cpudrv.c revision 9766:20b070c7bb48
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * CPU Device driver. The driver is not DDI-compliant.
28 *
29 * The driver supports following features:
30 *	- Power management.
31 */
32
33#include <sys/types.h>
34#include <sys/param.h>
35#include <sys/errno.h>
36#include <sys/modctl.h>
37#include <sys/kmem.h>
38#include <sys/conf.h>
39#include <sys/cmn_err.h>
40#include <sys/stat.h>
41#include <sys/debug.h>
42#include <sys/systm.h>
43#include <sys/ddi.h>
44#include <sys/sunddi.h>
45#include <sys/sdt.h>
46#include <sys/epm.h>
47#include <sys/machsystm.h>
48#include <sys/x_call.h>
49#include <sys/cpudrv_mach.h>
50#include <sys/msacct.h>
51
52/*
53 * CPU power management
54 *
55 * The supported power saving model is to slow down the CPU (on SPARC by
56 * dividing the CPU clock and on x86 by dropping down a P-state).
57 * Periodically we determine the amount of time the CPU is running
58 * idle thread and threads in user mode during the last quantum.  If the idle
59 * thread was running less than its low water mark for current speed for
60 * number of consecutive sampling periods, or number of running threads in
61 * user mode are above its high water mark, we arrange to go to the higher
62 * speed.  If the idle thread was running more than its high water mark without
63 * dropping a number of consecutive times below the mark, and number of threads
64 * running in user mode are below its low water mark, we arrange to go to the
65 * next lower speed.  While going down, we go through all the speeds.  While
66 * going up we go to the maximum speed to minimize impact on the user, but have
67 * provisions in the driver to go to other speeds.
68 *
69 * The driver does not have knowledge of a particular implementation of this
70 * scheme and will work with all CPUs supporting this model. On SPARC, the
71 * driver determines supported speeds by looking at 'clock-divisors' property
72 * created by OBP. On x86, the driver retrieves the supported speeds from
73 * ACPI.
74 */
75
76/*
77 * Configuration function prototypes and data structures
78 */
79static int cpudrv_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
80static int cpudrv_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
81static int cpudrv_power(dev_info_t *dip, int comp, int level);
82
83struct dev_ops cpudrv_ops = {
84	DEVO_REV,		/* rev */
85	0,			/* refcnt */
86	nodev,			/* getinfo */
87	nulldev,		/* identify */
88	nulldev,		/* probe */
89	cpudrv_attach,		/* attach */
90	cpudrv_detach,		/* detach */
91	nodev,			/* reset */
92	(struct cb_ops *)NULL,	/* cb_ops */
93	(struct bus_ops *)NULL,	/* bus_ops */
94	cpudrv_power,		/* power */
95	ddi_quiesce_not_needed,		/* quiesce */
96};
97
98static struct modldrv modldrv = {
99	&mod_driverops,			/* modops */
100	"CPU Driver",			/* linkinfo */
101	&cpudrv_ops,			/* dev_ops */
102};
103
104static struct modlinkage modlinkage = {
105	MODREV_1,		/* rev */
106	&modldrv,		/* linkage */
107	NULL
108};
109
110/*
111 * Function prototypes
112 */
113static int cpudrv_init(cpudrv_devstate_t *cpudsp);
114static void cpudrv_free(cpudrv_devstate_t *cpudsp);
115static int cpudrv_comp_create(cpudrv_devstate_t *cpudsp);
116static void cpudrv_monitor_disp(void *arg);
117static void cpudrv_monitor(void *arg);
118
119/*
120 * Driver global variables
121 */
122uint_t cpudrv_debug = 0;
123void *cpudrv_state;
124static uint_t cpudrv_idle_hwm = CPUDRV_IDLE_HWM;
125static uint_t cpudrv_idle_lwm = CPUDRV_IDLE_LWM;
126static uint_t cpudrv_idle_buf_zone = CPUDRV_IDLE_BUF_ZONE;
127static uint_t cpudrv_idle_bhwm_cnt_max = CPUDRV_IDLE_BHWM_CNT_MAX;
128static uint_t cpudrv_idle_blwm_cnt_max = CPUDRV_IDLE_BLWM_CNT_MAX;
129static uint_t cpudrv_user_hwm = CPUDRV_USER_HWM;
130
131boolean_t cpudrv_enabled = B_TRUE;
132
133/*
134 * cpudrv_direct_pm allows user applications to directly control the
135 * power state transitions (direct pm) without following the normal
136 * direct pm protocol. This is needed because the normal protocol
137 * requires that a device only be lowered when it is idle, and be
138 * brought up when it request to do so by calling pm_raise_power().
139 * Ignoring this protocol is harmless for CPU (other than speed).
140 * Moreover it might be the case that CPU is never idle or wants
141 * to be at higher speed because of the addition CPU cycles required
142 * to run the user application.
143 *
144 * The driver will still report idle/busy status to the framework. Although
145 * framework will ignore this information for direct pm devices and not
146 * try to bring them down when idle, user applications can still use this
147 * information if they wants.
148 *
149 * In the future, provide an ioctl to control setting of this mode. In
150 * that case, this variable should move to the state structure and
151 * be protected by the lock in the state structure.
152 */
153int cpudrv_direct_pm = 0;
154
155/*
156 * Arranges for the handler function to be called at the interval suitable
157 * for current speed.
158 */
159#define	CPUDRV_MONITOR_INIT(cpudsp) { \
160    if (cpudrv_is_enabled(cpudsp)) {	      \
161		ASSERT(mutex_owned(&(cpudsp)->lock)); \
162		(cpudsp)->cpudrv_pm.timeout_id = \
163		    timeout(cpudrv_monitor_disp, \
164		    (cpudsp), (((cpudsp)->cpudrv_pm.cur_spd == NULL) ? \
165		    CPUDRV_QUANT_CNT_OTHR : \
166		    (cpudsp)->cpudrv_pm.cur_spd->quant_cnt)); \
167	} \
168}
169
170/*
171 * Arranges for the handler function not to be called back.
172 */
173#define	CPUDRV_MONITOR_FINI(cpudsp) { \
174	timeout_id_t tmp_tid; \
175	ASSERT(mutex_owned(&(cpudsp)->lock)); \
176	tmp_tid = (cpudsp)->cpudrv_pm.timeout_id; \
177	(cpudsp)->cpudrv_pm.timeout_id = 0; \
178	mutex_exit(&(cpudsp)->lock); \
179	if (tmp_tid != 0) { \
180		(void) untimeout(tmp_tid); \
181		mutex_enter(&(cpudsp)->cpudrv_pm.timeout_lock); \
182		while ((cpudsp)->cpudrv_pm.timeout_count != 0) \
183			cv_wait(&(cpudsp)->cpudrv_pm.timeout_cv, \
184			    &(cpudsp)->cpudrv_pm.timeout_lock); \
185		mutex_exit(&(cpudsp)->cpudrv_pm.timeout_lock); \
186	} \
187	mutex_enter(&(cpudsp)->lock); \
188}
189
190int
191_init(void)
192{
193	int	error;
194
195	DPRINTF(D_INIT, (" _init: function called\n"));
196	if ((error = ddi_soft_state_init(&cpudrv_state,
197	    sizeof (cpudrv_devstate_t), 0)) != 0) {
198		return (error);
199	}
200
201	if ((error = mod_install(&modlinkage)) != 0)  {
202		ddi_soft_state_fini(&cpudrv_state);
203	}
204
205	/*
206	 * Callbacks used by the PPM driver.
207	 */
208	CPUDRV_SET_PPM_CALLBACKS();
209	return (error);
210}
211
212int
213_fini(void)
214{
215	int	error;
216
217	DPRINTF(D_FINI, (" _fini: function called\n"));
218	if ((error = mod_remove(&modlinkage)) == 0) {
219		ddi_soft_state_fini(&cpudrv_state);
220	}
221
222	return (error);
223}
224
225int
226_info(struct modinfo *modinfop)
227{
228	return (mod_info(&modlinkage, modinfop));
229}
230
231/*
232 * Driver attach(9e) entry point.
233 */
234static int
235cpudrv_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
236{
237	int			instance;
238	cpudrv_devstate_t	*cpudsp;
239	extern pri_t		maxclsyspri;
240
241	instance = ddi_get_instance(dip);
242
243	switch (cmd) {
244	case DDI_ATTACH:
245		DPRINTF(D_ATTACH, ("cpudrv_attach: instance %d: "
246		    "DDI_ATTACH called\n", instance));
247		if (!cpudrv_is_enabled(NULL))
248			return (DDI_FAILURE);
249		if (ddi_soft_state_zalloc(cpudrv_state, instance) !=
250		    DDI_SUCCESS) {
251			cmn_err(CE_WARN, "cpudrv_attach: instance %d: "
252			    "can't allocate state", instance);
253			cpudrv_enabled = B_FALSE;
254			return (DDI_FAILURE);
255		}
256		if ((cpudsp = ddi_get_soft_state(cpudrv_state, instance)) ==
257		    NULL) {
258			cmn_err(CE_WARN, "cpudrv_attach: instance %d: "
259			    "can't get state", instance);
260			ddi_soft_state_free(cpudrv_state, instance);
261			cpudrv_enabled = B_FALSE;
262			return (DDI_FAILURE);
263		}
264		cpudsp->dip = dip;
265
266		/*
267		 * Find CPU number for this dev_info node.
268		 */
269		if (!cpudrv_get_cpu_id(dip, &(cpudsp->cpu_id))) {
270			cmn_err(CE_WARN, "cpudrv_attach: instance %d: "
271			    "can't convert dip to cpu_id", instance);
272			ddi_soft_state_free(cpudrv_state, instance);
273			cpudrv_enabled = B_FALSE;
274			return (DDI_FAILURE);
275		}
276		if (!cpudrv_mach_init(cpudsp)) {
277			cpudrv_enabled = B_FALSE;
278			return (DDI_FAILURE);
279		}
280
281		mutex_init(&cpudsp->lock, NULL, MUTEX_DRIVER, NULL);
282		if (cpudrv_is_enabled(cpudsp)) {
283			if (cpudrv_init(cpudsp) != DDI_SUCCESS) {
284				cpudrv_enabled = B_FALSE;
285				cpudrv_free(cpudsp);
286				ddi_soft_state_free(cpudrv_state, instance);
287				return (DDI_FAILURE);
288			}
289			if (cpudrv_comp_create(cpudsp) != DDI_SUCCESS) {
290				cpudrv_enabled = B_FALSE;
291				cpudrv_free(cpudsp);
292				ddi_soft_state_free(cpudrv_state, instance);
293				return (DDI_FAILURE);
294			}
295			if (ddi_prop_update_string(DDI_DEV_T_NONE,
296			    dip, "pm-class", "CPU") != DDI_PROP_SUCCESS) {
297				cpudrv_enabled = B_FALSE;
298				cpudrv_free(cpudsp);
299				ddi_soft_state_free(cpudrv_state, instance);
300				return (DDI_FAILURE);
301			}
302
303			/*
304			 * Taskq is used to dispatch routine to monitor CPU
305			 * activities.
306			 */
307			cpudsp->cpudrv_pm.tq = taskq_create_instance(
308			    "cpudrv_monitor",
309			    ddi_get_instance(dip), CPUDRV_TASKQ_THREADS,
310			    (maxclsyspri - 1), CPUDRV_TASKQ_MIN,
311			    CPUDRV_TASKQ_MAX,
312			    TASKQ_PREPOPULATE|TASKQ_CPR_SAFE);
313
314			mutex_init(&cpudsp->cpudrv_pm.timeout_lock, NULL,
315			    MUTEX_DRIVER, NULL);
316			cv_init(&cpudsp->cpudrv_pm.timeout_cv, NULL,
317			    CV_DEFAULT, NULL);
318
319			/*
320			 * Driver needs to assume that CPU is running at
321			 * unknown speed at DDI_ATTACH and switch it to the
322			 * needed speed. We assume that initial needed speed
323			 * is full speed for us.
324			 */
325			/*
326			 * We need to take the lock because cpudrv_monitor()
327			 * will start running in parallel with attach().
328			 */
329			mutex_enter(&cpudsp->lock);
330			cpudsp->cpudrv_pm.cur_spd = NULL;
331			cpudsp->cpudrv_pm.pm_started = B_FALSE;
332			/*
333			 * We don't call pm_raise_power() directly from attach
334			 * because driver attach for a slave CPU node can
335			 * happen before the CPU is even initialized. We just
336			 * start the monitoring system which understands
337			 * unknown speed and moves CPU to top speed when it
338			 * has been initialized.
339			 */
340			CPUDRV_MONITOR_INIT(cpudsp);
341			mutex_exit(&cpudsp->lock);
342
343		}
344
345		CPUDRV_INSTALL_MAX_CHANGE_HANDLER(cpudsp);
346
347		ddi_report_dev(dip);
348		return (DDI_SUCCESS);
349
350	case DDI_RESUME:
351		DPRINTF(D_ATTACH, ("cpudrv_attach: instance %d: "
352		    "DDI_RESUME called\n", instance));
353
354		cpudsp = ddi_get_soft_state(cpudrv_state, instance);
355		ASSERT(cpudsp != NULL);
356
357		/*
358		 * Nothing to do for resume, if not doing active PM.
359		 */
360		if (!cpudrv_is_enabled(cpudsp))
361			return (DDI_SUCCESS);
362
363		mutex_enter(&cpudsp->lock);
364		/*
365		 * Driver needs to assume that CPU is running at unknown speed
366		 * at DDI_RESUME and switch it to the needed speed. We assume
367		 * that the needed speed is full speed for us.
368		 */
369		cpudsp->cpudrv_pm.cur_spd = NULL;
370		CPUDRV_MONITOR_INIT(cpudsp);
371		mutex_exit(&cpudsp->lock);
372		CPUDRV_REDEFINE_TOPSPEED(dip);
373		return (DDI_SUCCESS);
374
375	default:
376		return (DDI_FAILURE);
377	}
378}
379
380/*
381 * Driver detach(9e) entry point.
382 */
383static int
384cpudrv_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
385{
386	int			instance;
387	cpudrv_devstate_t	*cpudsp;
388	cpudrv_pm_t		*cpupm;
389
390	instance = ddi_get_instance(dip);
391
392	switch (cmd) {
393	case DDI_DETACH:
394		DPRINTF(D_DETACH, ("cpudrv_detach: instance %d: "
395		    "DDI_DETACH called\n", instance));
396		/*
397		 * If the only thing supported by the driver is power
398		 * management, we can in future enhance the driver and
399		 * framework that loads it to unload the driver when
400		 * user has disabled CPU power management.
401		 */
402		return (DDI_FAILURE);
403
404	case DDI_SUSPEND:
405		DPRINTF(D_DETACH, ("cpudrv_detach: instance %d: "
406		    "DDI_SUSPEND called\n", instance));
407
408		cpudsp = ddi_get_soft_state(cpudrv_state, instance);
409		ASSERT(cpudsp != NULL);
410
411		/*
412		 * Nothing to do for suspend, if not doing active PM.
413		 */
414		if (!cpudrv_is_enabled(cpudsp))
415			return (DDI_SUCCESS);
416
417		/*
418		 * During a checkpoint-resume sequence, framework will
419		 * stop interrupts to quiesce kernel activity. This will
420		 * leave our monitoring system ineffective. Handle this
421		 * by stopping our monitoring system and bringing CPU
422		 * to full speed. In case we are in special direct pm
423		 * mode, we leave the CPU at whatever speed it is. This
424		 * is harmless other than speed.
425		 */
426		mutex_enter(&cpudsp->lock);
427		cpupm = &(cpudsp->cpudrv_pm);
428
429		DPRINTF(D_DETACH, ("cpudrv_detach: instance %d: DDI_SUSPEND - "
430		    "cur_spd %d, topspeed %d\n", instance,
431		    cpupm->cur_spd->pm_level,
432		    CPUDRV_TOPSPEED(cpupm)->pm_level));
433
434		CPUDRV_MONITOR_FINI(cpudsp);
435
436		if (!cpudrv_direct_pm && (cpupm->cur_spd !=
437		    CPUDRV_TOPSPEED(cpupm))) {
438			if (cpupm->pm_busycnt < 1) {
439				if ((pm_busy_component(dip, CPUDRV_COMP_NUM)
440				    == DDI_SUCCESS)) {
441					cpupm->pm_busycnt++;
442				} else {
443					CPUDRV_MONITOR_INIT(cpudsp);
444					mutex_exit(&cpudsp->lock);
445					cmn_err(CE_WARN, "cpudrv_detach: "
446					    "instance %d: can't busy CPU "
447					    "component", instance);
448					return (DDI_FAILURE);
449				}
450			}
451			mutex_exit(&cpudsp->lock);
452			if (pm_raise_power(dip, CPUDRV_COMP_NUM,
453			    CPUDRV_TOPSPEED(cpupm)->pm_level) !=
454			    DDI_SUCCESS) {
455				mutex_enter(&cpudsp->lock);
456				CPUDRV_MONITOR_INIT(cpudsp);
457				mutex_exit(&cpudsp->lock);
458				cmn_err(CE_WARN, "cpudrv_detach: instance %d: "
459				    "can't raise CPU power level to %d",
460				    instance,
461				    CPUDRV_TOPSPEED(cpupm)->pm_level);
462				return (DDI_FAILURE);
463			} else {
464				return (DDI_SUCCESS);
465			}
466		} else {
467			mutex_exit(&cpudsp->lock);
468			return (DDI_SUCCESS);
469		}
470
471	default:
472		return (DDI_FAILURE);
473	}
474}
475
476/*
477 * Driver power(9e) entry point.
478 *
479 * Driver's notion of current power is set *only* in power(9e) entry point
480 * after actual power change operation has been successfully completed.
481 */
482/* ARGSUSED */
483static int
484cpudrv_power(dev_info_t *dip, int comp, int level)
485{
486	int			instance;
487	cpudrv_devstate_t	*cpudsp;
488	cpudrv_pm_t 		*cpudrvpm;
489	cpudrv_pm_spd_t		*new_spd;
490	boolean_t		is_ready;
491	int			ret;
492
493	instance = ddi_get_instance(dip);
494
495	DPRINTF(D_POWER, ("cpudrv_power: instance %d: level %d\n",
496	    instance, level));
497
498	if ((cpudsp = ddi_get_soft_state(cpudrv_state, instance)) == NULL) {
499		cmn_err(CE_WARN, "cpudrv_power: instance %d: can't "
500		    "get state", instance);
501		return (DDI_FAILURE);
502	}
503
504	mutex_enter(&cpudsp->lock);
505	cpudrvpm = &(cpudsp->cpudrv_pm);
506
507	/*
508	 * In normal operation, we fail if we are busy and request is
509	 * to lower the power level. We let this go through if the driver
510	 * is in special direct pm mode. On x86, we also let this through
511	 * if the change is due to a request to govern the max speed.
512	 */
513	if (!cpudrv_direct_pm && (cpudrvpm->pm_busycnt >= 1) &&
514	    !cpudrv_is_governor_thread(cpudrvpm)) {
515		if ((cpudrvpm->cur_spd != NULL) &&
516		    (level < cpudrvpm->cur_spd->pm_level)) {
517			mutex_exit(&cpudsp->lock);
518			return (DDI_FAILURE);
519		}
520	}
521
522	for (new_spd = cpudrvpm->head_spd; new_spd; new_spd =
523	    new_spd->down_spd) {
524		if (new_spd->pm_level == level)
525			break;
526	}
527	if (!new_spd) {
528		CPUDRV_RESET_GOVERNOR_THREAD(cpudrvpm);
529		mutex_exit(&cpudsp->lock);
530		cmn_err(CE_WARN, "cpudrv_power: instance %d: "
531		    "can't locate new CPU speed", instance);
532		return (DDI_FAILURE);
533	}
534
535	/*
536	 * We currently refuse to power manage if the CPU is not ready to
537	 * take cross calls (cross calls fail silently if CPU is not ready
538	 * for it).
539	 *
540	 * Additionally, for x86 platforms we cannot power manage
541	 * any one instance, until all instances have been initialized.
542	 * That's because we don't know what the CPU domains look like
543	 * until all instances have been initialized.
544	 */
545	is_ready = CPUDRV_XCALL_IS_READY(cpudsp->cpu_id);
546	if (!is_ready) {
547		DPRINTF(D_POWER, ("cpudrv_power: instance %d: "
548		    "CPU not ready for x-calls\n", instance));
549	} else if (!(is_ready = cpudrv_power_ready())) {
550		DPRINTF(D_POWER, ("cpudrv_power: instance %d: "
551		    "waiting for all CPUs to be power manageable\n",
552		    instance));
553	}
554	if (!is_ready) {
555		CPUDRV_RESET_GOVERNOR_THREAD(cpudrvpm);
556		mutex_exit(&cpudsp->lock);
557		return (DDI_FAILURE);
558	}
559
560	/*
561	 * Execute CPU specific routine on the requested CPU to
562	 * change its speed to normal-speed/divisor.
563	 */
564	if ((ret = cpudrv_change_speed(cpudsp, new_spd)) != DDI_SUCCESS) {
565		cmn_err(CE_WARN, "cpudrv_power: "
566		    "cpudrv_change_speed() return = %d", ret);
567		mutex_exit(&cpudsp->lock);
568		return (DDI_FAILURE);
569	}
570
571	/*
572	 * Reset idle threshold time for the new power level.
573	 */
574	if ((cpudrvpm->cur_spd != NULL) && (level <
575	    cpudrvpm->cur_spd->pm_level)) {
576		if (pm_idle_component(dip, CPUDRV_COMP_NUM) ==
577		    DDI_SUCCESS) {
578			if (cpudrvpm->pm_busycnt >= 1)
579				cpudrvpm->pm_busycnt--;
580		} else {
581			cmn_err(CE_WARN, "cpudrv_power: instance %d: "
582			    "can't idle CPU component",
583			    ddi_get_instance(dip));
584		}
585	}
586	/*
587	 * Reset various parameters because we are now running at new speed.
588	 */
589	cpudrvpm->lastquan_mstate[CMS_IDLE] = 0;
590	cpudrvpm->lastquan_mstate[CMS_SYSTEM] = 0;
591	cpudrvpm->lastquan_mstate[CMS_USER] = 0;
592	cpudrvpm->lastquan_ticks = 0;
593	cpudrvpm->cur_spd = new_spd;
594	CPUDRV_RESET_GOVERNOR_THREAD(cpudrvpm);
595	mutex_exit(&cpudsp->lock);
596
597	return (DDI_SUCCESS);
598}
599
600/*
601 * Initialize power management data.
602 */
603static int
604cpudrv_init(cpudrv_devstate_t *cpudsp)
605{
606	cpudrv_pm_t 	*cpupm = &(cpudsp->cpudrv_pm);
607	cpudrv_pm_spd_t	*cur_spd;
608	cpudrv_pm_spd_t	*prev_spd = NULL;
609	int		*speeds;
610	uint_t		nspeeds;
611	int		idle_cnt_percent;
612	int		user_cnt_percent;
613	int		i;
614
615	CPUDRV_GET_SPEEDS(cpudsp, speeds, nspeeds);
616	if (nspeeds < 2) {
617		/* Need at least two speeds to power manage */
618		CPUDRV_FREE_SPEEDS(speeds, nspeeds);
619		return (DDI_FAILURE);
620	}
621	cpupm->num_spd = nspeeds;
622
623	/*
624	 * Calculate the watermarks and other parameters based on the
625	 * supplied speeds.
626	 *
627	 * One of the basic assumption is that for X amount of CPU work,
628	 * if CPU is slowed down by a factor of N, the time it takes to
629	 * do the same work will be N * X.
630	 *
631	 * The driver declares that a CPU is idle and ready for slowed down,
632	 * if amount of idle thread is more than the current speed idle_hwm
633	 * without dropping below idle_hwm a number of consecutive sampling
634	 * intervals and number of running threads in user mode are below
635	 * user_lwm.  We want to set the current user_lwm such that if we
636	 * just switched to the next slower speed with no change in real work
637	 * load, the amount of user threads at the slower speed will be such
638	 * that it falls below the slower speed's user_hwm.  If we didn't do
639	 * that then we will just come back to the higher speed as soon as we
640	 * go down even with no change in work load.
641	 * The user_hwm is a fixed precentage and not calculated dynamically.
642	 *
643	 * We bring the CPU up if idle thread at current speed is less than
644	 * the current speed idle_lwm for a number of consecutive sampling
645	 * intervals or user threads are above the user_hwm for the current
646	 * speed.
647	 */
648	for (i = 0; i < nspeeds; i++) {
649		cur_spd = kmem_zalloc(sizeof (cpudrv_pm_spd_t), KM_SLEEP);
650		cur_spd->speed = speeds[i];
651		if (i == 0) {	/* normal speed */
652			cpupm->head_spd = cur_spd;
653			CPUDRV_TOPSPEED(cpupm) = cur_spd;
654			cur_spd->quant_cnt = CPUDRV_QUANT_CNT_NORMAL;
655			cur_spd->idle_hwm =
656			    (cpudrv_idle_hwm * cur_spd->quant_cnt) / 100;
657			/* can't speed anymore */
658			cur_spd->idle_lwm = 0;
659			cur_spd->user_hwm = UINT_MAX;
660		} else {
661			cur_spd->quant_cnt = CPUDRV_QUANT_CNT_OTHR;
662			ASSERT(prev_spd != NULL);
663			prev_spd->down_spd = cur_spd;
664			cur_spd->up_spd = cpupm->head_spd;
665
666			/*
667			 * Let's assume CPU is considered idle at full speed
668			 * when it is spending I% of time in running the idle
669			 * thread.  At full speed, CPU will be busy (100 - I) %
670			 * of times.  This % of busyness increases by factor of
671			 * N as CPU slows down.  CPU that is idle I% of times
672			 * in full speed, it is idle (100 - ((100 - I) * N)) %
673			 * of times in N speed.  The idle_lwm is a fixed
674			 * percentage.  A large value of N may result in
675			 * idle_hwm to go below idle_lwm.  We need to make sure
676			 * that there is at least a buffer zone seperation
677			 * between the idle_lwm and idle_hwm values.
678			 */
679			idle_cnt_percent = CPUDRV_IDLE_CNT_PERCENT(
680			    cpudrv_idle_hwm, speeds, i);
681			idle_cnt_percent = max(idle_cnt_percent,
682			    (cpudrv_idle_lwm + cpudrv_idle_buf_zone));
683			cur_spd->idle_hwm =
684			    (idle_cnt_percent * cur_spd->quant_cnt) / 100;
685			cur_spd->idle_lwm =
686			    (cpudrv_idle_lwm * cur_spd->quant_cnt) / 100;
687
688			/*
689			 * The lwm for user threads are determined such that
690			 * if CPU slows down, the load of work in the
691			 * new speed would still keep the CPU at or below the
692			 * user_hwm in the new speed.  This is to prevent
693			 * the quick jump back up to higher speed.
694			 */
695			cur_spd->user_hwm = (cpudrv_user_hwm *
696			    cur_spd->quant_cnt) / 100;
697			user_cnt_percent = CPUDRV_USER_CNT_PERCENT(
698			    cpudrv_user_hwm, speeds, i);
699			prev_spd->user_lwm =
700			    (user_cnt_percent * prev_spd->quant_cnt) / 100;
701		}
702		prev_spd = cur_spd;
703	}
704	/* Slowest speed. Can't slow down anymore */
705	cur_spd->idle_hwm = UINT_MAX;
706	cur_spd->user_lwm = -1;
707#ifdef	DEBUG
708	DPRINTF(D_PM_INIT, ("cpudrv_init: instance %d: head_spd spd %d, "
709	    "num_spd %d\n", ddi_get_instance(cpudsp->dip),
710	    cpupm->head_spd->speed, cpupm->num_spd));
711	for (cur_spd = cpupm->head_spd; cur_spd; cur_spd = cur_spd->down_spd) {
712		DPRINTF(D_PM_INIT, ("cpudrv_init: instance %d: speed %d, "
713		    "down_spd spd %d, idle_hwm %d, user_lwm %d, "
714		    "up_spd spd %d, idle_lwm %d, user_hwm %d, "
715		    "quant_cnt %d\n", ddi_get_instance(cpudsp->dip),
716		    cur_spd->speed,
717		    (cur_spd->down_spd ? cur_spd->down_spd->speed : 0),
718		    cur_spd->idle_hwm, cur_spd->user_lwm,
719		    (cur_spd->up_spd ? cur_spd->up_spd->speed : 0),
720		    cur_spd->idle_lwm, cur_spd->user_hwm,
721		    cur_spd->quant_cnt));
722	}
723#endif	/* DEBUG */
724	CPUDRV_FREE_SPEEDS(speeds, nspeeds);
725	return (DDI_SUCCESS);
726}
727
728/*
729 * Free CPU power management data.
730 */
731static void
732cpudrv_free(cpudrv_devstate_t *cpudsp)
733{
734	cpudrv_pm_t 	*cpupm = &(cpudsp->cpudrv_pm);
735	cpudrv_pm_spd_t	*cur_spd, *next_spd;
736
737	cur_spd = cpupm->head_spd;
738	while (cur_spd) {
739		next_spd = cur_spd->down_spd;
740		kmem_free(cur_spd, sizeof (cpudrv_pm_spd_t));
741		cur_spd = next_spd;
742	}
743	bzero(cpupm, sizeof (cpudrv_pm_t));
744}
745
746/*
747 * Create pm-components property.
748 */
749static int
750cpudrv_comp_create(cpudrv_devstate_t *cpudsp)
751{
752	cpudrv_pm_t 	*cpupm = &(cpudsp->cpudrv_pm);
753	cpudrv_pm_spd_t	*cur_spd;
754	char		**pmc;
755	int		size;
756	char		name[] = "NAME=CPU Speed";
757	int		i, j;
758	uint_t		comp_spd;
759	int		result = DDI_FAILURE;
760
761	pmc = kmem_zalloc((cpupm->num_spd + 1) * sizeof (char *), KM_SLEEP);
762	size = CPUDRV_COMP_SIZE();
763	if (cpupm->num_spd > CPUDRV_COMP_MAX_VAL) {
764		cmn_err(CE_WARN, "cpudrv_comp_create: instance %d: "
765		    "number of speeds exceeded limits",
766		    ddi_get_instance(cpudsp->dip));
767		kmem_free(pmc, (cpupm->num_spd + 1) * sizeof (char *));
768		return (result);
769	}
770
771	for (i = cpupm->num_spd, cur_spd = cpupm->head_spd; i > 0;
772	    i--, cur_spd = cur_spd->down_spd) {
773		cur_spd->pm_level = i;
774		pmc[i] = kmem_zalloc((size * sizeof (char)), KM_SLEEP);
775		comp_spd = CPUDRV_COMP_SPEED(cpupm, cur_spd);
776		if (comp_spd > CPUDRV_COMP_MAX_VAL) {
777			cmn_err(CE_WARN, "cpudrv_comp_create: "
778			    "instance %d: speed exceeded limits",
779			    ddi_get_instance(cpudsp->dip));
780			for (j = cpupm->num_spd; j >= i; j--) {
781				kmem_free(pmc[j], size * sizeof (char));
782			}
783			kmem_free(pmc, (cpupm->num_spd + 1) *
784			    sizeof (char *));
785			return (result);
786		}
787		CPUDRV_COMP_SPRINT(pmc[i], cpupm, cur_spd, comp_spd)
788		DPRINTF(D_PM_COMP_CREATE, ("cpudrv_comp_create: "
789		    "instance %d: pm-components power level %d string '%s'\n",
790		    ddi_get_instance(cpudsp->dip), i, pmc[i]));
791	}
792	pmc[0] = kmem_zalloc(sizeof (name), KM_SLEEP);
793	(void) strcat(pmc[0], name);
794	DPRINTF(D_PM_COMP_CREATE, ("cpudrv_comp_create: instance %d: "
795	    "pm-components component name '%s'\n",
796	    ddi_get_instance(cpudsp->dip), pmc[0]));
797
798	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, cpudsp->dip,
799	    "pm-components", pmc, cpupm->num_spd + 1) == DDI_PROP_SUCCESS) {
800		result = DDI_SUCCESS;
801	} else {
802		cmn_err(CE_WARN, "cpudrv_comp_create: instance %d: "
803		    "can't create pm-components property",
804		    ddi_get_instance(cpudsp->dip));
805	}
806
807	for (i = cpupm->num_spd; i > 0; i--) {
808		kmem_free(pmc[i], size * sizeof (char));
809	}
810	kmem_free(pmc[0], sizeof (name));
811	kmem_free(pmc, (cpupm->num_spd + 1) * sizeof (char *));
812	return (result);
813}
814
815/*
816 * Mark a component idle.
817 */
818#define	CPUDRV_MONITOR_PM_IDLE_COMP(dip, cpupm) { \
819	if ((cpupm)->pm_busycnt >= 1) { \
820		if (pm_idle_component((dip), CPUDRV_COMP_NUM) == \
821		    DDI_SUCCESS) { \
822			DPRINTF(D_PM_MONITOR, ("cpudrv_monitor: " \
823			    "instance %d: pm_idle_component called\n", \
824			    ddi_get_instance((dip)))); \
825			(cpupm)->pm_busycnt--; \
826		} else { \
827			cmn_err(CE_WARN, "cpudrv_monitor: instance %d: " \
828			    "can't idle CPU component", \
829			    ddi_get_instance((dip))); \
830		} \
831	} \
832}
833
834/*
835 * Marks a component busy in both PM framework and driver state structure.
836 */
837#define	CPUDRV_MONITOR_PM_BUSY_COMP(dip, cpupm) { \
838	if ((cpupm)->pm_busycnt < 1) { \
839		if (pm_busy_component((dip), CPUDRV_COMP_NUM) == \
840		    DDI_SUCCESS) { \
841			DPRINTF(D_PM_MONITOR, ("cpudrv_monitor: " \
842			    "instance %d: pm_busy_component called\n", \
843			    ddi_get_instance((dip)))); \
844			(cpupm)->pm_busycnt++; \
845		} else { \
846			cmn_err(CE_WARN, "cpudrv_monitor: instance %d: " \
847			    "can't busy CPU component", \
848			    ddi_get_instance((dip))); \
849		} \
850	} \
851}
852
853/*
854 * Marks a component busy and calls pm_raise_power().
855 */
856#define	CPUDRV_MONITOR_PM_BUSY_AND_RAISE(dip, cpudsp, cpupm, new_spd) { \
857	int ret; \
858	/* \
859	 * Mark driver and PM framework busy first so framework doesn't try \
860	 * to bring CPU to lower speed when we need to be at higher speed. \
861	 */ \
862	CPUDRV_MONITOR_PM_BUSY_COMP((dip), (cpupm)); \
863	mutex_exit(&(cpudsp)->lock); \
864	DPRINTF(D_PM_MONITOR, ("cpudrv_monitor: instance %d: " \
865	    "pm_raise_power called to %d\n", ddi_get_instance((dip)), \
866		(new_spd->pm_level))); \
867	ret = pm_raise_power((dip), CPUDRV_COMP_NUM, (new_spd->pm_level)); \
868	if (ret != DDI_SUCCESS) { \
869		cmn_err(CE_WARN, "cpudrv_monitor: instance %d: can't " \
870		    "raise CPU power level", ddi_get_instance((dip))); \
871	} \
872	mutex_enter(&(cpudsp)->lock); \
873	if (ret == DDI_SUCCESS && cpudsp->cpudrv_pm.cur_spd == NULL) { \
874		cpudsp->cpudrv_pm.cur_spd = new_spd; \
875	} \
876}
877
878/*
879 * In order to monitor a CPU, we need to hold cpu_lock to access CPU
880 * statistics. Holding cpu_lock is not allowed from a callout routine.
881 * We dispatch a taskq to do that job.
882 */
883static void
884cpudrv_monitor_disp(void *arg)
885{
886	cpudrv_devstate_t	*cpudsp = (cpudrv_devstate_t *)arg;
887
888	/*
889	 * We are here because the last task has scheduled a timeout.
890	 * The queue should be empty at this time.
891	 */
892	mutex_enter(&cpudsp->cpudrv_pm.timeout_lock);
893	if (!taskq_dispatch(cpudsp->cpudrv_pm.tq, cpudrv_monitor, arg,
894	    TQ_NOSLEEP)) {
895		mutex_exit(&cpudsp->cpudrv_pm.timeout_lock);
896		DPRINTF(D_PM_MONITOR, ("cpudrv_monitor_disp: failed to "
897		    "dispatch the cpudrv_monitor taskq\n"));
898		mutex_enter(&cpudsp->lock);
899		CPUDRV_MONITOR_INIT(cpudsp);
900		mutex_exit(&cpudsp->lock);
901		return;
902	}
903	cpudsp->cpudrv_pm.timeout_count++;
904	mutex_exit(&cpudsp->cpudrv_pm.timeout_lock);
905}
906
907/*
908 * Monitors each CPU for the amount of time idle thread was running in the
909 * last quantum and arranges for the CPU to go to the lower or higher speed.
910 * Called at the time interval appropriate for the current speed. The
911 * time interval for normal speed is CPUDRV_QUANT_CNT_NORMAL. The time
912 * interval for other speeds (including unknown speed) is
913 * CPUDRV_QUANT_CNT_OTHR.
914 */
915static void
916cpudrv_monitor(void *arg)
917{
918	cpudrv_devstate_t	*cpudsp = (cpudrv_devstate_t *)arg;
919	cpudrv_pm_t		*cpupm;
920	cpudrv_pm_spd_t		*cur_spd, *new_spd;
921	dev_info_t		*dip;
922	uint_t			idle_cnt, user_cnt, system_cnt;
923	clock_t			ticks;
924	uint_t			tick_cnt;
925	hrtime_t		msnsecs[NCMSTATES];
926	boolean_t		is_ready;
927
928#define	GET_CPU_MSTATE_CNT(state, cnt) \
929	msnsecs[state] = NSEC_TO_TICK(msnsecs[state]); \
930	if (cpupm->lastquan_mstate[state] > msnsecs[state]) \
931		msnsecs[state] = cpupm->lastquan_mstate[state]; \
932	cnt = msnsecs[state] - cpupm->lastquan_mstate[state]; \
933	cpupm->lastquan_mstate[state] = msnsecs[state]
934
935	mutex_enter(&cpudsp->lock);
936	cpupm = &(cpudsp->cpudrv_pm);
937	if (cpupm->timeout_id == 0) {
938		mutex_exit(&cpudsp->lock);
939		goto do_return;
940	}
941	cur_spd = cpupm->cur_spd;
942	dip = cpudsp->dip;
943
944	/*
945	 * We assume that a CPU is initialized and has a valid cpu_t
946	 * structure, if it is ready for cross calls. If this changes,
947	 * additional checks might be needed.
948	 *
949	 * Additionally, for x86 platforms we cannot power manage
950	 * any one instance, until all instances have been initialized.
951	 * That's because we don't know what the CPU domains look like
952	 * until all instances have been initialized.
953	 */
954	is_ready = CPUDRV_XCALL_IS_READY(cpudsp->cpu_id);
955	if (!is_ready) {
956		DPRINTF(D_PM_MONITOR, ("cpudrv_monitor: instance %d: "
957		    "CPU not ready for x-calls\n", ddi_get_instance(dip)));
958	} else if (!(is_ready = cpudrv_power_ready())) {
959		DPRINTF(D_PM_MONITOR, ("cpudrv_monitor: instance %d: "
960		    "waiting for all CPUs to be power manageable\n",
961		    ddi_get_instance(dip)));
962	}
963	if (!is_ready) {
964		/*
965		 * Make sure that we are busy so that framework doesn't
966		 * try to bring us down in this situation.
967		 */
968		CPUDRV_MONITOR_PM_BUSY_COMP(dip, cpupm);
969		CPUDRV_MONITOR_INIT(cpudsp);
970		mutex_exit(&cpudsp->lock);
971		goto do_return;
972	}
973
974	/*
975	 * Make sure that we are still not at unknown power level.
976	 */
977	if (cur_spd == NULL) {
978		DPRINTF(D_PM_MONITOR, ("cpudrv_monitor: instance %d: "
979		    "cur_spd is unknown\n", ddi_get_instance(dip)));
980		CPUDRV_MONITOR_PM_BUSY_AND_RAISE(dip, cpudsp, cpupm,
981		    CPUDRV_TOPSPEED(cpupm));
982		/*
983		 * We just changed the speed. Wait till at least next
984		 * call to this routine before proceeding ahead.
985		 */
986		CPUDRV_MONITOR_INIT(cpudsp);
987		mutex_exit(&cpudsp->lock);
988		goto do_return;
989	}
990
991	mutex_enter(&cpu_lock);
992	if (cpudsp->cp == NULL &&
993	    (cpudsp->cp = cpu_get(cpudsp->cpu_id)) == NULL) {
994		mutex_exit(&cpu_lock);
995		CPUDRV_MONITOR_INIT(cpudsp);
996		mutex_exit(&cpudsp->lock);
997		cmn_err(CE_WARN, "cpudrv_monitor: instance %d: can't get "
998		    "cpu_t", ddi_get_instance(dip));
999		goto do_return;
1000	}
1001
1002	if (!cpupm->pm_started) {
1003		cpupm->pm_started = B_TRUE;
1004		cpudrv_set_supp_freqs(cpudsp);
1005	}
1006
1007	get_cpu_mstate(cpudsp->cp, msnsecs);
1008	GET_CPU_MSTATE_CNT(CMS_IDLE, idle_cnt);
1009	GET_CPU_MSTATE_CNT(CMS_USER, user_cnt);
1010	GET_CPU_MSTATE_CNT(CMS_SYSTEM, system_cnt);
1011
1012	/*
1013	 * We can't do anything when we have just switched to a state
1014	 * because there is no valid timestamp.
1015	 */
1016	if (cpupm->lastquan_ticks == 0) {
1017		cpupm->lastquan_ticks = NSEC_TO_TICK(gethrtime());
1018		mutex_exit(&cpu_lock);
1019		CPUDRV_MONITOR_INIT(cpudsp);
1020		mutex_exit(&cpudsp->lock);
1021		goto do_return;
1022	}
1023
1024	/*
1025	 * Various watermarks are based on this routine being called back
1026	 * exactly at the requested period. This is not guaranteed
1027	 * because this routine is called from a taskq that is dispatched
1028	 * from a timeout routine.  Handle this by finding out how many
1029	 * ticks have elapsed since the last call and adjusting
1030	 * the idle_cnt based on the delay added to the requested period
1031	 * by timeout and taskq.
1032	 */
1033	ticks = NSEC_TO_TICK(gethrtime());
1034	tick_cnt = ticks - cpupm->lastquan_ticks;
1035	ASSERT(tick_cnt != 0);
1036	cpupm->lastquan_ticks = ticks;
1037	mutex_exit(&cpu_lock);
1038	/*
1039	 * Time taken between recording the current counts and
1040	 * arranging the next call of this routine is an error in our
1041	 * calculation. We minimize the error by calling
1042	 * CPUDRV_MONITOR_INIT() here instead of end of this routine.
1043	 */
1044	CPUDRV_MONITOR_INIT(cpudsp);
1045	DPRINTF(D_PM_MONITOR_VERBOSE, ("cpudrv_monitor: instance %d: "
1046	    "idle count %d, user count %d, system count %d, pm_level %d, "
1047	    "pm_busycnt %d\n", ddi_get_instance(dip), idle_cnt, user_cnt,
1048	    system_cnt, cur_spd->pm_level, cpupm->pm_busycnt));
1049
1050#ifdef	DEBUG
1051	/*
1052	 * Notify that timeout and taskq has caused delays and we need to
1053	 * scale our parameters accordingly.
1054	 *
1055	 * To get accurate result, don't turn on other DPRINTFs with
1056	 * the following DPRINTF. PROM calls generated by other
1057	 * DPRINTFs changes the timing.
1058	 */
1059	if (tick_cnt > cur_spd->quant_cnt) {
1060		DPRINTF(D_PM_MONITOR_DELAY, ("cpudrv_monitor: instance %d: "
1061		    "tick count %d > quantum_count %u\n",
1062		    ddi_get_instance(dip), tick_cnt, cur_spd->quant_cnt));
1063	}
1064#endif	/* DEBUG */
1065
1066	/*
1067	 * Adjust counts based on the delay added by timeout and taskq.
1068	 */
1069	idle_cnt = (idle_cnt * cur_spd->quant_cnt) / tick_cnt;
1070	user_cnt = (user_cnt * cur_spd->quant_cnt) / tick_cnt;
1071
1072	if ((user_cnt > cur_spd->user_hwm) || (idle_cnt < cur_spd->idle_lwm &&
1073	    cur_spd->idle_blwm_cnt >= cpudrv_idle_blwm_cnt_max)) {
1074		cur_spd->idle_blwm_cnt = 0;
1075		cur_spd->idle_bhwm_cnt = 0;
1076		/*
1077		 * In normal situation, arrange to go to next higher speed.
1078		 * If we are running in special direct pm mode, we just stay
1079		 * at the current speed.
1080		 */
1081		if (cur_spd == cur_spd->up_spd || cpudrv_direct_pm) {
1082			CPUDRV_MONITOR_PM_BUSY_COMP(dip, cpupm);
1083		} else {
1084			new_spd = cur_spd->up_spd;
1085			CPUDRV_MONITOR_PM_BUSY_AND_RAISE(dip, cpudsp, cpupm,
1086			    new_spd);
1087		}
1088	} else if ((user_cnt <= cur_spd->user_lwm) &&
1089	    (idle_cnt >= cur_spd->idle_hwm) || !CPU_ACTIVE(cpudsp->cp)) {
1090		cur_spd->idle_blwm_cnt = 0;
1091		cur_spd->idle_bhwm_cnt = 0;
1092		/*
1093		 * Arrange to go to next lower speed by informing our idle
1094		 * status to the power management framework.
1095		 */
1096		CPUDRV_MONITOR_PM_IDLE_COMP(dip, cpupm);
1097	} else {
1098		/*
1099		 * If we are between the idle water marks and have not
1100		 * been here enough consecutive times to be considered
1101		 * busy, just increment the count and return.
1102		 */
1103		if ((idle_cnt < cur_spd->idle_hwm) &&
1104		    (idle_cnt >= cur_spd->idle_lwm) &&
1105		    (cur_spd->idle_bhwm_cnt < cpudrv_idle_bhwm_cnt_max)) {
1106			cur_spd->idle_blwm_cnt = 0;
1107			cur_spd->idle_bhwm_cnt++;
1108			mutex_exit(&cpudsp->lock);
1109			goto do_return;
1110		}
1111		if (idle_cnt < cur_spd->idle_lwm) {
1112			cur_spd->idle_blwm_cnt++;
1113			cur_spd->idle_bhwm_cnt = 0;
1114		}
1115		/*
1116		 * Arranges to stay at the current speed.
1117		 */
1118		CPUDRV_MONITOR_PM_BUSY_COMP(dip, cpupm);
1119	}
1120	mutex_exit(&cpudsp->lock);
1121do_return:
1122	mutex_enter(&cpupm->timeout_lock);
1123	ASSERT(cpupm->timeout_count > 0);
1124	cpupm->timeout_count--;
1125	cv_signal(&cpupm->timeout_cv);
1126	mutex_exit(&cpupm->timeout_lock);
1127}
1128