479	/* Validate blocks to dump at against partition size. */
22480
22481	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
22482	    &nblks, &start_block, NULL, NULL, (void *)SD_PATH_DIRECT);
22483
22484	if ((blkno + nblk) > nblks) {
22485		SD_TRACE(SD_LOG_DUMP, un,
22486		    "sddump: dump range larger than partition: "
22487		    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
22488		    blkno, nblk, nblks);
22489		return (EINVAL);
22490	}
22491
22492	mutex_enter(&un->un_pm_mutex);
22493	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
22494		struct scsi_pkt *start_pktp;
22495
22496		mutex_exit(&un->un_pm_mutex);
22497
22498		/*
22499		 * use pm framework to power on HBA 1st
22500		 */
22501		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
22502
22503		/*
22504		 * Dump no long uses sdpower to power on a device, it's
22505		 * in-line here so it can be done in polled mode.
22506		 */
22507
22508		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
22509
22510		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
22511		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
22512
22513		if (start_pktp == NULL) {
22514			/* We were not given a SCSI packet, fail. */
22515			return (EIO);
22516		}
22517		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
22518		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
22519		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
22520		start_pktp->pkt_flags = FLAG_NOINTR;
22521
22522		mutex_enter(SD_MUTEX(un));
22523		SD_FILL_SCSI1_LUN(un, start_pktp);
22524		mutex_exit(SD_MUTEX(un));
22525		/*
22526		 * Scsi_poll returns 0 (success) if the command completes and
22527		 * the status block is STATUS_GOOD.
22528		 */
22529		if (sd_scsi_poll(un, start_pktp) != 0) {
22530			scsi_destroy_pkt(start_pktp);
22531			return (EIO);
22532		}
22533		scsi_destroy_pkt(start_pktp);
22534		(void) sd_ddi_pm_resume(un);
22535	} else {
22536		mutex_exit(&un->un_pm_mutex);
22537	}
22538
22539	mutex_enter(SD_MUTEX(un));
22540	un->un_throttle = 0;
22541
22542	/*
22543	 * The first time through, reset the specific target device.
22544	 * However, when cpr calls sddump we know that sd is in a
22545	 * a good state so no bus reset is required.
22546	 * Clear sense data via Request Sense cmd.
22547	 * In sddump we don't care about allow_bus_device_reset anymore
22548	 */
22549
22550	if ((un->un_state != SD_STATE_SUSPENDED) &&
22551	    (un->un_state != SD_STATE_DUMPING)) {
22552
22553		New_state(un, SD_STATE_DUMPING);
22554
22555		if (un->un_f_is_fibre == FALSE) {
22556			mutex_exit(SD_MUTEX(un));
22557			/*
22558			 * Attempt a bus reset for parallel scsi.
22559			 *
22560			 * Note: A bus reset is required because on some host
22561			 * systems (i.e. E420R) a bus device reset is
22562			 * insufficient to reset the state of the target.
22563			 *
22564			 * Note: Don't issue the reset for fibre-channel,
22565			 * because this tends to hang the bus (loop) for
22566			 * too long while everyone is logging out and in
22567			 * and the deadman timer for dumping will fire
22568			 * before the dump is complete.
22569			 */
22570			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
22571				mutex_enter(SD_MUTEX(un));
22572				Restore_state(un);
22573				mutex_exit(SD_MUTEX(un));
22574				return (EIO);
22575			}
22576
22577			/* Delay to give the device some recovery time. */
22578			drv_usecwait(10000);
22579
22580			if (sd_send_polled_RQS(un) == SD_FAILURE) {
22581				SD_INFO(SD_LOG_DUMP, un,
22582				    "sddump: sd_send_polled_RQS failed\n");
22583			}
22584			mutex_enter(SD_MUTEX(un));
22585		}
22586	}
22587
22588	/*
22589	 * Convert the partition-relative block number to a
22590	 * disk physical block number.
22591	 */
22592	blkno += start_block;
22593
22594	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
22595
22596
22597	/*
22598	 * Check if the device has a non-512 block size.
22599	 */
22600	wr_bp = NULL;
22601	if (NOT_DEVBSIZE(un)) {
22602		tgt_byte_offset = blkno * un->un_sys_blocksize;
22603		tgt_byte_count = nblk * un->un_sys_blocksize;
22604		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
22605		    (tgt_byte_count % un->un_tgt_blocksize)) {
22606			doing_rmw = TRUE;
22607			/*
22608			 * Calculate the block number and number of block
22609			 * in terms of the media block size.
22610			 */
22611			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
22612			tgt_nblk =
22613			    ((tgt_byte_offset + tgt_byte_count +
22614			    (un->un_tgt_blocksize - 1)) /
22615			    un->un_tgt_blocksize) - tgt_blkno;
22616
22617			/*
22618			 * Invoke the routine which is going to do read part
22619			 * of read-modify-write.
22620			 * Note that this routine returns a pointer to
22621			 * a valid bp in wr_bp.
22622			 */
22623			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
22624			    &wr_bp);
22625			if (err) {
22626				mutex_exit(SD_MUTEX(un));
22627				return (err);
22628			}
22629			/*
22630			 * Offset is being calculated as -
22631			 * (original block # * system block size) -
22632			 * (new block # * target block size)
22633			 */
22634			io_start_offset =
22635			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
22636			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
22637
22638			ASSERT((io_start_offset >= 0) &&
22639			    (io_start_offset < un->un_tgt_blocksize));
22640			/*
22641			 * Do the modify portion of read modify write.
22642			 */
22643			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
22644			    (size_t)nblk * un->un_sys_blocksize);
22645		} else {
22646			doing_rmw = FALSE;
22647			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
22648			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
22649		}
22650
22651		/* Convert blkno and nblk to target blocks */
22652		blkno = tgt_blkno;
22653		nblk = tgt_nblk;
22654	} else {
22655		wr_bp = &wr_buf;
22656		bzero(wr_bp, sizeof (struct buf));
22657		wr_bp->b_flags		= B_BUSY;
22658		wr_bp->b_un.b_addr	= addr;
22659		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
22660		wr_bp->b_resid		= 0;
22661	}
22662
22663	mutex_exit(SD_MUTEX(un));
22664
22665	/*
22666	 * Obtain a SCSI packet for the write command.
22667	 * It should be safe to call the allocator here without
22668	 * worrying about being locked for DVMA mapping because
22669	 * the address we're passed is already a DVMA mapping
22670	 *
22671	 * We are also not going to worry about semaphore ownership
22672	 * in the dump buffer. Dumping is single threaded at present.
22673	 */
22674
22675	wr_pktp = NULL;
22676
22677#if defined(__i386) || defined(__amd64)
22678	dma_resid = wr_bp->b_bcount;
22679	oblkno = blkno;
22680	while (dma_resid != 0) {
22681#endif
22682
22683	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
22684		wr_bp->b_flags &= ~B_ERROR;
22685
22686#if defined(__i386) || defined(__amd64)
22687		blkno = oblkno +
22688		    ((wr_bp->b_bcount - dma_resid) /
22689		    un->un_tgt_blocksize);
22690		nblk = dma_resid / un->un_tgt_blocksize;
22691
22692		if (wr_pktp) {
22693			/* Partial DMA transfers after initial transfer */
22694			rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
22695			    blkno, nblk);
22696		} else {
22697			/* Initial transfer */
22698			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
22699			    un->un_pkt_flags, NULL_FUNC, NULL,
22700			    blkno, nblk);
22701		}
22702#else
22703		rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
22704		    0, NULL_FUNC, NULL, blkno, nblk);
22705#endif
22706
22707		if (rval == 0) {
22708			/* We were given a SCSI packet, continue. */
22709			break;
22710		}
22711
22712		if (i == 0) {
22713			if (wr_bp->b_flags & B_ERROR) {
22714				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
22715				    "no resources for dumping; "
22716				    "error code: 0x%x, retrying",
22717				    geterror(wr_bp));
22718			} else {
22719				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
22720				    "no resources for dumping; retrying");
22721			}
22722		} else if (i != (SD_NDUMP_RETRIES - 1)) {
22723			if (wr_bp->b_flags & B_ERROR) {
22724				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
22725				    "no resources for dumping; error code: "
22726				    "0x%x, retrying\n", geterror(wr_bp));
22727			}
22728		} else {
22729			if (wr_bp->b_flags & B_ERROR) {
22730				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
22731				    "no resources for dumping; "
22732				    "error code: 0x%x, retries failed, "
22733				    "giving up.\n", geterror(wr_bp));
22734			} else {
22735				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
22736				    "no resources for dumping; "
22737				    "retries failed, giving up.\n");
22738			}
22739			mutex_enter(SD_MUTEX(un));
22740			Restore_state(un);
22741			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
22742				mutex_exit(SD_MUTEX(un));
22743				scsi_free_consistent_buf(wr_bp);
22744			} else {
22745				mutex_exit(SD_MUTEX(un));
22746			}
22747			return (EIO);
22748		}
22749		drv_usecwait(10000);
22750	}
22751
22752#if defined(__i386) || defined(__amd64)
22753	/*
22754	 * save the resid from PARTIAL_DMA
22755	 */
22756	dma_resid = wr_pktp->pkt_resid;
22757	if (dma_resid != 0)
22758		nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
22759	wr_pktp->pkt_resid = 0;
22760#endif
22761
22762	/* SunBug 1222170 */
22763	wr_pktp->pkt_flags = FLAG_NOINTR;
22764
22765	err = EIO;
22766	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
22767
22768		/*
22769		 * Scsi_poll returns 0 (success) if the command completes and
22770		 * the status block is STATUS_GOOD.  We should only check
22771		 * errors if this condition is not true.  Even then we should
22772		 * send our own request sense packet only if we have a check
22773		 * condition and auto request sense has not been performed by
22774		 * the hba.
22775		 */
22776		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
22777
22778		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
22779		    (wr_pktp->pkt_resid == 0)) {
22780			err = SD_SUCCESS;
22781			break;
22782		}
22783
22784		/*
22785		 * Check CMD_DEV_GONE 1st, give up if device is gone.
22786		 */
22787		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
22788			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
22789			    "Device is gone\n");
22790			break;
22791		}
22792
22793		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
22794			SD_INFO(SD_LOG_DUMP, un,
22795			    "sddump: write failed with CHECK, try # %d\n", i);
22796			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
22797				(void) sd_send_polled_RQS(un);
22798			}
22799
22800			continue;
22801		}
22802
22803		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
22804			int reset_retval = 0;
22805
22806			SD_INFO(SD_LOG_DUMP, un,
22807			    "sddump: write failed with BUSY, try # %d\n", i);
22808
22809			if (un->un_f_lun_reset_enabled == TRUE) {
22810				reset_retval = scsi_reset(SD_ADDRESS(un),
22811				    RESET_LUN);
22812			}
22813			if (reset_retval == 0) {
22814				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
22815			}
22816			(void) sd_send_polled_RQS(un);
22817
22818		} else {
22819			SD_INFO(SD_LOG_DUMP, un,
22820			    "sddump: write failed with 0x%x, try # %d\n",
22821			    SD_GET_PKT_STATUS(wr_pktp), i);
22822			mutex_enter(SD_MUTEX(un));
22823			sd_reset_target(un, wr_pktp);
22824			mutex_exit(SD_MUTEX(un));
22825		}
22826
22827		/*
22828		 * If we are not getting anywhere with lun/target resets,
22829		 * let's reset the bus.
22830		 */
22831		if (i == SD_NDUMP_RETRIES/2) {
22832			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
22833			(void) sd_send_polled_RQS(un);
22834		}
22835
22836	}
22837#if defined(__i386) || defined(__amd64)
22838	}	/* dma_resid */
22839#endif
22840
22841	scsi_destroy_pkt(wr_pktp);
22842	mutex_enter(SD_MUTEX(un));
22843	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
22844		mutex_exit(SD_MUTEX(un));
22845		scsi_free_consistent_buf(wr_bp);
22846	} else {
22847		mutex_exit(SD_MUTEX(un));
22848	}
22849	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
22850	return (err);
22851}
22852
22853/*
22854 *    Function: sd_scsi_poll()
22855 *
22856 * Description: This is a wrapper for the scsi_poll call.
22857 *
22858 *   Arguments: sd_lun - The unit structure
22859 *              scsi_pkt - The scsi packet being sent to the device.
22860 *
22861 * Return Code: 0 - Command completed successfully with good status
22862 *             -1 - Command failed.  This could indicate a check condition
22863 *                  or other status value requiring recovery action.
22864 *
22865 */
22866
22867static int
22868sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
22869{
22870	int status;
22871
22872	ASSERT(un != NULL);
22873	ASSERT(!mutex_owned(SD_MUTEX(un)));
22874	ASSERT(pktp != NULL);
22875
22876	status = SD_SUCCESS;
22877
22878	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
22879		pktp->pkt_flags |= un->un_tagflags;
22880		pktp->pkt_flags &= ~FLAG_NODISCON;
22881	}
22882
22883	status = sd_ddi_scsi_poll(pktp);
22884	/*
22885	 * Scsi_poll returns 0 (success) if the command completes and the
22886	 * status block is STATUS_GOOD.  We should only check errors if this
22887	 * condition is not true.  Even then we should send our own request
22888	 * sense packet only if we have a check condition and auto
22889	 * request sense has not been performed by the hba.
22890	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
22891	 */
22892	if ((status != SD_SUCCESS) &&
22893	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
22894	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
22895	    (pktp->pkt_reason != CMD_DEV_GONE))
22896		(void) sd_send_polled_RQS(un);
22897
22898	return (status);
22899}
22900
22901/*
22902 *    Function: sd_send_polled_RQS()
22903 *
22904 * Description: This sends the request sense command to a device.
22905 *
22906 *   Arguments: sd_lun - The unit structure
22907 *
22908 * Return Code: 0 - Command completed successfully with good status
22909 *             -1 - Command failed.
22910 *
22911 */
22912
22913static int
22914sd_send_polled_RQS(struct sd_lun *un)
22915{
22916	int	ret_val;
22917	struct	scsi_pkt	*rqs_pktp;
22918	struct	buf		*rqs_bp;
22919
22920	ASSERT(un != NULL);
22921	ASSERT(!mutex_owned(SD_MUTEX(un)));
22922
22923	ret_val = SD_SUCCESS;
22924
22925	rqs_pktp = un->un_rqs_pktp;
22926	rqs_bp	 = un->un_rqs_bp;
22927
22928	mutex_enter(SD_MUTEX(un));
22929
22930	if (un->un_sense_isbusy) {
22931		ret_val = SD_FAILURE;
22932		mutex_exit(SD_MUTEX(un));
22933		return (ret_val);
22934	}
22935
22936	/*
22937	 * If the request sense buffer (and packet) is not in use,
22938	 * let's set the un_sense_isbusy and send our packet
22939	 */
22940	un->un_sense_isbusy 	= 1;
22941	rqs_pktp->pkt_resid  	= 0;
22942	rqs_pktp->pkt_reason 	= 0;
22943	rqs_pktp->pkt_flags |= FLAG_NOINTR;
22944	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
22945
22946	mutex_exit(SD_MUTEX(un));
22947
22948	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
22949	    " 0x%p\n", rqs_bp->b_un.b_addr);
22950
22951	/*
22952	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
22953	 * axle - it has a call into us!
22954	 */
22955	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
22956		SD_INFO(SD_LOG_COMMON, un,
22957		    "sd_send_polled_RQS: RQS failed\n");
22958	}
22959
22960	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
22961	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
22962
22963	mutex_enter(SD_MUTEX(un));
22964	un->un_sense_isbusy = 0;
22965	mutex_exit(SD_MUTEX(un));
22966
22967	return (ret_val);
22968}
22969
22970/*
22971 * Defines needed for localized version of the scsi_poll routine.
22972 */
22973#define	SD_CSEC		10000			/* usecs */
22974#define	SD_SEC_TO_CSEC	(1000000/SD_CSEC)
22975
22976
22977/*
22978 *    Function: sd_ddi_scsi_poll()
22979 *
22980 * Description: Localized version of the scsi_poll routine.  The purpose is to
22981 *		send a scsi_pkt to a device as a polled command.  This version
22982 *		is to ensure more robust handling of transport errors.
22983 *		Specifically this routine cures not ready, coming ready
22984 *		transition for power up and reset of sonoma's.  This can take
22985 *		up to 45 seconds for power-on and 20 seconds for reset of a
22986 * 		sonoma lun.
22987 *
22988 *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
22989 *
22990 * Return Code: 0 - Command completed successfully with good status
22991 *             -1 - Command failed.
22992 *
22993 */
22994
22995static int
22996sd_ddi_scsi_poll(struct scsi_pkt *pkt)
22997{
22998	int busy_count;
22999	int timeout;
23000	int rval = SD_FAILURE;
23001	int savef;
23002	uint8_t *sensep;
23003	long savet;
23004	void (*savec)();
23005	/*
23006	 * The following is defined in machdep.c and is used in determining if
23007	 * the scsi transport system will do polled I/O instead of interrupt
23008	 * I/O when called from xx_dump().
23009	 */
23010	extern int do_polled_io;
23011
23012	/*
23013	 * save old flags in pkt, to restore at end
23014	 */
23015	savef = pkt->pkt_flags;
23016	savec = pkt->pkt_comp;
23017	savet = pkt->pkt_time;
23018
23019	pkt->pkt_flags |= FLAG_NOINTR;
23020
23021	/*
23022	 * XXX there is nothing in the SCSA spec that states that we should not
23023	 * do a callback for polled cmds; however, removing this will break sd
23024	 * and probably other target drivers
23025	 */
23026	pkt->pkt_comp = NULL;
23027
23028	/*
23029	 * we don't like a polled command without timeout.
23030	 * 60 seconds seems long enough.
23031	 */
23032	if (pkt->pkt_time == 0) {
23033		pkt->pkt_time = SCSI_POLL_TIMEOUT;
23034	}
23035
23036	/*
23037	 * Send polled cmd.
23038	 *
23039	 * We do some error recovery for various errors.  Tran_busy,
23040	 * queue full, and non-dispatched commands are retried every 10 msec.
23041	 * as they are typically transient failures.  Busy status and Not
23042	 * Ready are retried every second as this status takes a while to
23043	 * change.  Unit attention is retried for pkt_time (60) times
23044	 * with no delay.
23045	 */
23046	timeout = pkt->pkt_time * SD_SEC_TO_CSEC;
23047
23048	for (busy_count = 0; busy_count < timeout; busy_count++) {
23049		int rc;
23050		int poll_delay;
23051
23052		/*
23053		 * Initialize pkt status variables.
23054		 */
23055		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
23056
23057		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
23058			if (rc != TRAN_BUSY) {
23059				/* Transport failed - give up. */
23060				break;
23061			} else {
23062				/* Transport busy - try again. */
23063				poll_delay = 1 * SD_CSEC; /* 10 msec */
23064			}
23065		} else {
23066			/*
23067			 * Transport accepted - check pkt status.
23068			 */
23069			rc = (*pkt->pkt_scbp) & STATUS_MASK;
23070			if (pkt->pkt_reason == CMD_CMPLT &&
23071			    rc == STATUS_CHECK &&
23072			    pkt->pkt_state & STATE_ARQ_DONE) {
23073				struct scsi_arq_status *arqstat =
23074				    (struct scsi_arq_status *)(pkt->pkt_scbp);
23075
23076				sensep = (uint8_t *)&arqstat->sts_sensedata;
23077			} else {
23078				sensep = NULL;
23079			}
23080
23081			if ((pkt->pkt_reason == CMD_CMPLT) &&
23082			    (rc == STATUS_GOOD)) {
23083				/* No error - we're done */
23084				rval = SD_SUCCESS;
23085				break;
23086
23087			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
23088				/* Lost connection - give up */
23089				break;
23090
23091			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
23092			    (pkt->pkt_state == 0)) {
23093				/* Pkt not dispatched - try again. */
23094				poll_delay = 1 * SD_CSEC; /* 10 msec. */
23095
23096			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
23097			    (rc == STATUS_QFULL)) {
23098				/* Queue full - try again. */
23099				poll_delay = 1 * SD_CSEC; /* 10 msec. */
23100
23101			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
23102			    (rc == STATUS_BUSY)) {
23103				/* Busy - try again. */
23104				poll_delay = 100 * SD_CSEC; /* 1 sec. */
23105				busy_count += (SD_SEC_TO_CSEC - 1);
23106
23107			} else if ((sensep != NULL) &&
23108			    (scsi_sense_key(sensep) ==
23109			    KEY_UNIT_ATTENTION)) {
23110				/* Unit Attention - try again */
23111				busy_count += (SD_SEC_TO_CSEC - 1); /* 1 */
23112				continue;
23113
23114			} else if ((sensep != NULL) &&
23115			    (scsi_sense_key(sensep) == KEY_NOT_READY) &&
23116			    (scsi_sense_asc(sensep) == 0x04) &&
23117			    (scsi_sense_ascq(sensep) == 0x01)) {
23118				/* Not ready -> ready - try again. */
23119				poll_delay = 100 * SD_CSEC; /* 1 sec. */
23120				busy_count += (SD_SEC_TO_CSEC - 1);
23121
23122			} else {
23123				/* BAD status - give up. */
23124				break;
23125			}
23126		}
23127
23128		if ((curthread->t_flag & T_INTR_THREAD) == 0 &&
23129		    !do_polled_io) {
23130			delay(drv_usectohz(poll_delay));
23131		} else {
23132			/* we busy wait during cpr_dump or interrupt threads */
23133			drv_usecwait(poll_delay);
23134		}
23135	}
23136
23137	pkt->pkt_flags = savef;
23138	pkt->pkt_comp = savec;
23139	pkt->pkt_time = savet;
23140	return (rval);
23141}
23142
23143
23144/*
23145 *    Function: sd_persistent_reservation_in_read_keys
23146 *
23147 * Description: This routine is the driver entry point for handling CD-ROM
23148 *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
23149 *		by sending the SCSI-3 PRIN commands to the device.
23150 *		Processes the read keys command response by copying the
23151 *		reservation key information into the user provided buffer.
23152 *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
23153 *
23154 *   Arguments: un   -  Pointer to soft state struct for the target.
23155 *		usrp -	user provided pointer to multihost Persistent In Read
23156 *			Keys structure (mhioc_inkeys_t)
23157 *		flag -	this argument is a pass through to ddi_copyxxx()
23158 *			directly from the mode argument of ioctl().
23159 *
23160 * Return Code: 0   - Success
23161 *		EACCES
23162 *		ENOTSUP
23163 *		errno return code from sd_send_scsi_cmd()
23164 *
23165 *     Context: Can sleep. Does not return until command is completed.
23166 */
23167
23168static int
23169sd_persistent_reservation_in_read_keys(struct sd_lun *un,
23170    mhioc_inkeys_t *usrp, int flag)
23171{
23172#ifdef _MULTI_DATAMODEL
23173	struct mhioc_key_list32	li32;
23174#endif
23175	sd_prin_readkeys_t	*in;
23176	mhioc_inkeys_t		*ptr;
23177	mhioc_key_list_t	li;
23178	uchar_t			*data_bufp;
23179	int 			data_len;
23180	int			rval;
23181	size_t			copysz;
23182
23183	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
23184		return (EINVAL);
23185	}
23186	bzero(&li, sizeof (mhioc_key_list_t));
23187
23188	/*
23189	 * Get the listsize from user
23190	 */
23191#ifdef _MULTI_DATAMODEL
23192
23193	switch (ddi_model_convert_from(flag & FMODELS)) {
23194	case DDI_MODEL_ILP32:
23195		copysz = sizeof (struct mhioc_key_list32);
23196		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
23197			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23198			    "sd_persistent_reservation_in_read_keys: "
23199			    "failed ddi_copyin: mhioc_key_list32_t\n");
23200			rval = EFAULT;
23201			goto done;
23202		}
23203		li.listsize = li32.listsize;
23204		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
23205		break;
23206
23207	case DDI_MODEL_NONE:
23208		copysz = sizeof (mhioc_key_list_t);
23209		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
23210			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23211			    "sd_persistent_reservation_in_read_keys: "
23212			    "failed ddi_copyin: mhioc_key_list_t\n");
23213			rval = EFAULT;
23214			goto done;
23215		}
23216		break;
23217	}
23218
23219#else /* ! _MULTI_DATAMODEL */
23220	copysz = sizeof (mhioc_key_list_t);
23221	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
23222		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23223		    "sd_persistent_reservation_in_read_keys: "
23224		    "failed ddi_copyin: mhioc_key_list_t\n");
23225		rval = EFAULT;
23226		goto done;
23227	}
23228#endif
23229
23230	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
23231	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
23232	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
23233
23234	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS,
23235	    data_len, data_bufp)) != 0) {
23236		goto done;
23237	}
23238	in = (sd_prin_readkeys_t *)data_bufp;
23239	ptr->generation = BE_32(in->generation);
23240	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
23241
23242	/*
23243	 * Return the min(listsize, listlen) keys
23244	 */
23245#ifdef _MULTI_DATAMODEL
23246
23247	switch (ddi_model_convert_from(flag & FMODELS)) {
23248	case DDI_MODEL_ILP32:
23249		li32.listlen = li.listlen;
23250		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
23251			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23252			    "sd_persistent_reservation_in_read_keys: "
23253			    "failed ddi_copyout: mhioc_key_list32_t\n");
23254			rval = EFAULT;
23255			goto done;
23256		}
23257		break;
23258
23259	case DDI_MODEL_NONE:
23260		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
23261			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23262			    "sd_persistent_reservation_in_read_keys: "
23263			    "failed ddi_copyout: mhioc_key_list_t\n");
23264			rval = EFAULT;
23265			goto done;
23266		}
23267		break;
23268	}
23269
23270#else /* ! _MULTI_DATAMODEL */
23271
23272	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
23273		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23274		    "sd_persistent_reservation_in_read_keys: "
23275		    "failed ddi_copyout: mhioc_key_list_t\n");
23276		rval = EFAULT;
23277		goto done;
23278	}
23279
23280#endif /* _MULTI_DATAMODEL */
23281
23282	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
23283	    li.listsize * MHIOC_RESV_KEY_SIZE);
23284	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
23285		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23286		    "sd_persistent_reservation_in_read_keys: "
23287		    "failed ddi_copyout: keylist\n");
23288		rval = EFAULT;
23289	}
23290done:
23291	kmem_free(data_bufp, data_len);
23292	return (rval);
23293}
23294
23295
23296/*
23297 *    Function: sd_persistent_reservation_in_read_resv
23298 *
23299 * Description: This routine is the driver entry point for handling CD-ROM
23300 *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
23301 *		by sending the SCSI-3 PRIN commands to the device.
23302 *		Process the read persistent reservations command response by
23303 *		copying the reservation information into the user provided
23304 *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
23305 *
23306 *   Arguments: un   -  Pointer to soft state struct for the target.
23307 *		usrp -	user provided pointer to multihost Persistent In Read
23308 *			Keys structure (mhioc_inkeys_t)
23309 *		flag -	this argument is a pass through to ddi_copyxxx()
23310 *			directly from the mode argument of ioctl().
23311 *
23312 * Return Code: 0   - Success
23313 *		EACCES
23314 *		ENOTSUP
23315 *		errno return code from sd_send_scsi_cmd()
23316 *
23317 *     Context: Can sleep. Does not return until command is completed.
23318 */
23319
23320static int
23321sd_persistent_reservation_in_read_resv(struct sd_lun *un,
23322    mhioc_inresvs_t *usrp, int flag)
23323{
23324#ifdef _MULTI_DATAMODEL
23325	struct mhioc_resv_desc_list32 resvlist32;
23326#endif
23327	sd_prin_readresv_t	*in;
23328	mhioc_inresvs_t		*ptr;
23329	sd_readresv_desc_t	*readresv_ptr;
23330	mhioc_resv_desc_list_t	resvlist;
23331	mhioc_resv_desc_t 	resvdesc;
23332	uchar_t			*data_bufp;
23333	int 			data_len;
23334	int			rval;
23335	int			i;
23336	size_t			copysz;
23337	mhioc_resv_desc_t	*bufp;
23338
23339	if ((ptr = usrp) == NULL) {
23340		return (EINVAL);
23341	}
23342
23343	/*
23344	 * Get the listsize from user
23345	 */
23346#ifdef _MULTI_DATAMODEL
23347	switch (ddi_model_convert_from(flag & FMODELS)) {
23348	case DDI_MODEL_ILP32:
23349		copysz = sizeof (struct mhioc_resv_desc_list32);
23350		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
23351			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23352			    "sd_persistent_reservation_in_read_resv: "
23353			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
23354			rval = EFAULT;
23355			goto done;
23356		}
23357		resvlist.listsize = resvlist32.listsize;
23358		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
23359		break;
23360
23361	case DDI_MODEL_NONE:
23362		copysz = sizeof (mhioc_resv_desc_list_t);
23363		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
23364			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23365			    "sd_persistent_reservation_in_read_resv: "
23366			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
23367			rval = EFAULT;
23368			goto done;
23369		}
23370		break;
23371	}
23372#else /* ! _MULTI_DATAMODEL */
23373	copysz = sizeof (mhioc_resv_desc_list_t);
23374	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
23375		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23376		    "sd_persistent_reservation_in_read_resv: "
23377		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
23378		rval = EFAULT;
23379		goto done;
23380	}
23381#endif /* ! _MULTI_DATAMODEL */
23382
23383	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
23384	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
23385	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
23386
23387	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_RESV,
23388	    data_len, data_bufp)) != 0) {
23389		goto done;
23390	}
23391	in = (sd_prin_readresv_t *)data_bufp;
23392	ptr->generation = BE_32(in->generation);
23393	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
23394
23395	/*
23396	 * Return the min(listsize, listlen( keys
23397	 */
23398#ifdef _MULTI_DATAMODEL
23399
23400	switch (ddi_model_convert_from(flag & FMODELS)) {
23401	case DDI_MODEL_ILP32:
23402		resvlist32.listlen = resvlist.listlen;
23403		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
23404			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23405			    "sd_persistent_reservation_in_read_resv: "
23406			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
23407			rval = EFAULT;
23408			goto done;
23409		}
23410		break;
23411
23412	case DDI_MODEL_NONE:
23413		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
23414			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23415			    "sd_persistent_reservation_in_read_resv: "
23416			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
23417			rval = EFAULT;
23418			goto done;
23419		}
23420		break;
23421	}
23422
23423#else /* ! _MULTI_DATAMODEL */
23424
23425	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
23426		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23427		    "sd_persistent_reservation_in_read_resv: "
23428		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
23429		rval = EFAULT;
23430		goto done;
23431	}
23432
23433#endif /* ! _MULTI_DATAMODEL */
23434
23435	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
23436	bufp = resvlist.list;
23437	copysz = sizeof (mhioc_resv_desc_t);
23438	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
23439	    i++, readresv_ptr++, bufp++) {
23440
23441		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
23442		    MHIOC_RESV_KEY_SIZE);
23443		resvdesc.type  = readresv_ptr->type;
23444		resvdesc.scope = readresv_ptr->scope;
23445		resvdesc.scope_specific_addr =
23446		    BE_32(readresv_ptr->scope_specific_addr);
23447
23448		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
23449			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23450			    "sd_persistent_reservation_in_read_resv: "
23451			    "failed ddi_copyout: resvlist\n");
23452			rval = EFAULT;
23453			goto done;
23454		}
23455	}
23456done:
23457	kmem_free(data_bufp, data_len);
23458	return (rval);
23459}
23460
23461
23462/*
23463 *    Function: sr_change_blkmode()
23464 *
23465 * Description: This routine is the driver entry point for handling CD-ROM
23466 *		block mode ioctl requests. Support for returning and changing
23467 *		the current block size in use by the device is implemented. The
23468 *		LBA size is changed via a MODE SELECT Block Descriptor.
23469 *
23470 *		This routine issues a mode sense with an allocation length of
23471 *		12 bytes for the mode page header and a single block descriptor.
23472 *
23473 *   Arguments: dev - the device 'dev_t'
23474 *		cmd - the request type; one of CDROMGBLKMODE (get) or
23475 *		      CDROMSBLKMODE (set)
23476 *		data - current block size or requested block size
23477 *		flag - this argument is a pass through to ddi_copyxxx() directly
23478 *		       from the mode argument of ioctl().
23479 *
23480 * Return Code: the code returned by sd_send_scsi_cmd()
23481 *		EINVAL if invalid arguments are provided
23482 *		EFAULT if ddi_copyxxx() fails
23483 *		ENXIO if fail ddi_get_soft_state
23484 *		EIO if invalid mode sense block descriptor length
23485 *
23486 */
23487
23488static int
23489sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
23490{
23491	struct sd_lun			*un = NULL;
23492	struct mode_header		*sense_mhp, *select_mhp;
23493	struct block_descriptor		*sense_desc, *select_desc;
23494	int				current_bsize;
23495	int				rval = EINVAL;
23496	uchar_t				*sense = NULL;
23497	uchar_t				*select = NULL;
23498
23499	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
23500
23501	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23502		return (ENXIO);
23503	}
23504
23505	/*
23506	 * The block length is changed via the Mode Select block descriptor, the
23507	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
23508	 * required as part of this routine. Therefore the mode sense allocation
23509	 * length is specified to be the length of a mode page header and a
23510	 * block descriptor.
23511	 */
23512	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
23513
23514	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
23515	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD)) != 0) {
23516		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23517		    "sr_change_blkmode: Mode Sense Failed\n");
23518		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
23519		return (rval);
23520	}
23521
23522	/* Check the block descriptor len to handle only 1 block descriptor */
23523	sense_mhp = (struct mode_header *)sense;
23524	if ((sense_mhp->bdesc_length == 0) ||
23525	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
23526		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23527		    "sr_change_blkmode: Mode Sense returned invalid block"
23528		    " descriptor length\n");
23529		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
23530		return (EIO);
23531	}
23532	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
23533	current_bsize = ((sense_desc->blksize_hi << 16) |
23534	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
23535
23536	/* Process command */
23537	switch (cmd) {
23538	case CDROMGBLKMODE:
23539		/* Return the block size obtained during the mode sense */
23540		if (ddi_copyout(&current_bsize, (void *)data,
23541		    sizeof (int), flag) != 0)
23542			rval = EFAULT;
23543		break;
23544	case CDROMSBLKMODE:
23545		/* Validate the requested block size */
23546		switch (data) {
23547		case CDROM_BLK_512:
23548		case CDROM_BLK_1024:
23549		case CDROM_BLK_2048:
23550		case CDROM_BLK_2056:
23551		case CDROM_BLK_2336:
23552		case CDROM_BLK_2340:
23553		case CDROM_BLK_2352:
23554		case CDROM_BLK_2368:
23555		case CDROM_BLK_2448:
23556		case CDROM_BLK_2646:
23557		case CDROM_BLK_2647:
23558			break;
23559		default:
23560			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23561			    "sr_change_blkmode: "
23562			    "Block Size '%ld' Not Supported\n", data);
23563			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
23564			return (EINVAL);
23565		}
23566
23567		/*
23568		 * The current block size matches the requested block size so
23569		 * there is no need to send the mode select to change the size
23570		 */
23571		if (current_bsize == data) {
23572			break;
23573		}
23574
23575		/* Build the select data for the requested block size */
23576		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
23577		select_mhp = (struct mode_header *)select;
23578		select_desc =
23579		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
23580		/*
23581		 * The LBA size is changed via the block descriptor, so the
23582		 * descriptor is built according to the user data
23583		 */
23584		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
23585		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
23586		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
23587		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
23588
23589		/* Send the mode select for the requested block size */
23590		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
23591		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
23592		    SD_PATH_STANDARD)) != 0) {
23593			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23594			    "sr_change_blkmode: Mode Select Failed\n");
23595			/*
23596			 * The mode select failed for the requested block size,
23597			 * so reset the data for the original block size and
23598			 * send it to the target. The error is indicated by the
23599			 * return value for the failed mode select.
23600			 */
23601			select_desc->blksize_hi  = sense_desc->blksize_hi;
23602			select_desc->blksize_mid = sense_desc->blksize_mid;
23603			select_desc->blksize_lo  = sense_desc->blksize_lo;
23604			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
23605			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
23606			    SD_PATH_STANDARD);
23607		} else {
23608			ASSERT(!mutex_owned(SD_MUTEX(un)));
23609			mutex_enter(SD_MUTEX(un));
23610			sd_update_block_info(un, (uint32_t)data, 0);
23611			mutex_exit(SD_MUTEX(un));
23612		}
23613		break;
23614	default:
23615		/* should not reach here, but check anyway */
23616		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23617		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
23618		rval = EINVAL;
23619		break;
23620	}
23621
23622	if (select) {
23623		kmem_free(select, BUFLEN_CHG_BLK_MODE);
23624	}
23625	if (sense) {
23626		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
23627	}
23628	return (rval);
23629}
23630
23631
23632/*
23633 * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
23634 * implement driver support for getting and setting the CD speed. The command
23635 * set used will be based on the device type. If the device has not been
23636 * identified as MMC the Toshiba vendor specific mode page will be used. If
23637 * the device is MMC but does not support the Real Time Streaming feature
23638 * the SET CD SPEED command will be used to set speed and mode page 0x2A will
23639 * be used to read the speed.
23640 */
23641
23642/*
23643 *    Function: sr_change_speed()
23644 *
23645 * Description: This routine is the driver entry point for handling CD-ROM
23646 *		drive speed ioctl requests for devices supporting the Toshiba
23647 *		vendor specific drive speed mode page. Support for returning
23648 *		and changing the current drive speed in use by the device is
23649 *		implemented.
23650 *
23651 *   Arguments: dev - the device 'dev_t'
23652 *		cmd - the request type; one of CDROMGDRVSPEED (get) or
23653 *		      CDROMSDRVSPEED (set)
23654 *		data - current drive speed or requested drive speed
23655 *		flag - this argument is a pass through to ddi_copyxxx() directly
23656 *		       from the mode argument of ioctl().
23657 *
23658 * Return Code: the code returned by sd_send_scsi_cmd()
23659 *		EINVAL if invalid arguments are provided
23660 *		EFAULT if ddi_copyxxx() fails
23661 *		ENXIO if fail ddi_get_soft_state
23662 *		EIO if invalid mode sense block descriptor length
23663 */
23664
23665static int
23666sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
23667{
23668	struct sd_lun			*un = NULL;
23669	struct mode_header		*sense_mhp, *select_mhp;
23670	struct mode_speed		*sense_page, *select_page;
23671	int				current_speed;
23672	int				rval = EINVAL;
23673	int				bd_len;
23674	uchar_t				*sense = NULL;
23675	uchar_t				*select = NULL;
23676
23677	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
23678	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23679		return (ENXIO);
23680	}
23681
23682	/*
23683	 * Note: The drive speed is being modified here according to a Toshiba
23684	 * vendor specific mode page (0x31).
23685	 */
23686	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
23687
23688	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
23689	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
23690	    SD_PATH_STANDARD)) != 0) {
23691		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23692		    "sr_change_speed: Mode Sense Failed\n");
23693		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
23694		return (rval);
23695	}
23696	sense_mhp  = (struct mode_header *)sense;
23697
23698	/* Check the block descriptor len to handle only 1 block descriptor */
23699	bd_len = sense_mhp->bdesc_length;
23700	if (bd_len > MODE_BLK_DESC_LENGTH) {
23701		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23702		    "sr_change_speed: Mode Sense returned invalid block "
23703		    "descriptor length\n");
23704		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
23705		return (EIO);
23706	}
23707
23708	sense_page = (struct mode_speed *)
23709	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
23710	current_speed = sense_page->speed;
23711
23712	/* Process command */
23713	switch (cmd) {
23714	case CDROMGDRVSPEED:
23715		/* Return the drive speed obtained during the mode sense */
23716		if (current_speed == 0x2) {
23717			current_speed = CDROM_TWELVE_SPEED;
23718		}
23719		if (ddi_copyout(&current_speed, (void *)data,
23720		    sizeof (int), flag) != 0) {
23721			rval = EFAULT;
23722		}
23723		break;
23724	case CDROMSDRVSPEED:
23725		/* Validate the requested drive speed */
23726		switch ((uchar_t)data) {
23727		case CDROM_TWELVE_SPEED:
23728			data = 0x2;
23729			/*FALLTHROUGH*/
23730		case CDROM_NORMAL_SPEED:
23731		case CDROM_DOUBLE_SPEED:
23732		case CDROM_QUAD_SPEED:
23733		case CDROM_MAXIMUM_SPEED:
23734			break;
23735		default:
23736			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23737			    "sr_change_speed: "
23738			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
23739			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
23740			return (EINVAL);
23741		}
23742
23743		/*
23744		 * The current drive speed matches the requested drive speed so
23745		 * there is no need to send the mode select to change the speed
23746		 */
23747		if (current_speed == data) {
23748			break;
23749		}
23750
23751		/* Build the select data for the requested drive speed */
23752		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
23753		select_mhp = (struct mode_header *)select;
23754		select_mhp->bdesc_length = 0;
23755		select_page =
23756		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
23757		select_page =
23758		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
23759		select_page->mode_page.code = CDROM_MODE_SPEED;
23760		select_page->mode_page.length = 2;
23761		select_page->speed = (uchar_t)data;
23762
23763		/* Send the mode select for the requested block size */
23764		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
23765		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
23766		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
23767			/*
23768			 * The mode select failed for the requested drive speed,
23769			 * so reset the data for the original drive speed and
23770			 * send it to the target. The error is indicated by the
23771			 * return value for the failed mode select.
23772			 */
23773			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23774			    "sr_drive_speed: Mode Select Failed\n");
23775			select_page->speed = sense_page->speed;
23776			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
23777			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
23778			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
23779		}
23780		break;
23781	default:
23782		/* should not reach here, but check anyway */
23783		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23784		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
23785		rval = EINVAL;
23786		break;
23787	}
23788
23789	if (select) {
23790		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
23791	}
23792	if (sense) {
23793		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
23794	}
23795
23796	return (rval);
23797}
23798
23799
23800/*
23801 *    Function: sr_atapi_change_speed()
23802 *
23803 * Description: This routine is the driver entry point for handling CD-ROM
23804 *		drive speed ioctl requests for MMC devices that do not support
23805 *		the Real Time Streaming feature (0x107).
23806 *
23807 *		Note: This routine will use the SET SPEED command which may not
23808 *		be supported by all devices.
23809 *
23810 *   Arguments: dev- the device 'dev_t'
23811 *		cmd- the request type; one of CDROMGDRVSPEED (get) or
23812 *		     CDROMSDRVSPEED (set)
23813 *		data- current drive speed or requested drive speed
23814 *		flag- this argument is a pass through to ddi_copyxxx() directly
23815 *		      from the mode argument of ioctl().
23816 *
23817 * Return Code: the code returned by sd_send_scsi_cmd()
23818 *		EINVAL if invalid arguments are provided
23819 *		EFAULT if ddi_copyxxx() fails
23820 *		ENXIO if fail ddi_get_soft_state
23821 *		EIO if invalid mode sense block descriptor length
23822 */
23823
23824static int
23825sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
23826{
23827	struct sd_lun			*un;
23828	struct uscsi_cmd		*com = NULL;
23829	struct mode_header_grp2		*sense_mhp;
23830	uchar_t				*sense_page;
23831	uchar_t				*sense = NULL;
23832	char				cdb[CDB_GROUP5];
23833	int				bd_len;
23834	int				current_speed = 0;
23835	int				max_speed = 0;
23836	int				rval;
23837
23838	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
23839
23840	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23841		return (ENXIO);
23842	}
23843
23844	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
23845
23846	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
23847	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
23848	    SD_PATH_STANDARD)) != 0) {
23849		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23850		    "sr_atapi_change_speed: Mode Sense Failed\n");
23851		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
23852		return (rval);
23853	}
23854
23855	/* Check the block descriptor len to handle only 1 block descriptor */
23856	sense_mhp = (struct mode_header_grp2 *)sense;
23857	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
23858	if (bd_len > MODE_BLK_DESC_LENGTH) {
23859		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23860		    "sr_atapi_change_speed: Mode Sense returned invalid "
23861		    "block descriptor length\n");
23862		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
23863		return (EIO);
23864	}
23865
23866	/* Calculate the current and maximum drive speeds */
23867	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
23868	current_speed = (sense_page[14] << 8) | sense_page[15];
23869	max_speed = (sense_page[8] << 8) | sense_page[9];
23870
23871	/* Process the command */
23872	switch (cmd) {
23873	case CDROMGDRVSPEED:
23874		current_speed /= SD_SPEED_1X;
23875		if (ddi_copyout(&current_speed, (void *)data,
23876		    sizeof (int), flag) != 0)
23877			rval = EFAULT;
23878		break;
23879	case CDROMSDRVSPEED:
23880		/* Convert the speed code to KB/sec */
23881		switch ((uchar_t)data) {
23882		case CDROM_NORMAL_SPEED:
23883			current_speed = SD_SPEED_1X;
23884			break;
23885		case CDROM_DOUBLE_SPEED:
23886			current_speed = 2 * SD_SPEED_1X;
23887			break;
23888		case CDROM_QUAD_SPEED:
23889			current_speed = 4 * SD_SPEED_1X;
23890			break;
23891		case CDROM_TWELVE_SPEED:
23892			current_speed = 12 * SD_SPEED_1X;
23893			break;
23894		case CDROM_MAXIMUM_SPEED:
23895			current_speed = 0xffff;
23896			break;
23897		default:
23898			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23899			    "sr_atapi_change_speed: invalid drive speed %d\n",
23900			    (uchar_t)data);
23901			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
23902			return (EINVAL);
23903		}
23904
23905		/* Check the request against the drive's max speed. */
23906		if (current_speed != 0xffff) {
23907			if (current_speed > max_speed) {
23908				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
23909				return (EINVAL);
23910			}
23911		}
23912
23913		/*
23914		 * Build and send the SET SPEED command
23915		 *
23916		 * Note: The SET SPEED (0xBB) command used in this routine is
23917		 * obsolete per the SCSI MMC spec but still supported in the
23918		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
23919		 * therefore the command is still implemented in this routine.
23920		 */
23921		bzero(cdb, sizeof (cdb));
23922		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
23923		cdb[2] = (uchar_t)(current_speed >> 8);
23924		cdb[3] = (uchar_t)current_speed;
23925		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
23926		com->uscsi_cdb	   = (caddr_t)cdb;
23927		com->uscsi_cdblen  = CDB_GROUP5;
23928		com->uscsi_bufaddr = NULL;
23929		com->uscsi_buflen  = 0;
23930		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
23931		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, 0, SD_PATH_STANDARD);
23932		break;
23933	default:
23934		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23935		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
23936		rval = EINVAL;
23937	}
23938
23939	if (sense) {
23940		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
23941	}
23942	if (com) {
23943		kmem_free(com, sizeof (*com));
23944	}
23945	return (rval);
23946}
23947
23948
23949/*
23950 *    Function: sr_pause_resume()
23951 *
23952 * Description: This routine is the driver entry point for handling CD-ROM
23953 *		pause/resume ioctl requests. This only affects the audio play
23954 *		operation.
23955 *
23956 *   Arguments: dev - the device 'dev_t'
23957 *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
23958 *		      for setting the resume bit of the cdb.
23959 *
23960 * Return Code: the code returned by sd_send_scsi_cmd()
23961 *		EINVAL if invalid mode specified
23962 *
23963 */
23964
23965static int
23966sr_pause_resume(dev_t dev, int cmd)
23967{
23968	struct sd_lun		*un;
23969	struct uscsi_cmd	*com;
23970	char			cdb[CDB_GROUP1];
23971	int			rval;
23972
23973	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23974		return (ENXIO);
23975	}
23976
23977	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
23978	bzero(cdb, CDB_GROUP1);
23979	cdb[0] = SCMD_PAUSE_RESUME;
23980	switch (cmd) {
23981	case CDROMRESUME:
23982		cdb[8] = 1;
23983		break;
23984	case CDROMPAUSE:
23985		cdb[8] = 0;
23986		break;
23987	default:
23988		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
23989		    " Command '%x' Not Supported\n", cmd);
23990		rval = EINVAL;
23991		goto done;
23992	}
23993
23994	com->uscsi_cdb    = cdb;
23995	com->uscsi_cdblen = CDB_GROUP1;
23996	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
23997
23998	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
23999	    SD_PATH_STANDARD);
24000
24001done:
24002	kmem_free(com, sizeof (*com));
24003	return (rval);
24004}
24005
24006
24007/*
24008 *    Function: sr_play_msf()
24009 *
24010 * Description: This routine is the driver entry point for handling CD-ROM
24011 *		ioctl requests to output the audio signals at the specified
24012 *		starting address and continue the audio play until the specified
24013 *		ending address (CDROMPLAYMSF) The address is in Minute Second
24014 *		Frame (MSF) format.
24015 *
24016 *   Arguments: dev	- the device 'dev_t'
24017 *		data	- pointer to user provided audio msf structure,
24018 *		          specifying start/end addresses.
24019 *		flag	- this argument is a pass through to ddi_copyxxx()
24020 *		          directly from the mode argument of ioctl().
24021 *
24022 * Return Code: the code returned by sd_send_scsi_cmd()
24023 *		EFAULT if ddi_copyxxx() fails
24024 *		ENXIO if fail ddi_get_soft_state
24025 *		EINVAL if data pointer is NULL
24026 */
24027
24028static int
24029sr_play_msf(dev_t dev, caddr_t data, int flag)
24030{
24031	struct sd_lun		*un;
24032	struct uscsi_cmd	*com;
24033	struct cdrom_msf	msf_struct;
24034	struct cdrom_msf	*msf = &msf_struct;
24035	char			cdb[CDB_GROUP1];
24036	int			rval;
24037
24038	if (data == NULL) {
24039		return (EINVAL);
24040	}
24041
24042	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24043		return (ENXIO);
24044	}
24045
24046	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
24047		return (EFAULT);
24048	}
24049
24050	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24051	bzero(cdb, CDB_GROUP1);
24052	cdb[0] = SCMD_PLAYAUDIO_MSF;
24053	if (un->un_f_cfg_playmsf_bcd == TRUE) {
24054		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
24055		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
24056		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
24057		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
24058		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
24059		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
24060	} else {
24061		cdb[3] = msf->cdmsf_min0;
24062		cdb[4] = msf->cdmsf_sec0;
24063		cdb[5] = msf->cdmsf_frame0;
24064		cdb[6] = msf->cdmsf_min1;
24065		cdb[7] = msf->cdmsf_sec1;
24066		cdb[8] = msf->cdmsf_frame1;
24067	}
24068	com->uscsi_cdb    = cdb;
24069	com->uscsi_cdblen = CDB_GROUP1;
24070	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
24071	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24072	    SD_PATH_STANDARD);
24073	kmem_free(com, sizeof (*com));
24074	return (rval);
24075}
24076
24077
24078/*
24079 *    Function: sr_play_trkind()
24080 *
24081 * Description: This routine is the driver entry point for handling CD-ROM
24082 *		ioctl requests to output the audio signals at the specified
24083 *		starting address and continue the audio play until the specified
24084 *		ending address (CDROMPLAYTRKIND). The address is in Track Index
24085 *		format.
24086 *
24087 *   Arguments: dev	- the device 'dev_t'
24088 *		data	- pointer to user provided audio track/index structure,
24089 *		          specifying start/end addresses.
24090 *		flag	- this argument is a pass through to ddi_copyxxx()
24091 *		          directly from the mode argument of ioctl().
24092 *
24093 * Return Code: the code returned by sd_send_scsi_cmd()
24094 *		EFAULT if ddi_copyxxx() fails
24095 *		ENXIO if fail ddi_get_soft_state
24096 *		EINVAL if data pointer is NULL
24097 */
24098
24099static int
24100sr_play_trkind(dev_t dev, caddr_t data, int flag)
24101{
24102	struct cdrom_ti		ti_struct;
24103	struct cdrom_ti		*ti = &ti_struct;
24104	struct uscsi_cmd	*com = NULL;
24105	char			cdb[CDB_GROUP1];
24106	int			rval;
24107
24108	if (data == NULL) {
24109		return (EINVAL);
24110	}
24111
24112	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
24113		return (EFAULT);
24114	}
24115
24116	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24117	bzero(cdb, CDB_GROUP1);
24118	cdb[0] = SCMD_PLAYAUDIO_TI;
24119	cdb[4] = ti->cdti_trk0;
24120	cdb[5] = ti->cdti_ind0;
24121	cdb[7] = ti->cdti_trk1;
24122	cdb[8] = ti->cdti_ind1;
24123	com->uscsi_cdb    = cdb;
24124	com->uscsi_cdblen = CDB_GROUP1;
24125	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
24126	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24127	    SD_PATH_STANDARD);
24128	kmem_free(com, sizeof (*com));
24129	return (rval);
24130}
24131
24132
24133/*
24134 *    Function: sr_read_all_subcodes()
24135 *
24136 * Description: This routine is the driver entry point for handling CD-ROM
24137 *		ioctl requests to return raw subcode data while the target is
24138 *		playing audio (CDROMSUBCODE).
24139 *
24140 *   Arguments: dev	- the device 'dev_t'
24141 *		data	- pointer to user provided cdrom subcode structure,
24142 *		          specifying the transfer length and address.
24143 *		flag	- this argument is a pass through to ddi_copyxxx()
24144 *		          directly from the mode argument of ioctl().
24145 *
24146 * Return Code: the code returned by sd_send_scsi_cmd()
24147 *		EFAULT if ddi_copyxxx() fails
24148 *		ENXIO if fail ddi_get_soft_state
24149 *		EINVAL if data pointer is NULL
24150 */
24151
24152static int
24153sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
24154{
24155	struct sd_lun		*un = NULL;
24156	struct uscsi_cmd	*com = NULL;
24157	struct cdrom_subcode	*subcode = NULL;
24158	int			rval;
24159	size_t			buflen;
24160	char			cdb[CDB_GROUP5];
24161
24162#ifdef _MULTI_DATAMODEL
24163	/* To support ILP32 applications in an LP64 world */
24164	struct cdrom_subcode32		cdrom_subcode32;
24165	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
24166#endif
24167	if (data == NULL) {
24168		return (EINVAL);
24169	}
24170
24171	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24172		return (ENXIO);
24173	}
24174
24175	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
24176
24177#ifdef _MULTI_DATAMODEL
24178	switch (ddi_model_convert_from(flag & FMODELS)) {
24179	case DDI_MODEL_ILP32:
24180		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
24181			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24182			    "sr_read_all_subcodes: ddi_copyin Failed\n");
24183			kmem_free(subcode, sizeof (struct cdrom_subcode));
24184			return (EFAULT);
24185		}
24186		/* Convert the ILP32 uscsi data from the application to LP64 */
24187		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
24188		break;
24189	case DDI_MODEL_NONE:
24190		if (ddi_copyin(data, subcode,
24191		    sizeof (struct cdrom_subcode), flag)) {
24192			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24193			    "sr_read_all_subcodes: ddi_copyin Failed\n");
24194			kmem_free(subcode, sizeof (struct cdrom_subcode));
24195			return (EFAULT);
24196		}
24197		break;
24198	}
24199#else /* ! _MULTI_DATAMODEL */
24200	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
24201		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24202		    "sr_read_all_subcodes: ddi_copyin Failed\n");
24203		kmem_free(subcode, sizeof (struct cdrom_subcode));
24204		return (EFAULT);
24205	}
24206#endif /* _MULTI_DATAMODEL */
24207
24208	/*
24209	 * Since MMC-2 expects max 3 bytes for length, check if the
24210	 * length input is greater than 3 bytes
24211	 */
24212	if ((subcode->cdsc_length & 0xFF000000) != 0) {
24213		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24214		    "sr_read_all_subcodes: "
24215		    "cdrom transfer length too large: %d (limit %d)\n",
24216		    subcode->cdsc_length, 0xFFFFFF);
24217		kmem_free(subcode, sizeof (struct cdrom_subcode));
24218		return (EINVAL);
24219	}
24220
24221	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
24222	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24223	bzero(cdb, CDB_GROUP5);
24224
24225	if (un->un_f_mmc_cap == TRUE) {
24226		cdb[0] = (char)SCMD_READ_CD;
24227		cdb[2] = (char)0xff;
24228		cdb[3] = (char)0xff;
24229		cdb[4] = (char)0xff;
24230		cdb[5] = (char)0xff;
24231		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
24232		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
24233		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
24234		cdb[10] = 1;
24235	} else {
24236		/*
24237		 * Note: A vendor specific command (0xDF) is being used her to
24238		 * request a read of all subcodes.
24239		 */
24240		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
24241		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
24242		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
24243		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
24244		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
24245	}
24246	com->uscsi_cdb	   = cdb;
24247	com->uscsi_cdblen  = CDB_GROUP5;
24248	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
24249	com->uscsi_buflen  = buflen;
24250	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24251	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
24252	    SD_PATH_STANDARD);
24253	kmem_free(subcode, sizeof (struct cdrom_subcode));
24254	kmem_free(com, sizeof (*com));
24255	return (rval);
24256}
24257
24258
24259/*
24260 *    Function: sr_read_subchannel()
24261 *
24262 * Description: This routine is the driver entry point for handling CD-ROM
24263 *		ioctl requests to return the Q sub-channel data of the CD
24264 *		current position block. (CDROMSUBCHNL) The data includes the
24265 *		track number, index number, absolute CD-ROM address (LBA or MSF
24266 *		format per the user) , track relative CD-ROM address (LBA or MSF
24267 *		format per the user), control data and audio status.
24268 *
24269 *   Arguments: dev	- the device 'dev_t'
24270 *		data	- pointer to user provided cdrom sub-channel structure
24271 *		flag	- this argument is a pass through to ddi_copyxxx()
24272 *		          directly from the mode argument of ioctl().
24273 *
24274 * Return Code: the code returned by sd_send_scsi_cmd()
24275 *		EFAULT if ddi_copyxxx() fails
24276 *		ENXIO if fail ddi_get_soft_state
24277 *		EINVAL if data pointer is NULL
24278 */
24279
24280static int
24281sr_read_subchannel(dev_t dev, caddr_t data, int flag)
24282{
24283	struct sd_lun		*un;
24284	struct uscsi_cmd	*com;
24285	struct cdrom_subchnl	subchanel;
24286	struct cdrom_subchnl	*subchnl = &subchanel;
24287	char			cdb[CDB_GROUP1];
24288	caddr_t			buffer;
24289	int			rval;
24290
24291	if (data == NULL) {
24292		return (EINVAL);
24293	}
24294
24295	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24296	    (un->un_state == SD_STATE_OFFLINE)) {
24297		return (ENXIO);
24298	}
24299
24300	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
24301		return (EFAULT);
24302	}
24303
24304	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
24305	bzero(cdb, CDB_GROUP1);
24306	cdb[0] = SCMD_READ_SUBCHANNEL;
24307	/* Set the MSF bit based on the user requested address format */
24308	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
24309	/*
24310	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
24311	 * returned
24312	 */
24313	cdb[2] = 0x40;
24314	/*
24315	 * Set byte 3 to specify the return data format. A value of 0x01
24316	 * indicates that the CD-ROM current position should be returned.
24317	 */
24318	cdb[3] = 0x01;
24319	cdb[8] = 0x10;
24320	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24321	com->uscsi_cdb	   = cdb;
24322	com->uscsi_cdblen  = CDB_GROUP1;
24323	com->uscsi_bufaddr = buffer;
24324	com->uscsi_buflen  = 16;
24325	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24326	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24327	    SD_PATH_STANDARD);
24328	if (rval != 0) {
24329		kmem_free(buffer, 16);
24330		kmem_free(com, sizeof (*com));
24331		return (rval);
24332	}
24333
24334	/* Process the returned Q sub-channel data */
24335	subchnl->cdsc_audiostatus = buffer[1];
24336	subchnl->cdsc_adr	= (buffer[5] & 0xF0);
24337	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
24338	subchnl->cdsc_trk	= buffer[6];
24339	subchnl->cdsc_ind	= buffer[7];
24340	if (subchnl->cdsc_format & CDROM_LBA) {
24341		subchnl->cdsc_absaddr.lba =
24342		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
24343		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
24344		subchnl->cdsc_reladdr.lba =
24345		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
24346		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
24347	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
24348		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
24349		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
24350		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
24351		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
24352		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
24353		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
24354	} else {
24355		subchnl->cdsc_absaddr.msf.minute = buffer[9];
24356		subchnl->cdsc_absaddr.msf.second = buffer[10];
24357		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
24358		subchnl->cdsc_reladdr.msf.minute = buffer[13];
24359		subchnl->cdsc_reladdr.msf.second = buffer[14];
24360		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
24361	}
24362	kmem_free(buffer, 16);
24363	kmem_free(com, sizeof (*com));
24364	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
24365	    != 0) {
24366		return (EFAULT);
24367	}
24368	return (rval);
24369}
24370
24371
24372/*
24373 *    Function: sr_read_tocentry()
24374 *
24375 * Description: This routine is the driver entry point for handling CD-ROM
24376 *		ioctl requests to read from the Table of Contents (TOC)
24377 *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
24378 *		fields, the starting address (LBA or MSF format per the user)
24379 *		and the data mode if the user specified track is a data track.
24380 *
24381 *		Note: The READ HEADER (0x44) command used in this routine is
24382 *		obsolete per the SCSI MMC spec but still supported in the
24383 *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
24384 *		therefore the command is still implemented in this routine.
24385 *
24386 *   Arguments: dev	- the device 'dev_t'
24387 *		data	- pointer to user provided toc entry structure,
24388 *			  specifying the track # and the address format
24389 *			  (LBA or MSF).
24390 *		flag	- this argument is a pass through to ddi_copyxxx()
24391 *		          directly from the mode argument of ioctl().
24392 *
24393 * Return Code: the code returned by sd_send_scsi_cmd()
24394 *		EFAULT if ddi_copyxxx() fails
24395 *		ENXIO if fail ddi_get_soft_state
24396 *		EINVAL if data pointer is NULL
24397 */
24398
24399static int
24400sr_read_tocentry(dev_t dev, caddr_t data, int flag)
24401{
24402	struct sd_lun		*un = NULL;
24403	struct uscsi_cmd	*com;
24404	struct cdrom_tocentry	toc_entry;
24405	struct cdrom_tocentry	*entry = &toc_entry;
24406	caddr_t			buffer;
24407	int			rval;
24408	char			cdb[CDB_GROUP1];
24409
24410	if (data == NULL) {
24411		return (EINVAL);
24412	}
24413
24414	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24415	    (un->un_state == SD_STATE_OFFLINE)) {
24416		return (ENXIO);
24417	}
24418
24419	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
24420		return (EFAULT);
24421	}
24422
24423	/* Validate the requested track and address format */
24424	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
24425		return (EINVAL);
24426	}
24427
24428	if (entry->cdte_track == 0) {
24429		return (EINVAL);
24430	}
24431
24432	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
24433	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24434	bzero(cdb, CDB_GROUP1);
24435
24436	cdb[0] = SCMD_READ_TOC;
24437	/* Set the MSF bit based on the user requested address format  */
24438	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
24439	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
24440		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
24441	} else {
24442		cdb[6] = entry->cdte_track;
24443	}
24444
24445	/*
24446	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
24447	 * (4 byte TOC response header + 8 byte track descriptor)
24448	 */
24449	cdb[8] = 12;
24450	com->uscsi_cdb	   = cdb;
24451	com->uscsi_cdblen  = CDB_GROUP1;
24452	com->uscsi_bufaddr = buffer;
24453	com->uscsi_buflen  = 0x0C;
24454	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
24455	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24456	    SD_PATH_STANDARD);
24457	if (rval != 0) {
24458		kmem_free(buffer, 12);
24459		kmem_free(com, sizeof (*com));
24460		return (rval);
24461	}
24462
24463	/* Process the toc entry */
24464	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
24465	entry->cdte_ctrl	= (buffer[5] & 0x0F);
24466	if (entry->cdte_format & CDROM_LBA) {
24467		entry->cdte_addr.lba =
24468		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
24469		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
24470	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
24471		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
24472		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
24473		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
24474		/*
24475		 * Send a READ TOC command using the LBA address format to get
24476		 * the LBA for the track requested so it can be used in the
24477		 * READ HEADER request
24478		 *
24479		 * Note: The MSF bit of the READ HEADER command specifies the
24480		 * output format. The block address specified in that command
24481		 * must be in LBA format.
24482		 */
24483		cdb[1] = 0;
24484		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24485		    SD_PATH_STANDARD);
24486		if (rval != 0) {
24487			kmem_free(buffer, 12);
24488			kmem_free(com, sizeof (*com));
24489			return (rval);
24490		}
24491	} else {
24492		entry->cdte_addr.msf.minute	= buffer[9];
24493		entry->cdte_addr.msf.second	= buffer[10];
24494		entry->cdte_addr.msf.frame	= buffer[11];
24495		/*
24496		 * Send a READ TOC command using the LBA address format to get
24497		 * the LBA for the track requested so it can be used in the
24498		 * READ HEADER request
24499		 *
24500		 * Note: The MSF bit of the READ HEADER command specifies the
24501		 * output format. The block address specified in that command
24502		 * must be in LBA format.
24503		 */
24504		cdb[1] = 0;
24505		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24506		    SD_PATH_STANDARD);
24507		if (rval != 0) {
24508			kmem_free(buffer, 12);
24509			kmem_free(com, sizeof (*com));
24510			return (rval);
24511		}
24512	}
24513
24514	/*
24515	 * Build and send the READ HEADER command to determine the data mode of
24516	 * the user specified track.
24517	 */
24518	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
24519	    (entry->cdte_track != CDROM_LEADOUT)) {
24520		bzero(cdb, CDB_GROUP1);
24521		cdb[0] = SCMD_READ_HEADER;
24522		cdb[2] = buffer[8];
24523		cdb[3] = buffer[9];
24524		cdb[4] = buffer[10];
24525		cdb[5] = buffer[11];
24526		cdb[8] = 0x08;
24527		com->uscsi_buflen = 0x08;
24528		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24529		    SD_PATH_STANDARD);
24530		if (rval == 0) {
24531			entry->cdte_datamode = buffer[0];
24532		} else {
24533			/*
24534			 * READ HEADER command failed, since this is
24535			 * obsoleted in one spec, its better to return
24536			 * -1 for an invlid track so that we can still
24537			 * receive the rest of the TOC data.
24538			 */
24539			entry->cdte_datamode = (uchar_t)-1;
24540		}
24541	} else {
24542		entry->cdte_datamode = (uchar_t)-1;
24543	}
24544
24545	kmem_free(buffer, 12);
24546	kmem_free(com, sizeof (*com));
24547	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
24548		return (EFAULT);
24549
24550	return (rval);
24551}
24552
24553
24554/*
24555 *    Function: sr_read_tochdr()
24556 *
24557 * Description: This routine is the driver entry point for handling CD-ROM
24558 * 		ioctl requests to read the Table of Contents (TOC) header
24559 *		(CDROMREADTOHDR). The TOC header consists of the disk starting
24560 *		and ending track numbers
24561 *
24562 *   Arguments: dev	- the device 'dev_t'
24563 *		data	- pointer to user provided toc header structure,
24564 *			  specifying the starting and ending track numbers.
24565 *		flag	- this argument is a pass through to ddi_copyxxx()
24566 *			  directly from the mode argument of ioctl().
24567 *
24568 * Return Code: the code returned by sd_send_scsi_cmd()
24569 *		EFAULT if ddi_copyxxx() fails
24570 *		ENXIO if fail ddi_get_soft_state
24571 *		EINVAL if data pointer is NULL
24572 */
24573
24574static int
24575sr_read_tochdr(dev_t dev, caddr_t data, int flag)
24576{
24577	struct sd_lun		*un;
24578	struct uscsi_cmd	*com;
24579	struct cdrom_tochdr	toc_header;
24580	struct cdrom_tochdr	*hdr = &toc_header;
24581	char			cdb[CDB_GROUP1];
24582	int			rval;
24583	caddr_t			buffer;
24584
24585	if (data == NULL) {
24586		return (EINVAL);
24587	}
24588
24589	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24590	    (un->un_state == SD_STATE_OFFLINE)) {
24591		return (ENXIO);
24592	}
24593
24594	buffer = kmem_zalloc(4, KM_SLEEP);
24595	bzero(cdb, CDB_GROUP1);
24596	cdb[0] = SCMD_READ_TOC;
24597	/*
24598	 * Specifying a track number of 0x00 in the READ TOC command indicates
24599	 * that the TOC header should be returned
24600	 */
24601	cdb[6] = 0x00;
24602	/*
24603	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
24604	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
24605	 */
24606	cdb[8] = 0x04;
24607	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24608	com->uscsi_cdb	   = cdb;
24609	com->uscsi_cdblen  = CDB_GROUP1;
24610	com->uscsi_bufaddr = buffer;
24611	com->uscsi_buflen  = 0x04;
24612	com->uscsi_timeout = 300;
24613	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24614
24615	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24616	    SD_PATH_STANDARD);
24617	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
24618		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
24619		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
24620	} else {
24621		hdr->cdth_trk0 = buffer[2];
24622		hdr->cdth_trk1 = buffer[3];
24623	}
24624	kmem_free(buffer, 4);
24625	kmem_free(com, sizeof (*com));
24626	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
24627		return (EFAULT);
24628	}
24629	return (rval);
24630}
24631
24632
24633/*
24634 * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
24635 * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
24636 * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
24637 * digital audio and extended architecture digital audio. These modes are
24638 * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
24639 * MMC specs.
24640 *
24641 * In addition to support for the various data formats these routines also
24642 * include support for devices that implement only the direct access READ
24643 * commands (0x08, 0x28), devices that implement the READ_CD commands
24644 * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
24645 * READ CDXA commands (0xD8, 0xDB)
24646 */
24647
24648/*
24649 *    Function: sr_read_mode1()
24650 *
24651 * Description: This routine is the driver entry point for handling CD-ROM
24652 *		ioctl read mode1 requests (CDROMREADMODE1).
24653 *
24654 *   Arguments: dev	- the device 'dev_t'
24655 *		data	- pointer to user provided cd read structure specifying
24656 *			  the lba buffer address and length.
24657 *		flag	- this argument is a pass through to ddi_copyxxx()
24658 *			  directly from the mode argument of ioctl().
24659 *
24660 * Return Code: the code returned by sd_send_scsi_cmd()
24661 *		EFAULT if ddi_copyxxx() fails
24662 *		ENXIO if fail ddi_get_soft_state
24663 *		EINVAL if data pointer is NULL
24664 */
24665
24666static int
24667sr_read_mode1(dev_t dev, caddr_t data, int flag)
24668{
24669	struct sd_lun		*un;
24670	struct cdrom_read	mode1_struct;
24671	struct cdrom_read	*mode1 = &mode1_struct;
24672	int			rval;
24673#ifdef _MULTI_DATAMODEL
24674	/* To support ILP32 applications in an LP64 world */
24675	struct cdrom_read32	cdrom_read32;
24676	struct cdrom_read32	*cdrd32 = &cdrom_read32;
24677#endif /* _MULTI_DATAMODEL */
24678
24679	if (data == NULL) {
24680		return (EINVAL);
24681	}
24682
24683	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24684	    (un->un_state == SD_STATE_OFFLINE)) {
24685		return (ENXIO);
24686	}
24687
24688	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
24689	    "sd_read_mode1: entry: un:0x%p\n", un);
24690
24691#ifdef _MULTI_DATAMODEL
24692	switch (ddi_model_convert_from(flag & FMODELS)) {
24693	case DDI_MODEL_ILP32:
24694		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
24695			return (EFAULT);
24696		}
24697		/* Convert the ILP32 uscsi data from the application to LP64 */
24698		cdrom_read32tocdrom_read(cdrd32, mode1);
24699		break;
24700	case DDI_MODEL_NONE:
24701		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
24702			return (EFAULT);
24703		}
24704	}
24705#else /* ! _MULTI_DATAMODEL */
24706	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
24707		return (EFAULT);
24708	}
24709#endif /* _MULTI_DATAMODEL */
24710
24711	rval = sd_send_scsi_READ(un, mode1->cdread_bufaddr,
24712	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
24713
24714	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
24715	    "sd_read_mode1: exit: un:0x%p\n", un);
24716
24717	return (rval);
24718}
24719
24720
24721/*
24722 *    Function: sr_read_cd_mode2()
24723 *
24724 * Description: This routine is the driver entry point for handling CD-ROM
24725 *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
24726 *		support the READ CD (0xBE) command or the 1st generation
24727 *		READ CD (0xD4) command.
24728 *
24729 *   Arguments: dev	- the device 'dev_t'
24730 *		data	- pointer to user provided cd read structure specifying
24731 *			  the lba buffer address and length.
24732 *		flag	- this argument is a pass through to ddi_copyxxx()
24733 *			  directly from the mode argument of ioctl().
24734 *
24735 * Return Code: the code returned by sd_send_scsi_cmd()
24736 *		EFAULT if ddi_copyxxx() fails
24737 *		ENXIO if fail ddi_get_soft_state
24738 *		EINVAL if data pointer is NULL
24739 */
24740
24741static int
24742sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
24743{
24744	struct sd_lun		*un;
24745	struct uscsi_cmd	*com;
24746	struct cdrom_read	mode2_struct;
24747	struct cdrom_read	*mode2 = &mode2_struct;
24748	uchar_t			cdb[CDB_GROUP5];
24749	int			nblocks;
24750	int			rval;
24751#ifdef _MULTI_DATAMODEL
24752	/*  To support ILP32 applications in an LP64 world */
24753	struct cdrom_read32	cdrom_read32;
24754	struct cdrom_read32	*cdrd32 = &cdrom_read32;
24755#endif /* _MULTI_DATAMODEL */
24756
24757	if (data == NULL) {
24758		return (EINVAL);
24759	}
24760
24761	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24762	    (un->un_state == SD_STATE_OFFLINE)) {
24763		return (ENXIO);
24764	}
24765
24766#ifdef _MULTI_DATAMODEL
24767	switch (ddi_model_convert_from(flag & FMODELS)) {
24768	case DDI_MODEL_ILP32:
24769		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
24770			return (EFAULT);
24771		}
24772		/* Convert the ILP32 uscsi data from the application to LP64 */
24773		cdrom_read32tocdrom_read(cdrd32, mode2);
24774		break;
24775	case DDI_MODEL_NONE:
24776		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
24777			return (EFAULT);
24778		}
24779		break;
24780	}
24781
24782#else /* ! _MULTI_DATAMODEL */
24783	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
24784		return (EFAULT);
24785	}
24786#endif /* _MULTI_DATAMODEL */
24787
24788	bzero(cdb, sizeof (cdb));
24789	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
24790		/* Read command supported by 1st generation atapi drives */
24791		cdb[0] = SCMD_READ_CDD4;
24792	} else {
24793		/* Universal CD Access Command */
24794		cdb[0] = SCMD_READ_CD;
24795	}
24796
24797	/*
24798	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
24799	 */
24800	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
24801
24802	/* set the start address */
24803	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
24804	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
24805	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
24806	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
24807
24808	/* set the transfer length */
24809	nblocks = mode2->cdread_buflen / 2336;
24810	cdb[6] = (uchar_t)(nblocks >> 16);
24811	cdb[7] = (uchar_t)(nblocks >> 8);
24812	cdb[8] = (uchar_t)nblocks;
24813
24814	/* set the filter bits */
24815	cdb[9] = CDROM_READ_CD_USERDATA;
24816
24817	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24818	com->uscsi_cdb = (caddr_t)cdb;
24819	com->uscsi_cdblen = sizeof (cdb);
24820	com->uscsi_bufaddr = mode2->cdread_bufaddr;
24821	com->uscsi_buflen = mode2->cdread_buflen;
24822	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24823
24824	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
24825	    SD_PATH_STANDARD);
24826	kmem_free(com, sizeof (*com));
24827	return (rval);
24828}
24829
24830
24831/*
24832 *    Function: sr_read_mode2()
24833 *
24834 * Description: This routine is the driver entry point for handling CD-ROM
24835 *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
24836 *		do not support the READ CD (0xBE) command.
24837 *
24838 *   Arguments: dev	- the device 'dev_t'
24839 *		data	- pointer to user provided cd read structure specifying
24840 *			  the lba buffer address and length.
24841 *		flag	- this argument is a pass through to ddi_copyxxx()
24842 *			  directly from the mode argument of ioctl().
24843 *
24844 * Return Code: the code returned by sd_send_scsi_cmd()
24845 *		EFAULT if ddi_copyxxx() fails
24846 *		ENXIO if fail ddi_get_soft_state
24847 *		EINVAL if data pointer is NULL
24848 *		EIO if fail to reset block size
24849 *		EAGAIN if commands are in progress in the driver
24850 */
24851
24852static int
24853sr_read_mode2(dev_t dev, caddr_t data, int flag)
24854{
24855	struct sd_lun		*un;
24856	struct cdrom_read	mode2_struct;
24857	struct cdrom_read	*mode2 = &mode2_struct;
24858	int			rval;
24859	uint32_t		restore_blksize;
24860	struct uscsi_cmd	*com;
24861	uchar_t			cdb[CDB_GROUP0];
24862	int			nblocks;
24863
24864#ifdef _MULTI_DATAMODEL
24865	/* To support ILP32 applications in an LP64 world */
24866	struct cdrom_read32	cdrom_read32;
24867	struct cdrom_read32	*cdrd32 = &cdrom_read32;
24868#endif /* _MULTI_DATAMODEL */
24869
24870	if (data == NULL) {
24871		return (EINVAL);
24872	}
24873
24874	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24875	    (un->un_state == SD_STATE_OFFLINE)) {
24876		return (ENXIO);
24877	}
24878
24879	/*
24880	 * Because this routine will update the device and driver block size
24881	 * being used we want to make sure there are no commands in progress.
24882	 * If commands are in progress the user will have to try again.
24883	 *
24884	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
24885	 * in sdioctl to protect commands from sdioctl through to the top of
24886	 * sd_uscsi_strategy. See sdioctl for details.
24887	 */
24888	mutex_enter(SD_MUTEX(un));
24889	if (un->un_ncmds_in_driver != 1) {
24890		mutex_exit(SD_MUTEX(un));
24891		return (EAGAIN);
24892	}
24893	mutex_exit(SD_MUTEX(un));
24894
24895	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
24896	    "sd_read_mode2: entry: un:0x%p\n", un);
24897
24898#ifdef _MULTI_DATAMODEL
24899	switch (ddi_model_convert_from(flag & FMODELS)) {
24900	case DDI_MODEL_ILP32:
24901		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
24902			return (EFAULT);
24903		}
24904		/* Convert the ILP32 uscsi data from the application to LP64 */
24905		cdrom_read32tocdrom_read(cdrd32, mode2);
24906		break;
24907	case DDI_MODEL_NONE:
24908		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
24909			return (EFAULT);
24910		}
24911		break;
24912	}
24913#else /* ! _MULTI_DATAMODEL */
24914	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
24915		return (EFAULT);
24916	}
24917#endif /* _MULTI_DATAMODEL */
24918
24919	/* Store the current target block size for restoration later */
24920	restore_blksize = un->un_tgt_blocksize;
24921
24922	/* Change the device and soft state target block size to 2336 */
24923	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
24924		rval = EIO;
24925		goto done;
24926	}
24927
24928
24929	bzero(cdb, sizeof (cdb));
24930
24931	/* set READ operation */
24932	cdb[0] = SCMD_READ;
24933
24934	/* adjust lba for 2kbyte blocks from 512 byte blocks */
24935	mode2->cdread_lba >>= 2;
24936
24937	/* set the start address */
24938	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
24939	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
24940	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
24941
24942	/* set the transfer length */
24943	nblocks = mode2->cdread_buflen / 2336;
24944	cdb[4] = (uchar_t)nblocks & 0xFF;
24945
24946	/* build command */
24947	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24948	com->uscsi_cdb = (caddr_t)cdb;
24949	com->uscsi_cdblen = sizeof (cdb);
24950	com->uscsi_bufaddr = mode2->cdread_bufaddr;
24951	com->uscsi_buflen = mode2->cdread_buflen;
24952	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24953
24954	/*
24955	 * Issue SCSI command with user space address for read buffer.
24956	 *
24957	 * This sends the command through main channel in the driver.
24958	 *
24959	 * Since this is accessed via an IOCTL call, we go through the
24960	 * standard path, so that if the device was powered down, then
24961	 * it would be 'awakened' to handle the command.
24962	 */
24963	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
24964	    SD_PATH_STANDARD);
24965
24966	kmem_free(com, sizeof (*com));
24967
24968	/* Restore the device and soft state target block size */
24969	if (sr_sector_mode(dev, restore_blksize) != 0) {
24970		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24971		    "can't do switch back to mode 1\n");
24972		/*
24973		 * If sd_send_scsi_READ succeeded we still need to report
24974		 * an error because we failed to reset the block size
24975		 */
24976		if (rval == 0) {
24977			rval = EIO;
24978		}
24979	}
24980
24981done:
24982	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
24983	    "sd_read_mode2: exit: un:0x%p\n", un);
24984
24985	return (rval);
24986}
24987
24988
24989/*
24990 *    Function: sr_sector_mode()
24991 *
24992 * Description: This utility function is used by sr_read_mode2 to set the target
24993 *		block size based on the user specified size. This is a legacy
24994 *		implementation based upon a vendor specific mode page
24995 *
24996 *   Arguments: dev	- the device 'dev_t'
24997 *		data	- flag indicating if block size is being set to 2336 or
24998 *			  512.
24999 *
25000 * Return Code: the code returned by sd_send_scsi_cmd()
25001 *		EFAULT if ddi_copyxxx() fails
25002 *		ENXIO if fail ddi_get_soft_state
25003 *		EINVAL if data pointer is NULL
25004 */
25005
25006static int
25007sr_sector_mode(dev_t dev, uint32_t blksize)
25008{
25009	struct sd_lun	*un;
25010	uchar_t		*sense;
25011	uchar_t		*select;
25012	int		rval;
25013
25014	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25015	    (un->un_state == SD_STATE_OFFLINE)) {
25016		return (ENXIO);
25017	}
25018
25019	sense = kmem_zalloc(20, KM_SLEEP);
25020
25021	/* Note: This is a vendor specific mode page (0x81) */
25022	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 20, 0x81,
25023	    SD_PATH_STANDARD)) != 0) {
25024		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
25025		    "sr_sector_mode: Mode Sense failed\n");
25026		kmem_free(sense, 20);
25027		return (rval);
25028	}
25029	select = kmem_zalloc(20, KM_SLEEP);
25030	select[3] = 0x08;
25031	select[10] = ((blksize >> 8) & 0xff);
25032	select[11] = (blksize & 0xff);
25033	select[12] = 0x01;
25034	select[13] = 0x06;
25035	select[14] = sense[14];
25036	select[15] = sense[15];
25037	if (blksize == SD_MODE2_BLKSIZE) {
25038		select[14] |= 0x01;
25039	}
25040
25041	if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 20,
25042	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
25043		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
25044		    "sr_sector_mode: Mode Select failed\n");
25045	} else {
25046		/*
25047		 * Only update the softstate block size if we successfully
25048		 * changed the device block mode.
25049		 */
25050		mutex_enter(SD_MUTEX(un));
25051		sd_update_block_info(un, blksize, 0);
25052		mutex_exit(SD_MUTEX(un));
25053	}
25054	kmem_free(sense, 20);
25055	kmem_free(select, 20);
25056	return (rval);
25057}
25058
25059
25060/*
25061 *    Function: sr_read_cdda()
25062 *
25063 * Description: This routine is the driver entry point for handling CD-ROM
25064 *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
25065 *		the target supports CDDA these requests are handled via a vendor
25066 *		specific command (0xD8) If the target does not support CDDA
25067 *		these requests are handled via the READ CD command (0xBE).
25068 *
25069 *   Arguments: dev	- the device 'dev_t'
25070 *		data	- pointer to user provided CD-DA structure specifying
25071 *			  the track starting address, transfer length, and
25072 *			  subcode options.
25073 *		flag	- this argument is a pass through to ddi_copyxxx()
25074 *			  directly from the mode argument of ioctl().
25075 *
25076 * Return Code: the code returned by sd_send_scsi_cmd()
25077 *		EFAULT if ddi_copyxxx() fails
25078 *		ENXIO if fail ddi_get_soft_state
25079 *		EINVAL if invalid arguments are provided
25080 *		ENOTTY
25081 */
25082
25083static int
25084sr_read_cdda(dev_t dev, caddr_t data, int flag)
25085{
25086	struct sd_lun			*un;
25087	struct uscsi_cmd		*com;
25088	struct cdrom_cdda		*cdda;
25089	int				rval;
25090	size_t				buflen;
25091	char				cdb[CDB_GROUP5];
25092
25093#ifdef _MULTI_DATAMODEL
25094	/* To support ILP32 applications in an LP64 world */
25095	struct cdrom_cdda32	cdrom_cdda32;
25096	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
25097#endif /* _MULTI_DATAMODEL */
25098
25099	if (data == NULL) {
25100		return (EINVAL);
25101	}
25102
25103	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25104		return (ENXIO);
25105	}
25106
25107	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
25108
25109#ifdef _MULTI_DATAMODEL
25110	switch (ddi_model_convert_from(flag & FMODELS)) {
25111	case DDI_MODEL_ILP32:
25112		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
25113			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25114			    "sr_read_cdda: ddi_copyin Failed\n");
25115			kmem_free(cdda, sizeof (struct cdrom_cdda));
25116			return (EFAULT);
25117		}
25118		/* Convert the ILP32 uscsi data from the application to LP64 */
25119		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
25120		break;
25121	case DDI_MODEL_NONE:
25122		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
25123			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25124			    "sr_read_cdda: ddi_copyin Failed\n");
25125			kmem_free(cdda, sizeof (struct cdrom_cdda));
25126			return (EFAULT);
25127		}
25128		break;
25129	}
25130#else /* ! _MULTI_DATAMODEL */
25131	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
25132		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25133		    "sr_read_cdda: ddi_copyin Failed\n");
25134		kmem_free(cdda, sizeof (struct cdrom_cdda));
25135		return (EFAULT);
25136	}
25137#endif /* _MULTI_DATAMODEL */
25138
25139	/*
25140	 * Since MMC-2 expects max 3 bytes for length, check if the
25141	 * length input is greater than 3 bytes
25142	 */
25143	if ((cdda->cdda_length & 0xFF000000) != 0) {
25144		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
25145		    "cdrom transfer length too large: %d (limit %d)\n",
25146		    cdda->cdda_length, 0xFFFFFF);
25147		kmem_free(cdda, sizeof (struct cdrom_cdda));
25148		return (EINVAL);
25149	}
25150
25151	switch (cdda->cdda_subcode) {
25152	case CDROM_DA_NO_SUBCODE:
25153		buflen = CDROM_BLK_2352 * cdda->cdda_length;
25154		break;
25155	case CDROM_DA_SUBQ:
25156		buflen = CDROM_BLK_2368 * cdda->cdda_length;
25157		break;
25158	case CDROM_DA_ALL_SUBCODE:
25159		buflen = CDROM_BLK_2448 * cdda->cdda_length;
25160		break;
25161	case CDROM_DA_SUBCODE_ONLY:
25162		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
25163		break;
25164	default:
25165		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25166		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
25167		    cdda->cdda_subcode);
25168		kmem_free(cdda, sizeof (struct cdrom_cdda));
25169		return (EINVAL);
25170	}
25171
25172	/* Build and send the command */
25173	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25174	bzero(cdb, CDB_GROUP5);
25175
25176	if (un->un_f_cfg_cdda == TRUE) {
25177		cdb[0] = (char)SCMD_READ_CD;
25178		cdb[1] = 0x04;
25179		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
25180		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
25181		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
25182		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
25183		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
25184		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
25185		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
25186		cdb[9] = 0x10;
25187		switch (cdda->cdda_subcode) {
25188		case CDROM_DA_NO_SUBCODE :
25189			cdb[10] = 0x0;
25190			break;
25191		case CDROM_DA_SUBQ :
25192			cdb[10] = 0x2;
25193			break;
25194		case CDROM_DA_ALL_SUBCODE :
25195			cdb[10] = 0x1;
25196			break;
25197		case CDROM_DA_SUBCODE_ONLY :
25198			/* FALLTHROUGH */
25199		default :
25200			kmem_free(cdda, sizeof (struct cdrom_cdda));
25201			kmem_free(com, sizeof (*com));
25202			return (ENOTTY);
25203		}
25204	} else {
25205		cdb[0] = (char)SCMD_READ_CDDA;
25206		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
25207		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
25208		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
25209		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
25210		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
25211		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
25212		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
25213		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
25214		cdb[10] = cdda->cdda_subcode;
25215	}
25216
25217	com->uscsi_cdb = cdb;
25218	com->uscsi_cdblen = CDB_GROUP5;
25219	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
25220	com->uscsi_buflen = buflen;
25221	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25222
25223	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25224	    SD_PATH_STANDARD);
25225
25226	kmem_free(cdda, sizeof (struct cdrom_cdda));
25227	kmem_free(com, sizeof (*com));
25228	return (rval);
25229}
25230
25231
25232/*
25233 *    Function: sr_read_cdxa()
25234 *
25235 * Description: This routine is the driver entry point for handling CD-ROM
25236 *		ioctl requests to return CD-XA (Extended Architecture) data.
25237 *		(CDROMCDXA).
25238 *
25239 *   Arguments: dev	- the device 'dev_t'
25240 *		data	- pointer to user provided CD-XA structure specifying
25241 *			  the data starting address, transfer length, and format
25242 *		flag	- this argument is a pass through to ddi_copyxxx()
25243 *			  directly from the mode argument of ioctl().
25244 *
25245 * Return Code: the code returned by sd_send_scsi_cmd()
25246 *		EFAULT if ddi_copyxxx() fails
25247 *		ENXIO if fail ddi_get_soft_state
25248 *		EINVAL if data pointer is NULL
25249 */
25250
25251static int
25252sr_read_cdxa(dev_t dev, caddr_t data, int flag)
25253{
25254	struct sd_lun		*un;
25255	struct uscsi_cmd	*com;
25256	struct cdrom_cdxa	*cdxa;
25257	int			rval;
25258	size_t			buflen;
25259	char			cdb[CDB_GROUP5];
25260	uchar_t			read_flags;
25261
25262#ifdef _MULTI_DATAMODEL
25263	/* To support ILP32 applications in an LP64 world */
25264	struct cdrom_cdxa32		cdrom_cdxa32;
25265	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
25266#endif /* _MULTI_DATAMODEL */
25267
25268	if (data == NULL) {
25269		return (EINVAL);
25270	}
25271
25272	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25273		return (ENXIO);
25274	}
25275
25276	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
25277
25278#ifdef _MULTI_DATAMODEL
25279	switch (ddi_model_convert_from(flag & FMODELS)) {
25280	case DDI_MODEL_ILP32:
25281		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
25282			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25283			return (EFAULT);
25284		}
25285		/*
25286		 * Convert the ILP32 uscsi data from the
25287		 * application to LP64 for internal use.
25288		 */
25289		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
25290		break;
25291	case DDI_MODEL_NONE:
25292		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
25293			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25294			return (EFAULT);
25295		}
25296		break;
25297	}
25298#else /* ! _MULTI_DATAMODEL */
25299	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
25300		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25301		return (EFAULT);
25302	}
25303#endif /* _MULTI_DATAMODEL */
25304
25305	/*
25306	 * Since MMC-2 expects max 3 bytes for length, check if the
25307	 * length input is greater than 3 bytes
25308	 */
25309	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
25310		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
25311		    "cdrom transfer length too large: %d (limit %d)\n",
25312		    cdxa->cdxa_length, 0xFFFFFF);
25313		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25314		return (EINVAL);
25315	}
25316
25317	switch (cdxa->cdxa_format) {
25318	case CDROM_XA_DATA:
25319		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
25320		read_flags = 0x10;
25321		break;
25322	case CDROM_XA_SECTOR_DATA:
25323		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
25324		read_flags = 0xf8;
25325		break;
25326	case CDROM_XA_DATA_W_ERROR:
25327		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
25328		read_flags = 0xfc;
25329		break;
25330	default:
25331		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25332		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
25333		    cdxa->cdxa_format);
25334		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25335		return (EINVAL);
25336	}
25337
25338	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25339	bzero(cdb, CDB_GROUP5);
25340	if (un->un_f_mmc_cap == TRUE) {
25341		cdb[0] = (char)SCMD_READ_CD;
25342		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
25343		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
25344		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
25345		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
25346		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
25347		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
25348		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
25349		cdb[9] = (char)read_flags;
25350	} else {
25351		/*
25352		 * Note: A vendor specific command (0xDB) is being used her to
25353		 * request a read of all subcodes.
25354		 */
25355		cdb[0] = (char)SCMD_READ_CDXA;
25356		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
25357		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
25358		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
25359		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
25360		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
25361		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
25362		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
25363		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
25364		cdb[10] = cdxa->cdxa_format;
25365	}
25366	com->uscsi_cdb	   = cdb;
25367	com->uscsi_cdblen  = CDB_GROUP5;
25368	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
25369	com->uscsi_buflen  = buflen;
25370	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25371	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25372	    SD_PATH_STANDARD);
25373	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25374	kmem_free(com, sizeof (*com));
25375	return (rval);
25376}
25377
25378
25379/*
25380 *    Function: sr_eject()
25381 *
25382 * Description: This routine is the driver entry point for handling CD-ROM
25383 *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
25384 *
25385 *   Arguments: dev	- the device 'dev_t'
25386 *
25387 * Return Code: the code returned by sd_send_scsi_cmd()
25388 */
25389
25390static int
25391sr_eject(dev_t dev)
25392{
25393	struct sd_lun	*un;
25394	int		rval;
25395
25396	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25397	    (un->un_state == SD_STATE_OFFLINE)) {
25398		return (ENXIO);
25399	}
25400
25401	/*
25402	 * To prevent race conditions with the eject
25403	 * command, keep track of an eject command as
25404	 * it progresses. If we are already handling
25405	 * an eject command in the driver for the given
25406	 * unit and another request to eject is received
25407	 * immediately return EAGAIN so we don't lose
25408	 * the command if the current eject command fails.
25409	 */
25410	mutex_enter(SD_MUTEX(un));
25411	if (un->un_f_ejecting == TRUE) {
25412		mutex_exit(SD_MUTEX(un));
25413		return (EAGAIN);
25414	}
25415	un->un_f_ejecting = TRUE;
25416	mutex_exit(SD_MUTEX(un));
25417
25418	if ((rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
25419	    SD_PATH_STANDARD)) != 0) {
25420		mutex_enter(SD_MUTEX(un));
25421		un->un_f_ejecting = FALSE;
25422		mutex_exit(SD_MUTEX(un));
25423		return (rval);
25424	}
25425
25426	rval = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_EJECT,
25427	    SD_PATH_STANDARD);
25428
25429	if (rval == 0) {
25430		mutex_enter(SD_MUTEX(un));
25431		sr_ejected(un);
25432		un->un_mediastate = DKIO_EJECTED;
25433		un->un_f_ejecting = FALSE;
25434		cv_broadcast(&un->un_state_cv);
25435		mutex_exit(SD_MUTEX(un));
25436	} else {
25437		mutex_enter(SD_MUTEX(un));
25438		un->un_f_ejecting = FALSE;
25439		mutex_exit(SD_MUTEX(un));
25440	}
25441	return (rval);
25442}
25443
25444
25445/*
25446 *    Function: sr_ejected()
25447 *
25448 * Description: This routine updates the soft state structure to invalidate the
25449 *		geometry information after the media has been ejected or a
25450 *		media eject has been detected.
25451 *
25452 *   Arguments: un - driver soft state (unit) structure
25453 */
25454
25455static void
25456sr_ejected(struct sd_lun *un)
25457{
25458	struct sd_errstats *stp;
25459
25460	ASSERT(un != NULL);
25461	ASSERT(mutex_owned(SD_MUTEX(un)));
25462
25463	un->un_f_blockcount_is_valid	= FALSE;
25464	un->un_f_tgt_blocksize_is_valid	= FALSE;
25465	mutex_exit(SD_MUTEX(un));
25466	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
25467	mutex_enter(SD_MUTEX(un));
25468
25469	if (un->un_errstats != NULL) {
25470		stp = (struct sd_errstats *)un->un_errstats->ks_data;
25471		stp->sd_capacity.value.ui64 = 0;
25472	}
25473
25474	/* remove "capacity-of-device" properties */
25475	(void) ddi_prop_remove(DDI_DEV_T_NONE, SD_DEVINFO(un),
25476	    "device-nblocks");
25477	(void) ddi_prop_remove(DDI_DEV_T_NONE, SD_DEVINFO(un),
25478	    "device-blksize");
25479}
25480
25481
25482/*
25483 *    Function: sr_check_wp()
25484 *
25485 * Description: This routine checks the write protection of a removable
25486 *      media disk and hotpluggable devices via the write protect bit of
25487 *      the Mode Page Header device specific field. Some devices choke
25488 *      on unsupported mode page. In order to workaround this issue,
25489 *      this routine has been implemented to use 0x3f mode page(request
25490 *      for all pages) for all device types.
25491 *
25492 *   Arguments: dev		- the device 'dev_t'
25493 *
25494 * Return Code: int indicating if the device is write protected (1) or not (0)
25495 *
25496 *     Context: Kernel thread.
25497 *
25498 */
25499
25500static int
25501sr_check_wp(dev_t dev)
25502{
25503	struct sd_lun	*un;
25504	uchar_t		device_specific;
25505	uchar_t		*sense;
25506	int		hdrlen;
25507	int		rval = FALSE;
25508
25509	/*
25510	 * Note: The return codes for this routine should be reworked to
25511	 * properly handle the case of a NULL softstate.
25512	 */
25513	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25514		return (FALSE);
25515	}
25516
25517	if (un->un_f_cfg_is_atapi == TRUE) {
25518		/*
25519		 * The mode page contents are not required; set the allocation
25520		 * length for the mode page header only
25521		 */
25522		hdrlen = MODE_HEADER_LENGTH_GRP2;
25523		sense = kmem_zalloc(hdrlen, KM_SLEEP);
25524		if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, hdrlen,
25525		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0)
25526			goto err_exit;
25527		device_specific =
25528		    ((struct mode_header_grp2 *)sense)->device_specific;
25529	} else {
25530		hdrlen = MODE_HEADER_LENGTH;
25531		sense = kmem_zalloc(hdrlen, KM_SLEEP);
25532		if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, hdrlen,
25533		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0)
25534			goto err_exit;
25535		device_specific =
25536		    ((struct mode_header *)sense)->device_specific;
25537	}
25538
25539	/*
25540	 * Write protect mode sense failed; not all disks
25541	 * understand this query. Return FALSE assuming that
25542	 * these devices are not writable.
25543	 */
25544	if (device_specific & WRITE_PROTECT) {
25545		rval = TRUE;
25546	}
25547
25548err_exit:
25549	kmem_free(sense, hdrlen);
25550	return (rval);
25551}
25552
25553/*
25554 *    Function: sr_volume_ctrl()
25555 *
25556 * Description: This routine is the driver entry point for handling CD-ROM
25557 *		audio output volume ioctl requests. (CDROMVOLCTRL)
25558 *
25559 *   Arguments: dev	- the device 'dev_t'
25560 *		data	- pointer to user audio volume control structure
25561 *		flag	- this argument is a pass through to ddi_copyxxx()
25562 *			  directly from the mode argument of ioctl().
25563 *
25564 * Return Code: the code returned by sd_send_scsi_cmd()
25565 *		EFAULT if ddi_copyxxx() fails
25566 *		ENXIO if fail ddi_get_soft_state
25567 *		EINVAL if data pointer is NULL
25568 *
25569 */
25570
25571static int
25572sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
25573{
25574	struct sd_lun		*un;
25575	struct cdrom_volctrl    volume;
25576	struct cdrom_volctrl    *vol = &volume;
25577	uchar_t			*sense_page;
25578	uchar_t			*select_page;
25579	uchar_t			*sense;
25580	uchar_t			*select;
25581	int			sense_buflen;
25582	int			select_buflen;
25583	int			rval;
25584
25585	if (data == NULL) {
25586		return (EINVAL);
25587	}
25588
25589	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25590	    (un->un_state == SD_STATE_OFFLINE)) {
25591		return (ENXIO);
25592	}
25593
25594	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
25595		return (EFAULT);
25596	}
25597
25598	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
25599		struct mode_header_grp2		*sense_mhp;
25600		struct mode_header_grp2		*select_mhp;
25601		int				bd_len;
25602
25603		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
25604		select_buflen = MODE_HEADER_LENGTH_GRP2 +
25605		    MODEPAGE_AUDIO_CTRL_LEN;
25606		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
25607		select = kmem_zalloc(select_buflen, KM_SLEEP);
25608		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
25609		    sense_buflen, MODEPAGE_AUDIO_CTRL,
25610		    SD_PATH_STANDARD)) != 0) {
25611			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
25612			    "sr_volume_ctrl: Mode Sense Failed\n");
25613			kmem_free(sense, sense_buflen);
25614			kmem_free(select, select_buflen);
25615			return (rval);
25616		}
25617		sense_mhp = (struct mode_header_grp2 *)sense;
25618		select_mhp = (struct mode_header_grp2 *)select;
25619		bd_len = (sense_mhp->bdesc_length_hi << 8) |
25620		    sense_mhp->bdesc_length_lo;
25621		if (bd_len > MODE_BLK_DESC_LENGTH) {
25622			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25623			    "sr_volume_ctrl: Mode Sense returned invalid "
25624			    "block descriptor length\n");
25625			kmem_free(sense, sense_buflen);
25626			kmem_free(select, select_buflen);
25627			return (EIO);
25628		}
25629		sense_page = (uchar_t *)
25630		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
25631		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
25632		select_mhp->length_msb = 0;
25633		select_mhp->length_lsb = 0;
25634		select_mhp->bdesc_length_hi = 0;
25635		select_mhp->bdesc_length_lo = 0;
25636	} else {
25637		struct mode_header		*sense_mhp, *select_mhp;
25638
25639		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
25640		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
25641		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
25642		select = kmem_zalloc(select_buflen, KM_SLEEP);
25643		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
25644		    sense_buflen, MODEPAGE_AUDIO_CTRL,
25645		    SD_PATH_STANDARD)) != 0) {
25646			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25647			    "sr_volume_ctrl: Mode Sense Failed\n");
25648			kmem_free(sense, sense_buflen);
25649			kmem_free(select, select_buflen);
25650			return (rval);
25651		}
25652		sense_mhp  = (struct mode_header *)sense;
25653		select_mhp = (struct mode_header *)select;
25654		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
25655			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25656			    "sr_volume_ctrl: Mode Sense returned invalid "
25657			    "block descriptor length\n");
25658			kmem_free(sense, sense_buflen);
25659			kmem_free(select, select_buflen);
25660			return (EIO);
25661		}
25662		sense_page = (uchar_t *)
25663		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
25664		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
25665		select_mhp->length = 0;
25666		select_mhp->bdesc_length = 0;
25667	}
25668	/*
25669	 * Note: An audio control data structure could be created and overlayed
25670	 * on the following in place of the array indexing method implemented.
25671	 */
25672
25673	/* Build the select data for the user volume data */
25674	select_page[0] = MODEPAGE_AUDIO_CTRL;
25675	select_page[1] = 0xE;
25676	/* Set the immediate bit */
25677	select_page[2] = 0x04;
25678	/* Zero out reserved fields */
25679	select_page[3] = 0x00;
25680	select_page[4] = 0x00;
25681	/* Return sense data for fields not to be modified */
25682	select_page[5] = sense_page[5];
25683	select_page[6] = sense_page[6];
25684	select_page[7] = sense_page[7];
25685	/* Set the user specified volume levels for channel 0 and 1 */
25686	select_page[8] = 0x01;
25687	select_page[9] = vol->channel0;
25688	select_page[10] = 0x02;
25689	select_page[11] = vol->channel1;
25690	/* Channel 2 and 3 are currently unsupported so return the sense data */
25691	select_page[12] = sense_page[12];
25692	select_page[13] = sense_page[13];
25693	select_page[14] = sense_page[14];
25694	select_page[15] = sense_page[15];
25695
25696	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
25697		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, select,
25698		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
25699	} else {
25700		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
25701		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
25702	}
25703
25704	kmem_free(sense, sense_buflen);
25705	kmem_free(select, select_buflen);
25706	return (rval);
25707}
25708
25709
25710/*
25711 *    Function: sr_read_sony_session_offset()
25712 *
25713 * Description: This routine is the driver entry point for handling CD-ROM
25714 *		ioctl requests for session offset information. (CDROMREADOFFSET)
25715 *		The address of the first track in the last session of a
25716 *		multi-session CD-ROM is returned
25717 *
25718 *		Note: This routine uses a vendor specific key value in the
25719 *		command control field without implementing any vendor check here
25720 *		or in the ioctl routine.
25721 *
25722 *   Arguments: dev	- the device 'dev_t'
25723 *		data	- pointer to an int to hold the requested address
25724 *		flag	- this argument is a pass through to ddi_copyxxx()
25725 *			  directly from the mode argument of ioctl().
25726 *
25727 * Return Code: the code returned by sd_send_scsi_cmd()
25728 *		EFAULT if ddi_copyxxx() fails
25729 *		ENXIO if fail ddi_get_soft_state
25730 *		EINVAL if data pointer is NULL
25731 */
25732
25733static int
25734sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
25735{
25736	struct sd_lun		*un;
25737	struct uscsi_cmd	*com;
25738	caddr_t			buffer;
25739	char			cdb[CDB_GROUP1];
25740	int			session_offset = 0;
25741	int			rval;
25742
25743	if (data == NULL) {
25744		return (EINVAL);
25745	}
25746
25747	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25748	    (un->un_state == SD_STATE_OFFLINE)) {
25749		return (ENXIO);
25750	}
25751
25752	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
25753	bzero(cdb, CDB_GROUP1);
25754	cdb[0] = SCMD_READ_TOC;
25755	/*
25756	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
25757	 * (4 byte TOC response header + 8 byte response data)
25758	 */
25759	cdb[8] = SONY_SESSION_OFFSET_LEN;
25760	/* Byte 9 is the control byte. A vendor specific value is used */
25761	cdb[9] = SONY_SESSION_OFFSET_KEY;
25762	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25763	com->uscsi_cdb = cdb;
25764	com->uscsi_cdblen = CDB_GROUP1;
25765	com->uscsi_bufaddr = buffer;
25766	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
25767	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25768
25769	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25770	    SD_PATH_STANDARD);
25771	if (rval != 0) {
25772		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
25773		kmem_free(com, sizeof (*com));
25774		return (rval);
25775	}
25776	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
25777		session_offset =
25778		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
25779		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
25780		/*
25781		 * Offset returned offset in current lbasize block's. Convert to
25782		 * 2k block's to return to the user
25783		 */
25784		if (un->un_tgt_blocksize == CDROM_BLK_512) {
25785			session_offset >>= 2;
25786		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
25787			session_offset >>= 1;
25788		}
25789	}
25790
25791	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
25792		rval = EFAULT;
25793	}
25794
25795	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
25796	kmem_free(com, sizeof (*com));
25797	return (rval);
25798}
25799
25800
25801/*
25802 *    Function: sd_wm_cache_constructor()
25803 *
25804 * Description: Cache Constructor for the wmap cache for the read/modify/write
25805 * 		devices.
25806 *
25807 *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
25808 *		un	- sd_lun structure for the device.
25809 *		flag	- the km flags passed to constructor
25810 *
25811 * Return Code: 0 on success.
25812 *		-1 on failure.
25813 */
25814
25815/*ARGSUSED*/
25816static int
25817sd_wm_cache_constructor(void *wm, void *un, int flags)
25818{
25819	bzero(wm, sizeof (struct sd_w_map));
25820	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
25821	return (0);
25822}
25823
25824
25825/*
25826 *    Function: sd_wm_cache_destructor()
25827 *
25828 * Description: Cache destructor for the wmap cache for the read/modify/write
25829 * 		devices.
25830 *
25831 *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
25832 *		un	- sd_lun structure for the device.
25833 */
25834/*ARGSUSED*/
25835static void
25836sd_wm_cache_destructor(void *wm, void *un)
25837{
25838	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
25839}
25840
25841
25842/*
25843 *    Function: sd_range_lock()
25844 *
25845 * Description: Lock the range of blocks specified as parameter to ensure
25846 *		that read, modify write is atomic and no other i/o writes
25847 *		to the same location. The range is specified in terms
25848 *		of start and end blocks. Block numbers are the actual
25849 *		media block numbers and not system.
25850 *
25851 *   Arguments: un	- sd_lun structure for the device.
25852 *		startb - The starting block number
25853 *		endb - The end block number
25854 *		typ - type of i/o - simple/read_modify_write
25855 *
25856 * Return Code: wm  - pointer to the wmap structure.
25857 *
25858 *     Context: This routine can sleep.
25859 */
25860
25861static struct sd_w_map *
25862sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
25863{
25864	struct sd_w_map *wmp = NULL;
25865	struct sd_w_map *sl_wmp = NULL;
25866	struct sd_w_map *tmp_wmp;
25867	wm_state state = SD_WM_CHK_LIST;
25868
25869
25870	ASSERT(un != NULL);
25871	ASSERT(!mutex_owned(SD_MUTEX(un)));
25872
25873	mutex_enter(SD_MUTEX(un));
25874
25875	while (state != SD_WM_DONE) {
25876
25877		switch (state) {
25878		case SD_WM_CHK_LIST:
25879			/*
25880			 * This is the starting state. Check the wmap list
25881			 * to see if the range is currently available.
25882			 */
25883			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
25884				/*
25885				 * If this is a simple write and no rmw
25886				 * i/o is pending then try to lock the
25887				 * range as the range should be available.
25888				 */
25889				state = SD_WM_LOCK_RANGE;
25890			} else {
25891				tmp_wmp = sd_get_range(un, startb, endb);
25892				if (tmp_wmp != NULL) {
25893					if ((wmp != NULL) && ONLIST(un, wmp)) {
25894						/*
25895						 * Should not keep onlist wmps
25896						 * while waiting this macro
25897						 * will also do wmp = NULL;
25898						 */
25899						FREE_ONLIST_WMAP(un, wmp);
25900					}
25901					/*
25902					 * sl_wmp is the wmap on which wait
25903					 * is done, since the tmp_wmp points
25904					 * to the inuse wmap, set sl_wmp to
25905					 * tmp_wmp and change the state to sleep
25906					 */
25907					sl_wmp = tmp_wmp;
25908					state = SD_WM_WAIT_MAP;
25909				} else {
25910					state = SD_WM_LOCK_RANGE;
25911				}
25912
25913			}
25914			break;
25915
25916		case SD_WM_LOCK_RANGE:
25917			ASSERT(un->un_wm_cache);
25918			/*
25919			 * The range need to be locked, try to get a wmap.
25920			 * First attempt it with NO_SLEEP, want to avoid a sleep
25921			 * if possible as we will have to release the sd mutex
25922			 * if we have to sleep.
25923			 */
25924			if (wmp == NULL)
25925				wmp = kmem_cache_alloc(un->un_wm_cache,
25926				    KM_NOSLEEP);
25927			if (wmp == NULL) {
25928				mutex_exit(SD_MUTEX(un));
25929				_NOTE(DATA_READABLE_WITHOUT_LOCK
25930				    (sd_lun::un_wm_cache))
25931				wmp = kmem_cache_alloc(un->un_wm_cache,
25932				    KM_SLEEP);
25933				mutex_enter(SD_MUTEX(un));
25934				/*
25935				 * we released the mutex so recheck and go to
25936				 * check list state.
25937				 */
25938				state = SD_WM_CHK_LIST;
25939			} else {
25940				/*
25941				 * We exit out of state machine since we
25942				 * have the wmap. Do the housekeeping first.
25943				 * place the wmap on the wmap list if it is not
25944				 * on it already and then set the state to done.
25945				 */
25946				wmp->wm_start = startb;
25947				wmp->wm_end = endb;
25948				wmp->wm_flags = typ | SD_WM_BUSY;
25949				if (typ & SD_WTYPE_RMW) {
25950					un->un_rmw_count++;
25951				}
25952				/*
25953				 * If not already on the list then link
25954				 */
25955				if (!ONLIST(un, wmp)) {
25956					wmp->wm_next = un->un_wm;
25957					wmp->wm_prev = NULL;
25958					if (wmp->wm_next)
25959						wmp->wm_next->wm_prev = wmp;
25960					un->un_wm = wmp;
25961				}
25962				state = SD_WM_DONE;
25963			}
25964			break;
25965
25966		case SD_WM_WAIT_MAP:
25967			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
25968			/*
25969			 * Wait is done on sl_wmp, which is set in the
25970			 * check_list state.
25971			 */
25972			sl_wmp->wm_wanted_count++;
25973			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
25974			sl_wmp->wm_wanted_count--;
25975			/*
25976			 * We can reuse the memory from the completed sl_wmp
25977			 * lock range for our new lock, but only if noone is
25978			 * waiting for it.
25979			 */
25980			ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY));
25981			if (sl_wmp->wm_wanted_count == 0) {
25982				if (wmp != NULL)
25983					CHK_N_FREEWMP(un, wmp);
25984				wmp = sl_wmp;
25985			}
25986			sl_wmp = NULL;
25987			/*
25988			 * After waking up, need to recheck for availability of
25989			 * range.
25990			 */
25991			state = SD_WM_CHK_LIST;
25992			break;
25993
25994		default:
25995			panic("sd_range_lock: "
25996			    "Unknown state %d in sd_range_lock", state);
25997			/*NOTREACHED*/
25998		} /* switch(state) */
25999
26000	} /* while(state != SD_WM_DONE) */
26001
26002	mutex_exit(SD_MUTEX(un));
26003
26004	ASSERT(wmp != NULL);
26005
26006	return (wmp);
26007}
26008
26009
26010/*
26011 *    Function: sd_get_range()
26012 *
26013 * Description: Find if there any overlapping I/O to this one
26014 *		Returns the write-map of 1st such I/O, NULL otherwise.
26015 *
26016 *   Arguments: un	- sd_lun structure for the device.
26017 *		startb - The starting block number
26018 *		endb - The end block number
26019 *
26020 * Return Code: wm  - pointer to the wmap structure.
26021 */
26022
26023static struct sd_w_map *
26024sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
26025{
26026	struct sd_w_map *wmp;
26027
26028	ASSERT(un != NULL);
26029
26030	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
26031		if (!(wmp->wm_flags & SD_WM_BUSY)) {
26032			continue;
26033		}
26034		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
26035			break;
26036		}
26037		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
26038			break;
26039		}
26040	}
26041
26042	return (wmp);
26043}
26044
26045
26046/*
26047 *    Function: sd_free_inlist_wmap()
26048 *
26049 * Description: Unlink and free a write map struct.
26050 *
26051 *   Arguments: un      - sd_lun structure for the device.
26052 *		wmp	- sd_w_map which needs to be unlinked.
26053 */
26054
26055static void
26056sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
26057{
26058	ASSERT(un != NULL);
26059
26060	if (un->un_wm == wmp) {
26061		un->un_wm = wmp->wm_next;
26062	} else {
26063		wmp->wm_prev->wm_next = wmp->wm_next;
26064	}
26065
26066	if (wmp->wm_next) {
26067		wmp->wm_next->wm_prev = wmp->wm_prev;
26068	}
26069
26070	wmp->wm_next = wmp->wm_prev = NULL;
26071
26072	kmem_cache_free(un->un_wm_cache, wmp);
26073}
26074
26075
26076/*
26077 *    Function: sd_range_unlock()
26078 *
26079 * Description: Unlock the range locked by wm.
26080 *		Free write map if nobody else is waiting on it.
26081 *
26082 *   Arguments: un      - sd_lun structure for the device.
26083 *              wmp     - sd_w_map which needs to be unlinked.
26084 */
26085
26086static void
26087sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
26088{
26089	ASSERT(un != NULL);
26090	ASSERT(wm != NULL);
26091	ASSERT(!mutex_owned(SD_MUTEX(un)));
26092
26093	mutex_enter(SD_MUTEX(un));
26094
26095	if (wm->wm_flags & SD_WTYPE_RMW) {
26096		un->un_rmw_count--;
26097	}
26098
26099	if (wm->wm_wanted_count) {
26100		wm->wm_flags = 0;
26101		/*
26102		 * Broadcast that the wmap is available now.
26103		 */
26104		cv_broadcast(&wm->wm_avail);
26105	} else {
26106		/*
26107		 * If no one is waiting on the map, it should be free'ed.
26108		 */
26109		sd_free_inlist_wmap(un, wm);
26110	}
26111
26112	mutex_exit(SD_MUTEX(un));
26113}
26114
26115
26116/*
26117 *    Function: sd_read_modify_write_task
26118 *
26119 * Description: Called from a taskq thread to initiate the write phase of
26120 *		a read-modify-write request.  This is used for targets where
26121 *		un->un_sys_blocksize != un->un_tgt_blocksize.
26122 *
26123 *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
26124 *
26125 *     Context: Called under taskq thread context.
26126 */
26127
26128static void
26129sd_read_modify_write_task(void *arg)
26130{
26131	struct sd_mapblocksize_info	*bsp;
26132	struct buf	*bp;
26133	struct sd_xbuf	*xp;
26134	struct sd_lun	*un;
26135
26136	bp = arg;	/* The bp is given in arg */
26137	ASSERT(bp != NULL);
26138
26139	/* Get the pointer to the layer-private data struct */
26140	xp = SD_GET_XBUF(bp);
26141	ASSERT(xp != NULL);
26142	bsp = xp->xb_private;
26143	ASSERT(bsp != NULL);
26144
26145	un = SD_GET_UN(bp);
26146	ASSERT(un != NULL);
26147	ASSERT(!mutex_owned(SD_MUTEX(un)));
26148
26149	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
26150	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
26151
26152	/*
26153	 * This is the write phase of a read-modify-write request, called
26154	 * under the context of a taskq thread in response to the completion
26155	 * of the read portion of the rmw request completing under interrupt
26156	 * context. The write request must be sent from here down the iostart
26157	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
26158	 * we use the layer index saved in the layer-private data area.
26159	 */
26160	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
26161
26162	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
26163	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
26164}
26165
26166
26167/*
26168 *    Function: sddump_do_read_of_rmw()
26169 *
26170 * Description: This routine will be called from sddump, If sddump is called
26171 *		with an I/O which not aligned on device blocksize boundary
26172 *		then the write has to be converted to read-modify-write.
26173 *		Do the read part here in order to keep sddump simple.
26174 *		Note - That the sd_mutex is held across the call to this
26175 *		routine.
26176 *
26177 *   Arguments: un	- sd_lun
26178 *		blkno	- block number in terms of media block size.
26179 *		nblk	- number of blocks.
26180 *		bpp	- pointer to pointer to the buf structure. On return
26181 *			from this function, *bpp points to the valid buffer
26182 *			to which the write has to be done.
26183 *
26184 * Return Code: 0 for success or errno-type return code
26185 */
26186
26187static int
26188sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
26189	struct buf **bpp)
26190{
26191	int err;
26192	int i;
26193	int rval;
26194	struct buf *bp;
26195	struct scsi_pkt *pkt = NULL;
26196	uint32_t target_blocksize;
26197
26198	ASSERT(un != NULL);
26199	ASSERT(mutex_owned(SD_MUTEX(un)));
26200
26201	target_blocksize = un->un_tgt_blocksize;
26202
26203	mutex_exit(SD_MUTEX(un));
26204
26205	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
26206	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
26207	if (bp == NULL) {
26208		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26209		    "no resources for dumping; giving up");
26210		err = ENOMEM;
26211		goto done;
26212	}
26213
26214	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
26215	    blkno, nblk);
26216	if (rval != 0) {
26217		scsi_free_consistent_buf(bp);
26218		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26219		    "no resources for dumping; giving up");
26220		err = ENOMEM;
26221		goto done;
26222	}
26223
26224	pkt->pkt_flags |= FLAG_NOINTR;
26225
26226	err = EIO;
26227	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26228
26229		/*
26230		 * Scsi_poll returns 0 (success) if the command completes and
26231		 * the status block is STATUS_GOOD.  We should only check
26232		 * errors if this condition is not true.  Even then we should
26233		 * send our own request sense packet only if we have a check
26234		 * condition and auto request sense has not been performed by
26235		 * the hba.
26236		 */
26237		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
26238
26239		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
26240			err = 0;
26241			break;
26242		}
26243
26244		/*
26245		 * Check CMD_DEV_GONE 1st, give up if device is gone,
26246		 * no need to read RQS data.
26247		 */
26248		if (pkt->pkt_reason == CMD_DEV_GONE) {
26249			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26250			    "Device is gone\n");
26251			break;
26252		}
26253
26254		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
26255			SD_INFO(SD_LOG_DUMP, un,
26256			    "sddump: read failed with CHECK, try # %d\n", i);
26257			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
26258				(void) sd_send_polled_RQS(un);
26259			}
26260
26261			continue;
26262		}
26263
26264		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
26265			int reset_retval = 0;
26266
26267			SD_INFO(SD_LOG_DUMP, un,
26268			    "sddump: read failed with BUSY, try # %d\n", i);
26269
26270			if (un->un_f_lun_reset_enabled == TRUE) {
26271				reset_retval = scsi_reset(SD_ADDRESS(un),
26272				    RESET_LUN);
26273			}
26274			if (reset_retval == 0) {
26275				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
26276			}
26277			(void) sd_send_polled_RQS(un);
26278
26279		} else {
26280			SD_INFO(SD_LOG_DUMP, un,
26281			    "sddump: read failed with 0x%x, try # %d\n",
26282			    SD_GET_PKT_STATUS(pkt), i);
26283			mutex_enter(SD_MUTEX(un));
26284			sd_reset_target(un, pkt);
26285			mutex_exit(SD_MUTEX(un));
26286		}
26287
26288		/*
26289		 * If we are not getting anywhere with lun/target resets,
26290		 * let's reset the bus.
26291		 */
26292		if (i > SD_NDUMP_RETRIES/2) {
26293			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
26294			(void) sd_send_polled_RQS(un);
26295		}
26296
26297	}
26298	scsi_destroy_pkt(pkt);
26299
26300	if (err != 0) {
26301		scsi_free_consistent_buf(bp);
26302		*bpp = NULL;
26303	} else {
26304		*bpp = bp;
26305	}
26306
26307done:
26308	mutex_enter(SD_MUTEX(un));
26309	return (err);
26310}
26311
26312
26313/*
26314 *    Function: sd_failfast_flushq
26315 *
26316 * Description: Take all bp's on the wait queue that have B_FAILFAST set
26317 *		in b_flags and move them onto the failfast queue, then kick
26318 *		off a thread to return all bp's on the failfast queue to
26319 *		their owners with an error set.
26320 *
26321 *   Arguments: un - pointer to the soft state struct for the instance.
26322 *
26323 *     Context: may execute in interrupt context.
26324 */
26325
26326static void
26327sd_failfast_flushq(struct sd_lun *un)
26328{
26329	struct buf *bp;
26330	struct buf *next_waitq_bp;
26331	struct buf *prev_waitq_bp = NULL;
26332
26333	ASSERT(un != NULL);
26334	ASSERT(mutex_owned(SD_MUTEX(un)));
26335	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
26336	ASSERT(un->un_failfast_bp == NULL);
26337
26338	SD_TRACE(SD_LOG_IO_FAILFAST, un,
26339	    "sd_failfast_flushq: entry: un:0x%p\n", un);
26340
26341	/*
26342	 * Check if we should flush all bufs when entering failfast state, or
26343	 * just those with B_FAILFAST set.
26344	 */
26345	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
26346		/*
26347		 * Move *all* bp's on the wait queue to the failfast flush
26348		 * queue, including those that do NOT have B_FAILFAST set.
26349		 */
26350		if (un->un_failfast_headp == NULL) {
26351			ASSERT(un->un_failfast_tailp == NULL);
26352			un->un_failfast_headp = un->un_waitq_headp;
26353		} else {
26354			ASSERT(un->un_failfast_tailp != NULL);
26355			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
26356		}
26357
26358		un->un_failfast_tailp = un->un_waitq_tailp;
26359
26360		/* update kstat for each bp moved out of the waitq */
26361		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
26362			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
26363		}
26364
26365		/* empty the waitq */
26366		un->un_waitq_headp = un->un_waitq_tailp = NULL;
26367
26368	} else {
26369		/*
26370		 * Go thru the wait queue, pick off all entries with
26371		 * B_FAILFAST set, and move these onto the failfast queue.
26372		 */
26373		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
26374			/*
26375			 * Save the pointer to the next bp on the wait queue,
26376			 * so we get to it on the next iteration of this loop.
26377			 */
26378			next_waitq_bp = bp->av_forw;
26379
26380			/*
26381			 * If this bp from the wait queue does NOT have
26382			 * B_FAILFAST set, just move on to the next element
26383			 * in the wait queue. Note, this is the only place
26384			 * where it is correct to set prev_waitq_bp.
26385			 */
26386			if ((bp->b_flags & B_FAILFAST) == 0) {
26387				prev_waitq_bp = bp;
26388				continue;
26389			}
26390
26391			/*
26392			 * Remove the bp from the wait queue.
26393			 */
26394			if (bp == un->un_waitq_headp) {
26395				/* The bp is the first element of the waitq. */
26396				un->un_waitq_headp = next_waitq_bp;
26397				if (un->un_waitq_headp == NULL) {
26398					/* The wait queue is now empty */
26399					un->un_waitq_tailp = NULL;
26400				}
26401			} else {
26402				/*
26403				 * The bp is either somewhere in the middle
26404				 * or at the end of the wait queue.
26405				 */
26406				ASSERT(un->un_waitq_headp != NULL);
26407				ASSERT(prev_waitq_bp != NULL);
26408				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
26409				    == 0);
26410				if (bp == un->un_waitq_tailp) {
26411					/* bp is the last entry on the waitq. */
26412					ASSERT(next_waitq_bp == NULL);
26413					un->un_waitq_tailp = prev_waitq_bp;
26414				}
26415				prev_waitq_bp->av_forw = next_waitq_bp;
26416			}
26417			bp->av_forw = NULL;
26418
26419			/*
26420			 * update kstat since the bp is moved out of
26421			 * the waitq
26422			 */
26423			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
26424
26425			/*
26426			 * Now put the bp onto the failfast queue.
26427			 */
26428			if (un->un_failfast_headp == NULL) {
26429				/* failfast queue is currently empty */
26430				ASSERT(un->un_failfast_tailp == NULL);
26431				un->un_failfast_headp =
26432				    un->un_failfast_tailp = bp;
26433			} else {
26434				/* Add the bp to the end of the failfast q */
26435				ASSERT(un->un_failfast_tailp != NULL);
26436				ASSERT(un->un_failfast_tailp->b_flags &
26437				    B_FAILFAST);
26438				un->un_failfast_tailp->av_forw = bp;
26439				un->un_failfast_tailp = bp;
26440			}
26441		}
26442	}
26443
26444	/*
26445	 * Now return all bp's on the failfast queue to their owners.
26446	 */
26447	while ((bp = un->un_failfast_headp) != NULL) {
26448
26449		un->un_failfast_headp = bp->av_forw;
26450		if (un->un_failfast_headp == NULL) {
26451			un->un_failfast_tailp = NULL;
26452		}
26453
26454		/*
26455		 * We want to return the bp with a failure error code, but
26456		 * we do not want a call to sd_start_cmds() to occur here,
26457		 * so use sd_return_failed_command_no_restart() instead of
26458		 * sd_return_failed_command().
26459		 */
26460		sd_return_failed_command_no_restart(un, bp, EIO);
26461	}
26462
26463	/* Flush the xbuf queues if required. */
26464	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
26465		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
26466	}
26467
26468	SD_TRACE(SD_LOG_IO_FAILFAST, un,
26469	    "sd_failfast_flushq: exit: un:0x%p\n", un);
26470}
26471
26472
26473/*
26474 *    Function: sd_failfast_flushq_callback
26475 *
26476 * Description: Return TRUE if the given bp meets the criteria for failfast
26477 *		flushing. Used with ddi_xbuf_flushq(9F).
26478 *
26479 *   Arguments: bp - ptr to buf struct to be examined.
26480 *
26481 *     Context: Any
26482 */
26483
26484static int
26485sd_failfast_flushq_callback(struct buf *bp)
26486{
26487	/*
26488	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
26489	 * state is entered; OR (2) the given bp has B_FAILFAST set.
26490	 */
26491	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
26492	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
26493}
26494
26495
26496
26497#if defined(__i386) || defined(__amd64)
26498/*
26499 * Function: sd_setup_next_xfer
26500 *
26501 * Description: Prepare next I/O operation using DMA_PARTIAL
26502 *
26503 */
26504
26505static int
26506sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
26507    struct scsi_pkt *pkt, struct sd_xbuf *xp)
26508{
26509	ssize_t	num_blks_not_xfered;
26510	daddr_t	strt_blk_num;
26511	ssize_t	bytes_not_xfered;
26512	int	rval;
26513
26514	ASSERT(pkt->pkt_resid == 0);
26515
26516	/*
26517	 * Calculate next block number and amount to be transferred.
26518	 *
26519	 * How much data NOT transfered to the HBA yet.
26520	 */
26521	bytes_not_xfered = xp->xb_dma_resid;
26522
26523	/*
26524	 * figure how many blocks NOT transfered to the HBA yet.
26525	 */
26526	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
26527
26528	/*
26529	 * set starting block number to the end of what WAS transfered.
26530	 */
26531	strt_blk_num = xp->xb_blkno +
26532	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
26533
26534	/*
26535	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
26536	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
26537	 * the disk mutex here.
26538	 */
26539	rval = sd_setup_next_rw_pkt(un, pkt, bp,
26540	    strt_blk_num, num_blks_not_xfered);
26541
26542	if (rval == 0) {
26543
26544		/*
26545		 * Success.
26546		 *
26547		 * Adjust things if there are still more blocks to be
26548		 * transfered.
26549		 */
26550		xp->xb_dma_resid = pkt->pkt_resid;
26551		pkt->pkt_resid = 0;
26552
26553		return (1);
26554	}
26555
26556	/*
26557	 * There's really only one possible return value from
26558	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
26559	 * returns NULL.
26560	 */
26561	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
26562
26563	bp->b_resid = bp->b_bcount;
26564	bp->b_flags |= B_ERROR;
26565
26566	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26567	    "Error setting up next portion of DMA transfer\n");
26568
26569	return (0);
26570}
26571#endif
26572
26573/*
26574 *    Function: sd_panic_for_res_conflict
26575 *
26576 * Description: Call panic with a string formatted with "Reservation Conflict"
26577 *		and a human readable identifier indicating the SD instance
26578 *		that experienced the reservation conflict.
26579 *
26580 *   Arguments: un - pointer to the soft state struct for the instance.
26581 *
26582 *     Context: may execute in interrupt context.
26583 */
26584
26585#define	SD_RESV_CONFLICT_FMT_LEN 40
26586void
26587sd_panic_for_res_conflict(struct sd_lun *un)
26588{
26589	char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN];
26590	char path_str[MAXPATHLEN];
26591
26592	(void) snprintf(panic_str, sizeof (panic_str),
26593	    "Reservation Conflict\nDisk: %s",
26594	    ddi_pathname(SD_DEVINFO(un), path_str));
26595
26596	panic(panic_str);
26597}
26598
26599/*
26600 * Note: The following sd_faultinjection_ioctl( ) routines implement
26601 * driver support for handling fault injection for error analysis
26602 * causing faults in multiple layers of the driver.
26603 *
26604 */
26605
26606#ifdef SD_FAULT_INJECTION
26607static uint_t   sd_fault_injection_on = 0;
26608
26609/*
26610 *    Function: sd_faultinjection_ioctl()
26611 *
26612 * Description: This routine is the driver entry point for handling
26613 *              faultinjection ioctls to inject errors into the
26614 *              layer model
26615 *
26616 *   Arguments: cmd	- the ioctl cmd received
26617 *		arg	- the arguments from user and returns
26618 */
26619
26620static void
26621sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
26622
26623	uint_t i;
26624	uint_t rval;
26625
26626	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
26627
26628	mutex_enter(SD_MUTEX(un));
26629
26630	switch (cmd) {
26631	case SDIOCRUN:
26632		/* Allow pushed faults to be injected */
26633		SD_INFO(SD_LOG_SDTEST, un,
26634		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
26635
26636		sd_fault_injection_on = 1;
26637
26638		SD_INFO(SD_LOG_IOERR, un,
26639		    "sd_faultinjection_ioctl: run finished\n");
26640		break;
26641
26642	case SDIOCSTART:
26643		/* Start Injection Session */
26644		SD_INFO(SD_LOG_SDTEST, un,
26645		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
26646
26647		sd_fault_injection_on = 0;
26648		un->sd_injection_mask = 0xFFFFFFFF;
26649		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
26650			un->sd_fi_fifo_pkt[i] = NULL;
26651			un->sd_fi_fifo_xb[i] = NULL;
26652			un->sd_fi_fifo_un[i] = NULL;
26653			un->sd_fi_fifo_arq[i] = NULL;
26654		}
26655		un->sd_fi_fifo_start = 0;
26656		un->sd_fi_fifo_end = 0;
26657
26658		mutex_enter(&(un->un_fi_mutex));
26659		un->sd_fi_log[0] = '\0';
26660		un->sd_fi_buf_len = 0;
26661		mutex_exit(&(un->un_fi_mutex));
26662
26663		SD_INFO(SD_LOG_IOERR, un,
26664		    "sd_faultinjection_ioctl: start finished\n");
26665		break;
26666
26667	case SDIOCSTOP:
26668		/* Stop Injection Session */
26669		SD_INFO(SD_LOG_SDTEST, un,
26670		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
26671		sd_fault_injection_on = 0;
26672		un->sd_injection_mask = 0x0;
26673
26674		/* Empty stray or unuseds structs from fifo */
26675		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
26676			if (un->sd_fi_fifo_pkt[i] != NULL) {
26677				kmem_free(un->sd_fi_fifo_pkt[i],
26678				    sizeof (struct sd_fi_pkt));
26679			}
26680			if (un->sd_fi_fifo_xb[i] != NULL) {
26681				kmem_free(un->sd_fi_fifo_xb[i],
26682				    sizeof (struct sd_fi_xb));
26683			}
26684			if (un->sd_fi_fifo_un[i] != NULL) {
26685				kmem_free(un->sd_fi_fifo_un[i],
26686				    sizeof (struct sd_fi_un));
26687			}
26688			if (un->sd_fi_fifo_arq[i] != NULL) {
26689				kmem_free(un->sd_fi_fifo_arq[i],
26690				    sizeof (struct sd_fi_arq));
26691			}
26692			un->sd_fi_fifo_pkt[i] = NULL;
26693			un->sd_fi_fifo_un[i] = NULL;
26694			un->sd_fi_fifo_xb[i] = NULL;
26695			un->sd_fi_fifo_arq[i] = NULL;
26696		}
26697		un->sd_fi_fifo_start = 0;
26698		un->sd_fi_fifo_end = 0;
26699
26700		SD_INFO(SD_LOG_IOERR, un,
26701		    "sd_faultinjection_ioctl: stop finished\n");
26702		break;
26703
26704	case SDIOCINSERTPKT:
26705		/* Store a packet struct to be pushed onto fifo */
26706		SD_INFO(SD_LOG_SDTEST, un,
26707		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
26708
26709		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
26710
26711		sd_fault_injection_on = 0;
26712
26713		/* No more that SD_FI_MAX_ERROR allowed in Queue */
26714		if (un->sd_fi_fifo_pkt[i] != NULL) {
26715			kmem_free(un->sd_fi_fifo_pkt[i],
26716			    sizeof (struct sd_fi_pkt));
26717		}
26718		if (arg != NULL) {
26719			un->sd_fi_fifo_pkt[i] =
26720			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
26721			if (un->sd_fi_fifo_pkt[i] == NULL) {
26722				/* Alloc failed don't store anything */
26723				break;
26724			}
26725			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
26726			    sizeof (struct sd_fi_pkt), 0);
26727			if (rval == -1) {
26728				kmem_free(un->sd_fi_fifo_pkt[i],
26729				    sizeof (struct sd_fi_pkt));
26730				un->sd_fi_fifo_pkt[i] = NULL;
26731			}
26732		} else {
26733			SD_INFO(SD_LOG_IOERR, un,
26734			    "sd_faultinjection_ioctl: pkt null\n");
26735		}
26736		break;
26737
26738	case SDIOCINSERTXB:
26739		/* Store a xb struct to be pushed onto fifo */
26740		SD_INFO(SD_LOG_SDTEST, un,
26741		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
26742
26743		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
26744
26745		sd_fault_injection_on = 0;
26746
26747		if (un->sd_fi_fifo_xb[i] != NULL) {
26748			kmem_free(un->sd_fi_fifo_xb[i],
26749			    sizeof (struct sd_fi_xb));
26750			un->sd_fi_fifo_xb[i] = NULL;
26751		}
26752		if (arg != NULL) {
26753			un->sd_fi_fifo_xb[i] =
26754			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
26755			if (un->sd_fi_fifo_xb[i] == NULL) {
26756				/* Alloc failed don't store anything */
26757				break;
26758			}
26759			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
26760			    sizeof (struct sd_fi_xb), 0);
26761
26762			if (rval == -1) {
26763				kmem_free(un->sd_fi_fifo_xb[i],
26764				    sizeof (struct sd_fi_xb));
26765				un->sd_fi_fifo_xb[i] = NULL;
26766			}
26767		} else {
26768			SD_INFO(SD_LOG_IOERR, un,
26769			    "sd_faultinjection_ioctl: xb null\n");
26770		}
26771		break;
26772
26773	case SDIOCINSERTUN:
26774		/* Store a un struct to be pushed onto fifo */
26775		SD_INFO(SD_LOG_SDTEST, un,
26776		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
26777
26778		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
26779
26780		sd_fault_injection_on = 0;
26781
26782		if (un->sd_fi_fifo_un[i] != NULL) {
26783			kmem_free(un->sd_fi_fifo_un[i],
26784			    sizeof (struct sd_fi_un));
26785			un->sd_fi_fifo_un[i] = NULL;
26786		}
26787		if (arg != NULL) {
26788			un->sd_fi_fifo_un[i] =
26789			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
26790			if (un->sd_fi_fifo_un[i] == NULL) {
26791				/* Alloc failed don't store anything */
26792				break;
26793			}
26794			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
26795			    sizeof (struct sd_fi_un), 0);
26796			if (rval == -1) {
26797				kmem_free(un->sd_fi_fifo_un[i],
26798				    sizeof (struct sd_fi_un));
26799				un->sd_fi_fifo_un[i] = NULL;
26800			}
26801
26802		} else {
26803			SD_INFO(SD_LOG_IOERR, un,
26804			    "sd_faultinjection_ioctl: un null\n");
26805		}
26806
26807		break;
26808
26809	case SDIOCINSERTARQ:
26810		/* Store a arq struct to be pushed onto fifo */
26811		SD_INFO(SD_LOG_SDTEST, un,
26812		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
26813		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
26814
26815		sd_fault_injection_on = 0;
26816
26817		if (un->sd_fi_fifo_arq[i] != NULL) {
26818			kmem_free(un->sd_fi_fifo_arq[i],
26819			    sizeof (struct sd_fi_arq));
26820			un->sd_fi_fifo_arq[i] = NULL;
26821		}
26822		if (arg != NULL) {
26823			un->sd_fi_fifo_arq[i] =
26824			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
26825			if (un->sd_fi_fifo_arq[i] == NULL) {
26826				/* Alloc failed don't store anything */
26827				break;
26828			}
26829			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
26830			    sizeof (struct sd_fi_arq), 0);
26831			if (rval == -1) {
26832				kmem_free(un->sd_fi_fifo_arq[i],
26833				    sizeof (struct sd_fi_arq));
26834				un->sd_fi_fifo_arq[i] = NULL;
26835			}
26836
26837		} else {
26838			SD_INFO(SD_LOG_IOERR, un,
26839			    "sd_faultinjection_ioctl: arq null\n");
26840		}
26841
26842		break;
26843
26844	case SDIOCPUSH:
26845		/* Push stored xb, pkt, un, and arq onto fifo */
26846		sd_fault_injection_on = 0;
26847
26848		if (arg != NULL) {
26849			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
26850			if (rval != -1 &&
26851			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
26852				un->sd_fi_fifo_end += i;
26853			}
26854		} else {
26855			SD_INFO(SD_LOG_IOERR, un,
26856			    "sd_faultinjection_ioctl: push arg null\n");
26857			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
26858				un->sd_fi_fifo_end++;
26859			}
26860		}
26861		SD_INFO(SD_LOG_IOERR, un,
26862		    "sd_faultinjection_ioctl: push to end=%d\n",
26863		    un->sd_fi_fifo_end);
26864		break;
26865
26866	case SDIOCRETRIEVE:
26867		/* Return buffer of log from Injection session */
26868		SD_INFO(SD_LOG_SDTEST, un,
26869		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
26870
26871		sd_fault_injection_on = 0;
26872
26873		mutex_enter(&(un->un_fi_mutex));
26874		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
26875		    un->sd_fi_buf_len+1, 0);
26876		mutex_exit(&(un->un_fi_mutex));
26877
26878		if (rval == -1) {
26879			/*
26880			 * arg is possibly invalid setting
26881			 * it to NULL for return
26882			 */
26883			arg = NULL;
26884		}
26885		break;
26886	}
26887
26888	mutex_exit(SD_MUTEX(un));
26889	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
26890			    " exit\n");
26891}
26892
26893
26894/*
26895 *    Function: sd_injection_log()
26896 *
26897 * Description: This routine adds buff to the already existing injection log
26898 *              for retrieval via faultinjection_ioctl for use in fault
26899 *              detection and recovery
26900 *
26901 *   Arguments: buf - the string to add to the log
26902 */
26903
26904static void
26905sd_injection_log(char *buf, struct sd_lun *un)
26906{
26907	uint_t len;
26908
26909	ASSERT(un != NULL);
26910	ASSERT(buf != NULL);
26911
26912	mutex_enter(&(un->un_fi_mutex));
26913
26914	len = min(strlen(buf), 255);
26915	/* Add logged value to Injection log to be returned later */
26916	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
26917		uint_t	offset = strlen((char *)un->sd_fi_log);
26918		char *destp = (char *)un->sd_fi_log + offset;
26919		int i;
26920		for (i = 0; i < len; i++) {
26921			*destp++ = *buf++;
26922		}
26923		un->sd_fi_buf_len += len;
26924		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
26925	}
26926
26927	mutex_exit(&(un->un_fi_mutex));
26928}
26929
26930
26931/*
26932 *    Function: sd_faultinjection()
26933 *
26934 * Description: This routine takes the pkt and changes its
26935 *		content based on error injection scenerio.
26936 *
26937 *   Arguments: pktp	- packet to be changed
26938 */
26939
26940static void
26941sd_faultinjection(struct scsi_pkt *pktp)
26942{
26943	uint_t i;
26944	struct sd_fi_pkt *fi_pkt;
26945	struct sd_fi_xb *fi_xb;
26946	struct sd_fi_un *fi_un;
26947	struct sd_fi_arq *fi_arq;
26948	struct buf *bp;
26949	struct sd_xbuf *xb;
26950	struct sd_lun *un;
26951
26952	ASSERT(pktp != NULL);
26953
26954	/* pull bp xb and un from pktp */
26955	bp = (struct buf *)pktp->pkt_private;
26956	xb = SD_GET_XBUF(bp);
26957	un = SD_GET_UN(bp);
26958
26959	ASSERT(un != NULL);
26960
26961	mutex_enter(SD_MUTEX(un));
26962
26963	SD_TRACE(SD_LOG_SDTEST, un,
26964	    "sd_faultinjection: entry Injection from sdintr\n");
26965
26966	/* if injection is off return */
26967	if (sd_fault_injection_on == 0 ||
26968	    un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
26969		mutex_exit(SD_MUTEX(un));
26970		return;
26971	}
26972
26973
26974	/* take next set off fifo */
26975	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
26976
26977	fi_pkt = un->sd_fi_fifo_pkt[i];
26978	fi_xb = un->sd_fi_fifo_xb[i];
26979	fi_un = un->sd_fi_fifo_un[i];
26980	fi_arq = un->sd_fi_fifo_arq[i];
26981
26982
26983	/* set variables accordingly */
26984	/* set pkt if it was on fifo */
26985	if (fi_pkt != NULL) {
26986		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
26987		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
26988		SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
26989		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
26990		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
26991		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
26992
26993	}
26994
26995	/* set xb if it was on fifo */
26996	if (fi_xb != NULL) {
26997		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
26998		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
26999		SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
27000		SD_CONDSET(xb, xb, xb_victim_retry_count,
27001		    "xb_victim_retry_count");
27002		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
27003		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
27004		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
27005
27006		/* copy in block data from sense */
27007		if (fi_xb->xb_sense_data[0] != -1) {
27008			bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
27009			    SENSE_LENGTH);
27010		}
27011
27012		/* copy in extended sense codes */
27013		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_code,
27014		    "es_code");
27015		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_key,
27016		    "es_key");
27017		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_add_code,
27018		    "es_add_code");
27019		SD_CONDSET(((struct scsi_extended_sense *)xb), xb,
27020		    es_qual_code, "es_qual_code");
27021	}
27022
27023	/* set un if it was on fifo */
27024	if (fi_un != NULL) {
27025		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
27026		SD_CONDSET(un, un, un_ctype, "un_ctype");
27027		SD_CONDSET(un, un, un_reset_retry_count,
27028		    "un_reset_retry_count");
27029		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
27030		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
27031		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
27032		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
27033		    "un_f_allow_bus_device_reset");
27034		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
27035
27036	}
27037
27038	/* copy in auto request sense if it was on fifo */
27039	if (fi_arq != NULL) {
27040		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
27041	}
27042
27043	/* free structs */
27044	if (un->sd_fi_fifo_pkt[i] != NULL) {
27045		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
27046	}
27047	if (un->sd_fi_fifo_xb[i] != NULL) {
27048		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
27049	}
27050	if (un->sd_fi_fifo_un[i] != NULL) {
27051		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
27052	}
27053	if (un->sd_fi_fifo_arq[i] != NULL) {
27054		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
27055	}
27056
27057	/*
27058	 * kmem_free does not gurantee to set to NULL
27059	 * since we uses these to determine if we set
27060	 * values or not lets confirm they are always
27061	 * NULL after free
27062	 */
27063	un->sd_fi_fifo_pkt[i] = NULL;
27064	un->sd_fi_fifo_un[i] = NULL;
27065	un->sd_fi_fifo_xb[i] = NULL;
27066	un->sd_fi_fifo_arq[i] = NULL;
27067
27068	un->sd_fi_fifo_start++;
27069
27070	mutex_exit(SD_MUTEX(un));
27071
27072	SD_TRACE(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
27073}
27074
27075#endif /* SD_FAULT_INJECTION */
27076
27077/*
27078 * This routine is invoked in sd_unit_attach(). Before calling it, the
27079 * properties in conf file should be processed already, and "hotpluggable"
27080 * property was processed also.
27081 *
27082 * The sd driver distinguishes 3 different type of devices: removable media,
27083 * non-removable media, and hotpluggable. Below the differences are defined:
27084 *
27085 * 1. Device ID
27086 *
27087 *     The device ID of a device is used to identify this device. Refer to
27088 *     ddi_devid_register(9F).
27089 *
27090 *     For a non-removable media disk device which can provide 0x80 or 0x83
27091 *     VPD page (refer to INQUIRY command of SCSI SPC specification), a unique
27092 *     device ID is created to identify this device. For other non-removable
27093 *     media devices, a default device ID is created only if this device has
27094 *     at least 2 alter cylinders. Otherwise, this device has no devid.
27095 *
27096 *     -------------------------------------------------------
27097 *     removable media   hotpluggable  | Can Have Device ID
27098 *     -------------------------------------------------------
27099 *         false             false     |     Yes
27100 *         false             true      |     Yes
27101 *         true                x       |     No
27102 *     ------------------------------------------------------
27103 *
27104 *
27105 * 2. SCSI group 4 commands
27106 *
27107 *     In SCSI specs, only some commands in group 4 command set can use
27108 *     8-byte addresses that can be used to access >2TB storage spaces.
27109 *     Other commands have no such capability. Without supporting group4,
27110 *     it is impossible to make full use of storage spaces of a disk with
27111 *     capacity larger than 2TB.
27112 *
27113 *     -----------------------------------------------
27114 *     removable media   hotpluggable   LP64  |  Group
27115 *     -----------------------------------------------
27116 *           false          false       false |   1
27117 *           false          false       true  |   4
27118 *           false          true        false |   1
27119 *           false          true        true  |   4
27120 *           true             x           x   |   5
27121 *     -----------------------------------------------
27122 *
27123 *
27124 * 3. Check for VTOC Label
27125 *
27126 *     If a direct-access disk has no EFI label, sd will check if it has a
27127 *     valid VTOC label. Now, sd also does that check for removable media
27128 *     and hotpluggable devices.
27129 *
27130 *     --------------------------------------------------------------
27131 *     Direct-Access   removable media    hotpluggable |  Check Label
27132 *     -------------------------------------------------------------
27133 *         false          false           false        |   No
27134 *         false          false           true         |   No
27135 *         false          true            false        |   Yes
27136 *         false          true            true         |   Yes
27137 *         true            x                x          |   Yes
27138 *     --------------------------------------------------------------
27139 *
27140 *
27141 * 4. Building default VTOC label
27142 *
27143 *     As section 3 says, sd checks if some kinds of devices have VTOC label.
27144 *     If those devices have no valid VTOC label, sd(7d) will attempt to
27145 *     create default VTOC for them. Currently sd creates default VTOC label
27146 *     for all devices on x86 platform (VTOC_16), but only for removable
27147 *     media devices on SPARC (VTOC_8).
27148 *
27149 *     -----------------------------------------------------------
27150 *       removable media hotpluggable platform   |   Default Label
27151 *     -----------------------------------------------------------
27152 *             false          false    sparc     |     No
27153 *             false          true      x86      |     Yes
27154 *             false          true     sparc     |     Yes
27155 *             true             x        x       |     Yes
27156 *     ----------------------------------------------------------
27157 *
27158 *
27159 * 5. Supported blocksizes of target devices
27160 *
27161 *     Sd supports non-512-byte blocksize for removable media devices only.
27162 *     For other devices, only 512-byte blocksize is supported. This may be
27163 *     changed in near future because some RAID devices require non-512-byte
27164 *     blocksize
27165 *
27166 *     -----------------------------------------------------------
27167 *     removable media    hotpluggable    | non-512-byte blocksize
27168 *     -----------------------------------------------------------
27169 *           false          false         |   No
27170 *           false          true          |   No
27171 *           true             x           |   Yes
27172 *     -----------------------------------------------------------
27173 *
27174 *
27175 * 6. Automatic mount & unmount
27176 *
27177 *     Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query
27178 *     if a device is removable media device. It return 1 for removable media
27179 *     devices, and 0 for others.
27180 *
27181 *     The automatic mounting subsystem should distinguish between the types
27182 *     of devices and apply automounting policies to each.
27183 *
27184 *
27185 * 7. fdisk partition management
27186 *
27187 *     Fdisk is traditional partition method on x86 platform. Sd(7d) driver
27188 *     just supports fdisk partitions on x86 platform. On sparc platform, sd
27189 *     doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize
27190 *     fdisk partitions on both x86 and SPARC platform.
27191 *
27192 *     -----------------------------------------------------------
27193 *       platform   removable media  USB/1394  |  fdisk supported
27194 *     -----------------------------------------------------------
27195 *        x86         X               X        |       true
27196 *     ------------------------------------------------------------
27197 *        sparc       X               X        |       false
27198 *     ------------------------------------------------------------
27199 *
27200 *
27201 * 8. MBOOT/MBR
27202 *
27203 *     Although sd(7d) doesn't support fdisk on SPARC platform, it does support
27204 *     read/write mboot for removable media devices on sparc platform.
27205 *
27206 *     -----------------------------------------------------------
27207 *       platform   removable media  USB/1394  |  mboot supported
27208 *     -----------------------------------------------------------
27209 *        x86         X               X        |       true
27210 *     ------------------------------------------------------------
27211 *        sparc      false           false     |       false
27212 *        sparc      false           true      |       true
27213 *        sparc      true            false     |       true
27214 *        sparc      true            true      |       true
27215 *     ------------------------------------------------------------
27216 *
27217 *
27218 * 9.  error handling during opening device
27219 *
27220 *     If failed to open a disk device, an errno is returned. For some kinds
27221 *     of errors, different errno is returned depending on if this device is
27222 *     a removable media device. This brings USB/1394 hard disks in line with
27223 *     expected hard disk behavior. It is not expected that this breaks any
27224 *     application.
27225 *
27226 *     ------------------------------------------------------
27227 *       removable media    hotpluggable   |  errno
27228 *     ------------------------------------------------------
27229 *             false          false        |   EIO
27230 *             false          true         |   EIO
27231 *             true             x          |   ENXIO
27232 *     ------------------------------------------------------
27233 *
27234 *
27235 * 11. ioctls: DKIOCEJECT, CDROMEJECT
27236 *
27237 *     These IOCTLs are applicable only to removable media devices.
27238 *
27239 *     -----------------------------------------------------------
27240 *       removable media    hotpluggable   |DKIOCEJECT, CDROMEJECT
27241 *     -----------------------------------------------------------
27242 *             false          false        |     No
27243 *             false          true         |     No
27244 *             true            x           |     Yes
27245 *     -----------------------------------------------------------
27246 *
27247 *
27248 * 12. Kstats for partitions
27249 *
27250 *     sd creates partition kstat for non-removable media devices. USB and
27251 *     Firewire hard disks now have partition kstats
27252 *
27253 *      ------------------------------------------------------
27254 *       removable media    hotpluggable   |   kstat
27255 *      ------------------------------------------------------
27256 *             false          false        |    Yes
27257 *             false          true         |    Yes
27258 *             true             x          |    No
27259 *       ------------------------------------------------------
27260 *
27261 *
27262 * 13. Removable media & hotpluggable properties
27263 *
27264 *     Sd driver creates a "removable-media" property for removable media
27265 *     devices. Parent nexus drivers create a "hotpluggable" property if
27266 *     it supports hotplugging.
27267 *
27268 *     ---------------------------------------------------------------------
27269 *     removable media   hotpluggable |  "removable-media"   " hotpluggable"
27270 *     ---------------------------------------------------------------------
27271 *       false            false       |    No                   No
27272 *       false            true        |    No                   Yes
27273 *       true             false       |    Yes                  No
27274 *       true             true        |    Yes                  Yes
27275 *     ---------------------------------------------------------------------
27276 *
27277 *
27278 * 14. Power Management
27279 *
27280 *     sd only power manages removable media devices or devices that support
27281 *     LOG_SENSE or have a "pm-capable" property  (PSARC/2002/250)
27282 *
27283 *     A parent nexus that supports hotplugging can also set "pm-capable"
27284 *     if the disk can be power managed.
27285 *
27286 *     ------------------------------------------------------------
27287 *       removable media hotpluggable pm-capable  |   power manage
27288 *     ------------------------------------------------------------
27289 *             false          false     false     |     No
27290 *             false          false     true      |     Yes
27291 *             false          true      false     |     No
27292 *             false          true      true      |     Yes
27293 *             true             x        x        |     Yes
27294 *     ------------------------------------------------------------
27295 *
27296 *      USB and firewire hard disks can now be power managed independently
27297 *      of the framebuffer
27298 *
27299 *
27300 * 15. Support for USB disks with capacity larger than 1TB
27301 *
27302 *     Currently, sd doesn't permit a fixed disk device with capacity
27303 *     larger than 1TB to be used in a 32-bit operating system environment.
27304 *     However, sd doesn't do that for removable media devices. Instead, it
27305 *     assumes that removable media devices cannot have a capacity larger
27306 *     than 1TB. Therefore, using those devices on 32-bit system is partially
27307 *     supported, which can cause some unexpected results.
27308 *
27309 *     ---------------------------------------------------------------------
27310 *       removable media    USB/1394 | Capacity > 1TB |   Used in 32-bit env
27311 *     ---------------------------------------------------------------------
27312 *             false          false  |   true         |     no
27313 *             false          true   |   true         |     no
27314 *             true           false  |   true         |     Yes
27315 *             true           true   |   true         |     Yes
27316 *     ---------------------------------------------------------------------
27317 *
27318 *
27319 * 16. Check write-protection at open time
27320 *
27321 *     When a removable media device is being opened for writing without NDELAY
27322 *     flag, sd will check if this device is writable. If attempting to open
27323 *     without NDELAY flag a write-protected device, this operation will abort.
27324 *
27325 *     ------------------------------------------------------------
27326 *       removable media    USB/1394   |   WP Check
27327 *     ------------------------------------------------------------
27328 *             false          false    |     No
27329 *             false          true     |     No
27330 *             true           false    |     Yes
27331 *             true           true     |     Yes
27332 *     ------------------------------------------------------------
27333 *
27334 *
27335 * 17. syslog when corrupted VTOC is encountered
27336 *
27337 *      Currently, if an invalid VTOC is encountered, sd only print syslog
27338 *      for fixed SCSI disks.
27339 *     ------------------------------------------------------------
27340 *       removable media    USB/1394   |   print syslog
27341 *     ------------------------------------------------------------
27342 *             false          false    |     Yes
27343 *             false          true     |     No
27344 *             true           false    |     No
27345 *             true           true     |     No
27346 *     ------------------------------------------------------------
27347 */
27348static void
27349sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi)
27350{
27351	int	pm_capable_prop;
27352
27353	ASSERT(un->un_sd);
27354	ASSERT(un->un_sd->sd_inq);
27355
27356	/*
27357	 * Enable SYNC CACHE support for all devices.
27358	 */
27359	un->un_f_sync_cache_supported = TRUE;
27360
27361	if (un->un_sd->sd_inq->inq_rmb) {
27362		/*
27363		 * The media of this device is removable. And for this kind
27364		 * of devices, it is possible to change medium after opening
27365		 * devices. Thus we should support this operation.
27366		 */
27367		un->un_f_has_removable_media = TRUE;
27368
27369		/*
27370		 * support non-512-byte blocksize of removable media devices
27371		 */
27372		un->un_f_non_devbsize_supported = TRUE;
27373
27374		/*
27375		 * Assume that all removable media devices support DOOR_LOCK
27376		 */
27377		un->un_f_doorlock_supported = TRUE;
27378
27379		/*
27380		 * For a removable media device, it is possible to be opened
27381		 * with NDELAY flag when there is no media in drive, in this
27382		 * case we don't care if device is writable. But if without
27383		 * NDELAY flag, we need to check if media is write-protected.
27384		 */
27385		un->un_f_chk_wp_open = TRUE;
27386
27387		/*
27388		 * need to start a SCSI watch thread to monitor media state,
27389		 * when media is being inserted or ejected, notify syseventd.
27390		 */
27391		un->un_f_monitor_media_state = TRUE;
27392
27393		/*
27394		 * Some devices don't support START_STOP_UNIT command.
27395		 * Therefore, we'd better check if a device supports it
27396		 * before sending it.
27397		 */
27398		un->un_f_check_start_stop = TRUE;
27399
27400		/*
27401		 * support eject media ioctl:
27402		 *		FDEJECT, DKIOCEJECT, CDROMEJECT
27403		 */
27404		un->un_f_eject_media_supported = TRUE;
27405
27406		/*
27407		 * Because many removable-media devices don't support
27408		 * LOG_SENSE, we couldn't use this command to check if
27409		 * a removable media device support power-management.
27410		 * We assume that they support power-management via
27411		 * START_STOP_UNIT command and can be spun up and down
27412		 * without limitations.
27413		 */
27414		un->un_f_pm_supported = TRUE;
27415
27416		/*
27417		 * Need to create a zero length (Boolean) property
27418		 * removable-media for the removable media devices.
27419		 * Note that the return value of the property is not being
27420		 * checked, since if unable to create the property
27421		 * then do not want the attach to fail altogether. Consistent
27422		 * with other property creation in attach.
27423		 */
27424		(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
27425		    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
27426
27427	} else {
27428		/*
27429		 * create device ID for device
27430		 */
27431		un->un_f_devid_supported = TRUE;
27432
27433		/*
27434		 * Spin up non-removable-media devices once it is attached
27435		 */
27436		un->un_f_attach_spinup = TRUE;
27437
27438		/*
27439		 * According to SCSI specification, Sense data has two kinds of
27440		 * format: fixed format, and descriptor format. At present, we
27441		 * don't support descriptor format sense data for removable
27442		 * media.
27443		 */
27444		if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
27445			un->un_f_descr_format_supported = TRUE;
27446		}
27447
27448		/*
27449		 * kstats are created only for non-removable media devices.
27450		 *
27451		 * Set this in sd.conf to 0 in order to disable kstats.  The
27452		 * default is 1, so they are enabled by default.
27453		 */
27454		un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
27455		    SD_DEVINFO(un), DDI_PROP_DONTPASS,
27456		    "enable-partition-kstats", 1));
27457
27458		/*
27459		 * Check if HBA has set the "pm-capable" property.
27460		 * If "pm-capable" exists and is non-zero then we can
27461		 * power manage the device without checking the start/stop
27462		 * cycle count log sense page.
27463		 *
27464		 * If "pm-capable" exists and is SD_PM_CAPABLE_FALSE (0)
27465		 * then we should not power manage the device.
27466		 *
27467		 * If "pm-capable" doesn't exist then pm_capable_prop will
27468		 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case,
27469		 * sd will check the start/stop cycle count log sense page
27470		 * and power manage the device if the cycle count limit has
27471		 * not been exceeded.
27472		 */
27473		pm_capable_prop = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
27474		    DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED);
27475		if (pm_capable_prop == SD_PM_CAPABLE_UNDEFINED) {
27476			un->un_f_log_sense_supported = TRUE;
27477		} else {
27478			/*
27479			 * pm-capable property exists.
27480			 *
27481			 * Convert "TRUE" values for pm_capable_prop to
27482			 * SD_PM_CAPABLE_TRUE (1) to make it easier to check
27483			 * later. "TRUE" values are any values except
27484			 * SD_PM_CAPABLE_FALSE (0) and
27485			 * SD_PM_CAPABLE_UNDEFINED (-1)
27486			 */
27487			if (pm_capable_prop == SD_PM_CAPABLE_FALSE) {
27488				un->un_f_log_sense_supported = FALSE;
27489			} else {
27490				un->un_f_pm_supported = TRUE;
27491			}
27492
27493			SD_INFO(SD_LOG_ATTACH_DETACH, un,
27494			    "sd_unit_attach: un:0x%p pm-capable "
27495			    "property set to %d.\n", un, un->un_f_pm_supported);
27496		}
27497	}
27498
27499	if (un->un_f_is_hotpluggable) {
27500
27501		/*
27502		 * Have to watch hotpluggable devices as well, since
27503		 * that's the only way for userland applications to
27504		 * detect hot removal while device is busy/mounted.
27505		 */
27506		un->un_f_monitor_media_state = TRUE;
27507
27508		un->un_f_check_start_stop = TRUE;
27509
27510	}
27511}
27512
27513/*
27514 * sd_tg_rdwr:
27515 * Provides rdwr access for cmlb via sd_tgops. The start_block is
27516 * in sys block size, req_length in bytes.
27517 *
27518 */
27519static int
27520sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
27521    diskaddr_t start_block, size_t reqlength, void *tg_cookie)
27522{
27523	struct sd_lun *un;
27524	int path_flag = (int)(uintptr_t)tg_cookie;
27525	char *dkl = NULL;
27526	diskaddr_t real_addr = start_block;
27527	diskaddr_t first_byte, end_block;
27528
27529	size_t	buffer_size = reqlength;
27530	int rval;
27531	diskaddr_t	cap;
27532	uint32_t	lbasize;
27533
27534	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
27535	if (un == NULL)
27536		return (ENXIO);
27537
27538	if (cmd != TG_READ && cmd != TG_WRITE)
27539		return (EINVAL);
27540
27541	mutex_enter(SD_MUTEX(un));
27542	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
27543		mutex_exit(SD_MUTEX(un));
27544		rval = sd_send_scsi_READ_CAPACITY(un, (uint64_t *)&cap,
27545		    &lbasize, path_flag);
27546		if (rval != 0)
27547			return (rval);
27548		mutex_enter(SD_MUTEX(un));
27549		sd_update_block_info(un, lbasize, cap);
27550		if ((un->un_f_tgt_blocksize_is_valid == FALSE)) {
27551			mutex_exit(SD_MUTEX(un));
27552			return (EIO);
27553		}
27554	}
27555
27556	if (NOT_DEVBSIZE(un)) {
27557		/*
27558		 * sys_blocksize != tgt_blocksize, need to re-adjust
27559		 * blkno and save the index to beginning of dk_label
27560		 */
27561		first_byte  = SD_SYSBLOCKS2BYTES(un, start_block);
27562		real_addr = first_byte / un->un_tgt_blocksize;
27563
27564		end_block = (first_byte + reqlength +
27565		    un->un_tgt_blocksize - 1) / un->un_tgt_blocksize;
27566
27567		/* round up buffer size to multiple of target block size */
27568		buffer_size = (end_block - real_addr) * un->un_tgt_blocksize;
27569
27570		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_tg_rdwr",
27571		    "label_addr: 0x%x allocation size: 0x%x\n",
27572		    real_addr, buffer_size);
27573
27574		if (((first_byte % un->un_tgt_blocksize) != 0) ||
27575		    (reqlength % un->un_tgt_blocksize) != 0)
27576			/* the request is not aligned */
27577			dkl = kmem_zalloc(buffer_size, KM_SLEEP);
27578	}
27579
27580	/*
27581	 * The MMC standard allows READ CAPACITY to be
27582	 * inaccurate by a bounded amount (in the interest of
27583	 * response latency).  As a result, failed READs are
27584	 * commonplace (due to the reading of metadata and not
27585	 * data). Depending on the per-Vendor/drive Sense data,
27586	 * the failed READ can cause many (unnecessary) retries.
27587	 */
27588
27589	if (ISCD(un) && (cmd == TG_READ) &&
27590	    (un->un_f_blockcount_is_valid == TRUE) &&
27591	    ((start_block == (un->un_blockcount - 1))||
27592	    (start_block == (un->un_blockcount - 2)))) {
27593			path_flag = SD_PATH_DIRECT_PRIORITY;
27594	}
27595
27596	mutex_exit(SD_MUTEX(un));
27597	if (cmd == TG_READ) {
27598		rval = sd_send_scsi_READ(un, (dkl != NULL)? dkl: bufaddr,
27599		    buffer_size, real_addr, path_flag);
27600		if (dkl != NULL)
27601			bcopy(dkl + SD_TGTBYTEOFFSET(un, start_block,
27602			    real_addr), bufaddr, reqlength);
27603	} else {
27604		if (dkl) {
27605			rval = sd_send_scsi_READ(un, dkl, buffer_size,
27606			    real_addr, path_flag);
27607			if (rval) {
27608				kmem_free(dkl, buffer_size);
27609				return (rval);
27610			}
27611			bcopy(bufaddr, dkl + SD_TGTBYTEOFFSET(un, start_block,
27612			    real_addr), reqlength);
27613		}
27614		rval = sd_send_scsi_WRITE(un, (dkl != NULL)? dkl: bufaddr,
27615		    buffer_size, real_addr, path_flag);
27616	}
27617
27618	if (dkl != NULL)
27619		kmem_free(dkl, buffer_size);
27620
27621	return (rval);
27622}
27623
27624
27625static int
27626sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie)
27627{
27628
27629	struct sd_lun *un;
27630	diskaddr_t	cap;
27631	uint32_t	lbasize;
27632	int		path_flag = (int)(uintptr_t)tg_cookie;
27633	int		ret = 0;
27634
27635	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
27636	if (un == NULL)
27637		return (ENXIO);
27638
27639	switch (cmd) {
27640	case TG_GETPHYGEOM:
27641	case TG_GETVIRTGEOM:
27642	case TG_GETCAPACITY:
27643	case  TG_GETBLOCKSIZE:
27644		mutex_enter(SD_MUTEX(un));
27645
27646		if ((un->un_f_blockcount_is_valid == TRUE) &&
27647		    (un->un_f_tgt_blocksize_is_valid == TRUE)) {
27648			cap = un->un_blockcount;
27649			lbasize = un->un_tgt_blocksize;
27650			mutex_exit(SD_MUTEX(un));
27651		} else {
27652			mutex_exit(SD_MUTEX(un));
27653			ret = sd_send_scsi_READ_CAPACITY(un, (uint64_t *)&cap,
27654			    &lbasize, path_flag);
27655			if (ret != 0)
27656				return (ret);
27657			mutex_enter(SD_MUTEX(un));
27658			sd_update_block_info(un, lbasize, cap);
27659			if ((un->un_f_blockcount_is_valid == FALSE) ||
27660			    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
27661				mutex_exit(SD_MUTEX(un));
27662				return (EIO);
27663			}
27664			mutex_exit(SD_MUTEX(un));
27665		}
27666
27667		if (cmd == TG_GETCAPACITY) {
27668			*(diskaddr_t *)arg = cap;
27669			return (0);
27670		}
27671
27672		if (cmd == TG_GETBLOCKSIZE) {
27673			*(uint32_t *)arg = lbasize;
27674			return (0);
27675		}
27676
27677		if (cmd == TG_GETPHYGEOM)
27678			ret = sd_get_physical_geometry(un, (cmlb_geom_t *)arg,
27679			    cap, lbasize, path_flag);
27680		else
27681			/* TG_GETVIRTGEOM */
27682			ret = sd_get_virtual_geometry(un,
27683			    (cmlb_geom_t *)arg, cap, lbasize);
27684
27685		return (ret);
27686
27687	case TG_GETATTR:
27688		mutex_enter(SD_MUTEX(un));
27689		((tg_attribute_t *)arg)->media_is_writable =
27690		    un->un_f_mmc_writable_media;
27691		mutex_exit(SD_MUTEX(un));
27692		return (0);
27693	default:
27694		return (ENOTTY);
27695
27696	}
27697
27698}
27699