cpudrv.c revision 7656:2621e50fdf4a
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * CPU Device driver. The driver is not DDI-compliant.
28 *
29 * The driver supports following features:
30 *	- Power management.
31 */
32
33#include <sys/types.h>
34#include <sys/param.h>
35#include <sys/errno.h>
36#include <sys/modctl.h>
37#include <sys/kmem.h>
38#include <sys/conf.h>
39#include <sys/cmn_err.h>
40#include <sys/stat.h>
41#include <sys/debug.h>
42#include <sys/systm.h>
43#include <sys/ddi.h>
44#include <sys/sunddi.h>
45#include <sys/sdt.h>
46
47#include <sys/machsystm.h>
48#include <sys/x_call.h>
49#include <sys/cpudrv_mach.h>
50#include <sys/msacct.h>
51
52/*
53 * CPU power management
54 *
55 * The supported power saving model is to slow down the CPU (on SPARC by
56 * dividing the CPU clock and on x86 by dropping down a P-state).
57 * Periodically we determine the amount of time the CPU is running
58 * idle thread and threads in user mode during the last quantum.  If the idle
59 * thread was running less than its low water mark for current speed for
60 * number of consecutive sampling periods, or number of running threads in
61 * user mode are above its high water mark, we arrange to go to the higher
62 * speed.  If the idle thread was running more than its high water mark without
63 * dropping a number of consecutive times below the mark, and number of threads
64 * running in user mode are below its low water mark, we arrange to go to the
65 * next lower speed.  While going down, we go through all the speeds.  While
66 * going up we go to the maximum speed to minimize impact on the user, but have
67 * provisions in the driver to go to other speeds.
68 *
69 * The driver does not have knowledge of a particular implementation of this
70 * scheme and will work with all CPUs supporting this model. On SPARC, the
71 * driver determines supported speeds by looking at 'clock-divisors' property
72 * created by OBP. On x86, the driver retrieves the supported speeds from
73 * ACPI.
74 */
75
76/*
77 * Configuration function prototypes and data structures
78 */
79static int cpudrv_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
80static int cpudrv_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
81static int cpudrv_power(dev_info_t *dip, int comp, int level);
82
83struct dev_ops cpudrv_ops = {
84	DEVO_REV,		/* rev */
85	0,			/* refcnt */
86	nodev,			/* getinfo */
87	nulldev,		/* identify */
88	nulldev,		/* probe */
89	cpudrv_attach,		/* attach */
90	cpudrv_detach,		/* detach */
91	nodev,			/* reset */
92	(struct cb_ops *)NULL,	/* cb_ops */
93	(struct bus_ops *)NULL,	/* bus_ops */
94	cpudrv_power,		/* power */
95	ddi_quiesce_not_needed,		/* quiesce */
96};
97
98static struct modldrv modldrv = {
99	&mod_driverops,			/* modops */
100	"CPU Driver",			/* linkinfo */
101	&cpudrv_ops,			/* dev_ops */
102};
103
104static struct modlinkage modlinkage = {
105	MODREV_1,		/* rev */
106	&modldrv,		/* linkage */
107	NULL
108};
109
110/*
111 * Function prototypes
112 */
113static int cpudrv_pm_init_power(cpudrv_devstate_t *cpudsp);
114static void cpudrv_pm_free(cpudrv_devstate_t *cpudsp);
115static int cpudrv_pm_comp_create(cpudrv_devstate_t *cpudsp);
116static void cpudrv_pm_monitor_disp(void *arg);
117static void cpudrv_pm_monitor(void *arg);
118
119/*
120 * Driver global variables
121 */
122uint_t cpudrv_debug = 0;
123void *cpudrv_state;
124static uint_t cpudrv_pm_idle_hwm = CPUDRV_PM_IDLE_HWM;
125static uint_t cpudrv_pm_idle_lwm = CPUDRV_PM_IDLE_LWM;
126static uint_t cpudrv_pm_idle_buf_zone = CPUDRV_PM_IDLE_BUF_ZONE;
127static uint_t cpudrv_pm_idle_bhwm_cnt_max = CPUDRV_PM_IDLE_BHWM_CNT_MAX;
128static uint_t cpudrv_pm_idle_blwm_cnt_max = CPUDRV_PM_IDLE_BLWM_CNT_MAX;
129static uint_t cpudrv_pm_user_hwm = CPUDRV_PM_USER_HWM;
130
131/*
132 * cpudrv_direct_pm allows user applications to directly control the
133 * power state transitions (direct pm) without following the normal
134 * direct pm protocol. This is needed because the normal protocol
135 * requires that a device only be lowered when it is idle, and be
136 * brought up when it request to do so by calling pm_raise_power().
137 * Ignoring this protocol is harmless for CPU (other than speed).
138 * Moreover it might be the case that CPU is never idle or wants
139 * to be at higher speed because of the addition CPU cycles required
140 * to run the user application.
141 *
142 * The driver will still report idle/busy status to the framework. Although
143 * framework will ignore this information for direct pm devices and not
144 * try to bring them down when idle, user applications can still use this
145 * information if they wants.
146 *
147 * In the future, provide an ioctl to control setting of this mode. In
148 * that case, this variable should move to the state structure and
149 * be protected by the lock in the state structure.
150 */
151int cpudrv_direct_pm = 0;
152
153/*
154 * Arranges for the handler function to be called at the interval suitable
155 * for current speed.
156 */
157#define	CPUDRV_PM_MONITOR_INIT(cpudsp) { \
158	if (CPUDRV_PM_POWER_ENABLED(cpudsp)) { \
159		ASSERT(mutex_owned(&(cpudsp)->lock)); \
160		(cpudsp)->cpudrv_pm.timeout_id = \
161		    timeout(cpudrv_pm_monitor_disp, \
162		    (cpudsp), (((cpudsp)->cpudrv_pm.cur_spd == NULL) ? \
163		    CPUDRV_PM_QUANT_CNT_OTHR : \
164		    (cpudsp)->cpudrv_pm.cur_spd->quant_cnt)); \
165	} \
166}
167
168/*
169 * Arranges for the handler function not to be called back.
170 */
171#define	CPUDRV_PM_MONITOR_FINI(cpudsp) { \
172	timeout_id_t tmp_tid; \
173	ASSERT(mutex_owned(&(cpudsp)->lock)); \
174	tmp_tid = (cpudsp)->cpudrv_pm.timeout_id; \
175	(cpudsp)->cpudrv_pm.timeout_id = 0; \
176	mutex_exit(&(cpudsp)->lock); \
177	if (tmp_tid != 0) { \
178		(void) untimeout(tmp_tid); \
179		mutex_enter(&(cpudsp)->cpudrv_pm.timeout_lock); \
180		while ((cpudsp)->cpudrv_pm.timeout_count != 0) \
181			cv_wait(&(cpudsp)->cpudrv_pm.timeout_cv, \
182			    &(cpudsp)->cpudrv_pm.timeout_lock); \
183		mutex_exit(&(cpudsp)->cpudrv_pm.timeout_lock); \
184	} \
185	mutex_enter(&(cpudsp)->lock); \
186}
187
188int
189_init(void)
190{
191	int	error;
192
193	DPRINTF(D_INIT, (" _init: function called\n"));
194	if ((error = ddi_soft_state_init(&cpudrv_state,
195	    sizeof (cpudrv_devstate_t), 0)) != 0) {
196		return (error);
197	}
198
199	if ((error = mod_install(&modlinkage)) != 0)  {
200		ddi_soft_state_fini(&cpudrv_state);
201	}
202
203	/*
204	 * Callbacks used by the PPM driver.
205	 */
206	CPUDRV_PM_SET_PPM_CALLBACKS();
207	return (error);
208}
209
210int
211_fini(void)
212{
213	int	error;
214
215	DPRINTF(D_FINI, (" _fini: function called\n"));
216	if ((error = mod_remove(&modlinkage)) == 0) {
217		ddi_soft_state_fini(&cpudrv_state);
218	}
219
220	return (error);
221}
222
223int
224_info(struct modinfo *modinfop)
225{
226	return (mod_info(&modlinkage, modinfop));
227}
228
229/*
230 * Driver attach(9e) entry point.
231 */
232static int
233cpudrv_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
234{
235	int			instance;
236	cpudrv_devstate_t	*cpudsp;
237	extern pri_t		maxclsyspri;
238
239	instance = ddi_get_instance(dip);
240
241	switch (cmd) {
242	case DDI_ATTACH:
243		DPRINTF(D_ATTACH, ("cpudrv_attach: instance %d: "
244		    "DDI_ATTACH called\n", instance));
245		if (CPUDRV_PM_DISABLED())
246			return (DDI_FAILURE);
247		if (ddi_soft_state_zalloc(cpudrv_state, instance) !=
248		    DDI_SUCCESS) {
249			cmn_err(CE_WARN, "cpudrv_attach: instance %d: "
250			    "can't allocate state", instance);
251			CPUDRV_PM_DISABLE();
252			return (DDI_FAILURE);
253		}
254		if ((cpudsp = ddi_get_soft_state(cpudrv_state, instance)) ==
255		    NULL) {
256			cmn_err(CE_WARN, "cpudrv_attach: instance %d: "
257			    "can't get state", instance);
258			ddi_soft_state_free(cpudrv_state, instance);
259			CPUDRV_PM_DISABLE();
260			return (DDI_FAILURE);
261		}
262		cpudsp->dip = dip;
263
264		/*
265		 * Find CPU number for this dev_info node.
266		 */
267		if (!cpudrv_pm_get_cpu_id(dip, &(cpudsp->cpu_id))) {
268			cmn_err(CE_WARN, "cpudrv_attach: instance %d: "
269			    "can't convert dip to cpu_id", instance);
270			ddi_soft_state_free(cpudrv_state, instance);
271			CPUDRV_PM_DISABLE();
272			return (DDI_FAILURE);
273		}
274		if (!cpudrv_mach_pm_init(cpudsp)) {
275			ddi_soft_state_free(cpudrv_state, instance);
276			CPUDRV_PM_DISABLE();
277			return (DDI_FAILURE);
278		}
279		mutex_init(&cpudsp->lock, NULL, MUTEX_DRIVER, NULL);
280		if (CPUDRV_PM_POWER_ENABLED(cpudsp)) {
281			if (cpudrv_pm_init_power(cpudsp) != DDI_SUCCESS) {
282				CPUDRV_PM_DISABLE();
283				cpudrv_pm_free(cpudsp);
284				ddi_soft_state_free(cpudrv_state, instance);
285				return (DDI_FAILURE);
286			}
287			if (cpudrv_pm_comp_create(cpudsp) != DDI_SUCCESS) {
288				CPUDRV_PM_DISABLE();
289				cpudrv_pm_free(cpudsp);
290				ddi_soft_state_free(cpudrv_state, instance);
291				return (DDI_FAILURE);
292			}
293			if (ddi_prop_update_string(DDI_DEV_T_NONE,
294			    dip, "pm-class", "CPU") != DDI_PROP_SUCCESS) {
295				CPUDRV_PM_DISABLE();
296				cpudrv_pm_free(cpudsp);
297				ddi_soft_state_free(cpudrv_state, instance);
298				return (DDI_FAILURE);
299			}
300
301			/*
302			 * Taskq is used to dispatch routine to monitor CPU
303			 * activities.
304			 */
305			cpudsp->cpudrv_pm.tq = taskq_create_instance(
306			    "cpudrv_pm_monitor",
307			    ddi_get_instance(dip), CPUDRV_PM_TASKQ_THREADS,
308			    (maxclsyspri - 1), CPUDRV_PM_TASKQ_MIN,
309			    CPUDRV_PM_TASKQ_MAX,
310			    TASKQ_PREPOPULATE|TASKQ_CPR_SAFE);
311
312			mutex_init(&cpudsp->cpudrv_pm.timeout_lock, NULL,
313			    MUTEX_DRIVER, NULL);
314			cv_init(&cpudsp->cpudrv_pm.timeout_cv, NULL,
315			    CV_DEFAULT, NULL);
316
317			/*
318			 * Driver needs to assume that CPU is running at
319			 * unknown speed at DDI_ATTACH and switch it to the
320			 * needed speed. We assume that initial needed speed
321			 * is full speed for us.
322			 */
323			/*
324			 * We need to take the lock because cpudrv_pm_monitor()
325			 * will start running in parallel with attach().
326			 */
327			mutex_enter(&cpudsp->lock);
328			cpudsp->cpudrv_pm.cur_spd = NULL;
329			cpudsp->cpudrv_pm.targ_spd =
330			    cpudsp->cpudrv_pm.head_spd;
331			cpudsp->cpudrv_pm.pm_started = B_FALSE;
332			/*
333			 * We don't call pm_raise_power() directly from attach
334			 * because driver attach for a slave CPU node can
335			 * happen before the CPU is even initialized. We just
336			 * start the monitoring system which understands
337			 * unknown speed and moves CPU to targ_spd when it
338			 * have been initialized.
339			 */
340			CPUDRV_PM_MONITOR_INIT(cpudsp);
341			mutex_exit(&cpudsp->lock);
342
343		}
344
345		CPUDRV_PM_INSTALL_MAX_CHANGE_HANDLER(cpudsp, dip);
346
347		ddi_report_dev(dip);
348		return (DDI_SUCCESS);
349
350	case DDI_RESUME:
351		DPRINTF(D_ATTACH, ("cpudrv_attach: instance %d: "
352		    "DDI_RESUME called\n", instance));
353
354		cpudsp = ddi_get_soft_state(cpudrv_state, instance);
355		ASSERT(cpudsp != NULL);
356
357		/*
358		 * Nothing to do for resume, if not doing active PM.
359		 */
360		if (!CPUDRV_PM_POWER_ENABLED(cpudsp))
361			return (DDI_SUCCESS);
362
363		mutex_enter(&cpudsp->lock);
364		/*
365		 * Driver needs to assume that CPU is running at unknown speed
366		 * at DDI_RESUME and switch it to the needed speed. We assume
367		 * that the needed speed is full speed for us.
368		 */
369		cpudsp->cpudrv_pm.cur_spd = NULL;
370		cpudsp->cpudrv_pm.targ_spd = cpudsp->cpudrv_pm.head_spd;
371		CPUDRV_PM_MONITOR_INIT(cpudsp);
372		mutex_exit(&cpudsp->lock);
373		CPUDRV_PM_REDEFINE_TOPSPEED(dip);
374		return (DDI_SUCCESS);
375
376	default:
377		return (DDI_FAILURE);
378	}
379}
380
381/*
382 * Driver detach(9e) entry point.
383 */
384static int
385cpudrv_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
386{
387	int			instance;
388	cpudrv_devstate_t	*cpudsp;
389	cpudrv_pm_t		*cpupm;
390
391	instance = ddi_get_instance(dip);
392
393	switch (cmd) {
394	case DDI_DETACH:
395		DPRINTF(D_DETACH, ("cpudrv_detach: instance %d: "
396		    "DDI_DETACH called\n", instance));
397		/*
398		 * If the only thing supported by the driver is power
399		 * management, we can in future enhance the driver and
400		 * framework that loads it to unload the driver when
401		 * user has disabled CPU power management.
402		 */
403		return (DDI_FAILURE);
404
405	case DDI_SUSPEND:
406		DPRINTF(D_DETACH, ("cpudrv_detach: instance %d: "
407		    "DDI_SUSPEND called\n", instance));
408
409		cpudsp = ddi_get_soft_state(cpudrv_state, instance);
410		ASSERT(cpudsp != NULL);
411
412		/*
413		 * Nothing to do for suspend, if not doing active PM.
414		 */
415		if (!CPUDRV_PM_POWER_ENABLED(cpudsp))
416			return (DDI_SUCCESS);
417
418		/*
419		 * During a checkpoint-resume sequence, framework will
420		 * stop interrupts to quiesce kernel activity. This will
421		 * leave our monitoring system ineffective. Handle this
422		 * by stopping our monitoring system and bringing CPU
423		 * to full speed. In case we are in special direct pm
424		 * mode, we leave the CPU at whatever speed it is. This
425		 * is harmless other than speed.
426		 */
427		mutex_enter(&cpudsp->lock);
428		cpupm = &(cpudsp->cpudrv_pm);
429
430		DPRINTF(D_DETACH, ("cpudrv_detach: instance %d: DDI_SUSPEND - "
431		    "cur_spd %d, head_spd %d\n", instance,
432		    cpupm->cur_spd->pm_level, cpupm->head_spd->pm_level));
433
434		CPUDRV_PM_MONITOR_FINI(cpudsp);
435
436		if (!cpudrv_direct_pm && (cpupm->cur_spd != cpupm->head_spd)) {
437			if (cpupm->pm_busycnt < 1) {
438				if ((pm_busy_component(dip, CPUDRV_PM_COMP_NUM)
439				    == DDI_SUCCESS)) {
440					cpupm->pm_busycnt++;
441				} else {
442					CPUDRV_PM_MONITOR_INIT(cpudsp);
443					mutex_exit(&cpudsp->lock);
444					cmn_err(CE_WARN, "cpudrv_detach: "
445					    "instance %d: can't busy CPU "
446					    "component", instance);
447					return (DDI_FAILURE);
448				}
449			}
450			mutex_exit(&cpudsp->lock);
451			if (pm_raise_power(dip, CPUDRV_PM_COMP_NUM,
452			    cpupm->head_spd->pm_level) != DDI_SUCCESS) {
453				mutex_enter(&cpudsp->lock);
454				CPUDRV_PM_MONITOR_INIT(cpudsp);
455				mutex_exit(&cpudsp->lock);
456				cmn_err(CE_WARN, "cpudrv_detach: instance %d: "
457				    "can't raise CPU power level", instance);
458				return (DDI_FAILURE);
459			} else {
460				return (DDI_SUCCESS);
461			}
462		} else {
463			mutex_exit(&cpudsp->lock);
464			return (DDI_SUCCESS);
465		}
466
467	default:
468		return (DDI_FAILURE);
469	}
470}
471
472/*
473 * Driver power(9e) entry point.
474 *
475 * Driver's notion of current power is set *only* in power(9e) entry point
476 * after actual power change operation has been successfully completed.
477 */
478/* ARGSUSED */
479static int
480cpudrv_power(dev_info_t *dip, int comp, int level)
481{
482	int			instance;
483	cpudrv_devstate_t	*cpudsp;
484	cpudrv_pm_t 		*cpupm;
485	cpudrv_pm_spd_t		*new_spd;
486	boolean_t		is_ready;
487	int			ret;
488
489	instance = ddi_get_instance(dip);
490
491	DPRINTF(D_POWER, ("cpudrv_power: instance %d: level %d\n",
492	    instance, level));
493	if ((cpudsp = ddi_get_soft_state(cpudrv_state, instance)) == NULL) {
494		cmn_err(CE_WARN, "cpudrv_power: instance %d: can't get state",
495		    instance);
496		return (DDI_FAILURE);
497	}
498
499	mutex_enter(&cpudsp->lock);
500	cpupm = &(cpudsp->cpudrv_pm);
501
502	/*
503	 * In normal operation, we fail if we are busy and request is
504	 * to lower the power level. We let this go through if the driver
505	 * is in special direct pm mode. On x86, we also let this through
506	 * if the change is due to a request to govern the max speed.
507	 */
508	if (!cpudrv_direct_pm && (cpupm->pm_busycnt >= 1) &&
509	    !cpudrv_pm_is_governor_thread(cpupm)) {
510		if ((cpupm->cur_spd != NULL) &&
511		    (level < cpupm->cur_spd->pm_level)) {
512			mutex_exit(&cpudsp->lock);
513			return (DDI_FAILURE);
514		}
515	}
516
517	for (new_spd = cpupm->head_spd; new_spd; new_spd = new_spd->down_spd) {
518		if (new_spd->pm_level == level)
519			break;
520	}
521	if (!new_spd) {
522		CPUDRV_PM_RESET_GOVERNOR_THREAD(cpupm);
523		mutex_exit(&cpudsp->lock);
524		cmn_err(CE_WARN, "cpudrv_power: instance %d: "
525		    "can't locate new CPU speed", instance);
526		return (DDI_FAILURE);
527	}
528
529	/*
530	 * We currently refuse to power manage if the CPU is not ready to
531	 * take cross calls (cross calls fail silently if CPU is not ready
532	 * for it).
533	 *
534	 * Additionally, for x86 platforms we cannot power manage
535	 * any one instance, until all instances have been initialized.
536	 * That's because we don't know what the CPU domains look like
537	 * until all instances have been initialized.
538	 */
539	is_ready = CPUDRV_PM_XCALL_IS_READY(cpudsp->cpu_id);
540	if (!is_ready) {
541		DPRINTF(D_POWER, ("cpudrv_power: instance %d: "
542		    "CPU not ready for x-calls\n", instance));
543	} else if (!(is_ready = cpudrv_pm_power_ready())) {
544		DPRINTF(D_POWER, ("cpudrv_power: instance %d: "
545		    "waiting for all CPUs to be power manageable\n", instance));
546	}
547	if (!is_ready) {
548		CPUDRV_PM_RESET_GOVERNOR_THREAD(cpupm);
549		mutex_exit(&cpudsp->lock);
550		return (DDI_FAILURE);
551	}
552
553	/*
554	 * Execute CPU specific routine on the requested CPU to change its
555	 * speed to normal-speed/divisor.
556	 */
557	if ((ret = cpudrv_pm_change_speed(cpudsp, new_spd)) != DDI_SUCCESS) {
558		cmn_err(CE_WARN, "cpudrv_power: cpudrv_pm_change_speed() "
559		    "return = %d", ret);
560		mutex_exit(&cpudsp->lock);
561		return (DDI_FAILURE);
562	}
563
564	/*
565	 * DTrace probe point for CPU speed change transition
566	 */
567	DTRACE_PROBE3(cpu__change__speed, cpudrv_devstate_t *, cpudsp,
568	    cpudrv_pm_t *, cpupm, cpudrv_pm_spd_t *, new_spd);
569
570	/*
571	 * Reset idle threshold time for the new power level.
572	 */
573	if ((cpupm->cur_spd != NULL) && (level < cpupm->cur_spd->pm_level)) {
574		if (pm_idle_component(dip, CPUDRV_PM_COMP_NUM) ==
575		    DDI_SUCCESS) {
576			if (cpupm->pm_busycnt >= 1)
577				cpupm->pm_busycnt--;
578		} else
579			cmn_err(CE_WARN, "cpudrv_power: instance %d: can't "
580			    "idle CPU component", ddi_get_instance(dip));
581	}
582	/*
583	 * Reset various parameters because we are now running at new speed.
584	 */
585	cpupm->lastquan_mstate[CMS_IDLE] = 0;
586	cpupm->lastquan_mstate[CMS_SYSTEM] = 0;
587	cpupm->lastquan_mstate[CMS_USER] = 0;
588	cpupm->lastquan_lbolt = 0;
589	cpupm->cur_spd = new_spd;
590	CPUDRV_PM_RESET_GOVERNOR_THREAD(cpupm);
591	mutex_exit(&cpudsp->lock);
592
593	return (DDI_SUCCESS);
594}
595
596/*
597 * Initialize the field that will be used for reporting
598 * the supported_frequencies_Hz cpu_info kstat.
599 */
600static void
601set_supp_freqs(cpu_t *cp, cpudrv_pm_t *cpupm)
602{
603	char		*supp_freqs;
604	char		*sfptr;
605	uint64_t	*speeds;
606	cpudrv_pm_spd_t	*spd;
607	int		i;
608#define	UINT64_MAX_STRING (sizeof ("18446744073709551615"))
609
610	speeds = kmem_zalloc(cpupm->num_spd * sizeof (uint64_t), KM_SLEEP);
611	for (i = cpupm->num_spd - 1, spd = cpupm->head_spd; spd;
612	    i--, spd = spd->down_spd) {
613		speeds[i] =
614		    CPUDRV_PM_SPEED_HZ(cp->cpu_type_info.pi_clock, spd->speed);
615	}
616
617	supp_freqs = kmem_zalloc((UINT64_MAX_STRING * cpupm->num_spd),
618	    KM_SLEEP);
619	sfptr = supp_freqs;
620	for (i = 0; i < cpupm->num_spd; i++) {
621		if (i == cpupm->num_spd - 1) {
622			(void) sprintf(sfptr, "%"PRIu64, speeds[i]);
623		} else {
624			(void) sprintf(sfptr, "%"PRIu64":", speeds[i]);
625			sfptr = supp_freqs + strlen(supp_freqs);
626		}
627	}
628	cpu_set_supp_freqs(cp, supp_freqs);
629	kmem_free(supp_freqs, (UINT64_MAX_STRING * cpupm->num_spd));
630	kmem_free(speeds, cpupm->num_spd * sizeof (uint64_t));
631}
632
633/*
634 * Initialize power management data.
635 */
636static int
637cpudrv_pm_init_power(cpudrv_devstate_t *cpudsp)
638{
639	cpudrv_pm_t 	*cpupm = &(cpudsp->cpudrv_pm);
640	cpudrv_pm_spd_t	*cur_spd;
641	cpudrv_pm_spd_t	*prev_spd = NULL;
642	int		*speeds;
643	uint_t		nspeeds;
644	int		idle_cnt_percent;
645	int		user_cnt_percent;
646	int		i;
647
648	CPUDRV_PM_GET_SPEEDS(cpudsp, speeds, nspeeds);
649	if (nspeeds < 2) {
650		/* Need at least two speeds to power manage */
651		CPUDRV_PM_FREE_SPEEDS(speeds, nspeeds);
652		return (DDI_FAILURE);
653	}
654	cpupm->num_spd = nspeeds;
655
656	/*
657	 * Calculate the watermarks and other parameters based on the
658	 * supplied speeds.
659	 *
660	 * One of the basic assumption is that for X amount of CPU work,
661	 * if CPU is slowed down by a factor of N, the time it takes to
662	 * do the same work will be N * X.
663	 *
664	 * The driver declares that a CPU is idle and ready for slowed down,
665	 * if amount of idle thread is more than the current speed idle_hwm
666	 * without dropping below idle_hwm a number of consecutive sampling
667	 * intervals and number of running threads in user mode are below
668	 * user_lwm.  We want to set the current user_lwm such that if we
669	 * just switched to the next slower speed with no change in real work
670	 * load, the amount of user threads at the slower speed will be such
671	 * that it falls below the slower speed's user_hwm.  If we didn't do
672	 * that then we will just come back to the higher speed as soon as we
673	 * go down even with no change in work load.
674	 * The user_hwm is a fixed precentage and not calculated dynamically.
675	 *
676	 * We bring the CPU up if idle thread at current speed is less than
677	 * the current speed idle_lwm for a number of consecutive sampling
678	 * intervals or user threads are above the user_hwm for the current
679	 * speed.
680	 */
681	for (i = 0; i < nspeeds; i++) {
682		cur_spd = kmem_zalloc(sizeof (cpudrv_pm_spd_t), KM_SLEEP);
683		cur_spd->speed = speeds[i];
684		if (i == 0) {	/* normal speed */
685			cpupm->head_spd = cur_spd;
686			cur_spd->quant_cnt = CPUDRV_PM_QUANT_CNT_NORMAL;
687			cur_spd->idle_hwm =
688			    (cpudrv_pm_idle_hwm * cur_spd->quant_cnt) / 100;
689			/* can't speed anymore */
690			cur_spd->idle_lwm = 0;
691			cur_spd->user_hwm = UINT_MAX;
692		} else {
693			cur_spd->quant_cnt = CPUDRV_PM_QUANT_CNT_OTHR;
694			ASSERT(prev_spd != NULL);
695			prev_spd->down_spd = cur_spd;
696			cur_spd->up_spd = cpupm->head_spd;
697
698			/*
699			 * Let's assume CPU is considered idle at full speed
700			 * when it is spending I% of time in running the idle
701			 * thread.  At full speed, CPU will be busy (100 - I) %
702			 * of times.  This % of busyness increases by factor of
703			 * N as CPU slows down.  CPU that is idle I% of times
704			 * in full speed, it is idle (100 - ((100 - I) * N)) %
705			 * of times in N speed.  The idle_lwm is a fixed
706			 * percentage.  A large value of N may result in
707			 * idle_hwm to go below idle_lwm.  We need to make sure
708			 * that there is at least a buffer zone seperation
709			 * between the idle_lwm and idle_hwm values.
710			 */
711			idle_cnt_percent = CPUDRV_PM_IDLE_CNT_PERCENT(
712			    cpudrv_pm_idle_hwm, speeds, i);
713			idle_cnt_percent = max(idle_cnt_percent,
714			    (cpudrv_pm_idle_lwm + cpudrv_pm_idle_buf_zone));
715			cur_spd->idle_hwm =
716			    (idle_cnt_percent * cur_spd->quant_cnt) / 100;
717			cur_spd->idle_lwm =
718			    (cpudrv_pm_idle_lwm * cur_spd->quant_cnt) / 100;
719
720			/*
721			 * The lwm for user threads are determined such that
722			 * if CPU slows down, the load of work in the
723			 * new speed would still keep the CPU at or below the
724			 * user_hwm in the new speed.  This is to prevent
725			 * the quick jump back up to higher speed.
726			 */
727			cur_spd->user_hwm = (cpudrv_pm_user_hwm *
728			    cur_spd->quant_cnt) / 100;
729			user_cnt_percent = CPUDRV_PM_USER_CNT_PERCENT(
730			    cpudrv_pm_user_hwm, speeds, i);
731			prev_spd->user_lwm =
732			    (user_cnt_percent * prev_spd->quant_cnt) / 100;
733		}
734		prev_spd = cur_spd;
735	}
736	/* Slowest speed. Can't slow down anymore */
737	cur_spd->idle_hwm = UINT_MAX;
738	cur_spd->user_lwm = -1;
739#ifdef	DEBUG
740	DPRINTF(D_PM_INIT, ("cpudrv_pm_init: instance %d: head_spd spd %d, "
741	    "num_spd %d\n", ddi_get_instance(cpudsp->dip),
742	    cpupm->head_spd->speed, cpupm->num_spd));
743	for (cur_spd = cpupm->head_spd; cur_spd; cur_spd = cur_spd->down_spd) {
744		DPRINTF(D_PM_INIT, ("cpudrv_pm_init: instance %d: speed %d, "
745		    "down_spd spd %d, idle_hwm %d, user_lwm %d, "
746		    "up_spd spd %d, idle_lwm %d, user_hwm %d, "
747		    "quant_cnt %d\n", ddi_get_instance(cpudsp->dip),
748		    cur_spd->speed,
749		    (cur_spd->down_spd ? cur_spd->down_spd->speed : 0),
750		    cur_spd->idle_hwm, cur_spd->user_lwm,
751		    (cur_spd->up_spd ? cur_spd->up_spd->speed : 0),
752		    cur_spd->idle_lwm, cur_spd->user_hwm,
753		    cur_spd->quant_cnt));
754	}
755#endif	/* DEBUG */
756	CPUDRV_PM_FREE_SPEEDS(speeds, nspeeds);
757	return (DDI_SUCCESS);
758}
759
760/*
761 * Free CPU power management data.
762 */
763static void
764cpudrv_pm_free(cpudrv_devstate_t *cpudsp)
765{
766	cpudrv_pm_t 	*cpupm = &(cpudsp->cpudrv_pm);
767	cpudrv_pm_spd_t	*cur_spd, *next_spd;
768
769	cur_spd = cpupm->head_spd;
770	while (cur_spd) {
771		next_spd = cur_spd->down_spd;
772		kmem_free(cur_spd, sizeof (cpudrv_pm_spd_t));
773		cur_spd = next_spd;
774	}
775	bzero(cpupm, sizeof (cpudrv_pm_t));
776	cpudrv_mach_pm_free(cpudsp);
777}
778
779/*
780 * Create pm-components property.
781 */
782static int
783cpudrv_pm_comp_create(cpudrv_devstate_t *cpudsp)
784{
785	cpudrv_pm_t 	*cpupm = &(cpudsp->cpudrv_pm);
786	cpudrv_pm_spd_t	*cur_spd;
787	char		**pmc;
788	int		size;
789	char		name[] = "NAME=CPU Speed";
790	int		i, j;
791	uint_t		comp_spd;
792	int		result = DDI_FAILURE;
793
794	pmc = kmem_zalloc((cpupm->num_spd + 1) * sizeof (char *), KM_SLEEP);
795	size = CPUDRV_PM_COMP_SIZE();
796	if (cpupm->num_spd > CPUDRV_PM_COMP_MAX_VAL) {
797		cmn_err(CE_WARN, "cpudrv_pm_comp_create: instance %d: "
798		    "number of speeds exceeded limits",
799		    ddi_get_instance(cpudsp->dip));
800		kmem_free(pmc, (cpupm->num_spd + 1) * sizeof (char *));
801		return (result);
802	}
803
804	for (i = cpupm->num_spd, cur_spd = cpupm->head_spd; i > 0;
805	    i--, cur_spd = cur_spd->down_spd) {
806		cur_spd->pm_level = i;
807		pmc[i] = kmem_zalloc((size * sizeof (char)), KM_SLEEP);
808		comp_spd = CPUDRV_PM_COMP_SPEED(cpupm, cur_spd);
809		if (comp_spd > CPUDRV_PM_COMP_MAX_VAL) {
810			cmn_err(CE_WARN, "cpudrv_pm_comp_create: "
811			    "instance %d: speed exceeded limits",
812			    ddi_get_instance(cpudsp->dip));
813			for (j = cpupm->num_spd; j >= i; j--) {
814				kmem_free(pmc[j], size * sizeof (char));
815			}
816			kmem_free(pmc, (cpupm->num_spd + 1) *
817			    sizeof (char *));
818			return (result);
819		}
820		CPUDRV_PM_COMP_SPRINT(pmc[i], cpupm, cur_spd, comp_spd)
821		DPRINTF(D_PM_COMP_CREATE, ("cpudrv_pm_comp_create: "
822		    "instance %d: pm-components power level %d string '%s'\n",
823		    ddi_get_instance(cpudsp->dip), i, pmc[i]));
824	}
825	pmc[0] = kmem_zalloc(sizeof (name), KM_SLEEP);
826	(void) strcat(pmc[0], name);
827	DPRINTF(D_PM_COMP_CREATE, ("cpudrv_pm_comp_create: instance %d: "
828	    "pm-components component name '%s'\n",
829	    ddi_get_instance(cpudsp->dip), pmc[0]));
830
831	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, cpudsp->dip,
832	    "pm-components", pmc, cpupm->num_spd + 1) == DDI_PROP_SUCCESS) {
833		result = DDI_SUCCESS;
834	} else {
835		cmn_err(CE_WARN, "cpudrv_pm_comp_create: instance %d: "
836		    "can't create pm-components property",
837		    ddi_get_instance(cpudsp->dip));
838	}
839
840	for (i = cpupm->num_spd; i > 0; i--) {
841		kmem_free(pmc[i], size * sizeof (char));
842	}
843	kmem_free(pmc[0], sizeof (name));
844	kmem_free(pmc, (cpupm->num_spd + 1) * sizeof (char *));
845	return (result);
846}
847
848/*
849 * Mark a component idle.
850 */
851#define	CPUDRV_PM_MONITOR_PM_IDLE_COMP(dip, cpupm) { \
852	if ((cpupm)->pm_busycnt >= 1) { \
853		if (pm_idle_component((dip), CPUDRV_PM_COMP_NUM) == \
854		    DDI_SUCCESS) { \
855			DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor: " \
856			    "instance %d: pm_idle_component called\n", \
857			    ddi_get_instance((dip)))); \
858			(cpupm)->pm_busycnt--; \
859		} else { \
860			cmn_err(CE_WARN, "cpudrv_pm_monitor: instance %d: " \
861			    "can't idle CPU component", \
862			    ddi_get_instance((dip))); \
863		} \
864	} \
865}
866
867/*
868 * Marks a component busy in both PM framework and driver state structure.
869 */
870#define	CPUDRV_PM_MONITOR_PM_BUSY_COMP(dip, cpupm) { \
871	if ((cpupm)->pm_busycnt < 1) { \
872		if (pm_busy_component((dip), CPUDRV_PM_COMP_NUM) == \
873		    DDI_SUCCESS) { \
874			DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor: " \
875			    "instance %d: pm_busy_component called\n", \
876			    ddi_get_instance((dip)))); \
877			(cpupm)->pm_busycnt++; \
878		} else { \
879			cmn_err(CE_WARN, "cpudrv_pm_monitor: instance %d: " \
880			    "can't busy CPU component", \
881			    ddi_get_instance((dip))); \
882		} \
883	} \
884}
885
886/*
887 * Marks a component busy and calls pm_raise_power().
888 */
889#define	CPUDRV_PM_MONITOR_PM_BUSY_AND_RAISE(dip, cpudsp, cpupm, new_level) { \
890	/* \
891	 * Mark driver and PM framework busy first so framework doesn't try \
892	 * to bring CPU to lower speed when we need to be at higher speed. \
893	 */ \
894	CPUDRV_PM_MONITOR_PM_BUSY_COMP((dip), (cpupm)); \
895	mutex_exit(&(cpudsp)->lock); \
896	DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor: instance %d: " \
897	    "pm_raise_power called to %d\n", ddi_get_instance((dip)), \
898		(new_level))); \
899	if (pm_raise_power((dip), CPUDRV_PM_COMP_NUM, (new_level)) != \
900	    DDI_SUCCESS) { \
901		cmn_err(CE_WARN, "cpudrv_pm_monitor: instance %d: can't " \
902		    "raise CPU power level", ddi_get_instance((dip))); \
903	} \
904	mutex_enter(&(cpudsp)->lock); \
905}
906
907/*
908 * In order to monitor a CPU, we need to hold cpu_lock to access CPU
909 * statistics. Holding cpu_lock is not allowed from a callout routine.
910 * We dispatch a taskq to do that job.
911 */
912static void
913cpudrv_pm_monitor_disp(void *arg)
914{
915	cpudrv_devstate_t	*cpudsp = (cpudrv_devstate_t *)arg;
916
917	/*
918	 * We are here because the last task has scheduled a timeout.
919	 * The queue should be empty at this time.
920	 */
921	mutex_enter(&cpudsp->cpudrv_pm.timeout_lock);
922	if (!taskq_dispatch(cpudsp->cpudrv_pm.tq, cpudrv_pm_monitor, arg,
923	    TQ_NOSLEEP)) {
924		mutex_exit(&cpudsp->cpudrv_pm.timeout_lock);
925		DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor_disp: failed to "
926		    "dispatch the cpudrv_pm_monitor taskq\n"));
927		mutex_enter(&cpudsp->lock);
928		CPUDRV_PM_MONITOR_INIT(cpudsp);
929		mutex_exit(&cpudsp->lock);
930		return;
931	}
932	cpudsp->cpudrv_pm.timeout_count++;
933	mutex_exit(&cpudsp->cpudrv_pm.timeout_lock);
934}
935
936/*
937 * Monitors each CPU for the amount of time idle thread was running in the
938 * last quantum and arranges for the CPU to go to the lower or higher speed.
939 * Called at the time interval appropriate for the current speed. The
940 * time interval for normal speed is CPUDRV_PM_QUANT_CNT_NORMAL. The time
941 * interval for other speeds (including unknown speed) is
942 * CPUDRV_PM_QUANT_CNT_OTHR.
943 */
944static void
945cpudrv_pm_monitor(void *arg)
946{
947	cpudrv_devstate_t	*cpudsp = (cpudrv_devstate_t *)arg;
948	cpudrv_pm_t		*cpupm;
949	cpudrv_pm_spd_t		*cur_spd, *new_spd;
950	cpu_t			*cp;
951	dev_info_t		*dip;
952	uint_t			idle_cnt, user_cnt, system_cnt;
953	clock_t			lbolt_cnt;
954	hrtime_t		msnsecs[NCMSTATES];
955	boolean_t		is_ready;
956
957#define	GET_CPU_MSTATE_CNT(state, cnt) \
958	msnsecs[state] = NSEC_TO_TICK(msnsecs[state]); \
959	if (cpupm->lastquan_mstate[state] > msnsecs[state]) \
960		msnsecs[state] = cpupm->lastquan_mstate[state]; \
961	cnt = msnsecs[state] - cpupm->lastquan_mstate[state]; \
962	cpupm->lastquan_mstate[state] = msnsecs[state]
963
964	mutex_enter(&cpudsp->lock);
965	cpupm = &(cpudsp->cpudrv_pm);
966	if (cpupm->timeout_id == 0) {
967		mutex_exit(&cpudsp->lock);
968		goto do_return;
969	}
970	cur_spd = cpupm->cur_spd;
971	dip = cpudsp->dip;
972
973	/*
974	 * We assume that a CPU is initialized and has a valid cpu_t
975	 * structure, if it is ready for cross calls. If this changes,
976	 * additional checks might be needed.
977	 *
978	 * Additionally, for x86 platforms we cannot power manage
979	 * any one instance, until all instances have been initialized.
980	 * That's because we don't know what the CPU domains look like
981	 * until all instances have been initialized.
982	 */
983	is_ready = CPUDRV_PM_XCALL_IS_READY(cpudsp->cpu_id);
984	if (!is_ready) {
985		DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor: instance %d: "
986		    "CPU not ready for x-calls\n", ddi_get_instance(dip)));
987	} else if (!(is_ready = cpudrv_pm_power_ready())) {
988		DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor: instance %d: "
989		    "waiting for all CPUs to be power manageable\n",
990		    ddi_get_instance(dip)));
991	}
992	if (!is_ready) {
993		/*
994		 * Make sure that we are busy so that framework doesn't
995		 * try to bring us down in this situation.
996		 */
997		CPUDRV_PM_MONITOR_PM_BUSY_COMP(dip, cpupm);
998		CPUDRV_PM_MONITOR_INIT(cpudsp);
999		mutex_exit(&cpudsp->lock);
1000		goto do_return;
1001	}
1002
1003	/*
1004	 * Make sure that we are still not at unknown power level.
1005	 */
1006	if (cur_spd == NULL) {
1007		DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor: instance %d: "
1008		    "cur_spd is unknown\n", ddi_get_instance(dip)));
1009		CPUDRV_PM_MONITOR_PM_BUSY_AND_RAISE(dip, cpudsp, cpupm,
1010		    cpupm->targ_spd->pm_level);
1011		/*
1012		 * We just changed the speed. Wait till at least next
1013		 * call to this routine before proceeding ahead.
1014		 */
1015		CPUDRV_PM_MONITOR_INIT(cpudsp);
1016		mutex_exit(&cpudsp->lock);
1017		goto do_return;
1018	}
1019
1020	mutex_enter(&cpu_lock);
1021	if ((cp = cpu_get(cpudsp->cpu_id)) == NULL) {
1022		mutex_exit(&cpu_lock);
1023		CPUDRV_PM_MONITOR_INIT(cpudsp);
1024		mutex_exit(&cpudsp->lock);
1025		cmn_err(CE_WARN, "cpudrv_pm_monitor: instance %d: can't get "
1026		    "cpu_t", ddi_get_instance(dip));
1027		goto do_return;
1028	}
1029
1030	if (!cpupm->pm_started) {
1031		cpupm->pm_started = B_TRUE;
1032		set_supp_freqs(cp, cpupm);
1033	}
1034
1035	get_cpu_mstate(cp, msnsecs);
1036	GET_CPU_MSTATE_CNT(CMS_IDLE, idle_cnt);
1037	GET_CPU_MSTATE_CNT(CMS_USER, user_cnt);
1038	GET_CPU_MSTATE_CNT(CMS_SYSTEM, system_cnt);
1039
1040	/*
1041	 * We can't do anything when we have just switched to a state
1042	 * because there is no valid timestamp.
1043	 */
1044	if (cpupm->lastquan_lbolt == 0) {
1045		cpupm->lastquan_lbolt = lbolt;
1046		mutex_exit(&cpu_lock);
1047		CPUDRV_PM_MONITOR_INIT(cpudsp);
1048		mutex_exit(&cpudsp->lock);
1049		goto do_return;
1050	}
1051
1052	/*
1053	 * Various watermarks are based on this routine being called back
1054	 * exactly at the requested period. This is not guaranteed
1055	 * because this routine is called from a taskq that is dispatched
1056	 * from a timeout routine.  Handle this by finding out how many
1057	 * ticks have elapsed since the last call (lbolt_cnt) and adjusting
1058	 * the idle_cnt based on the delay added to the requested period
1059	 * by timeout and taskq.
1060	 */
1061	lbolt_cnt = lbolt - cpupm->lastquan_lbolt;
1062	cpupm->lastquan_lbolt = lbolt;
1063	mutex_exit(&cpu_lock);
1064	/*
1065	 * Time taken between recording the current counts and
1066	 * arranging the next call of this routine is an error in our
1067	 * calculation. We minimize the error by calling
1068	 * CPUDRV_PM_MONITOR_INIT() here instead of end of this routine.
1069	 */
1070	CPUDRV_PM_MONITOR_INIT(cpudsp);
1071	DPRINTF(D_PM_MONITOR_VERBOSE, ("cpudrv_pm_monitor: instance %d: "
1072	    "idle count %d, user count %d, system count %d, pm_level %d, "
1073	    "pm_busycnt %d\n", ddi_get_instance(dip), idle_cnt, user_cnt,
1074	    system_cnt, cur_spd->pm_level, cpupm->pm_busycnt));
1075
1076#ifdef	DEBUG
1077	/*
1078	 * Notify that timeout and taskq has caused delays and we need to
1079	 * scale our parameters accordingly.
1080	 *
1081	 * To get accurate result, don't turn on other DPRINTFs with
1082	 * the following DPRINTF. PROM calls generated by other
1083	 * DPRINTFs changes the timing.
1084	 */
1085	if (lbolt_cnt > cur_spd->quant_cnt) {
1086		DPRINTF(D_PM_MONITOR_DELAY, ("cpudrv_pm_monitor: instance %d: "
1087		    "lbolt count %ld > quantum_count %u\n",
1088		    ddi_get_instance(dip), lbolt_cnt, cur_spd->quant_cnt));
1089	}
1090#endif	/* DEBUG */
1091
1092	/*
1093	 * Adjust counts based on the delay added by timeout and taskq.
1094	 */
1095	idle_cnt = (idle_cnt * cur_spd->quant_cnt) / lbolt_cnt;
1096	user_cnt = (user_cnt * cur_spd->quant_cnt) / lbolt_cnt;
1097	if ((user_cnt > cur_spd->user_hwm) || (idle_cnt < cur_spd->idle_lwm &&
1098	    cur_spd->idle_blwm_cnt >= cpudrv_pm_idle_blwm_cnt_max)) {
1099		cur_spd->idle_blwm_cnt = 0;
1100		cur_spd->idle_bhwm_cnt = 0;
1101		/*
1102		 * In normal situation, arrange to go to next higher speed.
1103		 * If we are running in special direct pm mode, we just stay
1104		 * at the current speed.
1105		 */
1106		if (cur_spd == cur_spd->up_spd || cpudrv_direct_pm) {
1107			CPUDRV_PM_MONITOR_PM_BUSY_COMP(dip, cpupm);
1108		} else {
1109			new_spd = cur_spd->up_spd;
1110			CPUDRV_PM_MONITOR_PM_BUSY_AND_RAISE(dip, cpudsp, cpupm,
1111			    new_spd->pm_level);
1112		}
1113	} else if ((user_cnt <= cur_spd->user_lwm) &&
1114	    (idle_cnt >= cur_spd->idle_hwm) || !CPU_ACTIVE(cp)) {
1115		cur_spd->idle_blwm_cnt = 0;
1116		cur_spd->idle_bhwm_cnt = 0;
1117		/*
1118		 * Arrange to go to next lower speed by informing our idle
1119		 * status to the power management framework.
1120		 */
1121		CPUDRV_PM_MONITOR_PM_IDLE_COMP(dip, cpupm);
1122	} else {
1123		/*
1124		 * If we are between the idle water marks and have not
1125		 * been here enough consecutive times to be considered
1126		 * busy, just increment the count and return.
1127		 */
1128		if ((idle_cnt < cur_spd->idle_hwm) &&
1129		    (idle_cnt >= cur_spd->idle_lwm) &&
1130		    (cur_spd->idle_bhwm_cnt < cpudrv_pm_idle_bhwm_cnt_max)) {
1131			cur_spd->idle_blwm_cnt = 0;
1132			cur_spd->idle_bhwm_cnt++;
1133			mutex_exit(&cpudsp->lock);
1134			goto do_return;
1135		}
1136		if (idle_cnt < cur_spd->idle_lwm) {
1137			cur_spd->idle_blwm_cnt++;
1138			cur_spd->idle_bhwm_cnt = 0;
1139		}
1140		/*
1141		 * Arranges to stay at the current speed.
1142		 */
1143		CPUDRV_PM_MONITOR_PM_BUSY_COMP(dip, cpupm);
1144	}
1145	mutex_exit(&cpudsp->lock);
1146do_return:
1147	mutex_enter(&cpupm->timeout_lock);
1148	ASSERT(cpupm->timeout_count > 0);
1149	cpupm->timeout_count--;
1150	cv_signal(&cpupm->timeout_cv);
1151	mutex_exit(&cpupm->timeout_lock);
1152}
1153