rge_chip.c revision 7656:2621e50fdf4a
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#include "rge.h"
27
28#define	REG32(rgep, reg)	((uint32_t *)(rgep->io_regs+(reg)))
29#define	REG16(rgep, reg)	((uint16_t *)(rgep->io_regs+(reg)))
30#define	REG8(rgep, reg)		((uint8_t *)(rgep->io_regs+(reg)))
31#define	PIO_ADDR(rgep, offset)	((void *)(rgep->io_regs+(offset)))
32
33/*
34 * Patchable globals:
35 *
36 *	rge_autorecover
37 *		Enables/disables automatic recovery after fault detection
38 */
39static uint32_t rge_autorecover = 1;
40
41/*
42 * globals:
43 */
44#define	RGE_DBG		RGE_DBG_REGS	/* debug flag for this code	*/
45static uint32_t rge_watchdog_count	= 1 << 16;
46
47/*
48 * Operating register get/set access routines
49 */
50
51static uint32_t rge_reg_get32(rge_t *rgep, uintptr_t regno);
52#pragma	inline(rge_reg_get32)
53
54static uint32_t
55rge_reg_get32(rge_t *rgep, uintptr_t regno)
56{
57	RGE_TRACE(("rge_reg_get32($%p, 0x%lx)",
58	    (void *)rgep, regno));
59
60	return (ddi_get32(rgep->io_handle, REG32(rgep, regno)));
61}
62
63static void rge_reg_put32(rge_t *rgep, uintptr_t regno, uint32_t data);
64#pragma	inline(rge_reg_put32)
65
66static void
67rge_reg_put32(rge_t *rgep, uintptr_t regno, uint32_t data)
68{
69	RGE_TRACE(("rge_reg_put32($%p, 0x%lx, 0x%x)",
70	    (void *)rgep, regno, data));
71
72	ddi_put32(rgep->io_handle, REG32(rgep, regno), data);
73}
74
75static void rge_reg_set32(rge_t *rgep, uintptr_t regno, uint32_t bits);
76#pragma	inline(rge_reg_set32)
77
78static void
79rge_reg_set32(rge_t *rgep, uintptr_t regno, uint32_t bits)
80{
81	uint32_t regval;
82
83	RGE_TRACE(("rge_reg_set32($%p, 0x%lx, 0x%x)",
84	    (void *)rgep, regno, bits));
85
86	regval = rge_reg_get32(rgep, regno);
87	regval |= bits;
88	rge_reg_put32(rgep, regno, regval);
89}
90
91static void rge_reg_clr32(rge_t *rgep, uintptr_t regno, uint32_t bits);
92#pragma	inline(rge_reg_clr32)
93
94static void
95rge_reg_clr32(rge_t *rgep, uintptr_t regno, uint32_t bits)
96{
97	uint32_t regval;
98
99	RGE_TRACE(("rge_reg_clr32($%p, 0x%lx, 0x%x)",
100	    (void *)rgep, regno, bits));
101
102	regval = rge_reg_get32(rgep, regno);
103	regval &= ~bits;
104	rge_reg_put32(rgep, regno, regval);
105}
106
107static uint16_t rge_reg_get16(rge_t *rgep, uintptr_t regno);
108#pragma	inline(rge_reg_get16)
109
110static uint16_t
111rge_reg_get16(rge_t *rgep, uintptr_t regno)
112{
113	RGE_TRACE(("rge_reg_get16($%p, 0x%lx)",
114	    (void *)rgep, regno));
115
116	return (ddi_get16(rgep->io_handle, REG16(rgep, regno)));
117}
118
119static void rge_reg_put16(rge_t *rgep, uintptr_t regno, uint16_t data);
120#pragma	inline(rge_reg_put16)
121
122static void
123rge_reg_put16(rge_t *rgep, uintptr_t regno, uint16_t data)
124{
125	RGE_TRACE(("rge_reg_put16($%p, 0x%lx, 0x%x)",
126	    (void *)rgep, regno, data));
127
128	ddi_put16(rgep->io_handle, REG16(rgep, regno), data);
129}
130
131static uint8_t rge_reg_get8(rge_t *rgep, uintptr_t regno);
132#pragma	inline(rge_reg_get8)
133
134static uint8_t
135rge_reg_get8(rge_t *rgep, uintptr_t regno)
136{
137	RGE_TRACE(("rge_reg_get8($%p, 0x%lx)",
138	    (void *)rgep, regno));
139
140	return (ddi_get8(rgep->io_handle, REG8(rgep, regno)));
141}
142
143static void rge_reg_put8(rge_t *rgep, uintptr_t regno, uint8_t data);
144#pragma	inline(rge_reg_put8)
145
146static void
147rge_reg_put8(rge_t *rgep, uintptr_t regno, uint8_t data)
148{
149	RGE_TRACE(("rge_reg_put8($%p, 0x%lx, 0x%x)",
150	    (void *)rgep, regno, data));
151
152	ddi_put8(rgep->io_handle, REG8(rgep, regno), data);
153}
154
155static void rge_reg_set8(rge_t *rgep, uintptr_t regno, uint8_t bits);
156#pragma	inline(rge_reg_set8)
157
158static void
159rge_reg_set8(rge_t *rgep, uintptr_t regno, uint8_t bits)
160{
161	uint8_t regval;
162
163	RGE_TRACE(("rge_reg_set8($%p, 0x%lx, 0x%x)",
164	    (void *)rgep, regno, bits));
165
166	regval = rge_reg_get8(rgep, regno);
167	regval |= bits;
168	rge_reg_put8(rgep, regno, regval);
169}
170
171static void rge_reg_clr8(rge_t *rgep, uintptr_t regno, uint8_t bits);
172#pragma	inline(rge_reg_clr8)
173
174static void
175rge_reg_clr8(rge_t *rgep, uintptr_t regno, uint8_t bits)
176{
177	uint8_t regval;
178
179	RGE_TRACE(("rge_reg_clr8($%p, 0x%lx, 0x%x)",
180	    (void *)rgep, regno, bits));
181
182	regval = rge_reg_get8(rgep, regno);
183	regval &= ~bits;
184	rge_reg_put8(rgep, regno, regval);
185}
186
187uint16_t rge_mii_get16(rge_t *rgep, uintptr_t mii);
188#pragma	no_inline(rge_mii_get16)
189
190uint16_t
191rge_mii_get16(rge_t *rgep, uintptr_t mii)
192{
193	uint32_t regval;
194	uint32_t val32;
195	uint32_t i;
196
197	regval = (mii & PHY_REG_MASK) << PHY_REG_SHIFT;
198	rge_reg_put32(rgep, PHY_ACCESS_REG, regval);
199
200	/*
201	 * Waiting for PHY reading OK
202	 */
203	for (i = 0; i < PHY_RESET_LOOP; i++) {
204		drv_usecwait(1000);
205		val32 = rge_reg_get32(rgep, PHY_ACCESS_REG);
206		if (val32 & PHY_ACCESS_WR_FLAG)
207			return ((uint16_t)(val32 & 0xffff));
208	}
209
210	RGE_REPORT((rgep, "rge_mii_get16(0x%x) fail, val = %x", mii, val32));
211	return ((uint16_t)~0u);
212}
213
214void rge_mii_put16(rge_t *rgep, uintptr_t mii, uint16_t data);
215#pragma	no_inline(rge_mii_put16)
216
217void
218rge_mii_put16(rge_t *rgep, uintptr_t mii, uint16_t data)
219{
220	uint32_t regval;
221	uint32_t val32;
222	uint32_t i;
223
224	regval = (mii & PHY_REG_MASK) << PHY_REG_SHIFT;
225	regval |= data & PHY_DATA_MASK;
226	regval |= PHY_ACCESS_WR_FLAG;
227	rge_reg_put32(rgep, PHY_ACCESS_REG, regval);
228
229	/*
230	 * Waiting for PHY writing OK
231	 */
232	for (i = 0; i < PHY_RESET_LOOP; i++) {
233		drv_usecwait(1000);
234		val32 = rge_reg_get32(rgep, PHY_ACCESS_REG);
235		if (!(val32 & PHY_ACCESS_WR_FLAG))
236			return;
237	}
238	RGE_REPORT((rgep, "rge_mii_put16(0x%lx, 0x%x) fail",
239	    mii, data));
240}
241
242void rge_ephy_put16(rge_t *rgep, uintptr_t emii, uint16_t data);
243#pragma	no_inline(rge_ephy_put16)
244
245void
246rge_ephy_put16(rge_t *rgep, uintptr_t emii, uint16_t data)
247{
248	uint32_t regval;
249	uint32_t val32;
250	uint32_t i;
251
252	regval = (emii & EPHY_REG_MASK) << EPHY_REG_SHIFT;
253	regval |= data & EPHY_DATA_MASK;
254	regval |= EPHY_ACCESS_WR_FLAG;
255	rge_reg_put32(rgep, EPHY_ACCESS_REG, regval);
256
257	/*
258	 * Waiting for PHY writing OK
259	 */
260	for (i = 0; i < PHY_RESET_LOOP; i++) {
261		drv_usecwait(1000);
262		val32 = rge_reg_get32(rgep, EPHY_ACCESS_REG);
263		if (!(val32 & EPHY_ACCESS_WR_FLAG))
264			return;
265	}
266	RGE_REPORT((rgep, "rge_ephy_put16(0x%lx, 0x%x) fail",
267	    emii, data));
268}
269
270/*
271 * Atomically shift a 32-bit word left, returning
272 * the value it had *before* the shift was applied
273 */
274static uint32_t rge_atomic_shl32(uint32_t *sp, uint_t count);
275#pragma	inline(rge_mii_put16)
276
277static uint32_t
278rge_atomic_shl32(uint32_t *sp, uint_t count)
279{
280	uint32_t oldval;
281	uint32_t newval;
282
283	/* ATOMICALLY */
284	do {
285		oldval = *sp;
286		newval = oldval << count;
287	} while (cas32(sp, oldval, newval) != oldval);
288
289	return (oldval);
290}
291
292/*
293 * PHY operation routines
294 */
295#if	RGE_DEBUGGING
296
297void
298rge_phydump(rge_t *rgep)
299{
300	uint16_t regs[32];
301	int i;
302
303	ASSERT(mutex_owned(rgep->genlock));
304
305	for (i = 0; i < 32; ++i) {
306		regs[i] = rge_mii_get16(rgep, i);
307	}
308
309	for (i = 0; i < 32; i += 8)
310		RGE_DEBUG(("rge_phydump: "
311		    "0x%04x %04x %04x %04x %04x %04x %04x %04x",
312		    regs[i+0], regs[i+1], regs[i+2], regs[i+3],
313		    regs[i+4], regs[i+5], regs[i+6], regs[i+7]));
314}
315
316#endif	/* RGE_DEBUGGING */
317
318static void
319rge_phy_check(rge_t *rgep)
320{
321	uint16_t gig_ctl;
322
323	if (rgep->param_link_up  == LINK_STATE_DOWN) {
324		/*
325		 * RTL8169S/8110S PHY has the "PCS bug".  Need reset PHY
326		 * every 15 seconds whin link down & advertise is 1000.
327		 */
328		if (rgep->chipid.phy_ver == PHY_VER_S) {
329			gig_ctl = rge_mii_get16(rgep, MII_1000BASE_T_CONTROL);
330			if (gig_ctl & MII_1000BT_CTL_ADV_FDX) {
331				rgep->link_down_count++;
332				if (rgep->link_down_count > 15) {
333					(void) rge_phy_reset(rgep);
334					rgep->stats.phy_reset++;
335					rgep->link_down_count = 0;
336				}
337			}
338		}
339	} else {
340		rgep->link_down_count = 0;
341	}
342}
343
344/*
345 * Basic low-level function to reset the PHY.
346 * Doesn't incorporate any special-case workarounds.
347 *
348 * Returns TRUE on success, FALSE if the RESET bit doesn't clear
349 */
350boolean_t
351rge_phy_reset(rge_t *rgep)
352{
353	uint16_t control;
354	uint_t count;
355
356	/*
357	 * Set the PHY RESET bit, then wait up to 5 ms for it to self-clear
358	 */
359	control = rge_mii_get16(rgep, MII_CONTROL);
360	rge_mii_put16(rgep, MII_CONTROL, control | MII_CONTROL_RESET);
361	for (count = 0; count < 5; count++) {
362		drv_usecwait(100);
363		control = rge_mii_get16(rgep, MII_CONTROL);
364		if (BIC(control, MII_CONTROL_RESET))
365			return (B_TRUE);
366	}
367
368	RGE_REPORT((rgep, "rge_phy_reset: FAILED, control now 0x%x", control));
369	return (B_FALSE);
370}
371
372/*
373 * Synchronise the PHY's speed/duplex/autonegotiation capabilities
374 * and advertisements with the required settings as specified by the various
375 * param_* variables that can be poked via the NDD interface.
376 *
377 * We always reset the PHY and reprogram *all* the relevant registers,
378 * not just those changed.  This should cause the link to go down, and then
379 * back up again once the link is stable and autonegotiation (if enabled)
380 * is complete.  We should get a link state change interrupt somewhere along
381 * the way ...
382 *
383 * NOTE: <genlock> must already be held by the caller
384 */
385void
386rge_phy_update(rge_t *rgep)
387{
388	boolean_t adv_autoneg;
389	boolean_t adv_pause;
390	boolean_t adv_asym_pause;
391	boolean_t adv_1000fdx;
392	boolean_t adv_1000hdx;
393	boolean_t adv_100fdx;
394	boolean_t adv_100hdx;
395	boolean_t adv_10fdx;
396	boolean_t adv_10hdx;
397
398	uint16_t control;
399	uint16_t gigctrl;
400	uint16_t anar;
401
402	ASSERT(mutex_owned(rgep->genlock));
403
404	RGE_DEBUG(("rge_phy_update: autoneg %d "
405	    "pause %d asym_pause %d "
406	    "1000fdx %d 1000hdx %d "
407	    "100fdx %d 100hdx %d "
408	    "10fdx %d 10hdx %d ",
409	    rgep->param_adv_autoneg,
410	    rgep->param_adv_pause, rgep->param_adv_asym_pause,
411	    rgep->param_adv_1000fdx, rgep->param_adv_1000hdx,
412	    rgep->param_adv_100fdx, rgep->param_adv_100hdx,
413	    rgep->param_adv_10fdx, rgep->param_adv_10hdx));
414
415	control = gigctrl = anar = 0;
416
417	/*
418	 * PHY settings are normally based on the param_* variables,
419	 * but if any loopback mode is in effect, that takes precedence.
420	 *
421	 * RGE supports MAC-internal loopback, PHY-internal loopback,
422	 * and External loopback at a variety of speeds (with a special
423	 * cable).  In all cases, autoneg is turned OFF, full-duplex
424	 * is turned ON, and the speed/mastership is forced.
425	 */
426	switch (rgep->param_loop_mode) {
427	case RGE_LOOP_NONE:
428	default:
429		adv_autoneg = rgep->param_adv_autoneg;
430		adv_pause = rgep->param_adv_pause;
431		adv_asym_pause = rgep->param_adv_asym_pause;
432		adv_1000fdx = rgep->param_adv_1000fdx;
433		adv_1000hdx = rgep->param_adv_1000hdx;
434		adv_100fdx = rgep->param_adv_100fdx;
435		adv_100hdx = rgep->param_adv_100hdx;
436		adv_10fdx = rgep->param_adv_10fdx;
437		adv_10hdx = rgep->param_adv_10hdx;
438		break;
439
440	case RGE_LOOP_INTERNAL_PHY:
441	case RGE_LOOP_INTERNAL_MAC:
442		adv_autoneg = adv_pause = adv_asym_pause = B_FALSE;
443		adv_1000fdx = adv_100fdx = adv_10fdx = B_FALSE;
444		adv_1000hdx = adv_100hdx = adv_10hdx = B_FALSE;
445		rgep->param_link_duplex = LINK_DUPLEX_FULL;
446
447		switch (rgep->param_loop_mode) {
448		case RGE_LOOP_INTERNAL_PHY:
449			if (rgep->chipid.mac_ver != MAC_VER_8101E) {
450				rgep->param_link_speed = 1000;
451				adv_1000fdx = B_TRUE;
452			} else {
453				rgep->param_link_speed = 100;
454				adv_100fdx = B_TRUE;
455			}
456			control = MII_CONTROL_LOOPBACK;
457			break;
458
459		case RGE_LOOP_INTERNAL_MAC:
460			if (rgep->chipid.mac_ver != MAC_VER_8101E) {
461				rgep->param_link_speed = 1000;
462				adv_1000fdx = B_TRUE;
463			} else {
464				rgep->param_link_speed = 100;
465				adv_100fdx = B_TRUE;
466			break;
467		}
468	}
469
470	RGE_DEBUG(("rge_phy_update: autoneg %d "
471	    "pause %d asym_pause %d "
472	    "1000fdx %d 1000hdx %d "
473	    "100fdx %d 100hdx %d "
474	    "10fdx %d 10hdx %d ",
475	    adv_autoneg,
476	    adv_pause, adv_asym_pause,
477	    adv_1000fdx, adv_1000hdx,
478	    adv_100fdx, adv_100hdx,
479	    adv_10fdx, adv_10hdx));
480
481	/*
482	 * We should have at least one technology capability set;
483	 * if not, we select a default of 1000Mb/s full-duplex
484	 */
485	if (!adv_1000fdx && !adv_100fdx && !adv_10fdx &&
486	    !adv_1000hdx && !adv_100hdx && !adv_10hdx) {
487		if (rgep->chipid.mac_ver != MAC_VER_8101E)
488			adv_1000fdx = B_TRUE;
489		} else {
490			adv_1000fdx = B_FALSE;
491			adv_100fdx = B_TRUE;
492		}
493	}
494
495	/*
496	 * Now transform the adv_* variables into the proper settings
497	 * of the PHY registers ...
498	 *
499	 * If autonegotiation is (now) enabled, we want to trigger
500	 * a new autonegotiation cycle once the PHY has been
501	 * programmed with the capabilities to be advertised.
502	 *
503	 * RTL8169/8110 doesn't support 1000Mb/s half-duplex.
504	 */
505	if (adv_autoneg)
506		control |= MII_CONTROL_ANE|MII_CONTROL_RSAN;
507
508	if (adv_1000fdx)
509		control |= MII_CONTROL_1000MB|MII_CONTROL_FDUPLEX;
510	else if (adv_1000hdx)
511		control |= MII_CONTROL_1000MB;
512	else if (adv_100fdx)
513		control |= MII_CONTROL_100MB|MII_CONTROL_FDUPLEX;
514	else if (adv_100hdx)
515		control |= MII_CONTROL_100MB;
516	else if (adv_10fdx)
517		control |= MII_CONTROL_FDUPLEX;
518	else if (adv_10hdx)
519		control |= 0;
520	else
521		{ _NOTE(EMPTY); }	/* Can't get here anyway ...	*/
522
523	if (adv_1000fdx) {
524		gigctrl |= MII_1000BT_CTL_ADV_FDX;
525		/*
526		 * Chipset limitation: need set other capabilities to true
527		 */
528		if (rgep->chipid.is_pcie)
529			adv_1000hdx = B_TRUE;
530		adv_100fdx = B_TRUE;
531		adv_100hdx  = B_TRUE;
532		adv_10fdx = B_TRUE;
533		adv_10hdx = B_TRUE;
534	}
535
536	if (adv_1000hdx)
537		gigctrl |= MII_1000BT_CTL_ADV_HDX;
538
539	if (adv_100fdx)
540		anar |= MII_ABILITY_100BASE_TX_FD;
541	if (adv_100hdx)
542		anar |= MII_ABILITY_100BASE_TX;
543	if (adv_10fdx)
544		anar |= MII_ABILITY_10BASE_T_FD;
545	if (adv_10hdx)
546		anar |= MII_ABILITY_10BASE_T;
547
548	if (adv_pause)
549		anar |= MII_ABILITY_PAUSE;
550	if (adv_asym_pause)
551		anar |= MII_ABILITY_ASYM_PAUSE;
552
553	/*
554	 * Munge in any other fixed bits we require ...
555	 */
556	anar |= MII_AN_SELECTOR_8023;
557
558	/*
559	 * Restart the PHY and write the new values.  Note the
560	 * time, so that we can say whether subsequent link state
561	 * changes can be attributed to our reprogramming the PHY
562	 */
563	rge_phy_init(rgep);
564	if (rgep->chipid.mac_ver == MAC_VER_8168B_B ||
565	    rgep->chipid.mac_ver == MAC_VER_8168B_C) {
566		/* power up PHY for RTL8168B chipset */
567		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
568		rge_mii_put16(rgep, PHY_0E_REG, 0x0000);
569		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
570	}
571	rge_mii_put16(rgep, MII_AN_ADVERT, anar);
572	rge_mii_put16(rgep, MII_1000BASE_T_CONTROL, gigctrl);
573	rge_mii_put16(rgep, MII_CONTROL, control);
574
575	RGE_DEBUG(("rge_phy_update: anar <- 0x%x", anar));
576	RGE_DEBUG(("rge_phy_update: control <- 0x%x", control));
577	RGE_DEBUG(("rge_phy_update: gigctrl <- 0x%x", gigctrl));
578}
579
580void rge_phy_init(rge_t *rgep);
581#pragma	no_inline(rge_phy_init)
582
583void
584rge_phy_init(rge_t *rgep)
585{
586	rgep->phy_mii_addr = 1;
587
588	/*
589	 * Below phy config steps are copied from the Programming Guide
590	 * (there's no detail comments for these steps.)
591	 */
592	switch (rgep->chipid.mac_ver) {
593	case MAC_VER_8169S_D:
594	case MAC_VER_8169S_E :
595		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
596		rge_mii_put16(rgep, PHY_15_REG, 0x1000);
597		rge_mii_put16(rgep, PHY_18_REG, 0x65c7);
598		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
599		rge_mii_put16(rgep, PHY_ID_REG_2, 0x00a1);
600		rge_mii_put16(rgep, PHY_ID_REG_1, 0x0008);
601		rge_mii_put16(rgep, PHY_BMSR_REG, 0x1020);
602		rge_mii_put16(rgep, PHY_BMCR_REG, 0x1000);
603		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0800);
604		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
605		rge_mii_put16(rgep, PHY_ANAR_REG, 0x7000);
606		rge_mii_put16(rgep, PHY_ID_REG_2, 0xff41);
607		rge_mii_put16(rgep, PHY_ID_REG_1, 0xde60);
608		rge_mii_put16(rgep, PHY_BMSR_REG, 0x0140);
609		rge_mii_put16(rgep, PHY_BMCR_REG, 0x0077);
610		rge_mii_put16(rgep, PHY_ANAR_REG, 0x7800);
611		rge_mii_put16(rgep, PHY_ANAR_REG, 0x7000);
612		rge_mii_put16(rgep, PHY_ANAR_REG, 0xa000);
613		rge_mii_put16(rgep, PHY_ID_REG_2, 0xdf01);
614		rge_mii_put16(rgep, PHY_ID_REG_1, 0xdf20);
615		rge_mii_put16(rgep, PHY_BMSR_REG, 0xff95);
616		rge_mii_put16(rgep, PHY_BMCR_REG, 0xfa00);
617		rge_mii_put16(rgep, PHY_ANAR_REG, 0xa800);
618		rge_mii_put16(rgep, PHY_ANAR_REG, 0xa000);
619		rge_mii_put16(rgep, PHY_ANAR_REG, 0xb000);
620		rge_mii_put16(rgep, PHY_ID_REG_2, 0xff41);
621		rge_mii_put16(rgep, PHY_ID_REG_1, 0xde20);
622		rge_mii_put16(rgep, PHY_BMSR_REG, 0x0140);
623		rge_mii_put16(rgep, PHY_BMCR_REG, 0x00bb);
624		rge_mii_put16(rgep, PHY_ANAR_REG, 0xb800);
625		rge_mii_put16(rgep, PHY_ANAR_REG, 0xb000);
626		rge_mii_put16(rgep, PHY_ANAR_REG, 0xf000);
627		rge_mii_put16(rgep, PHY_ID_REG_2, 0xdf01);
628		rge_mii_put16(rgep, PHY_ID_REG_1, 0xdf20);
629		rge_mii_put16(rgep, PHY_BMSR_REG, 0xff95);
630		rge_mii_put16(rgep, PHY_BMCR_REG, 0xbf00);
631		rge_mii_put16(rgep, PHY_ANAR_REG, 0xf800);
632		rge_mii_put16(rgep, PHY_ANAR_REG, 0xf000);
633		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
634		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
635		rge_mii_put16(rgep, PHY_0B_REG, 0x0000);
636		break;
637
638	case MAC_VER_8169SB:
639		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
640		rge_mii_put16(rgep, PHY_1B_REG, 0xD41E);
641		rge_mii_put16(rgep, PHY_0E_REG, 0x7bff);
642		rge_mii_put16(rgep, PHY_GBCR_REG, GBCR_DEFAULT);
643		rge_mii_put16(rgep, PHY_1F_REG, 0x0002);
644		rge_mii_put16(rgep, PHY_BMSR_REG, 0x90D0);
645		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
646		break;
647
648	case MAC_VER_8169SC:
649		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
650		rge_mii_put16(rgep, PHY_ANER_REG, 0x0078);
651		rge_mii_put16(rgep, PHY_ANNPRR_REG, 0x05dc);
652		rge_mii_put16(rgep, PHY_GBCR_REG, 0x2672);
653		rge_mii_put16(rgep, PHY_GBSR_REG, 0x6a14);
654		rge_mii_put16(rgep, PHY_0B_REG, 0x7cb0);
655		rge_mii_put16(rgep, PHY_0C_REG, 0xdb80);
656		rge_mii_put16(rgep, PHY_1B_REG, 0xc414);
657		rge_mii_put16(rgep, PHY_1C_REG, 0xef03);
658		rge_mii_put16(rgep, PHY_1D_REG, 0x3dc8);
659		rge_mii_put16(rgep, PHY_1F_REG, 0x0003);
660		rge_mii_put16(rgep, PHY_13_REG, 0x0600);
661		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
662		break;
663
664	case MAC_VER_8168:
665		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
666		rge_mii_put16(rgep, PHY_ANER_REG, 0x00aa);
667		rge_mii_put16(rgep, PHY_ANNPTR_REG, 0x3173);
668		rge_mii_put16(rgep, PHY_ANNPRR_REG, 0x08fc);
669		rge_mii_put16(rgep, PHY_GBCR_REG, 0xe2d0);
670		rge_mii_put16(rgep, PHY_0B_REG, 0x941a);
671		rge_mii_put16(rgep, PHY_18_REG, 0x65fe);
672		rge_mii_put16(rgep, PHY_1C_REG, 0x1e02);
673		rge_mii_put16(rgep, PHY_1F_REG, 0x0002);
674		rge_mii_put16(rgep, PHY_ANNPTR_REG, 0x103e);
675		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
676		break;
677
678	case MAC_VER_8168B_B:
679	case MAC_VER_8168B_C:
680		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
681		rge_mii_put16(rgep, PHY_0B_REG, 0x94b0);
682		rge_mii_put16(rgep, PHY_1B_REG, 0xc416);
683		rge_mii_put16(rgep, PHY_1F_REG, 0x0003);
684		rge_mii_put16(rgep, PHY_12_REG, 0x6096);
685		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
686		break;
687	}
688}
689
690void rge_chip_ident(rge_t *rgep);
691#pragma	no_inline(rge_chip_ident)
692
693void
694rge_chip_ident(rge_t *rgep)
695{
696	chip_id_t *chip = &rgep->chipid;
697	uint32_t val32;
698	uint16_t val16;
699
700	/*
701	 * Read and record MAC version
702	 */
703	val32 = rge_reg_get32(rgep, TX_CONFIG_REG);
704	val32 &= HW_VERSION_ID_0 | HW_VERSION_ID_1;
705	chip->mac_ver = val32;
706	switch (chip->mac_ver) {
707	case MAC_VER_8168:
708	case MAC_VER_8168B_B:
709	case MAC_VER_8168B_C:
710	case MAC_VER_8101E:
711	case MAC_VER_8101E_B:
712		chip->is_pcie = B_TRUE;
713		break;
714
715	default:
716		chip->is_pcie = B_FALSE;
717		break;
718	}
719
720	/*
721	 * Read and record PHY version
722	 */
723	val16 = rge_mii_get16(rgep, PHY_ID_REG_2);
724	val16 &= PHY_VER_MASK;
725	chip->phy_ver = val16;
726
727	/* set pci latency timer */
728	if (chip->mac_ver == MAC_VER_8169 ||
729	    chip->mac_ver == MAC_VER_8169S_D ||
730	    chip->mac_ver == MAC_VER_8169SC)
731		pci_config_put8(rgep->cfg_handle, PCI_CONF_LATENCY_TIMER, 0x40);
732
733	if (chip->mac_ver == MAC_VER_8169SC) {
734		val16 = rge_reg_get16(rgep, RT_CONFIG_1_REG);
735		val16 &= 0x0300;
736		if (val16 == 0x1)	/* 66Mhz PCI */
737			pci_config_put32(rgep->cfg_handle, 0x7c, 0x00ff00ff);
738		else if (val16 == 0x0) /* 33Mhz PCI */
739			pci_config_put32(rgep->cfg_handle, 0x7c, 0x00ffff00);
740	}
741
742	/*
743	 * PCIE chipset require the Rx buffer start address must be
744	 * 8-byte alignment and the Rx buffer size must be multiple of 8.
745	 * We'll just use bcopy in receive procedure for the PCIE chipset.
746	 */
747	if (chip->is_pcie) {
748		rgep->chip_flags |= CHIP_FLAG_FORCE_BCOPY;
749		if (rgep->default_mtu > ETHERMTU) {
750			rge_notice(rgep, "Jumbo packets not supported "
751			    "for this PCIE chipset");
752			rgep->default_mtu = ETHERMTU;
753		}
754	}
755	if (rgep->chip_flags & CHIP_FLAG_FORCE_BCOPY)
756		rgep->head_room = 0;
757	else
758		rgep->head_room = RGE_HEADROOM;
759
760	/*
761	 * Initialize other variables.
762	 */
763	if (rgep->default_mtu < ETHERMTU || rgep->default_mtu > RGE_JUMBO_MTU)
764		rgep->default_mtu = ETHERMTU;
765	if (rgep->default_mtu > ETHERMTU) {
766		rgep->rxbuf_size = RGE_BUFF_SIZE_JUMBO;
767		rgep->txbuf_size = RGE_BUFF_SIZE_JUMBO;
768		rgep->ethmax_size = RGE_JUMBO_SIZE;
769	} else {
770		rgep->rxbuf_size = RGE_BUFF_SIZE_STD;
771		rgep->txbuf_size = RGE_BUFF_SIZE_STD;
772		rgep->ethmax_size = ETHERMAX;
773	}
774	chip->rxconfig = RX_CONFIG_DEFAULT;
775	chip->txconfig = TX_CONFIG_DEFAULT;
776
777	RGE_TRACE(("%s: MAC version = %x, PHY version = %x",
778	    rgep->ifname, chip->mac_ver, chip->phy_ver));
779}
780
781/*
782 * Perform first-stage chip (re-)initialisation, using only config-space
783 * accesses:
784 *
785 * + Read the vendor/device/revision/subsystem/cache-line-size registers,
786 *   returning the data in the structure pointed to by <idp>.
787 * + Enable Memory Space accesses.
788 * + Enable Bus Mastering according.
789 */
790void rge_chip_cfg_init(rge_t *rgep, chip_id_t *cidp);
791#pragma	no_inline(rge_chip_cfg_init)
792
793void
794rge_chip_cfg_init(rge_t *rgep, chip_id_t *cidp)
795{
796	ddi_acc_handle_t handle;
797	uint16_t commd;
798
799	handle = rgep->cfg_handle;
800
801	/*
802	 * Save PCI cache line size and subsystem vendor ID
803	 */
804	cidp->command = pci_config_get16(handle, PCI_CONF_COMM);
805	cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID);
806	cidp->device = pci_config_get16(handle, PCI_CONF_DEVID);
807	cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID);
808	cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID);
809	cidp->revision = pci_config_get8(handle, PCI_CONF_REVID);
810	cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ);
811	cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER);
812
813	/*
814	 * Turn on Master Enable (DMA) and IO Enable bits.
815	 * Enable PCI Memory Space accesses
816	 */
817	commd = cidp->command;
818	commd |= PCI_COMM_ME | PCI_COMM_MAE | PCI_COMM_IO;
819	pci_config_put16(handle, PCI_CONF_COMM, commd);
820
821	RGE_DEBUG(("rge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x",
822	    cidp->vendor, cidp->device, cidp->revision));
823	RGE_DEBUG(("rge_chip_cfg_init: subven 0x%x subdev 0x%x",
824	    cidp->subven, cidp->subdev));
825	RGE_DEBUG(("rge_chip_cfg_init: clsize %d latency %d command 0x%x",
826	    cidp->clsize, cidp->latency, cidp->command));
827}
828
829int rge_chip_reset(rge_t *rgep);
830#pragma	no_inline(rge_chip_reset)
831
832int
833rge_chip_reset(rge_t *rgep)
834{
835	int i;
836	uint8_t val8;
837
838	/*
839	 * Chip should be in STOP state
840	 */
841	rge_reg_clr8(rgep, RT_COMMAND_REG,
842	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
843
844	/*
845	 * Disable interrupt
846	 */
847	rgep->int_mask = INT_MASK_NONE;
848	rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
849
850	/*
851	 * Clear pended interrupt
852	 */
853	rge_reg_put16(rgep, INT_STATUS_REG, INT_MASK_ALL);
854
855	/*
856	 * Reset chip
857	 */
858	rge_reg_set8(rgep, RT_COMMAND_REG, RT_COMMAND_RESET);
859
860	/*
861	 * Wait for reset success
862	 */
863	for (i = 0; i < CHIP_RESET_LOOP; i++) {
864		drv_usecwait(10);
865		val8 = rge_reg_get8(rgep, RT_COMMAND_REG);
866		if (!(val8 & RT_COMMAND_RESET)) {
867			rgep->rge_chip_state = RGE_CHIP_RESET;
868			return (0);
869		}
870	}
871	RGE_REPORT((rgep, "rge_chip_reset fail."));
872	return (-1);
873}
874
875void rge_chip_init(rge_t *rgep);
876#pragma	no_inline(rge_chip_init)
877
878void
879rge_chip_init(rge_t *rgep)
880{
881	uint32_t val32;
882	uint32_t val16;
883	uint32_t *hashp;
884	chip_id_t *chip = &rgep->chipid;
885
886	if (chip->is_pcie) {
887		/*
888		 * Increase the threshold voltage of RX sensitivity
889		 */
890		if (chip->mac_ver != MAC_VER_8168 &&
891		    chip->mac_ver != MAC_VER_8101E_B)
892			rge_ephy_put16(rgep, 0x01, 0x1bd3);
893
894		val16 = rge_reg_get8(rgep, PHY_STATUS_REG);
895		val16 = 0x12<<8 | val16;
896		if (rgep->chipid.mac_ver != MAC_VER_8101E &&
897		    rgep->chipid.mac_ver != MAC_VER_8101E_B &&
898		    rgep->chipid.mac_ver != MAC_VER_8101E_C &&
899		    rgep->chipid.mac_ver != MAC_VER_8168B_C) {
900			rge_reg_put16(rgep, PHY_STATUS_REG, val16);
901			rge_reg_put32(rgep, RT_CSI_DATA_REG, 0x00021c01);
902			rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f088);
903			rge_reg_put32(rgep, RT_CSI_DATA_REG, 0x00004000);
904			rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f0b0);
905			rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x0000f068);
906			val32 = rge_reg_get32(rgep, RT_CSI_DATA_REG);
907			val32 |= 0x7000;
908			val32 &= 0xffff5fff;
909			rge_reg_put32(rgep, RT_CSI_DATA_REG, val32);
910			rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f068);
911		}
912	}
913
914	/*
915	 * Config MII register
916	 */
917	rgep->param_link_up = LINK_STATE_DOWN;
918	rge_phy_update(rgep);
919
920	/*
921	 * Enable Rx checksum offload.
922	 *  Then for vlan support, we must enable receive vlan de-tagging.
923	 *  Otherwise, there'll be checksum error.
924	 */
925	val16 = rge_reg_get16(rgep, CPLUS_COMMAND_REG);
926	val16 |= RX_CKSM_OFFLOAD | RX_VLAN_DETAG;
927	if (chip->mac_ver == MAC_VER_8169S_D) {
928		val16 |= CPLUS_BIT14 | MUL_PCI_RW_ENABLE;
929		rge_reg_put8(rgep, RESV_82_REG, 0x01);
930	}
931	rge_reg_put16(rgep, CPLUS_COMMAND_REG, val16 & (~0x03));
932
933	/*
934	 * Start transmit/receive before set tx/rx configuration register
935	 */
936	if (!chip->is_pcie)
937		rge_reg_set8(rgep, RT_COMMAND_REG,
938		    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
939
940	/*
941	 * Set dump tally counter register
942	 */
943	val32 = rgep->dma_area_stats.cookie.dmac_laddress >> 32;
944	rge_reg_put32(rgep, DUMP_COUNTER_REG_1, val32);
945	val32 = rge_reg_get32(rgep, DUMP_COUNTER_REG_0);
946	val32 &= DUMP_COUNTER_REG_RESV;
947	val32 |= rgep->dma_area_stats.cookie.dmac_laddress;
948	rge_reg_put32(rgep, DUMP_COUNTER_REG_0, val32);
949
950	/*
951	 * Change to config register write enable mode
952	 */
953	rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
954
955	/*
956	 * Set Tx/Rx maximum packet size
957	 */
958	if (rgep->default_mtu > ETHERMTU) {
959		rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_JUMBO);
960		rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_JUMBO);
961	} else if (rgep->chipid.mac_ver != MAC_VER_8101E) {
962		rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_STD);
963		rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_STD);
964	} else {
965		rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_STD_8101E);
966		rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_STD_8101E);
967	}
968
969	/*
970	 * Set receive configuration register
971	 */
972	val32 = rge_reg_get32(rgep, RX_CONFIG_REG);
973	val32 &= RX_CONFIG_REG_RESV;
974	if (rgep->promisc)
975		val32 |= RX_ACCEPT_ALL_PKT;
976	rge_reg_put32(rgep, RX_CONFIG_REG, val32 | chip->rxconfig);
977
978	/*
979	 * Set transmit configuration register
980	 */
981	val32 = rge_reg_get32(rgep, TX_CONFIG_REG);
982	val32 &= TX_CONFIG_REG_RESV;
983	rge_reg_put32(rgep, TX_CONFIG_REG, val32 | chip->txconfig);
984
985	/*
986	 * Set Tx/Rx descriptor register
987	 */
988	val32 = rgep->tx_desc.cookie.dmac_laddress;
989	rge_reg_put32(rgep, NORMAL_TX_RING_ADDR_LO_REG, val32);
990	val32 = rgep->tx_desc.cookie.dmac_laddress >> 32;
991	rge_reg_put32(rgep, NORMAL_TX_RING_ADDR_HI_REG, val32);
992	rge_reg_put32(rgep, HIGH_TX_RING_ADDR_LO_REG, 0);
993	rge_reg_put32(rgep, HIGH_TX_RING_ADDR_HI_REG, 0);
994	val32 = rgep->rx_desc.cookie.dmac_laddress;
995	rge_reg_put32(rgep, RX_RING_ADDR_LO_REG, val32);
996	val32 = rgep->rx_desc.cookie.dmac_laddress >> 32;
997	rge_reg_put32(rgep, RX_RING_ADDR_HI_REG, val32);
998
999	/*
1000	 * Suggested setting from Realtek
1001	 */
1002	if (rgep->chipid.mac_ver != MAC_VER_8101E)
1003		rge_reg_put16(rgep, RESV_E2_REG, 0x282a);
1004	else
1005		rge_reg_put16(rgep, RESV_E2_REG, 0x0000);
1006
1007	/*
1008	 * Set multicast register
1009	 */
1010	hashp = (uint32_t *)rgep->mcast_hash;
1011	rge_reg_put32(rgep, MULTICAST_0_REG, hashp[0]);
1012	rge_reg_put32(rgep, MULTICAST_4_REG, hashp[1]);
1013
1014	/*
1015	 * Msic register setting:
1016	 *   -- Missed packet counter: clear it
1017	 *   -- TimerInt Register
1018	 *   -- Timer count register
1019	 */
1020	rge_reg_put32(rgep, RX_PKT_MISS_COUNT_REG, 0);
1021	rge_reg_put32(rgep, TIMER_INT_REG, TIMER_INT_NONE);
1022	rge_reg_put32(rgep, TIMER_COUNT_REG, 0);
1023
1024	/*
1025	 * Return to normal network/host communication mode
1026	 */
1027	rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1028	drv_usecwait(20);
1029}
1030
1031/*
1032 * rge_chip_start() -- start the chip transmitting and/or receiving,
1033 * including enabling interrupts
1034 */
1035void rge_chip_start(rge_t *rgep);
1036#pragma	no_inline(rge_chip_start)
1037
1038void
1039rge_chip_start(rge_t *rgep)
1040{
1041	/*
1042	 * Clear statistics
1043	 */
1044	bzero(&rgep->stats, sizeof (rge_stats_t));
1045	DMA_ZERO(rgep->dma_area_stats);
1046
1047	/*
1048	 * Start transmit/receive
1049	 */
1050	rge_reg_set8(rgep, RT_COMMAND_REG,
1051	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
1052
1053	/*
1054	 * Enable interrupt
1055	 */
1056	rgep->int_mask = RGE_INT_MASK;
1057	rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
1058
1059	/*
1060	 * All done!
1061	 */
1062	rgep->rge_chip_state = RGE_CHIP_RUNNING;
1063}
1064
1065/*
1066 * rge_chip_stop() -- stop board receiving
1067 *
1068 * Since this function is also invoked by rge_quiesce(), it
1069 * must not block; also, no tracing or logging takes place
1070 * when invoked by rge_quiesce().
1071 */
1072void rge_chip_stop(rge_t *rgep, boolean_t fault);
1073#pragma	no_inline(rge_chip_stop)
1074
1075void
1076rge_chip_stop(rge_t *rgep, boolean_t fault)
1077{
1078	/*
1079	 * Disable interrupt
1080	 */
1081	rgep->int_mask = INT_MASK_NONE;
1082	rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
1083
1084	/*
1085	 * Clear pended interrupt
1086	 */
1087	if (!rgep->suspended) {
1088		rge_reg_put16(rgep, INT_STATUS_REG, INT_MASK_ALL);
1089	}
1090
1091	/*
1092	 * Stop the board and disable transmit/receive
1093	 */
1094	rge_reg_clr8(rgep, RT_COMMAND_REG,
1095	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
1096
1097	if (fault)
1098		rgep->rge_chip_state = RGE_CHIP_FAULT;
1099	else
1100		rgep->rge_chip_state = RGE_CHIP_STOPPED;
1101}
1102
1103/*
1104 * rge_get_mac_addr() -- get the MAC address on NIC
1105 */
1106static void rge_get_mac_addr(rge_t *rgep);
1107#pragma	inline(rge_get_mac_addr)
1108
1109static void
1110rge_get_mac_addr(rge_t *rgep)
1111{
1112	uint8_t *macaddr = rgep->netaddr;
1113	uint32_t val32;
1114
1115	/*
1116	 * Read first 4-byte of mac address
1117	 */
1118	val32 = rge_reg_get32(rgep, ID_0_REG);
1119	macaddr[0] = val32 & 0xff;
1120	val32 = val32 >> 8;
1121	macaddr[1] = val32 & 0xff;
1122	val32 = val32 >> 8;
1123	macaddr[2] = val32 & 0xff;
1124	val32 = val32 >> 8;
1125	macaddr[3] = val32 & 0xff;
1126
1127	/*
1128	 * Read last 2-byte of mac address
1129	 */
1130	val32 = rge_reg_get32(rgep, ID_4_REG);
1131	macaddr[4] = val32 & 0xff;
1132	val32 = val32 >> 8;
1133	macaddr[5] = val32 & 0xff;
1134}
1135
1136static void rge_set_mac_addr(rge_t *rgep);
1137#pragma	inline(rge_set_mac_addr)
1138
1139static void
1140rge_set_mac_addr(rge_t *rgep)
1141{
1142	uint8_t *p = rgep->netaddr;
1143	uint32_t val32;
1144
1145	/*
1146	 * Change to config register write enable mode
1147	 */
1148	rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1149
1150	/*
1151	 * Get first 4 bytes of mac address
1152	 */
1153	val32 = p[3];
1154	val32 = val32 << 8;
1155	val32 |= p[2];
1156	val32 = val32 << 8;
1157	val32 |= p[1];
1158	val32 = val32 << 8;
1159	val32 |= p[0];
1160
1161	/*
1162	 * Set first 4 bytes of mac address
1163	 */
1164	rge_reg_put32(rgep, ID_0_REG, val32);
1165
1166	/*
1167	 * Get last 2 bytes of mac address
1168	 */
1169	val32 = p[5];
1170	val32 = val32 << 8;
1171	val32 |= p[4];
1172
1173	/*
1174	 * Set last 2 bytes of mac address
1175	 */
1176	val32 |= rge_reg_get32(rgep, ID_4_REG) & ~0xffff;
1177	rge_reg_put32(rgep, ID_4_REG, val32);
1178
1179	/*
1180	 * Return to normal network/host communication mode
1181	 */
1182	rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1183}
1184
1185static void rge_set_multi_addr(rge_t *rgep);
1186#pragma	inline(rge_set_multi_addr)
1187
1188static void
1189rge_set_multi_addr(rge_t *rgep)
1190{
1191	uint32_t *hashp;
1192
1193	hashp = (uint32_t *)rgep->mcast_hash;
1194
1195	/*
1196	 * Change to config register write enable mode
1197	 */
1198	if (rgep->chipid.mac_ver == MAC_VER_8169SC)
1199		rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1200
1201	rge_reg_put32(rgep, MULTICAST_0_REG, RGE_BSWAP_32(hashp[0]));
1202	rge_reg_put32(rgep, MULTICAST_4_REG, RGE_BSWAP_32(hashp[1]));
1203
1204	/*
1205	 * Return to normal network/host communication mode
1206	 */
1207	if (rgep->chipid.mac_ver == MAC_VER_8169SC)
1208		rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1209}
1210
1211static void rge_set_promisc(rge_t *rgep);
1212#pragma	inline(rge_set_promisc)
1213
1214static void
1215rge_set_promisc(rge_t *rgep)
1216{
1217	if (rgep->promisc)
1218		rge_reg_set32(rgep, RX_CONFIG_REG, RX_ACCEPT_ALL_PKT);
1219	else
1220		rge_reg_clr32(rgep, RX_CONFIG_REG, RX_ACCEPT_ALL_PKT);
1221}
1222
1223/*
1224 * rge_chip_sync() -- program the chip with the unicast MAC address,
1225 * the multicast hash table, the required level of promiscuity, and
1226 * the current loopback mode ...
1227 */
1228void rge_chip_sync(rge_t *rgep, enum rge_sync_op todo);
1229#pragma	no_inline(rge_chip_sync)
1230
1231void
1232rge_chip_sync(rge_t *rgep, enum rge_sync_op todo)
1233{
1234	switch (todo) {
1235	case RGE_GET_MAC:
1236		rge_get_mac_addr(rgep);
1237		break;
1238	case RGE_SET_MAC:
1239		/* Reprogram the unicast MAC address(es) ... */
1240		rge_set_mac_addr(rgep);
1241		break;
1242	case RGE_SET_MUL:
1243		/* Reprogram the hashed multicast address table ... */
1244		rge_set_multi_addr(rgep);
1245		break;
1246	case RGE_SET_PROMISC:
1247		/* Set or clear the PROMISCUOUS mode bit */
1248		rge_set_promisc(rgep);
1249		break;
1250	default:
1251		break;
1252	}
1253}
1254
1255void rge_chip_blank(void *arg, time_t ticks, uint_t count);
1256#pragma	no_inline(rge_chip_blank)
1257
1258void
1259rge_chip_blank(void *arg, time_t ticks, uint_t count)
1260{
1261	_NOTE(ARGUNUSED(arg, ticks, count));
1262}
1263
1264void rge_tx_trigger(rge_t *rgep);
1265#pragma	no_inline(rge_tx_trigger)
1266
1267void
1268rge_tx_trigger(rge_t *rgep)
1269{
1270	rge_reg_set8(rgep, TX_RINGS_POLL_REG, NORMAL_TX_RING_POLL);
1271}
1272
1273void rge_hw_stats_dump(rge_t *rgep);
1274#pragma	no_inline(rge_tx_trigger)
1275
1276void
1277rge_hw_stats_dump(rge_t *rgep)
1278{
1279	int i = 0;
1280
1281	while (rge_reg_get32(rgep, DUMP_COUNTER_REG_0) & DUMP_START) {
1282		drv_usecwait(100);
1283		if (++i > STATS_DUMP_LOOP) {
1284			RGE_DEBUG(("rge h/w statistics dump fail!"));
1285			rgep->rge_chip_state = RGE_CHIP_ERROR;
1286			return;
1287		}
1288	}
1289	DMA_SYNC(rgep->dma_area_stats, DDI_DMA_SYNC_FORKERNEL);
1290
1291	/*
1292	 * Start H/W statistics dump for RTL8169 chip
1293	 */
1294	rge_reg_set32(rgep, DUMP_COUNTER_REG_0, DUMP_START);
1295}
1296
1297/*
1298 * ========== Hardware interrupt handler ==========
1299 */
1300
1301#undef	RGE_DBG
1302#define	RGE_DBG		RGE_DBG_INT	/* debug flag for this code	*/
1303
1304static void rge_wake_factotum(rge_t *rgep);
1305#pragma	inline(rge_wake_factotum)
1306
1307static void
1308rge_wake_factotum(rge_t *rgep)
1309{
1310	if (rgep->factotum_flag == 0) {
1311		rgep->factotum_flag = 1;
1312		(void) ddi_intr_trigger_softint(rgep->factotum_hdl, NULL);
1313	}
1314}
1315
1316/*
1317 *	rge_intr() -- handle chip interrupts
1318 */
1319uint_t rge_intr(caddr_t arg1, caddr_t arg2);
1320#pragma	no_inline(rge_intr)
1321
1322uint_t
1323rge_intr(caddr_t arg1, caddr_t arg2)
1324{
1325	rge_t *rgep = (rge_t *)arg1;
1326	uint16_t int_status;
1327
1328	_NOTE(ARGUNUSED(arg2))
1329
1330	mutex_enter(rgep->genlock);
1331
1332	if (rgep->suspended) {
1333		mutex_exit(rgep->genlock);
1334		return (DDI_INTR_UNCLAIMED);
1335	}
1336
1337	/*
1338	 * Was this interrupt caused by our device...
1339	 */
1340	int_status = rge_reg_get16(rgep, INT_STATUS_REG);
1341	if (!(int_status & rgep->int_mask)) {
1342		mutex_exit(rgep->genlock);
1343		return (DDI_INTR_UNCLAIMED);
1344				/* indicate it wasn't our interrupt */
1345	}
1346	rgep->stats.intr++;
1347
1348	/*
1349	 * Clear interrupt
1350	 *	For PCIE chipset, we need disable interrupt first.
1351	 */
1352	if (rgep->chipid.is_pcie)
1353		rge_reg_put16(rgep, INT_MASK_REG, INT_MASK_NONE);
1354	rge_reg_put16(rgep, INT_STATUS_REG, int_status);
1355
1356	/*
1357	 * Cable link change interrupt
1358	 */
1359	if (int_status & LINK_CHANGE_INT) {
1360		rge_chip_cyclic(rgep);
1361	}
1362
1363	mutex_exit(rgep->genlock);
1364
1365	/*
1366	 * Receive interrupt
1367	 */
1368	if (int_status & RGE_RX_INT)
1369		rge_receive(rgep);
1370
1371	/*
1372	 * Re-enable interrupt for PCIE chipset
1373	 */
1374	if (rgep->chipid.is_pcie)
1375		rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
1376
1377	return (DDI_INTR_CLAIMED);	/* indicate it was our interrupt */
1378}
1379
1380/*
1381 * ========== Factotum, implemented as a softint handler ==========
1382 */
1383
1384#undef	RGE_DBG
1385#define	RGE_DBG		RGE_DBG_FACT	/* debug flag for this code	*/
1386
1387static boolean_t rge_factotum_link_check(rge_t *rgep);
1388#pragma	no_inline(rge_factotum_link_check)
1389
1390static boolean_t
1391rge_factotum_link_check(rge_t *rgep)
1392{
1393	uint8_t media_status;
1394	int32_t link;
1395
1396	media_status = rge_reg_get8(rgep, PHY_STATUS_REG);
1397	link = (media_status & PHY_STATUS_LINK_UP) ?
1398	    LINK_STATE_UP : LINK_STATE_DOWN;
1399	if (rgep->param_link_up != link) {
1400		/*
1401		 * Link change.
1402		 */
1403		rgep->param_link_up = link;
1404
1405		if (link == LINK_STATE_UP) {
1406			if (media_status & PHY_STATUS_1000MF) {
1407				rgep->param_link_speed = RGE_SPEED_1000M;
1408				rgep->param_link_duplex = LINK_DUPLEX_FULL;
1409			} else {
1410				rgep->param_link_speed =
1411				    (media_status & PHY_STATUS_100M) ?
1412				    RGE_SPEED_100M : RGE_SPEED_10M;
1413				rgep->param_link_duplex =
1414				    (media_status & PHY_STATUS_DUPLEX_FULL) ?
1415				    LINK_DUPLEX_FULL : LINK_DUPLEX_HALF;
1416			}
1417		}
1418		return (B_TRUE);
1419	}
1420	return (B_FALSE);
1421}
1422
1423/*
1424 * Factotum routine to check for Tx stall, using the 'watchdog' counter
1425 */
1426static boolean_t rge_factotum_stall_check(rge_t *rgep);
1427#pragma	no_inline(rge_factotum_stall_check)
1428
1429static boolean_t
1430rge_factotum_stall_check(rge_t *rgep)
1431{
1432	uint32_t dogval;
1433
1434	ASSERT(mutex_owned(rgep->genlock));
1435
1436	/*
1437	 * Specific check for Tx stall ...
1438	 *
1439	 * The 'watchdog' counter is incremented whenever a packet
1440	 * is queued, reset to 1 when some (but not all) buffers
1441	 * are reclaimed, reset to 0 (disabled) when all buffers
1442	 * are reclaimed, and shifted left here.  If it exceeds the
1443	 * threshold value, the chip is assumed to have stalled and
1444	 * is put into the ERROR state.  The factotum will then reset
1445	 * it on the next pass.
1446	 *
1447	 * All of which should ensure that we don't get into a state
1448	 * where packets are left pending indefinitely!
1449	 */
1450	if (rgep->resched_needed)
1451		(void) ddi_intr_trigger_softint(rgep->resched_hdl, NULL);
1452	dogval = rge_atomic_shl32(&rgep->watchdog, 1);
1453	if (dogval < rge_watchdog_count)
1454		return (B_FALSE);
1455
1456	RGE_REPORT((rgep, "Tx stall detected, watchdog code 0x%x", dogval));
1457	return (B_TRUE);
1458
1459}
1460
1461/*
1462 * The factotum is woken up when there's something to do that we'd rather
1463 * not do from inside a hardware interrupt handler or high-level cyclic.
1464 * Its two main tasks are:
1465 *	reset & restart the chip after an error
1466 *	check the link status whenever necessary
1467 */
1468uint_t rge_chip_factotum(caddr_t arg1, caddr_t arg2);
1469#pragma	no_inline(rge_chip_factotum)
1470
1471uint_t
1472rge_chip_factotum(caddr_t arg1, caddr_t arg2)
1473{
1474	rge_t *rgep;
1475	uint_t result;
1476	boolean_t error;
1477	boolean_t linkchg;
1478
1479	rgep = (rge_t *)arg1;
1480	_NOTE(ARGUNUSED(arg2))
1481
1482	if (rgep->factotum_flag == 0)
1483		return (DDI_INTR_UNCLAIMED);
1484
1485	rgep->factotum_flag = 0;
1486	result = DDI_INTR_CLAIMED;
1487	error = B_FALSE;
1488	linkchg = B_FALSE;
1489
1490	mutex_enter(rgep->genlock);
1491	switch (rgep->rge_chip_state) {
1492	default:
1493		break;
1494
1495	case RGE_CHIP_RUNNING:
1496		linkchg = rge_factotum_link_check(rgep);
1497		error = rge_factotum_stall_check(rgep);
1498		break;
1499
1500	case RGE_CHIP_ERROR:
1501		error = B_TRUE;
1502		break;
1503
1504	case RGE_CHIP_FAULT:
1505		/*
1506		 * Fault detected, time to reset ...
1507		 */
1508		if (rge_autorecover) {
1509			RGE_REPORT((rgep, "automatic recovery activated"));
1510			rge_restart(rgep);
1511		}
1512		break;
1513	}
1514
1515	/*
1516	 * If an error is detected, stop the chip now, marking it as
1517	 * faulty, so that it will be reset next time through ...
1518	 */
1519	if (error)
1520		rge_chip_stop(rgep, B_TRUE);
1521	mutex_exit(rgep->genlock);
1522
1523	/*
1524	 * If the link state changed, tell the world about it.
1525	 * Note: can't do this while still holding the mutex.
1526	 */
1527	if (linkchg)
1528		mac_link_update(rgep->mh, rgep->param_link_up);
1529
1530	return (result);
1531}
1532
1533/*
1534 * High-level cyclic handler
1535 *
1536 * This routine schedules a (low-level) softint callback to the
1537 * factotum, and prods the chip to update the status block (which
1538 * will cause a hardware interrupt when complete).
1539 */
1540void rge_chip_cyclic(void *arg);
1541#pragma	no_inline(rge_chip_cyclic)
1542
1543void
1544rge_chip_cyclic(void *arg)
1545{
1546	rge_t *rgep;
1547
1548	rgep = arg;
1549
1550	switch (rgep->rge_chip_state) {
1551	default:
1552		return;
1553
1554	case RGE_CHIP_RUNNING:
1555		rge_phy_check(rgep);
1556		break;
1557
1558	case RGE_CHIP_FAULT:
1559	case RGE_CHIP_ERROR:
1560		break;
1561	}
1562
1563	rge_wake_factotum(rgep);
1564}
1565
1566
1567/*
1568 * ========== Ioctl subfunctions ==========
1569 */
1570
1571#undef	RGE_DBG
1572#define	RGE_DBG		RGE_DBG_PPIO	/* debug flag for this code	*/
1573
1574#if	RGE_DEBUGGING || RGE_DO_PPIO
1575
1576static void rge_chip_peek_cfg(rge_t *rgep, rge_peekpoke_t *ppd);
1577#pragma	no_inline(rge_chip_peek_cfg)
1578
1579static void
1580rge_chip_peek_cfg(rge_t *rgep, rge_peekpoke_t *ppd)
1581{
1582	uint64_t regval;
1583	uint64_t regno;
1584
1585	RGE_TRACE(("rge_chip_peek_cfg($%p, $%p)",
1586	    (void *)rgep, (void *)ppd));
1587
1588	regno = ppd->pp_acc_offset;
1589
1590	switch (ppd->pp_acc_size) {
1591	case 1:
1592		regval = pci_config_get8(rgep->cfg_handle, regno);
1593		break;
1594
1595	case 2:
1596		regval = pci_config_get16(rgep->cfg_handle, regno);
1597		break;
1598
1599	case 4:
1600		regval = pci_config_get32(rgep->cfg_handle, regno);
1601		break;
1602
1603	case 8:
1604		regval = pci_config_get64(rgep->cfg_handle, regno);
1605		break;
1606	}
1607
1608	ppd->pp_acc_data = regval;
1609}
1610
1611static void rge_chip_poke_cfg(rge_t *rgep, rge_peekpoke_t *ppd);
1612#pragma	no_inline(rge_chip_poke_cfg)
1613
1614static void
1615rge_chip_poke_cfg(rge_t *rgep, rge_peekpoke_t *ppd)
1616{
1617	uint64_t regval;
1618	uint64_t regno;
1619
1620	RGE_TRACE(("rge_chip_poke_cfg($%p, $%p)",
1621	    (void *)rgep, (void *)ppd));
1622
1623	regno = ppd->pp_acc_offset;
1624	regval = ppd->pp_acc_data;
1625
1626	switch (ppd->pp_acc_size) {
1627	case 1:
1628		pci_config_put8(rgep->cfg_handle, regno, regval);
1629		break;
1630
1631	case 2:
1632		pci_config_put16(rgep->cfg_handle, regno, regval);
1633		break;
1634
1635	case 4:
1636		pci_config_put32(rgep->cfg_handle, regno, regval);
1637		break;
1638
1639	case 8:
1640		pci_config_put64(rgep->cfg_handle, regno, regval);
1641		break;
1642	}
1643}
1644
1645static void rge_chip_peek_reg(rge_t *rgep, rge_peekpoke_t *ppd);
1646#pragma	no_inline(rge_chip_peek_reg)
1647
1648static void
1649rge_chip_peek_reg(rge_t *rgep, rge_peekpoke_t *ppd)
1650{
1651	uint64_t regval;
1652	void *regaddr;
1653
1654	RGE_TRACE(("rge_chip_peek_reg($%p, $%p)",
1655	    (void *)rgep, (void *)ppd));
1656
1657	regaddr = PIO_ADDR(rgep, ppd->pp_acc_offset);
1658
1659	switch (ppd->pp_acc_size) {
1660	case 1:
1661		regval = ddi_get8(rgep->io_handle, regaddr);
1662		break;
1663
1664	case 2:
1665		regval = ddi_get16(rgep->io_handle, regaddr);
1666		break;
1667
1668	case 4:
1669		regval = ddi_get32(rgep->io_handle, regaddr);
1670		break;
1671
1672	case 8:
1673		regval = ddi_get64(rgep->io_handle, regaddr);
1674		break;
1675	}
1676
1677	ppd->pp_acc_data = regval;
1678}
1679
1680static void rge_chip_poke_reg(rge_t *rgep, rge_peekpoke_t *ppd);
1681#pragma	no_inline(rge_chip_peek_reg)
1682
1683static void
1684rge_chip_poke_reg(rge_t *rgep, rge_peekpoke_t *ppd)
1685{
1686	uint64_t regval;
1687	void *regaddr;
1688
1689	RGE_TRACE(("rge_chip_poke_reg($%p, $%p)",
1690	    (void *)rgep, (void *)ppd));
1691
1692	regaddr = PIO_ADDR(rgep, ppd->pp_acc_offset);
1693	regval = ppd->pp_acc_data;
1694
1695	switch (ppd->pp_acc_size) {
1696	case 1:
1697		ddi_put8(rgep->io_handle, regaddr, regval);
1698		break;
1699
1700	case 2:
1701		ddi_put16(rgep->io_handle, regaddr, regval);
1702		break;
1703
1704	case 4:
1705		ddi_put32(rgep->io_handle, regaddr, regval);
1706		break;
1707
1708	case 8:
1709		ddi_put64(rgep->io_handle, regaddr, regval);
1710		break;
1711	}
1712}
1713
1714static void rge_chip_peek_mii(rge_t *rgep, rge_peekpoke_t *ppd);
1715#pragma	no_inline(rge_chip_peek_mii)
1716
1717static void
1718rge_chip_peek_mii(rge_t *rgep, rge_peekpoke_t *ppd)
1719{
1720	RGE_TRACE(("rge_chip_peek_mii($%p, $%p)",
1721	    (void *)rgep, (void *)ppd));
1722
1723	ppd->pp_acc_data = rge_mii_get16(rgep, ppd->pp_acc_offset/2);
1724}
1725
1726static void rge_chip_poke_mii(rge_t *rgep, rge_peekpoke_t *ppd);
1727#pragma	no_inline(rge_chip_poke_mii)
1728
1729static void
1730rge_chip_poke_mii(rge_t *rgep, rge_peekpoke_t *ppd)
1731{
1732	RGE_TRACE(("rge_chip_poke_mii($%p, $%p)",
1733	    (void *)rgep, (void *)ppd));
1734
1735	rge_mii_put16(rgep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
1736}
1737
1738static void rge_chip_peek_mem(rge_t *rgep, rge_peekpoke_t *ppd);
1739#pragma	no_inline(rge_chip_peek_mem)
1740
1741static void
1742rge_chip_peek_mem(rge_t *rgep, rge_peekpoke_t *ppd)
1743{
1744	uint64_t regval;
1745	void *vaddr;
1746
1747	RGE_TRACE(("rge_chip_peek_rge($%p, $%p)",
1748	    (void *)rgep, (void *)ppd));
1749
1750	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
1751
1752	switch (ppd->pp_acc_size) {
1753	case 1:
1754		regval = *(uint8_t *)vaddr;
1755		break;
1756
1757	case 2:
1758		regval = *(uint16_t *)vaddr;
1759		break;
1760
1761	case 4:
1762		regval = *(uint32_t *)vaddr;
1763		break;
1764
1765	case 8:
1766		regval = *(uint64_t *)vaddr;
1767		break;
1768	}
1769
1770	RGE_DEBUG(("rge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p",
1771	    (void *)rgep, (void *)ppd, regval, vaddr));
1772
1773	ppd->pp_acc_data = regval;
1774}
1775
1776static void rge_chip_poke_mem(rge_t *rgep, rge_peekpoke_t *ppd);
1777#pragma	no_inline(rge_chip_poke_mem)
1778
1779static void
1780rge_chip_poke_mem(rge_t *rgep, rge_peekpoke_t *ppd)
1781{
1782	uint64_t regval;
1783	void *vaddr;
1784
1785	RGE_TRACE(("rge_chip_poke_mem($%p, $%p)",
1786	    (void *)rgep, (void *)ppd));
1787
1788	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
1789	regval = ppd->pp_acc_data;
1790
1791	RGE_DEBUG(("rge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p",
1792	    (void *)rgep, (void *)ppd, regval, vaddr));
1793
1794	switch (ppd->pp_acc_size) {
1795	case 1:
1796		*(uint8_t *)vaddr = (uint8_t)regval;
1797		break;
1798
1799	case 2:
1800		*(uint16_t *)vaddr = (uint16_t)regval;
1801		break;
1802
1803	case 4:
1804		*(uint32_t *)vaddr = (uint32_t)regval;
1805		break;
1806
1807	case 8:
1808		*(uint64_t *)vaddr = (uint64_t)regval;
1809		break;
1810	}
1811}
1812
1813static enum ioc_reply rge_pp_ioctl(rge_t *rgep, int cmd, mblk_t *mp,
1814					struct iocblk *iocp);
1815#pragma	no_inline(rge_pp_ioctl)
1816
1817static enum ioc_reply
1818rge_pp_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
1819{
1820	void (*ppfn)(rge_t *rgep, rge_peekpoke_t *ppd);
1821	rge_peekpoke_t *ppd;
1822	dma_area_t *areap;
1823	uint64_t sizemask;
1824	uint64_t mem_va;
1825	uint64_t maxoff;
1826	boolean_t peek;
1827
1828	switch (cmd) {
1829	default:
1830		/* NOTREACHED */
1831		rge_error(rgep, "rge_pp_ioctl: invalid cmd 0x%x", cmd);
1832		return (IOC_INVAL);
1833
1834	case RGE_PEEK:
1835		peek = B_TRUE;
1836		break;
1837
1838	case RGE_POKE:
1839		peek = B_FALSE;
1840		break;
1841	}
1842
1843	/*
1844	 * Validate format of ioctl
1845	 */
1846	if (iocp->ioc_count != sizeof (rge_peekpoke_t))
1847		return (IOC_INVAL);
1848	if (mp->b_cont == NULL)
1849		return (IOC_INVAL);
1850	ppd = (rge_peekpoke_t *)mp->b_cont->b_rptr;
1851
1852	/*
1853	 * Validate request parameters
1854	 */
1855	switch (ppd->pp_acc_space) {
1856	default:
1857		return (IOC_INVAL);
1858
1859	case RGE_PP_SPACE_CFG:
1860		/*
1861		 * Config space
1862		 */
1863		sizemask = 8|4|2|1;
1864		mem_va = 0;
1865		maxoff = PCI_CONF_HDR_SIZE;
1866		ppfn = peek ? rge_chip_peek_cfg : rge_chip_poke_cfg;
1867		break;
1868
1869	case RGE_PP_SPACE_REG:
1870		/*
1871		 * Memory-mapped I/O space
1872		 */
1873		sizemask = 8|4|2|1;
1874		mem_va = 0;
1875		maxoff = RGE_REGISTER_MAX;
1876		ppfn = peek ? rge_chip_peek_reg : rge_chip_poke_reg;
1877		break;
1878
1879	case RGE_PP_SPACE_MII:
1880		/*
1881		 * PHY's MII registers
1882		 * NB: all PHY registers are two bytes, but the
1883		 * addresses increment in ones (word addressing).
1884		 * So we scale the address here, then undo the
1885		 * transformation inside the peek/poke functions.
1886		 */
1887		ppd->pp_acc_offset *= 2;
1888		sizemask = 2;
1889		mem_va = 0;
1890		maxoff = (MII_MAXREG+1)*2;
1891		ppfn = peek ? rge_chip_peek_mii : rge_chip_poke_mii;
1892		break;
1893
1894	case RGE_PP_SPACE_RGE:
1895		/*
1896		 * RGE data structure!
1897		 */
1898		sizemask = 8|4|2|1;
1899		mem_va = (uintptr_t)rgep;
1900		maxoff = sizeof (*rgep);
1901		ppfn = peek ? rge_chip_peek_mem : rge_chip_poke_mem;
1902		break;
1903
1904	case RGE_PP_SPACE_STATISTICS:
1905	case RGE_PP_SPACE_TXDESC:
1906	case RGE_PP_SPACE_TXBUFF:
1907	case RGE_PP_SPACE_RXDESC:
1908	case RGE_PP_SPACE_RXBUFF:
1909		/*
1910		 * Various DMA_AREAs
1911		 */
1912		switch (ppd->pp_acc_space) {
1913		case RGE_PP_SPACE_TXDESC:
1914			areap = &rgep->dma_area_txdesc;
1915			break;
1916		case RGE_PP_SPACE_RXDESC:
1917			areap = &rgep->dma_area_rxdesc;
1918			break;
1919		case RGE_PP_SPACE_STATISTICS:
1920			areap = &rgep->dma_area_stats;
1921			break;
1922		}
1923
1924		sizemask = 8|4|2|1;
1925		mem_va = (uintptr_t)areap->mem_va;
1926		maxoff = areap->alength;
1927		ppfn = peek ? rge_chip_peek_mem : rge_chip_poke_mem;
1928		break;
1929	}
1930
1931	switch (ppd->pp_acc_size) {
1932	default:
1933		return (IOC_INVAL);
1934
1935	case 8:
1936	case 4:
1937	case 2:
1938	case 1:
1939		if ((ppd->pp_acc_size & sizemask) == 0)
1940			return (IOC_INVAL);
1941		break;
1942	}
1943
1944	if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
1945		return (IOC_INVAL);
1946
1947	if (ppd->pp_acc_offset >= maxoff)
1948		return (IOC_INVAL);
1949
1950	if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
1951		return (IOC_INVAL);
1952
1953	/*
1954	 * All OK - go do it!
1955	 */
1956	ppd->pp_acc_offset += mem_va;
1957	(*ppfn)(rgep, ppd);
1958	return (peek ? IOC_REPLY : IOC_ACK);
1959}
1960
1961static enum ioc_reply rge_diag_ioctl(rge_t *rgep, int cmd, mblk_t *mp,
1962					struct iocblk *iocp);
1963#pragma	no_inline(rge_diag_ioctl)
1964
1965static enum ioc_reply
1966rge_diag_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
1967{
1968	ASSERT(mutex_owned(rgep->genlock));
1969
1970	switch (cmd) {
1971	default:
1972		/* NOTREACHED */
1973		rge_error(rgep, "rge_diag_ioctl: invalid cmd 0x%x", cmd);
1974		return (IOC_INVAL);
1975
1976	case RGE_DIAG:
1977		/*
1978		 * Currently a no-op
1979		 */
1980		return (IOC_ACK);
1981
1982	case RGE_PEEK:
1983	case RGE_POKE:
1984		return (rge_pp_ioctl(rgep, cmd, mp, iocp));
1985
1986	case RGE_PHY_RESET:
1987		return (IOC_RESTART_ACK);
1988
1989	case RGE_SOFT_RESET:
1990	case RGE_HARD_RESET:
1991		/*
1992		 * Reset and reinitialise the 570x hardware
1993		 */
1994		rge_restart(rgep);
1995		return (IOC_ACK);
1996	}
1997
1998	/* NOTREACHED */
1999}
2000
2001#endif	/* RGE_DEBUGGING || RGE_DO_PPIO */
2002
2003static enum ioc_reply rge_mii_ioctl(rge_t *rgep, int cmd, mblk_t *mp,
2004				    struct iocblk *iocp);
2005#pragma	no_inline(rge_mii_ioctl)
2006
2007static enum ioc_reply
2008rge_mii_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
2009{
2010	struct rge_mii_rw *miirwp;
2011
2012	/*
2013	 * Validate format of ioctl
2014	 */
2015	if (iocp->ioc_count != sizeof (struct rge_mii_rw))
2016		return (IOC_INVAL);
2017	if (mp->b_cont == NULL)
2018		return (IOC_INVAL);
2019	miirwp = (struct rge_mii_rw *)mp->b_cont->b_rptr;
2020
2021	/*
2022	 * Validate request parameters ...
2023	 */
2024	if (miirwp->mii_reg > MII_MAXREG)
2025		return (IOC_INVAL);
2026
2027	switch (cmd) {
2028	default:
2029		/* NOTREACHED */
2030		rge_error(rgep, "rge_mii_ioctl: invalid cmd 0x%x", cmd);
2031		return (IOC_INVAL);
2032
2033	case RGE_MII_READ:
2034		miirwp->mii_data = rge_mii_get16(rgep, miirwp->mii_reg);
2035		return (IOC_REPLY);
2036
2037	case RGE_MII_WRITE:
2038		rge_mii_put16(rgep, miirwp->mii_reg, miirwp->mii_data);
2039		return (IOC_ACK);
2040	}
2041
2042	/* NOTREACHED */
2043}
2044
2045enum ioc_reply rge_chip_ioctl(rge_t *rgep, queue_t *wq, mblk_t *mp,
2046				struct iocblk *iocp);
2047#pragma	no_inline(rge_chip_ioctl)
2048
2049enum ioc_reply
2050rge_chip_ioctl(rge_t *rgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
2051{
2052	int cmd;
2053
2054	RGE_TRACE(("rge_chip_ioctl($%p, $%p, $%p, $%p)",
2055	    (void *)rgep, (void *)wq, (void *)mp, (void *)iocp));
2056
2057	ASSERT(mutex_owned(rgep->genlock));
2058
2059	cmd = iocp->ioc_cmd;
2060	switch (cmd) {
2061	default:
2062		/* NOTREACHED */
2063		rge_error(rgep, "rge_chip_ioctl: invalid cmd 0x%x", cmd);
2064		return (IOC_INVAL);
2065
2066	case RGE_DIAG:
2067	case RGE_PEEK:
2068	case RGE_POKE:
2069	case RGE_PHY_RESET:
2070	case RGE_SOFT_RESET:
2071	case RGE_HARD_RESET:
2072#if	RGE_DEBUGGING || RGE_DO_PPIO
2073		return (rge_diag_ioctl(rgep, cmd, mp, iocp));
2074#else
2075		return (IOC_INVAL);
2076#endif	/* RGE_DEBUGGING || RGE_DO_PPIO */
2077
2078	case RGE_MII_READ:
2079	case RGE_MII_WRITE:
2080		return (rge_mii_ioctl(rgep, cmd, mp, iocp));
2081
2082	}
2083
2084	/* NOTREACHED */
2085}
2086