tcp_fusion.c revision 3448:aaf16568054b
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#pragma ident	"%Z%%M%	%I%	%E% SMI"
27
28#include <sys/types.h>
29#include <sys/stream.h>
30#include <sys/strsun.h>
31#include <sys/strsubr.h>
32#include <sys/debug.h>
33#include <sys/sdt.h>
34#include <sys/cmn_err.h>
35#include <sys/tihdr.h>
36
37#include <inet/common.h>
38#include <inet/ip.h>
39#include <inet/ip_impl.h>
40#include <inet/tcp.h>
41#include <inet/tcp_impl.h>
42#include <inet/ipsec_impl.h>
43#include <inet/ipclassifier.h>
44#include <inet/ipp_common.h>
45
46/*
47 * This file implements TCP fusion - a protocol-less data path for TCP
48 * loopback connections.  The fusion of two local TCP endpoints occurs
49 * at connection establishment time.  Various conditions (see details
50 * in tcp_fuse()) need to be met for fusion to be successful.  If it
51 * fails, we fall back to the regular TCP data path; if it succeeds,
52 * both endpoints proceed to use tcp_fuse_output() as the transmit path.
53 * tcp_fuse_output() enqueues application data directly onto the peer's
54 * receive queue; no protocol processing is involved.  After enqueueing
55 * the data, the sender can either push (putnext) data up the receiver's
56 * read queue; or the sender can simply return and let the receiver
57 * retrieve the enqueued data via the synchronous streams entry point
58 * tcp_fuse_rrw().  The latter path is taken if synchronous streams is
59 * enabled (the default).  It is disabled if sockfs no longer resides
60 * directly on top of tcp module due to a module insertion or removal.
61 * It also needs to be temporarily disabled when sending urgent data
62 * because the tcp_fuse_rrw() path bypasses the M_PROTO processing done
63 * by strsock_proto() hook.
64 *
65 * Sychronization is handled by squeue and the mutex tcp_non_sq_lock.
66 * One of the requirements for fusion to succeed is that both endpoints
67 * need to be using the same squeue.  This ensures that neither side
68 * can disappear while the other side is still sending data.  By itself,
69 * squeue is not sufficient for guaranteeing safety when synchronous
70 * streams is enabled.  The reason is that tcp_fuse_rrw() doesn't enter
71 * the squeue and its access to tcp_rcv_list and other fusion-related
72 * fields needs to be sychronized with the sender.  tcp_non_sq_lock is
73 * used for this purpose.  When there is urgent data, the sender needs
74 * to push the data up the receiver's streams read queue.  In order to
75 * avoid holding the tcp_non_sq_lock across putnext(), the sender sets
76 * the peer tcp's tcp_fuse_syncstr_plugged bit and releases tcp_non_sq_lock
77 * (see macro TCP_FUSE_SYNCSTR_PLUG_DRAIN()).  If tcp_fuse_rrw() enters
78 * after this point, it will see that synchronous streams is plugged and
79 * will wait on tcp_fuse_plugcv.  After the sender has finished pushing up
80 * all urgent data, it will clear the tcp_fuse_syncstr_plugged bit using
81 * TCP_FUSE_SYNCSTR_UNPLUG_DRAIN().  This will cause any threads waiting
82 * on tcp_fuse_plugcv to return EBUSY, and in turn cause strget() to call
83 * getq_noenab() to dequeue data from the stream head instead.  Once the
84 * data on the stream head has been consumed, tcp_fuse_rrw() may again
85 * be used to process tcp_rcv_list.  However, if TCP_FUSE_SYNCSTR_STOP()
86 * has been called, all future calls to tcp_fuse_rrw() will return EBUSY,
87 * effectively disabling synchronous streams.
88 *
89 * The following note applies only to the synchronous streams mode.
90 *
91 * Flow control is done by checking the size of receive buffer and
92 * the number of data blocks, both set to different limits.  This is
93 * different than regular streams flow control where cumulative size
94 * check dominates block count check -- streams queue high water mark
95 * typically represents bytes.  Each enqueue triggers notifications
96 * to the receiving process; a build up of data blocks indicates a
97 * slow receiver and the sender should be blocked or informed at the
98 * earliest moment instead of further wasting system resources.  In
99 * effect, this is equivalent to limiting the number of outstanding
100 * segments in flight.
101 */
102
103/*
104 * Setting this to false means we disable fusion altogether and
105 * loopback connections would go through the protocol paths.
106 */
107boolean_t do_tcp_fusion = B_TRUE;
108
109/*
110 * Enabling this flag allows sockfs to retrieve data directly
111 * from a fused tcp endpoint using synchronous streams interface.
112 */
113boolean_t do_tcp_direct_sockfs = B_TRUE;
114
115/*
116 * This is the minimum amount of outstanding writes allowed on
117 * a synchronous streams-enabled receiving endpoint before the
118 * sender gets flow-controlled.  Setting this value to 0 means
119 * that the data block limit is equivalent to the byte count
120 * limit, which essentially disables the check.
121 */
122#define	TCP_FUSION_RCV_UNREAD_MIN	8
123uint_t tcp_fusion_rcv_unread_min = TCP_FUSION_RCV_UNREAD_MIN;
124
125static void	tcp_fuse_syncstr_enable(tcp_t *);
126static void	tcp_fuse_syncstr_disable(tcp_t *);
127static void	strrput_sig(queue_t *, boolean_t);
128
129/*
130 * Return true if this connection needs some IP functionality
131 */
132static boolean_t
133tcp_loopback_needs_ip(tcp_t *tcp, netstack_t *ns)
134{
135	ipsec_stack_t	*ipss = ns->netstack_ipsec;
136
137	if (tcp->tcp_ipversion == IPV4_VERSION) {
138		if (tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH)
139			return (B_TRUE);
140		if (CONN_OUTBOUND_POLICY_PRESENT(tcp->tcp_connp, ipss))
141			return (B_TRUE);
142		if (CONN_INBOUND_POLICY_PRESENT(tcp->tcp_connp, ipss))
143			return (B_TRUE);
144	} else {
145		if (tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)
146			return (B_TRUE);
147		if (CONN_OUTBOUND_POLICY_PRESENT_V6(tcp->tcp_connp, ipss))
148			return (B_TRUE);
149		if (CONN_INBOUND_POLICY_PRESENT_V6(tcp->tcp_connp, ipss))
150			return (B_TRUE);
151	}
152	if (!CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp))
153		return (B_TRUE);
154	return (B_FALSE);
155}
156
157
158/*
159 * This routine gets called by the eager tcp upon changing state from
160 * SYN_RCVD to ESTABLISHED.  It fuses a direct path between itself
161 * and the active connect tcp such that the regular tcp processings
162 * may be bypassed under allowable circumstances.  Because the fusion
163 * requires both endpoints to be in the same squeue, it does not work
164 * for simultaneous active connects because there is no easy way to
165 * switch from one squeue to another once the connection is created.
166 * This is different from the eager tcp case where we assign it the
167 * same squeue as the one given to the active connect tcp during open.
168 */
169void
170tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph)
171{
172	conn_t *peer_connp, *connp = tcp->tcp_connp;
173	tcp_t *peer_tcp;
174	tcp_stack_t	*tcps = tcp->tcp_tcps;
175	netstack_t	*ns;
176	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
177
178	ASSERT(!tcp->tcp_fused);
179	ASSERT(tcp->tcp_loopback);
180	ASSERT(tcp->tcp_loopback_peer == NULL);
181	/*
182	 * We need to inherit q_hiwat of the listener tcp, but we can't
183	 * really use tcp_listener since we get here after sending up
184	 * T_CONN_IND and tcp_wput_accept() may be called independently,
185	 * at which point tcp_listener is cleared; this is why we use
186	 * tcp_saved_listener.  The listener itself is guaranteed to be
187	 * around until tcp_accept_finish() is called on this eager --
188	 * this won't happen until we're done since we're inside the
189	 * eager's perimeter now.
190	 */
191	ASSERT(tcp->tcp_saved_listener != NULL);
192
193	/*
194	 * Lookup peer endpoint; search for the remote endpoint having
195	 * the reversed address-port quadruplet in ESTABLISHED state,
196	 * which is guaranteed to be unique in the system.  Zone check
197	 * is applied accordingly for loopback address, but not for
198	 * local address since we want fusion to happen across Zones.
199	 */
200	if (tcp->tcp_ipversion == IPV4_VERSION) {
201		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp,
202		    (ipha_t *)iphdr, tcph, ipst);
203	} else {
204		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp,
205		    (ip6_t *)iphdr, tcph, ipst);
206	}
207
208	/*
209	 * We can only proceed if peer exists, resides in the same squeue
210	 * as our conn and is not raw-socket.  The squeue assignment of
211	 * this eager tcp was done earlier at the time of SYN processing
212	 * in ip_fanout_tcp{_v6}.  Note that similar squeues by itself
213	 * doesn't guarantee a safe condition to fuse, hence we perform
214	 * additional tests below.
215	 */
216	ASSERT(peer_connp == NULL || peer_connp != connp);
217	if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp ||
218	    !IPCL_IS_TCP(peer_connp)) {
219		if (peer_connp != NULL) {
220			TCP_STAT(tcps, tcp_fusion_unqualified);
221			CONN_DEC_REF(peer_connp);
222		}
223		return;
224	}
225	peer_tcp = peer_connp->conn_tcp;	/* active connect tcp */
226
227	ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused);
228	ASSERT(peer_tcp->tcp_loopback && peer_tcp->tcp_loopback_peer == NULL);
229	ASSERT(peer_connp->conn_sqp == connp->conn_sqp);
230
231	/*
232	 * Fuse the endpoints; we perform further checks against both
233	 * tcp endpoints to ensure that a fusion is allowed to happen.
234	 * In particular we bail out for non-simple TCP/IP or if IPsec/
235	 * IPQoS policy/kernel SSL exists.
236	 */
237	ns = tcps->tcps_netstack;
238	ipst = ns->netstack_ip;
239
240	if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable &&
241	    !tcp_loopback_needs_ip(tcp, ns) &&
242	    !tcp_loopback_needs_ip(peer_tcp, ns) &&
243	    tcp->tcp_kssl_ent == NULL &&
244	    !IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN, ipst)) {
245		mblk_t *mp;
246		struct stroptions *stropt;
247		queue_t *peer_rq = peer_tcp->tcp_rq;
248
249		ASSERT(!TCP_IS_DETACHED(peer_tcp) && peer_rq != NULL);
250		ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
251		ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL);
252		ASSERT(tcp->tcp_kssl_ctx == NULL);
253
254		/*
255		 * We need to drain data on both endpoints during unfuse.
256		 * If we need to send up SIGURG at the time of draining,
257		 * we want to be sure that an mblk is readily available.
258		 * This is why we pre-allocate the M_PCSIG mblks for both
259		 * endpoints which will only be used during/after unfuse.
260		 */
261		if ((mp = allocb(1, BPRI_HI)) == NULL)
262			goto failed;
263
264		tcp->tcp_fused_sigurg_mp = mp;
265
266		if ((mp = allocb(1, BPRI_HI)) == NULL)
267			goto failed;
268
269		peer_tcp->tcp_fused_sigurg_mp = mp;
270
271		/* Allocate M_SETOPTS mblk */
272		if ((mp = allocb(sizeof (*stropt), BPRI_HI)) == NULL)
273			goto failed;
274
275		/* Fuse both endpoints */
276		peer_tcp->tcp_loopback_peer = tcp;
277		tcp->tcp_loopback_peer = peer_tcp;
278		peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE;
279
280		/*
281		 * We never use regular tcp paths in fusion and should
282		 * therefore clear tcp_unsent on both endpoints.  Having
283		 * them set to non-zero values means asking for trouble
284		 * especially after unfuse, where we may end up sending
285		 * through regular tcp paths which expect xmit_list and
286		 * friends to be correctly setup.
287		 */
288		peer_tcp->tcp_unsent = tcp->tcp_unsent = 0;
289
290		tcp_timers_stop(tcp);
291		tcp_timers_stop(peer_tcp);
292
293		/*
294		 * At this point we are a detached eager tcp and therefore
295		 * don't have a queue assigned to us until accept happens.
296		 * In the mean time the peer endpoint may immediately send
297		 * us data as soon as fusion is finished, and we need to be
298		 * able to flow control it in case it sends down huge amount
299		 * of data while we're still detached.  To prevent that we
300		 * inherit the listener's q_hiwat value; this is temporary
301		 * since we'll repeat the process in tcp_accept_finish().
302		 */
303		(void) tcp_fuse_set_rcv_hiwat(tcp,
304		    tcp->tcp_saved_listener->tcp_rq->q_hiwat);
305
306		/*
307		 * Set the stream head's write offset value to zero since we
308		 * won't be needing any room for TCP/IP headers; tell it to
309		 * not break up the writes (this would reduce the amount of
310		 * work done by kmem); and configure our receive buffer.
311		 * Note that we can only do this for the active connect tcp
312		 * since our eager is still detached; it will be dealt with
313		 * later in tcp_accept_finish().
314		 */
315		DB_TYPE(mp) = M_SETOPTS;
316		mp->b_wptr += sizeof (*stropt);
317
318		stropt = (struct stroptions *)mp->b_rptr;
319		stropt->so_flags = SO_MAXBLK | SO_WROFF | SO_HIWAT;
320		stropt->so_maxblk = tcp_maxpsz_set(peer_tcp, B_FALSE);
321		stropt->so_wroff = 0;
322
323		/*
324		 * Record the stream head's high water mark for
325		 * peer endpoint; this is used for flow-control
326		 * purposes in tcp_fuse_output().
327		 */
328		stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(peer_tcp,
329		    peer_rq->q_hiwat);
330
331		/* Send the options up */
332		putnext(peer_rq, mp);
333	} else {
334		TCP_STAT(tcps, tcp_fusion_unqualified);
335	}
336	CONN_DEC_REF(peer_connp);
337	return;
338
339failed:
340	if (tcp->tcp_fused_sigurg_mp != NULL) {
341		freeb(tcp->tcp_fused_sigurg_mp);
342		tcp->tcp_fused_sigurg_mp = NULL;
343	}
344	if (peer_tcp->tcp_fused_sigurg_mp != NULL) {
345		freeb(peer_tcp->tcp_fused_sigurg_mp);
346		peer_tcp->tcp_fused_sigurg_mp = NULL;
347	}
348	CONN_DEC_REF(peer_connp);
349}
350
351/*
352 * Unfuse a previously-fused pair of tcp loopback endpoints.
353 */
354void
355tcp_unfuse(tcp_t *tcp)
356{
357	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
358
359	ASSERT(tcp->tcp_fused && peer_tcp != NULL);
360	ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp);
361	ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
362	ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0);
363	ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
364	ASSERT(peer_tcp->tcp_fused_sigurg_mp != NULL);
365
366	/*
367	 * We disable synchronous streams, drain any queued data and
368	 * clear tcp_direct_sockfs.  The synchronous streams entry
369	 * points will become no-ops after this point.
370	 */
371	tcp_fuse_disable_pair(tcp, B_TRUE);
372
373	/*
374	 * Update th_seq and th_ack in the header template
375	 */
376	U32_TO_ABE32(tcp->tcp_snxt, tcp->tcp_tcph->th_seq);
377	U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
378	U32_TO_ABE32(peer_tcp->tcp_snxt, peer_tcp->tcp_tcph->th_seq);
379	U32_TO_ABE32(peer_tcp->tcp_rnxt, peer_tcp->tcp_tcph->th_ack);
380
381	/* Unfuse the endpoints */
382	peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE;
383	peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL;
384}
385
386/*
387 * Fusion output routine for urgent data.  This routine is called by
388 * tcp_fuse_output() for handling non-M_DATA mblks.
389 */
390void
391tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp)
392{
393	mblk_t *mp1;
394	struct T_exdata_ind *tei;
395	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
396	mblk_t *head, *prev_head = NULL;
397	tcp_stack_t	*tcps = tcp->tcp_tcps;
398
399	ASSERT(tcp->tcp_fused);
400	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
401	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
402	ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA);
403	ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0);
404
405	/*
406	 * Urgent data arrives in the form of T_EXDATA_REQ from above.
407	 * Each occurence denotes a new urgent pointer.  For each new
408	 * urgent pointer we signal (SIGURG) the receiving app to indicate
409	 * that it needs to go into urgent mode.  This is similar to the
410	 * urgent data handling in the regular tcp.  We don't need to keep
411	 * track of where the urgent pointer is, because each T_EXDATA_REQ
412	 * "advances" the urgent pointer for us.
413	 *
414	 * The actual urgent data carried by T_EXDATA_REQ is then prepended
415	 * by a T_EXDATA_IND before being enqueued behind any existing data
416	 * destined for the receiving app.  There is only a single urgent
417	 * pointer (out-of-band mark) for a given tcp.  If the new urgent
418	 * data arrives before the receiving app reads some existing urgent
419	 * data, the previous marker is lost.  This behavior is emulated
420	 * accordingly below, by removing any existing T_EXDATA_IND messages
421	 * and essentially converting old urgent data into non-urgent.
422	 */
423	ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID);
424	/* Let sender get out of urgent mode */
425	tcp->tcp_valid_bits &= ~TCP_URG_VALID;
426
427	/*
428	 * This flag indicates that a signal needs to be sent up.
429	 * This flag will only get cleared once SIGURG is delivered and
430	 * is not affected by the tcp_fused flag -- delivery will still
431	 * happen even after an endpoint is unfused, to handle the case
432	 * where the sending endpoint immediately closes/unfuses after
433	 * sending urgent data and the accept is not yet finished.
434	 */
435	peer_tcp->tcp_fused_sigurg = B_TRUE;
436
437	/* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */
438	DB_TYPE(mp) = M_PROTO;
439	tei = (struct T_exdata_ind *)mp->b_rptr;
440	tei->PRIM_type = T_EXDATA_IND;
441	tei->MORE_flag = 0;
442	mp->b_wptr = (uchar_t *)&tei[1];
443
444	TCP_STAT(tcps, tcp_fusion_urg);
445	BUMP_MIB(&tcps->tcps_mib, tcpOutUrg);
446
447	head = peer_tcp->tcp_rcv_list;
448	while (head != NULL) {
449		/*
450		 * Remove existing T_EXDATA_IND, keep the data which follows
451		 * it and relink our list.  Note that we don't modify the
452		 * tcp_rcv_last_tail since it never points to T_EXDATA_IND.
453		 */
454		if (DB_TYPE(head) != M_DATA) {
455			mp1 = head;
456
457			ASSERT(DB_TYPE(mp1->b_cont) == M_DATA);
458			head = mp1->b_cont;
459			mp1->b_cont = NULL;
460			head->b_next = mp1->b_next;
461			mp1->b_next = NULL;
462			if (prev_head != NULL)
463				prev_head->b_next = head;
464			if (peer_tcp->tcp_rcv_list == mp1)
465				peer_tcp->tcp_rcv_list = head;
466			if (peer_tcp->tcp_rcv_last_head == mp1)
467				peer_tcp->tcp_rcv_last_head = head;
468			freeb(mp1);
469		}
470		prev_head = head;
471		head = head->b_next;
472	}
473}
474
475/*
476 * Fusion output routine, called by tcp_output() and tcp_wput_proto().
477 * If we are modifying any member that can be changed outside the squeue,
478 * like tcp_flow_stopped, we need to take tcp_non_sq_lock.
479 */
480boolean_t
481tcp_fuse_output(tcp_t *tcp, mblk_t *mp, uint32_t send_size)
482{
483	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
484	uint_t max_unread;
485	boolean_t flow_stopped;
486	boolean_t urgent = (DB_TYPE(mp) != M_DATA);
487	mblk_t *mp1 = mp;
488	ill_t *ilp, *olp;
489	ipha_t *ipha;
490	ip6_t *ip6h;
491	tcph_t *tcph;
492	uint_t ip_hdr_len;
493	uint32_t seq;
494	uint32_t recv_size = send_size;
495	tcp_stack_t	*tcps = tcp->tcp_tcps;
496	netstack_t	*ns = tcps->tcps_netstack;
497	ip_stack_t	*ipst = ns->netstack_ip;
498
499	ASSERT(tcp->tcp_fused);
500	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
501	ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
502	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO ||
503	    DB_TYPE(mp) == M_PCPROTO);
504
505	max_unread = peer_tcp->tcp_fuse_rcv_unread_hiwater;
506
507	/* If this connection requires IP, unfuse and use regular path */
508	if (tcp_loopback_needs_ip(tcp, ns) ||
509	    tcp_loopback_needs_ip(peer_tcp, ns) ||
510	    IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN, ipst)) {
511		TCP_STAT(tcps, tcp_fusion_aborted);
512		goto unfuse;
513	}
514
515	if (send_size == 0) {
516		freemsg(mp);
517		return (B_TRUE);
518	}
519
520	/*
521	 * Handle urgent data; we either send up SIGURG to the peer now
522	 * or do it later when we drain, in case the peer is detached
523	 * or if we're short of memory for M_PCSIG mblk.
524	 */
525	if (urgent) {
526		/*
527		 * We stop synchronous streams when we have urgent data
528		 * queued to prevent tcp_fuse_rrw() from pulling it.  If
529		 * for some reasons the urgent data can't be delivered
530		 * below, synchronous streams will remain stopped until
531		 * someone drains the tcp_rcv_list.
532		 */
533		TCP_FUSE_SYNCSTR_PLUG_DRAIN(peer_tcp);
534		tcp_fuse_output_urg(tcp, mp);
535
536		mp1 = mp->b_cont;
537	}
538
539	if (tcp->tcp_ipversion == IPV4_VERSION &&
540	    (HOOKS4_INTERESTED_LOOPBACK_IN(ipst) ||
541	    HOOKS4_INTERESTED_LOOPBACK_OUT(ipst)) ||
542	    tcp->tcp_ipversion == IPV6_VERSION &&
543	    (HOOKS6_INTERESTED_LOOPBACK_IN(ipst) ||
544	    HOOKS6_INTERESTED_LOOPBACK_OUT(ipst))) {
545		/*
546		 * Build ip and tcp header to satisfy FW_HOOKS.
547		 * We only build it when any hook is present.
548		 */
549		if ((mp1 = tcp_xmit_mp(tcp, mp1, tcp->tcp_mss, NULL, NULL,
550		    tcp->tcp_snxt, B_TRUE, NULL, B_FALSE)) == NULL)
551			/* If tcp_xmit_mp fails, use regular path */
552			goto unfuse;
553
554		ASSERT(peer_tcp->tcp_connp->conn_ire_cache->ire_ipif != NULL);
555		olp = peer_tcp->tcp_connp->conn_ire_cache->ire_ipif->ipif_ill;
556		/* PFHooks: LOOPBACK_OUT */
557		if (tcp->tcp_ipversion == IPV4_VERSION) {
558			ipha = (ipha_t *)mp1->b_rptr;
559
560			DTRACE_PROBE4(ip4__loopback__out__start,
561			    ill_t *, NULL, ill_t *, olp,
562			    ipha_t *, ipha, mblk_t *, mp1);
563			FW_HOOKS(ipst->ips_ip4_loopback_out_event,
564			    ipst->ips_ipv4firewall_loopback_out,
565			    NULL, olp, ipha, mp1, mp1, ipst);
566			DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, mp1);
567		} else {
568			ip6h = (ip6_t *)mp1->b_rptr;
569
570			DTRACE_PROBE4(ip6__loopback__out__start,
571			    ill_t *, NULL, ill_t *, olp,
572			    ip6_t *, ip6h, mblk_t *, mp1);
573			FW_HOOKS6(ipst->ips_ip6_loopback_out_event,
574			    ipst->ips_ipv6firewall_loopback_out,
575			    NULL, olp, ip6h, mp1, mp1, ipst);
576			DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, mp1);
577		}
578		if (mp1 == NULL)
579			goto unfuse;
580
581
582		/* PFHooks: LOOPBACK_IN */
583		ASSERT(tcp->tcp_connp->conn_ire_cache->ire_ipif != NULL);
584		ilp = tcp->tcp_connp->conn_ire_cache->ire_ipif->ipif_ill;
585
586		if (tcp->tcp_ipversion == IPV4_VERSION) {
587			DTRACE_PROBE4(ip4__loopback__in__start,
588			    ill_t *, ilp, ill_t *, NULL,
589			    ipha_t *, ipha, mblk_t *, mp1);
590			FW_HOOKS(ipst->ips_ip4_loopback_in_event,
591			    ipst->ips_ipv4firewall_loopback_in,
592			    ilp, NULL, ipha, mp1, mp1, ipst);
593			DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, mp1);
594			if (mp1 == NULL)
595				goto unfuse;
596
597			ip_hdr_len = IPH_HDR_LENGTH(ipha);
598		} else {
599			DTRACE_PROBE4(ip6__loopback__in__start,
600			    ill_t *, ilp, ill_t *, NULL,
601			    ip6_t *, ip6h, mblk_t *, mp1);
602			FW_HOOKS6(ipst->ips_ip6_loopback_in_event,
603			    ipst->ips_ipv6firewall_loopback_in,
604			    ilp, NULL, ip6h, mp1, mp1, ipst);
605			DTRACE_PROBE1(ip6__loopback__in__end, mblk_t *, mp1);
606			if (mp1 == NULL)
607				goto unfuse;
608
609			ip_hdr_len = ip_hdr_length_v6(mp1, ip6h);
610		}
611
612		/* Data length might be changed by FW_HOOKS */
613		tcph = (tcph_t *)&mp1->b_rptr[ip_hdr_len];
614		seq = ABE32_TO_U32(tcph->th_seq);
615		recv_size += seq - tcp->tcp_snxt;
616
617		/*
618		 * The message duplicated by tcp_xmit_mp is freed.
619		 * Note: the original message passed in remains unchanged.
620		 */
621		freemsg(mp1);
622	}
623
624	mutex_enter(&peer_tcp->tcp_non_sq_lock);
625	/*
626	 * Wake up and signal the peer; it is okay to do this before
627	 * enqueueing because we are holding the lock.  One of the
628	 * advantages of synchronous streams is the ability for us to
629	 * find out when the application performs a read on the socket,
630	 * by way of tcp_fuse_rrw() entry point being called.  Every
631	 * data that gets enqueued onto the receiver is treated as if
632	 * it has arrived at the receiving endpoint, thus generating
633	 * SIGPOLL/SIGIO for asynchronous socket just as in the strrput()
634	 * case.  However, we only wake up the application when necessary,
635	 * i.e. during the first enqueue.  When tcp_fuse_rrw() is called
636	 * it will send everything upstream.
637	 */
638	if (peer_tcp->tcp_direct_sockfs && !urgent &&
639	    !TCP_IS_DETACHED(peer_tcp)) {
640		if (peer_tcp->tcp_rcv_list == NULL)
641			STR_WAKEUP_SET(STREAM(peer_tcp->tcp_rq));
642		/* Update poll events and send SIGPOLL/SIGIO if necessary */
643		STR_SENDSIG(STREAM(peer_tcp->tcp_rq));
644	}
645
646	/*
647	 * Enqueue data into the peer's receive list; we may or may not
648	 * drain the contents depending on the conditions below.
649	 */
650	tcp_rcv_enqueue(peer_tcp, mp, recv_size);
651
652	/* In case it wrapped around and also to keep it constant */
653	peer_tcp->tcp_rwnd += recv_size;
654
655	/*
656	 * Exercise flow-control when needed; we will get back-enabled
657	 * in either tcp_accept_finish(), tcp_unfuse(), or tcp_fuse_rrw().
658	 * If tcp_direct_sockfs is on or if the peer endpoint is detached,
659	 * we emulate streams flow control by checking the peer's queue
660	 * size and high water mark; otherwise we simply use canputnext()
661	 * to decide if we need to stop our flow.
662	 *
663	 * The outstanding unread data block check does not apply for a
664	 * detached receiver; this is to avoid unnecessary blocking of the
665	 * sender while the accept is currently in progress and is quite
666	 * similar to the regular tcp.
667	 */
668	if (TCP_IS_DETACHED(peer_tcp) || max_unread == 0)
669		max_unread = UINT_MAX;
670
671	/*
672	 * Since we are accessing our tcp_flow_stopped and might modify it,
673	 * we need to take tcp->tcp_non_sq_lock. The lock for the highest
674	 * address is held first. Dropping peer_tcp->tcp_non_sq_lock should
675	 * not be an issue here since we are within the squeue and the peer
676	 * won't disappear.
677	 */
678	if (tcp > peer_tcp) {
679		mutex_exit(&peer_tcp->tcp_non_sq_lock);
680		mutex_enter(&tcp->tcp_non_sq_lock);
681		mutex_enter(&peer_tcp->tcp_non_sq_lock);
682	} else {
683		mutex_enter(&tcp->tcp_non_sq_lock);
684	}
685	flow_stopped = tcp->tcp_flow_stopped;
686	if (!flow_stopped &&
687	    (((peer_tcp->tcp_direct_sockfs || TCP_IS_DETACHED(peer_tcp)) &&
688	    (peer_tcp->tcp_rcv_cnt >= peer_tcp->tcp_fuse_rcv_hiwater ||
689	    ++peer_tcp->tcp_fuse_rcv_unread_cnt >= max_unread)) ||
690	    (!peer_tcp->tcp_direct_sockfs &&
691	    !TCP_IS_DETACHED(peer_tcp) && !canputnext(peer_tcp->tcp_rq)))) {
692		tcp_setqfull(tcp);
693		flow_stopped = B_TRUE;
694		TCP_STAT(tcps, tcp_fusion_flowctl);
695		DTRACE_PROBE4(tcp__fuse__output__flowctl, tcp_t *, tcp,
696		    uint_t, send_size, uint_t, peer_tcp->tcp_rcv_cnt,
697		    uint_t, peer_tcp->tcp_fuse_rcv_unread_cnt);
698	} else if (flow_stopped &&
699	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
700		tcp_clrqfull(tcp);
701		flow_stopped = B_FALSE;
702	}
703	mutex_exit(&tcp->tcp_non_sq_lock);
704	ipst->ips_loopback_packets++;
705	tcp->tcp_last_sent_len = send_size;
706
707	/* Need to adjust the following SNMP MIB-related variables */
708	tcp->tcp_snxt += send_size;
709	tcp->tcp_suna = tcp->tcp_snxt;
710	peer_tcp->tcp_rnxt += recv_size;
711	peer_tcp->tcp_rack = peer_tcp->tcp_rnxt;
712
713	BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
714	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, send_size);
715
716	BUMP_MIB(&tcps->tcps_mib, tcpInSegs);
717	BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
718	UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, send_size);
719
720	BUMP_LOCAL(tcp->tcp_obsegs);
721	BUMP_LOCAL(peer_tcp->tcp_ibsegs);
722
723	mutex_exit(&peer_tcp->tcp_non_sq_lock);
724
725	DTRACE_PROBE2(tcp__fuse__output, tcp_t *, tcp, uint_t, send_size);
726
727	if (!TCP_IS_DETACHED(peer_tcp)) {
728		/*
729		 * Drain the peer's receive queue it has urgent data or if
730		 * we're not flow-controlled.  There is no need for draining
731		 * normal data when tcp_direct_sockfs is on because the peer
732		 * will pull the data via tcp_fuse_rrw().
733		 */
734		if (urgent || (!flow_stopped && !peer_tcp->tcp_direct_sockfs)) {
735			ASSERT(peer_tcp->tcp_rcv_list != NULL);
736			/*
737			 * For TLI-based streams, a thread in tcp_accept_swap()
738			 * can race with us.  That thread will ensure that the
739			 * correct peer_tcp->tcp_rq is globally visible before
740			 * peer_tcp->tcp_detached is visible as clear, but we
741			 * must also ensure that the load of tcp_rq cannot be
742			 * reordered to be before the tcp_detached check.
743			 */
744			membar_consumer();
745			(void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp,
746			    NULL);
747			/*
748			 * If synchronous streams was stopped above due
749			 * to the presence of urgent data, re-enable it.
750			 */
751			if (urgent)
752				TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(peer_tcp);
753		}
754	}
755	return (B_TRUE);
756unfuse:
757	tcp_unfuse(tcp);
758	return (B_FALSE);
759}
760
761/*
762 * This routine gets called to deliver data upstream on a fused or
763 * previously fused tcp loopback endpoint; the latter happens only
764 * when there is a pending SIGURG signal plus urgent data that can't
765 * be sent upstream in the past.
766 */
767boolean_t
768tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp)
769{
770	mblk_t *mp;
771#ifdef DEBUG
772	uint_t cnt = 0;
773#endif
774	tcp_stack_t	*tcps = tcp->tcp_tcps;
775
776	ASSERT(tcp->tcp_loopback);
777	ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg);
778	ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL);
779	ASSERT(sigurg_mpp != NULL || tcp->tcp_fused);
780
781	/* No need for the push timer now, in case it was scheduled */
782	if (tcp->tcp_push_tid != 0) {
783		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
784		tcp->tcp_push_tid = 0;
785	}
786	/*
787	 * If there's urgent data sitting in receive list and we didn't
788	 * get a chance to send up a SIGURG signal, make sure we send
789	 * it first before draining in order to ensure that SIOCATMARK
790	 * works properly.
791	 */
792	if (tcp->tcp_fused_sigurg) {
793		/*
794		 * sigurg_mpp is normally NULL, i.e. when we're still
795		 * fused and didn't get here because of tcp_unfuse().
796		 * In this case try hard to allocate the M_PCSIG mblk.
797		 */
798		if (sigurg_mpp == NULL &&
799		    (mp = allocb(1, BPRI_HI)) == NULL &&
800		    (mp = allocb_tryhard(1)) == NULL) {
801			/* Alloc failed; try again next time */
802			tcp->tcp_push_tid = TCP_TIMER(tcp, tcp_push_timer,
803			    MSEC_TO_TICK(tcps->tcps_push_timer_interval));
804			return (B_TRUE);
805		} else if (sigurg_mpp != NULL) {
806			/*
807			 * Use the supplied M_PCSIG mblk; it means we're
808			 * either unfused or in the process of unfusing,
809			 * and the drain must happen now.
810			 */
811			mp = *sigurg_mpp;
812			*sigurg_mpp = NULL;
813		}
814		ASSERT(mp != NULL);
815
816		tcp->tcp_fused_sigurg = B_FALSE;
817		/* Send up the signal */
818		DB_TYPE(mp) = M_PCSIG;
819		*mp->b_wptr++ = (uchar_t)SIGURG;
820		putnext(q, mp);
821		/*
822		 * Let the regular tcp_rcv_drain() path handle
823		 * draining the data if we're no longer fused.
824		 */
825		if (!tcp->tcp_fused)
826			return (B_FALSE);
827	}
828
829	/*
830	 * In the synchronous streams case, we generate SIGPOLL/SIGIO for
831	 * each M_DATA that gets enqueued onto the receiver.  At this point
832	 * we are about to drain any queued data via putnext().  In order
833	 * to avoid extraneous signal generation from strrput(), we set
834	 * STRGETINPROG flag at the stream head prior to the draining and
835	 * restore it afterwards.  This masks out signal generation only
836	 * for M_DATA messages and does not affect urgent data.
837	 */
838	if (tcp->tcp_direct_sockfs)
839		strrput_sig(q, B_FALSE);
840
841	/* Drain the data */
842	while ((mp = tcp->tcp_rcv_list) != NULL) {
843		tcp->tcp_rcv_list = mp->b_next;
844		mp->b_next = NULL;
845#ifdef DEBUG
846		cnt += msgdsize(mp);
847#endif
848		putnext(q, mp);
849		TCP_STAT(tcps, tcp_fusion_putnext);
850	}
851
852	if (tcp->tcp_direct_sockfs)
853		strrput_sig(q, B_TRUE);
854
855	ASSERT(cnt == tcp->tcp_rcv_cnt);
856	tcp->tcp_rcv_last_head = NULL;
857	tcp->tcp_rcv_last_tail = NULL;
858	tcp->tcp_rcv_cnt = 0;
859	tcp->tcp_fuse_rcv_unread_cnt = 0;
860	tcp->tcp_rwnd = q->q_hiwat;
861
862	return (B_TRUE);
863}
864
865/*
866 * Synchronous stream entry point for sockfs to retrieve
867 * data directly from tcp_rcv_list.
868 * tcp_fuse_rrw() might end up modifying the peer's tcp_flow_stopped,
869 * for which it  must take the tcp_non_sq_lock of the peer as well
870 * making any change. The order of taking the locks is based on
871 * the TCP pointer itself. Before we get the peer we need to take
872 * our tcp_non_sq_lock so that the peer doesn't disappear. However,
873 * we cannot drop the lock if we have to grab the peer's lock (because
874 * of ordering), since the peer might disappear in the interim. So,
875 * we take our tcp_non_sq_lock, get the peer, increment the ref on the
876 * peer's conn, drop all the locks and then take the tcp_non_sq_lock in the
877 * desired order. Incrementing the conn ref on the peer means that the
878 * peer won't disappear when we drop our tcp_non_sq_lock.
879 */
880int
881tcp_fuse_rrw(queue_t *q, struiod_t *dp)
882{
883	tcp_t *tcp = Q_TO_CONN(q)->conn_tcp;
884	mblk_t *mp;
885	tcp_t *peer_tcp;
886	tcp_stack_t	*tcps = tcp->tcp_tcps;
887
888	mutex_enter(&tcp->tcp_non_sq_lock);
889
890	/*
891	 * If tcp_fuse_syncstr_plugged is set, then another thread is moving
892	 * the underlying data to the stream head.  We need to wait until it's
893	 * done, then return EBUSY so that strget() will dequeue data from the
894	 * stream head to ensure data is drained in-order.
895	 */
896plugged:
897	if (tcp->tcp_fuse_syncstr_plugged) {
898		do {
899			cv_wait(&tcp->tcp_fuse_plugcv, &tcp->tcp_non_sq_lock);
900		} while (tcp->tcp_fuse_syncstr_plugged);
901
902		mutex_exit(&tcp->tcp_non_sq_lock);
903		TCP_STAT(tcps, tcp_fusion_rrw_plugged);
904		TCP_STAT(tcps, tcp_fusion_rrw_busy);
905		return (EBUSY);
906	}
907
908	peer_tcp = tcp->tcp_loopback_peer;
909
910	/*
911	 * If someone had turned off tcp_direct_sockfs or if synchronous
912	 * streams is stopped, we return EBUSY.  This causes strget() to
913	 * dequeue data from the stream head instead.
914	 */
915	if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped) {
916		mutex_exit(&tcp->tcp_non_sq_lock);
917		TCP_STAT(tcps, tcp_fusion_rrw_busy);
918		return (EBUSY);
919	}
920
921	/*
922	 * Grab lock in order. The highest addressed tcp is locked first.
923	 * We don't do this within the tcp_rcv_list check since if we
924	 * have to drop the lock, for ordering, then the tcp_rcv_list
925	 * could change.
926	 */
927	if (peer_tcp > tcp) {
928		CONN_INC_REF(peer_tcp->tcp_connp);
929		mutex_exit(&tcp->tcp_non_sq_lock);
930		mutex_enter(&peer_tcp->tcp_non_sq_lock);
931		mutex_enter(&tcp->tcp_non_sq_lock);
932		CONN_DEC_REF(peer_tcp->tcp_connp);
933		/* This might have changed in the interim */
934		if (tcp->tcp_fuse_syncstr_plugged) {
935			mutex_exit(&peer_tcp->tcp_non_sq_lock);
936			goto plugged;
937		}
938	} else {
939		mutex_enter(&peer_tcp->tcp_non_sq_lock);
940	}
941
942	if ((mp = tcp->tcp_rcv_list) != NULL) {
943
944		DTRACE_PROBE3(tcp__fuse__rrw, tcp_t *, tcp,
945		    uint32_t, tcp->tcp_rcv_cnt, ssize_t, dp->d_uio.uio_resid);
946
947		tcp->tcp_rcv_list = NULL;
948		TCP_STAT(tcps, tcp_fusion_rrw_msgcnt);
949
950		/*
951		 * At this point nothing should be left in tcp_rcv_list.
952		 * The only possible case where we would have a chain of
953		 * b_next-linked messages is urgent data, but we wouldn't
954		 * be here if that's true since urgent data is delivered
955		 * via putnext() and synchronous streams is stopped until
956		 * tcp_fuse_rcv_drain() is finished.
957		 */
958		ASSERT(DB_TYPE(mp) == M_DATA && mp->b_next == NULL);
959
960		tcp->tcp_rcv_last_head = NULL;
961		tcp->tcp_rcv_last_tail = NULL;
962		tcp->tcp_rcv_cnt = 0;
963		tcp->tcp_fuse_rcv_unread_cnt = 0;
964
965		if (peer_tcp->tcp_flow_stopped) {
966			tcp_clrqfull(peer_tcp);
967			TCP_STAT(tcps, tcp_fusion_backenabled);
968		}
969	}
970	mutex_exit(&peer_tcp->tcp_non_sq_lock);
971	/*
972	 * Either we just dequeued everything or we get here from sockfs
973	 * and have nothing to return; in this case clear RSLEEP.
974	 */
975	ASSERT(tcp->tcp_rcv_last_head == NULL);
976	ASSERT(tcp->tcp_rcv_last_tail == NULL);
977	ASSERT(tcp->tcp_rcv_cnt == 0);
978	ASSERT(tcp->tcp_fuse_rcv_unread_cnt == 0);
979	STR_WAKEUP_CLEAR(STREAM(q));
980
981	mutex_exit(&tcp->tcp_non_sq_lock);
982	dp->d_mp = mp;
983	return (0);
984}
985
986/*
987 * Synchronous stream entry point used by certain ioctls to retrieve
988 * information about or peek into the tcp_rcv_list.
989 */
990int
991tcp_fuse_rinfop(queue_t *q, infod_t *dp)
992{
993	tcp_t	*tcp = Q_TO_CONN(q)->conn_tcp;
994	mblk_t	*mp;
995	uint_t	cmd = dp->d_cmd;
996	int	res = 0;
997	int	error = 0;
998	struct stdata *stp = STREAM(q);
999
1000	mutex_enter(&tcp->tcp_non_sq_lock);
1001	/* If shutdown on read has happened, return nothing */
1002	mutex_enter(&stp->sd_lock);
1003	if (stp->sd_flag & STREOF) {
1004		mutex_exit(&stp->sd_lock);
1005		goto done;
1006	}
1007	mutex_exit(&stp->sd_lock);
1008
1009	/*
1010	 * It is OK not to return an answer if tcp_rcv_list is
1011	 * currently not accessible.
1012	 */
1013	if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped ||
1014	    tcp->tcp_fuse_syncstr_plugged || (mp = tcp->tcp_rcv_list) == NULL)
1015		goto done;
1016
1017	if (cmd & INFOD_COUNT) {
1018		/*
1019		 * We have at least one message and
1020		 * could return only one at a time.
1021		 */
1022		dp->d_count++;
1023		res |= INFOD_COUNT;
1024	}
1025	if (cmd & INFOD_BYTES) {
1026		/*
1027		 * Return size of all data messages.
1028		 */
1029		dp->d_bytes += tcp->tcp_rcv_cnt;
1030		res |= INFOD_BYTES;
1031	}
1032	if (cmd & INFOD_FIRSTBYTES) {
1033		/*
1034		 * Return size of first data message.
1035		 */
1036		dp->d_bytes = msgdsize(mp);
1037		res |= INFOD_FIRSTBYTES;
1038		dp->d_cmd &= ~INFOD_FIRSTBYTES;
1039	}
1040	if (cmd & INFOD_COPYOUT) {
1041		mblk_t *mp1;
1042		int n;
1043
1044		if (DB_TYPE(mp) == M_DATA) {
1045			mp1 = mp;
1046		} else {
1047			mp1 = mp->b_cont;
1048			ASSERT(mp1 != NULL);
1049		}
1050
1051		/*
1052		 * Return data contents of first message.
1053		 */
1054		ASSERT(DB_TYPE(mp1) == M_DATA);
1055		while (mp1 != NULL && dp->d_uiop->uio_resid > 0) {
1056			n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1));
1057			if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n,
1058			    UIO_READ, dp->d_uiop)) != 0) {
1059				goto done;
1060			}
1061			mp1 = mp1->b_cont;
1062		}
1063		res |= INFOD_COPYOUT;
1064		dp->d_cmd &= ~INFOD_COPYOUT;
1065	}
1066done:
1067	mutex_exit(&tcp->tcp_non_sq_lock);
1068
1069	dp->d_res |= res;
1070
1071	return (error);
1072}
1073
1074/*
1075 * Enable synchronous streams on a fused tcp loopback endpoint.
1076 */
1077static void
1078tcp_fuse_syncstr_enable(tcp_t *tcp)
1079{
1080	queue_t *rq = tcp->tcp_rq;
1081	struct stdata *stp = STREAM(rq);
1082
1083	/* We can only enable synchronous streams for sockfs mode */
1084	tcp->tcp_direct_sockfs = tcp->tcp_issocket && do_tcp_direct_sockfs;
1085
1086	if (!tcp->tcp_direct_sockfs)
1087		return;
1088
1089	mutex_enter(&stp->sd_lock);
1090	mutex_enter(QLOCK(rq));
1091
1092	/*
1093	 * We replace our q_qinfo with one that has the qi_rwp entry point.
1094	 * Clear SR_SIGALLDATA because we generate the equivalent signal(s)
1095	 * for every enqueued data in tcp_fuse_output().
1096	 */
1097	rq->q_qinfo = &tcp_loopback_rinit;
1098	rq->q_struiot = tcp_loopback_rinit.qi_struiot;
1099	stp->sd_struiordq = rq;
1100	stp->sd_rput_opt &= ~SR_SIGALLDATA;
1101
1102	mutex_exit(QLOCK(rq));
1103	mutex_exit(&stp->sd_lock);
1104}
1105
1106/*
1107 * Disable synchronous streams on a fused tcp loopback endpoint.
1108 */
1109static void
1110tcp_fuse_syncstr_disable(tcp_t *tcp)
1111{
1112	queue_t *rq = tcp->tcp_rq;
1113	struct stdata *stp = STREAM(rq);
1114
1115	if (!tcp->tcp_direct_sockfs)
1116		return;
1117
1118	mutex_enter(&stp->sd_lock);
1119	mutex_enter(QLOCK(rq));
1120
1121	/*
1122	 * Reset q_qinfo to point to the default tcp entry points.
1123	 * Also restore SR_SIGALLDATA so that strrput() can generate
1124	 * the signals again for future M_DATA messages.
1125	 */
1126	rq->q_qinfo = &tcp_rinit;
1127	rq->q_struiot = tcp_rinit.qi_struiot;
1128	stp->sd_struiordq = NULL;
1129	stp->sd_rput_opt |= SR_SIGALLDATA;
1130	tcp->tcp_direct_sockfs = B_FALSE;
1131
1132	mutex_exit(QLOCK(rq));
1133	mutex_exit(&stp->sd_lock);
1134}
1135
1136/*
1137 * Enable synchronous streams on a pair of fused tcp endpoints.
1138 */
1139void
1140tcp_fuse_syncstr_enable_pair(tcp_t *tcp)
1141{
1142	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
1143
1144	ASSERT(tcp->tcp_fused);
1145	ASSERT(peer_tcp != NULL);
1146
1147	tcp_fuse_syncstr_enable(tcp);
1148	tcp_fuse_syncstr_enable(peer_tcp);
1149}
1150
1151/*
1152 * Allow or disallow signals to be generated by strrput().
1153 */
1154static void
1155strrput_sig(queue_t *q, boolean_t on)
1156{
1157	struct stdata *stp = STREAM(q);
1158
1159	mutex_enter(&stp->sd_lock);
1160	if (on)
1161		stp->sd_flag &= ~STRGETINPROG;
1162	else
1163		stp->sd_flag |= STRGETINPROG;
1164	mutex_exit(&stp->sd_lock);
1165}
1166
1167/*
1168 * Disable synchronous streams on a pair of fused tcp endpoints and drain
1169 * any queued data; called either during unfuse or upon transitioning from
1170 * a socket to a stream endpoint due to _SIOCSOCKFALLBACK.
1171 */
1172void
1173tcp_fuse_disable_pair(tcp_t *tcp, boolean_t unfusing)
1174{
1175	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
1176	tcp_stack_t	*tcps = tcp->tcp_tcps;
1177
1178	ASSERT(tcp->tcp_fused);
1179	ASSERT(peer_tcp != NULL);
1180
1181	/*
1182	 * Force any tcp_fuse_rrw() calls to block until we've moved the data
1183	 * onto the stream head.
1184	 */
1185	TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
1186	TCP_FUSE_SYNCSTR_PLUG_DRAIN(peer_tcp);
1187
1188	/*
1189	 * Drain any pending data; the detached check is needed because
1190	 * we may be called as a result of a tcp_unfuse() triggered by
1191	 * tcp_fuse_output().  Note that in case of a detached tcp, the
1192	 * draining will happen later after the tcp is unfused.  For non-
1193	 * urgent data, this can be handled by the regular tcp_rcv_drain().
1194	 * If we have urgent data sitting in the receive list, we will
1195	 * need to send up a SIGURG signal first before draining the data.
1196	 * All of these will be handled by the code in tcp_fuse_rcv_drain()
1197	 * when called from tcp_rcv_drain().
1198	 */
1199	if (!TCP_IS_DETACHED(tcp)) {
1200		(void) tcp_fuse_rcv_drain(tcp->tcp_rq, tcp,
1201		    (unfusing ? &tcp->tcp_fused_sigurg_mp : NULL));
1202	}
1203	if (!TCP_IS_DETACHED(peer_tcp)) {
1204		(void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp,
1205		    (unfusing ? &peer_tcp->tcp_fused_sigurg_mp : NULL));
1206	}
1207
1208	/*
1209	 * Make all current and future tcp_fuse_rrw() calls fail with EBUSY.
1210	 * To ensure threads don't sneak past the checks in tcp_fuse_rrw(),
1211	 * a given stream must be stopped prior to being unplugged (but the
1212	 * ordering of operations between the streams is unimportant).
1213	 */
1214	TCP_FUSE_SYNCSTR_STOP(tcp);
1215	TCP_FUSE_SYNCSTR_STOP(peer_tcp);
1216	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
1217	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(peer_tcp);
1218
1219	/* Lift up any flow-control conditions */
1220	if (tcp->tcp_flow_stopped) {
1221		tcp_clrqfull(tcp);
1222		TCP_STAT(tcps, tcp_fusion_backenabled);
1223	}
1224	if (peer_tcp->tcp_flow_stopped) {
1225		tcp_clrqfull(peer_tcp);
1226		TCP_STAT(tcps, tcp_fusion_backenabled);
1227	}
1228
1229	/* Disable synchronous streams */
1230	tcp_fuse_syncstr_disable(tcp);
1231	tcp_fuse_syncstr_disable(peer_tcp);
1232}
1233
1234/*
1235 * Calculate the size of receive buffer for a fused tcp endpoint.
1236 */
1237size_t
1238tcp_fuse_set_rcv_hiwat(tcp_t *tcp, size_t rwnd)
1239{
1240	tcp_stack_t	*tcps = tcp->tcp_tcps;
1241
1242	ASSERT(tcp->tcp_fused);
1243
1244	/* Ensure that value is within the maximum upper bound */
1245	if (rwnd > tcps->tcps_max_buf)
1246		rwnd = tcps->tcps_max_buf;
1247
1248	/* Obey the absolute minimum tcp receive high water mark */
1249	if (rwnd < tcps->tcps_sth_rcv_hiwat)
1250		rwnd = tcps->tcps_sth_rcv_hiwat;
1251
1252	/*
1253	 * Round up to system page size in case SO_RCVBUF is modified
1254	 * after SO_SNDBUF; the latter is also similarly rounded up.
1255	 */
1256	rwnd = P2ROUNDUP_TYPED(rwnd, PAGESIZE, size_t);
1257	tcp->tcp_fuse_rcv_hiwater = rwnd;
1258	return (rwnd);
1259}
1260
1261/*
1262 * Calculate the maximum outstanding unread data block for a fused tcp endpoint.
1263 */
1264int
1265tcp_fuse_maxpsz_set(tcp_t *tcp)
1266{
1267	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
1268	uint_t sndbuf = tcp->tcp_xmit_hiwater;
1269	uint_t maxpsz = sndbuf;
1270
1271	ASSERT(tcp->tcp_fused);
1272	ASSERT(peer_tcp != NULL);
1273	ASSERT(peer_tcp->tcp_fuse_rcv_hiwater != 0);
1274	/*
1275	 * In the fused loopback case, we want the stream head to split
1276	 * up larger writes into smaller chunks for a more accurate flow-
1277	 * control accounting.  Our maxpsz is half of the sender's send
1278	 * buffer or the receiver's receive buffer, whichever is smaller.
1279	 * We round up the buffer to system page size due to the lack of
1280	 * TCP MSS concept in Fusion.
1281	 */
1282	if (maxpsz > peer_tcp->tcp_fuse_rcv_hiwater)
1283		maxpsz = peer_tcp->tcp_fuse_rcv_hiwater;
1284	maxpsz = P2ROUNDUP_TYPED(maxpsz, PAGESIZE, uint_t) >> 1;
1285
1286	/*
1287	 * Calculate the peer's limit for the number of outstanding unread
1288	 * data block.  This is the amount of data blocks that are allowed
1289	 * to reside in the receiver's queue before the sender gets flow
1290	 * controlled.  It is used only in the synchronous streams mode as
1291	 * a way to throttle the sender when it performs consecutive writes
1292	 * faster than can be read.  The value is derived from SO_SNDBUF in
1293	 * order to give the sender some control; we divide it with a large
1294	 * value (16KB) to produce a fairly low initial limit.
1295	 */
1296	if (tcp_fusion_rcv_unread_min == 0) {
1297		/* A value of 0 means that we disable the check */
1298		peer_tcp->tcp_fuse_rcv_unread_hiwater = 0;
1299	} else {
1300		peer_tcp->tcp_fuse_rcv_unread_hiwater =
1301		    MAX(sndbuf >> 14, tcp_fusion_rcv_unread_min);
1302	}
1303	return (maxpsz);
1304}
1305