ip_ire.c revision 3448:aaf16568054b
197403Sobrien/*
2132720Skan * CDDL HEADER START
397403Sobrien *
497403Sobrien * The contents of this file are subject to the terms of the
5132720Skan * Common Development and Distribution License (the "License").
6132720Skan * You may not use this file except in compliance with the License.
7132720Skan *
8132720Skan * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9132720Skan * or http://www.opensolaris.org/os/licensing.
10132720Skan * See the License for the specific language governing permissions
11132720Skan * and limitations under the License.
12132720Skan *
13132720Skan * When distributing Covered Code, include this CDDL HEADER in each
14132720Skan * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15132720Skan * If applicable, add the following below this CDDL HEADER, with the
16132720Skan * fields enclosed by brackets "[]" replaced with your own identifying
17132720Skan * information: Portions Copyright [yyyy] [name of copyright owner]
18132720Skan *
19132720Skan * CDDL HEADER END
20132720Skan */
21132720Skan/*
22132720Skan * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23132720Skan * Use is subject to license terms.
24132720Skan */
25132720Skan/* Copyright (c) 1990 Mentat Inc. */
26132720Skan
27132720Skan#pragma ident	"%Z%%M%	%I%	%E% SMI"
28132720Skan
29132720Skan
30132720Skan/*
3197403Sobrien * This file contains routines that manipulate Internet Routing Entries (IREs).
3297403Sobrien */
3397403Sobrien
3497403Sobrien#include <sys/types.h>
3597403Sobrien#include <sys/stream.h>
3697403Sobrien#include <sys/stropts.h>
37#include <sys/strsun.h>
38#include <sys/ddi.h>
39#include <sys/cmn_err.h>
40#include <sys/policy.h>
41
42#include <sys/systm.h>
43#include <sys/kmem.h>
44#include <sys/param.h>
45#include <sys/socket.h>
46#include <net/if.h>
47#include <net/route.h>
48#include <netinet/in.h>
49#include <net/if_dl.h>
50#include <netinet/ip6.h>
51#include <netinet/icmp6.h>
52
53#include <inet/common.h>
54#include <inet/mi.h>
55#include <inet/ip.h>
56#include <inet/ip6.h>
57#include <inet/ip_ndp.h>
58#include <inet/arp.h>
59#include <inet/ip_if.h>
60#include <inet/ip_ire.h>
61#include <inet/ip_ftable.h>
62#include <inet/ip_rts.h>
63#include <inet/nd.h>
64
65#include <net/pfkeyv2.h>
66#include <inet/ipsec_info.h>
67#include <inet/sadb.h>
68#include <sys/kmem.h>
69#include <inet/tcp.h>
70#include <inet/ipclassifier.h>
71#include <sys/zone.h>
72#include <sys/cpuvar.h>
73
74#include <sys/tsol/label.h>
75#include <sys/tsol/tnet.h>
76
77struct kmem_cache *rt_entry_cache;
78
79
80/*
81 * Synchronization notes:
82 *
83 * The fields of the ire_t struct are protected in the following way :
84 *
85 * ire_next/ire_ptpn
86 *
87 *	- bucket lock of the respective tables (cache or forwarding tables).
88 *
89 * ire_mp, ire_rfq, ire_stq, ire_u *except* ire_gateway_addr[v6], ire_mask,
90 * ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags, ire_ipif,
91 * ire_ihandle, ire_phandle, ire_nce, ire_bucket, ire_in_ill, ire_in_src_addr
92 *
93 *	- Set in ire_create_v4/v6 and never changes after that. Thus,
94 *	  we don't need a lock whenever these fields are accessed.
95 *
96 *	- ire_bucket and ire_masklen (also set in ire_create) is set in
97 *        ire_add_v4/ire_add_v6 before inserting in the bucket and never
98 *        changes after that. Thus we don't need a lock whenever these
99 *	  fields are accessed.
100 *
101 * ire_gateway_addr_v4[v6]
102 *
103 *	- ire_gateway_addr_v4[v6] is set during ire_create and later modified
104 *	  by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to
105 *	  it assumed to be atomic and hence the other parts of the code
106 *	  does not use any locks. ire_gateway_addr_v6 updates are not atomic
107 *	  and hence any access to it uses ire_lock to get/set the right value.
108 *
109 * ire_ident, ire_refcnt
110 *
111 *	- Updated atomically using atomic_add_32
112 *
113 * ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count
114 *
115 *	- Assumes that 32 bit writes are atomic. No locks. ire_lock is
116 *	  used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt.
117 *
118 * ire_max_frag, ire_frag_flag
119 *
120 *	- ire_lock is used to set/read both of them together.
121 *
122 * ire_tire_mark
123 *
124 *	- Set in ire_create and updated in ire_expire, which is called
125 *	  by only one function namely ip_trash_timer_expire. Thus only
126 *	  one function updates and examines the value.
127 *
128 * ire_marks
129 *	- bucket lock protects this.
130 *
131 * ire_ipsec_overhead/ire_ll_hdr_length
132 *
133 *	- Place holder for returning the information to the upper layers
134 *	  when IRE_DB_REQ comes down.
135 *
136 *
137 * ipv6_ire_default_count is protected by the bucket lock of
138 * ip_forwarding_table_v6[0][0].
139 *
140 * ipv6_ire_default_index is not protected as it  is just a hint
141 * at which default gateway to use. There is nothing
142 * wrong in using the same gateway for two different connections.
143 *
144 * As we always hold the bucket locks in all the places while accessing
145 * the above values, it is natural to use them for protecting them.
146 *
147 * We have a separate cache table and forwarding table for IPv4 and IPv6.
148 * Cache table (ip_cache_table/ip_cache_table_v6) is a pointer to an
149 * array of irb_t structure and forwarding table (ip_forwarding_table/
150 * ip_forwarding_table_v6) is an array of pointers to array of irb_t
151 * structure. ip_forwarding_table_v6 is allocated dynamically in
152 * ire_add_v6. ire_ft_init_lock is used to serialize multiple threads
153 * initializing the same bucket. Once a bucket is initialized, it is never
154 * de-alloacted. This assumption enables us to access
155 * ip_forwarding_table_v6[i] without any locks.
156 *
157 * Each irb_t - ire bucket structure has a lock to protect
158 * a bucket and the ires residing in the bucket have a back pointer to
159 * the bucket structure. It also has a reference count for the number
160 * of threads walking the bucket - irb_refcnt which is bumped up
161 * using the macro IRB_REFHOLD macro. The flags irb_flags can be
162 * set to IRE_MARK_CONDEMNED indicating that there are some ires
163 * in this bucket that are marked with IRE_MARK_CONDEMNED and the
164 * last thread to leave the bucket should delete the ires. Usually
165 * this is done by the IRB_REFRELE macro which is used to decrement
166 * the reference count on a bucket.
167 *
168 * IRE_REFHOLD/IRE_REFRELE macros operate on the ire which increments/
169 * decrements the reference count, ire_refcnt, atomically on the ire.
170 * ire_refcnt is modified only using this macro. Operations on the IRE
171 * could be described as follows :
172 *
173 * CREATE an ire with reference count initialized to 1.
174 *
175 * ADDITION of an ire holds the bucket lock, checks for duplicates
176 * and then adds the ire. ire_add_v4/ire_add_v6 returns the ire after
177 * bumping up once more i.e the reference count is 2. This is to avoid
178 * an extra lookup in the functions calling ire_add which wants to
179 * work with the ire after adding.
180 *
181 * LOOKUP of an ire bumps up the reference count using IRE_REFHOLD
182 * macro. It is valid to bump up the referece count of the IRE,
183 * after the lookup has returned an ire. Following are the lookup
184 * functions that return an HELD ire :
185 *
186 * ire_lookup_local[_v6], ire_ctable_lookup[_v6], ire_ftable_lookup[_v6],
187 * ire_cache_lookup[_v6], ire_lookup_multi[_v6], ire_route_lookup[_v6],
188 * ipif_to_ire[_v6], ire_mrtun_lookup, ire_srcif_table_lookup.
189 *
190 * DELETION of an ire holds the bucket lock, removes it from the list
191 * and then decrements the reference count for having removed from the list
192 * by using the IRE_REFRELE macro. If some other thread has looked up
193 * the ire, the reference count would have been bumped up and hence
194 * this ire will not be freed once deleted. It will be freed once the
195 * reference count drops to zero.
196 *
197 * Add and Delete acquires the bucket lock as RW_WRITER, while all the
198 * lookups acquire the bucket lock as RW_READER.
199 *
200 * NOTE : The only functions that does the IRE_REFRELE when an ire is
201 *	  passed as an argument are :
202 *
203 *	  1) ip_wput_ire : This is because it IRE_REFHOLD/RELEs the
204 *			   broadcast ires it looks up internally within
205 *			   the function. Currently, for simplicity it does
206 *			   not differentiate the one that is passed in and
207 *			   the ones it looks up internally. It always
208 *			   IRE_REFRELEs.
209 *	  2) ire_send
210 *	     ire_send_v6 : As ire_send calls ip_wput_ire and other functions
211 *			   that take ire as an argument, it has to selectively
212 *			   IRE_REFRELE the ire. To maintain symmetry,
213 *			   ire_send_v6 does the same.
214 *
215 * Otherwise, the general rule is to do the IRE_REFRELE in the function
216 * that is passing the ire as an argument.
217 *
218 * In trying to locate ires the following points are to be noted.
219 *
220 * IRE_MARK_CONDEMNED signifies that the ire has been logically deleted and is
221 * to be ignored when walking the ires using ire_next.
222 *
223 * IRE_MARK_HIDDEN signifies that the ire is a special ire typically for the
224 * benefit of in.mpathd which needs to probe interfaces for failures. Normal
225 * applications should not be seeing this ire and hence this ire is ignored
226 * in most cases in the search using ire_next.
227 *
228 * Zones note:
229 *	Walking IREs within a given zone also walks certain ires in other
230 *	zones.  This is done intentionally.  IRE walks with a specified
231 *	zoneid are used only when doing informational reports, and
232 *	zone users want to see things that they can access. See block
233 *	comment in ire_walk_ill_match().
234 */
235
236/*
237 * A per-interface routing table is created ( if not present)
238 * when the first entry is added to this special routing table.
239 * This special routing table is accessed through the ill data structure.
240 * The routing table looks like cache table. For example, currently it
241 * is used by mobile-ip foreign agent to forward data that only comes from
242 * the home agent tunnel for a mobile node. Thus if the outgoing interface
243 * is a RESOLVER interface, IP may need to resolve the hardware address for
244 * the outgoing interface. The routing entries in this table are not updated
245 * in IRE_CACHE. When MCTL msg comes back from ARP, the incoming ill informa-
246 * tion is lost as the write queue is passed to ip_wput.
247 * But, before sending the packet out, the hardware information must be updated
248 * in the special forwarding table. ire_srcif_table_count keeps track of total
249 * number of ires that are in interface based tables. Each interface based
250 * table hangs off of the incoming ill and each ill_t also keeps a refcnt
251 * of ires in that table.
252 */
253
254/*
255 * The minimum size of IRE cache table.  It will be recalcuated in
256 * ip_ire_init().
257 * Setable in /etc/system
258 */
259uint32_t ip_cache_table_size = IP_CACHE_TABLE_SIZE;
260uint32_t ip6_cache_table_size = IP6_CACHE_TABLE_SIZE;
261
262/*
263 * The size of the forwarding table.  We will make sure that it is a
264 * power of 2 in ip_ire_init().
265 * Setable in /etc/system
266 */
267uint32_t ip6_ftable_hash_size = IP6_FTABLE_HASH_SIZE;
268
269struct	kmem_cache	*ire_cache;
270static ire_t	ire_null;
271
272/*
273 * The threshold number of IRE in a bucket when the IREs are
274 * cleaned up.  This threshold is calculated later in ip_open()
275 * based on the speed of CPU and available memory.  This default
276 * value is the maximum.
277 *
278 * We have two kinds of cached IRE, temporary and
279 * non-temporary.  Temporary IREs are marked with
280 * IRE_MARK_TEMPORARY.  They are IREs created for non
281 * TCP traffic and for forwarding purposes.  All others
282 * are non-temporary IREs.  We don't mark IRE created for
283 * TCP as temporary because TCP is stateful and there are
284 * info stored in the IRE which can be shared by other TCP
285 * connections to the same destination.  For connected
286 * endpoint, we also don't want to mark the IRE used as
287 * temporary because the same IRE will be used frequently,
288 * otherwise, the app should not do a connect().  We change
289 * the marking at ip_bind_connected_*() if necessary.
290 *
291 * We want to keep the cache IRE hash bucket length reasonably
292 * short, otherwise IRE lookup functions will take "forever."
293 * We use the "crude" function that the IRE bucket
294 * length should be based on the CPU speed, which is 1 entry
295 * per x MHz, depending on the shift factor ip_ire_cpu_ratio
296 * (n).  This means that with a 750MHz CPU, the max bucket
297 * length can be (750 >> n) entries.
298 *
299 * Note that this threshold is separate for temp and non-temp
300 * IREs.  This means that the actual bucket length can be
301 * twice as that.  And while we try to keep temporary IRE
302 * length at most at the threshold value, we do not attempt to
303 * make the length for non-temporary IREs fixed, for the
304 * reason stated above.  Instead, we start trying to find
305 * "unused" non-temporary IREs when the bucket length reaches
306 * this threshold and clean them up.
307 *
308 * We also want to limit the amount of memory used by
309 * IREs.  So if we are allowed to use ~3% of memory (M)
310 * for those IREs, each bucket should not have more than
311 *
312 * 	M / num of cache bucket / sizeof (ire_t)
313 *
314 * Again the above memory uses are separate for temp and
315 * non-temp cached IREs.
316 *
317 * We may also want the limit to be a function of the number
318 * of interfaces and number of CPUs.  Doing the initialization
319 * in ip_open() means that every time an interface is plumbed,
320 * the max is re-calculated.  Right now, we don't do anything
321 * different.  In future, when we have more experience, we
322 * may want to change this behavior.
323 */
324uint32_t ip_ire_max_bucket_cnt = 10;	/* Setable in /etc/system */
325uint32_t ip6_ire_max_bucket_cnt = 10;
326
327/*
328 * The minimum of the temporary IRE bucket count.  We do not want
329 * the length of each bucket to be too short.  This may hurt
330 * performance of some apps as the temporary IREs are removed too
331 * often.
332 */
333uint32_t ip_ire_min_bucket_cnt = 3;	/* /etc/system - not used */
334uint32_t ip6_ire_min_bucket_cnt = 3;
335
336/*
337 * The ratio of memory consumed by IRE used for temporary to available
338 * memory.  This is a shift factor, so 6 means the ratio 1 to 64.  This
339 * value can be changed in /etc/system.  6 is a reasonable number.
340 */
341uint32_t ip_ire_mem_ratio = 6;	/* /etc/system */
342/* The shift factor for CPU speed to calculate the max IRE bucket length. */
343uint32_t ip_ire_cpu_ratio = 7;	/* /etc/system */
344
345typedef struct nce_clookup_s {
346	ipaddr_t ncecl_addr;
347	boolean_t ncecl_found;
348} nce_clookup_t;
349
350/*
351 * The maximum number of buckets in IRE cache table.  In future, we may
352 * want to make it a dynamic hash table.  For the moment, we fix the
353 * size and allocate the table in ip_ire_init() when IP is first loaded.
354 * We take into account the amount of memory a system has.
355 */
356#define	IP_MAX_CACHE_TABLE_SIZE	4096
357
358/* Setable in /etc/system */
359static uint32_t	ip_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE;
360static uint32_t	ip6_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE;
361
362#define	NUM_ILLS	3	/* To build the ILL list to unlock */
363
364/* Zero iulp_t for initialization. */
365const iulp_t	ire_uinfo_null = { 0 };
366
367static int	ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp,
368    ipsq_func_t func, boolean_t);
369static int	ire_add_srcif_v4(ire_t **ire_p, queue_t *q, mblk_t *mp,
370    ipsq_func_t func);
371static ire_t	*ire_update_srcif_v4(ire_t *ire);
372static void	ire_delete_v4(ire_t *ire);
373static void	ire_report_ctable(ire_t *ire, char *mp);
374static void	ire_report_mrtun_table(ire_t *ire, char *mp);
375static void	ire_report_srcif_table(ire_t *ire, char *mp, ip_stack_t *ipst);
376static void	ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers,
377    zoneid_t zoneid, ip_stack_t *);
378static void	ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type,
379    pfv_t func, void *arg, uchar_t vers, ill_t *ill);
380static void	ire_cache_cleanup(irb_t *irb, uint32_t threshold, int cnt);
381extern void	ill_unlock_ills(ill_t **list, int cnt);
382static	void	ip_nce_clookup_and_delete(nce_t *nce, void *arg);
383extern void	th_trace_rrecord(th_trace_t *);
384#ifdef IRE_DEBUG
385static void	ire_trace_inactive(ire_t *);
386#endif
387
388/*
389 * To avoid bloating the code, we call this function instead of
390 * using the macro IRE_REFRELE. Use macro only in performance
391 * critical paths.
392 *
393 * Must not be called while holding any locks. Otherwise if this is
394 * the last reference to be released there is a chance of recursive mutex
395 * panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
396 * to restart an ioctl. The one exception is when the caller is sure that
397 * this is not the last reference to be released. Eg. if the caller is
398 * sure that the ire has not been deleted and won't be deleted.
399 */
400void
401ire_refrele(ire_t *ire)
402{
403	IRE_REFRELE(ire);
404}
405
406void
407ire_refrele_notr(ire_t *ire)
408{
409	IRE_REFRELE_NOTR(ire);
410}
411
412/*
413 * kmem_cache_alloc constructor for IRE in kma space.
414 * Note that when ire_mp is set the IRE is stored in that mblk and
415 * not in this cache.
416 */
417/* ARGSUSED */
418static int
419ip_ire_constructor(void *buf, void *cdrarg, int kmflags)
420{
421	ire_t	*ire = buf;
422
423	ire->ire_nce = NULL;
424
425	return (0);
426}
427
428/* ARGSUSED1 */
429static void
430ip_ire_destructor(void *buf, void *cdrarg)
431{
432	ire_t	*ire = buf;
433
434	ASSERT(ire->ire_nce == NULL);
435}
436
437/*
438 * This function is associated with the IP_IOC_IRE_ADVISE_NO_REPLY
439 * IOCTL.  It is used by TCP (or other ULPs) to supply revised information
440 * for an existing CACHED IRE.
441 */
442/* ARGSUSED */
443int
444ip_ire_advise(queue_t *q, mblk_t *mp, cred_t *ioc_cr)
445{
446	uchar_t	*addr_ucp;
447	ipic_t	*ipic;
448	ire_t	*ire;
449	ipaddr_t	addr;
450	in6_addr_t	v6addr;
451	irb_t	*irb;
452	zoneid_t	zoneid;
453	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
454
455	ASSERT(q->q_next == NULL);
456	zoneid = Q_TO_CONN(q)->conn_zoneid;
457
458	/*
459	 * Check privilege using the ioctl credential; if it is NULL
460	 * then this is a kernel message and therefor privileged.
461	 */
462	if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0)
463		return (EPERM);
464
465	ipic = (ipic_t *)mp->b_rptr;
466	if (!(addr_ucp = mi_offset_param(mp, ipic->ipic_addr_offset,
467	    ipic->ipic_addr_length))) {
468		return (EINVAL);
469	}
470	if (!OK_32PTR(addr_ucp))
471		return (EINVAL);
472	switch (ipic->ipic_addr_length) {
473	case IP_ADDR_LEN: {
474		/* Extract the destination address. */
475		addr = *(ipaddr_t *)addr_ucp;
476		/* Find the corresponding IRE. */
477		ire = ire_cache_lookup(addr, zoneid, NULL, ipst);
478		break;
479	}
480	case IPV6_ADDR_LEN: {
481		/* Extract the destination address. */
482		v6addr = *(in6_addr_t *)addr_ucp;
483		/* Find the corresponding IRE. */
484		ire = ire_cache_lookup_v6(&v6addr, zoneid, NULL, ipst);
485		break;
486	}
487	default:
488		return (EINVAL);
489	}
490
491	if (ire == NULL)
492		return (ENOENT);
493	/*
494	 * Update the round trip time estimate and/or the max frag size
495	 * and/or the slow start threshold.
496	 *
497	 * We serialize multiple advises using ire_lock.
498	 */
499	mutex_enter(&ire->ire_lock);
500	if (ipic->ipic_rtt) {
501		/*
502		 * If there is no old cached values, initialize them
503		 * conservatively.  Set them to be (1.5 * new value).
504		 */
505		if (ire->ire_uinfo.iulp_rtt != 0) {
506			ire->ire_uinfo.iulp_rtt = (ire->ire_uinfo.iulp_rtt +
507			    ipic->ipic_rtt) >> 1;
508		} else {
509			ire->ire_uinfo.iulp_rtt = ipic->ipic_rtt +
510			    (ipic->ipic_rtt >> 1);
511		}
512		if (ire->ire_uinfo.iulp_rtt_sd != 0) {
513			ire->ire_uinfo.iulp_rtt_sd =
514			    (ire->ire_uinfo.iulp_rtt_sd +
515			    ipic->ipic_rtt_sd) >> 1;
516		} else {
517			ire->ire_uinfo.iulp_rtt_sd = ipic->ipic_rtt_sd +
518			    (ipic->ipic_rtt_sd >> 1);
519		}
520	}
521	if (ipic->ipic_max_frag)
522		ire->ire_max_frag = MIN(ipic->ipic_max_frag, IP_MAXPACKET);
523	if (ipic->ipic_ssthresh != 0) {
524		if (ire->ire_uinfo.iulp_ssthresh != 0)
525			ire->ire_uinfo.iulp_ssthresh =
526			    (ipic->ipic_ssthresh +
527			    ire->ire_uinfo.iulp_ssthresh) >> 1;
528		else
529			ire->ire_uinfo.iulp_ssthresh = ipic->ipic_ssthresh;
530	}
531	/*
532	 * Don't need the ire_lock below this. ire_type does not change
533	 * after initialization. ire_marks is protected by irb_lock.
534	 */
535	mutex_exit(&ire->ire_lock);
536
537	if (ipic->ipic_ire_marks != 0 && ire->ire_type == IRE_CACHE) {
538		/*
539		 * Only increment the temporary IRE count if the original
540		 * IRE is not already marked temporary.
541		 */
542		irb = ire->ire_bucket;
543		rw_enter(&irb->irb_lock, RW_WRITER);
544		if ((ipic->ipic_ire_marks & IRE_MARK_TEMPORARY) &&
545		    !(ire->ire_marks & IRE_MARK_TEMPORARY)) {
546			irb->irb_tmp_ire_cnt++;
547		}
548		ire->ire_marks |= ipic->ipic_ire_marks;
549		rw_exit(&irb->irb_lock);
550	}
551
552	ire_refrele(ire);
553	return (0);
554}
555
556/*
557 * This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY]
558 * IOCTL[s].  The NO_REPLY form is used by TCP to delete a route IRE
559 * for a host that is not responding.  This will force an attempt to
560 * establish a new route, if available, and flush out the ARP entry so
561 * it will re-resolve.  Management processes may want to use the
562 * version that generates a reply.
563 *
564 * This function does not support IPv6 since Neighbor Unreachability Detection
565 * means that negative advise like this is useless.
566 */
567/* ARGSUSED */
568int
569ip_ire_delete(queue_t *q, mblk_t *mp, cred_t *ioc_cr)
570{
571	uchar_t		*addr_ucp;
572	ipaddr_t	addr;
573	ire_t		*ire;
574	ipid_t		*ipid;
575	boolean_t	routing_sock_info = B_FALSE;	/* Sent info? */
576	zoneid_t	zoneid;
577	ire_t		*gire = NULL;
578	ill_t		*ill;
579	mblk_t		*arp_mp;
580	ip_stack_t	*ipst;
581
582	ASSERT(q->q_next == NULL);
583	zoneid = Q_TO_CONN(q)->conn_zoneid;
584	ipst = CONNQ_TO_IPST(q);
585
586	/*
587	 * Check privilege using the ioctl credential; if it is NULL
588	 * then this is a kernel message and therefor privileged.
589	 */
590	if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0)
591		return (EPERM);
592
593	ipid = (ipid_t *)mp->b_rptr;
594
595	/* Only actions on IRE_CACHEs are acceptable at present. */
596	if (ipid->ipid_ire_type != IRE_CACHE)
597		return (EINVAL);
598
599	addr_ucp = mi_offset_param(mp, ipid->ipid_addr_offset,
600		ipid->ipid_addr_length);
601	if (addr_ucp == NULL || !OK_32PTR(addr_ucp))
602		return (EINVAL);
603	switch (ipid->ipid_addr_length) {
604	case IP_ADDR_LEN:
605		/* addr_ucp points at IP addr */
606		break;
607	case sizeof (sin_t): {
608		sin_t	*sin;
609		/*
610		 * got complete (sockaddr) address - increment addr_ucp to point
611		 * at the ip_addr field.
612		 */
613		sin = (sin_t *)addr_ucp;
614		addr_ucp = (uchar_t *)&sin->sin_addr.s_addr;
615		break;
616	}
617	default:
618		return (EINVAL);
619	}
620	/* Extract the destination address. */
621	bcopy(addr_ucp, &addr, IP_ADDR_LEN);
622
623	/* Try to find the CACHED IRE. */
624	ire = ire_cache_lookup(addr, zoneid, NULL, ipst);
625
626	/* Nail it. */
627	if (ire) {
628		/* Allow delete only on CACHE entries */
629		if (ire->ire_type != IRE_CACHE) {
630			ire_refrele(ire);
631			return (EINVAL);
632		}
633
634		/*
635		 * Verify that the IRE has been around for a while.
636		 * This is to protect against transport protocols
637		 * that are too eager in sending delete messages.
638		 */
639		if (gethrestime_sec() <
640		    ire->ire_create_time + ipst->ips_ip_ignore_delete_time) {
641			ire_refrele(ire);
642			return (EINVAL);
643		}
644		/*
645		 * Now we have a potentially dead cache entry. We need
646		 * to remove it.
647		 * If this cache entry is generated from a
648		 * default route (i.e., ire_cmask == 0),
649		 * search the default list and mark it dead and some
650		 * background process will try to activate it.
651		 */
652		if ((ire->ire_gateway_addr != 0) && (ire->ire_cmask == 0)) {
653			/*
654			 * Make sure that we pick a different
655			 * IRE_DEFAULT next time.
656			 */
657			ire_t *gw_ire;
658			irb_t *irb = NULL;
659			uint_t match_flags;
660
661			match_flags = (MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE);
662
663			gire = ire_ftable_lookup(ire->ire_addr,
664			    ire->ire_cmask, 0, 0,
665			    ire->ire_ipif, NULL, zoneid, 0, NULL, match_flags,
666			    ipst);
667
668			ip3dbg(("ire_ftable_lookup() returned gire %p\n",
669			    (void *)gire));
670
671			if (gire != NULL) {
672				irb = gire->ire_bucket;
673
674				/*
675				 * We grab it as writer just to serialize
676				 * multiple threads trying to bump up
677				 * irb_rr_origin
678				 */
679				rw_enter(&irb->irb_lock, RW_WRITER);
680				if ((gw_ire = irb->irb_rr_origin) == NULL) {
681					rw_exit(&irb->irb_lock);
682					goto done;
683				}
684
685				DTRACE_PROBE1(ip__ire__del__origin,
686				    (ire_t *), gw_ire);
687
688				/* Skip past the potentially bad gateway */
689				if (ire->ire_gateway_addr ==
690				    gw_ire->ire_gateway_addr) {
691					ire_t *next = gw_ire->ire_next;
692
693					DTRACE_PROBE2(ip__ire__del,
694					    (ire_t *), gw_ire, (irb_t *), irb);
695					IRE_FIND_NEXT_ORIGIN(next);
696					irb->irb_rr_origin = next;
697				}
698				rw_exit(&irb->irb_lock);
699			}
700		}
701done:
702		if (gire != NULL)
703			IRE_REFRELE(gire);
704		/* report the bad route to routing sockets */
705		ip_rts_change(RTM_LOSING, ire->ire_addr, ire->ire_gateway_addr,
706		    ire->ire_mask, ire->ire_src_addr, 0, 0, 0,
707		    (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA), ipst);
708		routing_sock_info = B_TRUE;
709
710		/*
711		 * TCP is really telling us to start over completely, and it
712		 * expects that we'll resend the ARP query.  Tell ARP to
713		 * discard the entry, if this is a local destination.
714		 */
715		ill = ire->ire_stq->q_ptr;
716		if (ire->ire_gateway_addr == 0 &&
717		    (arp_mp = ill_ared_alloc(ill, addr)) != NULL) {
718			putnext(ill->ill_rq, arp_mp);
719		}
720
721		ire_delete(ire);
722		ire_refrele(ire);
723	}
724	/*
725	 * Also look for an IRE_HOST type redirect ire and
726	 * remove it if present.
727	 */
728	ire = ire_route_lookup(addr, 0, 0, IRE_HOST, NULL, NULL,
729	    ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
730
731	/* Nail it. */
732	if (ire != NULL) {
733	    if (ire->ire_flags & RTF_DYNAMIC) {
734		if (!routing_sock_info) {
735			ip_rts_change(RTM_LOSING, ire->ire_addr,
736			    ire->ire_gateway_addr, ire->ire_mask,
737			    ire->ire_src_addr, 0, 0, 0,
738			    (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA),
739			    ipst);
740		}
741		ire_delete(ire);
742	    }
743	    ire_refrele(ire);
744	}
745	return (0);
746}
747
748/*
749 * Named Dispatch routine to produce a formatted report on all IREs.
750 * This report is accessed by using the ndd utility to "get" ND variable
751 * "ipv4_ire_status".
752 */
753/* ARGSUSED */
754int
755ip_ire_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr)
756{
757	zoneid_t zoneid;
758	ip_stack_t	*ipst;
759
760	if (CONN_Q(q))
761		ipst = CONNQ_TO_IPST(q);
762	else
763		ipst = ILLQ_TO_IPST(q);
764
765	(void) mi_mpprintf(mp,
766	    "IRE      " MI_COL_HDRPAD_STR
767	/*   01234567[89ABCDEF] */
768	    "rfq      " MI_COL_HDRPAD_STR
769	/*   01234567[89ABCDEF] */
770	    "stq      " MI_COL_HDRPAD_STR
771	/*   01234567[89ABCDEF] */
772	    " zone "
773	/*   12345 */
774	    "addr            mask            "
775	/*   123.123.123.123 123.123.123.123 */
776	    "src             gateway         mxfrg rtt   rtt_sd ssthresh ref "
777	/*   123.123.123.123 123.123.123.123 12345 12345 123456 12345678 123 */
778	    "rtomax tstamp_ok wscale_ok ecn_ok pmtud_ok sack sendpipe "
779	/*   123456 123456789 123456789 123456 12345678 1234 12345678 */
780	    "recvpipe in/out/forward type");
781	/*   12345678 in/out/forward xxxxxxxxxx */
782
783	/*
784	 * Because of the ndd constraint, at most we can have 64K buffer
785	 * to put in all IRE info.  So to be more efficient, just
786	 * allocate a 64K buffer here, assuming we need that large buffer.
787	 * This should be OK as only root can do ndd /dev/ip.
788	 */
789	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
790		/* The following may work even if we cannot get a large buf. */
791		(void) mi_mpprintf(mp, "<< Out of buffer >>\n");
792		return (0);
793	}
794
795	zoneid = Q_TO_CONN(q)->conn_zoneid;
796	if (zoneid == GLOBAL_ZONEID)
797		zoneid = ALL_ZONES;
798
799	ire_walk_v4(ire_report_ftable, mp->b_cont, zoneid, ipst);
800	ire_walk_v4(ire_report_ctable, mp->b_cont, zoneid, ipst);
801
802	return (0);
803}
804
805
806/* ire_walk routine invoked for ip_ire_report for each cached IRE. */
807static void
808ire_report_ctable(ire_t *ire, char *mp)
809{
810	char	buf1[16];
811	char	buf2[16];
812	char	buf3[16];
813	char	buf4[16];
814	uint_t	fo_pkt_count;
815	uint_t	ib_pkt_count;
816	int	ref;
817	uint_t	print_len, buf_len;
818
819	if ((ire->ire_type & IRE_CACHETABLE) == 0)
820	    return;
821	buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr;
822	if (buf_len <= 0)
823		return;
824
825	/* Number of active references of this ire */
826	ref = ire->ire_refcnt;
827	/* "inbound" to a non local address is a forward */
828	ib_pkt_count = ire->ire_ib_pkt_count;
829	fo_pkt_count = 0;
830	if (!(ire->ire_type & (IRE_LOCAL|IRE_BROADCAST))) {
831		fo_pkt_count = ib_pkt_count;
832		ib_pkt_count = 0;
833	}
834	print_len =  snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len,
835	    MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR "%5d "
836	    "%s %s %s %s %05d %05ld %06ld %08d %03d %06d %09d %09d %06d %08d "
837	    "%04d %08d %08d %d/%d/%d %s\n",
838	    (void *)ire, (void *)ire->ire_rfq, (void *)ire->ire_stq,
839	    (int)ire->ire_zoneid,
840	    ip_dot_addr(ire->ire_addr, buf1), ip_dot_addr(ire->ire_mask, buf2),
841	    ip_dot_addr(ire->ire_src_addr, buf3),
842	    ip_dot_addr(ire->ire_gateway_addr, buf4),
843	    ire->ire_max_frag, ire->ire_uinfo.iulp_rtt,
844	    ire->ire_uinfo.iulp_rtt_sd, ire->ire_uinfo.iulp_ssthresh, ref,
845	    ire->ire_uinfo.iulp_rtomax,
846	    (ire->ire_uinfo.iulp_tstamp_ok ? 1: 0),
847	    (ire->ire_uinfo.iulp_wscale_ok ? 1: 0),
848	    (ire->ire_uinfo.iulp_ecn_ok ? 1: 0),
849	    (ire->ire_uinfo.iulp_pmtud_ok ? 1: 0),
850	    ire->ire_uinfo.iulp_sack,
851	    ire->ire_uinfo.iulp_spipe, ire->ire_uinfo.iulp_rpipe,
852	    ib_pkt_count, ire->ire_ob_pkt_count, fo_pkt_count,
853	    ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type));
854	if (print_len < buf_len) {
855		((mblk_t *)mp)->b_wptr += print_len;
856	} else {
857		((mblk_t *)mp)->b_wptr += buf_len;
858	}
859}
860
861/* ARGSUSED */
862int
863ip_ire_report_mrtun(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr)
864{
865	ip_stack_t	*ipst;
866
867	if (CONN_Q(q))
868		ipst = CONNQ_TO_IPST(q);
869	else
870		ipst = ILLQ_TO_IPST(q);
871
872	(void) mi_mpprintf(mp,
873	"IRE      " MI_COL_HDRPAD_STR
874	/*   01234567[89ABCDEF] */
875	"stq      " MI_COL_HDRPAD_STR
876	/*   01234567[89ABCDEF] */
877	"in_ill    " MI_COL_HDRPAD_STR
878	/*   01234567[89ABCDEF] */
879	"in_src_addr            "
880	/*   123.123.123.123 */
881	"max_frag      "
882	/*   12345 */
883	"ref     ");
884	/*   123 */
885
886	ire_walk_ill_mrtun(0, 0, ire_report_mrtun_table, mp, NULL,
887	    ipst);
888	return (0);
889}
890
891/* mrtun report table - supports ipv4_mrtun_ire_status ndd variable */
892
893static void
894ire_report_mrtun_table(ire_t *ire, char *mp)
895{
896	char	buf1[INET_ADDRSTRLEN];
897	int	ref;
898
899	/* Number of active references of this ire */
900	ref = ire->ire_refcnt;
901	ASSERT(ire->ire_type == IRE_MIPRTUN);
902	(void) mi_mpprintf((mblk_t *)mp,
903	    MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR
904	    "%s          %05d             %03d",
905	    (void *)ire, (void *)ire->ire_stq,
906	    (void *)ire->ire_in_ill,
907	    ip_dot_addr(ire->ire_in_src_addr, buf1),
908	    ire->ire_max_frag, ref);
909}
910
911/*
912 * Dispatch routine to format ires in interface based routine
913 */
914/* ARGSUSED */
915int
916ip_ire_report_srcif(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr)
917{
918	ip_stack_t	*ipst;
919
920	if (CONN_Q(q))
921		ipst = CONNQ_TO_IPST(q);
922	else
923		ipst = ILLQ_TO_IPST(q);
924
925	/* Report all interface based ires */
926
927	(void) mi_mpprintf(mp,
928	    "IRE      " MI_COL_HDRPAD_STR
929	    /*   01234567[89ABCDEF] */
930	    "stq      " MI_COL_HDRPAD_STR
931	    /*   01234567[89ABCDEF] */
932	    "in_ill    " MI_COL_HDRPAD_STR
933	    /*   01234567[89ABCDEF] */
934	    "addr            "
935	    /*   123.123.123.123 */
936	    "gateway         "
937	    /*   123.123.123.123 */
938	    "max_frag      "
939	    /*   12345 */
940	    "ref     "
941	    /*   123 */
942	    "type    "
943	    /* ABCDEFGH */
944	    "in/out/forward");
945	ire_walk_srcif_table_v4(ire_report_srcif_table, mp, ipst);
946	return (0);
947}
948
949/* Reports the interface table ires */
950/* ARGSUSED2 */
951static void
952ire_report_srcif_table(ire_t *ire, char *mp, ip_stack_t *ipst)
953{
954	char    buf1[INET_ADDRSTRLEN];
955	char    buf2[INET_ADDRSTRLEN];
956	int	ref;
957
958	ref = ire->ire_refcnt;
959	(void) mi_mpprintf((mblk_t *)mp,
960	    MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR
961	    "%s    %s      %05d       %03d      %s     %d",
962	    (void *)ire, (void *)ire->ire_stq,
963	    (void *)ire->ire_in_ill,
964	    ip_dot_addr(ire->ire_addr, buf1),
965	    ip_dot_addr(ire->ire_gateway_addr, buf2),
966	    ire->ire_max_frag, ref,
967	    ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type),
968	    ire->ire_ib_pkt_count);
969
970}
971/*
972 * ip_ire_req is called by ip_wput when an IRE_DB_REQ_TYPE message is handed
973 * down from the Upper Level Protocol to request a copy of the IRE (to check
974 * its type or to extract information like round-trip time estimates or the
975 * MTU.)
976 * The address is assumed to be in the ire_addr field. If no IRE is found
977 * an IRE is returned with ire_type being zero.
978 * Note that the upper lavel protocol has to check for broadcast
979 * (IRE_BROADCAST) and multicast (CLASSD(addr)).
980 * If there is a b_cont the resulting IRE_DB_TYPE mblk is placed at the
981 * end of the returned message.
982 *
983 * TCP sends down a message of this type with a connection request packet
984 * chained on. UDP and ICMP send it down to verify that a route exists for
985 * the destination address when they get connected.
986 */
987void
988ip_ire_req(queue_t *q, mblk_t *mp)
989{
990	ire_t	*inire;
991	ire_t	*ire;
992	mblk_t	*mp1;
993	ire_t	*sire = NULL;
994	zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid;
995	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
996
997	ASSERT(q->q_next == NULL);
998
999	if ((mp->b_wptr - mp->b_rptr) < sizeof (ire_t) ||
1000	    !OK_32PTR(mp->b_rptr)) {
1001		freemsg(mp);
1002		return;
1003	}
1004	inire = (ire_t *)mp->b_rptr;
1005	/*
1006	 * Got it, now take our best shot at an IRE.
1007	 */
1008	if (inire->ire_ipversion == IPV6_VERSION) {
1009		ire = ire_route_lookup_v6(&inire->ire_addr_v6, 0, 0, 0,
1010		    NULL, &sire, zoneid, NULL,
1011		    (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst);
1012	} else {
1013		ASSERT(inire->ire_ipversion == IPV4_VERSION);
1014		ire = ire_route_lookup(inire->ire_addr, 0, 0, 0,
1015		    NULL, &sire, zoneid, NULL,
1016		    (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst);
1017	}
1018
1019	/*
1020	 * We prevent returning IRES with source address INADDR_ANY
1021	 * as these were temporarily created for sending packets
1022	 * from endpoints that have conn_unspec_src set.
1023	 */
1024	if (ire == NULL ||
1025	    (ire->ire_ipversion == IPV4_VERSION &&
1026	    ire->ire_src_addr == INADDR_ANY) ||
1027	    (ire->ire_ipversion == IPV6_VERSION &&
1028	    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6))) {
1029		inire->ire_type = 0;
1030	} else {
1031		bcopy(ire, inire, sizeof (ire_t));
1032		/* Copy the route metrics from the parent. */
1033		if (sire != NULL) {
1034			bcopy(&(sire->ire_uinfo), &(inire->ire_uinfo),
1035			    sizeof (iulp_t));
1036		}
1037
1038		/*
1039		 * As we don't lookup global policy here, we may not
1040		 * pass the right size if per-socket policy is not
1041		 * present. For these cases, path mtu discovery will
1042		 * do the right thing.
1043		 */
1044		inire->ire_ipsec_overhead = conn_ipsec_length(Q_TO_CONN(q));
1045
1046		/* Pass the latest setting of the ip_path_mtu_discovery */
1047		inire->ire_frag_flag |=
1048		    (ipst->ips_ip_path_mtu_discovery) ? IPH_DF : 0;
1049	}
1050	if (ire != NULL)
1051		ire_refrele(ire);
1052	if (sire != NULL)
1053		ire_refrele(sire);
1054	mp->b_wptr = &mp->b_rptr[sizeof (ire_t)];
1055	mp->b_datap->db_type = IRE_DB_TYPE;
1056
1057	/* Put the IRE_DB_TYPE mblk last in the chain */
1058	mp1 = mp->b_cont;
1059	if (mp1 != NULL) {
1060		mp->b_cont = NULL;
1061		linkb(mp1, mp);
1062		mp = mp1;
1063	}
1064	qreply(q, mp);
1065}
1066
1067/*
1068 * Send a packet using the specified IRE.
1069 * If ire_src_addr_v6 is all zero then discard the IRE after
1070 * the packet has been sent.
1071 */
1072static void
1073ire_send(queue_t *q, mblk_t *pkt, ire_t *ire)
1074{
1075	mblk_t *ipsec_mp;
1076	boolean_t is_secure;
1077	uint_t ifindex;
1078	ill_t	*ill;
1079	zoneid_t zoneid = ire->ire_zoneid;
1080	ip_stack_t	*ipst = ire->ire_ipst;
1081
1082	ASSERT(ire->ire_ipversion == IPV4_VERSION);
1083	ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */
1084	ipsec_mp = pkt;
1085	is_secure = (pkt->b_datap->db_type == M_CTL);
1086	if (is_secure) {
1087		ipsec_out_t *io;
1088
1089		pkt = pkt->b_cont;
1090		io = (ipsec_out_t *)ipsec_mp->b_rptr;
1091		if (io->ipsec_out_type == IPSEC_OUT)
1092			zoneid = io->ipsec_out_zoneid;
1093	}
1094
1095	/* If the packet originated externally then */
1096	if (pkt->b_prev) {
1097		ire_refrele(ire);
1098		/*
1099		 * Extract the ifindex from b_prev (set in ip_rput_noire).
1100		 * Look up interface to see if it still exists (it could have
1101		 * been unplumbed by the time the reply came back from ARP)
1102		 */
1103		ifindex = (uint_t)(uintptr_t)pkt->b_prev;
1104		ill = ill_lookup_on_ifindex(ifindex, B_FALSE,
1105		    NULL, NULL, NULL, NULL, ipst);
1106		if (ill == NULL) {
1107			pkt->b_prev = NULL;
1108			pkt->b_next = NULL;
1109			freemsg(ipsec_mp);
1110			return;
1111		}
1112		q = ill->ill_rq;
1113		pkt->b_prev = NULL;
1114		/*
1115		 * This packet has not gone through IPSEC processing
1116		 * and hence we should not have any IPSEC message
1117		 * prepended.
1118		 */
1119		ASSERT(ipsec_mp == pkt);
1120		put(q, pkt);
1121		ill_refrele(ill);
1122	} else if (pkt->b_next) {
1123		/* Packets from multicast router */
1124		pkt->b_next = NULL;
1125		/*
1126		 * We never get the IPSEC_OUT while forwarding the
1127		 * packet for multicast router.
1128		 */
1129		ASSERT(ipsec_mp == pkt);
1130		ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, ipsec_mp, NULL);
1131		ire_refrele(ire);
1132	} else {
1133		/* Locally originated packets */
1134		boolean_t is_inaddr_any;
1135		ipha_t *ipha = (ipha_t *)pkt->b_rptr;
1136
1137		/*
1138		 * We need to do an ire_delete below for which
1139		 * we need to make sure that the IRE will be
1140		 * around even after calling ip_wput_ire -
1141		 * which does ire_refrele. Otherwise somebody
1142		 * could potentially delete this ire and hence
1143		 * free this ire and we will be calling ire_delete
1144		 * on a freed ire below.
1145		 */
1146		is_inaddr_any = (ire->ire_src_addr == INADDR_ANY);
1147		if (is_inaddr_any) {
1148			IRE_REFHOLD(ire);
1149		}
1150		/*
1151		 * If we were resolving a router we can not use the
1152		 * routers IRE for sending the packet (since it would
1153		 * violate the uniqness of the IP idents) thus we
1154		 * make another pass through ip_wput to create the IRE_CACHE
1155		 * for the destination.
1156		 * When IRE_MARK_NOADD is set, ire_add() is not called.
1157		 * Thus ip_wput() will never find a ire and result in an
1158		 * infinite loop. Thus we check whether IRE_MARK_NOADD is
1159		 * is set. This also implies that IRE_MARK_NOADD can only be
1160		 * used to send packets to directly connected hosts.
1161		 */
1162		if (ipha->ipha_dst != ire->ire_addr &&
1163		    !(ire->ire_marks & IRE_MARK_NOADD)) {
1164			ire_refrele(ire);	/* Held in ire_add */
1165			if (CONN_Q(q)) {
1166				(void) ip_output(Q_TO_CONN(q), ipsec_mp, q,
1167				    IRE_SEND);
1168			} else {
1169				(void) ip_output((void *)(uintptr_t)zoneid,
1170				    ipsec_mp, q, IRE_SEND);
1171			}
1172		} else {
1173			if (is_secure) {
1174				ipsec_out_t *oi;
1175				ipha_t *ipha;
1176
1177				oi = (ipsec_out_t *)ipsec_mp->b_rptr;
1178				ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr;
1179				if (oi->ipsec_out_proc_begin) {
1180					/*
1181					 * This is the case where
1182					 * ip_wput_ipsec_out could not find
1183					 * the IRE and recreated a new one.
1184					 * As ip_wput_ipsec_out does ire
1185					 * lookups, ire_refrele for the extra
1186					 * bump in ire_add.
1187					 */
1188					ire_refrele(ire);
1189					ip_wput_ipsec_out(q, ipsec_mp, ipha,
1190					    NULL, NULL);
1191				} else {
1192					/*
1193					 * IRE_REFRELE will be done in
1194					 * ip_wput_ire.
1195					 */
1196					ip_wput_ire(q, ipsec_mp, ire, NULL,
1197					    IRE_SEND, zoneid);
1198				}
1199			} else {
1200				/*
1201				 * IRE_REFRELE will be done in ip_wput_ire.
1202				 */
1203				ip_wput_ire(q, ipsec_mp, ire, NULL,
1204				    IRE_SEND, zoneid);
1205			}
1206		}
1207		/*
1208		 * Special code to support sending a single packet with
1209		 * conn_unspec_src using an IRE which has no source address.
1210		 * The IRE is deleted here after sending the packet to avoid
1211		 * having other code trip on it. But before we delete the
1212		 * ire, somebody could have looked up this ire.
1213		 * We prevent returning/using this IRE by the upper layers
1214		 * by making checks to NULL source address in other places
1215		 * like e.g ip_ire_append, ip_ire_req and ip_bind_connected.
1216		 * Though, this does not completely prevent other threads
1217		 * from using this ire, this should not cause any problems.
1218		 *
1219		 * NOTE : We use is_inaddr_any instead of using ire_src_addr
1220		 * because for the normal case i.e !is_inaddr_any, ire_refrele
1221		 * above could have potentially freed the ire.
1222		 */
1223		if (is_inaddr_any) {
1224			/*
1225			 * If this IRE has been deleted by another thread, then
1226			 * ire_bucket won't be NULL, but ire_ptpn will be NULL.
1227			 * Thus, ire_delete will do nothing.  This check
1228			 * guards against calling ire_delete when the IRE was
1229			 * never inserted in the table, which is handled by
1230			 * ire_delete as dropping another reference.
1231			 */
1232			if (ire->ire_bucket != NULL) {
1233				ip1dbg(("ire_send: delete IRE\n"));
1234				ire_delete(ire);
1235			}
1236			ire_refrele(ire);	/* Held above */
1237		}
1238	}
1239}
1240
1241/*
1242 * Send a packet using the specified IRE.
1243 * If ire_src_addr_v6 is all zero then discard the IRE after
1244 * the packet has been sent.
1245 */
1246static void
1247ire_send_v6(queue_t *q, mblk_t *pkt, ire_t *ire)
1248{
1249	mblk_t *ipsec_mp;
1250	boolean_t secure;
1251	uint_t ifindex;
1252	zoneid_t zoneid = ire->ire_zoneid;
1253	ip_stack_t	*ipst = ire->ire_ipst;
1254
1255	ASSERT(ire->ire_ipversion == IPV6_VERSION);
1256	ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */
1257	if (pkt->b_datap->db_type == M_CTL) {
1258		ipsec_out_t *io;
1259
1260		ipsec_mp = pkt;
1261		pkt = pkt->b_cont;
1262		secure = B_TRUE;
1263		io = (ipsec_out_t *)ipsec_mp->b_rptr;
1264		if (io->ipsec_out_type == IPSEC_OUT)
1265			zoneid = io->ipsec_out_zoneid;
1266	} else {
1267		ipsec_mp = pkt;
1268		secure = B_FALSE;
1269	}
1270
1271	/* If the packet originated externally then */
1272	if (pkt->b_prev) {
1273		ill_t	*ill;
1274		/*
1275		 * Extract the ifindex from b_prev (set in ip_rput_data_v6).
1276		 * Look up interface to see if it still exists (it could have
1277		 * been unplumbed by the time the reply came back from the
1278		 * resolver).
1279		 */
1280		ifindex = (uint_t)(uintptr_t)pkt->b_prev;
1281		ill = ill_lookup_on_ifindex(ifindex, B_TRUE,
1282		    NULL, NULL, NULL, NULL, ipst);
1283		if (ill == NULL) {
1284			pkt->b_prev = NULL;
1285			pkt->b_next = NULL;
1286			freemsg(ipsec_mp);
1287			ire_refrele(ire);	/* Held in ire_add */
1288			return;
1289		}
1290		q = ill->ill_rq;
1291		pkt->b_prev = NULL;
1292		/*
1293		 * This packet has not gone through IPSEC processing
1294		 * and hence we should not have any IPSEC message
1295		 * prepended.
1296		 */
1297		ASSERT(ipsec_mp == pkt);
1298		put(q, pkt);
1299		ill_refrele(ill);
1300	} else if (pkt->b_next) {
1301		/* Packets from multicast router */
1302		pkt->b_next = NULL;
1303		/*
1304		 * We never get the IPSEC_OUT while forwarding the
1305		 * packet for multicast router.
1306		 */
1307		ASSERT(ipsec_mp == pkt);
1308		/*
1309		 * XXX TODO IPv6.
1310		 */
1311		freemsg(pkt);
1312#ifdef XXX
1313		ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, pkt, NULL);
1314#endif
1315	} else {
1316		if (secure) {
1317			ipsec_out_t *oi;
1318			ip6_t *ip6h;
1319
1320			oi = (ipsec_out_t *)ipsec_mp->b_rptr;
1321			ip6h = (ip6_t *)ipsec_mp->b_cont->b_rptr;
1322			if (oi->ipsec_out_proc_begin) {
1323				/*
1324				 * This is the case where
1325				 * ip_wput_ipsec_out could not find
1326				 * the IRE and recreated a new one.
1327				 */
1328				ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h,
1329				    NULL, NULL);
1330			} else {
1331				if (CONN_Q(q)) {
1332					(void) ip_output_v6(Q_TO_CONN(q),
1333					    ipsec_mp, q, IRE_SEND);
1334				} else {
1335					(void) ip_output_v6(
1336					    (void *)(uintptr_t)zoneid,
1337					    ipsec_mp, q, IRE_SEND);
1338				}
1339			}
1340		} else {
1341			/*
1342			 * Send packets through ip_output_v6 so that any
1343			 * ip6_info header can be processed again.
1344			 */
1345			if (CONN_Q(q)) {
1346				(void) ip_output_v6(Q_TO_CONN(q), ipsec_mp, q,
1347				    IRE_SEND);
1348			} else {
1349				(void) ip_output_v6((void *)(uintptr_t)zoneid,
1350				    ipsec_mp, q, IRE_SEND);
1351			}
1352		}
1353		/*
1354		 * Special code to support sending a single packet with
1355		 * conn_unspec_src using an IRE which has no source address.
1356		 * The IRE is deleted here after sending the packet to avoid
1357		 * having other code trip on it. But before we delete the
1358		 * ire, somebody could have looked up this ire.
1359		 * We prevent returning/using this IRE by the upper layers
1360		 * by making checks to NULL source address in other places
1361		 * like e.g ip_ire_append_v6, ip_ire_req and
1362		 * ip_bind_connected_v6. Though, this does not completely
1363		 * prevent other threads from using this ire, this should
1364		 * not cause any problems.
1365		 */
1366		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6)) {
1367			ip1dbg(("ire_send_v6: delete IRE\n"));
1368			ire_delete(ire);
1369		}
1370	}
1371	ire_refrele(ire);	/* Held in ire_add */
1372}
1373
1374/*
1375 * Make sure that IRE bucket does not get too long.
1376 * This can cause lock up because ire_cache_lookup()
1377 * may take "forever" to finish.
1378 *
1379 * We just remove cnt IREs each time.  This means that
1380 * the bucket length will stay approximately constant,
1381 * depending on cnt.  This should be enough to defend
1382 * against DoS attack based on creating temporary IREs
1383 * (for forwarding and non-TCP traffic).
1384 *
1385 * Note that new IRE is normally added at the tail of the
1386 * bucket.  This means that we are removing the "oldest"
1387 * temporary IRE added.  Only if there are IREs with
1388 * the same ire_addr, do we not add it at the tail.  Refer
1389 * to ire_add_v*().  It should be OK for our purpose.
1390 *
1391 * For non-temporary cached IREs, we make sure that they
1392 * have not been used for some time (defined below), they
1393 * are non-local destinations, and there is no one using
1394 * them at the moment (refcnt == 1).
1395 *
1396 * The above means that the IRE bucket length may become
1397 * very long, consisting of mostly non-temporary IREs.
1398 * This can happen when the hash function does a bad job
1399 * so that most TCP connections cluster to a specific bucket.
1400 * This "hopefully" should never happen.  It can also
1401 * happen if most TCP connections have very long lives.
1402 * Even with the minimal hash table size of 256, there
1403 * has to be a lot of such connections to make the bucket
1404 * length unreasonably long.  This should probably not
1405 * happen either.  The third can when this can happen is
1406 * when the machine is under attack, such as SYN flooding.
1407 * TCP should already have the proper mechanism to protect
1408 * that.  So we should be safe.
1409 *
1410 * This function is called by ire_add_then_send() after
1411 * a new IRE is added and the packet is sent.
1412 *
1413 * The idle cutoff interval is set to 60s.  It can be
1414 * changed using /etc/system.
1415 */
1416uint32_t ire_idle_cutoff_interval = 60000;
1417
1418static void
1419ire_cache_cleanup(irb_t *irb, uint32_t threshold, int cnt)
1420{
1421	ire_t *ire;
1422	int tmp_cnt = cnt;
1423	clock_t cut_off = drv_usectohz(ire_idle_cutoff_interval * 1000);
1424
1425	/*
1426	 * irb is NULL if the IRE is not added to the hash.  This
1427	 * happens when IRE_MARK_NOADD is set in ire_add_then_send()
1428	 * and when ires are returned from ire_update_srcif_v4() routine.
1429	 */
1430	if (irb == NULL)
1431		return;
1432
1433	IRB_REFHOLD(irb);
1434	if (irb->irb_tmp_ire_cnt > threshold) {
1435		for (ire = irb->irb_ire; ire != NULL && tmp_cnt > 0;
1436		    ire = ire->ire_next) {
1437			if (ire->ire_marks & IRE_MARK_CONDEMNED)
1438				continue;
1439			if (ire->ire_marks & IRE_MARK_TEMPORARY) {
1440				ASSERT(ire->ire_type == IRE_CACHE);
1441				ire_delete(ire);
1442				tmp_cnt--;
1443			}
1444		}
1445	}
1446	if (irb->irb_ire_cnt - irb->irb_tmp_ire_cnt > threshold) {
1447		for (ire = irb->irb_ire; ire != NULL && cnt > 0;
1448		    ire = ire->ire_next) {
1449			if (ire->ire_marks & IRE_MARK_CONDEMNED)
1450				continue;
1451			if (ire->ire_ipversion == IPV4_VERSION) {
1452				if (ire->ire_gateway_addr == 0)
1453					continue;
1454			} else {
1455				if (IN6_IS_ADDR_UNSPECIFIED(
1456				    &ire->ire_gateway_addr_v6))
1457					continue;
1458			}
1459			if ((ire->ire_type == IRE_CACHE) &&
1460			    (lbolt - ire->ire_last_used_time > cut_off) &&
1461			    (ire->ire_refcnt == 1)) {
1462				ire_delete(ire);
1463				cnt--;
1464			}
1465		}
1466	}
1467	IRB_REFRELE(irb);
1468}
1469
1470/*
1471 * ire_add_then_send is called when a new IRE has been created in order to
1472 * route an outgoing packet.  Typically, it is called from ip_wput when
1473 * a response comes back down from a resolver.  We add the IRE, and then
1474 * possibly run the packet through ip_wput or ip_rput, as appropriate.
1475 * However, we do not add the newly created IRE in the cache when
1476 * IRE_MARK_NOADD is set in the IRE. IRE_MARK_NOADD is set at
1477 * ip_newroute_ipif(). The ires with IRE_MARK_NOADD and ires returned
1478 * by ire_update_srcif_v4() are ire_refrele'd by ip_wput_ire() and get
1479 * deleted.
1480 * Multirouting support: the packet is silently discarded when the new IRE
1481 * holds the RTF_MULTIRT flag, but is not the first IRE to be added with the
1482 * RTF_MULTIRT flag for the same destination address.
1483 * In this case, we just want to register this additional ire without
1484 * sending the packet, as it has already been replicated through
1485 * existing multirt routes in ip_wput().
1486 */
1487void
1488ire_add_then_send(queue_t *q, ire_t *ire, mblk_t *mp)
1489{
1490	irb_t *irb;
1491	boolean_t drop = B_FALSE;
1492	/* LINTED : set but not used in function */
1493	boolean_t mctl_present;
1494	mblk_t *first_mp = NULL;
1495	mblk_t *save_mp = NULL;
1496	ire_t *dst_ire;
1497	ipha_t *ipha;
1498	ip6_t *ip6h;
1499	ip_stack_t	*ipst = ire->ire_ipst;
1500
1501	if (mp != NULL) {
1502		/*
1503		 * We first have to retrieve the destination address carried
1504		 * by the packet.
1505		 * We can't rely on ire as it can be related to a gateway.
1506		 * The destination address will help in determining if
1507		 * other RTF_MULTIRT ires are already registered.
1508		 *
1509		 * We first need to know where we are going : v4 or V6.
1510		 * the ire version is enough, as there is no risk that
1511		 * we resolve an IPv6 address with an IPv4 ire
1512		 * or vice versa.
1513		 */
1514		if (ire->ire_ipversion == IPV4_VERSION) {
1515			EXTRACT_PKT_MP(mp, first_mp, mctl_present);
1516			ipha = (ipha_t *)mp->b_rptr;
1517			save_mp = mp;
1518			mp = first_mp;
1519
1520			dst_ire = ire_cache_lookup(ipha->ipha_dst,
1521			    ire->ire_zoneid, MBLK_GETLABEL(mp), ipst);
1522		} else {
1523			ASSERT(ire->ire_ipversion == IPV6_VERSION);
1524			/*
1525			 * Get a pointer to the beginning of the IPv6 header.
1526			 * Ignore leading IPsec control mblks.
1527			 */
1528			first_mp = mp;
1529			if (mp->b_datap->db_type == M_CTL) {
1530				mp = mp->b_cont;
1531			}
1532			ip6h = (ip6_t *)mp->b_rptr;
1533			save_mp = mp;
1534			mp = first_mp;
1535			dst_ire = ire_cache_lookup_v6(&ip6h->ip6_dst,
1536			    ire->ire_zoneid, MBLK_GETLABEL(mp), ipst);
1537		}
1538		if (dst_ire != NULL) {
1539			if (dst_ire->ire_flags & RTF_MULTIRT) {
1540				/*
1541				 * At least one resolved multirt route
1542				 * already exists for the destination,
1543				 * don't sent this packet: either drop it
1544				 * or complete the pending resolution,
1545				 * depending on the ire.
1546				 */
1547				drop = B_TRUE;
1548			}
1549			ip1dbg(("ire_add_then_send: dst_ire %p "
1550			    "[dst %08x, gw %08x], drop %d\n",
1551			    (void *)dst_ire,
1552			    (dst_ire->ire_ipversion == IPV4_VERSION) ? \
1553				ntohl(dst_ire->ire_addr) : \
1554				ntohl(V4_PART_OF_V6(dst_ire->ire_addr_v6)),
1555			    (dst_ire->ire_ipversion == IPV4_VERSION) ? \
1556				ntohl(dst_ire->ire_gateway_addr) : \
1557				ntohl(V4_PART_OF_V6(
1558				    dst_ire->ire_gateway_addr_v6)),
1559			    drop));
1560			ire_refrele(dst_ire);
1561		}
1562	}
1563
1564	if (!(ire->ire_marks & IRE_MARK_NOADD)) {
1565		/*
1566		 * Regular packets with cache bound ires and
1567		 * the packets from ARP response for ires which
1568		 * belong to the ire_srcif_v4 table, are here.
1569		 */
1570		if (ire->ire_in_ill == NULL) {
1571			/* Add the ire */
1572			(void) ire_add(&ire, NULL, NULL, NULL, B_FALSE);
1573		} else {
1574			/*
1575			 * This must be ARP response for ire in interface based
1576			 * table. Note that we don't add them in cache table,
1577			 * instead we update the existing table with dlureq_mp
1578			 * information. The reverse tunnel ires do not come
1579			 * here, as reverse tunnel is non-resolver interface.
1580			 * XXX- another design alternative was to mark the
1581			 * ires in interface based table with a special mark to
1582			 * make absolutely sure that we operate in right ires.
1583			 * This idea was not implemented as part of code review
1584			 * suggestion, as ire_in_ill suffice to distinguish
1585			 * between the regular ires and interface based
1586			 * ires now and thus we save a bit in the ire_marks.
1587			 */
1588			ire = ire_update_srcif_v4(ire);
1589		}
1590
1591		if (ire == NULL) {
1592			mp->b_prev = NULL;
1593			mp->b_next = NULL;
1594			MULTIRT_DEBUG_UNTAG(mp);
1595			freemsg(mp);
1596			return;
1597		}
1598		if (mp == NULL) {
1599			ire_refrele(ire);	/* Held in ire_add_v4/v6 */
1600			return;
1601		}
1602	}
1603	if (drop) {
1604		/*
1605		 * If we're adding an RTF_MULTIRT ire, the resolution
1606		 * is over: we just drop the packet.
1607		 */
1608		if (ire->ire_flags & RTF_MULTIRT) {
1609			if (save_mp) {
1610				save_mp->b_prev = NULL;
1611				save_mp->b_next = NULL;
1612			}
1613			MULTIRT_DEBUG_UNTAG(mp);
1614			freemsg(mp);
1615		} else {
1616			/*
1617			 * Otherwise, we're adding the ire to a gateway
1618			 * for a multirt route.
1619			 * Invoke ip_newroute() to complete the resolution
1620			 * of the route. We will then come back here and
1621			 * finally drop this packet in the above code.
1622			 */
1623			if (ire->ire_ipversion == IPV4_VERSION) {
1624				/*
1625				 * TODO: in order for CGTP to work in non-global
1626				 * zones, ip_newroute() must create the IRE
1627				 * cache in the zone indicated by
1628				 * ire->ire_zoneid.
1629				 */
1630				ip_newroute(q, mp, ipha->ipha_dst, 0,
1631				    (CONN_Q(q) ? Q_TO_CONN(q) : NULL),
1632				    ire->ire_zoneid, ipst);
1633			} else {
1634				ASSERT(ire->ire_ipversion == IPV6_VERSION);
1635				ip_newroute_v6(q, mp, &ip6h->ip6_dst, NULL,
1636				    NULL, ire->ire_zoneid, ipst);
1637			}
1638		}
1639
1640		ire_refrele(ire); /* As done by ire_send(). */
1641		return;
1642	}
1643	/*
1644	 * Need to remember ire_bucket here as ire_send*() may delete
1645	 * the ire so we cannot reference it after that.
1646	 */
1647	irb = ire->ire_bucket;
1648	if (ire->ire_ipversion == IPV6_VERSION) {
1649		ire_send_v6(q, mp, ire);
1650		/*
1651		 * Clean up more than 1 IRE so that the clean up does not
1652		 * need to be done every time when a new IRE is added and
1653		 * the threshold is reached.
1654		 */
1655		ire_cache_cleanup(irb, ip6_ire_max_bucket_cnt, 2);
1656	} else {
1657		ire_send(q, mp, ire);
1658		ire_cache_cleanup(irb, ip_ire_max_bucket_cnt, 2);
1659	}
1660}
1661
1662/*
1663 * Initialize the ire that is specific to IPv4 part and call
1664 * ire_init_common to finish it.
1665 */
1666ire_t *
1667ire_init(ire_t *ire, uchar_t *addr, uchar_t *mask, uchar_t *src_addr,
1668    uchar_t *gateway, uchar_t *in_src_addr, uint_t *max_fragp, mblk_t *fp_mp,
1669    queue_t *rfq, queue_t *stq, ushort_t type, mblk_t *dlureq_mp, ipif_t *ipif,
1670    ill_t *in_ill, ipaddr_t cmask, uint32_t phandle, uint32_t ihandle,
1671    uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp,
1672    ip_stack_t *ipst)
1673{
1674	/*
1675	 * Reject IRE security attribute creation/initialization
1676	 * if system is not running in Trusted mode.
1677	 */
1678	if ((gc != NULL || gcgrp != NULL) && !is_system_labeled())
1679		return (NULL);
1680
1681	if (fp_mp != NULL) {
1682		/*
1683		 * We can't dupb() here as multiple threads could be
1684		 * calling dupb on the same mp which is incorrect.
1685		 * First dupb() should be called only by one thread.
1686		 */
1687		fp_mp = copyb(fp_mp);
1688		if (fp_mp == NULL)
1689			return (NULL);
1690	}
1691
1692	if (dlureq_mp != NULL) {
1693		/*
1694		 * We can't dupb() here as multiple threads could be
1695		 * calling dupb on the same mp which is incorrect.
1696		 * First dupb() should be called only by one thread.
1697		 */
1698		dlureq_mp = copyb(dlureq_mp);
1699		if (dlureq_mp == NULL) {
1700			if (fp_mp != NULL)
1701				freeb(fp_mp);
1702			return (NULL);
1703		}
1704	}
1705
1706	/*
1707	 * Check that IRE_IF_RESOLVER and IRE_IF_NORESOLVER have a
1708	 * dlureq_mp which is the ill_resolver_mp for IRE_IF_RESOLVER
1709	 * and DL_UNITDATA_REQ for IRE_IF_NORESOLVER.
1710	 */
1711	if ((type & IRE_INTERFACE) &&
1712	    dlureq_mp == NULL) {
1713		ASSERT(fp_mp == NULL);
1714		ip0dbg(("ire_init: no dlureq_mp\n"));
1715		return (NULL);
1716	}
1717
1718	BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_alloced);
1719
1720	if (addr != NULL)
1721		bcopy(addr, &ire->ire_addr, IP_ADDR_LEN);
1722	if (src_addr != NULL)
1723		bcopy(src_addr, &ire->ire_src_addr, IP_ADDR_LEN);
1724	if (mask != NULL) {
1725		bcopy(mask, &ire->ire_mask, IP_ADDR_LEN);
1726		ire->ire_masklen = ip_mask_to_plen(ire->ire_mask);
1727	}
1728	if (gateway != NULL) {
1729		bcopy(gateway, &ire->ire_gateway_addr, IP_ADDR_LEN);
1730	}
1731	if (in_src_addr != NULL) {
1732		bcopy(in_src_addr, &ire->ire_in_src_addr, IP_ADDR_LEN);
1733	}
1734
1735	if (type == IRE_CACHE)
1736		ire->ire_cmask = cmask;
1737
1738	/* ire_init_common will free the mblks upon encountering any failure */
1739	if (!ire_init_common(ire, max_fragp, fp_mp, rfq, stq, type, dlureq_mp,
1740	    ipif, in_ill, phandle, ihandle, flags, IPV4_VERSION, ulp_info,
1741	    gc, gcgrp, ipst))
1742		return (NULL);
1743
1744	return (ire);
1745}
1746
1747/*
1748 * Similar to ire_create except that it is called only when
1749 * we want to allocate ire as an mblk e.g. we have an external
1750 * resolver ARP.
1751 */
1752ire_t *
1753ire_create_mp(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway,
1754    uchar_t *in_src_addr, uint_t max_frag, mblk_t *fp_mp, queue_t *rfq,
1755    queue_t *stq, ushort_t type, mblk_t *dlureq_mp, ipif_t *ipif, ill_t *in_ill,
1756    ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, uint32_t flags,
1757    const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp,
1758    ip_stack_t *ipst)
1759{
1760	ire_t	*ire, *buf;
1761	ire_t	*ret_ire;
1762	mblk_t	*mp;
1763	size_t	bufsize;
1764	frtn_t	*frtnp;
1765	ill_t	*ill;
1766
1767	bufsize = sizeof (ire_t) + sizeof (frtn_t);
1768	buf = kmem_alloc(bufsize, KM_NOSLEEP);
1769	if (buf == NULL) {
1770		ip1dbg(("ire_create_mp: alloc failed\n"));
1771		return (NULL);
1772	}
1773	frtnp = (frtn_t *)(buf + 1);
1774	frtnp->free_arg = (caddr_t)buf;
1775	frtnp->free_func = ire_freemblk;
1776
1777	/*
1778	 * Allocate the new IRE. The ire created will hold a ref on
1779	 * an nce_t after ire_nce_init, and this ref must either be
1780	 * (a)  transferred to the ire_cache entry created when ire_add_v4
1781	 *	is called after successful arp resolution, or,
1782	 * (b)  released, when arp resolution fails
1783	 * Case (b) is handled in ire_freemblk() which will be called
1784	 * when mp is freed as a result of failed arp.
1785	 */
1786	mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp);
1787	if (mp == NULL) {
1788		ip1dbg(("ire_create_mp: alloc failed\n"));
1789		kmem_free(buf, bufsize);
1790		return (NULL);
1791	}
1792	ire = (ire_t *)mp->b_rptr;
1793	mp->b_wptr = (uchar_t *)&ire[1];
1794
1795	/* Start clean. */
1796	*ire = ire_null;
1797	ire->ire_mp = mp;
1798	mp->b_datap->db_type = IRE_DB_TYPE;
1799	ire->ire_marks |= IRE_MARK_UNCACHED;
1800
1801	ret_ire = ire_init(ire, addr, mask, src_addr, gateway, in_src_addr,
1802	    NULL, fp_mp, rfq, stq, type, dlureq_mp, ipif, in_ill, cmask,
1803	    phandle, ihandle, flags, ulp_info, gc, gcgrp, ipst);
1804
1805	ill = (ill_t *)(stq->q_ptr);
1806	if (ret_ire == NULL) {
1807		/* ire_freemblk needs these set */
1808		ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex;
1809		ire->ire_ipst = ipst;
1810		freeb(ire->ire_mp);
1811		return (NULL);
1812	}
1813	ret_ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex;
1814	ASSERT(ret_ire == ire);
1815	/*
1816	 * ire_max_frag is normally zero here and is atomically set
1817	 * under the irebucket lock in ire_add_v[46] except for the
1818	 * case of IRE_MARK_NOADD. In that event the the ire_max_frag
1819	 * is non-zero here.
1820	 */
1821	ire->ire_max_frag = max_frag;
1822	return (ire);
1823}
1824
1825/*
1826 * ire_create is called to allocate and initialize a new IRE.
1827 *
1828 * NOTE : This is called as writer sometimes though not required
1829 * by this function.
1830 */
1831ire_t *
1832ire_create(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway,
1833    uchar_t *in_src_addr, uint_t *max_fragp, mblk_t *fp_mp, queue_t *rfq,
1834    queue_t *stq, ushort_t type, mblk_t *dlureq_mp, ipif_t *ipif, ill_t *in_ill,
1835    ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, uint32_t flags,
1836    const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp,
1837    ip_stack_t *ipst)
1838{
1839	ire_t	*ire;
1840	ire_t	*ret_ire;
1841
1842	ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
1843	if (ire == NULL) {
1844		ip1dbg(("ire_create: alloc failed\n"));
1845		return (NULL);
1846	}
1847	*ire = ire_null;
1848
1849	ret_ire = ire_init(ire, addr, mask, src_addr, gateway, in_src_addr,
1850	    max_fragp, fp_mp, rfq, stq, type, dlureq_mp, ipif, in_ill,  cmask,
1851	    phandle, ihandle, flags, ulp_info, gc, gcgrp, ipst);
1852
1853	if (ret_ire == NULL) {
1854		kmem_cache_free(ire_cache, ire);
1855		return (NULL);
1856	}
1857	ASSERT(ret_ire == ire);
1858	return (ire);
1859}
1860
1861
1862/*
1863 * Common to IPv4 and IPv6
1864 */
1865boolean_t
1866ire_init_common(ire_t *ire, uint_t *max_fragp, mblk_t *fp_mp,
1867    queue_t *rfq, queue_t *stq, ushort_t type,
1868    mblk_t *dlureq_mp, ipif_t *ipif, ill_t *in_ill, uint32_t phandle,
1869    uint32_t ihandle, uint32_t flags, uchar_t ipversion,
1870    const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp,
1871    ip_stack_t *ipst)
1872{
1873	ire->ire_max_fragp = max_fragp;
1874	ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? IPH_DF : 0;
1875
1876	ASSERT(fp_mp == NULL || fp_mp->b_datap->db_type == M_DATA);
1877#ifdef DEBUG
1878	if (ipif != NULL) {
1879		if (ipif->ipif_isv6)
1880			ASSERT(ipversion == IPV6_VERSION);
1881		else
1882			ASSERT(ipversion == IPV4_VERSION);
1883	}
1884#endif /* DEBUG */
1885
1886	/*
1887	 * Create/initialize IRE security attribute only in Trusted mode;
1888	 * if the passed in gc/gcgrp is non-NULL, we expect that the caller
1889	 * has held a reference to it and will release it when this routine
1890	 * returns a failure, otherwise we own the reference.  We do this
1891	 * prior to initializing the rest IRE fields.
1892	 *
1893	 * Don't allocate ire_gw_secattr for the resolver case to prevent
1894	 * memory leak (in case of external resolution failure). We'll
1895	 * allocate it after a successful external resolution, in ire_add().
1896	 * Note that ire->ire_mp != NULL here means this ire is headed
1897	 * to an external resolver.
1898	 */
1899	if (is_system_labeled()) {
1900		if ((type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST |
1901		    IRE_INTERFACE)) != 0) {
1902			/* release references on behalf of caller */
1903			if (gc != NULL)
1904				GC_REFRELE(gc);
1905			if (gcgrp != NULL)
1906				GCGRP_REFRELE(gcgrp);
1907		} else if ((ire->ire_mp == NULL) &&
1908		    tsol_ire_init_gwattr(ire, ipversion, gc, gcgrp) != 0) {
1909			/* free any caller-allocated mblks upon failure */
1910			if (fp_mp != NULL)
1911				freeb(fp_mp);
1912			if (dlureq_mp != NULL)
1913				freeb(dlureq_mp);
1914			return (B_FALSE);
1915		}
1916	}
1917
1918	ire->ire_stq = stq;
1919	ire->ire_rfq = rfq;
1920	ire->ire_type = type;
1921	ire->ire_flags = RTF_UP | flags;
1922	ire->ire_ident = TICK_TO_MSEC(lbolt);
1923	bcopy(ulp_info, &ire->ire_uinfo, sizeof (iulp_t));
1924
1925	ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count;
1926	ire->ire_last_used_time = lbolt;
1927	ire->ire_create_time = (uint32_t)gethrestime_sec();
1928
1929	/*
1930	 * If this IRE is an IRE_CACHE, inherit the handles from the
1931	 * parent IREs. For others in the forwarding table, assign appropriate
1932	 * new ones.
1933	 *
1934	 * The mutex protecting ire_handle is because ire_create is not always
1935	 * called as a writer.
1936	 */
1937	if (ire->ire_type & IRE_OFFSUBNET) {
1938		mutex_enter(&ipst->ips_ire_handle_lock);
1939		ire->ire_phandle = (uint32_t)ipst->ips_ire_handle++;
1940		mutex_exit(&ipst->ips_ire_handle_lock);
1941	} else if (ire->ire_type & IRE_INTERFACE) {
1942		mutex_enter(&ipst->ips_ire_handle_lock);
1943		ire->ire_ihandle = (uint32_t)ipst->ips_ire_handle++;
1944		mutex_exit(&ipst->ips_ire_handle_lock);
1945	} else if (ire->ire_type == IRE_CACHE) {
1946		ire->ire_phandle = phandle;
1947		ire->ire_ihandle = ihandle;
1948	}
1949	ire->ire_in_ill = in_ill;
1950	ire->ire_ipif = ipif;
1951	if (ipif != NULL) {
1952		ire->ire_ipif_seqid = ipif->ipif_seqid;
1953		ire->ire_zoneid = ipif->ipif_zoneid;
1954	} else {
1955		ire->ire_zoneid = GLOBAL_ZONEID;
1956	}
1957	ire->ire_ipversion = ipversion;
1958	mutex_init(&ire->ire_lock, NULL, MUTEX_DEFAULT, NULL);
1959	if (ipversion == IPV4_VERSION) {
1960		if (ire_nce_init(ire, fp_mp, dlureq_mp) != 0) {
1961			/* some failure occurred. propagate error back */
1962			return (B_FALSE);
1963		}
1964	} else {
1965		ASSERT(ipversion == IPV6_VERSION);
1966		/*
1967		 * IPv6 initializes the ire_nce in ire_add_v6,
1968		 * which expects to find the ire_nce to be null when
1969		 * when it is called.
1970		 */
1971		if (dlureq_mp)
1972			freemsg(dlureq_mp);
1973		if (fp_mp)
1974			freemsg(fp_mp);
1975	}
1976	ire->ire_refcnt = 1;
1977	ire->ire_ipst = ipst;	/* No netstack_hold */
1978
1979#ifdef IRE_DEBUG
1980	bzero(ire->ire_trace, sizeof (th_trace_t *) * IP_TR_HASH_MAX);
1981#endif
1982
1983	return (B_TRUE);
1984}
1985
1986/*
1987 * This routine is called repeatedly by ipif_up to create broadcast IREs.
1988 * It is passed a pointer to a slot in an IRE pointer array into which to
1989 * place the pointer to the new IRE, if indeed we create one.  If the
1990 * IRE corresponding to the address passed in would be a duplicate of an
1991 * existing one, we don't create the new one.  irep is incremented before
1992 * return only if we do create a new IRE.  (Always called as writer.)
1993 *
1994 * Note that with the "match_flags" parameter, we can match on either
1995 * a particular logical interface (MATCH_IRE_IPIF) or for all logical
1996 * interfaces for a given physical interface (MATCH_IRE_ILL).  Currently,
1997 * we only create broadcast ire's on a per physical interface basis. If
1998 * someone is going to be mucking with logical interfaces, it is important
1999 * to call "ipif_check_bcast_ires()" to make sure that any change to a
2000 * logical interface will not cause critical broadcast IRE's to be deleted.
2001 */
2002ire_t **
2003ire_check_and_create_bcast(ipif_t *ipif, ipaddr_t  addr, ire_t **irep,
2004    int match_flags)
2005{
2006	ire_t *ire;
2007	uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST;
2008	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
2009
2010	/*
2011	 * No broadcast IREs for the LOOPBACK interface
2012	 * or others such as point to point and IPIF_NOXMIT.
2013	 */
2014	if (!(ipif->ipif_flags & IPIF_BROADCAST) ||
2015	    (ipif->ipif_flags & IPIF_NOXMIT))
2016		return (irep);
2017
2018	/* If this would be a duplicate, don't bother. */
2019	if ((ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ipif,
2020	    ipif->ipif_zoneid, NULL, match_flags, ipst)) != NULL) {
2021		/*
2022		 * We look for non-deprecated (and non-anycast, non-nolocal)
2023		 * ipifs as the best choice. ipifs with check_flags matching
2024		 * (deprecated, etc) are used only if non-deprecated ipifs
2025		 * are not available. if the existing ire's ipif is deprecated
2026		 * and the new ipif is non-deprecated, switch to the new ipif
2027		 */
2028		if ((!(ire->ire_ipif->ipif_flags & check_flags)) ||
2029		    (ipif->ipif_flags & check_flags)) {
2030			ire_refrele(ire);
2031			return (irep);
2032		}
2033		/*
2034		 * Bcast ires exist in pairs. Both have to be deleted,
2035		 * Since we are exclusive we can make the above assertion.
2036		 * The 1st has to be refrele'd since it was ctable_lookup'd.
2037		 */
2038		ASSERT(IAM_WRITER_IPIF(ipif));
2039		ASSERT(ire->ire_next->ire_addr == ire->ire_addr);
2040		ire_delete(ire->ire_next);
2041		ire_delete(ire);
2042		ire_refrele(ire);
2043	}
2044
2045	irep = ire_create_bcast(ipif, addr, irep);
2046
2047	return (irep);
2048}
2049
2050uint_t ip_loopback_mtu = IP_LOOPBACK_MTU;
2051
2052/*
2053 * This routine is called from ipif_check_bcast_ires and ire_check_bcast.
2054 * It leaves all the verifying and deleting to those routines. So it always
2055 * creates 2 bcast ires and chains them into the ire array passed in.
2056 */
2057ire_t **
2058ire_create_bcast(ipif_t *ipif, ipaddr_t  addr, ire_t **irep)
2059{
2060	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
2061
2062	*irep++ = ire_create(
2063	    (uchar_t *)&addr,			/* dest addr */
2064	    (uchar_t *)&ip_g_all_ones,		/* mask */
2065	    (uchar_t *)&ipif->ipif_src_addr,	/* source addr */
2066	    NULL,				/* no gateway */
2067	    NULL,				/* no in_src_addr */
2068	    &ipif->ipif_mtu,			/* max frag */
2069	    NULL,				/* fast path header */
2070	    ipif->ipif_rq,			/* recv-from queue */
2071	    ipif->ipif_wq,			/* send-to queue */
2072	    IRE_BROADCAST,
2073	    ipif->ipif_bcast_mp,		/* xmit header */
2074	    ipif,
2075	    NULL,
2076	    0,
2077	    0,
2078	    0,
2079	    0,
2080	    &ire_uinfo_null,
2081	    NULL,
2082	    NULL,
2083	    ipst);
2084
2085	*irep++ = ire_create(
2086		(uchar_t *)&addr,		 /* dest address */
2087		(uchar_t *)&ip_g_all_ones,	 /* mask */
2088		(uchar_t *)&ipif->ipif_src_addr, /* source address */
2089		NULL,				 /* no gateway */
2090		NULL,				 /* no in_src_addr */
2091		&ip_loopback_mtu,		 /* max frag size */
2092		NULL,				 /* Fast Path header */
2093		ipif->ipif_rq,			 /* recv-from queue */
2094		NULL,				 /* no send-to queue */
2095		IRE_BROADCAST,		/* Needed for fanout in wput */
2096		NULL,
2097		ipif,
2098		NULL,
2099		0,
2100		0,
2101		0,
2102		0,
2103		&ire_uinfo_null,
2104		NULL,
2105		NULL,
2106		ipst);
2107
2108	return (irep);
2109}
2110
2111/*
2112 * ire_walk routine to delete or update any IRE_CACHE that might contain
2113 * stale information.
2114 * The flags state which entries to delete or update.
2115 * Garbage collection is done separately using kmem alloc callbacks to
2116 * ip_trash_ire_reclaim.
2117 * Used for both IPv4 and IPv6. However, IPv6 only uses FLUSH_MTU_TIME
2118 * since other stale information is cleaned up using NUD.
2119 */
2120void
2121ire_expire(ire_t *ire, char *arg)
2122{
2123	ire_expire_arg_t	*ieap = (ire_expire_arg_t *)(uintptr_t)arg;
2124	ill_t			*stq_ill;
2125	int			flush_flags = ieap->iea_flush_flag;
2126	ip_stack_t		*ipst = ieap->iea_ipst;
2127
2128	if ((flush_flags & FLUSH_REDIRECT_TIME) &&
2129	    (ire->ire_flags & RTF_DYNAMIC)) {
2130		/* Make sure we delete the corresponding IRE_CACHE */
2131		ip1dbg(("ire_expire: all redirects\n"));
2132		ip_rts_rtmsg(RTM_DELETE, ire, 0, ipst);
2133		ire_delete(ire);
2134		atomic_dec_32(&ipst->ips_ip_redirect_cnt);
2135		return;
2136	}
2137	if (ire->ire_type != IRE_CACHE)
2138		return;
2139
2140	if (flush_flags & FLUSH_ARP_TIME) {
2141		/*
2142		 * Remove all IRE_CACHE.
2143		 * Verify that create time is more than
2144		 * ip_ire_arp_interval milliseconds ago.
2145		 */
2146		if (NCE_EXPIRED(ire->ire_nce, ipst)) {
2147			ire_delete(ire);
2148			return;
2149		}
2150	}
2151
2152	if (ipst->ips_ip_path_mtu_discovery && (flush_flags & FLUSH_MTU_TIME) &&
2153	    (ire->ire_ipif != NULL)) {
2154		/* Increase pmtu if it is less than the interface mtu */
2155		mutex_enter(&ire->ire_lock);
2156		/*
2157		 * If the ipif is a vni (whose mtu is 0, since it's virtual)
2158		 * get the mtu from the sending interfaces' ipif
2159		 */
2160		if (IS_VNI(ire->ire_ipif->ipif_ill)) {
2161			stq_ill = ire->ire_stq->q_ptr;
2162			ire->ire_max_frag = MIN(stq_ill->ill_ipif->ipif_mtu,
2163			    IP_MAXPACKET);
2164		} else {
2165			ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu,
2166			    IP_MAXPACKET);
2167		}
2168		ire->ire_frag_flag |= IPH_DF;
2169		mutex_exit(&ire->ire_lock);
2170	}
2171}
2172
2173/*
2174 * Return any local address.  We use this to target ourselves
2175 * when the src address was specified as 'default'.
2176 * Preference for IRE_LOCAL entries.
2177 */
2178ire_t *
2179ire_lookup_local(zoneid_t zoneid, ip_stack_t *ipst)
2180{
2181	ire_t	*ire;
2182	irb_t	*irb;
2183	ire_t	*maybe = NULL;
2184	int i;
2185
2186	for (i = 0; i < ipst->ips_ip_cache_table_size;  i++) {
2187		irb = &ipst->ips_ip_cache_table[i];
2188		if (irb->irb_ire == NULL)
2189			continue;
2190		rw_enter(&irb->irb_lock, RW_READER);
2191		for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
2192			if ((ire->ire_marks & IRE_MARK_CONDEMNED) ||
2193			    (ire->ire_zoneid != zoneid &&
2194			    ire->ire_zoneid != ALL_ZONES))
2195				continue;
2196			switch (ire->ire_type) {
2197			case IRE_LOOPBACK:
2198				if (maybe == NULL) {
2199					IRE_REFHOLD(ire);
2200					maybe = ire;
2201				}
2202				break;
2203			case IRE_LOCAL:
2204				if (maybe != NULL) {
2205					ire_refrele(maybe);
2206				}
2207				IRE_REFHOLD(ire);
2208				rw_exit(&irb->irb_lock);
2209				return (ire);
2210			}
2211		}
2212		rw_exit(&irb->irb_lock);
2213	}
2214	return (maybe);
2215}
2216
2217/*
2218 * If the specified IRE is associated with a particular ILL, return
2219 * that ILL pointer (May be called as writer.).
2220 *
2221 * NOTE : This is not a generic function that can be used always.
2222 * This function always returns the ill of the outgoing packets
2223 * if this ire is used.
2224 */
2225ill_t *
2226ire_to_ill(const ire_t *ire)
2227{
2228	ill_t *ill = NULL;
2229
2230	/*
2231	 * 1) For an IRE_CACHE, ire_ipif is the one where it obtained
2232	 *    the source address from. ire_stq is the one where the
2233	 *    packets will be sent out on. We return that here.
2234	 *
2235	 * 2) IRE_BROADCAST normally has a loopback and a non-loopback
2236	 *    copy and they always exist next to each other with loopback
2237	 *    copy being the first one. If we are called on the non-loopback
2238	 *    copy, return the one pointed by ire_stq. If it was called on
2239	 *    a loopback copy, we still return the one pointed by the next
2240	 *    ire's ire_stq pointer i.e the one pointed by the non-loopback
2241	 *    copy. We don't want use ire_ipif as it might represent the
2242	 *    source address (if we borrow source addresses for
2243	 *    IRE_BROADCASTS in the future).
2244	 *    However if an interface is currently coming up, the above
2245	 *    condition may not hold during that period since the ires
2246	 *    are added one at a time. Thus one of the pair could have been
2247	 *    added and the other not yet added.
2248	 * 3) For many other IREs (e.g., IRE_LOCAL), ire_rfq indicates the ill.
2249	 * 4) For all others return the ones pointed by ire_ipif->ipif_ill.
2250	 *    That handles IRE_LOOPBACK.
2251	 */
2252
2253	if (ire->ire_type == IRE_CACHE) {
2254		ill = (ill_t *)ire->ire_stq->q_ptr;
2255	} else if (ire->ire_type == IRE_BROADCAST) {
2256		if (ire->ire_stq != NULL) {
2257			ill = (ill_t *)ire->ire_stq->q_ptr;
2258		} else {
2259			ire_t  *ire_next;
2260
2261			ire_next = ire->ire_next;
2262			if (ire_next != NULL &&
2263			    ire_next->ire_type == IRE_BROADCAST &&
2264			    ire_next->ire_addr == ire->ire_addr &&
2265			    ire_next->ire_ipif == ire->ire_ipif) {
2266				ill = (ill_t *)ire_next->ire_stq->q_ptr;
2267			}
2268		}
2269	} else if (ire->ire_rfq != NULL) {
2270		ill = ire->ire_rfq->q_ptr;
2271	} else if (ire->ire_ipif != NULL) {
2272		ill = ire->ire_ipif->ipif_ill;
2273	}
2274	return (ill);
2275}
2276
2277/* Arrange to call the specified function for every IRE in the world. */
2278void
2279ire_walk(pfv_t func, void *arg, ip_stack_t *ipst)
2280{
2281	ire_walk_ipvers(func, arg, 0, ALL_ZONES, ipst);
2282}
2283
2284void
2285ire_walk_v4(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst)
2286{
2287	ire_walk_ipvers(func, arg, IPV4_VERSION, zoneid, ipst);
2288}
2289
2290void
2291ire_walk_v6(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst)
2292{
2293	ire_walk_ipvers(func, arg, IPV6_VERSION, zoneid, ipst);
2294}
2295
2296/*
2297 * Walk a particular version. version == 0 means both v4 and v6.
2298 */
2299static void
2300ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, zoneid_t zoneid,
2301    ip_stack_t *ipst)
2302{
2303	if (vers != IPV6_VERSION) {
2304		/*
2305		 * ip_forwarding_table variable doesn't matter for IPv4 since
2306		 * ire_walk_ill_tables uses ips_ip_ftable for IPv4.
2307		 */
2308		ire_walk_ill_tables(0, 0, func, arg, IP_MASK_TABLE_SIZE,
2309		    0, NULL,
2310		    ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table,
2311		    NULL, zoneid, ipst);
2312	}
2313	if (vers != IPV4_VERSION) {
2314		ire_walk_ill_tables(0, 0, func, arg, IP6_MASK_TABLE_SIZE,
2315		    ipst->ips_ip6_ftable_hash_size,
2316		    ipst->ips_ip_forwarding_table_v6,
2317		    ipst->ips_ip6_cache_table_size,
2318		    ipst->ips_ip_cache_table_v6, NULL, zoneid, ipst);
2319	}
2320}
2321
2322/*
2323 * Arrange to call the specified
2324 * function for every IRE that matches the ill.
2325 */
2326void
2327ire_walk_ill(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
2328    ill_t *ill)
2329{
2330	ire_walk_ill_ipvers(match_flags, ire_type, func, arg, 0, ill);
2331}
2332
2333void
2334ire_walk_ill_v4(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
2335    ill_t *ill)
2336{
2337	ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV4_VERSION,
2338	    ill);
2339}
2340
2341void
2342ire_walk_ill_v6(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
2343    ill_t *ill)
2344{
2345	ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV6_VERSION,
2346	    ill);
2347}
2348
2349/*
2350 * Walk a particular ill and version. version == 0 means both v4 and v6.
2351 */
2352static void
2353ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func,
2354    void *arg, uchar_t vers, ill_t *ill)
2355{
2356	ip_stack_t	*ipst = ill->ill_ipst;
2357
2358	if (vers != IPV6_VERSION) {
2359		ire_walk_ill_tables(match_flags, ire_type, func, arg,
2360		    IP_MASK_TABLE_SIZE, 0,
2361		    NULL, ipst->ips_ip_cache_table_size,
2362		    ipst->ips_ip_cache_table, ill, ALL_ZONES, ipst);
2363	}
2364	if (vers != IPV4_VERSION) {
2365		ire_walk_ill_tables(match_flags, ire_type, func, arg,
2366		    IP6_MASK_TABLE_SIZE, ipst->ips_ip6_ftable_hash_size,
2367		    ipst->ips_ip_forwarding_table_v6,
2368		    ipst->ips_ip6_cache_table_size,
2369		    ipst->ips_ip_cache_table_v6, ill, ALL_ZONES, ipst);
2370	}
2371}
2372
2373boolean_t
2374ire_walk_ill_match(uint_t match_flags, uint_t ire_type, ire_t *ire,
2375    ill_t *ill, zoneid_t zoneid, ip_stack_t *ipst)
2376{
2377	ill_t *ire_stq_ill = NULL;
2378	ill_t *ire_ipif_ill = NULL;
2379	ill_group_t *ire_ill_group = NULL;
2380
2381	ASSERT(match_flags != 0 || zoneid != ALL_ZONES);
2382	/*
2383	 * 1) MATCH_IRE_WQ : Used specifically to match on ire_stq.
2384	 *    The fast path update uses this to make sure it does not
2385	 *    update the fast path header of interface X with the fast
2386	 *    path updates it recieved on interface Y.  It is similar
2387	 *    in handling DL_NOTE_FASTPATH_FLUSH.
2388	 *
2389	 * 2) MATCH_IRE_ILL/MATCH_IRE_ILL_GROUP : We match both on ill
2390	 *    pointed by ire_stq and ire_ipif. Only in the case of
2391	 *    IRE_CACHEs can ire_stq and ire_ipif be pointing to
2392	 *    different ills. But we want to keep this function generic
2393	 *    enough for future use. So, we always try to match on both.
2394	 *    The only caller of this function ire_walk_ill_tables, will
2395	 *    call "func" after we return from this function. We expect
2396	 *    "func" to do the right filtering of ires in this case.
2397	 *
2398	 * NOTE : In the case of MATCH_IRE_ILL_GROUP, groups
2399	 * pointed by ire_stq and ire_ipif should always be the same.
2400	 * So, we just match on only one of them.
2401	 */
2402	if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) {
2403		if (ire->ire_stq != NULL)
2404			ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr;
2405		if (ire->ire_ipif != NULL)
2406			ire_ipif_ill = ire->ire_ipif->ipif_ill;
2407		if (ire_stq_ill != NULL)
2408			ire_ill_group = ire_stq_ill->ill_group;
2409		if ((ire_ill_group == NULL) && (ire_ipif_ill != NULL))
2410			ire_ill_group = ire_ipif_ill->ill_group;
2411	}
2412
2413	if (zoneid != ALL_ZONES) {
2414		/*
2415		 * We're walking the IREs for a specific zone. The only relevant
2416		 * IREs are:
2417		 * - all IREs with a matching ire_zoneid
2418		 * - all IRE_OFFSUBNETs as they're shared across all zones
2419		 * - IRE_INTERFACE IREs for interfaces with a usable source addr
2420		 *   with a matching zone
2421		 * - IRE_DEFAULTs with a gateway reachable from the zone
2422		 * We should really match on IRE_OFFSUBNETs and IRE_DEFAULTs
2423		 * using the same rule; but the above rules are consistent with
2424		 * the behavior of ire_ftable_lookup[_v6]() so that all the
2425		 * routes that can be matched during lookup are also matched
2426		 * here.
2427		 */
2428		if (zoneid != ire->ire_zoneid && ire->ire_zoneid != ALL_ZONES) {
2429			/*
2430			 * Note, IRE_INTERFACE can have the stq as NULL. For
2431			 * example, if the default multicast route is tied to
2432			 * the loopback address.
2433			 */
2434			if ((ire->ire_type & IRE_INTERFACE) &&
2435			    (ire->ire_stq != NULL)) {
2436				ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr;
2437				if (ire->ire_ipversion == IPV4_VERSION) {
2438					if (!ipif_usesrc_avail(ire_stq_ill,
2439					    zoneid))
2440						/* No usable src addr in zone */
2441						return (B_FALSE);
2442				} else if (ire_stq_ill->ill_usesrc_ifindex
2443				    != 0) {
2444					/*
2445					 * For IPv6 use ipif_select_source_v6()
2446					 * so the right scope selection is done
2447					 */
2448					ipif_t *src_ipif;
2449					src_ipif =
2450					    ipif_select_source_v6(ire_stq_ill,
2451					    &ire->ire_addr_v6, RESTRICT_TO_NONE,
2452					    IPV6_PREFER_SRC_DEFAULT,
2453					    zoneid);
2454					if (src_ipif != NULL) {
2455						ipif_refrele(src_ipif);
2456					} else {
2457						return (B_FALSE);
2458					}
2459				} else {
2460					return (B_FALSE);
2461				}
2462
2463			} else if (!(ire->ire_type & IRE_OFFSUBNET)) {
2464				return (B_FALSE);
2465			}
2466		}
2467
2468		/*
2469		 * Match all default routes from the global zone, irrespective
2470		 * of reachability. For a non-global zone only match those
2471		 * where ire_gateway_addr has a IRE_INTERFACE for the zoneid.
2472		 */
2473		if (ire->ire_type == IRE_DEFAULT && zoneid != GLOBAL_ZONEID) {
2474			int ire_match_flags = 0;
2475			in6_addr_t gw_addr_v6;
2476			ire_t *rire;
2477
2478			ire_match_flags |= MATCH_IRE_TYPE;
2479			if (ire->ire_ipif != NULL) {
2480				ire_match_flags |= MATCH_IRE_ILL_GROUP;
2481			}
2482			if (ire->ire_ipversion == IPV4_VERSION) {
2483				rire = ire_route_lookup(ire->ire_gateway_addr,
2484				    0, 0, IRE_INTERFACE, ire->ire_ipif, NULL,
2485				    zoneid, NULL, ire_match_flags, ipst);
2486			} else {
2487				ASSERT(ire->ire_ipversion == IPV6_VERSION);
2488				mutex_enter(&ire->ire_lock);
2489				gw_addr_v6 = ire->ire_gateway_addr_v6;
2490				mutex_exit(&ire->ire_lock);
2491				rire = ire_route_lookup_v6(&gw_addr_v6,
2492				    NULL, NULL, IRE_INTERFACE, ire->ire_ipif,
2493				    NULL, zoneid, NULL, ire_match_flags, ipst);
2494			}
2495			if (rire == NULL) {
2496				return (B_FALSE);
2497			}
2498			ire_refrele(rire);
2499		}
2500	}
2501
2502	if (((!(match_flags & MATCH_IRE_TYPE)) ||
2503		(ire->ire_type & ire_type)) &&
2504	    ((!(match_flags & MATCH_IRE_WQ)) ||
2505		(ire->ire_stq == ill->ill_wq)) &&
2506	    ((!(match_flags & MATCH_IRE_ILL)) ||
2507		(ire_stq_ill == ill || ire_ipif_ill == ill)) &&
2508	    ((!(match_flags & MATCH_IRE_ILL_GROUP)) ||
2509		(ire_stq_ill == ill) || (ire_ipif_ill == ill) ||
2510		(ire_ill_group != NULL &&
2511		ire_ill_group == ill->ill_group))) {
2512		return (B_TRUE);
2513	}
2514	return (B_FALSE);
2515}
2516
2517int
2518rtfunc(struct radix_node *rn, void *arg)
2519{
2520	struct rtfuncarg *rtf = arg;
2521	struct rt_entry *rt;
2522	irb_t *irb;
2523	ire_t *ire;
2524	boolean_t ret;
2525
2526	rt = (struct rt_entry *)rn;
2527	ASSERT(rt != NULL);
2528	irb = &rt->rt_irb;
2529	for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
2530		if ((rtf->rt_match_flags != 0) ||
2531		    (rtf->rt_zoneid != ALL_ZONES)) {
2532			ret = ire_walk_ill_match(rtf->rt_match_flags,
2533			    rtf->rt_ire_type, ire,
2534			    rtf->rt_ill, rtf->rt_zoneid, rtf->rt_ipst);
2535		} else
2536			ret = B_TRUE;
2537		if (ret)
2538			(*rtf->rt_func)(ire, rtf->rt_arg);
2539	}
2540	return (0);
2541}
2542
2543/*
2544 * Walk the ftable and the ctable entries that match the ill.
2545 */
2546void
2547ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func,
2548    void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl,
2549    size_t ctbl_sz, irb_t *ipctbl, ill_t *ill, zoneid_t zoneid,
2550    ip_stack_t *ipst)
2551{
2552	irb_t	*irb_ptr;
2553	irb_t	*irb;
2554	ire_t	*ire;
2555	int i, j;
2556	boolean_t ret;
2557	struct rtfuncarg rtfarg;
2558
2559	ASSERT((!(match_flags & (MATCH_IRE_WQ | MATCH_IRE_ILL |
2560	    MATCH_IRE_ILL_GROUP))) || (ill != NULL));
2561	ASSERT(!(match_flags & MATCH_IRE_TYPE) || (ire_type != 0));
2562	/*
2563	 * Optimize by not looking at the forwarding table if there
2564	 * is a MATCH_IRE_TYPE specified with no IRE_FORWARDTABLE
2565	 * specified in ire_type.
2566	 */
2567	if (!(match_flags & MATCH_IRE_TYPE) ||
2568	    ((ire_type & IRE_FORWARDTABLE) != 0)) {
2569		/* knobs such that routine is called only for v6 case */
2570		if (ipftbl == ipst->ips_ip_forwarding_table_v6) {
2571			for (i = (ftbl_sz - 1);  i >= 0; i--) {
2572				if ((irb_ptr = ipftbl[i]) == NULL)
2573					continue;
2574				for (j = 0; j < htbl_sz; j++) {
2575					irb = &irb_ptr[j];
2576					if (irb->irb_ire == NULL)
2577						continue;
2578
2579					IRB_REFHOLD(irb);
2580					for (ire = irb->irb_ire; ire != NULL;
2581						ire = ire->ire_next) {
2582						if (match_flags == 0 &&
2583						    zoneid == ALL_ZONES) {
2584							ret = B_TRUE;
2585						} else {
2586							ret =
2587							    ire_walk_ill_match(
2588							    match_flags,
2589							    ire_type, ire, ill,
2590							    zoneid, ipst);
2591						}
2592						if (ret)
2593							(*func)(ire, arg);
2594					}
2595					IRB_REFRELE(irb);
2596				}
2597			}
2598		} else {
2599			(void) memset(&rtfarg, 0, sizeof (rtfarg));
2600			rtfarg.rt_func = func;
2601			rtfarg.rt_arg = arg;
2602			if (match_flags != 0) {
2603				rtfarg.rt_match_flags = match_flags;
2604			}
2605			rtfarg.rt_ire_type = ire_type;
2606			rtfarg.rt_ill = ill;
2607			rtfarg.rt_zoneid = zoneid;
2608			rtfarg.rt_ipst = ipst;	/* No netstack_hold */
2609			(void) ipst->ips_ip_ftable->rnh_walktree_mt(
2610			    ipst->ips_ip_ftable,
2611			    rtfunc, &rtfarg, irb_refhold_rn, irb_refrele_rn);
2612		}
2613	}
2614
2615	/*
2616	 * Optimize by not looking at the cache table if there
2617	 * is a MATCH_IRE_TYPE specified with no IRE_CACHETABLE
2618	 * specified in ire_type.
2619	 */
2620	if (!(match_flags & MATCH_IRE_TYPE) ||
2621	    ((ire_type & IRE_CACHETABLE) != 0)) {
2622		for (i = 0; i < ctbl_sz;  i++) {
2623			irb = &ipctbl[i];
2624			if (irb->irb_ire == NULL)
2625				continue;
2626			IRB_REFHOLD(irb);
2627			for (ire = irb->irb_ire; ire != NULL;
2628			    ire = ire->ire_next) {
2629				if (match_flags == 0 && zoneid == ALL_ZONES) {
2630					ret = B_TRUE;
2631				} else {
2632					ret = ire_walk_ill_match(
2633					    match_flags, ire_type,
2634					    ire, ill, zoneid, ipst);
2635				}
2636				if (ret)
2637					(*func)(ire, arg);
2638			}
2639			IRB_REFRELE(irb);
2640		}
2641	}
2642}
2643
2644/*
2645 * This routine walks through the ill chain to find if there is any
2646 * ire linked to the ill's interface based forwarding table
2647 * The arg could be ill or mp. This routine is called when a ill goes
2648 * down/deleted or the 'ipv4_ire_srcif_status' report is printed.
2649 */
2650void
2651ire_walk_srcif_table_v4(pfv_t func, void *arg, ip_stack_t *ipst)
2652{
2653	irb_t   *irb;
2654	ire_t   *ire;
2655	ill_t	*ill, *next_ill;
2656	int	i;
2657	int	total_count;
2658	ill_walk_context_t ctx;
2659
2660	/*
2661	 * Take care of ire's in other ill's per-interface forwarding
2662	 * table. Check if any ire in any of the ill's ill_srcif_table
2663	 * is pointing to this ill.
2664	 */
2665	mutex_enter(&ipst->ips_ire_srcif_table_lock);
2666	if (ipst->ips_ire_srcif_table_count == 0) {
2667		mutex_exit(&ipst->ips_ire_srcif_table_lock);
2668		return;
2669	}
2670	mutex_exit(&ipst->ips_ire_srcif_table_lock);
2671
2672#ifdef DEBUG
2673	/* Keep accounting of all interface based table ires */
2674	total_count = 0;
2675	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
2676	ill = ILL_START_WALK_V4(&ctx, ipst);
2677	while (ill != NULL) {
2678		mutex_enter(&ill->ill_lock);
2679		total_count += ill->ill_srcif_refcnt;
2680		next_ill = ill_next(&ctx, ill);
2681		mutex_exit(&ill->ill_lock);
2682		ill = next_ill;
2683	}
2684	rw_exit(&ipst->ips_ill_g_lock);
2685
2686	/* Hold lock here to make sure ire_srcif_table_count is stable */
2687	mutex_enter(&ipst->ips_ire_srcif_table_lock);
2688	i = ipst->ips_ire_srcif_table_count;
2689	mutex_exit(&ipst->ips_ire_srcif_table_lock);
2690	ip1dbg(("ire_walk_srcif_v4: ire_srcif_table_count %d "
2691	    "total ill_srcif_refcnt %d\n", i, total_count));
2692#endif
2693	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
2694	ill = ILL_START_WALK_V4(&ctx, ipst);
2695	while (ill != NULL) {
2696		mutex_enter(&ill->ill_lock);
2697		if ((ill->ill_srcif_refcnt == 0) || !ILL_CAN_LOOKUP(ill)) {
2698			next_ill = ill_next(&ctx, ill);
2699			mutex_exit(&ill->ill_lock);
2700			ill = next_ill;
2701			continue;
2702		}
2703		ill_refhold_locked(ill);
2704		mutex_exit(&ill->ill_lock);
2705		rw_exit(&ipst->ips_ill_g_lock);
2706		if (ill->ill_srcif_table != NULL) {
2707			for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) {
2708				irb = &(ill->ill_srcif_table[i]);
2709				if (irb->irb_ire == NULL)
2710					continue;
2711				IRB_REFHOLD(irb);
2712				for (ire = irb->irb_ire; ire != NULL;
2713				    ire = ire->ire_next) {
2714					(*func)(ire, arg);
2715				}
2716				IRB_REFRELE(irb);
2717			}
2718		}
2719		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
2720		next_ill = ill_next(&ctx, ill);
2721		ill_refrele(ill);
2722		ill = next_ill;
2723	}
2724	rw_exit(&ipst->ips_ill_g_lock);
2725}
2726
2727/*
2728 * This function takes a mask and returns
2729 * number of bits set in the mask. If no
2730 * bit is set it returns 0.
2731 * Assumes a contiguous mask.
2732 */
2733int
2734ip_mask_to_plen(ipaddr_t mask)
2735{
2736	return (mask == 0 ? 0 : IP_ABITS - (ffs(ntohl(mask)) -1));
2737}
2738
2739/*
2740 * Convert length for a mask to the mask.
2741 */
2742ipaddr_t
2743ip_plen_to_mask(uint_t masklen)
2744{
2745	return (htonl(IP_HOST_MASK << (IP_ABITS - masklen)));
2746}
2747
2748void
2749ire_atomic_end(irb_t *irb_ptr, ire_t *ire)
2750{
2751	ill_t	*ill_list[NUM_ILLS];
2752	ip_stack_t	*ipst = ire->ire_ipst;
2753
2754	ill_list[0] = ire->ire_stq != NULL ? ire->ire_stq->q_ptr : NULL;
2755	ill_list[1] = ire->ire_ipif != NULL ? ire->ire_ipif->ipif_ill : NULL;
2756	ill_list[2] = ire->ire_in_ill;
2757	ill_unlock_ills(ill_list, NUM_ILLS);
2758	rw_exit(&irb_ptr->irb_lock);
2759	rw_exit(&ipst->ips_ill_g_usesrc_lock);
2760}
2761
2762/*
2763 * ire_add_v[46] atomically make sure that the ipif or ill associated
2764 * with the new ire being added is stable and not IPIF_CHANGING or ILL_CHANGING
2765 * before adding the ire to the table. This ensures that we don't create
2766 * new IRE_CACHEs with stale values for parameters that are passed to
2767 * ire_create such as ire_max_frag. Note that ire_create() is passed a pointer
2768 * to the ipif_mtu, and not the value. The actual value is derived from the
2769 * parent ire or ipif under the bucket lock.
2770 */
2771int
2772ire_atomic_start(irb_t *irb_ptr, ire_t *ire, queue_t *q, mblk_t *mp,
2773    ipsq_func_t func)
2774{
2775	ill_t	*stq_ill;
2776	ill_t	*ipif_ill;
2777	ill_t	*in_ill;
2778	ill_t	*ill_list[NUM_ILLS];
2779	int	cnt = NUM_ILLS;
2780	int	error = 0;
2781	ill_t	*ill = NULL;
2782	ip_stack_t	*ipst = ire->ire_ipst;
2783
2784	ill_list[0] = stq_ill = ire->ire_stq !=
2785		NULL ? ire->ire_stq->q_ptr : NULL;
2786	ill_list[1] = ipif_ill = ire->ire_ipif !=
2787		NULL ? ire->ire_ipif->ipif_ill : NULL;
2788	ill_list[2] = in_ill = ire->ire_in_ill;
2789
2790	ASSERT((q != NULL && mp != NULL && func != NULL) ||
2791	    (q == NULL && mp == NULL && func == NULL));
2792	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
2793	GRAB_CONN_LOCK(q);
2794	rw_enter(&irb_ptr->irb_lock, RW_WRITER);
2795	ill_lock_ills(ill_list, cnt);
2796
2797	/*
2798	 * While the IRE is in the process of being added, a user may have
2799	 * invoked the ifconfig usesrc option on the stq_ill to make it a
2800	 * usesrc client ILL. Check for this possibility here, if it is true
2801	 * then we fail adding the IRE_CACHE. Another check is to make sure
2802	 * that an ipif_ill of an IRE_CACHE being added is not part of a usesrc
2803	 * group. The ill_g_usesrc_lock is released in ire_atomic_end
2804	 */
2805	if ((ire->ire_type & IRE_CACHE) &&
2806	    (ire->ire_marks & IRE_MARK_USESRC_CHECK)) {
2807		if (stq_ill->ill_usesrc_ifindex != 0) {
2808			ASSERT(stq_ill->ill_usesrc_grp_next != NULL);
2809			if ((ipif_ill->ill_phyint->phyint_ifindex !=
2810			    stq_ill->ill_usesrc_ifindex) ||
2811			    (ipif_ill->ill_usesrc_grp_next == NULL) ||
2812			    (ipif_ill->ill_usesrc_ifindex != 0)) {
2813				error = EINVAL;
2814				goto done;
2815			}
2816		} else if (ipif_ill->ill_usesrc_grp_next != NULL) {
2817			error = EINVAL;
2818			goto done;
2819		}
2820	}
2821
2822	/*
2823	 * IPMP flag settings happen without taking the exclusive route
2824	 * in ip_sioctl_flags. So we need to make an atomic check here
2825	 * for FAILED/OFFLINE/INACTIVE flags or if it has hit the
2826	 * FAILBACK=no case.
2827	 */
2828	if ((stq_ill != NULL) && !IAM_WRITER_ILL(stq_ill)) {
2829		if (stq_ill->ill_state_flags & ILL_CHANGING) {
2830			ill = stq_ill;
2831			error = EAGAIN;
2832		} else if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) ||
2833		    (ill_is_probeonly(stq_ill) &&
2834		    !(ire->ire_marks & IRE_MARK_HIDDEN))) {
2835			error = EINVAL;
2836		}
2837		goto done;
2838	}
2839
2840	/*
2841	 * We don't check for OFFLINE/FAILED in this case because
2842	 * the source address selection logic (ipif_select_source)
2843	 * may still select a source address from such an ill. The
2844	 * assumption is that these addresses will be moved by in.mpathd
2845	 * soon. (i.e. this is a race). However link local addresses
2846	 * will not move and hence ipif_select_source_v6 tries to avoid
2847	 * FAILED ills. Please see ipif_select_source_v6 for more info
2848	 */
2849	if ((ipif_ill != NULL) && !IAM_WRITER_ILL(ipif_ill) &&
2850	    (ipif_ill->ill_state_flags & ILL_CHANGING)) {
2851		ill = ipif_ill;
2852		error = EAGAIN;
2853		goto done;
2854	}
2855
2856	if ((in_ill != NULL) && !IAM_WRITER_ILL(in_ill) &&
2857	    (in_ill->ill_state_flags & ILL_CHANGING)) {
2858		ill = in_ill;
2859		error = EAGAIN;
2860		goto done;
2861	}
2862
2863	if ((ire->ire_ipif != NULL) && !IAM_WRITER_IPIF(ire->ire_ipif) &&
2864	    (ire->ire_ipif->ipif_state_flags & IPIF_CHANGING)) {
2865		ill = ire->ire_ipif->ipif_ill;
2866		ASSERT(ill != NULL);
2867		error = EAGAIN;
2868		goto done;
2869	}
2870
2871done:
2872	if (error == EAGAIN && ILL_CAN_WAIT(ill, q)) {
2873		ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
2874		mutex_enter(&ipsq->ipsq_lock);
2875		ire_atomic_end(irb_ptr, ire);
2876		ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
2877		mutex_exit(&ipsq->ipsq_lock);
2878		error = EINPROGRESS;
2879	} else if (error != 0) {
2880		ire_atomic_end(irb_ptr, ire);
2881	}
2882
2883	RELEASE_CONN_LOCK(q);
2884	return (error);
2885}
2886
2887/*
2888 * Add a fully initialized IRE to an appropriate table based on
2889 * ire_type.
2890 *
2891 * allow_unresolved == B_FALSE indicates a legacy code-path call
2892 * that has prohibited the addition of incomplete ire's. If this
2893 * parameter is set, and we find an nce that is in a state other
2894 * than ND_REACHABLE, we fail the add. Note that nce_state could be
2895 * something other than ND_REACHABLE if nce_reinit has just
2896 * kicked in and reset the nce.
2897 */
2898int
2899ire_add(ire_t **irep, queue_t *q, mblk_t *mp, ipsq_func_t func,
2900    boolean_t allow_unresolved)
2901{
2902	ire_t	*ire1;
2903	ill_t	*stq_ill = NULL;
2904	ill_t	*ill;
2905	ipif_t	*ipif = NULL;
2906	ill_walk_context_t ctx;
2907	ire_t	*ire = *irep;
2908	int	error;
2909	boolean_t ire_is_mblk = B_FALSE;
2910	tsol_gcgrp_t *gcgrp = NULL;
2911	tsol_gcgrp_addr_t ga;
2912	ip_stack_t	*ipst = ire->ire_ipst;
2913
2914	ASSERT(ire->ire_type != IRE_MIPRTUN);
2915
2916	/* get ready for the day when original ire is not created as mblk */
2917	if (ire->ire_mp != NULL) {
2918		ire_is_mblk = B_TRUE;
2919		/* Copy the ire to a kmem_alloc'ed area */
2920		ire1 = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
2921		if (ire1 == NULL) {
2922			ip1dbg(("ire_add: alloc failed\n"));
2923			ire_delete(ire);
2924			*irep = NULL;
2925			return (ENOMEM);
2926		}
2927		ire->ire_marks &= ~IRE_MARK_UNCACHED;
2928		*ire1 = *ire;
2929		ire1->ire_mp = NULL;
2930		ire1->ire_stq_ifindex = 0;
2931		freeb(ire->ire_mp);
2932		ire = ire1;
2933	}
2934	if (ire->ire_stq != NULL)
2935		stq_ill = (ill_t *)ire->ire_stq->q_ptr;
2936
2937	if (ire->ire_type == IRE_CACHE) {
2938		/*
2939		 * If this interface is FAILED, or INACTIVE or has hit
2940		 * the FAILBACK=no case, we create IRE_CACHES marked
2941		 * HIDDEN for some special cases e.g. bind to
2942		 * IPIF_NOFAILOVER address etc. So, if this interface
2943		 * is FAILED/INACTIVE/hit FAILBACK=no case, and we are
2944		 * not creating hidden ires, we should not allow that.
2945		 * This happens because the state of the interface
2946		 * changed while we were waiting in ARP. If this is the
2947		 * daemon sending probes, the next probe will create
2948		 * HIDDEN ires and we will create an ire then. This
2949		 * cannot happen with NDP currently because IRE is
2950		 * never queued in NDP. But it can happen in the
2951		 * future when we have external resolvers with IPv6.
2952		 * If the interface gets marked with OFFLINE while we
2953		 * are waiting in ARP, don't add the ire.
2954		 */
2955		if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) ||
2956		    (ill_is_probeonly(stq_ill) &&
2957		    !(ire->ire_marks & IRE_MARK_HIDDEN))) {
2958			/*
2959			 * We don't know whether it is a valid ipif or not.
2960			 * unless we do the check below. So, set it to NULL.
2961			 */
2962			ire->ire_ipif = NULL;
2963			ire_delete(ire);
2964			*irep = NULL;
2965			return (EINVAL);
2966		}
2967	}
2968
2969	if (stq_ill != NULL && ire->ire_type == IRE_CACHE &&
2970	    stq_ill->ill_net_type == IRE_IF_RESOLVER) {
2971		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
2972		ill = ILL_START_WALK_ALL(&ctx, ipst);
2973		for (; ill != NULL; ill = ill_next(&ctx, ill)) {
2974			mutex_enter(&ill->ill_lock);
2975			if (ill->ill_state_flags & ILL_CONDEMNED) {
2976				mutex_exit(&ill->ill_lock);
2977				continue;
2978			}
2979			/*
2980			 * We need to make sure that the ipif is a valid one
2981			 * before adding the IRE_CACHE. This happens only
2982			 * with IRE_CACHE when there is an external resolver.
2983			 *
2984			 * We can unplumb a logical interface while the
2985			 * packet is waiting in ARP with the IRE. Then,
2986			 * later on when we feed the IRE back, the ipif
2987			 * has to be re-checked. This can't happen with
2988			 * NDP currently, as we never queue the IRE with
2989			 * the packet. We always try to recreate the IRE
2990			 * when the resolution is completed. But, we do
2991			 * it for IPv6 also here so that in future if
2992			 * we have external resolvers, it will work without
2993			 * any change.
2994			 */
2995			ipif = ipif_lookup_seqid(ill, ire->ire_ipif_seqid);
2996			if (ipif != NULL) {
2997				ipif_refhold_locked(ipif);
2998				mutex_exit(&ill->ill_lock);
2999				break;
3000			}
3001			mutex_exit(&ill->ill_lock);
3002		}
3003		rw_exit(&ipst->ips_ill_g_lock);
3004		if (ipif == NULL ||
3005		    (ipif->ipif_isv6 &&
3006		    !IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6,
3007		    &ipif->ipif_v6src_addr)) ||
3008		    (!ipif->ipif_isv6 &&
3009		    ire->ire_src_addr != ipif->ipif_src_addr) ||
3010		    ire->ire_zoneid != ipif->ipif_zoneid) {
3011
3012			if (ipif != NULL)
3013				ipif_refrele(ipif);
3014			ire->ire_ipif = NULL;
3015			ire_delete(ire);
3016			*irep = NULL;
3017			return (EINVAL);
3018		}
3019
3020
3021		ASSERT(ill != NULL);
3022		/*
3023		 * If this group was dismantled while this packets was
3024		 * queued in ARP, don't add it here.
3025		 */
3026		if (ire->ire_ipif->ipif_ill->ill_group != ill->ill_group) {
3027			/* We don't want ire_inactive bump stats for this */
3028			ipif_refrele(ipif);
3029			ire->ire_ipif = NULL;
3030			ire_delete(ire);
3031			*irep = NULL;
3032			return (EINVAL);
3033		}
3034
3035		/*
3036		 * Since we didn't attach label security attributes to the
3037		 * ire for the resolver case, we need to add it now. (only
3038		 * for v4 resolver and v6 xresolv case).
3039		 */
3040		if (is_system_labeled() && ire_is_mblk) {
3041			if (ire->ire_ipversion == IPV4_VERSION) {
3042				ga.ga_af = AF_INET;
3043				IN6_IPADDR_TO_V4MAPPED(ire->ire_gateway_addr !=
3044				    INADDR_ANY ? ire->ire_gateway_addr :
3045				    ire->ire_addr, &ga.ga_addr);
3046			} else {
3047				ga.ga_af = AF_INET6;
3048				ga.ga_addr = IN6_IS_ADDR_UNSPECIFIED(
3049				    &ire->ire_gateway_addr_v6) ?
3050				    ire->ire_addr_v6 :
3051				    ire->ire_gateway_addr_v6;
3052			}
3053			gcgrp = gcgrp_lookup(&ga, B_FALSE);
3054			error = tsol_ire_init_gwattr(ire, ire->ire_ipversion,
3055			    NULL, gcgrp);
3056			if (error != 0) {
3057				if (gcgrp != NULL) {
3058					GCGRP_REFRELE(gcgrp);
3059					gcgrp = NULL;
3060				}
3061				ipif_refrele(ipif);
3062				ire->ire_ipif = NULL;
3063				ire_delete(ire);
3064				*irep = NULL;
3065				return (error);
3066			}
3067		}
3068	}
3069
3070	/*
3071	 * In case ire was changed
3072	 */
3073	*irep = ire;
3074	if (ire->ire_ipversion == IPV6_VERSION) {
3075		error = ire_add_v6(irep, q, mp, func);
3076	} else {
3077		if (ire->ire_in_ill == NULL)
3078			error = ire_add_v4(irep, q, mp, func, allow_unresolved);
3079		else
3080			error = ire_add_srcif_v4(irep, q, mp, func);
3081	}
3082	if (ipif != NULL)
3083		ipif_refrele(ipif);
3084	return (error);
3085}
3086
3087/*
3088 * Add an initialized IRE to an appropriate table based on ire_type.
3089 *
3090 * The forward table contains IRE_PREFIX/IRE_HOST and
3091 * IRE_IF_RESOLVER/IRE_IF_NORESOLVER and IRE_DEFAULT.
3092 *
3093 * The cache table contains IRE_BROADCAST/IRE_LOCAL/IRE_LOOPBACK
3094 * and IRE_CACHE.
3095 *
3096 * NOTE : This function is called as writer though not required
3097 * by this function.
3098 */
3099static int
3100ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func,
3101    boolean_t allow_unresolved)
3102{
3103	ire_t	*ire1;
3104	irb_t	*irb_ptr;
3105	ire_t	**irep;
3106	int	flags;
3107	ire_t	*pire = NULL;
3108	ill_t	*stq_ill;
3109	ire_t	*ire = *ire_p;
3110	int	error;
3111	boolean_t need_refrele = B_FALSE;
3112	nce_t	*nce;
3113	ip_stack_t	*ipst = ire->ire_ipst;
3114
3115	if (ire->ire_ipif != NULL)
3116		ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock));
3117	if (ire->ire_stq != NULL)
3118		ASSERT(!MUTEX_HELD(
3119		    &((ill_t *)(ire->ire_stq->q_ptr))->ill_lock));
3120	ASSERT(ire->ire_ipversion == IPV4_VERSION);
3121	ASSERT(ire->ire_mp == NULL); /* Calls should go through ire_add */
3122	ASSERT(ire->ire_in_ill == NULL); /* No srcif entries */
3123
3124	/* Find the appropriate list head. */
3125	switch (ire->ire_type) {
3126	case IRE_HOST:
3127		ire->ire_mask = IP_HOST_MASK;
3128		ire->ire_masklen = IP_ABITS;
3129		if ((ire->ire_flags & RTF_SETSRC) == 0)
3130			ire->ire_src_addr = 0;
3131		break;
3132	case IRE_CACHE:
3133	case IRE_BROADCAST:
3134	case IRE_LOCAL:
3135	case IRE_LOOPBACK:
3136		ire->ire_mask = IP_HOST_MASK;
3137		ire->ire_masklen = IP_ABITS;
3138		break;
3139	case IRE_PREFIX:
3140		if ((ire->ire_flags & RTF_SETSRC) == 0)
3141			ire->ire_src_addr = 0;
3142		break;
3143	case IRE_DEFAULT:
3144		if ((ire->ire_flags & RTF_SETSRC) == 0)
3145			ire->ire_src_addr = 0;
3146		break;
3147	case IRE_IF_RESOLVER:
3148	case IRE_IF_NORESOLVER:
3149		break;
3150	default:
3151		ip0dbg(("ire_add_v4: ire %p has unrecognized IRE type (%d)\n",
3152		    (void *)ire, ire->ire_type));
3153		ire_delete(ire);
3154		*ire_p = NULL;
3155		return (EINVAL);
3156	}
3157
3158	/* Make sure the address is properly masked. */
3159	ire->ire_addr &= ire->ire_mask;
3160
3161	/*
3162	 * ip_newroute/ip_newroute_multi are unable to prevent the deletion
3163	 * of the interface route while adding an IRE_CACHE for an on-link
3164	 * destination in the IRE_IF_RESOLVER case, since the ire has to
3165	 * go to ARP and return. We can't do a REFHOLD on the
3166	 * associated interface ire for fear of ARP freeing the message.
3167	 * Here we look up the interface ire in the forwarding table and
3168	 * make sure that the interface route has not been deleted.
3169	 */
3170	if (ire->ire_type == IRE_CACHE && ire->ire_gateway_addr == 0 &&
3171	    ((ill_t *)ire->ire_stq->q_ptr)->ill_net_type == IRE_IF_RESOLVER) {
3172
3173		ASSERT(ire->ire_max_fragp == NULL);
3174		if (CLASSD(ire->ire_addr) && !(ire->ire_flags & RTF_SETSRC)) {
3175			/*
3176			 * The ihandle that we used in ip_newroute_multi
3177			 * comes from the interface route corresponding
3178			 * to ire_ipif. Lookup here to see if it exists
3179			 * still.
3180			 * If the ire has a source address assigned using
3181			 * RTF_SETSRC, ire_ipif is the logical interface holding
3182			 * this source address, so we can't use it to check for
3183			 * the existence of the interface route. Instead we rely
3184			 * on the brute force ihandle search in
3185			 * ire_ihandle_lookup_onlink() below.
3186			 */
3187			pire = ipif_to_ire(ire->ire_ipif);
3188			if (pire == NULL) {
3189				ire_delete(ire);
3190				*ire_p = NULL;
3191				return (EINVAL);
3192			} else if (pire->ire_ihandle != ire->ire_ihandle) {
3193				ire_refrele(pire);
3194				ire_delete(ire);
3195				*ire_p = NULL;
3196				return (EINVAL);
3197			}
3198		} else {
3199			pire = ire_ihandle_lookup_onlink(ire);
3200			if (pire == NULL) {
3201				ire_delete(ire);
3202				*ire_p = NULL;
3203				return (EINVAL);
3204			}
3205		}
3206		/* Prevent pire from getting deleted */
3207		IRB_REFHOLD(pire->ire_bucket);
3208		/* Has it been removed already ? */
3209		if (pire->ire_marks & IRE_MARK_CONDEMNED) {
3210			IRB_REFRELE(pire->ire_bucket);
3211			ire_refrele(pire);
3212			ire_delete(ire);
3213			*ire_p = NULL;
3214			return (EINVAL);
3215		}
3216	} else {
3217		ASSERT(ire->ire_max_fragp != NULL);
3218	}
3219	flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW);
3220
3221	if (ire->ire_ipif != NULL) {
3222		/*
3223		 * We use MATCH_IRE_IPIF while adding IRE_CACHES only
3224		 * for historic reasons and to maintain symmetry with
3225		 * IPv6 code path. Historically this was used by
3226		 * multicast code to create multiple IRE_CACHES on
3227		 * a single ill with different ipifs. This was used
3228		 * so that multicast packets leaving the node had the
3229		 * right source address. This is no longer needed as
3230		 * ip_wput initializes the address correctly.
3231		 */
3232		flags |= MATCH_IRE_IPIF;
3233		/*
3234		 * If we are creating hidden ires, make sure we search on
3235		 * this ill (MATCH_IRE_ILL) and a hidden ire,
3236		 * while we are searching for duplicates below. Otherwise we
3237		 * could potentially find an IRE on some other interface
3238		 * and it may not be a IRE marked with IRE_MARK_HIDDEN. We
3239		 * shouldn't do this as this will lead to an infinite loop
3240		 * (if we get to ip_wput again) eventually we need an hidden
3241		 * ire for this packet to go out. MATCH_IRE_ILL is explicitly
3242		 * done below.
3243		 */
3244		if (ire->ire_type == IRE_CACHE &&
3245		    (ire->ire_marks & IRE_MARK_HIDDEN))
3246			flags |= (MATCH_IRE_MARK_HIDDEN);
3247	}
3248	if ((ire->ire_type & IRE_CACHETABLE) == 0) {
3249		irb_ptr = ire_get_bucket(ire);
3250		need_refrele = B_TRUE;
3251		if (irb_ptr == NULL) {
3252			/*
3253			 * This assumes that the ire has not added
3254			 * a reference to the ipif.
3255			 */
3256			ire->ire_ipif = NULL;
3257			ire_delete(ire);
3258			if (pire != NULL) {
3259				IRB_REFRELE(pire->ire_bucket);
3260				ire_refrele(pire);
3261			}
3262			*ire_p = NULL;
3263			return (EINVAL);
3264		}
3265	} else {
3266		irb_ptr = &(ipst->ips_ip_cache_table[IRE_ADDR_HASH(
3267		    ire->ire_addr, ipst->ips_ip_cache_table_size)]);
3268	}
3269
3270	/*
3271	 * Start the atomic add of the ire. Grab the ill locks,
3272	 * ill_g_usesrc_lock and the bucket lock. Check for condemned
3273	 *
3274	 * If ipif or ill is changing ire_atomic_start() may queue the
3275	 * request and return EINPROGRESS.
3276	 * To avoid lock order problems, get the ndp4->ndp_g_lock.
3277	 */
3278	mutex_enter(&ipst->ips_ndp4->ndp_g_lock);
3279	error = ire_atomic_start(irb_ptr, ire, q, mp, func);
3280	if (error != 0) {
3281		mutex_exit(&ipst->ips_ndp4->ndp_g_lock);
3282		/*
3283		 * We don't know whether it is a valid ipif or not.
3284		 * So, set it to NULL. This assumes that the ire has not added
3285		 * a reference to the ipif.
3286		 */
3287		ire->ire_ipif = NULL;
3288		ire_delete(ire);
3289		if (pire != NULL) {
3290			IRB_REFRELE(pire->ire_bucket);
3291			ire_refrele(pire);
3292		}
3293		*ire_p = NULL;
3294		if (need_refrele)
3295			IRB_REFRELE(irb_ptr);
3296		return (error);
3297	}
3298	/*
3299	 * To avoid creating ires having stale values for the ire_max_frag
3300	 * we get the latest value atomically here. For more details
3301	 * see the block comment in ip_sioctl_mtu and in DL_NOTE_SDU_CHANGE
3302	 * in ip_rput_dlpi_writer
3303	 */
3304	if (ire->ire_max_fragp == NULL) {
3305		if (CLASSD(ire->ire_addr))
3306			ire->ire_max_frag = ire->ire_ipif->ipif_mtu;
3307		else
3308			ire->ire_max_frag = pire->ire_max_frag;
3309	} else {
3310		uint_t	max_frag;
3311
3312		max_frag = *ire->ire_max_fragp;
3313		ire->ire_max_fragp = NULL;
3314		ire->ire_max_frag = max_frag;
3315	}
3316	/*
3317	 * Atomically check for duplicate and insert in the table.
3318	 */
3319	for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) {
3320		if (ire1->ire_marks & IRE_MARK_CONDEMNED)
3321			continue;
3322		if (ire->ire_ipif != NULL) {
3323			/*
3324			 * We do MATCH_IRE_ILL implicitly here for IREs
3325			 * with a non-null ire_ipif, including IRE_CACHEs.
3326			 * As ire_ipif and ire_stq could point to two
3327			 * different ills, we can't pass just ire_ipif to
3328			 * ire_match_args and get a match on both ills.
3329			 * This is just needed for duplicate checks here and
3330			 * so we don't add an extra argument to
3331			 * ire_match_args for this. Do it locally.
3332			 *
3333			 * NOTE : Currently there is no part of the code
3334			 * that asks for both MATH_IRE_IPIF and MATCH_IRE_ILL
3335			 * match for IRE_CACHEs. Thus we don't want to
3336			 * extend the arguments to ire_match_args.
3337			 */
3338			if (ire1->ire_stq != ire->ire_stq)
3339				continue;
3340			/*
3341			 * Multiroute IRE_CACHEs for a given destination can
3342			 * have the same ire_ipif, typically if their source
3343			 * address is forced using RTF_SETSRC, and the same
3344			 * send-to queue. We differentiate them using the parent
3345			 * handle.
3346			 */
3347			if (ire->ire_type == IRE_CACHE &&
3348			    (ire1->ire_flags & RTF_MULTIRT) &&
3349			    (ire->ire_flags & RTF_MULTIRT) &&
3350			    (ire1->ire_phandle != ire->ire_phandle))
3351				continue;
3352		}
3353		if (ire1->ire_zoneid != ire->ire_zoneid)
3354			continue;
3355		if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask,
3356		    ire->ire_gateway_addr, ire->ire_type, ire->ire_ipif,
3357		    ire->ire_zoneid, 0, NULL, flags)) {
3358			/*
3359			 * Return the old ire after doing a REFHOLD.
3360			 * As most of the callers continue to use the IRE
3361			 * after adding, we return a held ire. This will
3362			 * avoid a lookup in the caller again. If the callers
3363			 * don't want to use it, they need to do a REFRELE.
3364			 */
3365			ip1dbg(("found dup ire existing %p new %p",
3366			    (void *)ire1, (void *)ire));
3367			IRE_REFHOLD(ire1);
3368			ire_atomic_end(irb_ptr, ire);
3369			mutex_exit(&ipst->ips_ndp4->ndp_g_lock);
3370			ire_delete(ire);
3371			if (pire != NULL) {
3372				/*
3373				 * Assert that it is not removed from the
3374				 * list yet.
3375				 */
3376				ASSERT(pire->ire_ptpn != NULL);
3377				IRB_REFRELE(pire->ire_bucket);
3378				ire_refrele(pire);
3379			}
3380			*ire_p = ire1;
3381			if (need_refrele)
3382				IRB_REFRELE(irb_ptr);
3383			return (0);
3384		}
3385	}
3386	if (ire->ire_type & IRE_CACHE) {
3387		ASSERT(ire->ire_stq != NULL);
3388		nce = ndp_lookup_v4(ire_to_ill(ire),
3389		    ((ire->ire_gateway_addr != INADDR_ANY) ?
3390		    &ire->ire_gateway_addr : &ire->ire_addr),
3391		    B_TRUE);
3392		if (nce != NULL)
3393			mutex_enter(&nce->nce_lock);
3394		/*
3395		 * if the nce is NCE_F_CONDEMNED, or if it is not ND_REACHABLE
3396		 * and the caller has prohibited the addition of incomplete
3397		 * ire's, we fail the add. Note that nce_state could be
3398		 * something other than ND_REACHABLE if nce_reinit has just
3399		 * kicked in and reset the nce.
3400		 */
3401		if ((nce == NULL) ||
3402		    (nce->nce_flags & NCE_F_CONDEMNED) ||
3403		    (!allow_unresolved &&
3404		    (nce->nce_state != ND_REACHABLE))) {
3405			if (nce != NULL)
3406				mutex_exit(&nce->nce_lock);
3407			ire_atomic_end(irb_ptr, ire);
3408			mutex_exit(&ipst->ips_ndp4->ndp_g_lock);
3409			if (nce != NULL)
3410				NCE_REFRELE(nce);
3411			DTRACE_PROBE1(ire__no__nce, ire_t *, ire);
3412			ire_delete(ire);
3413			if (pire != NULL) {
3414				IRB_REFRELE(pire->ire_bucket);
3415				ire_refrele(pire);
3416			}
3417			*ire_p = NULL;
3418			if (need_refrele)
3419				IRB_REFRELE(irb_ptr);
3420			return (EINVAL);
3421		} else {
3422			ire->ire_nce = nce;
3423			mutex_exit(&nce->nce_lock);
3424			/*
3425			 * We are associating this nce to the ire, so
3426			 * change the nce ref taken in ndp_lookup_v4() from
3427			 * NCE_REFHOLD to NCE_REFHOLD_NOTR
3428			 */
3429			NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce);
3430		}
3431	}
3432	/*
3433	 * Make it easy for ip_wput_ire() to hit multiple broadcast ires by
3434	 * grouping identical addresses together on the hash chain. We also
3435	 * don't want to send multiple copies out if there are two ills part
3436	 * of the same group. Thus we group the ires with same addr and same
3437	 * ill group together so that ip_wput_ire can easily skip all the
3438	 * ires with same addr and same group after sending the first copy.
3439	 * We do this only for IRE_BROADCASTs as ip_wput_ire is currently
3440	 * interested in such groupings only for broadcasts.
3441	 *
3442	 * NOTE : If the interfaces are brought up first and then grouped,
3443	 * illgrp_insert will handle it. We come here when the interfaces
3444	 * are already in group and we are bringing them UP.
3445	 *
3446	 * Find the first entry that matches ire_addr. *irep will be null
3447	 * if no match.
3448	 */
3449	irep = (ire_t **)irb_ptr;
3450	while ((ire1 = *irep) != NULL && ire->ire_addr != ire1->ire_addr)
3451		irep = &ire1->ire_next;
3452	if (ire->ire_type == IRE_BROADCAST && *irep != NULL) {
3453		/*
3454		 * We found some ire (i.e *irep) with a matching addr. We
3455		 * want to group ires with same addr and same ill group
3456		 * together.
3457		 *
3458		 * First get to the entry that matches our address and
3459		 * ill group i.e stop as soon as we find the first ire
3460		 * matching the ill group and address. If there is only
3461		 * an address match, we should walk and look for some
3462		 * group match. These are some of the possible scenarios :
3463		 *
3464		 * 1) There are no groups at all i.e all ire's ill_group
3465		 *    are NULL. In that case we will essentially group
3466		 *    all the ires with the same addr together. Same as
3467		 *    the "else" block of this "if".
3468		 *
3469		 * 2) There are some groups and this ire's ill_group is
3470		 *    NULL. In this case, we will first find the group
3471		 *    that matches the address and a NULL group. Then
3472		 *    we will insert the ire at the end of that group.
3473		 *
3474		 * 3) There are some groups and this ires's ill_group is
3475		 *    non-NULL. In this case we will first find the group
3476		 *    that matches the address and the ill_group. Then
3477		 *    we will insert the ire at the end of that group.
3478		 */
3479		/* LINTED : constant in conditional context */
3480		while (1) {
3481			ire1 = *irep;
3482			if ((ire1->ire_next == NULL) ||
3483			    (ire1->ire_next->ire_addr != ire->ire_addr) ||
3484			    (ire1->ire_type != IRE_BROADCAST) ||
3485			    (ire1->ire_ipif->ipif_ill->ill_group ==
3486			    ire->ire_ipif->ipif_ill->ill_group))
3487				break;
3488			irep = &ire1->ire_next;
3489		}
3490		ASSERT(*irep != NULL);
3491		irep = &((*irep)->ire_next);
3492
3493		/*
3494		 * Either we have hit the end of the list or the address
3495		 * did not match or the group *matched*. If we found
3496		 * a match on the group, skip to the end of the group.
3497		 */
3498		while (*irep != NULL) {
3499			ire1 = *irep;
3500			if ((ire1->ire_addr != ire->ire_addr) ||
3501			    (ire1->ire_type != IRE_BROADCAST) ||
3502			    (ire1->ire_ipif->ipif_ill->ill_group !=
3503			    ire->ire_ipif->ipif_ill->ill_group))
3504				break;
3505			if (ire1->ire_ipif->ipif_ill->ill_group == NULL &&
3506			    ire1->ire_ipif == ire->ire_ipif) {
3507				irep = &ire1->ire_next;
3508				break;
3509			}
3510			irep = &ire1->ire_next;
3511		}
3512	} else if (*irep != NULL) {
3513		/*
3514		 * Find the last ire which matches ire_addr.
3515		 * Needed to do tail insertion among entries with the same
3516		 * ire_addr.
3517		 */
3518		while (ire->ire_addr == ire1->ire_addr) {
3519			irep = &ire1->ire_next;
3520			ire1 = *irep;
3521			if (ire1 == NULL)
3522				break;
3523		}
3524	}
3525
3526	/* Insert at *irep */
3527	ire1 = *irep;
3528	if (ire1 != NULL)
3529		ire1->ire_ptpn = &ire->ire_next;
3530	ire->ire_next = ire1;
3531	/* Link the new one in. */
3532	ire->ire_ptpn = irep;
3533
3534	/*
3535	 * ire_walk routines de-reference ire_next without holding
3536	 * a lock. Before we point to the new ire, we want to make
3537	 * sure the store that sets the ire_next of the new ire
3538	 * reaches global visibility, so that ire_walk routines
3539	 * don't see a truncated list of ires i.e if the ire_next
3540	 * of the new ire gets set after we do "*irep = ire" due
3541	 * to re-ordering, the ire_walk thread will see a NULL
3542	 * once it accesses the ire_next of the new ire.
3543	 * membar_producer() makes sure that the following store
3544	 * happens *after* all of the above stores.
3545	 */
3546	membar_producer();
3547	*irep = ire;
3548	ire->ire_bucket = irb_ptr;
3549	/*
3550	 * We return a bumped up IRE above. Keep it symmetrical
3551	 * so that the callers will always have to release. This
3552	 * helps the callers of this function because they continue
3553	 * to use the IRE after adding and hence they don't have to
3554	 * lookup again after we return the IRE.
3555	 *
3556	 * NOTE : We don't have to use atomics as this is appearing
3557	 * in the list for the first time and no one else can bump
3558	 * up the reference count on this yet.
3559	 */
3560	IRE_REFHOLD_LOCKED(ire);
3561	BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted);
3562
3563	irb_ptr->irb_ire_cnt++;
3564	if (irb_ptr->irb_marks & IRB_MARK_FTABLE)
3565		irb_ptr->irb_nire++;
3566
3567	if (ire->ire_marks & IRE_MARK_TEMPORARY)
3568		irb_ptr->irb_tmp_ire_cnt++;
3569
3570	if (ire->ire_ipif != NULL) {
3571		ire->ire_ipif->ipif_ire_cnt++;
3572		if (ire->ire_stq != NULL) {
3573			stq_ill = (ill_t *)ire->ire_stq->q_ptr;
3574			stq_ill->ill_ire_cnt++;
3575		}
3576	} else {
3577		ASSERT(ire->ire_stq == NULL);
3578	}
3579
3580	ire_atomic_end(irb_ptr, ire);
3581	mutex_exit(&ipst->ips_ndp4->ndp_g_lock);
3582
3583	if (pire != NULL) {
3584		/* Assert that it is not removed from the list yet */
3585		ASSERT(pire->ire_ptpn != NULL);
3586		IRB_REFRELE(pire->ire_bucket);
3587		ire_refrele(pire);
3588	}
3589
3590	if (ire->ire_type != IRE_CACHE) {
3591		/*
3592		 * For ire's with host mask see if there is an entry
3593		 * in the cache. If there is one flush the whole cache as
3594		 * there might be multiple entries due to RTF_MULTIRT (CGTP).
3595		 * If no entry is found than there is no need to flush the
3596		 * cache.
3597		 */
3598		if (ire->ire_mask == IP_HOST_MASK) {
3599			ire_t *lire;
3600			lire = ire_ctable_lookup(ire->ire_addr, NULL, IRE_CACHE,
3601			    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
3602			if (lire != NULL) {
3603				ire_refrele(lire);
3604				ire_flush_cache_v4(ire, IRE_FLUSH_ADD);
3605			}
3606		} else {
3607			ire_flush_cache_v4(ire, IRE_FLUSH_ADD);
3608		}
3609	}
3610	/*
3611	 * We had to delay the fast path probe until the ire is inserted
3612	 * in the list. Otherwise the fast path ack won't find the ire in
3613	 * the table.
3614	 */
3615	if (ire->ire_type == IRE_CACHE ||
3616	    (ire->ire_type == IRE_BROADCAST && ire->ire_stq != NULL)) {
3617		ASSERT(ire->ire_nce != NULL);
3618		nce_fastpath(ire->ire_nce);
3619	}
3620	if (ire->ire_ipif != NULL)
3621		ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock));
3622	*ire_p = ire;
3623	if (need_refrele) {
3624		IRB_REFRELE(irb_ptr);
3625	}
3626	return (0);
3627}
3628
3629/*
3630 * IRB_REFRELE is the only caller of the function. ire_unlink calls to
3631 * do the final cleanup for this ire.
3632 */
3633void
3634ire_cleanup(ire_t *ire)
3635{
3636	ire_t *ire_next;
3637	ip_stack_t *ipst = ire->ire_ipst;
3638
3639	ASSERT(ire != NULL);
3640
3641	while (ire != NULL) {
3642		ire_next = ire->ire_next;
3643		if (ire->ire_ipversion == IPV4_VERSION) {
3644			ire_delete_v4(ire);
3645			BUMP_IRE_STATS(ipst->ips_ire_stats_v4,
3646			    ire_stats_deleted);
3647		} else {
3648			ASSERT(ire->ire_ipversion == IPV6_VERSION);
3649			ire_delete_v6(ire);
3650			BUMP_IRE_STATS(ipst->ips_ire_stats_v6,
3651			    ire_stats_deleted);
3652		}
3653		/*
3654		 * Now it's really out of the list. Before doing the
3655		 * REFRELE, set ire_next to NULL as ire_inactive asserts
3656		 * so.
3657		 */
3658		ire->ire_next = NULL;
3659		IRE_REFRELE_NOTR(ire);
3660		ire = ire_next;
3661	}
3662}
3663
3664/*
3665 * IRB_REFRELE is the only caller of the function. It calls to unlink
3666 * all the CONDEMNED ires from this bucket.
3667 */
3668ire_t *
3669ire_unlink(irb_t *irb)
3670{
3671	ire_t *ire;
3672	ire_t *ire1;
3673	ire_t **ptpn;
3674	ire_t *ire_list = NULL;
3675
3676	ASSERT(RW_WRITE_HELD(&irb->irb_lock));
3677	ASSERT(((irb->irb_marks & IRB_MARK_FTABLE) && irb->irb_refcnt == 1) ||
3678	    (irb->irb_refcnt == 0));
3679	ASSERT(irb->irb_marks & IRB_MARK_CONDEMNED);
3680	ASSERT(irb->irb_ire != NULL);
3681
3682	for (ire = irb->irb_ire; ire != NULL; ire = ire1) {
3683		ip_stack_t	*ipst = ire->ire_ipst;
3684
3685		ire1 = ire->ire_next;
3686		if (ire->ire_marks & IRE_MARK_CONDEMNED) {
3687			ptpn = ire->ire_ptpn;
3688			ire1 = ire->ire_next;
3689			if (ire1)
3690				ire1->ire_ptpn = ptpn;
3691			*ptpn = ire1;
3692			ire->ire_ptpn = NULL;
3693			ire->ire_next = NULL;
3694			if (ire->ire_type == IRE_DEFAULT) {
3695				/*
3696				 * IRE is out of the list. We need to adjust
3697				 * the accounting before the caller drops
3698				 * the lock.
3699				 */
3700				if (ire->ire_ipversion == IPV6_VERSION) {
3701					ASSERT(ipst->
3702					    ips_ipv6_ire_default_count !=
3703					    0);
3704					ipst->ips_ipv6_ire_default_count--;
3705				}
3706			}
3707			/*
3708			 * We need to call ire_delete_v4 or ire_delete_v6
3709			 * to clean up the cache or the redirects pointing at
3710			 * the default gateway. We need to drop the lock
3711			 * as ire_flush_cache/ire_delete_host_redircts require
3712			 * so. But we can't drop the lock, as ire_unlink needs
3713			 * to atomically remove the ires from the list.
3714			 * So, create a temporary list of CONDEMNED ires
3715			 * for doing ire_delete_v4/ire_delete_v6 operations
3716			 * later on.
3717			 */
3718			ire->ire_next = ire_list;
3719			ire_list = ire;
3720		}
3721	}
3722	irb->irb_marks &= ~IRB_MARK_CONDEMNED;
3723	return (ire_list);
3724}
3725
3726/*
3727 * Delete all the cache entries with this 'addr'.  When IP gets a gratuitous
3728 * ARP message on any of its interface queue, it scans the nce table and
3729 * deletes and calls ndp_delete() for the appropriate nce. This action
3730 * also deletes all the neighbor/ire cache entries for that address.
3731 * This function is called from ip_arp_news in ip.c and also for
3732 * ARP ioctl processing in ip_if.c. ip_ire_clookup_and_delete returns
3733 * true if it finds a nce entry which is used by ip_arp_news to determine if
3734 * it needs to do an ire_walk_v4. The return value is also  used for the
3735 * same purpose by ARP IOCTL processing * in ip_if.c when deleting
3736 * ARP entries. For SIOC*IFARP ioctls in addition to the address,
3737 * ip_if->ipif_ill also needs to be matched.
3738 */
3739boolean_t
3740ip_ire_clookup_and_delete(ipaddr_t addr, ipif_t *ipif, ip_stack_t *ipst)
3741{
3742	ill_t	*ill;
3743	nce_t	*nce;
3744
3745	ill = (ipif ? ipif->ipif_ill : NULL);
3746
3747	if (ill != NULL) {
3748		/*
3749		 * clean up the nce (and any relevant ire's) that matches
3750		 * on addr and ill.
3751		 */
3752		nce = ndp_lookup_v4(ill, &addr, B_FALSE);
3753		if (nce != NULL) {
3754			ndp_delete(nce);
3755			return (B_TRUE);
3756		}
3757	} else {
3758		/*
3759		 * ill is wildcard. clean up all nce's and
3760		 * ire's that match on addr
3761		 */
3762		nce_clookup_t cl;
3763
3764		cl.ncecl_addr = addr;
3765		cl.ncecl_found = B_FALSE;
3766
3767		ndp_walk_common(ipst->ips_ndp4, NULL,
3768		    (pfi_t)ip_nce_clookup_and_delete, (uchar_t *)&cl, B_TRUE);
3769
3770		/*
3771		 *  ncecl_found would be set by ip_nce_clookup_and_delete if
3772		 *  we found a matching nce.
3773		 */
3774		return (cl.ncecl_found);
3775	}
3776	return (B_FALSE);
3777
3778}
3779
3780/* Delete the supplied nce if its nce_addr matches the supplied address */
3781static void
3782ip_nce_clookup_and_delete(nce_t *nce, void *arg)
3783{
3784	nce_clookup_t *cl = (nce_clookup_t *)arg;
3785	ipaddr_t nce_addr;
3786
3787	IN6_V4MAPPED_TO_IPADDR(&nce->nce_addr, nce_addr);
3788	if (nce_addr == cl->ncecl_addr) {
3789		cl->ncecl_found = B_TRUE;
3790		/* clean up the nce (and any relevant ire's) */
3791		ndp_delete(nce);
3792	}
3793}
3794
3795/*
3796 * Clean up the radix node for this ire. Must be called by IRB_REFRELE
3797 * when there are no ire's left in the bucket. Returns TRUE if the bucket
3798 * is deleted and freed.
3799 */
3800boolean_t
3801irb_inactive(irb_t *irb)
3802{
3803	struct rt_entry *rt;
3804	struct radix_node *rn;
3805	ip_stack_t *ipst = irb->irb_ipst;
3806
3807	ASSERT(irb->irb_ipst != NULL);
3808
3809	rt = IRB2RT(irb);
3810	rn = (struct radix_node *)rt;
3811
3812	/* first remove it from the radix tree. */
3813	RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable);
3814	rw_enter(&irb->irb_lock, RW_WRITER);
3815	if (irb->irb_refcnt == 1 && irb->irb_nire == 0) {
3816		rn = ipst->ips_ip_ftable->rnh_deladdr(rn->rn_key, rn->rn_mask,
3817		    ipst->ips_ip_ftable);
3818		DTRACE_PROBE1(irb__free, rt_t *,  rt);
3819		ASSERT((void *)rn == (void *)rt);
3820		Free(rt, rt_entry_cache);
3821		/* irb_lock is freed */
3822		RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
3823		return (B_TRUE);
3824	}
3825	rw_exit(&irb->irb_lock);
3826	RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
3827	return (B_FALSE);
3828}
3829
3830/*
3831 * Delete the specified IRE.
3832 */
3833void
3834ire_delete(ire_t *ire)
3835{
3836	ire_t	*ire1;
3837	ire_t	**ptpn;
3838	irb_t *irb;
3839	ip_stack_t	*ipst = ire->ire_ipst;
3840
3841	if ((irb = ire->ire_bucket) == NULL) {
3842		/*
3843		 * It was never inserted in the list. Should call REFRELE
3844		 * to free this IRE.
3845		 */
3846		IRE_REFRELE_NOTR(ire);
3847		return;
3848	}
3849
3850	rw_enter(&irb->irb_lock, RW_WRITER);
3851
3852	if (irb->irb_rr_origin == ire) {
3853		irb->irb_rr_origin = NULL;
3854	}
3855
3856	/*
3857	 * In case of V4 we might still be waiting for fastpath ack.
3858	 */
3859	if (ire->ire_ipversion == IPV4_VERSION &&
3860	    (ire->ire_type == IRE_CACHE ||
3861	    (ire->ire_type == IRE_BROADCAST && ire->ire_stq != NULL))) {
3862		ASSERT(ire->ire_nce != NULL);
3863		nce_fastpath_list_delete(ire->ire_nce);
3864	}
3865
3866	if (ire->ire_ptpn == NULL) {
3867		/*
3868		 * Some other thread has removed us from the list.
3869		 * It should have done the REFRELE for us.
3870		 */
3871		rw_exit(&irb->irb_lock);
3872		return;
3873	}
3874
3875	if (irb->irb_refcnt != 0) {
3876		/*
3877		 * The last thread to leave this bucket will
3878		 * delete this ire.
3879		 */
3880		if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
3881			irb->irb_ire_cnt--;
3882			if (ire->ire_marks & IRE_MARK_TEMPORARY)
3883				irb->irb_tmp_ire_cnt--;
3884			ire->ire_marks |= IRE_MARK_CONDEMNED;
3885		}
3886		irb->irb_marks |= IRB_MARK_CONDEMNED;
3887		rw_exit(&irb->irb_lock);
3888		return;
3889	}
3890
3891	/*
3892	 * Normally to delete an ire, we walk the bucket. While we
3893	 * walk the bucket, we normally bump up irb_refcnt and hence
3894	 * we return from above where we mark CONDEMNED and the ire
3895	 * gets deleted from ire_unlink. This case is where somebody
3896	 * knows the ire e.g by doing a lookup, and wants to delete the
3897	 * IRE. irb_refcnt would be 0 in this case if nobody is walking
3898	 * the bucket.
3899	 */
3900	ptpn = ire->ire_ptpn;
3901	ire1 = ire->ire_next;
3902	if (ire1 != NULL)
3903		ire1->ire_ptpn = ptpn;
3904	ASSERT(ptpn != NULL);
3905	*ptpn = ire1;
3906	ire->ire_ptpn = NULL;
3907	ire->ire_next = NULL;
3908	if (ire->ire_ipversion == IPV6_VERSION) {
3909		BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_deleted);
3910	} else {
3911		BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_deleted);
3912	}
3913	/*
3914	 * ip_wput/ip_wput_v6 checks this flag to see whether
3915	 * it should still use the cached ire or not.
3916	 */
3917	ire->ire_marks |= IRE_MARK_CONDEMNED;
3918	if (ire->ire_type == IRE_DEFAULT) {
3919		/*
3920		 * IRE is out of the list. We need to adjust the
3921		 * accounting before we drop the lock.
3922		 */
3923		if (ire->ire_ipversion == IPV6_VERSION) {
3924			ASSERT(ipst->ips_ipv6_ire_default_count != 0);
3925			ipst->ips_ipv6_ire_default_count--;
3926		}
3927	}
3928	irb->irb_ire_cnt--;
3929
3930	if (ire->ire_marks & IRE_MARK_TEMPORARY)
3931		irb->irb_tmp_ire_cnt--;
3932	rw_exit(&irb->irb_lock);
3933
3934	if (ire->ire_ipversion == IPV6_VERSION) {
3935		ire_delete_v6(ire);
3936	} else {
3937		ire_delete_v4(ire);
3938	}
3939	/*
3940	 * We removed it from the list. Decrement the
3941	 * reference count.
3942	 */
3943	IRE_REFRELE_NOTR(ire);
3944}
3945
3946/*
3947 * Delete the specified IRE.
3948 * All calls should use ire_delete().
3949 * Sometimes called as writer though not required by this function.
3950 *
3951 * NOTE : This function is called only if the ire was added
3952 * in the list.
3953 */
3954static void
3955ire_delete_v4(ire_t *ire)
3956{
3957	ip_stack_t	*ipst = ire->ire_ipst;
3958
3959	ASSERT(ire->ire_refcnt >= 1);
3960	ASSERT(ire->ire_ipversion == IPV4_VERSION);
3961
3962	if (ire->ire_type != IRE_CACHE)
3963		ire_flush_cache_v4(ire, IRE_FLUSH_DELETE);
3964	if (ire->ire_type == IRE_DEFAULT) {
3965		/*
3966		 * when a default gateway is going away
3967		 * delete all the host redirects pointing at that
3968		 * gateway.
3969		 */
3970		ire_delete_host_redirects(ire->ire_gateway_addr, ipst);
3971	}
3972}
3973
3974/*
3975 * IRE_REFRELE/ire_refrele are the only caller of the function. It calls
3976 * to free the ire when the reference count goes to zero.
3977 */
3978void
3979ire_inactive(ire_t *ire)
3980{
3981	nce_t	*nce;
3982	ill_t	*ill = NULL;
3983	ill_t	*stq_ill = NULL;
3984	ill_t	*in_ill = NULL;
3985	ipif_t	*ipif;
3986	boolean_t	need_wakeup = B_FALSE;
3987	irb_t 	*irb;
3988	ip_stack_t	*ipst = ire->ire_ipst;
3989
3990	ASSERT(ire->ire_refcnt == 0);
3991	ASSERT(ire->ire_ptpn == NULL);
3992	ASSERT(ire->ire_next == NULL);
3993
3994	if (ire->ire_gw_secattr != NULL) {
3995		ire_gw_secattr_free(ire->ire_gw_secattr);
3996		ire->ire_gw_secattr = NULL;
3997	}
3998
3999	if (ire->ire_mp != NULL) {
4000		ASSERT(ire->ire_bucket == NULL);
4001		mutex_destroy(&ire->ire_lock);
4002		BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed);
4003		if (ire->ire_nce != NULL)
4004			NCE_REFRELE_NOTR(ire->ire_nce);
4005		freeb(ire->ire_mp);
4006		return;
4007	}
4008
4009	if ((nce = ire->ire_nce) != NULL) {
4010		NCE_REFRELE_NOTR(nce);
4011		ire->ire_nce = NULL;
4012	}
4013
4014	if (ire->ire_ipif == NULL)
4015		goto end;
4016
4017	ipif = ire->ire_ipif;
4018	ill = ipif->ipif_ill;
4019
4020	if (ire->ire_bucket == NULL) {
4021		/* The ire was never inserted in the table. */
4022		goto end;
4023	}
4024
4025	/*
4026	 * ipif_ire_cnt on this ipif goes down by 1. If the ire_stq is
4027	 * non-null ill_ire_count also goes down by 1. If the in_ill is
4028	 * non-null either ill_mrtun_refcnt or ill_srcif_refcnt goes down by 1.
4029	 *
4030	 * The ipif that is associated with an ire is ire->ire_ipif and
4031	 * hence when the ire->ire_ipif->ipif_ire_cnt drops to zero we call
4032	 * ipif_ill_refrele_tail. Usually stq_ill is null or the same as
4033	 * ire->ire_ipif->ipif_ill. So nothing more needs to be done. Only
4034	 * in the case of IRE_CACHES when IPMP is used, stq_ill can be
4035	 * different. If this is different from ire->ire_ipif->ipif_ill and
4036	 * if the ill_ire_cnt on the stq_ill also has dropped to zero, we call
4037	 * ipif_ill_refrele_tail on the stq_ill. If mobile ip is in use
4038	 * in_ill could be non-null. If it is a reverse tunnel related ire
4039	 * ill_mrtun_refcnt is non-zero. If it is forward tunnel related ire
4040	 * ill_srcif_refcnt is non-null.
4041	 */
4042
4043	if (ire->ire_stq != NULL)
4044		stq_ill = (ill_t *)ire->ire_stq->q_ptr;
4045	if (ire->ire_in_ill != NULL)
4046		in_ill = ire->ire_in_ill;
4047
4048	if ((stq_ill == NULL || stq_ill == ill) && (in_ill == NULL)) {
4049		/* Optimize the most common case */
4050		mutex_enter(&ill->ill_lock);
4051		ASSERT(ipif->ipif_ire_cnt != 0);
4052		ipif->ipif_ire_cnt--;
4053		if (ipif->ipif_ire_cnt == 0)
4054			need_wakeup = B_TRUE;
4055		if (stq_ill != NULL) {
4056			ASSERT(stq_ill->ill_ire_cnt != 0);
4057			stq_ill->ill_ire_cnt--;
4058			if (stq_ill->ill_ire_cnt == 0)
4059				need_wakeup = B_TRUE;
4060		}
4061		if (need_wakeup) {
4062			/* Drops the ill lock */
4063			ipif_ill_refrele_tail(ill);
4064		} else {
4065			mutex_exit(&ill->ill_lock);
4066		}
4067	} else {
4068		/*
4069		 * We can't grab all the ill locks at the same time.
4070		 * It can lead to recursive lock enter in the call to
4071		 * ipif_ill_refrele_tail and later. Instead do it 1 at
4072		 * a time.
4073		 */
4074		mutex_enter(&ill->ill_lock);
4075		ASSERT(ipif->ipif_ire_cnt != 0);
4076		ipif->ipif_ire_cnt--;
4077		if (ipif->ipif_ire_cnt == 0) {
4078			/* Drops the lock */
4079			ipif_ill_refrele_tail(ill);
4080		} else {
4081			mutex_exit(&ill->ill_lock);
4082		}
4083		if (stq_ill != NULL) {
4084			mutex_enter(&stq_ill->ill_lock);
4085			ASSERT(stq_ill->ill_ire_cnt != 0);
4086			stq_ill->ill_ire_cnt--;
4087			if (stq_ill->ill_ire_cnt == 0)  {
4088				/* Drops the ill lock */
4089				ipif_ill_refrele_tail(stq_ill);
4090			} else {
4091				mutex_exit(&stq_ill->ill_lock);
4092			}
4093		}
4094		if (in_ill != NULL) {
4095			mutex_enter(&in_ill->ill_lock);
4096			if (ire->ire_type == IRE_MIPRTUN) {
4097				/*
4098				 * Mobile IP reverse tunnel ire.
4099				 * Decrement table count and the
4100				 * ill reference count. This signifies
4101				 * mipagent is deleting reverse tunnel
4102				 * route for a particular mobile node.
4103				 */
4104				mutex_enter(&ipst->ips_ire_mrtun_lock);
4105				ipst->ips_ire_mrtun_count--;
4106				mutex_exit(&ipst->ips_ire_mrtun_lock);
4107				ASSERT(in_ill->ill_mrtun_refcnt != 0);
4108				in_ill->ill_mrtun_refcnt--;
4109				if (in_ill->ill_mrtun_refcnt == 0) {
4110					/* Drops the ill lock */
4111					ipif_ill_refrele_tail(in_ill);
4112				} else {
4113					mutex_exit(&in_ill->ill_lock);
4114				}
4115			} else {
4116				mutex_enter(&ipst->ips_ire_srcif_table_lock);
4117				ipst->ips_ire_srcif_table_count--;
4118				mutex_exit(&ipst->ips_ire_srcif_table_lock);
4119				ASSERT(in_ill->ill_srcif_refcnt != 0);
4120				in_ill->ill_srcif_refcnt--;
4121				if (in_ill->ill_srcif_refcnt == 0) {
4122					/* Drops the ill lock */
4123					ipif_ill_refrele_tail(in_ill);
4124				} else {
4125					mutex_exit(&in_ill->ill_lock);
4126				}
4127			}
4128		}
4129	}
4130end:
4131	/* This should be true for both V4 and V6 */
4132
4133	if ((ire->ire_type & IRE_FORWARDTABLE) &&
4134	    (ire->ire_ipversion == IPV4_VERSION) &&
4135	    ((irb = ire->ire_bucket) != NULL)) {
4136		rw_enter(&irb->irb_lock, RW_WRITER);
4137		irb->irb_nire--;
4138		/*
4139		 * Instead of examining the conditions for freeing
4140		 * the radix node here, we do it by calling
4141		 * IRB_REFRELE which is a single point in the code
4142		 * that embeds that logic. Bump up the refcnt to
4143		 * be able to call IRB_REFRELE
4144		 */
4145		IRB_REFHOLD_LOCKED(irb);
4146		rw_exit(&irb->irb_lock);
4147		IRB_REFRELE(irb);
4148	}
4149	ire->ire_ipif = NULL;
4150
4151	if (ire->ire_in_ill != NULL) {
4152		ire->ire_in_ill = NULL;
4153	}
4154
4155#ifdef IRE_DEBUG
4156	ire_trace_inactive(ire);
4157#endif
4158	mutex_destroy(&ire->ire_lock);
4159	if (ire->ire_ipversion == IPV6_VERSION) {
4160		BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_freed);
4161	} else {
4162		BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed);
4163	}
4164	ASSERT(ire->ire_mp == NULL);
4165	/* Has been allocated out of the cache */
4166	kmem_cache_free(ire_cache, ire);
4167}
4168
4169/*
4170 * ire_walk routine to delete all IRE_CACHE/IRE_HOST types redirect
4171 * entries that have a given gateway address.
4172 */
4173void
4174ire_delete_cache_gw(ire_t *ire, char *cp)
4175{
4176	ipaddr_t	gw_addr;
4177
4178	if (!(ire->ire_type & IRE_CACHE) &&
4179	    !(ire->ire_flags & RTF_DYNAMIC))
4180		return;
4181
4182	bcopy(cp, &gw_addr, sizeof (gw_addr));
4183	if (ire->ire_gateway_addr == gw_addr) {
4184		ip1dbg(("ire_delete_cache_gw: deleted 0x%x type %d to 0x%x\n",
4185			(int)ntohl(ire->ire_addr), ire->ire_type,
4186			(int)ntohl(ire->ire_gateway_addr)));
4187		ire_delete(ire);
4188	}
4189}
4190
4191/*
4192 * Remove all IRE_CACHE entries that match the ire specified.
4193 *
4194 * The flag argument indicates if the flush request is due to addition
4195 * of new route (IRE_FLUSH_ADD) or deletion of old route (IRE_FLUSH_DELETE).
4196 *
4197 * This routine takes only the IREs from the forwarding table and flushes
4198 * the corresponding entries from the cache table.
4199 *
4200 * When flushing due to the deletion of an old route, it
4201 * just checks the cache handles (ire_phandle and ire_ihandle) and
4202 * deletes the ones that match.
4203 *
4204 * When flushing due to the creation of a new route, it checks
4205 * if a cache entry's address matches the one in the IRE and
4206 * that the cache entry's parent has a less specific mask than the
4207 * one in IRE. The destination of such a cache entry could be the
4208 * gateway for other cache entries, so we need to flush those as
4209 * well by looking for gateway addresses matching the IRE's address.
4210 */
4211void
4212ire_flush_cache_v4(ire_t *ire, int flag)
4213{
4214	int i;
4215	ire_t *cire;
4216	irb_t *irb;
4217	ip_stack_t	*ipst = ire->ire_ipst;
4218
4219	if (ire->ire_type & IRE_CACHE)
4220	    return;
4221
4222	/*
4223	 * If a default is just created, there is no point
4224	 * in going through the cache, as there will not be any
4225	 * cached ires.
4226	 */
4227	if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD)
4228		return;
4229	if (flag == IRE_FLUSH_ADD) {
4230		/*
4231		 * This selective flush is due to the addition of
4232		 * new IRE.
4233		 */
4234		for (i = 0; i < ipst->ips_ip_cache_table_size; i++) {
4235			irb = &ipst->ips_ip_cache_table[i];
4236			if ((cire = irb->irb_ire) == NULL)
4237				continue;
4238			IRB_REFHOLD(irb);
4239			for (cire = irb->irb_ire; cire != NULL;
4240			    cire = cire->ire_next) {
4241				if (cire->ire_type != IRE_CACHE)
4242					continue;
4243				/*
4244				 * If 'cire' belongs to the same subnet
4245				 * as the new ire being added, and 'cire'
4246				 * is derived from a prefix that is less
4247				 * specific than the new ire being added,
4248				 * we need to flush 'cire'; for instance,
4249				 * when a new interface comes up.
4250				 */
4251				if (((cire->ire_addr & ire->ire_mask) ==
4252				    (ire->ire_addr & ire->ire_mask)) &&
4253				    (ip_mask_to_plen(cire->ire_cmask) <=
4254				    ire->ire_masklen)) {
4255					ire_delete(cire);
4256					continue;
4257				}
4258				/*
4259				 * This is the case when the ire_gateway_addr
4260				 * of 'cire' belongs to the same subnet as
4261				 * the new ire being added.
4262				 * Flushing such ires is sometimes required to
4263				 * avoid misrouting: say we have a machine with
4264				 * two interfaces (I1 and I2), a default router
4265				 * R on the I1 subnet, and a host route to an
4266				 * off-link destination D with a gateway G on
4267				 * the I2 subnet.
4268				 * Under normal operation, we will have an
4269				 * on-link cache entry for G and an off-link
4270				 * cache entry for D with G as ire_gateway_addr,
4271				 * traffic to D will reach its destination
4272				 * through gateway G.
4273				 * If the administrator does 'ifconfig I2 down',
4274				 * the cache entries for D and G will be
4275				 * flushed. However, G will now be resolved as
4276				 * an off-link destination using R (the default
4277				 * router) as gateway. Then D will also be
4278				 * resolved as an off-link destination using G
4279				 * as gateway - this behavior is due to
4280				 * compatibility reasons, see comment in
4281				 * ire_ihandle_lookup_offlink(). Traffic to D
4282				 * will go to the router R and probably won't
4283				 * reach the destination.
4284				 * The administrator then does 'ifconfig I2 up'.
4285				 * Since G is on the I2 subnet, this routine
4286				 * will flush its cache entry. It must also
4287				 * flush the cache entry for D, otherwise
4288				 * traffic will stay misrouted until the IRE
4289				 * times out.
4290				 */
4291				if ((cire->ire_gateway_addr & ire->ire_mask) ==
4292				    (ire->ire_addr & ire->ire_mask)) {
4293					ire_delete(cire);
4294					continue;
4295				}
4296			}
4297			IRB_REFRELE(irb);
4298		}
4299	} else {
4300		/*
4301		 * delete the cache entries based on
4302		 * handle in the IRE as this IRE is
4303		 * being deleted/changed.
4304		 */
4305		for (i = 0; i < ipst->ips_ip_cache_table_size; i++) {
4306			irb = &ipst->ips_ip_cache_table[i];
4307			if ((cire = irb->irb_ire) == NULL)
4308				continue;
4309			IRB_REFHOLD(irb);
4310			for (cire = irb->irb_ire; cire != NULL;
4311			    cire = cire->ire_next) {
4312				if (cire->ire_type != IRE_CACHE)
4313					continue;
4314				if ((cire->ire_phandle == 0 ||
4315				    cire->ire_phandle != ire->ire_phandle) &&
4316				    (cire->ire_ihandle == 0 ||
4317				    cire->ire_ihandle != ire->ire_ihandle))
4318					continue;
4319				ire_delete(cire);
4320			}
4321			IRB_REFRELE(irb);
4322		}
4323	}
4324}
4325
4326/*
4327 * Matches the arguments passed with the values in the ire.
4328 *
4329 * Note: for match types that match using "ipif" passed in, ipif
4330 * must be checked for non-NULL before calling this routine.
4331 */
4332boolean_t
4333ire_match_args(ire_t *ire, ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway,
4334    int type, const ipif_t *ipif, zoneid_t zoneid, uint32_t ihandle,
4335    const ts_label_t *tsl, int match_flags)
4336{
4337	ill_t *ire_ill = NULL, *dst_ill;
4338	ill_t *ipif_ill = NULL;
4339	ill_group_t *ire_ill_group = NULL;
4340	ill_group_t *ipif_ill_group = NULL;
4341
4342	ASSERT(ire->ire_ipversion == IPV4_VERSION);
4343	ASSERT((ire->ire_addr & ~ire->ire_mask) == 0);
4344	ASSERT((!(match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP))) ||
4345	    (ipif != NULL && !ipif->ipif_isv6));
4346	ASSERT(!(match_flags & MATCH_IRE_WQ));
4347
4348	/*
4349	 * HIDDEN cache entries have to be looked up specifically with
4350	 * MATCH_IRE_MARK_HIDDEN. MATCH_IRE_MARK_HIDDEN is usually set
4351	 * when the interface is FAILED or INACTIVE. In that case,
4352	 * any IRE_CACHES that exists should be marked with
4353	 * IRE_MARK_HIDDEN. So, we don't really need to match below
4354	 * for IRE_MARK_HIDDEN. But we do so for consistency.
4355	 */
4356	if (!(match_flags & MATCH_IRE_MARK_HIDDEN) &&
4357	    (ire->ire_marks & IRE_MARK_HIDDEN))
4358		return (B_FALSE);
4359
4360	/*
4361	 * MATCH_IRE_MARK_PRIVATE_ADDR is set when IP_NEXTHOP option
4362	 * is used. In that case the routing table is bypassed and the
4363	 * packets are sent directly to the specified nexthop. The
4364	 * IRE_CACHE entry representing this route should be marked
4365	 * with IRE_MARK_PRIVATE_ADDR.
4366	 */
4367
4368	if (!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR) &&
4369	    (ire->ire_marks & IRE_MARK_PRIVATE_ADDR))
4370		return (B_FALSE);
4371
4372	if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid &&
4373	    ire->ire_zoneid != ALL_ZONES) {
4374		/*
4375		 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid is
4376		 * valid and does not match that of ire_zoneid, a failure to
4377		 * match is reported at this point. Otherwise, since some IREs
4378		 * that are available in the global zone can be used in local
4379		 * zones, additional checks need to be performed:
4380		 *
4381		 *	IRE_BROADCAST, IRE_CACHE and IRE_LOOPBACK
4382		 *	entries should never be matched in this situation.
4383		 *
4384		 *	IRE entries that have an interface associated with them
4385		 *	should in general not match unless they are an IRE_LOCAL
4386		 *	or in the case when MATCH_IRE_DEFAULT has been set in
4387		 *	the caller.  In the case of the former, checking of the
4388		 *	other fields supplied should take place.
4389		 *
4390		 *	In the case where MATCH_IRE_DEFAULT has been set,
4391		 *	all of the ipif's associated with the IRE's ill are
4392		 *	checked to see if there is a matching zoneid.  If any
4393		 *	one ipif has a matching zoneid, this IRE is a
4394		 *	potential candidate so checking of the other fields
4395		 *	takes place.
4396		 *
4397		 *	In the case where the IRE_INTERFACE has a usable source
4398		 *	address (indicated by ill_usesrc_ifindex) in the
4399		 *	correct zone then it's permitted to return this IRE
4400		 */
4401		if (match_flags & MATCH_IRE_ZONEONLY)
4402			return (B_FALSE);
4403		if (ire->ire_type & (IRE_BROADCAST | IRE_CACHE | IRE_LOOPBACK))
4404			return (B_FALSE);
4405		/*
4406		 * Note, IRE_INTERFACE can have the stq as NULL. For
4407		 * example, if the default multicast route is tied to
4408		 * the loopback address.
4409		 */
4410		if ((ire->ire_type & IRE_INTERFACE) &&
4411		    (ire->ire_stq != NULL)) {
4412			dst_ill = (ill_t *)ire->ire_stq->q_ptr;
4413			/*
4414			 * If there is a usable source address in the
4415			 * zone, then it's ok to return an
4416			 * IRE_INTERFACE
4417			 */
4418			if (ipif_usesrc_avail(dst_ill, zoneid)) {
4419				ip3dbg(("ire_match_args: dst_ill %p match %d\n",
4420				    (void *)dst_ill,
4421				    (ire->ire_addr == (addr & mask))));
4422			} else {
4423				ip3dbg(("ire_match_args: src_ipif NULL"
4424				    " dst_ill %p\n", (void *)dst_ill));
4425				return (B_FALSE);
4426			}
4427		}
4428		if (ire->ire_ipif != NULL && ire->ire_type != IRE_LOCAL &&
4429		    !(ire->ire_type & IRE_INTERFACE)) {
4430			ipif_t	*tipif;
4431
4432			if ((match_flags & MATCH_IRE_DEFAULT) == 0) {
4433				return (B_FALSE);
4434			}
4435			mutex_enter(&ire->ire_ipif->ipif_ill->ill_lock);
4436			for (tipif = ire->ire_ipif->ipif_ill->ill_ipif;
4437			    tipif != NULL; tipif = tipif->ipif_next) {
4438				if (IPIF_CAN_LOOKUP(tipif) &&
4439				    (tipif->ipif_flags & IPIF_UP) &&
4440				    (tipif->ipif_zoneid == zoneid ||
4441				    tipif->ipif_zoneid == ALL_ZONES))
4442					break;
4443			}
4444			mutex_exit(&ire->ire_ipif->ipif_ill->ill_lock);
4445			if (tipif == NULL) {
4446				return (B_FALSE);
4447			}
4448		}
4449	}
4450
4451	/*
4452	 * For IRE_CACHES, MATCH_IRE_ILL/ILL_GROUP really means that
4453	 * somebody wants to send out on a particular interface which
4454	 * is given by ire_stq and hence use ire_stq to derive the ill
4455	 * value. ire_ipif for IRE_CACHES is just the means of getting
4456	 * a source address i.e ire_src_addr = ire->ire_ipif->ipif_src_addr.
4457	 * ire_to_ill does the right thing for this.
4458	 */
4459	if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) {
4460		ire_ill = ire_to_ill(ire);
4461		if (ire_ill != NULL)
4462			ire_ill_group = ire_ill->ill_group;
4463		ipif_ill = ipif->ipif_ill;
4464		ipif_ill_group = ipif_ill->ill_group;
4465	}
4466
4467	if ((ire->ire_addr == (addr & mask)) &&
4468	    ((!(match_flags & MATCH_IRE_GW)) ||
4469		(ire->ire_gateway_addr == gateway)) &&
4470	    ((!(match_flags & MATCH_IRE_TYPE)) ||
4471		(ire->ire_type & type)) &&
4472	    ((!(match_flags & MATCH_IRE_SRC)) ||
4473		(ire->ire_src_addr == ipif->ipif_src_addr)) &&
4474	    ((!(match_flags & MATCH_IRE_IPIF)) ||
4475		(ire->ire_ipif == ipif)) &&
4476	    ((!(match_flags & MATCH_IRE_MARK_HIDDEN)) ||
4477		(ire->ire_type != IRE_CACHE ||
4478		ire->ire_marks & IRE_MARK_HIDDEN)) &&
4479	    ((!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR)) ||
4480		(ire->ire_type != IRE_CACHE ||
4481		ire->ire_marks & IRE_MARK_PRIVATE_ADDR)) &&
4482	    ((!(match_flags & MATCH_IRE_ILL)) ||
4483		(ire_ill == ipif_ill)) &&
4484	    ((!(match_flags & MATCH_IRE_IHANDLE)) ||
4485		(ire->ire_ihandle == ihandle)) &&
4486	    ((!(match_flags & MATCH_IRE_MASK)) ||
4487		(ire->ire_mask == mask)) &&
4488	    ((!(match_flags & MATCH_IRE_ILL_GROUP)) ||
4489		(ire_ill == ipif_ill) ||
4490		(ire_ill_group != NULL &&
4491		ire_ill_group == ipif_ill_group)) &&
4492	    ((!(match_flags & MATCH_IRE_SECATTR)) ||
4493		(!is_system_labeled()) ||
4494		(tsol_ire_match_gwattr(ire, tsl) == 0))) {
4495		/* We found the matched IRE */
4496		return (B_TRUE);
4497	}
4498	return (B_FALSE);
4499}
4500
4501
4502/*
4503 * Lookup for a route in all the tables
4504 */
4505ire_t *
4506ire_route_lookup(ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway,
4507    int type, const ipif_t *ipif, ire_t **pire, zoneid_t zoneid,
4508    const ts_label_t *tsl, int flags, ip_stack_t *ipst)
4509{
4510	ire_t *ire = NULL;
4511
4512	/*
4513	 * ire_match_args() will dereference ipif MATCH_IRE_SRC or
4514	 * MATCH_IRE_ILL is set.
4515	 */
4516	if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) &&
4517	    (ipif == NULL))
4518		return (NULL);
4519
4520	/*
4521	 * might be asking for a cache lookup,
4522	 * This is not best way to lookup cache,
4523	 * user should call ire_cache_lookup directly.
4524	 *
4525	 * If MATCH_IRE_TYPE was set, first lookup in the cache table and then
4526	 * in the forwarding table, if the applicable type flags were set.
4527	 */
4528	if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_CACHETABLE) != 0) {
4529		ire = ire_ctable_lookup(addr, gateway, type, ipif, zoneid,
4530		    tsl, flags, ipst);
4531		if (ire != NULL)
4532			return (ire);
4533	}
4534	if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_FORWARDTABLE) != 0) {
4535		ire = ire_ftable_lookup(addr, mask, gateway, type, ipif, pire,
4536		    zoneid, 0, tsl, flags, ipst);
4537	}
4538	return (ire);
4539}
4540
4541
4542/*
4543 * Delete the IRE cache for the gateway and all IRE caches whose
4544 * ire_gateway_addr points to this gateway, and allow them to
4545 * be created on demand by ip_newroute.
4546 */
4547void
4548ire_clookup_delete_cache_gw(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst)
4549{
4550	irb_t *irb;
4551	ire_t *ire;
4552
4553	irb = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr,
4554	    ipst->ips_ip_cache_table_size)];
4555	IRB_REFHOLD(irb);
4556	for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
4557		if (ire->ire_marks & IRE_MARK_CONDEMNED)
4558			continue;
4559
4560		ASSERT(ire->ire_mask == IP_HOST_MASK);
4561		ASSERT(ire->ire_type != IRE_MIPRTUN && ire->ire_in_ill == NULL);
4562		if (ire_match_args(ire, addr, ire->ire_mask, 0, IRE_CACHE,
4563		    NULL, zoneid, 0, NULL, MATCH_IRE_TYPE)) {
4564			ire_delete(ire);
4565		}
4566	}
4567	IRB_REFRELE(irb);
4568
4569	ire_walk_v4(ire_delete_cache_gw, &addr, zoneid, ipst);
4570}
4571
4572/*
4573 * Looks up cache table for a route.
4574 * specific lookup can be indicated by
4575 * passing the MATCH_* flags and the
4576 * necessary parameters.
4577 */
4578ire_t *
4579ire_ctable_lookup(ipaddr_t addr, ipaddr_t gateway, int type, const ipif_t *ipif,
4580    zoneid_t zoneid, const ts_label_t *tsl, int flags, ip_stack_t *ipst)
4581{
4582	irb_t *irb_ptr;
4583	ire_t *ire;
4584
4585	/*
4586	 * ire_match_args() will dereference ipif MATCH_IRE_SRC or
4587	 * MATCH_IRE_ILL is set.
4588	 */
4589	if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) &&
4590	    (ipif == NULL))
4591		return (NULL);
4592
4593	irb_ptr = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr,
4594					    ipst->ips_ip_cache_table_size)];
4595	rw_enter(&irb_ptr->irb_lock, RW_READER);
4596	for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) {
4597		if (ire->ire_marks & IRE_MARK_CONDEMNED)
4598			continue;
4599		ASSERT(ire->ire_mask == IP_HOST_MASK);
4600		ASSERT(ire->ire_type != IRE_MIPRTUN && ire->ire_in_ill == NULL);
4601		if (ire_match_args(ire, addr, ire->ire_mask, gateway, type,
4602		    ipif, zoneid, 0, tsl, flags)) {
4603			IRE_REFHOLD(ire);
4604			rw_exit(&irb_ptr->irb_lock);
4605			return (ire);
4606		}
4607	}
4608	rw_exit(&irb_ptr->irb_lock);
4609	return (NULL);
4610}
4611
4612/*
4613 * Check whether the IRE_LOCAL and the IRE potentially used to transmit
4614 * (could be an IRE_CACHE, IRE_BROADCAST, or IRE_INTERFACE) are part of
4615 * the same ill group.
4616 */
4617boolean_t
4618ire_local_same_ill_group(ire_t *ire_local, ire_t *xmit_ire)
4619{
4620	ill_t		*recv_ill, *xmit_ill;
4621	ill_group_t	*recv_group, *xmit_group;
4622
4623	ASSERT(ire_local->ire_type & (IRE_LOCAL|IRE_LOOPBACK));
4624	ASSERT(xmit_ire->ire_type & (IRE_CACHETABLE|IRE_INTERFACE));
4625
4626	recv_ill = ire_to_ill(ire_local);
4627	xmit_ill = ire_to_ill(xmit_ire);
4628
4629	ASSERT(recv_ill != NULL);
4630	ASSERT(xmit_ill != NULL);
4631
4632	if (recv_ill == xmit_ill)
4633		return (B_TRUE);
4634
4635	recv_group = recv_ill->ill_group;
4636	xmit_group = xmit_ill->ill_group;
4637
4638	if (recv_group != NULL && recv_group == xmit_group)
4639		return (B_TRUE);
4640
4641	return (B_FALSE);
4642}
4643
4644/*
4645 * Check if the IRE_LOCAL uses the same ill (group) as another route would use.
4646 * If there is no alternate route, or the alternate is a REJECT or BLACKHOLE,
4647 * then we don't allow this IRE_LOCAL to be used.
4648 */
4649boolean_t
4650ire_local_ok_across_zones(ire_t *ire_local, zoneid_t zoneid, void *addr,
4651    const ts_label_t *tsl, ip_stack_t *ipst)
4652{
4653	ire_t		*alt_ire;
4654	boolean_t	rval;
4655
4656	if (ire_local->ire_ipversion == IPV4_VERSION) {
4657		alt_ire = ire_ftable_lookup(*((ipaddr_t *)addr), 0, 0, 0, NULL,
4658		    NULL, zoneid, 0, tsl,
4659		    MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
4660		    MATCH_IRE_RJ_BHOLE, ipst);
4661	} else {
4662		alt_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL,
4663		    0, NULL, NULL, zoneid, 0, tsl,
4664		    MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
4665		    MATCH_IRE_RJ_BHOLE, ipst);
4666	}
4667
4668	if (alt_ire == NULL)
4669		return (B_FALSE);
4670
4671	if (alt_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
4672		ire_refrele(alt_ire);
4673		return (B_FALSE);
4674	}
4675	rval = ire_local_same_ill_group(ire_local, alt_ire);
4676
4677	ire_refrele(alt_ire);
4678	return (rval);
4679}
4680
4681/*
4682 * Lookup cache. Don't return IRE_MARK_HIDDEN entries. Callers
4683 * should use ire_ctable_lookup with MATCH_IRE_MARK_HIDDEN to get
4684 * to the hidden ones.
4685 *
4686 * In general the zoneid has to match (where ALL_ZONES match all of them).
4687 * But for IRE_LOCAL we also need to handle the case where L2 should
4688 * conceptually loop back the packet. This is necessary since neither
4689 * Ethernet drivers nor Ethernet hardware loops back packets sent to their
4690 * own MAC address. This loopback is needed when the normal
4691 * routes (ignoring IREs with different zoneids) would send out the packet on
4692 * the same ill (or ill group) as the ill with which this IRE_LOCAL is
4693 * associated.
4694 *
4695 * Earlier versions of this code always matched an IRE_LOCAL independently of
4696 * the zoneid. We preserve that earlier behavior when
4697 * ip_restrict_interzone_loopback is turned off.
4698 */
4699ire_t *
4700ire_cache_lookup(ipaddr_t addr, zoneid_t zoneid, const ts_label_t *tsl,
4701    ip_stack_t *ipst)
4702{
4703	irb_t *irb_ptr;
4704	ire_t *ire;
4705
4706	irb_ptr = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr,
4707					    ipst->ips_ip_cache_table_size)];
4708	rw_enter(&irb_ptr->irb_lock, RW_READER);
4709	for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) {
4710		if (ire->ire_marks & (IRE_MARK_CONDEMNED |
4711		    IRE_MARK_HIDDEN | IRE_MARK_PRIVATE_ADDR)) {
4712			continue;
4713		}
4714		if (ire->ire_addr == addr) {
4715			/*
4716			 * Finally, check if the security policy has any
4717			 * restriction on using this route for the specified
4718			 * message.
4719			 */
4720			if (tsl != NULL &&
4721			    ire->ire_gw_secattr != NULL &&
4722			    tsol_ire_match_gwattr(ire, tsl) != 0) {
4723				continue;
4724			}
4725
4726			if (zoneid == ALL_ZONES || ire->ire_zoneid == zoneid ||
4727			    ire->ire_zoneid == ALL_ZONES) {
4728				IRE_REFHOLD(ire);
4729				rw_exit(&irb_ptr->irb_lock);
4730				return (ire);
4731			}
4732
4733			if (ire->ire_type == IRE_LOCAL) {
4734				if (ipst->ips_ip_restrict_interzone_loopback &&
4735				    !ire_local_ok_across_zones(ire, zoneid,
4736				    &addr, tsl, ipst))
4737					continue;
4738
4739				IRE_REFHOLD(ire);
4740				rw_exit(&irb_ptr->irb_lock);
4741				return (ire);
4742			}
4743		}
4744	}
4745	rw_exit(&irb_ptr->irb_lock);
4746	return (NULL);
4747}
4748
4749/*
4750 * Locate the interface ire that is tied to the cache ire 'cire' via
4751 * cire->ire_ihandle.
4752 *
4753 * We are trying to create the cache ire for an offlink destn based
4754 * on the cache ire of the gateway in 'cire'. 'pire' is the prefix ire
4755 * as found by ip_newroute(). We are called from ip_newroute() in
4756 * the IRE_CACHE case.
4757 */
4758ire_t *
4759ire_ihandle_lookup_offlink(ire_t *cire, ire_t *pire)
4760{
4761	ire_t	*ire;
4762	int	match_flags;
4763	ipaddr_t gw_addr;
4764	ipif_t	*gw_ipif;
4765	ip_stack_t	*ipst = cire->ire_ipst;
4766
4767	ASSERT(cire != NULL && pire != NULL);
4768
4769	/*
4770	 * We don't need to specify the zoneid to ire_ftable_lookup() below
4771	 * because the ihandle refers to an ipif which can be in only one zone.
4772	 */
4773	match_flags =  MATCH_IRE_TYPE | MATCH_IRE_IHANDLE | MATCH_IRE_MASK;
4774	/*
4775	 * ip_newroute calls ire_ftable_lookup with MATCH_IRE_ILL only
4776	 * for on-link hosts. We should never be here for onlink.
4777	 * Thus, use MATCH_IRE_ILL_GROUP.
4778	 */
4779	if (pire->ire_ipif != NULL)
4780		match_flags |= MATCH_IRE_ILL_GROUP;
4781	/*
4782	 * We know that the mask of the interface ire equals cire->ire_cmask.
4783	 * (When ip_newroute() created 'cire' for the gateway it set its
4784	 * cmask from the interface ire's mask)
4785	 */
4786	ire = ire_ftable_lookup(cire->ire_addr, cire->ire_cmask, 0,
4787	    IRE_INTERFACE, pire->ire_ipif, NULL, ALL_ZONES, cire->ire_ihandle,
4788	    NULL, match_flags, ipst);
4789	if (ire != NULL)
4790		return (ire);
4791	/*
4792	 * If we didn't find an interface ire above, we can't declare failure.
4793	 * For backwards compatibility, we need to support prefix routes
4794	 * pointing to next hop gateways that are not on-link.
4795	 *
4796	 * Assume we are trying to ping some offlink destn, and we have the
4797	 * routing table below.
4798	 *
4799	 * Eg.	default	- gw1		<--- pire	(line 1)
4800	 *	gw1	- gw2				(line 2)
4801	 *	gw2	- hme0				(line 3)
4802	 *
4803	 * If we already have a cache ire for gw1 in 'cire', the
4804	 * ire_ftable_lookup above would have failed, since there is no
4805	 * interface ire to reach gw1. We will fallthru below.
4806	 *
4807	 * Here we duplicate the steps that ire_ftable_lookup() did in
4808	 * getting 'cire' from 'pire', in the MATCH_IRE_RECURSIVE case.
4809	 * The differences are the following
4810	 * i.   We want the interface ire only, so we call ire_ftable_lookup()
4811	 *	instead of ire_route_lookup()
4812	 * ii.  We look for only prefix routes in the 1st call below.
4813	 * ii.  We want to match on the ihandle in the 2nd call below.
4814	 */
4815	match_flags =  MATCH_IRE_TYPE;
4816	if (pire->ire_ipif != NULL)
4817		match_flags |= MATCH_IRE_ILL_GROUP;
4818	ire = ire_ftable_lookup(pire->ire_gateway_addr, 0, 0, IRE_OFFSUBNET,
4819	    pire->ire_ipif, NULL, ALL_ZONES, 0, NULL, match_flags, ipst);
4820	if (ire == NULL)
4821		return (NULL);
4822	/*
4823	 * At this point 'ire' corresponds to the entry shown in line 2.
4824	 * gw_addr is 'gw2' in the example above.
4825	 */
4826	gw_addr = ire->ire_gateway_addr;
4827	gw_ipif = ire->ire_ipif;
4828	ire_refrele(ire);
4829
4830	match_flags |= MATCH_IRE_IHANDLE;
4831	ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE,
4832	    gw_ipif, NULL, ALL_ZONES, cire->ire_ihandle, NULL, match_flags,
4833	    ipst);
4834	return (ire);
4835}
4836
4837/*
4838 * ire_mrtun_lookup() is called by ip_rput() when packet is to be
4839 * tunneled through reverse tunnel. This is only supported for
4840 * IPv4 packets
4841 */
4842
4843ire_t *
4844ire_mrtun_lookup(ipaddr_t srcaddr, ill_t *ill)
4845{
4846	irb_t *irb_ptr;
4847	ire_t *ire;
4848	ip_stack_t	*ipst = ill->ill_ipst;
4849
4850	ASSERT(ill != NULL);
4851	ASSERT(!(ill->ill_isv6));
4852
4853	if (ipst->ips_ip_mrtun_table == NULL)
4854		return (NULL);
4855	irb_ptr = &ipst->ips_ip_mrtun_table[IRE_ADDR_HASH(srcaddr,
4856					    IP_MRTUN_TABLE_SIZE)];
4857	rw_enter(&irb_ptr->irb_lock, RW_READER);
4858	for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) {
4859		if (ire->ire_marks & IRE_MARK_CONDEMNED)
4860			continue;
4861		if ((ire->ire_in_src_addr == srcaddr) &&
4862		    ire->ire_in_ill == ill) {
4863			IRE_REFHOLD(ire);
4864			rw_exit(&irb_ptr->irb_lock);
4865			return (ire);
4866		}
4867	}
4868	rw_exit(&irb_ptr->irb_lock);
4869	return (NULL);
4870}
4871
4872/*
4873 * Return the IRE_LOOPBACK, IRE_IF_RESOLVER or IRE_IF_NORESOLVER
4874 * ire associated with the specified ipif.
4875 *
4876 * This might occasionally be called when IPIF_UP is not set since
4877 * the IP_MULTICAST_IF as well as creating interface routes
4878 * allows specifying a down ipif (ipif_lookup* match ipifs that are down).
4879 *
4880 * Note that if IPIF_NOLOCAL, IPIF_NOXMIT, or IPIF_DEPRECATED is set on
4881 * the ipif, this routine might return NULL.
4882 */
4883ire_t *
4884ipif_to_ire(const ipif_t *ipif)
4885{
4886	ire_t	*ire;
4887	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
4888
4889	ASSERT(!ipif->ipif_isv6);
4890	if (ipif->ipif_ire_type == IRE_LOOPBACK) {
4891		ire = ire_ctable_lookup(ipif->ipif_lcl_addr, 0, IRE_LOOPBACK,
4892		    ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF),
4893		    ipst);
4894	} else if (ipif->ipif_flags & IPIF_POINTOPOINT) {
4895		/* In this case we need to lookup destination address. */
4896		ire = ire_ftable_lookup(ipif->ipif_pp_dst_addr, IP_HOST_MASK, 0,
4897		    IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL,
4898		    (MATCH_IRE_TYPE | MATCH_IRE_IPIF | MATCH_IRE_MASK), ipst);
4899	} else {
4900		ire = ire_ftable_lookup(ipif->ipif_subnet,
4901		    ipif->ipif_net_mask, 0, IRE_INTERFACE, ipif, NULL,
4902		    ALL_ZONES, 0, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF |
4903		    MATCH_IRE_MASK), ipst);
4904	}
4905	return (ire);
4906}
4907
4908/*
4909 * ire_walk function.
4910 * Count the number of IRE_CACHE entries in different categories.
4911 */
4912void
4913ire_cache_count(ire_t *ire, char *arg)
4914{
4915	ire_cache_count_t *icc = (ire_cache_count_t *)arg;
4916
4917	if (ire->ire_type != IRE_CACHE)
4918		return;
4919
4920	icc->icc_total++;
4921
4922	if (ire->ire_ipversion == IPV6_VERSION) {
4923		mutex_enter(&ire->ire_lock);
4924		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) {
4925			mutex_exit(&ire->ire_lock);
4926			icc->icc_onlink++;
4927			return;
4928		}
4929		mutex_exit(&ire->ire_lock);
4930	} else {
4931		if (ire->ire_gateway_addr == 0) {
4932			icc->icc_onlink++;
4933			return;
4934		}
4935	}
4936
4937	ASSERT(ire->ire_ipif != NULL);
4938	if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu)
4939		icc->icc_pmtu++;
4940	else if (ire->ire_tire_mark != ire->ire_ob_pkt_count +
4941	    ire->ire_ib_pkt_count)
4942		icc->icc_offlink++;
4943	else
4944		icc->icc_unused++;
4945}
4946
4947/*
4948 * ire_walk function called by ip_trash_ire_reclaim().
4949 * Free a fraction of the IRE_CACHE cache entries. The fractions are
4950 * different for different categories of IRE_CACHE entries.
4951 * A fraction of zero means to not free any in that category.
4952 * Use the hash bucket id plus lbolt as a random number. Thus if the fraction
4953 * is N then every Nth hash bucket chain will be freed.
4954 */
4955void
4956ire_cache_reclaim(ire_t *ire, char *arg)
4957{
4958	ire_cache_reclaim_t *icr = (ire_cache_reclaim_t *)arg;
4959	uint_t rand;
4960	ip_stack_t	*ipst = icr->icr_ipst;
4961
4962	if (ire->ire_type != IRE_CACHE)
4963		return;
4964
4965	if (ire->ire_ipversion == IPV6_VERSION) {
4966		rand = (uint_t)lbolt +
4967		    IRE_ADDR_HASH_V6(ire->ire_addr_v6,
4968			ipst->ips_ip6_cache_table_size);
4969		mutex_enter(&ire->ire_lock);
4970		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) {
4971			mutex_exit(&ire->ire_lock);
4972			if (icr->icr_onlink != 0 &&
4973			    (rand/icr->icr_onlink)*icr->icr_onlink == rand) {
4974				ire_delete(ire);
4975				return;
4976			}
4977			goto done;
4978		}
4979		mutex_exit(&ire->ire_lock);
4980	} else {
4981		rand = (uint_t)lbolt +
4982		    IRE_ADDR_HASH(ire->ire_addr, ipst->ips_ip_cache_table_size);
4983		if (ire->ire_gateway_addr == 0) {
4984			if (icr->icr_onlink != 0 &&
4985			    (rand/icr->icr_onlink)*icr->icr_onlink == rand) {
4986				ire_delete(ire);
4987				return;
4988			}
4989			goto done;
4990		}
4991	}
4992	/* Not onlink IRE */
4993	ASSERT(ire->ire_ipif != NULL);
4994	if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) {
4995		/* Use ptmu fraction */
4996		if (icr->icr_pmtu != 0 &&
4997		    (rand/icr->icr_pmtu)*icr->icr_pmtu == rand) {
4998			ire_delete(ire);
4999			return;
5000		}
5001	} else if (ire->ire_tire_mark != ire->ire_ob_pkt_count +
5002	    ire->ire_ib_pkt_count) {
5003		/* Use offlink fraction */
5004		if (icr->icr_offlink != 0 &&
5005		    (rand/icr->icr_offlink)*icr->icr_offlink == rand) {
5006			ire_delete(ire);
5007			return;
5008		}
5009	} else {
5010		/* Use unused fraction */
5011		if (icr->icr_unused != 0 &&
5012		    (rand/icr->icr_unused)*icr->icr_unused == rand) {
5013			ire_delete(ire);
5014			return;
5015		}
5016	}
5017done:
5018	/*
5019	 * Update tire_mark so that those that haven't been used since this
5020	 * reclaim will be considered unused next time we reclaim.
5021	 */
5022	ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count;
5023}
5024
5025static void
5026power2_roundup(uint32_t *value)
5027{
5028	int i;
5029
5030	for (i = 1; i < 31; i++) {
5031		if (*value <= (1 << i))
5032			break;
5033	}
5034	*value = (1 << i);
5035}
5036
5037/* Global init for all zones */
5038void
5039ip_ire_g_init()
5040{
5041	/*
5042	 * Create ire caches, ire_reclaim()
5043	 * will give IRE_CACHE back to system when needed.
5044	 * This needs to be done here before anything else, since
5045	 * ire_add() expects the cache to be created.
5046	 */
5047	ire_cache = kmem_cache_create("ire_cache",
5048		sizeof (ire_t), 0, ip_ire_constructor,
5049		ip_ire_destructor, ip_trash_ire_reclaim, NULL, NULL, 0);
5050
5051	rt_entry_cache = kmem_cache_create("rt_entry",
5052	    sizeof (struct rt_entry), 0, NULL, NULL, NULL, NULL, NULL, 0);
5053
5054	/*
5055	 * Have radix code setup kmem caches etc.
5056	 */
5057	rn_init();
5058}
5059
5060void
5061ip_ire_init(ip_stack_t *ipst)
5062{
5063	int i;
5064	uint32_t mem_cnt;
5065	uint32_t cpu_cnt;
5066	uint32_t min_cnt;
5067	pgcnt_t mem_avail;
5068
5069	/*
5070	 * ip_ire_max_bucket_cnt is sized below based on the memory
5071	 * size and the cpu speed of the machine. This is upper
5072	 * bounded by the compile time value of ip_ire_max_bucket_cnt
5073	 * and is lower bounded by the compile time value of
5074	 * ip_ire_min_bucket_cnt.  Similar logic applies to
5075	 * ip6_ire_max_bucket_cnt.
5076	 *
5077	 * We calculate this for each IP Instances in order to use
5078	 * the kmem_avail and ip_ire_{min,max}_bucket_cnt that are
5079	 * in effect when the zone is booted.
5080	 */
5081	mem_avail = kmem_avail();
5082	mem_cnt = (mem_avail >> ip_ire_mem_ratio) /
5083	    ip_cache_table_size / sizeof (ire_t);
5084	cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio;
5085
5086	min_cnt = MIN(cpu_cnt, mem_cnt);
5087	if (min_cnt < ip_ire_min_bucket_cnt)
5088		min_cnt = ip_ire_min_bucket_cnt;
5089	if (ip_ire_max_bucket_cnt > min_cnt) {
5090		ip_ire_max_bucket_cnt = min_cnt;
5091	}
5092
5093	mem_cnt = (mem_avail >> ip_ire_mem_ratio) /
5094	    ip6_cache_table_size / sizeof (ire_t);
5095	min_cnt = MIN(cpu_cnt, mem_cnt);
5096	if (min_cnt < ip6_ire_min_bucket_cnt)
5097		min_cnt = ip6_ire_min_bucket_cnt;
5098	if (ip6_ire_max_bucket_cnt > min_cnt) {
5099		ip6_ire_max_bucket_cnt = min_cnt;
5100	}
5101
5102	mutex_init(&ipst->ips_ire_ft_init_lock, NULL, MUTEX_DEFAULT, 0);
5103	mutex_init(&ipst->ips_ire_handle_lock, NULL, MUTEX_DEFAULT, NULL);
5104	mutex_init(&ipst->ips_ire_mrtun_lock, NULL, MUTEX_DEFAULT, NULL);
5105	mutex_init(&ipst->ips_ire_srcif_table_lock, NULL, MUTEX_DEFAULT, NULL);
5106
5107	(void) rn_inithead((void **)&ipst->ips_ip_ftable, 32);
5108
5109
5110	/* Calculate the IPv4 cache table size. */
5111	ipst->ips_ip_cache_table_size = MAX(ip_cache_table_size,
5112	    ((mem_avail >> ip_ire_mem_ratio) / sizeof (ire_t) /
5113	    ip_ire_max_bucket_cnt));
5114	if (ipst->ips_ip_cache_table_size > ip_max_cache_table_size)
5115		ipst->ips_ip_cache_table_size = ip_max_cache_table_size;
5116	/*
5117	 * Make sure that the table size is always a power of 2.  The
5118	 * hash macro IRE_ADDR_HASH() depends on that.
5119	 */
5120	power2_roundup(&ipst->ips_ip_cache_table_size);
5121
5122	ipst->ips_ip_cache_table = kmem_zalloc(ipst->ips_ip_cache_table_size *
5123	    sizeof (irb_t), KM_SLEEP);
5124
5125	for (i = 0; i < ipst->ips_ip_cache_table_size; i++) {
5126		rw_init(&ipst->ips_ip_cache_table[i].irb_lock, NULL,
5127		    RW_DEFAULT, NULL);
5128	}
5129
5130	/* Calculate the IPv6 cache table size. */
5131	ipst->ips_ip6_cache_table_size = MAX(ip6_cache_table_size,
5132	    ((mem_avail >> ip_ire_mem_ratio) / sizeof (ire_t) /
5133	    ip6_ire_max_bucket_cnt));
5134	if (ipst->ips_ip6_cache_table_size > ip6_max_cache_table_size)
5135		ipst->ips_ip6_cache_table_size = ip6_max_cache_table_size;
5136	/*
5137	 * Make sure that the table size is always a power of 2.  The
5138	 * hash macro IRE_ADDR_HASH_V6() depends on that.
5139	 */
5140	power2_roundup(&ipst->ips_ip6_cache_table_size);
5141
5142	ipst->ips_ip_cache_table_v6 = kmem_zalloc(
5143	    ipst->ips_ip6_cache_table_size * sizeof (irb_t), KM_SLEEP);
5144
5145	for (i = 0; i < ipst->ips_ip6_cache_table_size; i++) {
5146		rw_init(&ipst->ips_ip_cache_table_v6[i].irb_lock, NULL,
5147		    RW_DEFAULT, NULL);
5148	}
5149
5150	/*
5151	 * Initialize ip_mrtun_table to NULL now, it will be
5152	 * populated by ip_rt_add if reverse tunnel is created
5153	 */
5154	ipst->ips_ip_mrtun_table = NULL;
5155
5156	/*
5157	 * Make sure that the forwarding table size is a power of 2.
5158	 * The IRE*_ADDR_HASH() macroes depend on that.
5159	 */
5160	ipst->ips_ip6_ftable_hash_size = ip6_ftable_hash_size;
5161	power2_roundup(&ipst->ips_ip6_ftable_hash_size);
5162
5163	ipst->ips_ire_handle = 1;
5164}
5165
5166void
5167ip_ire_g_fini(void)
5168{
5169	kmem_cache_destroy(ire_cache);
5170	kmem_cache_destroy(rt_entry_cache);
5171
5172	rn_fini();
5173}
5174
5175void
5176ip_ire_fini(ip_stack_t *ipst)
5177{
5178	int i;
5179
5180	/*
5181	 * Delete all IREs - assumes that the ill/ipifs have
5182	 * been removed so what remains are just the ftable and IRE_CACHE.
5183	 */
5184	ire_walk_ill_mrtun(0, 0, ire_delete, NULL, NULL, ipst);
5185	ire_walk(ire_delete, NULL, ipst);
5186
5187	rn_freehead(ipst->ips_ip_ftable);
5188	ipst->ips_ip_ftable = NULL;
5189
5190	mutex_destroy(&ipst->ips_ire_ft_init_lock);
5191	mutex_destroy(&ipst->ips_ire_handle_lock);
5192	mutex_destroy(&ipst->ips_ire_mrtun_lock);
5193	mutex_destroy(&ipst->ips_ire_srcif_table_lock);
5194
5195	for (i = 0; i < ipst->ips_ip_cache_table_size; i++) {
5196		ASSERT(ipst->ips_ip_cache_table[i].irb_ire == NULL);
5197		rw_destroy(&ipst->ips_ip_cache_table[i].irb_lock);
5198	}
5199	kmem_free(ipst->ips_ip_cache_table,
5200	    ipst->ips_ip_cache_table_size * sizeof (irb_t));
5201	ipst->ips_ip_cache_table = NULL;
5202
5203	for (i = 0; i < ipst->ips_ip6_cache_table_size; i++) {
5204		ASSERT(ipst->ips_ip_cache_table_v6[i].irb_ire == NULL);
5205		rw_destroy(&ipst->ips_ip_cache_table_v6[i].irb_lock);
5206	}
5207	kmem_free(ipst->ips_ip_cache_table_v6,
5208	    ipst->ips_ip6_cache_table_size * sizeof (irb_t));
5209	ipst->ips_ip_cache_table_v6 = NULL;
5210
5211	if (ipst->ips_ip_mrtun_table != NULL) {
5212		for (i = 0; i < IP_MRTUN_TABLE_SIZE; i++) {
5213			ASSERT(ipst->ips_ip_mrtun_table[i].irb_ire == NULL);
5214			rw_destroy(&ipst->ips_ip_mrtun_table[i].irb_lock);
5215		}
5216		kmem_free(ipst->ips_ip_mrtun_table,
5217		    IP_MRTUN_TABLE_SIZE * sizeof (irb_t));
5218		ipst->ips_ip_mrtun_table = NULL;
5219	}
5220
5221	for (i = 0; i < IP6_MASK_TABLE_SIZE; i++) {
5222		irb_t *ptr;
5223		int j;
5224
5225		if ((ptr = ipst->ips_ip_forwarding_table_v6[i]) == NULL)
5226			continue;
5227
5228		for (j = 0; j < ipst->ips_ip6_ftable_hash_size; j++) {
5229			ASSERT(ptr[j].irb_ire == NULL);
5230			rw_destroy(&ptr[j].irb_lock);
5231		}
5232		mi_free(ptr);
5233		ipst->ips_ip_forwarding_table_v6[i] = NULL;
5234	}
5235}
5236
5237int
5238ire_add_mrtun(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func)
5239{
5240	ire_t   *ire1;
5241	irb_t	*irb_ptr;
5242	ire_t	**irep;
5243	ire_t	*ire = *ire_p;
5244	int	i;
5245	uint_t	max_frag;
5246	ill_t	*stq_ill;
5247	int error;
5248	ip_stack_t	*ipst = ire->ire_ipst;
5249
5250	ASSERT(ire->ire_ipversion == IPV4_VERSION);
5251	/* Is ip_mrtun_table empty ? */
5252
5253	if (ipst->ips_ip_mrtun_table == NULL) {
5254		/* create the mrtun table */
5255		mutex_enter(&ipst->ips_ire_mrtun_lock);
5256		if (ipst->ips_ip_mrtun_table == NULL) {
5257			ipst->ips_ip_mrtun_table = kmem_zalloc(
5258			    IP_MRTUN_TABLE_SIZE * sizeof (irb_t), KM_NOSLEEP);
5259
5260			if (ipst->ips_ip_mrtun_table == NULL) {
5261				ip2dbg(("ire_add_mrtun: allocation failure\n"));
5262				mutex_exit(&ipst->ips_ire_mrtun_lock);
5263				ire_refrele(ire);
5264				*ire_p = NULL;
5265				return (ENOMEM);
5266			}
5267
5268			for (i = 0; i < IP_MRTUN_TABLE_SIZE; i++) {
5269			    rw_init(&ipst->ips_ip_mrtun_table[i].irb_lock, NULL,
5270				    RW_DEFAULT, NULL);
5271			}
5272			ip2dbg(("ire_add_mrtun: mrtun table is created\n"));
5273		}
5274		/* some other thread got it and created the table */
5275		mutex_exit(&ipst->ips_ire_mrtun_lock);
5276	}
5277
5278	/*
5279	 * Check for duplicate in the bucket and insert in the table
5280	 */
5281	irb_ptr = &(ipst->ips_ip_mrtun_table[IRE_ADDR_HASH(ire->ire_in_src_addr,
5282	    IP_MRTUN_TABLE_SIZE)]);
5283
5284	/*
5285	 * Start the atomic add of the ire. Grab the ill locks,
5286	 * ill_g_usesrc_lock and the bucket lock.
5287	 *
5288	 * If ipif or ill is changing ire_atomic_start() may queue the
5289	 * request and return EINPROGRESS.
5290	 */
5291	error = ire_atomic_start(irb_ptr, ire, q, mp, func);
5292	if (error != 0) {
5293		/*
5294		 * We don't know whether it is a valid ipif or not.
5295		 * So, set it to NULL. This assumes that the ire has not added
5296		 * a reference to the ipif.
5297		 */
5298		ire->ire_ipif = NULL;
5299		ire_delete(ire);
5300		ip1dbg(("ire_add_mrtun: ire_atomic_start failed\n"));
5301		*ire_p = NULL;
5302		return (error);
5303	}
5304	for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) {
5305		if (ire1->ire_marks & IRE_MARK_CONDEMNED)
5306			continue;
5307		/* has anyone inserted the route in the meanwhile ? */
5308		if (ire1->ire_in_ill == ire->ire_in_ill &&
5309		    ire1->ire_in_src_addr == ire->ire_in_src_addr) {
5310			ip1dbg(("ire_add_mrtun: Duplicate entry exists\n"));
5311			IRE_REFHOLD(ire1);
5312			ire_atomic_end(irb_ptr, ire);
5313			ire_delete(ire);
5314			/* Return the old ire */
5315			*ire_p = ire1;
5316			return (0);
5317		}
5318	}
5319
5320	/* Atomically set the ire_max_frag */
5321	max_frag = *ire->ire_max_fragp;
5322	ire->ire_max_fragp = NULL;
5323	ire->ire_max_frag = MIN(max_frag, IP_MAXPACKET);
5324	ASSERT(ire->ire_type != IRE_CACHE);
5325	irep = (ire_t **)irb_ptr;
5326	if (*irep != NULL) {
5327		/* Find the last ire which matches ire_in_src_addr */
5328		ire1 = *irep;
5329		while (ire1->ire_in_src_addr == ire->ire_in_src_addr) {
5330			irep = &ire1->ire_next;
5331			ire1 = *irep;
5332			if (ire1 == NULL)
5333				break;
5334		}
5335	}
5336	ire1 = *irep;
5337	if (ire1 != NULL)
5338		ire1->ire_ptpn = &ire->ire_next;
5339	ire->ire_next = ire1;
5340	/* Link the new one in. */
5341	ire->ire_ptpn = irep;
5342	membar_producer();
5343	*irep = ire;
5344	ire->ire_bucket = irb_ptr;
5345	IRE_REFHOLD_LOCKED(ire);
5346
5347	ip2dbg(("ire_add_mrtun: created and linked ire %p\n", (void *)*irep));
5348
5349	/*
5350	 * Protect ire_mrtun_count and ill_mrtun_refcnt from
5351	 * another thread trying to add ire in the table
5352	 */
5353	mutex_enter(&ipst->ips_ire_mrtun_lock);
5354	ipst->ips_ire_mrtun_count++;
5355	mutex_exit(&ipst->ips_ire_mrtun_lock);
5356	/*
5357	 * ill_mrtun_refcnt is protected by the ill_lock held via
5358	 * ire_atomic_start
5359	 */
5360	ire->ire_in_ill->ill_mrtun_refcnt++;
5361
5362	if (ire->ire_ipif != NULL) {
5363		ire->ire_ipif->ipif_ire_cnt++;
5364		if (ire->ire_stq != NULL) {
5365			stq_ill = (ill_t *)ire->ire_stq->q_ptr;
5366			stq_ill->ill_ire_cnt++;
5367		}
5368	} else {
5369		ASSERT(ire->ire_stq == NULL);
5370	}
5371
5372	ire_atomic_end(irb_ptr, ire);
5373	nce_fastpath(ire->ire_nce);
5374	*ire_p = ire;
5375	return (0);
5376}
5377
5378
5379/* Walks down the mrtun table */
5380
5381void
5382ire_walk_ill_mrtun(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
5383    ill_t *ill, ip_stack_t *ipst)
5384{
5385	irb_t	*irb;
5386	ire_t	*ire;
5387	int	i;
5388	int	ret;
5389
5390	ASSERT((!(match_flags & (MATCH_IRE_WQ | MATCH_IRE_ILL |
5391	    MATCH_IRE_ILL_GROUP))) || (ill != NULL));
5392	ASSERT(match_flags == 0 || ire_type == IRE_MIPRTUN);
5393
5394	mutex_enter(&ipst->ips_ire_mrtun_lock);
5395	if (ipst->ips_ire_mrtun_count == 0) {
5396		mutex_exit(&ipst->ips_ire_mrtun_lock);
5397		return;
5398	}
5399	mutex_exit(&ipst->ips_ire_mrtun_lock);
5400
5401	ip2dbg(("ire_walk_ill_mrtun:walking the reverse tunnel table \n"));
5402	for (i = 0; i < IP_MRTUN_TABLE_SIZE; i++) {
5403
5404		irb = &(ipst->ips_ip_mrtun_table[i]);
5405		if (irb->irb_ire == NULL)
5406			continue;
5407		IRB_REFHOLD(irb);
5408		for (ire = irb->irb_ire; ire != NULL;
5409		    ire = ire->ire_next) {
5410			ASSERT(ire->ire_ipversion == IPV4_VERSION);
5411			if (match_flags != 0) {
5412				ret = ire_walk_ill_match(
5413				    match_flags, ire_type,
5414				    ire, ill, ALL_ZONES, ipst);
5415			}
5416			if (match_flags == 0 || ret)
5417				(*func)(ire, arg);
5418		}
5419		IRB_REFRELE(irb);
5420	}
5421}
5422
5423/*
5424 * Source interface based lookup routine (IPV4 only).
5425 * This routine is called only when RTA_SRCIFP bitflag is set
5426 * by routing socket while adding/deleting the route and it is
5427 * also called from ip_rput() when packets arrive from an interface
5428 * for which ill_srcif_ref_cnt is positive. This function is useful
5429 * when a packet coming from one interface must be forwarded to another
5430 * designated interface to reach the correct node. This function is also
5431 * called from ip_newroute when the link-layer address of an ire is resolved.
5432 * We need to make sure that ip_newroute searches for IRE_IF_RESOLVER type
5433 * ires--thus the ire_type parameter is needed.
5434 */
5435
5436ire_t *
5437ire_srcif_table_lookup(ipaddr_t dst_addr, int ire_type, ipif_t *ipif,
5438    ill_t *in_ill, int flags)
5439{
5440	irb_t	*irb_ptr;
5441	ire_t	*ire;
5442	irb_t	*ire_srcif_table;
5443
5444	ASSERT(in_ill != NULL && !in_ill->ill_isv6);
5445	ASSERT(!(flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) ||
5446	    (ipif != NULL && !ipif->ipif_isv6));
5447
5448	/*
5449	 * No need to lock the ill since it is refheld by the caller of this
5450	 * function
5451	 */
5452	if (in_ill->ill_srcif_table == NULL) {
5453		return (NULL);
5454	}
5455
5456	if (!(flags & MATCH_IRE_TYPE)) {
5457		flags |= MATCH_IRE_TYPE;
5458		ire_type = IRE_INTERFACE;
5459	}
5460	ire_srcif_table = in_ill->ill_srcif_table;
5461	irb_ptr = &ire_srcif_table[IRE_ADDR_HASH(dst_addr,
5462	    IP_SRCIF_TABLE_SIZE)];
5463	rw_enter(&irb_ptr->irb_lock, RW_READER);
5464	for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) {
5465		if (ire->ire_marks & IRE_MARK_CONDEMNED)
5466			continue;
5467		if (ire_match_args(ire, dst_addr, ire->ire_mask, 0,
5468		    ire_type, ipif, ire->ire_zoneid, 0, NULL, flags)) {
5469			IRE_REFHOLD(ire);
5470			rw_exit(&irb_ptr->irb_lock);
5471			return (ire);
5472		}
5473	}
5474	/* Not Found */
5475	rw_exit(&irb_ptr->irb_lock);
5476	return (NULL);
5477}
5478
5479
5480/*
5481 * Adds the ire into the special routing table which is hanging off of
5482 * the src_ipif->ipif_ill. It also increments the refcnt in the ill.
5483 * The forward table contains only IRE_IF_RESOLVER, IRE_IF_NORESOLVER
5484 * i,e. IRE_INTERFACE entries. Originally the dlureq_mp field is NULL
5485 * for IRE_IF_RESOLVER entry because we do not have the dst_addr's
5486 * link-layer address at the time of addition.
5487 * Upon resolving the address from ARP, dlureq_mp field is updated with
5488 * proper information in ire_update_srcif_v4.
5489 */
5490static int
5491ire_add_srcif_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func)
5492{
5493	ire_t	*ire1;
5494	irb_t	*ire_srcifp_table = NULL;
5495	irb_t	*irb_ptr = NULL;
5496	ire_t   **irep;
5497	ire_t   *ire;
5498	int	flags;
5499	int	i;
5500	ill_t	*stq_ill;
5501	uint_t	max_frag;
5502	int error = 0;
5503	ip_stack_t	*ipst;
5504
5505	ire = *ire_p;
5506	ipst = ire->ire_ipst;
5507	ASSERT(ire->ire_in_ill != NULL);
5508	ASSERT(ire->ire_ipversion == IPV4_VERSION);
5509	ASSERT(ire->ire_type == IRE_IF_NORESOLVER ||
5510	    ire->ire_type == IRE_IF_RESOLVER);
5511
5512	ire->ire_mask = IP_HOST_MASK;
5513	/*
5514	 * Update ire_nce->nce_res_mp with NULL value upon creation;
5515	 * first free the default res_mp created by ire_nce_init.
5516	 */
5517	freeb(ire->ire_nce->nce_res_mp);
5518	if (ire->ire_type == IRE_IF_RESOLVER) {
5519		/*
5520		 * assign NULL now, it will be updated
5521		 * with correct value upon returning from
5522		 * ARP
5523		 */
5524		ire->ire_nce->nce_res_mp = NULL;
5525	} else {
5526		ire->ire_nce->nce_res_mp = ill_dlur_gen(NULL,
5527		    ire->ire_ipif->ipif_ill->ill_phys_addr_length,
5528		    ire->ire_ipif->ipif_ill->ill_sap,
5529		    ire->ire_ipif->ipif_ill->ill_sap_length);
5530	}
5531	/* Make sure the address is properly masked. */
5532	ire->ire_addr &= ire->ire_mask;
5533
5534	ASSERT(ire->ire_max_fragp != NULL);
5535	max_frag = *ire->ire_max_fragp;
5536	ire->ire_max_fragp = NULL;
5537	ire->ire_max_frag = MIN(max_frag, IP_MAXPACKET);
5538
5539	mutex_enter(&ire->ire_in_ill->ill_lock);
5540	if (ire->ire_in_ill->ill_srcif_table == NULL) {
5541		/* create the incoming interface based table */
5542		ire->ire_in_ill->ill_srcif_table = kmem_zalloc(
5543		    IP_SRCIF_TABLE_SIZE * sizeof (irb_t), KM_NOSLEEP);
5544		if (ire->ire_in_ill->ill_srcif_table == NULL) {
5545			ip1dbg(("ire_add_srcif_v4: Allocation fail\n"));
5546			mutex_exit(&ire->ire_in_ill->ill_lock);
5547			ire_delete(ire);
5548			*ire_p = NULL;
5549			return (ENOMEM);
5550		}
5551		ire_srcifp_table = ire->ire_in_ill->ill_srcif_table;
5552		for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) {
5553			rw_init(&ire_srcifp_table[i].irb_lock, NULL,
5554			    RW_DEFAULT, NULL);
5555		}
5556		ip2dbg(("ire_add_srcif_v4: table created for ill %p\n",
5557		    (void *)ire->ire_in_ill));
5558	}
5559	/* Check for duplicate and insert */
5560	ASSERT(ire->ire_in_ill->ill_srcif_table != NULL);
5561	irb_ptr =
5562	    &(ire->ire_in_ill->ill_srcif_table[IRE_ADDR_HASH(ire->ire_addr,
5563	    IP_SRCIF_TABLE_SIZE)]);
5564	mutex_exit(&ire->ire_in_ill->ill_lock);
5565	flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW);
5566	flags |= MATCH_IRE_IPIF;
5567
5568	/*
5569	 * Start the atomic add of the ire. Grab the ill locks,
5570	 * ill_g_usesrc_lock and the bucket lock.
5571	 *
5572	 * If ipif or ill is changing ire_atomic_start() may queue the
5573	 * request and return EINPROGRESS.
5574	 */
5575	error = ire_atomic_start(irb_ptr, ire, q, mp, func);
5576	if (error != 0) {
5577		/*
5578		 * We don't know whether it is a valid ipif or not.
5579		 * So, set it to NULL. This assumes that the ire has not added
5580		 * a reference to the ipif.
5581		 */
5582		ire->ire_ipif = NULL;
5583		ire_delete(ire);
5584		ip1dbg(("ire_add_srcif_v4: ire_atomic_start failed\n"));
5585		*ire_p = NULL;
5586		return (error);
5587	}
5588	for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) {
5589		if (ire1->ire_marks & IRE_MARK_CONDEMNED)
5590			continue;
5591		if (ire1->ire_zoneid != ire->ire_zoneid)
5592			continue;
5593		/* Has anyone inserted route in the meanwhile ? */
5594		if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask, 0,
5595		    ire->ire_type, ire->ire_ipif, ire->ire_zoneid, 0, NULL,
5596		    flags)) {
5597			ip1dbg(("ire_add_srcif_v4 : Duplicate entry exists\n"));
5598			IRE_REFHOLD(ire1);
5599			ire_atomic_end(irb_ptr, ire);
5600			ire_delete(ire);
5601			/* Return old ire as in ire_add_v4 */
5602			*ire_p = ire1;
5603			return (0);
5604		}
5605	}
5606	irep = (ire_t **)irb_ptr;
5607	if (*irep != NULL) {
5608		/* Find the last ire which matches ire_addr */
5609		ire1 = *irep;
5610		while (ire1->ire_addr == ire->ire_addr) {
5611			irep = &ire1->ire_next;
5612			ire1 = *irep;
5613			if (ire1 == NULL)
5614				break;
5615		}
5616	}
5617	ire1 = *irep;
5618	if (ire1 != NULL)
5619		ire1->ire_ptpn = &ire->ire_next;
5620	ire->ire_next = ire1;
5621	/* Link the new one in. */
5622	ire->ire_ptpn = irep;
5623	membar_producer();
5624	*irep = ire;
5625	ire->ire_bucket = irb_ptr;
5626	IRE_REFHOLD_LOCKED(ire);
5627
5628	/*
5629	 * Protect ire_in_ill->ill_srcif_refcnt and table reference count.
5630	 * Note, ire_atomic_start already grabs the ire_in_ill->ill_lock
5631	 * so ill_srcif_refcnt is already protected.
5632	 */
5633	ire->ire_in_ill->ill_srcif_refcnt++;
5634	mutex_enter(&ipst->ips_ire_srcif_table_lock);
5635	ipst->ips_ire_srcif_table_count++;
5636	mutex_exit(&ipst->ips_ire_srcif_table_lock);
5637	irb_ptr->irb_ire_cnt++;
5638	if (ire->ire_ipif != NULL) {
5639		ire->ire_ipif->ipif_ire_cnt++;
5640		if (ire->ire_stq != NULL) {
5641			stq_ill = (ill_t *)ire->ire_stq->q_ptr;
5642			stq_ill->ill_ire_cnt++;
5643		}
5644	} else {
5645		ASSERT(ire->ire_stq == NULL);
5646	}
5647
5648	ire_atomic_end(irb_ptr, ire);
5649	*ire_p = ire;
5650	return (0);
5651}
5652
5653
5654/*
5655 * This function is called by ire_add_then_send when ARP request comes
5656 * back to ip_wput->ire_add_then_send for resolved ire in the interface
5657 * based routing table. At this point, it only needs to update the resolver
5658 * information for the ire. The passed ire is returned to the caller as it
5659 * is the ire which is created as mblk.
5660 */
5661static ire_t *
5662ire_update_srcif_v4(ire_t *ire)
5663{
5664	ire_t   *ire1;
5665	irb_t	*irb;
5666	int	error;
5667
5668	ASSERT(ire->ire_type != IRE_MIPRTUN &&
5669	    ire->ire_ipif->ipif_net_type == IRE_IF_RESOLVER);
5670	ASSERT(ire->ire_ipversion == IPV4_VERSION);
5671
5672	/*
5673	 * This ire is from ARP. Update
5674	 * ire_nce->nce_res_mp info
5675	 */
5676	ire1 = ire_srcif_table_lookup(ire->ire_addr,
5677	    IRE_IF_RESOLVER, ire->ire_ipif,
5678	    ire->ire_in_ill,
5679	    MATCH_IRE_ILL | MATCH_IRE_TYPE);
5680	if (ire1 == NULL) {
5681		/* Mobile node registration expired ? */
5682		ire_delete(ire);
5683		return (NULL);
5684	}
5685	irb = ire1->ire_bucket;
5686	ASSERT(irb != NULL);
5687	/*
5688	 * Start the atomic add of the ire. Grab the ill locks,
5689	 * ill_g_usesrc_lock and the bucket lock.
5690	 */
5691	error = ire_atomic_start(irb, ire1, NULL, NULL, NULL);
5692	if (error != 0) {
5693		/*
5694		 * We don't know whether it is a valid ipif or not.
5695		 * So, set it to NULL. This assumes that the ire has not added
5696		 * a reference to the ipif.
5697		 */
5698		ire->ire_ipif = NULL;
5699		ire_delete(ire);
5700		ip1dbg(("ire_update_srcif_v4: ire_atomic_start failed\n"));
5701		return (NULL);
5702	}
5703	ASSERT(ire->ire_max_fragp == NULL);
5704	ire->ire_max_frag = ire1->ire_max_frag;
5705	/*
5706	 * Update resolver information and
5707	 * send-to queue.
5708	 */
5709	ASSERT(ire->ire_nce->nce_res_mp != NULL);
5710	ire1->ire_nce->nce_res_mp = copyb(ire->ire_nce->nce_res_mp);
5711	if (ire1->ire_nce->nce_res_mp ==  NULL) {
5712		ip0dbg(("ire_update_srcif: copyb failed\n"));
5713		ire_refrele(ire1);
5714		ire_refrele(ire);
5715		ire_atomic_end(irb, ire1);
5716		return (NULL);
5717	}
5718	ire1->ire_stq = ire->ire_stq;
5719
5720	ASSERT(ire->ire_nce->nce_fp_mp == NULL);
5721
5722	ire_atomic_end(irb, ire1);
5723	ire_refrele(ire1);
5724	/* Return the passed ire */
5725	return (ire);   /* Update done */
5726}
5727
5728
5729/*
5730 * Check if another multirt route resolution is needed.
5731 * B_TRUE is returned is there remain a resolvable route,
5732 * or if no route for that dst is resolved yet.
5733 * B_FALSE is returned if all routes for that dst are resolved
5734 * or if the remaining unresolved routes are actually not
5735 * resolvable.
5736 * This only works in the global zone.
5737 */
5738boolean_t
5739ire_multirt_need_resolve(ipaddr_t dst, const ts_label_t *tsl, ip_stack_t *ipst)
5740{
5741	ire_t	*first_fire;
5742	ire_t	*first_cire;
5743	ire_t	*fire;
5744	ire_t	*cire;
5745	irb_t	*firb;
5746	irb_t	*cirb;
5747	int	unres_cnt = 0;
5748	boolean_t resolvable = B_FALSE;
5749
5750	/* Retrieve the first IRE_HOST that matches the destination */
5751	first_fire = ire_ftable_lookup(dst, IP_HOST_MASK, 0, IRE_HOST, NULL,
5752	    NULL, ALL_ZONES, 0, tsl,
5753	    MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst);
5754
5755	/* No route at all */
5756	if (first_fire == NULL) {
5757		return (B_TRUE);
5758	}
5759
5760	firb = first_fire->ire_bucket;
5761	ASSERT(firb != NULL);
5762
5763	/* Retrieve the first IRE_CACHE ire for that destination. */
5764	first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl, ipst);
5765
5766	/* No resolved route. */
5767	if (first_cire == NULL) {
5768		ire_refrele(first_fire);
5769		return (B_TRUE);
5770	}
5771
5772	/*
5773	 * At least one route is resolved. Here we look through the forward
5774	 * and cache tables, to compare the number of declared routes
5775	 * with the number of resolved routes. The search for a resolvable
5776	 * route is performed only if at least one route remains
5777	 * unresolved.
5778	 */
5779	cirb = first_cire->ire_bucket;
5780	ASSERT(cirb != NULL);
5781
5782	/* Count the number of routes to that dest that are declared. */
5783	IRB_REFHOLD(firb);
5784	for (fire = first_fire; fire != NULL; fire = fire->ire_next) {
5785		if (!(fire->ire_flags & RTF_MULTIRT))
5786			continue;
5787		if (fire->ire_addr != dst)
5788			continue;
5789		unres_cnt++;
5790	}
5791	IRB_REFRELE(firb);
5792
5793	/* Then subtract the number of routes to that dst that are resolved */
5794	IRB_REFHOLD(cirb);
5795	for (cire = first_cire; cire != NULL; cire = cire->ire_next) {
5796		if (!(cire->ire_flags & RTF_MULTIRT))
5797			continue;
5798		if (cire->ire_addr != dst)
5799			continue;
5800		if (cire->ire_marks & (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))
5801			continue;
5802		unres_cnt--;
5803	}
5804	IRB_REFRELE(cirb);
5805
5806	/* At least one route is unresolved; search for a resolvable route. */
5807	if (unres_cnt > 0)
5808		resolvable = ire_multirt_lookup(&first_cire, &first_fire,
5809		    MULTIRT_USESTAMP | MULTIRT_CACHEGW, tsl, ipst);
5810
5811	if (first_fire != NULL)
5812		ire_refrele(first_fire);
5813
5814	if (first_cire != NULL)
5815		ire_refrele(first_cire);
5816
5817	return (resolvable);
5818}
5819
5820
5821/*
5822 * Explore a forward_table bucket, starting from fire_arg.
5823 * fire_arg MUST be an IRE_HOST entry.
5824 *
5825 * Return B_TRUE and update *ire_arg and *fire_arg
5826 * if at least one resolvable route is found. *ire_arg
5827 * is the IRE entry for *fire_arg's gateway.
5828 *
5829 * Return B_FALSE otherwise (all routes are resolved or
5830 * the remaining unresolved routes are all unresolvable).
5831 *
5832 * The IRE selection relies on a priority mechanism
5833 * driven by the flags passed in by the caller.
5834 * The caller, such as ip_newroute_ipif(), can get the most
5835 * relevant ire at each stage of a multiple route resolution.
5836 *
5837 * The rules are:
5838 *
5839 * - if MULTIRT_CACHEGW is specified in flags, IRE_CACHETABLE
5840 *   ires are preferred for the gateway. This gives the highest
5841 *   priority to routes that can be resolved without using
5842 *   a resolver.
5843 *
5844 * - if MULTIRT_CACHEGW is not specified, or if MULTIRT_CACHEGW
5845 *   is specified but no IRE_CACHETABLE ire entry for the gateway
5846 *   is found, the following rules apply.
5847 *
5848 * - if MULTIRT_USESTAMP is specified in flags, IRE_INTERFACE
5849 *   ires for the gateway, that have not been tried since
5850 *   a configurable amount of time, are preferred.
5851 *   This applies when a resolver must be invoked for
5852 *   a missing route, but we don't want to use the resolver
5853 *   upon each packet emission. If no such resolver is found,
5854 *   B_FALSE is returned.
5855 *   The MULTIRT_USESTAMP flag can be combined with
5856 *   MULTIRT_CACHEGW.
5857 *
5858 * - if MULTIRT_USESTAMP is not specified in flags, the first
5859 *   unresolved but resolvable route is selected.
5860 *
5861 * - Otherwise, there is no resolvalble route, and
5862 *   B_FALSE is returned.
5863 *
5864 * At last, MULTIRT_SETSTAMP can be specified in flags to
5865 * request the timestamp of unresolvable routes to
5866 * be refreshed. This prevents the useless exploration
5867 * of those routes for a while, when MULTIRT_USESTAMP is used.
5868 *
5869 * This only works in the global zone.
5870 */
5871boolean_t
5872ire_multirt_lookup(ire_t **ire_arg, ire_t **fire_arg, uint32_t flags,
5873    const ts_label_t *tsl, ip_stack_t *ipst)
5874{
5875	clock_t	delta;
5876	ire_t	*best_fire = NULL;
5877	ire_t	*best_cire = NULL;
5878	ire_t	*first_fire;
5879	ire_t	*first_cire;
5880	ire_t	*fire;
5881	ire_t	*cire;
5882	irb_t	*firb = NULL;
5883	irb_t	*cirb = NULL;
5884	ire_t	*gw_ire;
5885	boolean_t	already_resolved;
5886	boolean_t	res;
5887	ipaddr_t	dst;
5888	ipaddr_t	gw;
5889
5890	ip2dbg(("ire_multirt_lookup: *ire_arg %p, *fire_arg %p, flags %04x\n",
5891	    (void *)*ire_arg, (void *)*fire_arg, flags));
5892
5893	ASSERT(ire_arg != NULL);
5894	ASSERT(fire_arg != NULL);
5895
5896	/* Not an IRE_HOST ire; give up. */
5897	if ((*fire_arg == NULL) || ((*fire_arg)->ire_type != IRE_HOST)) {
5898		return (B_FALSE);
5899	}
5900
5901	/* This is the first IRE_HOST ire for that destination. */
5902	first_fire = *fire_arg;
5903	firb = first_fire->ire_bucket;
5904	ASSERT(firb != NULL);
5905
5906	dst = first_fire->ire_addr;
5907
5908	ip2dbg(("ire_multirt_lookup: dst %08x\n", ntohl(dst)));
5909
5910	/*
5911	 * Retrieve the first IRE_CACHE ire for that destination;
5912	 * if we don't find one, no route for that dest is
5913	 * resolved yet.
5914	 */
5915	first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl, ipst);
5916	if (first_cire != NULL) {
5917		cirb = first_cire->ire_bucket;
5918	}
5919
5920	ip2dbg(("ire_multirt_lookup: first_cire %p\n", (void *)first_cire));
5921
5922	/*
5923	 * Search for a resolvable route, giving the top priority
5924	 * to routes that can be resolved without any call to the resolver.
5925	 */
5926	IRB_REFHOLD(firb);
5927
5928	if (!CLASSD(dst)) {
5929		/*
5930		 * For all multiroute IRE_HOST ires for that destination,
5931		 * check if the route via the IRE_HOST's gateway is
5932		 * resolved yet.
5933		 */
5934		for (fire = first_fire; fire != NULL; fire = fire->ire_next) {
5935
5936			if (!(fire->ire_flags & RTF_MULTIRT))
5937				continue;
5938			if (fire->ire_addr != dst)
5939				continue;
5940
5941			if (fire->ire_gw_secattr != NULL &&
5942			    tsol_ire_match_gwattr(fire, tsl) != 0) {
5943				continue;
5944			}
5945
5946			gw = fire->ire_gateway_addr;
5947
5948			ip2dbg(("ire_multirt_lookup: fire %p, "
5949			    "ire_addr %08x, ire_gateway_addr %08x\n",
5950			    (void *)fire, ntohl(fire->ire_addr), ntohl(gw)));
5951
5952			already_resolved = B_FALSE;
5953
5954			if (first_cire != NULL) {
5955				ASSERT(cirb != NULL);
5956
5957				IRB_REFHOLD(cirb);
5958				/*
5959				 * For all IRE_CACHE ires for that
5960				 * destination.
5961				 */
5962				for (cire = first_cire;
5963				    cire != NULL;
5964				    cire = cire->ire_next) {
5965
5966					if (!(cire->ire_flags & RTF_MULTIRT))
5967						continue;
5968					if (cire->ire_addr != dst)
5969						continue;
5970					if (cire->ire_marks &
5971					    (IRE_MARK_CONDEMNED |
5972						IRE_MARK_HIDDEN))
5973						continue;
5974
5975					if (cire->ire_gw_secattr != NULL &&
5976					    tsol_ire_match_gwattr(cire,
5977					    tsl) != 0) {
5978						continue;
5979					}
5980
5981					/*
5982					 * Check if the IRE_CACHE's gateway
5983					 * matches the IRE_HOST's gateway.
5984					 */
5985					if (cire->ire_gateway_addr == gw) {
5986						already_resolved = B_TRUE;
5987						break;
5988					}
5989				}
5990				IRB_REFRELE(cirb);
5991			}
5992
5993			/*
5994			 * This route is already resolved;
5995			 * proceed with next one.
5996			 */
5997			if (already_resolved) {
5998				ip2dbg(("ire_multirt_lookup: found cire %p, "
5999				    "already resolved\n", (void *)cire));
6000				continue;
6001			}
6002
6003			/*
6004			 * The route is unresolved; is it actually
6005			 * resolvable, i.e. is there a cache or a resolver
6006			 * for the gateway?
6007			 */
6008			gw_ire = ire_route_lookup(gw, 0, 0, 0, NULL, NULL,
6009			    ALL_ZONES, tsl,
6010			    MATCH_IRE_RECURSIVE | MATCH_IRE_SECATTR, ipst);
6011
6012			ip2dbg(("ire_multirt_lookup: looked up gw_ire %p\n",
6013			    (void *)gw_ire));
6014
6015			/*
6016			 * If gw_ire is typed IRE_CACHETABLE,
6017			 * this route can be resolved without any call to the
6018			 * resolver. If the MULTIRT_CACHEGW flag is set,
6019			 * give the top priority to this ire and exit the
6020			 * loop.
6021			 * This is typically the case when an ARP reply
6022			 * is processed through ip_wput_nondata().
6023			 */
6024			if ((flags & MULTIRT_CACHEGW) &&
6025			    (gw_ire != NULL) &&
6026			    (gw_ire->ire_type & IRE_CACHETABLE)) {
6027				ASSERT(gw_ire->ire_nce == NULL ||
6028				    gw_ire->ire_nce->nce_state == ND_REACHABLE);
6029				/*
6030				 * Release the resolver associated to the
6031				 * previous candidate best ire, if any.
6032				 */
6033				if (best_cire != NULL) {
6034					ire_refrele(best_cire);
6035					ASSERT(best_fire != NULL);
6036				}
6037
6038				best_fire = fire;
6039				best_cire = gw_ire;
6040
6041				ip2dbg(("ire_multirt_lookup: found top prio "
6042				    "best_fire %p, best_cire %p\n",
6043				    (void *)best_fire, (void *)best_cire));
6044				break;
6045			}
6046
6047			/*
6048			 * Compute the time elapsed since our preceding
6049			 * attempt to  resolve that route.
6050			 * If the MULTIRT_USESTAMP flag is set, we take that
6051			 * route into account only if this time interval
6052			 * exceeds ip_multirt_resolution_interval;
6053			 * this prevents us from attempting to resolve a
6054			 * broken route upon each sending of a packet.
6055			 */
6056			delta = lbolt - fire->ire_last_used_time;
6057			delta = TICK_TO_MSEC(delta);
6058
6059			res = (boolean_t)((delta >
6060				ipst->ips_ip_multirt_resolution_interval) ||
6061				(!(flags & MULTIRT_USESTAMP)));
6062
6063			ip2dbg(("ire_multirt_lookup: fire %p, delta %lu, "
6064			    "res %d\n",
6065			    (void *)fire, delta, res));
6066
6067			if (res) {
6068				/*
6069				 * We are here if MULTIRT_USESTAMP flag is set
6070				 * and the resolver for fire's gateway
6071				 * has not been tried since
6072				 * ip_multirt_resolution_interval, or if
6073				 * MULTIRT_USESTAMP is not set but gw_ire did
6074				 * not fill the conditions for MULTIRT_CACHEGW,
6075				 * or if neither MULTIRT_USESTAMP nor
6076				 * MULTIRT_CACHEGW are set.
6077				 */
6078				if (gw_ire != NULL) {
6079					if (best_fire == NULL) {
6080						ASSERT(best_cire == NULL);
6081
6082						best_fire = fire;
6083						best_cire = gw_ire;
6084
6085						ip2dbg(("ire_multirt_lookup:"
6086						    "found candidate "
6087						    "best_fire %p, "
6088						    "best_cire %p\n",
6089						    (void *)best_fire,
6090						    (void *)best_cire));
6091
6092						/*
6093						 * If MULTIRT_CACHEGW is not
6094						 * set, we ignore the top
6095						 * priority ires that can
6096						 * be resolved without any
6097						 * call to the resolver;
6098						 * In that case, there is
6099						 * actually no need
6100						 * to continue the loop.
6101						 */
6102						if (!(flags &
6103						    MULTIRT_CACHEGW)) {
6104							break;
6105						}
6106						continue;
6107					}
6108				} else {
6109					/*
6110					 * No resolver for the gateway: the
6111					 * route is not resolvable.
6112					 * If the MULTIRT_SETSTAMP flag is
6113					 * set, we stamp the IRE_HOST ire,
6114					 * so we will not select it again
6115					 * during this resolution interval.
6116					 */
6117					if (flags & MULTIRT_SETSTAMP)
6118						fire->ire_last_used_time =
6119						    lbolt;
6120				}
6121			}
6122
6123			if (gw_ire != NULL)
6124				ire_refrele(gw_ire);
6125		}
6126	} else { /* CLASSD(dst) */
6127
6128		for (fire = first_fire;
6129		    fire != NULL;
6130		    fire = fire->ire_next) {
6131
6132			if (!(fire->ire_flags & RTF_MULTIRT))
6133				continue;
6134			if (fire->ire_addr != dst)
6135				continue;
6136
6137			if (fire->ire_gw_secattr != NULL &&
6138			    tsol_ire_match_gwattr(fire, tsl) != 0) {
6139				continue;
6140			}
6141
6142			already_resolved = B_FALSE;
6143
6144			gw = fire->ire_gateway_addr;
6145
6146			gw_ire = ire_ftable_lookup(gw, 0, 0, IRE_INTERFACE,
6147			    NULL, NULL, ALL_ZONES, 0, tsl,
6148			    MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE |
6149			    MATCH_IRE_SECATTR, ipst);
6150
6151			/* No resolver for the gateway; we skip this ire. */
6152			if (gw_ire == NULL) {
6153				continue;
6154			}
6155			ASSERT(gw_ire->ire_nce == NULL ||
6156			    gw_ire->ire_nce->nce_state == ND_REACHABLE);
6157
6158			if (first_cire != NULL) {
6159
6160				IRB_REFHOLD(cirb);
6161				/*
6162				 * For all IRE_CACHE ires for that
6163				 * destination.
6164				 */
6165				for (cire = first_cire;
6166				    cire != NULL;
6167				    cire = cire->ire_next) {
6168
6169					if (!(cire->ire_flags & RTF_MULTIRT))
6170						continue;
6171					if (cire->ire_addr != dst)
6172						continue;
6173					if (cire->ire_marks &
6174					    (IRE_MARK_CONDEMNED |
6175						IRE_MARK_HIDDEN))
6176						continue;
6177
6178					if (cire->ire_gw_secattr != NULL &&
6179					    tsol_ire_match_gwattr(cire,
6180					    tsl) != 0) {
6181						continue;
6182					}
6183
6184					/*
6185					 * Cache entries are linked to the
6186					 * parent routes using the parent handle
6187					 * (ire_phandle). If no cache entry has
6188					 * the same handle as fire, fire is
6189					 * still unresolved.
6190					 */
6191					ASSERT(cire->ire_phandle != 0);
6192					if (cire->ire_phandle ==
6193					    fire->ire_phandle) {
6194						already_resolved = B_TRUE;
6195						break;
6196					}
6197				}
6198				IRB_REFRELE(cirb);
6199			}
6200
6201			/*
6202			 * This route is already resolved; proceed with
6203			 * next one.
6204			 */
6205			if (already_resolved) {
6206				ire_refrele(gw_ire);
6207				continue;
6208			}
6209
6210			/*
6211			 * Compute the time elapsed since our preceding
6212			 * attempt to resolve that route.
6213			 * If the MULTIRT_USESTAMP flag is set, we take
6214			 * that route into account only if this time
6215			 * interval exceeds ip_multirt_resolution_interval;
6216			 * this prevents us from attempting to resolve a
6217			 * broken route upon each sending of a packet.
6218			 */
6219			delta = lbolt - fire->ire_last_used_time;
6220			delta = TICK_TO_MSEC(delta);
6221
6222			res = (boolean_t)((delta >
6223				ipst->ips_ip_multirt_resolution_interval) ||
6224				(!(flags & MULTIRT_USESTAMP)));
6225
6226			ip3dbg(("ire_multirt_lookup: fire %p, delta %lx, "
6227			    "flags %04x, res %d\n",
6228			    (void *)fire, delta, flags, res));
6229
6230			if (res) {
6231				if (best_cire != NULL) {
6232					/*
6233					 * Release the resolver associated
6234					 * to the preceding candidate best
6235					 * ire, if any.
6236					 */
6237					ire_refrele(best_cire);
6238					ASSERT(best_fire != NULL);
6239				}
6240				best_fire = fire;
6241				best_cire = gw_ire;
6242				continue;
6243			}
6244
6245			ire_refrele(gw_ire);
6246		}
6247	}
6248
6249	if (best_fire != NULL) {
6250		IRE_REFHOLD(best_fire);
6251	}
6252	IRB_REFRELE(firb);
6253
6254	/* Release the first IRE_CACHE we initially looked up, if any. */
6255	if (first_cire != NULL)
6256		ire_refrele(first_cire);
6257
6258	/* Found a resolvable route. */
6259	if (best_fire != NULL) {
6260		ASSERT(best_cire != NULL);
6261
6262		if (*fire_arg != NULL)
6263			ire_refrele(*fire_arg);
6264		if (*ire_arg != NULL)
6265			ire_refrele(*ire_arg);
6266
6267		/*
6268		 * Update the passed-in arguments with the
6269		 * resolvable multirt route we found.
6270		 */
6271		*fire_arg = best_fire;
6272		*ire_arg = best_cire;
6273
6274		ip2dbg(("ire_multirt_lookup: returning B_TRUE, "
6275		    "*fire_arg %p, *ire_arg %p\n",
6276		    (void *)best_fire, (void *)best_cire));
6277
6278		return (B_TRUE);
6279	}
6280
6281	ASSERT(best_cire == NULL);
6282
6283	ip2dbg(("ire_multirt_lookup: returning B_FALSE, *fire_arg %p, "
6284	    "*ire_arg %p\n",
6285	    (void *)*fire_arg, (void *)*ire_arg));
6286
6287	/* No resolvable route. */
6288	return (B_FALSE);
6289}
6290
6291/*
6292 * IRE iterator for inbound and loopback broadcast processing.
6293 * Given an IRE_BROADCAST ire, walk the ires with the same destination
6294 * address, but skip over the passed-in ire. Returns the next ire without
6295 * a hold - assumes that the caller holds a reference on the IRE bucket.
6296 */
6297ire_t *
6298ire_get_next_bcast_ire(ire_t *curr, ire_t *ire)
6299{
6300	ill_t *ill;
6301
6302	if (curr == NULL) {
6303		for (curr = ire->ire_bucket->irb_ire; curr != NULL;
6304		    curr = curr->ire_next) {
6305			if (curr->ire_addr == ire->ire_addr)
6306				break;
6307		}
6308	} else {
6309		curr = curr->ire_next;
6310	}
6311	ill = ire_to_ill(ire);
6312	for (; curr != NULL; curr = curr->ire_next) {
6313		if (curr->ire_addr != ire->ire_addr) {
6314			/*
6315			 * All the IREs to a given destination are contiguous;
6316			 * break out once the address doesn't match.
6317			 */
6318			break;
6319		}
6320		if (curr == ire) {
6321			/* skip over the passed-in ire */
6322			continue;
6323		}
6324		if ((curr->ire_stq != NULL && ire->ire_stq == NULL) ||
6325		    (curr->ire_stq == NULL && ire->ire_stq != NULL)) {
6326			/*
6327			 * If the passed-in ire is loopback, skip over
6328			 * non-loopback ires and vice versa.
6329			 */
6330			continue;
6331		}
6332		if (ire_to_ill(curr) != ill) {
6333			/* skip over IREs going through a different interface */
6334			continue;
6335		}
6336		if (curr->ire_marks & IRE_MARK_CONDEMNED) {
6337			/* skip over deleted IREs */
6338			continue;
6339		}
6340		return (curr);
6341	}
6342	return (NULL);
6343}
6344
6345#ifdef IRE_DEBUG
6346th_trace_t *
6347th_trace_ire_lookup(ire_t *ire)
6348{
6349	int bucket_id;
6350	th_trace_t *th_trace;
6351
6352	ASSERT(MUTEX_HELD(&ire->ire_lock));
6353
6354	bucket_id = IP_TR_HASH(curthread);
6355	ASSERT(bucket_id < IP_TR_HASH_MAX);
6356
6357	for (th_trace = ire->ire_trace[bucket_id]; th_trace != NULL;
6358	    th_trace = th_trace->th_next) {
6359		if (th_trace->th_id == curthread)
6360			return (th_trace);
6361	}
6362	return (NULL);
6363}
6364
6365void
6366ire_trace_ref(ire_t *ire)
6367{
6368	int bucket_id;
6369	th_trace_t *th_trace;
6370
6371	/*
6372	 * Attempt to locate the trace buffer for the curthread.
6373	 * If it does not exist, then allocate a new trace buffer
6374	 * and link it in list of trace bufs for this ipif, at the head
6375	 */
6376	mutex_enter(&ire->ire_lock);
6377	if (ire->ire_trace_disable == B_TRUE) {
6378		mutex_exit(&ire->ire_lock);
6379		return;
6380	}
6381	th_trace = th_trace_ire_lookup(ire);
6382	if (th_trace == NULL) {
6383		bucket_id = IP_TR_HASH(curthread);
6384		th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t),
6385		    KM_NOSLEEP);
6386		if (th_trace == NULL) {
6387			ire->ire_trace_disable = B_TRUE;
6388			mutex_exit(&ire->ire_lock);
6389			ire_trace_inactive(ire);
6390			return;
6391		}
6392
6393		th_trace->th_id = curthread;
6394		th_trace->th_next = ire->ire_trace[bucket_id];
6395		th_trace->th_prev = &ire->ire_trace[bucket_id];
6396		if (th_trace->th_next != NULL)
6397			th_trace->th_next->th_prev = &th_trace->th_next;
6398		ire->ire_trace[bucket_id] = th_trace;
6399	}
6400	ASSERT(th_trace->th_refcnt < TR_BUF_MAX - 1);
6401	th_trace->th_refcnt++;
6402	th_trace_rrecord(th_trace);
6403	mutex_exit(&ire->ire_lock);
6404}
6405
6406void
6407ire_trace_free(th_trace_t *th_trace)
6408{
6409	/* unlink th_trace and free it */
6410	*th_trace->th_prev = th_trace->th_next;
6411	if (th_trace->th_next != NULL)
6412		th_trace->th_next->th_prev = th_trace->th_prev;
6413	th_trace->th_next = NULL;
6414	th_trace->th_prev = NULL;
6415	kmem_free(th_trace, sizeof (th_trace_t));
6416}
6417
6418void
6419ire_untrace_ref(ire_t *ire)
6420{
6421	th_trace_t *th_trace;
6422
6423	mutex_enter(&ire->ire_lock);
6424
6425	if (ire->ire_trace_disable == B_TRUE) {
6426		mutex_exit(&ire->ire_lock);
6427		return;
6428	}
6429
6430	th_trace = th_trace_ire_lookup(ire);
6431	ASSERT(th_trace != NULL && th_trace->th_refcnt > 0);
6432	th_trace_rrecord(th_trace);
6433	th_trace->th_refcnt--;
6434
6435	if (th_trace->th_refcnt == 0)
6436		ire_trace_free(th_trace);
6437
6438	mutex_exit(&ire->ire_lock);
6439}
6440
6441static void
6442ire_trace_inactive(ire_t *ire)
6443{
6444	th_trace_t *th_trace;
6445	int i;
6446
6447	mutex_enter(&ire->ire_lock);
6448	for (i = 0; i < IP_TR_HASH_MAX; i++) {
6449		while (ire->ire_trace[i] != NULL) {
6450			th_trace = ire->ire_trace[i];
6451
6452			/* unlink th_trace and free it */
6453			ire->ire_trace[i] = th_trace->th_next;
6454			if (th_trace->th_next != NULL)
6455				th_trace->th_next->th_prev =
6456				    &ire->ire_trace[i];
6457
6458			th_trace->th_next = NULL;
6459			th_trace->th_prev = NULL;
6460			kmem_free(th_trace, sizeof (th_trace_t));
6461		}
6462	}
6463
6464	mutex_exit(&ire->ire_lock);
6465}
6466
6467/* ARGSUSED */
6468void
6469ire_thread_exit(ire_t *ire, caddr_t arg)
6470{
6471	th_trace_t	*th_trace;
6472
6473	mutex_enter(&ire->ire_lock);
6474	th_trace = th_trace_ire_lookup(ire);
6475	if (th_trace == NULL) {
6476		mutex_exit(&ire->ire_lock);
6477		return;
6478	}
6479	ASSERT(th_trace->th_refcnt == 0);
6480
6481	ire_trace_free(th_trace);
6482	mutex_exit(&ire->ire_lock);
6483}
6484
6485#endif
6486
6487/*
6488 * Generate a message chain with an arp request to resolve the in_ire.
6489 * It is assumed that in_ire itself is currently in the ire cache table,
6490 * so we create a fake_ire filled with enough information about ire_addr etc.
6491 * to retrieve in_ire when the DL_UNITDATA response from the resolver
6492 * comes back. The fake_ire itself is created by calling esballoc with
6493 * the fr_rtnp (free routine) set to ire_freemblk. This routine will be
6494 * invoked when the mblk containing fake_ire is freed.
6495 */
6496void
6497ire_arpresolve(ire_t *in_ire, ill_t *dst_ill)
6498{
6499	areq_t		*areq;
6500	ipaddr_t	*addrp;
6501	mblk_t 		*ire_mp, *dlureq_mp;
6502	ire_t 		*ire, *buf;
6503	size_t		bufsize;
6504	frtn_t		*frtnp;
6505	ill_t		*ill;
6506	ip_stack_t	*ipst = dst_ill->ill_ipst;
6507
6508	/*
6509	 * Construct message chain for the resolver
6510	 * of the form:
6511	 *	ARP_REQ_MBLK-->IRE_MBLK
6512	 *
6513	 * NOTE : If the response does not
6514	 * come back, ARP frees the packet. For this reason,
6515	 * we can't REFHOLD the bucket of save_ire to prevent
6516	 * deletions. We may not be able to REFRELE the bucket
6517	 * if the response never comes back. Thus, before
6518	 * adding the ire, ire_add_v4 will make sure that the
6519	 * interface route does not get deleted. This is the
6520	 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6
6521	 * where we can always prevent deletions because of
6522	 * the synchronous nature of adding IRES i.e
6523	 * ire_add_then_send is called after creating the IRE.
6524	 */
6525
6526	/*
6527	 * We use esballoc to allocate the second part(the ire_t size mblk)
6528	 * of the message chain depicted above. THis mblk will be freed
6529	 * by arp when there is a  timeout, and otherwise passed to IP
6530	 * and IP will * free it after processing the ARP response.
6531	 */
6532
6533	bufsize = sizeof (ire_t) + sizeof (frtn_t);
6534	buf = kmem_alloc(bufsize, KM_NOSLEEP);
6535	if (buf == NULL) {
6536		ip1dbg(("ire_arpresolver:alloc buffer failed\n "));
6537		return;
6538	}
6539	frtnp = (frtn_t *)(buf + 1);
6540	frtnp->free_arg = (caddr_t)buf;
6541	frtnp->free_func = ire_freemblk;
6542
6543	ire_mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp);
6544
6545	if (ire_mp == NULL) {
6546		ip1dbg(("ire_arpresolve: esballoc failed\n"));
6547		kmem_free(buf, bufsize);
6548		return;
6549	}
6550	ASSERT(in_ire->ire_nce != NULL);
6551	dlureq_mp = copyb(dst_ill->ill_resolver_mp);
6552	if (dlureq_mp == NULL) {
6553		kmem_free(buf, bufsize);
6554		return;
6555	}
6556
6557	ire_mp->b_datap->db_type = IRE_ARPRESOLVE_TYPE;
6558	ire = (ire_t *)buf;
6559	/*
6560	 * keep enough info in the fake ire so that we can pull up
6561	 * the incomplete ire (in_ire) after result comes back from
6562	 * arp and make it complete.
6563	 */
6564	*ire = ire_null;
6565	ire->ire_u = in_ire->ire_u;
6566	ire->ire_ipif_seqid = in_ire->ire_ipif_seqid;
6567	ire->ire_ipif = in_ire->ire_ipif;
6568	ire->ire_stq = in_ire->ire_stq;
6569	ill = ire_to_ill(ire);
6570	ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex;
6571	ire->ire_zoneid = in_ire->ire_zoneid;
6572	ire->ire_ipst = ipst;
6573
6574	/*
6575	 * ire_freemblk will be called when ire_mp is freed, both for
6576	 * successful and failed arp resolution. IRE_MARK_UNCACHED will be set
6577	 * when the arp resolution failed.
6578	 */
6579	ire->ire_marks |= IRE_MARK_UNCACHED;
6580	ire->ire_mp = ire_mp;
6581	ire_mp->b_wptr = (uchar_t *)&ire[1];
6582	ire_mp->b_cont = NULL;
6583	ASSERT(dlureq_mp != NULL);
6584	linkb(dlureq_mp, ire_mp);
6585
6586	/*
6587	 * Fill in the source and dest addrs for the resolver.
6588	 * NOTE: this depends on memory layouts imposed by
6589	 * ill_init().
6590	 */
6591	areq = (areq_t *)dlureq_mp->b_rptr;
6592	addrp = (ipaddr_t *)((char *)areq + areq->areq_sender_addr_offset);
6593	*addrp = ire->ire_src_addr;
6594
6595	addrp = (ipaddr_t *)((char *)areq + areq->areq_target_addr_offset);
6596	if (ire->ire_gateway_addr != INADDR_ANY) {
6597		*addrp = ire->ire_gateway_addr;
6598	} else {
6599		*addrp = ire->ire_addr;
6600	}
6601
6602	/* Up to the resolver. */
6603	if (canputnext(dst_ill->ill_rq)) {
6604		putnext(dst_ill->ill_rq, dlureq_mp);
6605	} else {
6606		/* Prepare for cleanup */
6607		freemsg(dlureq_mp);
6608	}
6609}
6610
6611/*
6612 * Esballoc free function for AR_ENTRY_QUERY request to clean up any
6613 * unresolved ire_t and/or nce_t structures when ARP resolution fails.
6614 *
6615 * This function can be called by ARP via free routine for ire_mp or
6616 * by IPv4(both host and forwarding path) via ire_delete
6617 * in case ARP resolution fails.
6618 * NOTE: Since IP is MT, ARP can call into IP but not vice versa
6619 * (for IP to talk to ARP, it still has to send AR* messages).
6620 *
6621 * Note that the ARP/IP merge should replace the functioanlity by providing
6622 * direct function calls to clean up unresolved entries in ire/nce lists.
6623 */
6624void
6625ire_freemblk(ire_t *ire_mp)
6626{
6627	nce_t		*nce = NULL;
6628	ill_t		*ill;
6629	ip_stack_t	*ipst;
6630
6631	ASSERT(ire_mp != NULL);
6632
6633	if ((ire_mp->ire_addr == NULL) && (ire_mp->ire_gateway_addr == NULL)) {
6634		ip1dbg(("ire_freemblk(0x%p) ire_addr is NULL\n",
6635		    (void *)ire_mp));
6636		goto cleanup;
6637	}
6638	if ((ire_mp->ire_marks & IRE_MARK_UNCACHED) == 0) {
6639		goto cleanup; /* everything succeeded. just free and return */
6640	}
6641
6642	/*
6643	 * the arp information corresponding to this ire_mp was not
6644	 * transferred to  a ire_cache entry. Need
6645	 * to clean up incomplete ire's and nce, if necessary.
6646	 */
6647	ASSERT(ire_mp->ire_stq != NULL);
6648	ASSERT(ire_mp->ire_stq_ifindex != 0);
6649	ASSERT(ire_mp->ire_ipst != NULL);
6650
6651	ipst = ire_mp->ire_ipst;
6652
6653	/*
6654	 * Get any nce's corresponding to this ire_mp. We first have to
6655	 * make sure that the ill is still around.
6656	 */
6657	ill = ill_lookup_on_ifindex(ire_mp->ire_stq_ifindex,
6658	    B_FALSE, NULL, NULL, NULL, NULL, ipst);
6659	if (ill == NULL || (ire_mp->ire_stq != ill->ill_wq) ||
6660	    (ill->ill_state_flags & ILL_CONDEMNED)) {
6661		/*
6662		 * ill went away. no nce to clean up.
6663		 * Note that the ill_state_flags could be set to
6664		 * ILL_CONDEMNED after this point, but if we know
6665		 * that it is CONDEMNED now, we just bail out quickly.
6666		 */
6667		if (ill != NULL)
6668			ill_refrele(ill);
6669		goto cleanup;
6670	}
6671	nce = ndp_lookup_v4(ill,
6672	    ((ire_mp->ire_gateway_addr != INADDR_ANY) ?
6673	    &ire_mp->ire_gateway_addr : &ire_mp->ire_addr),
6674	    B_FALSE);
6675	ill_refrele(ill);
6676
6677	if ((nce != NULL) && (nce->nce_state != ND_REACHABLE)) {
6678		/*
6679		 * some incomplete nce was found.
6680		 */
6681		DTRACE_PROBE2(ire__freemblk__arp__resolv__fail,
6682		    nce_t *, nce, ire_t *, ire_mp);
6683		/*
6684		 * Send the icmp_unreachable messages for the queued mblks in
6685		 * ire->ire_nce->nce_qd_mp, since ARP resolution failed
6686		 * for this ire
6687		 */
6688		arp_resolv_failed(nce);
6689		/*
6690		 * Delete the nce and clean up all ire's pointing at this nce
6691		 * in the cachetable
6692		 */
6693		ndp_delete(nce);
6694	}
6695	if (nce != NULL)
6696		NCE_REFRELE(nce); /* release the ref taken by ndp_lookup_v4 */
6697
6698cleanup:
6699	/*
6700	 * Get rid of the ire buffer
6701	 * We call kmem_free here(instead of ire_delete()), since
6702	 * this is the freeb's callback.
6703	 */
6704	kmem_free(ire_mp, sizeof (ire_t) + sizeof (frtn_t));
6705}
6706
6707
6708/*
6709 * create the neighbor cache entry  nce_t for  IRE_CACHE and
6710 * non-loopback IRE_BROADCAST ire's. Note that IRE_BROADCAST
6711 * (non-loopback) entries  have the nce_res_mp set to the
6712 * template passed in (generated from ill_bcast_mp); IRE_CACHE ire's
6713 * contain the information for  the nexthop (ire_gateway_addr) in the
6714 * case of indirect routes, and for the dst itself (ire_addr) in the
6715 * case of direct routes, with the nce_res_mp containing a template
6716 * DL_UNITDATA request.
6717 *
6718 * This function always consumes res_mp and fp_mp.
6719 *
6720 * The actual association of the ire_nce to the nce created here is
6721 * typically done in ire_add_v4 for IRE_CACHE entries. Exceptions
6722 * to this rule are SO_DONTROUTE ire's (IRE_MARK_NO_ADD), for which
6723 * the ire_nce assignment is done in ire_add_then_send, and mobile-ip
6724 * where the assignment is done in ire_add_mrtun().
6725 */
6726int
6727ire_nce_init(ire_t *ire, mblk_t *fp_mp, mblk_t *res_mp)
6728{
6729	in_addr_t	addr4, mask4;
6730	int		err;
6731	nce_t		*arpce = NULL;
6732	ill_t		*ire_ill;
6733	uint16_t	nce_state, nce_flags;
6734	ip_stack_t	*ipst;
6735
6736	if (ire->ire_stq == NULL) {
6737		if (res_mp)
6738			freemsg(res_mp);
6739		if (fp_mp)
6740			freemsg(fp_mp);
6741		return (0); /* no need to create nce for local/loopback */
6742	}
6743
6744	mask4 = IP_HOST_MASK;
6745	switch (ire->ire_type) {
6746	case IRE_CACHE:
6747		if (ire->ire_gateway_addr != INADDR_ANY)
6748			addr4 = ire->ire_gateway_addr; /* 'G' route */
6749		else
6750			addr4 = ire->ire_addr; /* direct route */
6751		break;
6752	case IRE_BROADCAST:
6753		addr4 = ire->ire_addr;
6754		break;
6755	default:
6756		if (res_mp)
6757			freemsg(res_mp);
6758		if (fp_mp)
6759			freemsg(fp_mp);
6760		return (0);
6761	}
6762
6763	/*
6764	 * ire_ipif is picked based on RTF_SETSRC, usesrc etc.
6765	 * rules in ire_forward_src_ipif. We want the dlureq_mp
6766	 * for the outgoing interface, which we get from the ire_stq.
6767	 */
6768	ire_ill = ire_to_ill(ire);
6769	ipst = ire_ill->ill_ipst;
6770
6771	/*
6772	 * if we are creating an nce for the first time, and this is
6773	 * a NORESOLVER interface, atomically create the nce in the
6774	 * REACHABLE state; else create it in the ND_INITIAL state.
6775	 */
6776	if (ire_ill->ill_net_type == IRE_IF_NORESOLVER)  {
6777		nce_state = ND_REACHABLE;
6778		nce_flags = NCE_F_PERMANENT;
6779	} else {
6780		if (fp_mp != NULL)
6781			nce_state = ND_REACHABLE;
6782		else
6783			nce_state = ND_INITIAL;
6784		nce_flags = 0;
6785	}
6786
6787	err = ndp_lookup_then_add(ire_ill, NULL,
6788	    &addr4, &mask4, NULL, 0, nce_flags, nce_state, &arpce,
6789	    fp_mp, res_mp);
6790
6791	ip1dbg(("ire 0x%p addr 0x%lx mask 0x%lx type 0x%x; "
6792	    "found nce 0x%p err %d\n", (void *)ire, (ulong_t)addr4,
6793	    (ulong_t)mask4, ire->ire_type, (void *)arpce, err));
6794
6795	switch (err) {
6796	case 0:
6797		break;
6798	case EEXIST:
6799		/*
6800		 * return a pointer to an existing nce_t;
6801		 * note that the ire-nce mapping is many-one, i.e.,
6802		 * multiple ire's could point to the same nce_t;
6803		 */
6804		if (fp_mp != NULL) {
6805			freemsg(fp_mp);
6806		}
6807		if (res_mp != NULL) {
6808			freemsg(res_mp);
6809		}
6810		break;
6811	default:
6812		DTRACE_PROBE2(nce__init__fail, ill_t *, ire_ill, int, err);
6813		if (res_mp)
6814			freemsg(res_mp);
6815		if (fp_mp)
6816			freemsg(fp_mp);
6817		return (EINVAL);
6818	}
6819#if DEBUG
6820	/*
6821	 * if an nce_fp_mp was passed in, we should be picking up an
6822	 * existing nce_t in the ND_REACHABLE state.
6823	 */
6824	mutex_enter(&arpce->nce_lock);
6825	ASSERT(arpce->nce_fp_mp == NULL || arpce->nce_state == ND_REACHABLE);
6826	mutex_exit(&arpce->nce_lock);
6827#endif
6828	if (ire->ire_type == IRE_BROADCAST) {
6829		/*
6830		 * Two bcast ires are created for each interface;
6831		 * 1. loopback copy (which does not  have an
6832		 *    ire_stq, and therefore has no ire_nce), and,
6833		 * 2. the non-loopback copy, which has the nce_res_mp
6834		 *    initialized to a copy of the ill_bcast_mp, and
6835		 *    is marked as ND_REACHABLE at this point.
6836		 *    This nce does not undergo any further state changes,
6837		 *    and exists as long as the interface is plumbed.
6838		 * Note: we do the ire_nce assignment here for IRE_BROADCAST
6839		 * because some functions like ill_mark_bcast() inline the
6840		 * ire_add functionality;
6841		 */
6842		mutex_enter(&arpce->nce_lock);
6843		arpce->nce_state = ND_REACHABLE;
6844		arpce->nce_flags |= (NCE_F_PERMANENT | NCE_F_BCAST);
6845		arpce->nce_last = TICK_TO_MSEC(lbolt64);
6846		ire->ire_nce = arpce;
6847		mutex_exit(&arpce->nce_lock);
6848		/*
6849		 * We are associating this nce to the ire,
6850		 * so change the nce ref taken in
6851		 * ndp_lookup_then_add_v4() from
6852		 * NCE_REFHOLD to NCE_REFHOLD_NOTR
6853		 */
6854		NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce);
6855	} else {
6856		if (NCE_EXPIRED(arpce, ipst))
6857			arpce = nce_reinit(arpce);
6858		if (arpce != NULL) {
6859			/*
6860			 * We are not using this nce_t just yet so release
6861			 * the ref taken in ndp_lookup_then_add_v4()
6862			 */
6863			NCE_REFRELE(arpce);
6864		} else {
6865			ip0dbg(("can't reinit arpce for ill 0x%p;\n",
6866			    (void *)ire_ill));
6867		}
6868	}
6869	return (0);
6870}
6871