ip_if.c revision 10946:324bab2b3370
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25/* Copyright (c) 1990 Mentat Inc. */
26
27/*
28 * This file contains the interface control functions for IP.
29 */
30
31#include <sys/types.h>
32#include <sys/stream.h>
33#include <sys/dlpi.h>
34#include <sys/stropts.h>
35#include <sys/strsun.h>
36#include <sys/sysmacros.h>
37#include <sys/strsubr.h>
38#include <sys/strlog.h>
39#include <sys/ddi.h>
40#include <sys/sunddi.h>
41#include <sys/cmn_err.h>
42#include <sys/kstat.h>
43#include <sys/debug.h>
44#include <sys/zone.h>
45#include <sys/sunldi.h>
46#include <sys/file.h>
47#include <sys/bitmap.h>
48#include <sys/cpuvar.h>
49#include <sys/time.h>
50#include <sys/ctype.h>
51#include <sys/kmem.h>
52#include <sys/systm.h>
53#include <sys/param.h>
54#include <sys/socket.h>
55#include <sys/isa_defs.h>
56#include <net/if.h>
57#include <net/if_arp.h>
58#include <net/if_types.h>
59#include <net/if_dl.h>
60#include <net/route.h>
61#include <sys/sockio.h>
62#include <netinet/in.h>
63#include <netinet/ip6.h>
64#include <netinet/icmp6.h>
65#include <netinet/igmp_var.h>
66#include <sys/policy.h>
67#include <sys/ethernet.h>
68#include <sys/callb.h>
69#include <sys/md5.h>
70
71#include <inet/common.h>   /* for various inet/mi.h and inet/nd.h needs */
72#include <inet/mi.h>
73#include <inet/nd.h>
74#include <inet/arp.h>
75#include <inet/mib2.h>
76#include <inet/ip.h>
77#include <inet/ip6.h>
78#include <inet/ip6_asp.h>
79#include <inet/tcp.h>
80#include <inet/ip_multi.h>
81#include <inet/ip_ire.h>
82#include <inet/ip_ftable.h>
83#include <inet/ip_rts.h>
84#include <inet/ip_ndp.h>
85#include <inet/ip_if.h>
86#include <inet/ip_impl.h>
87#include <inet/sctp_ip.h>
88#include <inet/ip_netinfo.h>
89#include <inet/ilb_ip.h>
90
91#include <net/pfkeyv2.h>
92#include <inet/ipsec_info.h>
93#include <inet/sadb.h>
94#include <inet/ipsec_impl.h>
95#include <sys/iphada.h>
96
97#include <netinet/igmp.h>
98#include <inet/ip_listutils.h>
99#include <inet/ipclassifier.h>
100#include <sys/mac_client.h>
101#include <sys/dld.h>
102
103#include <sys/systeminfo.h>
104#include <sys/bootconf.h>
105
106#include <sys/tsol/tndb.h>
107#include <sys/tsol/tnet.h>
108
109/* The character which tells where the ill_name ends */
110#define	IPIF_SEPARATOR_CHAR	':'
111
112/* IP ioctl function table entry */
113typedef struct ipft_s {
114	int	ipft_cmd;
115	pfi_t	ipft_pfi;
116	int	ipft_min_size;
117	int	ipft_flags;
118} ipft_t;
119#define	IPFT_F_NO_REPLY		0x1	/* IP ioctl does not expect any reply */
120#define	IPFT_F_SELF_REPLY	0x2	/* ioctl callee does the ioctl reply */
121
122typedef struct ip_sock_ar_s {
123	union {
124		area_t	ip_sock_area;
125		ared_t	ip_sock_ared;
126		areq_t	ip_sock_areq;
127	} ip_sock_ar_u;
128	queue_t	*ip_sock_ar_q;
129} ip_sock_ar_t;
130
131static int	nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *);
132static int	nd_ill_forward_set(queue_t *q, mblk_t *mp,
133		    char *value, caddr_t cp, cred_t *ioc_cr);
134
135static boolean_t ill_is_quiescent(ill_t *);
136static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask);
137static ip_m_t	*ip_m_lookup(t_uscalar_t mac_type);
138static int	ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
139    mblk_t *mp, boolean_t need_up);
140static int	ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
141    mblk_t *mp, boolean_t need_up);
142static int	ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
143    queue_t *q, mblk_t *mp, boolean_t need_up);
144static int	ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q,
145    mblk_t *mp);
146static int	ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
147    mblk_t *mp);
148static int	ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t,
149    queue_t *q, mblk_t *mp, boolean_t need_up);
150static int	ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp,
151    int ioccmd, struct linkblk *li, boolean_t doconsist);
152static ipaddr_t	ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *);
153static void	ip_wput_ioctl(queue_t *q, mblk_t *mp);
154static void	ipsq_flush(ill_t *ill);
155
156static	int	ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen,
157    queue_t *q, mblk_t *mp, boolean_t need_up);
158static void	ipsq_delete(ipsq_t *);
159
160static ipif_t	*ipif_allocate(ill_t *ill, int id, uint_t ire_type,
161    boolean_t initialize, boolean_t insert);
162static void	ipif_check_bcast_ires(ipif_t *test_ipif);
163static ire_t	**ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep);
164static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif,
165		    boolean_t isv6);
166static void	ipif_down_delete_ire(ire_t *ire, char *ipif);
167static void	ipif_delete_cache_ire(ire_t *, char *);
168static int	ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp);
169static void	ipif_free(ipif_t *ipif);
170static void	ipif_free_tail(ipif_t *ipif);
171static void	ipif_mtu_change(ire_t *ire, char *ipif_arg);
172static void	ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif);
173static void	ipif_set_default(ipif_t *ipif);
174static int	ipif_set_values(queue_t *q, mblk_t *mp,
175    char *interf_name, uint_t *ppa);
176static int	ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp,
177    queue_t *q);
178static ipif_t	*ipif_lookup_on_name(char *name, size_t namelen,
179    boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid,
180    queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *);
181static void	ipif_update_other_ipifs(ipif_t *old_ipif);
182
183static int	ill_alloc_ppa(ill_if_t *, ill_t *);
184static int	ill_arp_off(ill_t *ill);
185static int	ill_arp_on(ill_t *ill);
186static void	ill_delete_interface_type(ill_if_t *);
187static int	ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q);
188static void	ill_dl_down(ill_t *ill);
189static void	ill_down(ill_t *ill);
190static void	ill_downi(ire_t *ire, char *ill_arg);
191static void	ill_free_mib(ill_t *ill);
192static void	ill_glist_delete(ill_t *);
193static void	ill_phyint_reinit(ill_t *ill);
194static void	ill_set_nce_router_flags(ill_t *, boolean_t);
195static void	ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *);
196static void	ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *);
197
198static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid;
199static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid;
200static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid;
201static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid;
202static ip_v6mapinfo_func_t ip_ether_v6mapinfo, ip_ib_v6mapinfo;
203static ip_v6mapinfo_func_t ip_nodef_v6mapinfo;
204static ip_v4mapinfo_func_t ip_ether_v4mapinfo, ip_ib_v4mapinfo;
205static ip_v4mapinfo_func_t ip_nodef_v4mapinfo;
206static void	ipif_save_ire(ipif_t *, ire_t *);
207static void	ipif_remove_ire(ipif_t *, ire_t *);
208static void 	ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *);
209static void 	ip_cgtp_bcast_delete(ire_t *, ip_stack_t *);
210static void	phyint_free(phyint_t *);
211
212/*
213 * Per-ill IPsec capabilities management.
214 */
215static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void);
216static void	ill_ipsec_capab_free(ill_ipsec_capab_t *);
217static void	ill_ipsec_capab_add(ill_t *, uint_t, boolean_t);
218static void	ill_ipsec_capab_delete(ill_t *, uint_t);
219static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int);
220static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *,
221    boolean_t);
222static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
223static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
224static void ill_capability_mdt_reset_fill(ill_t *, mblk_t *);
225static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
226static void ill_capability_ipsec_reset_fill(ill_t *, mblk_t *);
227static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
228static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *);
229static void ill_capability_zerocopy_ack(ill_t *, mblk_t *,
230    dl_capability_sub_t *);
231static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *);
232static int  ill_capability_ipsec_reset_size(ill_t *, int *, int *, int *,
233    int *);
234static void	ill_capability_dld_reset_fill(ill_t *, mblk_t *);
235static void	ill_capability_dld_ack(ill_t *, mblk_t *,
236		    dl_capability_sub_t *);
237static void	ill_capability_dld_enable(ill_t *);
238static void	ill_capability_ack_thr(void *);
239static void	ill_capability_lso_enable(ill_t *);
240static void	ill_capability_send(ill_t *, mblk_t *);
241
242static ill_t	*ill_prev_usesrc(ill_t *);
243static int	ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t);
244static void	ill_disband_usesrc_group(ill_t *);
245static void	conn_cleanup_stale_ire(conn_t *, caddr_t);
246
247#ifdef DEBUG
248static  void    ill_trace_cleanup(const ill_t *);
249static  void    ipif_trace_cleanup(const ipif_t *);
250#endif
251
252/*
253 * if we go over the memory footprint limit more than once in this msec
254 * interval, we'll start pruning aggressively.
255 */
256int ip_min_frag_prune_time = 0;
257
258/*
259 * max # of IPsec algorithms supported.  Limited to 1 byte by PF_KEY
260 * and the IPsec DOI
261 */
262#define	MAX_IPSEC_ALGS	256
263
264#define	BITSPERBYTE	8
265#define	BITS(type)	(BITSPERBYTE * (long)sizeof (type))
266
267#define	IPSEC_ALG_ENABLE(algs, algid) \
268		((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \
269		(1 << ((algid) % BITS(ipsec_capab_elem_t))))
270
271#define	IPSEC_ALG_IS_ENABLED(algid, algs) \
272		((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \
273		(1 << ((algid) % BITS(ipsec_capab_elem_t))))
274
275typedef uint8_t ipsec_capab_elem_t;
276
277/*
278 * Per-algorithm parameters.  Note that at present, only encryption
279 * algorithms have variable keysize (IKE does not provide a way to negotiate
280 * auth algorithm keysize).
281 *
282 * All sizes here are in bits.
283 */
284typedef struct
285{
286	uint16_t	minkeylen;
287	uint16_t	maxkeylen;
288} ipsec_capab_algparm_t;
289
290/*
291 * Per-ill capabilities.
292 */
293struct ill_ipsec_capab_s {
294	ipsec_capab_elem_t *encr_hw_algs;
295	ipsec_capab_elem_t *auth_hw_algs;
296	uint32_t algs_size;	/* size of _hw_algs in bytes */
297	/* algorithm key lengths */
298	ipsec_capab_algparm_t *encr_algparm;
299	uint32_t encr_algparm_size;
300	uint32_t encr_algparm_end;
301};
302
303/*
304 * The field values are larger than strictly necessary for simple
305 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls.
306 */
307static area_t	ip_area_template = {
308	AR_ENTRY_ADD,			/* area_cmd */
309	sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl),
310					/* area_name_offset */
311	/* area_name_length temporarily holds this structure length */
312	sizeof (area_t),			/* area_name_length */
313	IP_ARP_PROTO_TYPE,		/* area_proto */
314	sizeof (ip_sock_ar_t),		/* area_proto_addr_offset */
315	IP_ADDR_LEN,			/* area_proto_addr_length */
316	sizeof (ip_sock_ar_t) + IP_ADDR_LEN,
317					/* area_proto_mask_offset */
318	0,				/* area_flags */
319	sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN,
320					/* area_hw_addr_offset */
321	/* Zero length hw_addr_length means 'use your idea of the address' */
322	0				/* area_hw_addr_length */
323};
324
325/*
326 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver
327 * support
328 */
329static area_t	ip6_area_template = {
330	AR_ENTRY_ADD,			/* area_cmd */
331	sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t),
332					/* area_name_offset */
333	/* area_name_length temporarily holds this structure length */
334	sizeof (area_t),			/* area_name_length */
335	IP_ARP_PROTO_TYPE,		/* area_proto */
336	sizeof (ip_sock_ar_t),		/* area_proto_addr_offset */
337	IPV6_ADDR_LEN,			/* area_proto_addr_length */
338	sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN,
339					/* area_proto_mask_offset */
340	0,				/* area_flags */
341	sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN,
342					/* area_hw_addr_offset */
343	/* Zero length hw_addr_length means 'use your idea of the address' */
344	0				/* area_hw_addr_length */
345};
346
347static ared_t	ip_ared_template = {
348	AR_ENTRY_DELETE,
349	sizeof (ared_t) + IP_ADDR_LEN,
350	sizeof (ared_t),
351	IP_ARP_PROTO_TYPE,
352	sizeof (ared_t),
353	IP_ADDR_LEN,
354	0
355};
356
357static ared_t	ip6_ared_template = {
358	AR_ENTRY_DELETE,
359	sizeof (ared_t) + IPV6_ADDR_LEN,
360	sizeof (ared_t),
361	IP_ARP_PROTO_TYPE,
362	sizeof (ared_t),
363	IPV6_ADDR_LEN,
364	0
365};
366
367/*
368 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as
369 * as the areq doesn't include an IP address in ill_dl_up() (the only place a
370 * areq is used).
371 */
372static areq_t	ip_areq_template = {
373	AR_ENTRY_QUERY,			/* cmd */
374	sizeof (areq_t)+(2*IP_ADDR_LEN),	/* name offset */
375	sizeof (areq_t),	/* name len (filled by ill_arp_alloc) */
376	IP_ARP_PROTO_TYPE,		/* protocol, from arps perspective */
377	sizeof (areq_t),			/* target addr offset */
378	IP_ADDR_LEN,			/* target addr_length */
379	0,				/* flags */
380	sizeof (areq_t) + IP_ADDR_LEN,	/* sender addr offset */
381	IP_ADDR_LEN,			/* sender addr length */
382	AR_EQ_DEFAULT_XMIT_COUNT,	/* xmit_count */
383	AR_EQ_DEFAULT_XMIT_INTERVAL,	/* (re)xmit_interval in milliseconds */
384	AR_EQ_DEFAULT_MAX_BUFFERED	/* max # of requests to buffer */
385	/* anything else filled in by the code */
386};
387
388static arc_t	ip_aru_template = {
389	AR_INTERFACE_UP,
390	sizeof (arc_t),		/* Name offset */
391	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
392};
393
394static arc_t	ip_ard_template = {
395	AR_INTERFACE_DOWN,
396	sizeof (arc_t),		/* Name offset */
397	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
398};
399
400static arc_t	ip_aron_template = {
401	AR_INTERFACE_ON,
402	sizeof (arc_t),		/* Name offset */
403	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
404};
405
406static arc_t	ip_aroff_template = {
407	AR_INTERFACE_OFF,
408	sizeof (arc_t),		/* Name offset */
409	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
410};
411
412static arma_t	ip_arma_multi_template = {
413	AR_MAPPING_ADD,
414	sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN,
415				/* Name offset */
416	sizeof (arma_t),	/* Name length (set by ill_arp_alloc) */
417	IP_ARP_PROTO_TYPE,
418	sizeof (arma_t),			/* proto_addr_offset */
419	IP_ADDR_LEN,				/* proto_addr_length */
420	sizeof (arma_t) + IP_ADDR_LEN,		/* proto_mask_offset */
421	sizeof (arma_t) + 2*IP_ADDR_LEN,	/* proto_extract_mask_offset */
422	ACE_F_PERMANENT | ACE_F_MAPPING,	/* flags */
423	sizeof (arma_t) + 3*IP_ADDR_LEN,	/* hw_addr_offset */
424	IP_MAX_HW_LEN,				/* hw_addr_length */
425	0,					/* hw_mapping_start */
426};
427
428static ipft_t	ip_ioctl_ftbl[] = {
429	{ IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 },
430	{ IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t),
431		IPFT_F_NO_REPLY },
432	{ IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t),
433		IPFT_F_NO_REPLY },
434	{ IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY },
435	{ 0 }
436};
437
438/* Simple ICMP IP Header Template */
439static ipha_t icmp_ipha = {
440	IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
441};
442
443static uchar_t	ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
444
445static ip_m_t   ip_m_tbl[] = {
446	{ DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
447	    ip_ether_v4mapinfo, ip_ether_v6mapinfo, ip_ether_v6intfid,
448	    ip_nodef_v6intfid },
449	{ DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6,
450	    ip_ether_v4mapinfo, ip_ether_v6mapinfo, ip_nodef_v6intfid,
451	    ip_nodef_v6intfid },
452	{ DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6,
453	    ip_ether_v4mapinfo, ip_ether_v6mapinfo, ip_nodef_v6intfid,
454	    ip_nodef_v6intfid },
455	{ DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6,
456	    ip_ether_v4mapinfo, ip_ether_v6mapinfo, ip_nodef_v6intfid,
457	    ip_nodef_v6intfid },
458	{ DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6,
459	    ip_ether_v4mapinfo, ip_ether_v6mapinfo, ip_ether_v6intfid,
460	    ip_nodef_v6intfid },
461	{ DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6,
462	    ip_ib_v4mapinfo, ip_ib_v6mapinfo, ip_ib_v6intfid,
463	    ip_nodef_v6intfid },
464	{ DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6, ip_nodef_v4mapinfo,
465	    ip_nodef_v6mapinfo, ip_ipv4_v6intfid, ip_ipv4_v6destintfid },
466	{ DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6, ip_nodef_v4mapinfo,
467	    ip_nodef_v6mapinfo, ip_ipv6_v6intfid, ip_ipv6_v6destintfid },
468	{ DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6, ip_nodef_v4mapinfo,
469	    ip_nodef_v6mapinfo, ip_ipv4_v6intfid, ip_nodef_v6intfid },
470	{ SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
471	    NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid },
472	{ SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
473	    NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid },
474	{ DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
475	    ip_ether_v4mapinfo, ip_ether_v6mapinfo, ip_nodef_v6intfid,
476	    ip_nodef_v6intfid }
477};
478
479static ill_t	ill_null;		/* Empty ILL for init. */
480char	ipif_loopback_name[] = "lo0";
481static char *ipv4_forward_suffix = ":ip_forwarding";
482static char *ipv6_forward_suffix = ":ip6_forwarding";
483static	sin6_t	sin6_null;	/* Zero address for quick clears */
484static	sin_t	sin_null;	/* Zero address for quick clears */
485
486/* When set search for unused ipif_seqid */
487static ipif_t	ipif_zero;
488
489/*
490 * ppa arena is created after these many
491 * interfaces have been plumbed.
492 */
493uint_t	ill_no_arena = 12;	/* Setable in /etc/system */
494
495/*
496 * Allocate per-interface mibs.
497 * Returns true if ok. False otherwise.
498 *  ipsq  may not yet be allocated (loopback case ).
499 */
500static boolean_t
501ill_allocate_mibs(ill_t *ill)
502{
503	/* Already allocated? */
504	if (ill->ill_ip_mib != NULL) {
505		if (ill->ill_isv6)
506			ASSERT(ill->ill_icmp6_mib != NULL);
507		return (B_TRUE);
508	}
509
510	ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib),
511	    KM_NOSLEEP);
512	if (ill->ill_ip_mib == NULL) {
513		return (B_FALSE);
514	}
515
516	/* Setup static information */
517	SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize,
518	    sizeof (mib2_ipIfStatsEntry_t));
519	if (ill->ill_isv6) {
520		ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
521		SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
522		    sizeof (mib2_ipv6AddrEntry_t));
523		SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
524		    sizeof (mib2_ipv6RouteEntry_t));
525		SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
526		    sizeof (mib2_ipv6NetToMediaEntry_t));
527		SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
528		    sizeof (ipv6_member_t));
529		SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
530		    sizeof (ipv6_grpsrc_t));
531	} else {
532		ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
533		SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
534		    sizeof (mib2_ipAddrEntry_t));
535		SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
536		    sizeof (mib2_ipRouteEntry_t));
537		SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
538		    sizeof (mib2_ipNetToMediaEntry_t));
539		SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
540		    sizeof (ip_member_t));
541		SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
542		    sizeof (ip_grpsrc_t));
543
544		/*
545		 * For a v4 ill, we are done at this point, because per ill
546		 * icmp mibs are only used for v6.
547		 */
548		return (B_TRUE);
549	}
550
551	ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib),
552	    KM_NOSLEEP);
553	if (ill->ill_icmp6_mib == NULL) {
554		kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
555		ill->ill_ip_mib = NULL;
556		return (B_FALSE);
557	}
558	/* static icmp info */
559	ill->ill_icmp6_mib->ipv6IfIcmpEntrySize =
560	    sizeof (mib2_ipv6IfIcmpEntry_t);
561	/*
562	 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later
563	 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert
564	 * -> ill_phyint_reinit
565	 */
566	return (B_TRUE);
567}
568
569/*
570 * Common code for preparation of ARP commands.  Two points to remember:
571 * 	1) The ill_name is tacked on at the end of the allocated space so
572 *	   the templates name_offset field must contain the total space
573 *	   to allocate less the name length.
574 *
575 *	2) The templates name_length field should contain the *template*
576 *	   length.  We use it as a parameter to bcopy() and then write
577 *	   the real ill_name_length into the name_length field of the copy.
578 * (Always called as writer.)
579 */
580mblk_t *
581ill_arp_alloc(ill_t *ill, const uchar_t *template, caddr_t addr)
582{
583	arc_t	*arc = (arc_t *)template;
584	char	*cp;
585	int	len;
586	mblk_t	*mp;
587	uint_t	name_length = ill->ill_name_length;
588	uint_t	template_len = arc->arc_name_length;
589
590	len = arc->arc_name_offset + name_length;
591	mp = allocb(len, BPRI_HI);
592	if (mp == NULL)
593		return (NULL);
594	cp = (char *)mp->b_rptr;
595	mp->b_wptr = (uchar_t *)&cp[len];
596	if (template_len)
597		bcopy(template, cp, template_len);
598	if (len > template_len)
599		bzero(&cp[template_len], len - template_len);
600	mp->b_datap->db_type = M_PROTO;
601
602	arc = (arc_t *)cp;
603	arc->arc_name_length = name_length;
604	cp = (char *)arc + arc->arc_name_offset;
605	bcopy(ill->ill_name, cp, name_length);
606
607	if (addr) {
608		area_t	*area = (area_t *)mp->b_rptr;
609
610		cp = (char *)area + area->area_proto_addr_offset;
611		bcopy(addr, cp, area->area_proto_addr_length);
612		if (area->area_cmd == AR_ENTRY_ADD) {
613			cp = (char *)area;
614			len = area->area_proto_addr_length;
615			if (area->area_proto_mask_offset)
616				cp += area->area_proto_mask_offset;
617			else
618				cp += area->area_proto_addr_offset + len;
619			while (len-- > 0)
620				*cp++ = (char)~0;
621		}
622	}
623	return (mp);
624}
625
626mblk_t *
627ipif_area_alloc(ipif_t *ipif, uint_t optflags)
628{
629	caddr_t	addr;
630	mblk_t 	*mp;
631	area_t	*area;
632	uchar_t	*areap;
633	ill_t	*ill = ipif->ipif_ill;
634
635	if (ill->ill_isv6) {
636		ASSERT(ill->ill_flags & ILLF_XRESOLV);
637		addr = (caddr_t)&ipif->ipif_v6lcl_addr;
638		areap = (uchar_t *)&ip6_area_template;
639	} else {
640		addr = (caddr_t)&ipif->ipif_lcl_addr;
641		areap = (uchar_t *)&ip_area_template;
642	}
643
644	if ((mp = ill_arp_alloc(ill, areap, addr)) == NULL)
645		return (NULL);
646
647	/*
648	 * IPMP requires that the hardware address be included in all
649	 * AR_ENTRY_ADD requests so that ARP can deduce the arl to send on.
650	 * If there are no active underlying ills in the group (and thus no
651	 * hardware address, DAD will be deferred until an underlying ill
652	 * becomes active.
653	 */
654	if (IS_IPMP(ill)) {
655		if ((ill = ipmp_ipif_hold_bound_ill(ipif)) == NULL) {
656			freemsg(mp);
657			return (NULL);
658		}
659	} else {
660		ill_refhold(ill);
661	}
662
663	area = (area_t *)mp->b_rptr;
664	area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR;
665	area->area_flags |= optflags;
666	area->area_hw_addr_length = ill->ill_phys_addr_length;
667	bcopy(ill->ill_phys_addr, mp->b_rptr + area->area_hw_addr_offset,
668	    area->area_hw_addr_length);
669
670	ill_refrele(ill);
671	return (mp);
672}
673
674mblk_t *
675ipif_ared_alloc(ipif_t *ipif)
676{
677	caddr_t	addr;
678	uchar_t	*aredp;
679
680	if (ipif->ipif_ill->ill_isv6) {
681		ASSERT(ipif->ipif_ill->ill_flags & ILLF_XRESOLV);
682		addr = (caddr_t)&ipif->ipif_v6lcl_addr;
683		aredp = (uchar_t *)&ip6_ared_template;
684	} else {
685		addr = (caddr_t)&ipif->ipif_lcl_addr;
686		aredp = (uchar_t *)&ip_ared_template;
687	}
688
689	return (ill_arp_alloc(ipif->ipif_ill, aredp, addr));
690}
691
692mblk_t *
693ill_ared_alloc(ill_t *ill, ipaddr_t addr)
694{
695	return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template,
696	    (char *)&addr));
697}
698
699mblk_t *
700ill_arie_alloc(ill_t *ill, const char *grifname, const void *template)
701{
702	mblk_t	*mp = ill_arp_alloc(ill, template, 0);
703	arie_t	*arie;
704
705	if (mp != NULL) {
706		arie = (arie_t *)mp->b_rptr;
707		(void) strlcpy(arie->arie_grifname, grifname, LIFNAMSIZ);
708	}
709	return (mp);
710}
711
712/*
713 * Completely vaporize a lower level tap and all associated interfaces.
714 * ill_delete is called only out of ip_close when the device control
715 * stream is being closed.
716 */
717void
718ill_delete(ill_t *ill)
719{
720	ipif_t	*ipif;
721	ill_t	*prev_ill;
722	ip_stack_t	*ipst = ill->ill_ipst;
723
724	/*
725	 * ill_delete may be forcibly entering the ipsq. The previous
726	 * ioctl may not have completed and may need to be aborted.
727	 * ipsq_flush takes care of it. If we don't need to enter the
728	 * the ipsq forcibly, the 2nd invocation of ipsq_flush in
729	 * ill_delete_tail is sufficient.
730	 */
731	ipsq_flush(ill);
732
733	/*
734	 * Nuke all interfaces.  ipif_free will take down the interface,
735	 * remove it from the list, and free the data structure.
736	 * Walk down the ipif list and remove the logical interfaces
737	 * first before removing the main ipif. We can't unplumb
738	 * zeroth interface first in the case of IPv6 as reset_conn_ill
739	 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking
740	 * POINTOPOINT.
741	 *
742	 * If ill_ipif was not properly initialized (i.e low on memory),
743	 * then no interfaces to clean up. In this case just clean up the
744	 * ill.
745	 */
746	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
747		ipif_free(ipif);
748
749	/*
750	 * Used only by ill_arp_on and ill_arp_off, which are writers.
751	 * So nobody can be using this mp now. Free the mp allocated for
752	 * honoring ILLF_NOARP
753	 */
754	freemsg(ill->ill_arp_on_mp);
755	ill->ill_arp_on_mp = NULL;
756
757	/* Clean up msgs on pending upcalls for mrouted */
758	reset_mrt_ill(ill);
759
760	/*
761	 * ipif_free -> reset_conn_ipif will remove all multicast
762	 * references for IPv4. For IPv6, we need to do it here as
763	 * it points only at ills.
764	 */
765	reset_conn_ill(ill);
766
767	/*
768	 * Remove multicast references added as a result of calls to
769	 * ip_join_allmulti().
770	 */
771	ip_purge_allmulti(ill);
772
773	/*
774	 * If the ill being deleted is under IPMP, boot it out of the illgrp.
775	 */
776	if (IS_UNDER_IPMP(ill))
777		ipmp_ill_leave_illgrp(ill);
778
779	/*
780	 * ill_down will arrange to blow off any IRE's dependent on this
781	 * ILL, and shut down fragmentation reassembly.
782	 */
783	ill_down(ill);
784
785	/* Let SCTP know, so that it can remove this from its list. */
786	sctp_update_ill(ill, SCTP_ILL_REMOVE);
787
788	/*
789	 * If an address on this ILL is being used as a source address then
790	 * clear out the pointers in other ILLs that point to this ILL.
791	 */
792	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
793	if (ill->ill_usesrc_grp_next != NULL) {
794		if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */
795			ill_disband_usesrc_group(ill);
796		} else {	/* consumer of the usesrc ILL */
797			prev_ill = ill_prev_usesrc(ill);
798			prev_ill->ill_usesrc_grp_next =
799			    ill->ill_usesrc_grp_next;
800		}
801	}
802	rw_exit(&ipst->ips_ill_g_usesrc_lock);
803}
804
805static void
806ipif_non_duplicate(ipif_t *ipif)
807{
808	ill_t *ill = ipif->ipif_ill;
809	mutex_enter(&ill->ill_lock);
810	if (ipif->ipif_flags & IPIF_DUPLICATE) {
811		ipif->ipif_flags &= ~IPIF_DUPLICATE;
812		ASSERT(ill->ill_ipif_dup_count > 0);
813		ill->ill_ipif_dup_count--;
814	}
815	mutex_exit(&ill->ill_lock);
816}
817
818/*
819 * ill_delete_tail is called from ip_modclose after all references
820 * to the closing ill are gone. The wait is done in ip_modclose
821 */
822void
823ill_delete_tail(ill_t *ill)
824{
825	mblk_t	**mpp;
826	ipif_t	*ipif;
827	ip_stack_t	*ipst = ill->ill_ipst;
828
829	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
830		ipif_non_duplicate(ipif);
831		ipif_down_tail(ipif);
832	}
833
834	ASSERT(ill->ill_ipif_dup_count == 0 &&
835	    ill->ill_arp_down_mp == NULL &&
836	    ill->ill_arp_del_mapping_mp == NULL);
837
838	/*
839	 * If polling capability is enabled (which signifies direct
840	 * upcall into IP and driver has ill saved as a handle),
841	 * we need to make sure that unbind has completed before we
842	 * let the ill disappear and driver no longer has any reference
843	 * to this ill.
844	 */
845	mutex_enter(&ill->ill_lock);
846	while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS)
847		cv_wait(&ill->ill_cv, &ill->ill_lock);
848	mutex_exit(&ill->ill_lock);
849	ASSERT(!(ill->ill_capabilities &
850	    (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT)));
851
852	if (ill->ill_net_type != IRE_LOOPBACK)
853		qprocsoff(ill->ill_rq);
854
855	/*
856	 * We do an ipsq_flush once again now. New messages could have
857	 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls
858	 * could also have landed up if an ioctl thread had looked up
859	 * the ill before we set the ILL_CONDEMNED flag, but not yet
860	 * enqueued the ioctl when we did the ipsq_flush last time.
861	 */
862	ipsq_flush(ill);
863
864	/*
865	 * Free capabilities.
866	 */
867	if (ill->ill_ipsec_capab_ah != NULL) {
868		ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH);
869		ill_ipsec_capab_free(ill->ill_ipsec_capab_ah);
870		ill->ill_ipsec_capab_ah = NULL;
871	}
872
873	if (ill->ill_ipsec_capab_esp != NULL) {
874		ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP);
875		ill_ipsec_capab_free(ill->ill_ipsec_capab_esp);
876		ill->ill_ipsec_capab_esp = NULL;
877	}
878
879	if (ill->ill_mdt_capab != NULL) {
880		kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t));
881		ill->ill_mdt_capab = NULL;
882	}
883
884	if (ill->ill_hcksum_capab != NULL) {
885		kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t));
886		ill->ill_hcksum_capab = NULL;
887	}
888
889	if (ill->ill_zerocopy_capab != NULL) {
890		kmem_free(ill->ill_zerocopy_capab,
891		    sizeof (ill_zerocopy_capab_t));
892		ill->ill_zerocopy_capab = NULL;
893	}
894
895	if (ill->ill_lso_capab != NULL) {
896		kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
897		ill->ill_lso_capab = NULL;
898	}
899
900	if (ill->ill_dld_capab != NULL) {
901		kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t));
902		ill->ill_dld_capab = NULL;
903	}
904
905	while (ill->ill_ipif != NULL)
906		ipif_free_tail(ill->ill_ipif);
907
908	/*
909	 * We have removed all references to ilm from conn and the ones joined
910	 * within the kernel.
911	 *
912	 * We don't walk conns, mrts and ires because
913	 *
914	 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts.
915	 * 2) ill_down ->ill_downi walks all the ires and cleans up
916	 *    ill references.
917	 */
918	ASSERT(ilm_walk_ill(ill) == 0);
919
920	/*
921	 * If this ill is an IPMP meta-interface, blow away the illgrp.  This
922	 * is safe to do because the illgrp has already been unlinked from the
923	 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it.
924	 */
925	if (IS_IPMP(ill)) {
926		ipmp_illgrp_destroy(ill->ill_grp);
927		ill->ill_grp = NULL;
928	}
929
930	/*
931	 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free
932	 * could free the phyint. No more reference to the phyint after this
933	 * point.
934	 */
935	(void) ill_glist_delete(ill);
936
937	rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER);
938	if (ill->ill_ndd_name != NULL)
939		nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name);
940	rw_exit(&ipst->ips_ip_g_nd_lock);
941
942	if (ill->ill_frag_ptr != NULL) {
943		uint_t count;
944
945		for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
946			mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock);
947		}
948		mi_free(ill->ill_frag_ptr);
949		ill->ill_frag_ptr = NULL;
950		ill->ill_frag_hash_tbl = NULL;
951	}
952
953	freemsg(ill->ill_nd_lla_mp);
954	/* Free all retained control messages. */
955	mpp = &ill->ill_first_mp_to_free;
956	do {
957		while (mpp[0]) {
958			mblk_t  *mp;
959			mblk_t  *mp1;
960
961			mp = mpp[0];
962			mpp[0] = mp->b_next;
963			for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) {
964				mp1->b_next = NULL;
965				mp1->b_prev = NULL;
966			}
967			freemsg(mp);
968		}
969	} while (mpp++ != &ill->ill_last_mp_to_free);
970
971	ill_free_mib(ill);
972
973#ifdef DEBUG
974	ill_trace_cleanup(ill);
975#endif
976
977	/* Drop refcnt here */
978	netstack_rele(ill->ill_ipst->ips_netstack);
979	ill->ill_ipst = NULL;
980}
981
982static void
983ill_free_mib(ill_t *ill)
984{
985	ip_stack_t *ipst = ill->ill_ipst;
986
987	/*
988	 * MIB statistics must not be lost, so when an interface
989	 * goes away the counter values will be added to the global
990	 * MIBs.
991	 */
992	if (ill->ill_ip_mib != NULL) {
993		if (ill->ill_isv6) {
994			ip_mib2_add_ip_stats(&ipst->ips_ip6_mib,
995			    ill->ill_ip_mib);
996		} else {
997			ip_mib2_add_ip_stats(&ipst->ips_ip_mib,
998			    ill->ill_ip_mib);
999		}
1000
1001		kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
1002		ill->ill_ip_mib = NULL;
1003	}
1004	if (ill->ill_icmp6_mib != NULL) {
1005		ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib,
1006		    ill->ill_icmp6_mib);
1007		kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib));
1008		ill->ill_icmp6_mib = NULL;
1009	}
1010}
1011
1012/*
1013 * Concatenate together a physical address and a sap.
1014 *
1015 * Sap_lengths are interpreted as follows:
1016 *   sap_length == 0	==>	no sap
1017 *   sap_length > 0	==>	sap is at the head of the dlpi address
1018 *   sap_length < 0	==>	sap is at the tail of the dlpi address
1019 */
1020static void
1021ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length,
1022    t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst)
1023{
1024	uint16_t sap_addr = (uint16_t)sap_src;
1025
1026	if (sap_length == 0) {
1027		if (phys_src == NULL)
1028			bzero(dst, phys_length);
1029		else
1030			bcopy(phys_src, dst, phys_length);
1031	} else if (sap_length < 0) {
1032		if (phys_src == NULL)
1033			bzero(dst, phys_length);
1034		else
1035			bcopy(phys_src, dst, phys_length);
1036		bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr));
1037	} else {
1038		bcopy(&sap_addr, dst, sizeof (sap_addr));
1039		if (phys_src == NULL)
1040			bzero((char *)dst + sap_length, phys_length);
1041		else
1042			bcopy(phys_src, (char *)dst + sap_length, phys_length);
1043	}
1044}
1045
1046/*
1047 * Generate a dl_unitdata_req mblk for the device and address given.
1048 * addr_length is the length of the physical portion of the address.
1049 * If addr is NULL include an all zero address of the specified length.
1050 * TRUE? In any case, addr_length is taken to be the entire length of the
1051 * dlpi address, including the absolute value of sap_length.
1052 */
1053mblk_t *
1054ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap,
1055		t_scalar_t sap_length)
1056{
1057	dl_unitdata_req_t *dlur;
1058	mblk_t	*mp;
1059	t_scalar_t	abs_sap_length;		/* absolute value */
1060
1061	abs_sap_length = ABS(sap_length);
1062	mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length,
1063	    DL_UNITDATA_REQ);
1064	if (mp == NULL)
1065		return (NULL);
1066	dlur = (dl_unitdata_req_t *)mp->b_rptr;
1067	/* HACK: accomodate incompatible DLPI drivers */
1068	if (addr_length == 8)
1069		addr_length = 6;
1070	dlur->dl_dest_addr_length = addr_length + abs_sap_length;
1071	dlur->dl_dest_addr_offset = sizeof (*dlur);
1072	dlur->dl_priority.dl_min = 0;
1073	dlur->dl_priority.dl_max = 0;
1074	ill_dlur_copy_address(addr, addr_length, sap, sap_length,
1075	    (uchar_t *)&dlur[1]);
1076	return (mp);
1077}
1078
1079/*
1080 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp.  Return
1081 * an error if we already have 1 or more ioctls in progress.  This is only
1082 * needed for SIOCG*ARP.
1083 */
1084boolean_t
1085ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp)
1086{
1087	ASSERT(MUTEX_HELD(&ill->ill_lock));
1088	ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL));
1089	/* We should only see M_IOCDATA arp ioctls here. */
1090	ASSERT(add_mp->b_datap->db_type == M_IOCDATA);
1091
1092	ASSERT(MUTEX_HELD(&connp->conn_lock));
1093	/*
1094	 * Return error if the conn has started closing. The conn
1095	 * could have finished cleaning up the pending mp list,
1096	 * If so we should not add another mp to the list negating
1097	 * the cleanup.
1098	 */
1099	if (connp->conn_state_flags & CONN_CLOSING)
1100		return (B_FALSE);
1101	/*
1102	 * Add the pending mp to the head of the list, chained by b_next.
1103	 * Note down the conn on which the ioctl request came, in b_prev.
1104	 * This will be used to later get the conn, when we get a response
1105	 * on the ill queue, from some other module (typically arp)
1106	 */
1107	add_mp->b_next = (void *)ill->ill_pending_mp;
1108	add_mp->b_queue = CONNP_TO_WQ(connp);
1109	ill->ill_pending_mp = add_mp;
1110	if (connp != NULL)
1111		connp->conn_oper_pending_ill = ill;
1112	return (B_TRUE);
1113}
1114
1115/*
1116 * Retrieve the ill_pending_mp and return it. We have to walk the list
1117 * of mblks starting at ill_pending_mp, and match based on the ioc_id.
1118 */
1119mblk_t *
1120ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id)
1121{
1122	mblk_t	*prev = NULL;
1123	mblk_t	*curr = NULL;
1124	uint_t	id;
1125	conn_t	*connp;
1126
1127	/*
1128	 * When the conn closes, conn_ioctl_cleanup needs to clean
1129	 * up the pending mp, but it does not know the ioc_id and
1130	 * passes in a zero for it.
1131	 */
1132	mutex_enter(&ill->ill_lock);
1133	if (ioc_id != 0)
1134		*connpp = NULL;
1135
1136	/* Search the list for the appropriate ioctl based on ioc_id */
1137	for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL;
1138	    prev = curr, curr = curr->b_next) {
1139		id = ((struct iocblk *)curr->b_rptr)->ioc_id;
1140		connp = Q_TO_CONN(curr->b_queue);
1141		/* Match based on the ioc_id or based on the conn */
1142		if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp))
1143			break;
1144	}
1145
1146	if (curr != NULL) {
1147		/* Unlink the mblk from the pending mp list */
1148		if (prev != NULL) {
1149			prev->b_next = curr->b_next;
1150		} else {
1151			ASSERT(ill->ill_pending_mp == curr);
1152			ill->ill_pending_mp = curr->b_next;
1153		}
1154
1155		/*
1156		 * conn refcnt must have been bumped up at the start of
1157		 * the ioctl. So we can safely access the conn.
1158		 */
1159		ASSERT(CONN_Q(curr->b_queue));
1160		*connpp = Q_TO_CONN(curr->b_queue);
1161		curr->b_next = NULL;
1162		curr->b_queue = NULL;
1163	}
1164
1165	mutex_exit(&ill->ill_lock);
1166
1167	return (curr);
1168}
1169
1170/*
1171 * Add the pending mp to the list. There can be only 1 pending mp
1172 * in the list. Any exclusive ioctl that needs to wait for a response
1173 * from another module or driver needs to use this function to set
1174 * the ipx_pending_mp to the ioctl mblk and wait for the response from
1175 * the other module/driver. This is also used while waiting for the
1176 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif.
1177 */
1178boolean_t
1179ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp,
1180    int waitfor)
1181{
1182	ipxop_t	*ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop;
1183
1184	ASSERT(IAM_WRITER_IPIF(ipif));
1185	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
1186	ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL));
1187	ASSERT(ipx->ipx_pending_mp == NULL);
1188	/*
1189	 * The caller may be using a different ipif than the one passed into
1190	 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4
1191	 * ill needs to wait for the V6 ill to quiesce).  So we can't ASSERT
1192	 * that `ipx_current_ipif == ipif'.
1193	 */
1194	ASSERT(ipx->ipx_current_ipif != NULL);
1195
1196	/*
1197	 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the
1198	 * driver.
1199	 */
1200	ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) ||
1201	    (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) ||
1202	    (DB_TYPE(add_mp) == M_PCPROTO));
1203
1204	if (connp != NULL) {
1205		ASSERT(MUTEX_HELD(&connp->conn_lock));
1206		/*
1207		 * Return error if the conn has started closing. The conn
1208		 * could have finished cleaning up the pending mp list,
1209		 * If so we should not add another mp to the list negating
1210		 * the cleanup.
1211		 */
1212		if (connp->conn_state_flags & CONN_CLOSING)
1213			return (B_FALSE);
1214	}
1215	mutex_enter(&ipx->ipx_lock);
1216	ipx->ipx_pending_ipif = ipif;
1217	/*
1218	 * Note down the queue in b_queue. This will be returned by
1219	 * ipsq_pending_mp_get. Caller will then use these values to restart
1220	 * the processing
1221	 */
1222	add_mp->b_next = NULL;
1223	add_mp->b_queue = q;
1224	ipx->ipx_pending_mp = add_mp;
1225	ipx->ipx_waitfor = waitfor;
1226	mutex_exit(&ipx->ipx_lock);
1227
1228	if (connp != NULL)
1229		connp->conn_oper_pending_ill = ipif->ipif_ill;
1230
1231	return (B_TRUE);
1232}
1233
1234/*
1235 * Retrieve the ipx_pending_mp and return it. There can be only 1 mp
1236 * queued in the list.
1237 */
1238mblk_t *
1239ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp)
1240{
1241	mblk_t	*curr = NULL;
1242	ipxop_t	*ipx = ipsq->ipsq_xop;
1243
1244	*connpp = NULL;
1245	mutex_enter(&ipx->ipx_lock);
1246	if (ipx->ipx_pending_mp == NULL) {
1247		mutex_exit(&ipx->ipx_lock);
1248		return (NULL);
1249	}
1250
1251	/* There can be only 1 such excl message */
1252	curr = ipx->ipx_pending_mp;
1253	ASSERT(curr->b_next == NULL);
1254	ipx->ipx_pending_ipif = NULL;
1255	ipx->ipx_pending_mp = NULL;
1256	ipx->ipx_waitfor = 0;
1257	mutex_exit(&ipx->ipx_lock);
1258
1259	if (CONN_Q(curr->b_queue)) {
1260		/*
1261		 * This mp did a refhold on the conn, at the start of the ioctl.
1262		 * So we can safely return a pointer to the conn to the caller.
1263		 */
1264		*connpp = Q_TO_CONN(curr->b_queue);
1265	} else {
1266		*connpp = NULL;
1267	}
1268	curr->b_next = NULL;
1269	curr->b_prev = NULL;
1270	return (curr);
1271}
1272
1273/*
1274 * Cleanup the ioctl mp queued in ipx_pending_mp
1275 * - Called in the ill_delete path
1276 * - Called in the M_ERROR or M_HANGUP path on the ill.
1277 * - Called in the conn close path.
1278 */
1279boolean_t
1280ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp)
1281{
1282	mblk_t	*mp;
1283	ipxop_t	*ipx;
1284	queue_t	*q;
1285	ipif_t	*ipif;
1286
1287	ASSERT(IAM_WRITER_ILL(ill));
1288	ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop;
1289
1290	/*
1291	 * If connp is null, unconditionally clean up the ipx_pending_mp.
1292	 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl
1293	 * even if it is meant for another ill, since we have to enqueue
1294	 * a new mp now in ipx_pending_mp to complete the ipif_down.
1295	 * If connp is non-null we are called from the conn close path.
1296	 */
1297	mutex_enter(&ipx->ipx_lock);
1298	mp = ipx->ipx_pending_mp;
1299	if (mp == NULL || (connp != NULL &&
1300	    mp->b_queue != CONNP_TO_WQ(connp))) {
1301		mutex_exit(&ipx->ipx_lock);
1302		return (B_FALSE);
1303	}
1304	/* Now remove from the ipx_pending_mp */
1305	ipx->ipx_pending_mp = NULL;
1306	q = mp->b_queue;
1307	mp->b_next = NULL;
1308	mp->b_prev = NULL;
1309	mp->b_queue = NULL;
1310
1311	ipif = ipx->ipx_pending_ipif;
1312	ipx->ipx_pending_ipif = NULL;
1313	ipx->ipx_waitfor = 0;
1314	ipx->ipx_current_ipif = NULL;
1315	ipx->ipx_current_ioctl = 0;
1316	ipx->ipx_current_done = B_TRUE;
1317	mutex_exit(&ipx->ipx_lock);
1318
1319	if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) {
1320		if (connp == NULL) {
1321			ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL);
1322		} else {
1323			ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL);
1324			mutex_enter(&ipif->ipif_ill->ill_lock);
1325			ipif->ipif_state_flags &= ~IPIF_CHANGING;
1326			mutex_exit(&ipif->ipif_ill->ill_lock);
1327		}
1328	} else {
1329		/*
1330		 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't
1331		 * be just inet_freemsg. we have to restart it
1332		 * otherwise the thread will be stuck.
1333		 */
1334		inet_freemsg(mp);
1335	}
1336	return (B_TRUE);
1337}
1338
1339/*
1340 * The ill is closing. Cleanup all the pending mps. Called exclusively
1341 * towards the end of ill_delete. The refcount has gone to 0. So nobody
1342 * knows this ill, and hence nobody can add an mp to this list
1343 */
1344static void
1345ill_pending_mp_cleanup(ill_t *ill)
1346{
1347	mblk_t	*mp;
1348	queue_t	*q;
1349
1350	ASSERT(IAM_WRITER_ILL(ill));
1351
1352	mutex_enter(&ill->ill_lock);
1353	/*
1354	 * Every mp on the pending mp list originating from an ioctl
1355	 * added 1 to the conn refcnt, at the start of the ioctl.
1356	 * So bump it down now.  See comments in ip_wput_nondata()
1357	 */
1358	while (ill->ill_pending_mp != NULL) {
1359		mp = ill->ill_pending_mp;
1360		ill->ill_pending_mp = mp->b_next;
1361		mutex_exit(&ill->ill_lock);
1362
1363		q = mp->b_queue;
1364		ASSERT(CONN_Q(q));
1365		mp->b_next = NULL;
1366		mp->b_prev = NULL;
1367		mp->b_queue = NULL;
1368		ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL);
1369		mutex_enter(&ill->ill_lock);
1370	}
1371	ill->ill_pending_ipif = NULL;
1372
1373	mutex_exit(&ill->ill_lock);
1374}
1375
1376/*
1377 * Called in the conn close path and ill delete path
1378 */
1379static void
1380ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp)
1381{
1382	ipsq_t	*ipsq;
1383	mblk_t	*prev;
1384	mblk_t	*curr;
1385	mblk_t	*next;
1386	queue_t	*q;
1387	mblk_t	*tmp_list = NULL;
1388
1389	ASSERT(IAM_WRITER_ILL(ill));
1390	if (connp != NULL)
1391		q = CONNP_TO_WQ(connp);
1392	else
1393		q = ill->ill_wq;
1394
1395	ipsq = ill->ill_phyint->phyint_ipsq;
1396	/*
1397	 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any.
1398	 * In the case of ioctl from a conn, there can be only 1 mp
1399	 * queued on the ipsq. If an ill is being unplumbed, only messages
1400	 * related to this ill are flushed, like M_ERROR or M_HANGUP message.
1401	 * ioctls meant for this ill form conn's are not flushed. They will
1402	 * be processed during ipsq_exit and will not find the ill and will
1403	 * return error.
1404	 */
1405	mutex_enter(&ipsq->ipsq_lock);
1406	for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL;
1407	    curr = next) {
1408		next = curr->b_next;
1409		if (curr->b_queue == q || curr->b_queue == RD(q)) {
1410			/* Unlink the mblk from the pending mp list */
1411			if (prev != NULL) {
1412				prev->b_next = curr->b_next;
1413			} else {
1414				ASSERT(ipsq->ipsq_xopq_mphead == curr);
1415				ipsq->ipsq_xopq_mphead = curr->b_next;
1416			}
1417			if (ipsq->ipsq_xopq_mptail == curr)
1418				ipsq->ipsq_xopq_mptail = prev;
1419			/*
1420			 * Create a temporary list and release the ipsq lock
1421			 * New elements are added to the head of the tmp_list
1422			 */
1423			curr->b_next = tmp_list;
1424			tmp_list = curr;
1425		} else {
1426			prev = curr;
1427		}
1428	}
1429	mutex_exit(&ipsq->ipsq_lock);
1430
1431	while (tmp_list != NULL) {
1432		curr = tmp_list;
1433		tmp_list = curr->b_next;
1434		curr->b_next = NULL;
1435		curr->b_prev = NULL;
1436		curr->b_queue = NULL;
1437		if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) {
1438			ip_ioctl_finish(q, curr, ENXIO, connp != NULL ?
1439			    CONN_CLOSE : NO_COPYOUT, NULL);
1440		} else {
1441			/*
1442			 * IP-MT XXX In the case of TLI/XTI bind / optmgmt
1443			 * this can't be just inet_freemsg. we have to
1444			 * restart it otherwise the thread will be stuck.
1445			 */
1446			inet_freemsg(curr);
1447		}
1448	}
1449}
1450
1451/*
1452 * This conn has started closing. Cleanup any pending ioctl from this conn.
1453 * STREAMS ensures that there can be at most 1 ioctl pending on a stream.
1454 */
1455void
1456conn_ioctl_cleanup(conn_t *connp)
1457{
1458	mblk_t *curr;
1459	ipsq_t	*ipsq;
1460	ill_t	*ill;
1461	boolean_t refheld;
1462
1463	/*
1464	 * Is any exclusive ioctl pending ? If so clean it up. If the
1465	 * ioctl has not yet started, the mp is pending in the list headed by
1466	 * ipsq_xopq_head. If the ioctl has started the mp could be present in
1467	 * ipx_pending_mp. If the ioctl timed out in the streamhead but
1468	 * is currently executing now the mp is not queued anywhere but
1469	 * conn_oper_pending_ill is null. The conn close will wait
1470	 * till the conn_ref drops to zero.
1471	 */
1472	mutex_enter(&connp->conn_lock);
1473	ill = connp->conn_oper_pending_ill;
1474	if (ill == NULL) {
1475		mutex_exit(&connp->conn_lock);
1476		return;
1477	}
1478
1479	curr = ill_pending_mp_get(ill, &connp, 0);
1480	if (curr != NULL) {
1481		mutex_exit(&connp->conn_lock);
1482		CONN_DEC_REF(connp);
1483		inet_freemsg(curr);
1484		return;
1485	}
1486	/*
1487	 * We may not be able to refhold the ill if the ill/ipif
1488	 * is changing. But we need to make sure that the ill will
1489	 * not vanish. So we just bump up the ill_waiter count.
1490	 */
1491	refheld = ill_waiter_inc(ill);
1492	mutex_exit(&connp->conn_lock);
1493	if (refheld) {
1494		if (ipsq_enter(ill, B_TRUE, NEW_OP)) {
1495			ill_waiter_dcr(ill);
1496			/*
1497			 * Check whether this ioctl has started and is
1498			 * pending. If it is not found there then check
1499			 * whether this ioctl has not even started and is in
1500			 * the ipsq_xopq list.
1501			 */
1502			if (!ipsq_pending_mp_cleanup(ill, connp))
1503				ipsq_xopq_mp_cleanup(ill, connp);
1504			ipsq = ill->ill_phyint->phyint_ipsq;
1505			ipsq_exit(ipsq);
1506			return;
1507		}
1508	}
1509
1510	/*
1511	 * The ill is also closing and we could not bump up the
1512	 * ill_waiter_count or we could not enter the ipsq. Leave
1513	 * the cleanup to ill_delete
1514	 */
1515	mutex_enter(&connp->conn_lock);
1516	while (connp->conn_oper_pending_ill != NULL)
1517		cv_wait(&connp->conn_refcv, &connp->conn_lock);
1518	mutex_exit(&connp->conn_lock);
1519	if (refheld)
1520		ill_waiter_dcr(ill);
1521}
1522
1523/*
1524 * ipcl_walk function for cleaning up conn_*_ill fields.
1525 */
1526static void
1527conn_cleanup_ill(conn_t *connp, caddr_t arg)
1528{
1529	ill_t	*ill = (ill_t *)arg;
1530	ire_t	*ire;
1531
1532	mutex_enter(&connp->conn_lock);
1533	if (connp->conn_multicast_ill == ill) {
1534		/* Revert to late binding */
1535		connp->conn_multicast_ill = NULL;
1536	}
1537	if (connp->conn_incoming_ill == ill)
1538		connp->conn_incoming_ill = NULL;
1539	if (connp->conn_outgoing_ill == ill)
1540		connp->conn_outgoing_ill = NULL;
1541	if (connp->conn_dhcpinit_ill == ill) {
1542		connp->conn_dhcpinit_ill = NULL;
1543		ASSERT(ill->ill_dhcpinit != 0);
1544		atomic_dec_32(&ill->ill_dhcpinit);
1545	}
1546	if (connp->conn_ire_cache != NULL) {
1547		ire = connp->conn_ire_cache;
1548		/*
1549		 * Source address selection makes it possible for IRE_CACHE
1550		 * entries to be created with ire_stq coming from interface X
1551		 * and ipif coming from interface Y.  Thus whenever interface
1552		 * X goes down, remove all references to it by checking both
1553		 * on ire_ipif and ire_stq.
1554		 */
1555		if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) ||
1556		    (ire->ire_type == IRE_CACHE &&
1557		    ire->ire_stq == ill->ill_wq)) {
1558			connp->conn_ire_cache = NULL;
1559			mutex_exit(&connp->conn_lock);
1560			ire_refrele_notr(ire);
1561			return;
1562		}
1563	}
1564	mutex_exit(&connp->conn_lock);
1565}
1566
1567static void
1568ill_down_ipifs_tail(ill_t *ill)
1569{
1570	ipif_t	*ipif;
1571
1572	ASSERT(IAM_WRITER_ILL(ill));
1573	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
1574		ipif_non_duplicate(ipif);
1575		ipif_down_tail(ipif);
1576	}
1577}
1578
1579/* ARGSUSED */
1580void
1581ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
1582{
1583	ASSERT(IAM_WRITER_IPSQ(ipsq));
1584	ill_down_ipifs_tail(q->q_ptr);
1585	freemsg(mp);
1586	ipsq_current_finish(ipsq);
1587}
1588
1589/*
1590 * ill_down_start is called when we want to down this ill and bring it up again
1591 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down
1592 * all interfaces, but don't tear down any plumbing.
1593 */
1594boolean_t
1595ill_down_start(queue_t *q, mblk_t *mp)
1596{
1597	ill_t	*ill = q->q_ptr;
1598	ipif_t	*ipif;
1599
1600	ASSERT(IAM_WRITER_ILL(ill));
1601
1602	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
1603		(void) ipif_down(ipif, NULL, NULL);
1604
1605	ill_down(ill);
1606
1607	(void) ipsq_pending_mp_cleanup(ill, NULL);
1608
1609	ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0);
1610
1611	/*
1612	 * Atomically test and add the pending mp if references are active.
1613	 */
1614	mutex_enter(&ill->ill_lock);
1615	if (!ill_is_quiescent(ill)) {
1616		/* call cannot fail since `conn_t *' argument is NULL */
1617		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
1618		    mp, ILL_DOWN);
1619		mutex_exit(&ill->ill_lock);
1620		return (B_FALSE);
1621	}
1622	mutex_exit(&ill->ill_lock);
1623	return (B_TRUE);
1624}
1625
1626static void
1627ill_down(ill_t *ill)
1628{
1629	ip_stack_t	*ipst = ill->ill_ipst;
1630
1631	/* Blow off any IREs dependent on this ILL. */
1632	ire_walk(ill_downi, ill, ipst);
1633
1634	/* Remove any conn_*_ill depending on this ill */
1635	ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst);
1636}
1637
1638/*
1639 * ire_walk routine used to delete every IRE that depends on queues
1640 * associated with 'ill'.  (Always called as writer.)
1641 */
1642static void
1643ill_downi(ire_t *ire, char *ill_arg)
1644{
1645	ill_t	*ill = (ill_t *)ill_arg;
1646
1647	/*
1648	 * Source address selection makes it possible for IRE_CACHE
1649	 * entries to be created with ire_stq coming from interface X
1650	 * and ipif coming from interface Y.  Thus whenever interface
1651	 * X goes down, remove all references to it by checking both
1652	 * on ire_ipif and ire_stq.
1653	 */
1654	if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) ||
1655	    (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) {
1656		ire_delete(ire);
1657	}
1658}
1659
1660/*
1661 * Remove ire/nce from the fastpath list.
1662 */
1663void
1664ill_fastpath_nack(ill_t *ill)
1665{
1666	nce_fastpath_list_dispatch(ill, NULL, NULL);
1667}
1668
1669/* Consume an M_IOCACK of the fastpath probe. */
1670void
1671ill_fastpath_ack(ill_t *ill, mblk_t *mp)
1672{
1673	mblk_t	*mp1 = mp;
1674
1675	/*
1676	 * If this was the first attempt turn on the fastpath probing.
1677	 */
1678	mutex_enter(&ill->ill_lock);
1679	if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS)
1680		ill->ill_dlpi_fastpath_state = IDS_OK;
1681	mutex_exit(&ill->ill_lock);
1682
1683	/* Free the M_IOCACK mblk, hold on to the data */
1684	mp = mp->b_cont;
1685	freeb(mp1);
1686	if (mp == NULL)
1687		return;
1688	if (mp->b_cont != NULL) {
1689		/*
1690		 * Update all IRE's or NCE's that are waiting for
1691		 * fastpath update.
1692		 */
1693		nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp);
1694		mp1 = mp->b_cont;
1695		freeb(mp);
1696		mp = mp1;
1697	} else {
1698		ip0dbg(("ill_fastpath_ack:  no b_cont\n"));
1699	}
1700
1701	freeb(mp);
1702}
1703
1704/*
1705 * Throw an M_IOCTL message downstream asking "do you know fastpath?"
1706 * The data portion of the request is a dl_unitdata_req_t template for
1707 * what we would send downstream in the absence of a fastpath confirmation.
1708 */
1709int
1710ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp)
1711{
1712	struct iocblk	*ioc;
1713	mblk_t	*mp;
1714
1715	if (dlur_mp == NULL)
1716		return (EINVAL);
1717
1718	mutex_enter(&ill->ill_lock);
1719	switch (ill->ill_dlpi_fastpath_state) {
1720	case IDS_FAILED:
1721		/*
1722		 * Driver NAKed the first fastpath ioctl - assume it doesn't
1723		 * support it.
1724		 */
1725		mutex_exit(&ill->ill_lock);
1726		return (ENOTSUP);
1727	case IDS_UNKNOWN:
1728		/* This is the first probe */
1729		ill->ill_dlpi_fastpath_state = IDS_INPROGRESS;
1730		break;
1731	default:
1732		break;
1733	}
1734	mutex_exit(&ill->ill_lock);
1735
1736	if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL)
1737		return (EAGAIN);
1738
1739	mp->b_cont = copyb(dlur_mp);
1740	if (mp->b_cont == NULL) {
1741		freeb(mp);
1742		return (EAGAIN);
1743	}
1744
1745	ioc = (struct iocblk *)mp->b_rptr;
1746	ioc->ioc_count = msgdsize(mp->b_cont);
1747
1748	putnext(ill->ill_wq, mp);
1749	return (0);
1750}
1751
1752void
1753ill_capability_probe(ill_t *ill)
1754{
1755	mblk_t	*mp;
1756
1757	ASSERT(IAM_WRITER_ILL(ill));
1758
1759	if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN &&
1760	    ill->ill_dlpi_capab_state != IDCS_FAILED)
1761		return;
1762
1763	/*
1764	 * We are starting a new cycle of capability negotiation.
1765	 * Free up the capab reset messages of any previous incarnation.
1766	 * We will do a fresh allocation when we get the response to our probe
1767	 */
1768	if (ill->ill_capab_reset_mp != NULL) {
1769		freemsg(ill->ill_capab_reset_mp);
1770		ill->ill_capab_reset_mp = NULL;
1771	}
1772
1773	ip1dbg(("ill_capability_probe: starting capability negotiation\n"));
1774
1775	mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ);
1776	if (mp == NULL)
1777		return;
1778
1779	ill_capability_send(ill, mp);
1780	ill->ill_dlpi_capab_state = IDCS_PROBE_SENT;
1781}
1782
1783void
1784ill_capability_reset(ill_t *ill, boolean_t reneg)
1785{
1786	ASSERT(IAM_WRITER_ILL(ill));
1787
1788	if (ill->ill_dlpi_capab_state != IDCS_OK)
1789		return;
1790
1791	ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT;
1792
1793	ill_capability_send(ill, ill->ill_capab_reset_mp);
1794	ill->ill_capab_reset_mp = NULL;
1795	/*
1796	 * We turn off all capabilities except those pertaining to
1797	 * direct function call capabilities viz. ILL_CAPAB_DLD*
1798	 * which will be turned off by the corresponding reset functions.
1799	 */
1800	ill->ill_capabilities &= ~(ILL_CAPAB_MDT | ILL_CAPAB_HCKSUM  |
1801	    ILL_CAPAB_ZEROCOPY | ILL_CAPAB_AH | ILL_CAPAB_ESP);
1802}
1803
1804static void
1805ill_capability_reset_alloc(ill_t *ill)
1806{
1807	mblk_t *mp;
1808	size_t	size = 0;
1809	int	err;
1810	dl_capability_req_t	*capb;
1811
1812	ASSERT(IAM_WRITER_ILL(ill));
1813	ASSERT(ill->ill_capab_reset_mp == NULL);
1814
1815	if (ILL_MDT_CAPABLE(ill))
1816		size += sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t);
1817
1818	if (ILL_HCKSUM_CAPABLE(ill)) {
1819		size += sizeof (dl_capability_sub_t) +
1820		    sizeof (dl_capab_hcksum_t);
1821	}
1822
1823	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) {
1824		size += sizeof (dl_capability_sub_t) +
1825		    sizeof (dl_capab_zerocopy_t);
1826	}
1827
1828	if (ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) {
1829		size += sizeof (dl_capability_sub_t);
1830		size += ill_capability_ipsec_reset_size(ill, NULL, NULL,
1831		    NULL, NULL);
1832	}
1833
1834	if (ill->ill_capabilities & ILL_CAPAB_DLD) {
1835		size += sizeof (dl_capability_sub_t) +
1836		    sizeof (dl_capab_dld_t);
1837	}
1838
1839	mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED,
1840	    STR_NOSIG, &err);
1841
1842	mp->b_datap->db_type = M_PROTO;
1843	bzero(mp->b_rptr, size + sizeof (dl_capability_req_t));
1844
1845	capb = (dl_capability_req_t *)mp->b_rptr;
1846	capb->dl_primitive = DL_CAPABILITY_REQ;
1847	capb->dl_sub_offset = sizeof (dl_capability_req_t);
1848	capb->dl_sub_length = size;
1849
1850	mp->b_wptr += sizeof (dl_capability_req_t);
1851
1852	/*
1853	 * Each handler fills in the corresponding dl_capability_sub_t
1854	 * inside the mblk,
1855	 */
1856	ill_capability_mdt_reset_fill(ill, mp);
1857	ill_capability_hcksum_reset_fill(ill, mp);
1858	ill_capability_zerocopy_reset_fill(ill, mp);
1859	ill_capability_ipsec_reset_fill(ill, mp);
1860	ill_capability_dld_reset_fill(ill, mp);
1861
1862	ill->ill_capab_reset_mp = mp;
1863}
1864
1865static void
1866ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers)
1867{
1868	dl_capab_id_t *id_ic;
1869	uint_t sub_dl_cap = outers->dl_cap;
1870	dl_capability_sub_t *inners;
1871	uint8_t *capend;
1872
1873	ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER);
1874
1875	/*
1876	 * Note: range checks here are not absolutely sufficient to
1877	 * make us robust against malformed messages sent by drivers;
1878	 * this is in keeping with the rest of IP's dlpi handling.
1879	 * (Remember, it's coming from something else in the kernel
1880	 * address space)
1881	 */
1882
1883	capend = (uint8_t *)(outers + 1) + outers->dl_length;
1884	if (capend > mp->b_wptr) {
1885		cmn_err(CE_WARN, "ill_capability_id_ack: "
1886		    "malformed sub-capability too long for mblk");
1887		return;
1888	}
1889
1890	id_ic = (dl_capab_id_t *)(outers + 1);
1891
1892	if (outers->dl_length < sizeof (*id_ic) ||
1893	    (inners = &id_ic->id_subcap,
1894	    inners->dl_length > (outers->dl_length - sizeof (*inners)))) {
1895		cmn_err(CE_WARN, "ill_capability_id_ack: malformed "
1896		    "encapsulated capab type %d too long for mblk",
1897		    inners->dl_cap);
1898		return;
1899	}
1900
1901	if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) {
1902		ip1dbg(("ill_capability_id_ack: mid token for capab type %d "
1903		    "isn't as expected; pass-thru module(s) detected, "
1904		    "discarding capability\n", inners->dl_cap));
1905		return;
1906	}
1907
1908	/* Process the encapsulated sub-capability */
1909	ill_capability_dispatch(ill, mp, inners, B_TRUE);
1910}
1911
1912/*
1913 * Process Multidata Transmit capability negotiation ack received from a
1914 * DLS Provider.  isub must point to the sub-capability (DL_CAPAB_MDT) of a
1915 * DL_CAPABILITY_ACK message.
1916 */
1917static void
1918ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1919{
1920	mblk_t *nmp = NULL;
1921	dl_capability_req_t *oc;
1922	dl_capab_mdt_t *mdt_ic, *mdt_oc;
1923	ill_mdt_capab_t **ill_mdt_capab;
1924	uint_t sub_dl_cap = isub->dl_cap;
1925	uint8_t *capend;
1926
1927	ASSERT(sub_dl_cap == DL_CAPAB_MDT);
1928
1929	ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab;
1930
1931	/*
1932	 * Note: range checks here are not absolutely sufficient to
1933	 * make us robust against malformed messages sent by drivers;
1934	 * this is in keeping with the rest of IP's dlpi handling.
1935	 * (Remember, it's coming from something else in the kernel
1936	 * address space)
1937	 */
1938
1939	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1940	if (capend > mp->b_wptr) {
1941		cmn_err(CE_WARN, "ill_capability_mdt_ack: "
1942		    "malformed sub-capability too long for mblk");
1943		return;
1944	}
1945
1946	mdt_ic = (dl_capab_mdt_t *)(isub + 1);
1947
1948	if (mdt_ic->mdt_version != MDT_VERSION_2) {
1949		cmn_err(CE_CONT, "ill_capability_mdt_ack: "
1950		    "unsupported MDT sub-capability (version %d, expected %d)",
1951		    mdt_ic->mdt_version, MDT_VERSION_2);
1952		return;
1953	}
1954
1955	if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) {
1956		ip1dbg(("ill_capability_mdt_ack: mid token for MDT "
1957		    "capability isn't as expected; pass-thru module(s) "
1958		    "detected, discarding capability\n"));
1959		return;
1960	}
1961
1962	if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) {
1963
1964		if (*ill_mdt_capab == NULL) {
1965			*ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t),
1966			    KM_NOSLEEP);
1967			if (*ill_mdt_capab == NULL) {
1968				cmn_err(CE_WARN, "ill_capability_mdt_ack: "
1969				    "could not enable MDT version %d "
1970				    "for %s (ENOMEM)\n", MDT_VERSION_2,
1971				    ill->ill_name);
1972				return;
1973			}
1974		}
1975
1976		ip1dbg(("ill_capability_mdt_ack: interface %s supports "
1977		    "MDT version %d (%d bytes leading, %d bytes trailing "
1978		    "header spaces, %d max pld bufs, %d span limit)\n",
1979		    ill->ill_name, MDT_VERSION_2,
1980		    mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail,
1981		    mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit));
1982
1983		(*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2;
1984		(*ill_mdt_capab)->ill_mdt_on = 1;
1985		/*
1986		 * Round the following values to the nearest 32-bit; ULP
1987		 * may further adjust them to accomodate for additional
1988		 * protocol headers.  We pass these values to ULP during
1989		 * bind time.
1990		 */
1991		(*ill_mdt_capab)->ill_mdt_hdr_head =
1992		    roundup(mdt_ic->mdt_hdr_head, 4);
1993		(*ill_mdt_capab)->ill_mdt_hdr_tail =
1994		    roundup(mdt_ic->mdt_hdr_tail, 4);
1995		(*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld;
1996		(*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit;
1997
1998		ill->ill_capabilities |= ILL_CAPAB_MDT;
1999	} else {
2000		uint_t size;
2001		uchar_t *rptr;
2002
2003		size = sizeof (dl_capability_req_t) +
2004		    sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t);
2005
2006		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
2007			cmn_err(CE_WARN, "ill_capability_mdt_ack: "
2008			    "could not enable MDT for %s (ENOMEM)\n",
2009			    ill->ill_name);
2010			return;
2011		}
2012
2013		rptr = nmp->b_rptr;
2014		/* initialize dl_capability_req_t */
2015		oc = (dl_capability_req_t *)nmp->b_rptr;
2016		oc->dl_sub_offset = sizeof (dl_capability_req_t);
2017		oc->dl_sub_length = sizeof (dl_capability_sub_t) +
2018		    sizeof (dl_capab_mdt_t);
2019		nmp->b_rptr += sizeof (dl_capability_req_t);
2020
2021		/* initialize dl_capability_sub_t */
2022		bcopy(isub, nmp->b_rptr, sizeof (*isub));
2023		nmp->b_rptr += sizeof (*isub);
2024
2025		/* initialize dl_capab_mdt_t */
2026		mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr;
2027		bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic));
2028
2029		nmp->b_rptr = rptr;
2030
2031		ip1dbg(("ill_capability_mdt_ack: asking interface %s "
2032		    "to enable MDT version %d\n", ill->ill_name,
2033		    MDT_VERSION_2));
2034
2035		/* set ENABLE flag */
2036		mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE;
2037
2038		/* nmp points to a DL_CAPABILITY_REQ message to enable MDT */
2039		ill_capability_send(ill, nmp);
2040	}
2041}
2042
2043static void
2044ill_capability_mdt_reset_fill(ill_t *ill, mblk_t *mp)
2045{
2046	dl_capab_mdt_t *mdt_subcap;
2047	dl_capability_sub_t *dl_subcap;
2048
2049	if (!ILL_MDT_CAPABLE(ill))
2050		return;
2051
2052	ASSERT(ill->ill_mdt_capab != NULL);
2053
2054	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
2055	dl_subcap->dl_cap = DL_CAPAB_MDT;
2056	dl_subcap->dl_length = sizeof (*mdt_subcap);
2057
2058	mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1);
2059	mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version;
2060	mdt_subcap->mdt_flags = 0;
2061	mdt_subcap->mdt_hdr_head = 0;
2062	mdt_subcap->mdt_hdr_tail = 0;
2063
2064	mp->b_wptr += sizeof (*dl_subcap) + sizeof (*mdt_subcap);
2065}
2066
2067static void
2068ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp)
2069{
2070	dl_capability_sub_t *dl_subcap;
2071
2072	if (!(ill->ill_capabilities & ILL_CAPAB_DLD))
2073		return;
2074
2075	/*
2076	 * The dl_capab_dld_t that follows the dl_capability_sub_t is not
2077	 * initialized below since it is not used by DLD.
2078	 */
2079	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
2080	dl_subcap->dl_cap = DL_CAPAB_DLD;
2081	dl_subcap->dl_length = sizeof (dl_capab_dld_t);
2082
2083	mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t);
2084}
2085
2086/*
2087 * Allocate an IPsec capability request which will be filled by our
2088 * caller to turn on support for one or more algorithms.
2089 */
2090/* ARGSUSED */
2091static mblk_t *
2092ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub)
2093{
2094	mblk_t *nmp;
2095	dl_capability_req_t	*ocap;
2096	dl_capab_ipsec_t	*ocip;
2097	dl_capab_ipsec_t	*icip;
2098	uint8_t			*ptr;
2099	icip = (dl_capab_ipsec_t *)(isub + 1);
2100
2101	/*
2102	 * Allocate new mblk which will contain a new capability
2103	 * request to enable the capabilities.
2104	 */
2105
2106	nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) +
2107	    sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ);
2108	if (nmp == NULL)
2109		return (NULL);
2110
2111	ptr = nmp->b_rptr;
2112
2113	/* initialize dl_capability_req_t */
2114	ocap = (dl_capability_req_t *)ptr;
2115	ocap->dl_sub_offset = sizeof (dl_capability_req_t);
2116	ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length;
2117	ptr += sizeof (dl_capability_req_t);
2118
2119	/* initialize dl_capability_sub_t */
2120	bcopy(isub, ptr, sizeof (*isub));
2121	ptr += sizeof (*isub);
2122
2123	/* initialize dl_capab_ipsec_t */
2124	ocip = (dl_capab_ipsec_t *)ptr;
2125	bcopy(icip, ocip, sizeof (*icip));
2126
2127	nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]);
2128	return (nmp);
2129}
2130
2131/*
2132 * Process an IPsec capability negotiation ack received from a DLS Provider.
2133 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or
2134 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message.
2135 */
2136static void
2137ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
2138{
2139	dl_capab_ipsec_t	*icip;
2140	dl_capab_ipsec_alg_t	*ialg;	/* ptr to input alg spec. */
2141	dl_capab_ipsec_alg_t	*oalg;	/* ptr to output alg spec. */
2142	uint_t cipher, nciphers;
2143	mblk_t *nmp;
2144	uint_t alg_len;
2145	boolean_t need_sadb_dump;
2146	uint_t sub_dl_cap = isub->dl_cap;
2147	ill_ipsec_capab_t **ill_capab;
2148	uint64_t ill_capab_flag;
2149	uint8_t *capend, *ciphend;
2150	boolean_t sadb_resync;
2151
2152	ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH ||
2153	    sub_dl_cap == DL_CAPAB_IPSEC_ESP);
2154
2155	if (sub_dl_cap == DL_CAPAB_IPSEC_AH) {
2156		ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah;
2157		ill_capab_flag = ILL_CAPAB_AH;
2158	} else {
2159		ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp;
2160		ill_capab_flag = ILL_CAPAB_ESP;
2161	}
2162
2163	/*
2164	 * If the ill capability structure exists, then this incoming
2165	 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle.
2166	 * If this is so, then we'd need to resynchronize the SADB
2167	 * after re-enabling the offloaded ciphers.
2168	 */
2169	sadb_resync = (*ill_capab != NULL);
2170
2171	/*
2172	 * Note: range checks here are not absolutely sufficient to
2173	 * make us robust against malformed messages sent by drivers;
2174	 * this is in keeping with the rest of IP's dlpi handling.
2175	 * (Remember, it's coming from something else in the kernel
2176	 * address space)
2177	 */
2178
2179	capend = (uint8_t *)(isub + 1) + isub->dl_length;
2180	if (capend > mp->b_wptr) {
2181		cmn_err(CE_WARN, "ill_capability_ipsec_ack: "
2182		    "malformed sub-capability too long for mblk");
2183		return;
2184	}
2185
2186	/*
2187	 * There are two types of acks we process here:
2188	 * 1. acks in reply to a (first form) generic capability req
2189	 *    (no ENABLE flag set)
2190	 * 2. acks in reply to a ENABLE capability req.
2191	 *    (ENABLE flag set)
2192	 *
2193	 * We process the subcapability passed as argument as follows:
2194	 * 1 do initializations
2195	 *   1.1 initialize nmp = NULL
2196	 *   1.2 set need_sadb_dump to B_FALSE
2197	 * 2 for each cipher in subcapability:
2198	 *   2.1 if ENABLE flag is set:
2199	 *	2.1.1 update per-ill ipsec capabilities info
2200	 *	2.1.2 set need_sadb_dump to B_TRUE
2201	 *   2.2 if ENABLE flag is not set:
2202	 *	2.2.1 if nmp is NULL:
2203	 *		2.2.1.1 allocate and initialize nmp
2204	 *		2.2.1.2 init current pos in nmp
2205	 *	2.2.2 copy current cipher to current pos in nmp
2206	 *	2.2.3 set ENABLE flag in nmp
2207	 *	2.2.4 update current pos
2208	 * 3 if nmp is not equal to NULL, send enable request
2209	 *   3.1 send capability request
2210	 * 4 if need_sadb_dump is B_TRUE
2211	 *   4.1 enable promiscuous on/off notifications
2212	 *   4.2 call ill_dlpi_send(isub->dlcap) to send all
2213	 *	AH or ESP SA's to interface.
2214	 */
2215
2216	nmp = NULL;
2217	oalg = NULL;
2218	need_sadb_dump = B_FALSE;
2219	icip = (dl_capab_ipsec_t *)(isub + 1);
2220	ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]);
2221
2222	nciphers = icip->cip_nciphers;
2223	ciphend = (uint8_t *)(ialg + icip->cip_nciphers);
2224
2225	if (ciphend > capend) {
2226		cmn_err(CE_WARN, "ill_capability_ipsec_ack: "
2227		    "too many ciphers for sub-capability len");
2228		return;
2229	}
2230
2231	for (cipher = 0; cipher < nciphers; cipher++) {
2232		alg_len = sizeof (dl_capab_ipsec_alg_t);
2233
2234		if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) {
2235			/*
2236			 * TBD: when we provide a way to disable capabilities
2237			 * from above, need to manage the request-pending state
2238			 * and fail if we were not expecting this ACK.
2239			 */
2240			IPSECHW_DEBUG(IPSECHW_CAPAB,
2241			    ("ill_capability_ipsec_ack: got ENABLE ACK\n"));
2242
2243			/*
2244			 * Update IPsec capabilities for this ill
2245			 */
2246
2247			if (*ill_capab == NULL) {
2248				IPSECHW_DEBUG(IPSECHW_CAPAB,
2249				    ("ill_capability_ipsec_ack: "
2250				    "allocating ipsec_capab for ill\n"));
2251				*ill_capab = ill_ipsec_capab_alloc();
2252
2253				if (*ill_capab == NULL) {
2254					cmn_err(CE_WARN,
2255					    "ill_capability_ipsec_ack: "
2256					    "could not enable IPsec Hardware "
2257					    "acceleration for %s (ENOMEM)\n",
2258					    ill->ill_name);
2259					return;
2260				}
2261			}
2262
2263			ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH ||
2264			    ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR);
2265
2266			if (ialg->alg_prim >= MAX_IPSEC_ALGS) {
2267				cmn_err(CE_WARN,
2268				    "ill_capability_ipsec_ack: "
2269				    "malformed IPsec algorithm id %d",
2270				    ialg->alg_prim);
2271				continue;
2272			}
2273
2274			if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) {
2275				IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs,
2276				    ialg->alg_prim);
2277			} else {
2278				ipsec_capab_algparm_t *alp;
2279
2280				IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs,
2281				    ialg->alg_prim);
2282				if (!ill_ipsec_capab_resize_algparm(*ill_capab,
2283				    ialg->alg_prim)) {
2284					cmn_err(CE_WARN,
2285					    "ill_capability_ipsec_ack: "
2286					    "no space for IPsec alg id %d",
2287					    ialg->alg_prim);
2288					continue;
2289				}
2290				alp = &((*ill_capab)->encr_algparm[
2291				    ialg->alg_prim]);
2292				alp->minkeylen = ialg->alg_minbits;
2293				alp->maxkeylen = ialg->alg_maxbits;
2294			}
2295			ill->ill_capabilities |= ill_capab_flag;
2296			/*
2297			 * indicate that a capability was enabled, which
2298			 * will be used below to kick off a SADB dump
2299			 * to the ill.
2300			 */
2301			need_sadb_dump = B_TRUE;
2302		} else {
2303			IPSECHW_DEBUG(IPSECHW_CAPAB,
2304			    ("ill_capability_ipsec_ack: enabling alg 0x%x\n",
2305			    ialg->alg_prim));
2306
2307			if (nmp == NULL) {
2308				nmp = ill_alloc_ipsec_cap_req(ill, isub);
2309				if (nmp == NULL) {
2310					/*
2311					 * Sending the PROMISC_ON/OFF
2312					 * notification request failed.
2313					 * We cannot enable the algorithms
2314					 * since the Provider will not
2315					 * notify IP of promiscous mode
2316					 * changes, which could lead
2317					 * to leakage of packets.
2318					 */
2319					cmn_err(CE_WARN,
2320					    "ill_capability_ipsec_ack: "
2321					    "could not enable IPsec Hardware "
2322					    "acceleration for %s (ENOMEM)\n",
2323					    ill->ill_name);
2324					return;
2325				}
2326				/* ptr to current output alg specifier */
2327				oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr;
2328			}
2329
2330			/*
2331			 * Copy current alg specifier, set ENABLE
2332			 * flag, and advance to next output alg.
2333			 * For now we enable all IPsec capabilities.
2334			 */
2335			ASSERT(oalg != NULL);
2336			bcopy(ialg, oalg, alg_len);
2337			oalg->alg_flag |= DL_CAPAB_ALG_ENABLE;
2338			nmp->b_wptr += alg_len;
2339			oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr;
2340		}
2341
2342		/* move to next input algorithm specifier */
2343		ialg = (dl_capab_ipsec_alg_t *)
2344		    ((char *)ialg + alg_len);
2345	}
2346
2347	if (nmp != NULL)
2348		/*
2349		 * nmp points to a DL_CAPABILITY_REQ message to enable
2350		 * IPsec hardware acceleration.
2351		 */
2352		ill_capability_send(ill, nmp);
2353
2354	if (need_sadb_dump)
2355		/*
2356		 * An acknowledgement corresponding to a request to
2357		 * enable acceleration was received, notify SADB.
2358		 */
2359		ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync);
2360}
2361
2362/*
2363 * Given an mblk with enough space in it, create sub-capability entries for
2364 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised
2365 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared,
2366 * in preparation for the reset the DL_CAPABILITY_REQ message.
2367 */
2368static void
2369ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen,
2370    ill_ipsec_capab_t *ill_cap, mblk_t *mp)
2371{
2372	dl_capab_ipsec_t *oipsec;
2373	dl_capab_ipsec_alg_t *oalg;
2374	dl_capability_sub_t *dl_subcap;
2375	int i, k;
2376
2377	ASSERT(nciphers > 0);
2378	ASSERT(ill_cap != NULL);
2379	ASSERT(mp != NULL);
2380	ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen);
2381
2382	/* dl_capability_sub_t for "stype" */
2383	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
2384	dl_subcap->dl_cap = stype;
2385	dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen;
2386	mp->b_wptr += sizeof (dl_capability_sub_t);
2387
2388	/* dl_capab_ipsec_t for "stype" */
2389	oipsec = (dl_capab_ipsec_t *)mp->b_wptr;
2390	oipsec->cip_version = 1;
2391	oipsec->cip_nciphers = nciphers;
2392	mp->b_wptr = (uchar_t *)&oipsec->cip_data[0];
2393
2394	/* create entries for "stype" AUTH ciphers */
2395	for (i = 0; i < ill_cap->algs_size; i++) {
2396		for (k = 0; k < BITSPERBYTE; k++) {
2397			if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0)
2398				continue;
2399
2400			oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr;
2401			bzero((void *)oalg, sizeof (*oalg));
2402			oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH;
2403			oalg->alg_prim = k + (BITSPERBYTE * i);
2404			mp->b_wptr += sizeof (dl_capab_ipsec_alg_t);
2405		}
2406	}
2407	/* create entries for "stype" ENCR ciphers */
2408	for (i = 0; i < ill_cap->algs_size; i++) {
2409		for (k = 0; k < BITSPERBYTE; k++) {
2410			if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0)
2411				continue;
2412
2413			oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr;
2414			bzero((void *)oalg, sizeof (*oalg));
2415			oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR;
2416			oalg->alg_prim = k + (BITSPERBYTE * i);
2417			mp->b_wptr += sizeof (dl_capab_ipsec_alg_t);
2418		}
2419	}
2420}
2421
2422/*
2423 * Macro to count number of 1s in a byte (8-bit word).  The total count is
2424 * accumulated into the passed-in argument (sum).  We could use SPARCv9's
2425 * POPC instruction, but our macro is more flexible for an arbitrary length
2426 * of bytes, such as {auth,encr}_hw_algs.  These variables are currently
2427 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length
2428 * stays that way, we can reduce the number of iterations required.
2429 */
2430#define	COUNT_1S(val, sum) {					\
2431	uint8_t x = val & 0xff;					\
2432	x = (x & 0x55) + ((x >> 1) & 0x55);			\
2433	x = (x & 0x33) + ((x >> 2) & 0x33);			\
2434	sum += (x & 0xf) + ((x >> 4) & 0xf);			\
2435}
2436
2437/* ARGSUSED */
2438static int
2439ill_capability_ipsec_reset_size(ill_t *ill, int *ah_cntp, int *ah_lenp,
2440    int *esp_cntp, int *esp_lenp)
2441{
2442	ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah;
2443	ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp;
2444	uint64_t ill_capabilities = ill->ill_capabilities;
2445	int ah_cnt = 0, esp_cnt = 0;
2446	int ah_len = 0, esp_len = 0;
2447	int i, size = 0;
2448
2449	if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)))
2450		return (0);
2451
2452	ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH));
2453	ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP));
2454
2455	/* Find out the number of ciphers for AH */
2456	if (cap_ah != NULL) {
2457		for (i = 0; i < cap_ah->algs_size; i++) {
2458			COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt);
2459			COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt);
2460		}
2461		if (ah_cnt > 0) {
2462			size += sizeof (dl_capability_sub_t) +
2463			    sizeof (dl_capab_ipsec_t);
2464			/* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */
2465			ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t);
2466			size += ah_len;
2467		}
2468	}
2469
2470	/* Find out the number of ciphers for ESP */
2471	if (cap_esp != NULL) {
2472		for (i = 0; i < cap_esp->algs_size; i++) {
2473			COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt);
2474			COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt);
2475		}
2476		if (esp_cnt > 0) {
2477			size += sizeof (dl_capability_sub_t) +
2478			    sizeof (dl_capab_ipsec_t);
2479			/* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */
2480			esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t);
2481			size += esp_len;
2482		}
2483	}
2484
2485	if (ah_cntp != NULL)
2486		*ah_cntp = ah_cnt;
2487	if (ah_lenp != NULL)
2488		*ah_lenp = ah_len;
2489	if (esp_cntp != NULL)
2490		*esp_cntp = esp_cnt;
2491	if (esp_lenp != NULL)
2492		*esp_lenp = esp_len;
2493
2494	return (size);
2495}
2496
2497/* ARGSUSED */
2498static void
2499ill_capability_ipsec_reset_fill(ill_t *ill, mblk_t *mp)
2500{
2501	ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah;
2502	ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp;
2503	int ah_cnt = 0, esp_cnt = 0;
2504	int ah_len = 0, esp_len = 0;
2505	int size;
2506
2507	size = ill_capability_ipsec_reset_size(ill, &ah_cnt, &ah_len,
2508	    &esp_cnt, &esp_len);
2509	if (size == 0)
2510		return;
2511
2512	/*
2513	 * Clear the capability flags for IPsec HA but retain the ill
2514	 * capability structures since it's possible that another thread
2515	 * is still referring to them.  The structures only get deallocated
2516	 * when we destroy the ill.
2517	 *
2518	 * Various places check the flags to see if the ill is capable of
2519	 * hardware acceleration, and by clearing them we ensure that new
2520	 * outbound IPsec packets are sent down encrypted.
2521	 */
2522
2523	/* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */
2524	if (ah_cnt > 0) {
2525		ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len,
2526		    cap_ah, mp);
2527	}
2528
2529	/* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */
2530	if (esp_cnt > 0) {
2531		ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len,
2532		    cap_esp, mp);
2533	}
2534
2535	/*
2536	 * At this point we've composed a bunch of sub-capabilities to be
2537	 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream
2538	 * by the caller.  Upon receiving this reset message, the driver
2539	 * must stop inbound decryption (by destroying all inbound SAs)
2540	 * and let the corresponding packets come in encrypted.
2541	 */
2542}
2543
2544static void
2545ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp,
2546    boolean_t encapsulated)
2547{
2548	boolean_t legacy = B_FALSE;
2549
2550	/*
2551	 * Note that only the following two sub-capabilities may be
2552	 * considered as "legacy", since their original definitions
2553	 * do not incorporate the dl_mid_t module ID token, and hence
2554	 * may require the use of the wrapper sub-capability.
2555	 */
2556	switch (subp->dl_cap) {
2557	case DL_CAPAB_IPSEC_AH:
2558	case DL_CAPAB_IPSEC_ESP:
2559		legacy = B_TRUE;
2560		break;
2561	}
2562
2563	/*
2564	 * For legacy sub-capabilities which don't incorporate a queue_t
2565	 * pointer in their structures, discard them if we detect that
2566	 * there are intermediate modules in between IP and the driver.
2567	 */
2568	if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) {
2569		ip1dbg(("ill_capability_dispatch: unencapsulated capab type "
2570		    "%d discarded; %d module(s) present below IP\n",
2571		    subp->dl_cap, ill->ill_lmod_cnt));
2572		return;
2573	}
2574
2575	switch (subp->dl_cap) {
2576	case DL_CAPAB_IPSEC_AH:
2577	case DL_CAPAB_IPSEC_ESP:
2578		ill_capability_ipsec_ack(ill, mp, subp);
2579		break;
2580	case DL_CAPAB_MDT:
2581		ill_capability_mdt_ack(ill, mp, subp);
2582		break;
2583	case DL_CAPAB_HCKSUM:
2584		ill_capability_hcksum_ack(ill, mp, subp);
2585		break;
2586	case DL_CAPAB_ZEROCOPY:
2587		ill_capability_zerocopy_ack(ill, mp, subp);
2588		break;
2589	case DL_CAPAB_DLD:
2590		ill_capability_dld_ack(ill, mp, subp);
2591		break;
2592	default:
2593		ip1dbg(("ill_capability_dispatch: unknown capab type %d\n",
2594		    subp->dl_cap));
2595	}
2596}
2597
2598/*
2599 * Process a hardware checksum offload capability negotiation ack received
2600 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM)
2601 * of a DL_CAPABILITY_ACK message.
2602 */
2603static void
2604ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
2605{
2606	dl_capability_req_t	*ocap;
2607	dl_capab_hcksum_t	*ihck, *ohck;
2608	ill_hcksum_capab_t	**ill_hcksum;
2609	mblk_t			*nmp = NULL;
2610	uint_t			sub_dl_cap = isub->dl_cap;
2611	uint8_t			*capend;
2612
2613	ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM);
2614
2615	ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab;
2616
2617	/*
2618	 * Note: range checks here are not absolutely sufficient to
2619	 * make us robust against malformed messages sent by drivers;
2620	 * this is in keeping with the rest of IP's dlpi handling.
2621	 * (Remember, it's coming from something else in the kernel
2622	 * address space)
2623	 */
2624	capend = (uint8_t *)(isub + 1) + isub->dl_length;
2625	if (capend > mp->b_wptr) {
2626		cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
2627		    "malformed sub-capability too long for mblk");
2628		return;
2629	}
2630
2631	/*
2632	 * There are two types of acks we process here:
2633	 * 1. acks in reply to a (first form) generic capability req
2634	 *    (no ENABLE flag set)
2635	 * 2. acks in reply to a ENABLE capability req.
2636	 *    (ENABLE flag set)
2637	 */
2638	ihck = (dl_capab_hcksum_t *)(isub + 1);
2639
2640	if (ihck->hcksum_version != HCKSUM_VERSION_1) {
2641		cmn_err(CE_CONT, "ill_capability_hcksum_ack: "
2642		    "unsupported hardware checksum "
2643		    "sub-capability (version %d, expected %d)",
2644		    ihck->hcksum_version, HCKSUM_VERSION_1);
2645		return;
2646	}
2647
2648	if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) {
2649		ip1dbg(("ill_capability_hcksum_ack: mid token for hardware "
2650		    "checksum capability isn't as expected; pass-thru "
2651		    "module(s) detected, discarding capability\n"));
2652		return;
2653	}
2654
2655#define	CURR_HCKSUM_CAPAB				\
2656	(HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 |	\
2657	HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM)
2658
2659	if ((ihck->hcksum_txflags & HCKSUM_ENABLE) &&
2660	    (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) {
2661		/* do ENABLE processing */
2662		if (*ill_hcksum == NULL) {
2663			*ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t),
2664			    KM_NOSLEEP);
2665
2666			if (*ill_hcksum == NULL) {
2667				cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
2668				    "could not enable hcksum version %d "
2669				    "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION,
2670				    ill->ill_name);
2671				return;
2672			}
2673		}
2674
2675		(*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version;
2676		(*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags;
2677		ill->ill_capabilities |= ILL_CAPAB_HCKSUM;
2678		ip1dbg(("ill_capability_hcksum_ack: interface %s "
2679		    "has enabled hardware checksumming\n ",
2680		    ill->ill_name));
2681	} else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) {
2682		/*
2683		 * Enabling hardware checksum offload
2684		 * Currently IP supports {TCP,UDP}/IPv4
2685		 * partial and full cksum offload and
2686		 * IPv4 header checksum offload.
2687		 * Allocate new mblk which will
2688		 * contain a new capability request
2689		 * to enable hardware checksum offload.
2690		 */
2691		uint_t	size;
2692		uchar_t	*rptr;
2693
2694		size = sizeof (dl_capability_req_t) +
2695		    sizeof (dl_capability_sub_t) + isub->dl_length;
2696
2697		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
2698			cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
2699			    "could not enable hardware cksum for %s (ENOMEM)\n",
2700			    ill->ill_name);
2701			return;
2702		}
2703
2704		rptr = nmp->b_rptr;
2705		/* initialize dl_capability_req_t */
2706		ocap = (dl_capability_req_t *)nmp->b_rptr;
2707		ocap->dl_sub_offset =
2708		    sizeof (dl_capability_req_t);
2709		ocap->dl_sub_length =
2710		    sizeof (dl_capability_sub_t) +
2711		    isub->dl_length;
2712		nmp->b_rptr += sizeof (dl_capability_req_t);
2713
2714		/* initialize dl_capability_sub_t */
2715		bcopy(isub, nmp->b_rptr, sizeof (*isub));
2716		nmp->b_rptr += sizeof (*isub);
2717
2718		/* initialize dl_capab_hcksum_t */
2719		ohck = (dl_capab_hcksum_t *)nmp->b_rptr;
2720		bcopy(ihck, ohck, sizeof (*ihck));
2721
2722		nmp->b_rptr = rptr;
2723		ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
2724
2725		/* Set ENABLE flag */
2726		ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB;
2727		ohck->hcksum_txflags |= HCKSUM_ENABLE;
2728
2729		/*
2730		 * nmp points to a DL_CAPABILITY_REQ message to enable
2731		 * hardware checksum acceleration.
2732		 */
2733		ill_capability_send(ill, nmp);
2734	} else {
2735		ip1dbg(("ill_capability_hcksum_ack: interface %s has "
2736		    "advertised %x hardware checksum capability flags\n",
2737		    ill->ill_name, ihck->hcksum_txflags));
2738	}
2739}
2740
2741static void
2742ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp)
2743{
2744	dl_capab_hcksum_t *hck_subcap;
2745	dl_capability_sub_t *dl_subcap;
2746
2747	if (!ILL_HCKSUM_CAPABLE(ill))
2748		return;
2749
2750	ASSERT(ill->ill_hcksum_capab != NULL);
2751
2752	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
2753	dl_subcap->dl_cap = DL_CAPAB_HCKSUM;
2754	dl_subcap->dl_length = sizeof (*hck_subcap);
2755
2756	hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1);
2757	hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version;
2758	hck_subcap->hcksum_txflags = 0;
2759
2760	mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap);
2761}
2762
2763static void
2764ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
2765{
2766	mblk_t *nmp = NULL;
2767	dl_capability_req_t *oc;
2768	dl_capab_zerocopy_t *zc_ic, *zc_oc;
2769	ill_zerocopy_capab_t **ill_zerocopy_capab;
2770	uint_t sub_dl_cap = isub->dl_cap;
2771	uint8_t *capend;
2772
2773	ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY);
2774
2775	ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab;
2776
2777	/*
2778	 * Note: range checks here are not absolutely sufficient to
2779	 * make us robust against malformed messages sent by drivers;
2780	 * this is in keeping with the rest of IP's dlpi handling.
2781	 * (Remember, it's coming from something else in the kernel
2782	 * address space)
2783	 */
2784	capend = (uint8_t *)(isub + 1) + isub->dl_length;
2785	if (capend > mp->b_wptr) {
2786		cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
2787		    "malformed sub-capability too long for mblk");
2788		return;
2789	}
2790
2791	zc_ic = (dl_capab_zerocopy_t *)(isub + 1);
2792	if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) {
2793		cmn_err(CE_CONT, "ill_capability_zerocopy_ack: "
2794		    "unsupported ZEROCOPY sub-capability (version %d, "
2795		    "expected %d)", zc_ic->zerocopy_version,
2796		    ZEROCOPY_VERSION_1);
2797		return;
2798	}
2799
2800	if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) {
2801		ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy "
2802		    "capability isn't as expected; pass-thru module(s) "
2803		    "detected, discarding capability\n"));
2804		return;
2805	}
2806
2807	if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) {
2808		if (*ill_zerocopy_capab == NULL) {
2809			*ill_zerocopy_capab =
2810			    kmem_zalloc(sizeof (ill_zerocopy_capab_t),
2811			    KM_NOSLEEP);
2812
2813			if (*ill_zerocopy_capab == NULL) {
2814				cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
2815				    "could not enable Zero-copy version %d "
2816				    "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1,
2817				    ill->ill_name);
2818				return;
2819			}
2820		}
2821
2822		ip1dbg(("ill_capability_zerocopy_ack: interface %s "
2823		    "supports Zero-copy version %d\n", ill->ill_name,
2824		    ZEROCOPY_VERSION_1));
2825
2826		(*ill_zerocopy_capab)->ill_zerocopy_version =
2827		    zc_ic->zerocopy_version;
2828		(*ill_zerocopy_capab)->ill_zerocopy_flags =
2829		    zc_ic->zerocopy_flags;
2830
2831		ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY;
2832	} else {
2833		uint_t size;
2834		uchar_t *rptr;
2835
2836		size = sizeof (dl_capability_req_t) +
2837		    sizeof (dl_capability_sub_t) +
2838		    sizeof (dl_capab_zerocopy_t);
2839
2840		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
2841			cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
2842			    "could not enable zerocopy for %s (ENOMEM)\n",
2843			    ill->ill_name);
2844			return;
2845		}
2846
2847		rptr = nmp->b_rptr;
2848		/* initialize dl_capability_req_t */
2849		oc = (dl_capability_req_t *)rptr;
2850		oc->dl_sub_offset = sizeof (dl_capability_req_t);
2851		oc->dl_sub_length = sizeof (dl_capability_sub_t) +
2852		    sizeof (dl_capab_zerocopy_t);
2853		rptr += sizeof (dl_capability_req_t);
2854
2855		/* initialize dl_capability_sub_t */
2856		bcopy(isub, rptr, sizeof (*isub));
2857		rptr += sizeof (*isub);
2858
2859		/* initialize dl_capab_zerocopy_t */
2860		zc_oc = (dl_capab_zerocopy_t *)rptr;
2861		*zc_oc = *zc_ic;
2862
2863		ip1dbg(("ill_capability_zerocopy_ack: asking interface %s "
2864		    "to enable zero-copy version %d\n", ill->ill_name,
2865		    ZEROCOPY_VERSION_1));
2866
2867		/* set VMSAFE_MEM flag */
2868		zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM;
2869
2870		/* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */
2871		ill_capability_send(ill, nmp);
2872	}
2873}
2874
2875static void
2876ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp)
2877{
2878	dl_capab_zerocopy_t *zerocopy_subcap;
2879	dl_capability_sub_t *dl_subcap;
2880
2881	if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY))
2882		return;
2883
2884	ASSERT(ill->ill_zerocopy_capab != NULL);
2885
2886	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
2887	dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY;
2888	dl_subcap->dl_length = sizeof (*zerocopy_subcap);
2889
2890	zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1);
2891	zerocopy_subcap->zerocopy_version =
2892	    ill->ill_zerocopy_capab->ill_zerocopy_version;
2893	zerocopy_subcap->zerocopy_flags = 0;
2894
2895	mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap);
2896}
2897
2898/*
2899 * DLD capability
2900 * Refer to dld.h for more information regarding the purpose and usage
2901 * of this capability.
2902 */
2903static void
2904ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
2905{
2906	dl_capab_dld_t		*dld_ic, dld;
2907	uint_t			sub_dl_cap = isub->dl_cap;
2908	uint8_t			*capend;
2909	ill_dld_capab_t		*idc;
2910
2911	ASSERT(IAM_WRITER_ILL(ill));
2912	ASSERT(sub_dl_cap == DL_CAPAB_DLD);
2913
2914	/*
2915	 * Note: range checks here are not absolutely sufficient to
2916	 * make us robust against malformed messages sent by drivers;
2917	 * this is in keeping with the rest of IP's dlpi handling.
2918	 * (Remember, it's coming from something else in the kernel
2919	 * address space)
2920	 */
2921	capend = (uint8_t *)(isub + 1) + isub->dl_length;
2922	if (capend > mp->b_wptr) {
2923		cmn_err(CE_WARN, "ill_capability_dld_ack: "
2924		    "malformed sub-capability too long for mblk");
2925		return;
2926	}
2927	dld_ic = (dl_capab_dld_t *)(isub + 1);
2928	if (dld_ic->dld_version != DLD_CURRENT_VERSION) {
2929		cmn_err(CE_CONT, "ill_capability_dld_ack: "
2930		    "unsupported DLD sub-capability (version %d, "
2931		    "expected %d)", dld_ic->dld_version,
2932		    DLD_CURRENT_VERSION);
2933		return;
2934	}
2935	if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) {
2936		ip1dbg(("ill_capability_dld_ack: mid token for dld "
2937		    "capability isn't as expected; pass-thru module(s) "
2938		    "detected, discarding capability\n"));
2939		return;
2940	}
2941
2942	/*
2943	 * Copy locally to ensure alignment.
2944	 */
2945	bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t));
2946
2947	if ((idc = ill->ill_dld_capab) == NULL) {
2948		idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP);
2949		if (idc == NULL) {
2950			cmn_err(CE_WARN, "ill_capability_dld_ack: "
2951			    "could not enable DLD version %d "
2952			    "for %s (ENOMEM)\n", DLD_CURRENT_VERSION,
2953			    ill->ill_name);
2954			return;
2955		}
2956		ill->ill_dld_capab = idc;
2957	}
2958	idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab;
2959	idc->idc_capab_dh = (void *)dld.dld_capab_handle;
2960	ip1dbg(("ill_capability_dld_ack: interface %s "
2961	    "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION));
2962
2963	ill_capability_dld_enable(ill);
2964}
2965
2966/*
2967 * Typically capability negotiation between IP and the driver happens via
2968 * DLPI message exchange. However GLD also offers a direct function call
2969 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities,
2970 * But arbitrary function calls into IP or GLD are not permitted, since both
2971 * of them are protected by their own perimeter mechanism. The perimeter can
2972 * be viewed as a coarse lock or serialization mechanism. The hierarchy of
2973 * these perimeters is IP -> MAC. Thus for example to enable the squeue
2974 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter
2975 * to enter the mac perimeter and then do the direct function calls into
2976 * GLD to enable squeue polling. The ring related callbacks from the mac into
2977 * the stack to add, bind, quiesce, restart or cleanup a ring are all
2978 * protected by the mac perimeter.
2979 */
2980static void
2981ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp)
2982{
2983	ill_dld_capab_t		*idc = ill->ill_dld_capab;
2984	int			err;
2985
2986	err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp,
2987	    DLD_ENABLE);
2988	ASSERT(err == 0);
2989}
2990
2991static void
2992ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph)
2993{
2994	ill_dld_capab_t		*idc = ill->ill_dld_capab;
2995	int			err;
2996
2997	err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph,
2998	    DLD_DISABLE);
2999	ASSERT(err == 0);
3000}
3001
3002boolean_t
3003ill_mac_perim_held(ill_t *ill)
3004{
3005	ill_dld_capab_t		*idc = ill->ill_dld_capab;
3006
3007	return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL,
3008	    DLD_QUERY));
3009}
3010
3011static void
3012ill_capability_direct_enable(ill_t *ill)
3013{
3014	ill_dld_capab_t		*idc = ill->ill_dld_capab;
3015	ill_dld_direct_t	*idd = &idc->idc_direct;
3016	dld_capab_direct_t	direct;
3017	int			rc;
3018
3019	ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
3020
3021	bzero(&direct, sizeof (direct));
3022	direct.di_rx_cf = (uintptr_t)ip_input;
3023	direct.di_rx_ch = ill;
3024
3025	rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct,
3026	    DLD_ENABLE);
3027	if (rc == 0) {
3028		idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df;
3029		idd->idd_tx_dh = direct.di_tx_dh;
3030		idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df;
3031		idd->idd_tx_cb_dh = direct.di_tx_cb_dh;
3032		idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df;
3033		idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh;
3034		ASSERT(idd->idd_tx_cb_df != NULL);
3035		ASSERT(idd->idd_tx_fctl_df != NULL);
3036		ASSERT(idd->idd_tx_df != NULL);
3037		/*
3038		 * One time registration of flow enable callback function
3039		 */
3040		ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh,
3041		    ill_flow_enable, ill);
3042		ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT;
3043		DTRACE_PROBE1(direct_on, (ill_t *), ill);
3044	} else {
3045		cmn_err(CE_WARN, "warning: could not enable DIRECT "
3046		    "capability, rc = %d\n", rc);
3047		DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc);
3048	}
3049}
3050
3051static void
3052ill_capability_poll_enable(ill_t *ill)
3053{
3054	ill_dld_capab_t		*idc = ill->ill_dld_capab;
3055	dld_capab_poll_t	poll;
3056	int			rc;
3057
3058	ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
3059
3060	bzero(&poll, sizeof (poll));
3061	poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring;
3062	poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring;
3063	poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring;
3064	poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring;
3065	poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring;
3066	poll.poll_ring_ch = ill;
3067	rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll,
3068	    DLD_ENABLE);
3069	if (rc == 0) {
3070		ill->ill_capabilities |= ILL_CAPAB_DLD_POLL;
3071		DTRACE_PROBE1(poll_on, (ill_t *), ill);
3072	} else {
3073		ip1dbg(("warning: could not enable POLL "
3074		    "capability, rc = %d\n", rc));
3075		DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc);
3076	}
3077}
3078
3079/*
3080 * Enable the LSO capability.
3081 */
3082static void
3083ill_capability_lso_enable(ill_t *ill)
3084{
3085	ill_dld_capab_t	*idc = ill->ill_dld_capab;
3086	dld_capab_lso_t	lso;
3087	int rc;
3088
3089	ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
3090
3091	if (ill->ill_lso_capab == NULL) {
3092		ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t),
3093		    KM_NOSLEEP);
3094		if (ill->ill_lso_capab == NULL) {
3095			cmn_err(CE_WARN, "ill_capability_lso_enable: "
3096			    "could not enable LSO for %s (ENOMEM)\n",
3097			    ill->ill_name);
3098			return;
3099		}
3100	}
3101
3102	bzero(&lso, sizeof (lso));
3103	if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso,
3104	    DLD_ENABLE)) == 0) {
3105		ill->ill_lso_capab->ill_lso_flags = lso.lso_flags;
3106		ill->ill_lso_capab->ill_lso_max = lso.lso_max;
3107		ill->ill_capabilities |= ILL_CAPAB_DLD_LSO;
3108		ip1dbg(("ill_capability_lso_enable: interface %s "
3109		    "has enabled LSO\n ", ill->ill_name));
3110	} else {
3111		kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
3112		ill->ill_lso_capab = NULL;
3113		DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc);
3114	}
3115}
3116
3117static void
3118ill_capability_dld_enable(ill_t *ill)
3119{
3120	mac_perim_handle_t mph;
3121
3122	ASSERT(IAM_WRITER_ILL(ill));
3123
3124	if (ill->ill_isv6)
3125		return;
3126
3127	ill_mac_perim_enter(ill, &mph);
3128	if (!ill->ill_isv6) {
3129		ill_capability_direct_enable(ill);
3130		ill_capability_poll_enable(ill);
3131		ill_capability_lso_enable(ill);
3132	}
3133	ill->ill_capabilities |= ILL_CAPAB_DLD;
3134	ill_mac_perim_exit(ill, mph);
3135}
3136
3137static void
3138ill_capability_dld_disable(ill_t *ill)
3139{
3140	ill_dld_capab_t	*idc;
3141	ill_dld_direct_t *idd;
3142	mac_perim_handle_t	mph;
3143
3144	ASSERT(IAM_WRITER_ILL(ill));
3145
3146	if (!(ill->ill_capabilities & ILL_CAPAB_DLD))
3147		return;
3148
3149	ill_mac_perim_enter(ill, &mph);
3150
3151	idc = ill->ill_dld_capab;
3152	if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) {
3153		/*
3154		 * For performance we avoid locks in the transmit data path
3155		 * and don't maintain a count of the number of threads using
3156		 * direct calls. Thus some threads could be using direct
3157		 * transmit calls to GLD, even after the capability mechanism
3158		 * turns it off. This is still safe since the handles used in
3159		 * the direct calls continue to be valid until the unplumb is
3160		 * completed. Remove the callback that was added (1-time) at
3161		 * capab enable time.
3162		 */
3163		mutex_enter(&ill->ill_lock);
3164		ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT;
3165		mutex_exit(&ill->ill_lock);
3166		if (ill->ill_flownotify_mh != NULL) {
3167			idd = &idc->idc_direct;
3168			idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL,
3169			    ill->ill_flownotify_mh);
3170			ill->ill_flownotify_mh = NULL;
3171		}
3172		(void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT,
3173		    NULL, DLD_DISABLE);
3174	}
3175
3176	if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) {
3177		ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL;
3178		ip_squeue_clean_all(ill);
3179		(void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL,
3180		    NULL, DLD_DISABLE);
3181	}
3182
3183	if ((ill->ill_capabilities & ILL_CAPAB_DLD_LSO) != 0) {
3184		ASSERT(ill->ill_lso_capab != NULL);
3185		/*
3186		 * Clear the capability flag for LSO but retain the
3187		 * ill_lso_capab structure since it's possible that another
3188		 * thread is still referring to it.  The structure only gets
3189		 * deallocated when we destroy the ill.
3190		 */
3191
3192		ill->ill_capabilities &= ~ILL_CAPAB_DLD_LSO;
3193		(void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO,
3194		    NULL, DLD_DISABLE);
3195	}
3196
3197	ill->ill_capabilities &= ~ILL_CAPAB_DLD;
3198	ill_mac_perim_exit(ill, mph);
3199}
3200
3201/*
3202 * Capability Negotiation protocol
3203 *
3204 * We don't wait for DLPI capability operations to finish during interface
3205 * bringup or teardown. Doing so would introduce more asynchrony and the
3206 * interface up/down operations will need multiple return and restarts.
3207 * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as
3208 * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next
3209 * exclusive operation won't start until the DLPI operations of the previous
3210 * exclusive operation complete.
3211 *
3212 * The capability state machine is shown below.
3213 *
3214 * state		next state		event, action
3215 *
3216 * IDCS_UNKNOWN 	IDCS_PROBE_SENT		ill_capability_probe
3217 * IDCS_PROBE_SENT	IDCS_OK			ill_capability_ack
3218 * IDCS_PROBE_SENT	IDCS_FAILED		ip_rput_dlpi_writer (nack)
3219 * IDCS_OK		IDCS_RENEG		Receipt of DL_NOTE_CAPAB_RENEG
3220 * IDCS_OK		IDCS_RESET_SENT		ill_capability_reset
3221 * IDCS_RESET_SENT	IDCS_UNKNOWN		ill_capability_ack_thr
3222 * IDCS_RENEG		IDCS_PROBE_SENT		ill_capability_ack_thr ->
3223 *						    ill_capability_probe.
3224 */
3225
3226/*
3227 * Dedicated thread started from ip_stack_init that handles capability
3228 * disable. This thread ensures the taskq dispatch does not fail by waiting
3229 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure
3230 * that direct calls to DLD are done in a cv_waitable context.
3231 */
3232void
3233ill_taskq_dispatch(ip_stack_t *ipst)
3234{
3235	callb_cpr_t cprinfo;
3236	char 	name[64];
3237	mblk_t	*mp;
3238
3239	(void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d",
3240	    ipst->ips_netstack->netstack_stackid);
3241	CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr,
3242	    name);
3243	mutex_enter(&ipst->ips_capab_taskq_lock);
3244
3245	for (;;) {
3246		mp = ipst->ips_capab_taskq_head;
3247		while (mp != NULL) {
3248			ipst->ips_capab_taskq_head = mp->b_next;
3249			if (ipst->ips_capab_taskq_head == NULL)
3250				ipst->ips_capab_taskq_tail = NULL;
3251			mutex_exit(&ipst->ips_capab_taskq_lock);
3252			mp->b_next = NULL;
3253
3254			VERIFY(taskq_dispatch(system_taskq,
3255			    ill_capability_ack_thr, mp, TQ_SLEEP) != 0);
3256			mutex_enter(&ipst->ips_capab_taskq_lock);
3257			mp = ipst->ips_capab_taskq_head;
3258		}
3259
3260		if (ipst->ips_capab_taskq_quit)
3261			break;
3262		CALLB_CPR_SAFE_BEGIN(&cprinfo);
3263		cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock);
3264		CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock);
3265	}
3266	VERIFY(ipst->ips_capab_taskq_head == NULL);
3267	VERIFY(ipst->ips_capab_taskq_tail == NULL);
3268	CALLB_CPR_EXIT(&cprinfo);
3269	thread_exit();
3270}
3271
3272/*
3273 * Consume a new-style hardware capabilities negotiation ack.
3274 * Called via taskq on receipt of DL_CAPABBILITY_ACK.
3275 */
3276static void
3277ill_capability_ack_thr(void *arg)
3278{
3279	mblk_t	*mp = arg;
3280	dl_capability_ack_t *capp;
3281	dl_capability_sub_t *subp, *endp;
3282	ill_t	*ill;
3283	boolean_t reneg;
3284
3285	ill = (ill_t *)mp->b_prev;
3286	mp->b_prev = NULL;
3287
3288	VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE);
3289
3290	if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT ||
3291	    ill->ill_dlpi_capab_state == IDCS_RENEG) {
3292		/*
3293		 * We have received the ack for our DL_CAPAB reset request.
3294		 * There isnt' anything in the message that needs processing.
3295		 * All message based capabilities have been disabled, now
3296		 * do the function call based capability disable.
3297		 */
3298		reneg = ill->ill_dlpi_capab_state == IDCS_RENEG;
3299		ill_capability_dld_disable(ill);
3300		ill->ill_dlpi_capab_state = IDCS_UNKNOWN;
3301		if (reneg)
3302			ill_capability_probe(ill);
3303		goto done;
3304	}
3305
3306	if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT)
3307		ill->ill_dlpi_capab_state = IDCS_OK;
3308
3309	capp = (dl_capability_ack_t *)mp->b_rptr;
3310
3311	if (capp->dl_sub_length == 0) {
3312		/* no new-style capabilities */
3313		goto done;
3314	}
3315
3316	/* make sure the driver supplied correct dl_sub_length */
3317	if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) {
3318		ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, "
3319		    "invalid dl_sub_length (%d)\n", capp->dl_sub_length));
3320		goto done;
3321	}
3322
3323#define	SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset))
3324	/*
3325	 * There are sub-capabilities. Process the ones we know about.
3326	 * Loop until we don't have room for another sub-cap header..
3327	 */
3328	for (subp = SC(capp, capp->dl_sub_offset),
3329	    endp = SC(subp, capp->dl_sub_length - sizeof (*subp));
3330	    subp <= endp;
3331	    subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) {
3332
3333		switch (subp->dl_cap) {
3334		case DL_CAPAB_ID_WRAPPER:
3335			ill_capability_id_ack(ill, mp, subp);
3336			break;
3337		default:
3338			ill_capability_dispatch(ill, mp, subp, B_FALSE);
3339			break;
3340		}
3341	}
3342#undef SC
3343done:
3344	inet_freemsg(mp);
3345	ill_capability_done(ill);
3346	ipsq_exit(ill->ill_phyint->phyint_ipsq);
3347}
3348
3349/*
3350 * This needs to be started in a taskq thread to provide a cv_waitable
3351 * context.
3352 */
3353void
3354ill_capability_ack(ill_t *ill, mblk_t *mp)
3355{
3356	ip_stack_t	*ipst = ill->ill_ipst;
3357
3358	mp->b_prev = (mblk_t *)ill;
3359	ASSERT(mp->b_next == NULL);
3360
3361	if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp,
3362	    TQ_NOSLEEP) != 0)
3363		return;
3364
3365	/*
3366	 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread
3367	 * which will do the dispatch using TQ_SLEEP to guarantee success.
3368	 */
3369	mutex_enter(&ipst->ips_capab_taskq_lock);
3370	if (ipst->ips_capab_taskq_head == NULL) {
3371		ASSERT(ipst->ips_capab_taskq_tail == NULL);
3372		ipst->ips_capab_taskq_head = mp;
3373	} else {
3374		ipst->ips_capab_taskq_tail->b_next = mp;
3375	}
3376	ipst->ips_capab_taskq_tail = mp;
3377
3378	cv_signal(&ipst->ips_capab_taskq_cv);
3379	mutex_exit(&ipst->ips_capab_taskq_lock);
3380}
3381
3382/*
3383 * This routine is called to scan the fragmentation reassembly table for
3384 * the specified ILL for any packets that are starting to smell.
3385 * dead_interval is the maximum time in seconds that will be tolerated.  It
3386 * will either be the value specified in ip_g_frag_timeout, or zero if the
3387 * ILL is shutting down and it is time to blow everything off.
3388 *
3389 * It returns the number of seconds (as a time_t) that the next frag timer
3390 * should be scheduled for, 0 meaning that the timer doesn't need to be
3391 * re-started.  Note that the method of calculating next_timeout isn't
3392 * entirely accurate since time will flow between the time we grab
3393 * current_time and the time we schedule the next timeout.  This isn't a
3394 * big problem since this is the timer for sending an ICMP reassembly time
3395 * exceeded messages, and it doesn't have to be exactly accurate.
3396 *
3397 * This function is
3398 * sometimes called as writer, although this is not required.
3399 */
3400time_t
3401ill_frag_timeout(ill_t *ill, time_t dead_interval)
3402{
3403	ipfb_t	*ipfb;
3404	ipfb_t	*endp;
3405	ipf_t	*ipf;
3406	ipf_t	*ipfnext;
3407	mblk_t	*mp;
3408	time_t	current_time = gethrestime_sec();
3409	time_t	next_timeout = 0;
3410	uint32_t	hdr_length;
3411	mblk_t	*send_icmp_head;
3412	mblk_t	*send_icmp_head_v6;
3413	zoneid_t zoneid;
3414	ip_stack_t *ipst = ill->ill_ipst;
3415
3416	ipfb = ill->ill_frag_hash_tbl;
3417	if (ipfb == NULL)
3418		return (B_FALSE);
3419	endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT];
3420	/* Walk the frag hash table. */
3421	for (; ipfb < endp; ipfb++) {
3422		send_icmp_head = NULL;
3423		send_icmp_head_v6 = NULL;
3424		mutex_enter(&ipfb->ipfb_lock);
3425		while ((ipf = ipfb->ipfb_ipf) != 0) {
3426			time_t frag_time = current_time - ipf->ipf_timestamp;
3427			time_t frag_timeout;
3428
3429			if (frag_time < dead_interval) {
3430				/*
3431				 * There are some outstanding fragments
3432				 * that will timeout later.  Make note of
3433				 * the time so that we can reschedule the
3434				 * next timeout appropriately.
3435				 */
3436				frag_timeout = dead_interval - frag_time;
3437				if (next_timeout == 0 ||
3438				    frag_timeout < next_timeout) {
3439					next_timeout = frag_timeout;
3440				}
3441				break;
3442			}
3443			/* Time's up.  Get it out of here. */
3444			hdr_length = ipf->ipf_nf_hdr_len;
3445			ipfnext = ipf->ipf_hash_next;
3446			if (ipfnext)
3447				ipfnext->ipf_ptphn = ipf->ipf_ptphn;
3448			*ipf->ipf_ptphn = ipfnext;
3449			mp = ipf->ipf_mp->b_cont;
3450			for (; mp; mp = mp->b_cont) {
3451				/* Extra points for neatness. */
3452				IP_REASS_SET_START(mp, 0);
3453				IP_REASS_SET_END(mp, 0);
3454			}
3455			mp = ipf->ipf_mp->b_cont;
3456			atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count);
3457			ASSERT(ipfb->ipfb_count >= ipf->ipf_count);
3458			ipfb->ipfb_count -= ipf->ipf_count;
3459			ASSERT(ipfb->ipfb_frag_pkts > 0);
3460			ipfb->ipfb_frag_pkts--;
3461			/*
3462			 * We do not send any icmp message from here because
3463			 * we currently are holding the ipfb_lock for this
3464			 * hash chain. If we try and send any icmp messages
3465			 * from here we may end up via a put back into ip
3466			 * trying to get the same lock, causing a recursive
3467			 * mutex panic. Instead we build a list and send all
3468			 * the icmp messages after we have dropped the lock.
3469			 */
3470			if (ill->ill_isv6) {
3471				if (hdr_length != 0) {
3472					mp->b_next = send_icmp_head_v6;
3473					send_icmp_head_v6 = mp;
3474				} else {
3475					freemsg(mp);
3476				}
3477			} else {
3478				if (hdr_length != 0) {
3479					mp->b_next = send_icmp_head;
3480					send_icmp_head = mp;
3481				} else {
3482					freemsg(mp);
3483				}
3484			}
3485			BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
3486			freeb(ipf->ipf_mp);
3487		}
3488		mutex_exit(&ipfb->ipfb_lock);
3489		/*
3490		 * Now need to send any icmp messages that we delayed from
3491		 * above.
3492		 */
3493		while (send_icmp_head_v6 != NULL) {
3494			ip6_t *ip6h;
3495
3496			mp = send_icmp_head_v6;
3497			send_icmp_head_v6 = send_icmp_head_v6->b_next;
3498			mp->b_next = NULL;
3499			if (mp->b_datap->db_type == M_CTL)
3500				ip6h = (ip6_t *)mp->b_cont->b_rptr;
3501			else
3502				ip6h = (ip6_t *)mp->b_rptr;
3503			zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst,
3504			    ill, ipst);
3505			if (zoneid == ALL_ZONES) {
3506				freemsg(mp);
3507			} else {
3508				icmp_time_exceeded_v6(ill->ill_wq, mp,
3509				    ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE,
3510				    B_FALSE, zoneid, ipst);
3511			}
3512		}
3513		while (send_icmp_head != NULL) {
3514			ipaddr_t dst;
3515
3516			mp = send_icmp_head;
3517			send_icmp_head = send_icmp_head->b_next;
3518			mp->b_next = NULL;
3519
3520			if (mp->b_datap->db_type == M_CTL)
3521				dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst;
3522			else
3523				dst = ((ipha_t *)mp->b_rptr)->ipha_dst;
3524
3525			zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst);
3526			if (zoneid == ALL_ZONES) {
3527				freemsg(mp);
3528			} else {
3529				icmp_time_exceeded(ill->ill_wq, mp,
3530				    ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid,
3531				    ipst);
3532			}
3533		}
3534	}
3535	/*
3536	 * A non-dying ILL will use the return value to decide whether to
3537	 * restart the frag timer, and for how long.
3538	 */
3539	return (next_timeout);
3540}
3541
3542/*
3543 * This routine is called when the approximate count of mblk memory used
3544 * for the specified ILL has exceeded max_count.
3545 */
3546void
3547ill_frag_prune(ill_t *ill, uint_t max_count)
3548{
3549	ipfb_t	*ipfb;
3550	ipf_t	*ipf;
3551	size_t	count;
3552
3553	/*
3554	 * If we are here within ip_min_frag_prune_time msecs remove
3555	 * ill_frag_free_num_pkts oldest packets from each bucket and increment
3556	 * ill_frag_free_num_pkts.
3557	 */
3558	mutex_enter(&ill->ill_lock);
3559	if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <=
3560	    (ip_min_frag_prune_time != 0 ?
3561	    ip_min_frag_prune_time : msec_per_tick)) {
3562
3563		ill->ill_frag_free_num_pkts++;
3564
3565	} else {
3566		ill->ill_frag_free_num_pkts = 0;
3567	}
3568	ill->ill_last_frag_clean_time = lbolt;
3569	mutex_exit(&ill->ill_lock);
3570
3571	/*
3572	 * free ill_frag_free_num_pkts oldest packets from each bucket.
3573	 */
3574	if (ill->ill_frag_free_num_pkts != 0) {
3575		int ix;
3576
3577		for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
3578			ipfb = &ill->ill_frag_hash_tbl[ix];
3579			mutex_enter(&ipfb->ipfb_lock);
3580			if (ipfb->ipfb_ipf != NULL) {
3581				ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf,
3582				    ill->ill_frag_free_num_pkts);
3583			}
3584			mutex_exit(&ipfb->ipfb_lock);
3585		}
3586	}
3587	/*
3588	 * While the reassembly list for this ILL is too big, prune a fragment
3589	 * queue by age, oldest first.
3590	 */
3591	while (ill->ill_frag_count > max_count) {
3592		int	ix;
3593		ipfb_t	*oipfb = NULL;
3594		uint_t	oldest = UINT_MAX;
3595
3596		count = 0;
3597		for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
3598			ipfb = &ill->ill_frag_hash_tbl[ix];
3599			mutex_enter(&ipfb->ipfb_lock);
3600			ipf = ipfb->ipfb_ipf;
3601			if (ipf != NULL && ipf->ipf_gen < oldest) {
3602				oldest = ipf->ipf_gen;
3603				oipfb = ipfb;
3604			}
3605			count += ipfb->ipfb_count;
3606			mutex_exit(&ipfb->ipfb_lock);
3607		}
3608		if (oipfb == NULL)
3609			break;
3610
3611		if (count <= max_count)
3612			return;	/* Somebody beat us to it, nothing to do */
3613		mutex_enter(&oipfb->ipfb_lock);
3614		ipf = oipfb->ipfb_ipf;
3615		if (ipf != NULL) {
3616			ill_frag_free_pkts(ill, oipfb, ipf, 1);
3617		}
3618		mutex_exit(&oipfb->ipfb_lock);
3619	}
3620}
3621
3622/*
3623 * free 'free_cnt' fragmented packets starting at ipf.
3624 */
3625void
3626ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt)
3627{
3628	size_t	count;
3629	mblk_t	*mp;
3630	mblk_t	*tmp;
3631	ipf_t **ipfp = ipf->ipf_ptphn;
3632
3633	ASSERT(MUTEX_HELD(&ipfb->ipfb_lock));
3634	ASSERT(ipfp != NULL);
3635	ASSERT(ipf != NULL);
3636
3637	while (ipf != NULL && free_cnt-- > 0) {
3638		count = ipf->ipf_count;
3639		mp = ipf->ipf_mp;
3640		ipf = ipf->ipf_hash_next;
3641		for (tmp = mp; tmp; tmp = tmp->b_cont) {
3642			IP_REASS_SET_START(tmp, 0);
3643			IP_REASS_SET_END(tmp, 0);
3644		}
3645		atomic_add_32(&ill->ill_frag_count, -count);
3646		ASSERT(ipfb->ipfb_count >= count);
3647		ipfb->ipfb_count -= count;
3648		ASSERT(ipfb->ipfb_frag_pkts > 0);
3649		ipfb->ipfb_frag_pkts--;
3650		freemsg(mp);
3651		BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
3652	}
3653
3654	if (ipf)
3655		ipf->ipf_ptphn = ipfp;
3656	ipfp[0] = ipf;
3657}
3658
3659#define	ND_FORWARD_WARNING	"The <if>:ip*_forwarding ndd variables are " \
3660	"obsolete and may be removed in a future release of Solaris.  Use " \
3661	"ifconfig(1M) to manipulate the forwarding status of an interface."
3662
3663/*
3664 * For obsolete per-interface forwarding configuration;
3665 * called in response to ND_GET.
3666 */
3667/* ARGSUSED */
3668static int
3669nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr)
3670{
3671	ill_t *ill = (ill_t *)cp;
3672
3673	cmn_err(CE_WARN, ND_FORWARD_WARNING);
3674
3675	(void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0);
3676	return (0);
3677}
3678
3679/*
3680 * For obsolete per-interface forwarding configuration;
3681 * called in response to ND_SET.
3682 */
3683/* ARGSUSED */
3684static int
3685nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp,
3686    cred_t *ioc_cr)
3687{
3688	long value;
3689	int retval;
3690	ip_stack_t *ipst = CONNQ_TO_IPST(q);
3691
3692	cmn_err(CE_WARN, ND_FORWARD_WARNING);
3693
3694	if (ddi_strtol(valuestr, NULL, 10, &value) != 0 ||
3695	    value < 0 || value > 1) {
3696		return (EINVAL);
3697	}
3698
3699	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3700	retval = ill_forward_set((ill_t *)cp, (value != 0));
3701	rw_exit(&ipst->ips_ill_g_lock);
3702	return (retval);
3703}
3704
3705/*
3706 * Helper function for ill_forward_set().
3707 */
3708static void
3709ill_forward_set_on_ill(ill_t *ill, boolean_t enable)
3710{
3711	ip_stack_t	*ipst = ill->ill_ipst;
3712
3713	ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));
3714
3715	ip1dbg(("ill_forward_set: %s %s forwarding on %s",
3716	    (enable ? "Enabling" : "Disabling"),
3717	    (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name));
3718	mutex_enter(&ill->ill_lock);
3719	if (enable)
3720		ill->ill_flags |= ILLF_ROUTER;
3721	else
3722		ill->ill_flags &= ~ILLF_ROUTER;
3723	mutex_exit(&ill->ill_lock);
3724	if (ill->ill_isv6)
3725		ill_set_nce_router_flags(ill, enable);
3726	/* Notify routing socket listeners of this change. */
3727	if (ill->ill_ipif != NULL)
3728		ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
3729}
3730
3731/*
3732 * Set an ill's ILLF_ROUTER flag appropriately.  Send up RTS_IFINFO routing
3733 * socket messages for each interface whose flags we change.
3734 */
3735int
3736ill_forward_set(ill_t *ill, boolean_t enable)
3737{
3738	ipmp_illgrp_t *illg;
3739	ip_stack_t *ipst = ill->ill_ipst;
3740
3741	ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));
3742
3743	if ((enable && (ill->ill_flags & ILLF_ROUTER)) ||
3744	    (!enable && !(ill->ill_flags & ILLF_ROUTER)))
3745		return (0);
3746
3747	if (IS_LOOPBACK(ill))
3748		return (EINVAL);
3749
3750	if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) {
3751		/*
3752		 * Update all of the interfaces in the group.
3753		 */
3754		illg = ill->ill_grp;
3755		ill = list_head(&illg->ig_if);
3756		for (; ill != NULL; ill = list_next(&illg->ig_if, ill))
3757			ill_forward_set_on_ill(ill, enable);
3758
3759		/*
3760		 * Update the IPMP meta-interface.
3761		 */
3762		ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable);
3763		return (0);
3764	}
3765
3766	ill_forward_set_on_ill(ill, enable);
3767	return (0);
3768}
3769
3770/*
3771 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for
3772 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately
3773 * set or clear.
3774 */
3775static void
3776ill_set_nce_router_flags(ill_t *ill, boolean_t enable)
3777{
3778	ipif_t *ipif;
3779	nce_t *nce;
3780
3781	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
3782		/*
3783		 * NOTE: we match across the illgrp because nce's for
3784		 * addresses on IPMP interfaces have an nce_ill that points to
3785		 * the bound underlying ill.
3786		 */
3787		nce = ndp_lookup_v6(ill, B_TRUE, &ipif->ipif_v6lcl_addr,
3788		    B_FALSE);
3789		if (nce != NULL) {
3790			mutex_enter(&nce->nce_lock);
3791			if (enable)
3792				nce->nce_flags |= NCE_F_ISROUTER;
3793			else
3794				nce->nce_flags &= ~NCE_F_ISROUTER;
3795			mutex_exit(&nce->nce_lock);
3796			NCE_REFRELE(nce);
3797		}
3798	}
3799}
3800
3801/*
3802 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable
3803 * for this ill.  Make sure the v6/v4 question has been answered about this
3804 * ill.  The creation of this ndd variable is only for backwards compatibility.
3805 * The preferred way to control per-interface IP forwarding is through the
3806 * ILLF_ROUTER interface flag.
3807 */
3808static int
3809ill_set_ndd_name(ill_t *ill)
3810{
3811	char *suffix;
3812	ip_stack_t	*ipst = ill->ill_ipst;
3813
3814	ASSERT(IAM_WRITER_ILL(ill));
3815
3816	if (ill->ill_isv6)
3817		suffix = ipv6_forward_suffix;
3818	else
3819		suffix = ipv4_forward_suffix;
3820
3821	ill->ill_ndd_name = ill->ill_name + ill->ill_name_length;
3822	bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1);
3823	/*
3824	 * Copies over the '\0'.
3825	 * Note that strlen(suffix) is always bounded.
3826	 */
3827	bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1,
3828	    strlen(suffix) + 1);
3829
3830	/*
3831	 * Use of the nd table requires holding the reader lock.
3832	 * Modifying the nd table thru nd_load/nd_unload requires
3833	 * the writer lock.
3834	 */
3835	rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER);
3836	if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get,
3837	    nd_ill_forward_set, (caddr_t)ill)) {
3838		/*
3839		 * If the nd_load failed, it only meant that it could not
3840		 * allocate a new bunch of room for further NDD expansion.
3841		 * Because of that, the ill_ndd_name will be set to 0, and
3842		 * this interface is at the mercy of the global ip_forwarding
3843		 * variable.
3844		 */
3845		rw_exit(&ipst->ips_ip_g_nd_lock);
3846		ill->ill_ndd_name = NULL;
3847		return (ENOMEM);
3848	}
3849	rw_exit(&ipst->ips_ip_g_nd_lock);
3850	return (0);
3851}
3852
3853/*
3854 * Intializes the context structure and returns the first ill in the list
3855 * cuurently start_list and end_list can have values:
3856 * MAX_G_HEADS		Traverse both IPV4 and IPV6 lists.
3857 * IP_V4_G_HEAD		Traverse IPV4 list only.
3858 * IP_V6_G_HEAD		Traverse IPV6 list only.
3859 */
3860
3861/*
3862 * We don't check for CONDEMNED ills here. Caller must do that if
3863 * necessary under the ill lock.
3864 */
3865ill_t *
3866ill_first(int start_list, int end_list, ill_walk_context_t *ctx,
3867    ip_stack_t *ipst)
3868{
3869	ill_if_t *ifp;
3870	ill_t *ill;
3871	avl_tree_t *avl_tree;
3872
3873	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
3874	ASSERT(end_list <= MAX_G_HEADS && start_list >= 0);
3875
3876	/*
3877	 * setup the lists to search
3878	 */
3879	if (end_list != MAX_G_HEADS) {
3880		ctx->ctx_current_list = start_list;
3881		ctx->ctx_last_list = end_list;
3882	} else {
3883		ctx->ctx_last_list = MAX_G_HEADS - 1;
3884		ctx->ctx_current_list = 0;
3885	}
3886
3887	while (ctx->ctx_current_list <= ctx->ctx_last_list) {
3888		ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
3889		if (ifp != (ill_if_t *)
3890		    &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
3891			avl_tree = &ifp->illif_avl_by_ppa;
3892			ill = avl_first(avl_tree);
3893			/*
3894			 * ill is guaranteed to be non NULL or ifp should have
3895			 * not existed.
3896			 */
3897			ASSERT(ill != NULL);
3898			return (ill);
3899		}
3900		ctx->ctx_current_list++;
3901	}
3902
3903	return (NULL);
3904}
3905
3906/*
3907 * returns the next ill in the list. ill_first() must have been called
3908 * before calling ill_next() or bad things will happen.
3909 */
3910
3911/*
3912 * We don't check for CONDEMNED ills here. Caller must do that if
3913 * necessary under the ill lock.
3914 */
3915ill_t *
3916ill_next(ill_walk_context_t *ctx, ill_t *lastill)
3917{
3918	ill_if_t *ifp;
3919	ill_t *ill;
3920	ip_stack_t	*ipst = lastill->ill_ipst;
3921
3922	ASSERT(lastill->ill_ifptr != (ill_if_t *)
3923	    &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst));
3924	if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill,
3925	    AVL_AFTER)) != NULL) {
3926		return (ill);
3927	}
3928
3929	/* goto next ill_ifp in the list. */
3930	ifp = lastill->ill_ifptr->illif_next;
3931
3932	/* make sure not at end of circular list */
3933	while (ifp ==
3934	    (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
3935		if (++ctx->ctx_current_list > ctx->ctx_last_list)
3936			return (NULL);
3937		ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
3938	}
3939
3940	return (avl_first(&ifp->illif_avl_by_ppa));
3941}
3942
3943/*
3944 * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+
3945 * The final number (PPA) must not have any leading zeros.  Upon success, a
3946 * pointer to the start of the PPA is returned; otherwise NULL is returned.
3947 */
3948static char *
3949ill_get_ppa_ptr(char *name)
3950{
3951	int namelen = strlen(name);
3952	int end_ndx = namelen - 1;
3953	int ppa_ndx, i;
3954
3955	/*
3956	 * Check that the first character is [a-zA-Z], and that the last
3957	 * character is [0-9].
3958	 */
3959	if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx]))
3960		return (NULL);
3961
3962	/*
3963	 * Set `ppa_ndx' to the PPA start, and check for leading zeroes.
3964	 */
3965	for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--)
3966		if (!isdigit(name[ppa_ndx - 1]))
3967			break;
3968
3969	if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx)
3970		return (NULL);
3971
3972	/*
3973	 * Check that the intermediate characters are [a-z0-9.]
3974	 */
3975	for (i = 1; i < ppa_ndx; i++) {
3976		if (!isalpha(name[i]) && !isdigit(name[i]) &&
3977		    name[i] != '.' && name[i] != '_') {
3978			return (NULL);
3979		}
3980	}
3981
3982	return (name + ppa_ndx);
3983}
3984
3985/*
3986 * use avl tree to locate the ill.
3987 */
3988static ill_t *
3989ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp,
3990    ipsq_func_t func, int *error, ip_stack_t *ipst)
3991{
3992	char *ppa_ptr = NULL;
3993	int len;
3994	uint_t ppa;
3995	ill_t *ill = NULL;
3996	ill_if_t *ifp;
3997	int list;
3998	ipsq_t *ipsq;
3999
4000	if (error != NULL)
4001		*error = 0;
4002
4003	/*
4004	 * get ppa ptr
4005	 */
4006	if (isv6)
4007		list = IP_V6_G_HEAD;
4008	else
4009		list = IP_V4_G_HEAD;
4010
4011	if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) {
4012		if (error != NULL)
4013			*error = ENXIO;
4014		return (NULL);
4015	}
4016
4017	len = ppa_ptr - name + 1;
4018
4019	ppa = stoi(&ppa_ptr);
4020
4021	ifp = IP_VX_ILL_G_LIST(list, ipst);
4022
4023	while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
4024		/*
4025		 * match is done on len - 1 as the name is not null
4026		 * terminated it contains ppa in addition to the interface
4027		 * name.
4028		 */
4029		if ((ifp->illif_name_len == len) &&
4030		    bcmp(ifp->illif_name, name, len - 1) == 0) {
4031			break;
4032		} else {
4033			ifp = ifp->illif_next;
4034		}
4035	}
4036
4037	if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
4038		/*
4039		 * Even the interface type does not exist.
4040		 */
4041		if (error != NULL)
4042			*error = ENXIO;
4043		return (NULL);
4044	}
4045
4046	ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL);
4047	if (ill != NULL) {
4048		/*
4049		 * The block comment at the start of ipif_down
4050		 * explains the use of the macros used below
4051		 */
4052		GRAB_CONN_LOCK(q);
4053		mutex_enter(&ill->ill_lock);
4054		if (ILL_CAN_LOOKUP(ill)) {
4055			ill_refhold_locked(ill);
4056			mutex_exit(&ill->ill_lock);
4057			RELEASE_CONN_LOCK(q);
4058			return (ill);
4059		} else if (ILL_CAN_WAIT(ill, q)) {
4060			ipsq = ill->ill_phyint->phyint_ipsq;
4061			mutex_enter(&ipsq->ipsq_lock);
4062			mutex_enter(&ipsq->ipsq_xop->ipx_lock);
4063			mutex_exit(&ill->ill_lock);
4064			ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
4065			mutex_exit(&ipsq->ipsq_xop->ipx_lock);
4066			mutex_exit(&ipsq->ipsq_lock);
4067			RELEASE_CONN_LOCK(q);
4068			if (error != NULL)
4069				*error = EINPROGRESS;
4070			return (NULL);
4071		}
4072		mutex_exit(&ill->ill_lock);
4073		RELEASE_CONN_LOCK(q);
4074	}
4075	if (error != NULL)
4076		*error = ENXIO;
4077	return (NULL);
4078}
4079
4080/*
4081 * comparison function for use with avl.
4082 */
4083static int
4084ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr)
4085{
4086	uint_t ppa;
4087	uint_t ill_ppa;
4088
4089	ASSERT(ppa_ptr != NULL && ill_ptr != NULL);
4090
4091	ppa = *((uint_t *)ppa_ptr);
4092	ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa;
4093	/*
4094	 * We want the ill with the lowest ppa to be on the
4095	 * top.
4096	 */
4097	if (ill_ppa < ppa)
4098		return (1);
4099	if (ill_ppa > ppa)
4100		return (-1);
4101	return (0);
4102}
4103
4104/*
4105 * remove an interface type from the global list.
4106 */
4107static void
4108ill_delete_interface_type(ill_if_t *interface)
4109{
4110	ASSERT(interface != NULL);
4111	ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0);
4112
4113	avl_destroy(&interface->illif_avl_by_ppa);
4114	if (interface->illif_ppa_arena != NULL)
4115		vmem_destroy(interface->illif_ppa_arena);
4116
4117	remque(interface);
4118
4119	mi_free(interface);
4120}
4121
4122/*
4123 * remove ill from the global list.
4124 */
4125static void
4126ill_glist_delete(ill_t *ill)
4127{
4128	ip_stack_t	*ipst;
4129	phyint_t	*phyi;
4130
4131	if (ill == NULL)
4132		return;
4133	ipst = ill->ill_ipst;
4134	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
4135
4136	/*
4137	 * If the ill was never inserted into the AVL tree
4138	 * we skip the if branch.
4139	 */
4140	if (ill->ill_ifptr != NULL) {
4141		/*
4142		 * remove from AVL tree and free ppa number
4143		 */
4144		avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill);
4145
4146		if (ill->ill_ifptr->illif_ppa_arena != NULL) {
4147			vmem_free(ill->ill_ifptr->illif_ppa_arena,
4148			    (void *)(uintptr_t)(ill->ill_ppa+1), 1);
4149		}
4150		if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) {
4151			ill_delete_interface_type(ill->ill_ifptr);
4152		}
4153
4154		/*
4155		 * Indicate ill is no longer in the list.
4156		 */
4157		ill->ill_ifptr = NULL;
4158		ill->ill_name_length = 0;
4159		ill->ill_name[0] = '\0';
4160		ill->ill_ppa = UINT_MAX;
4161	}
4162
4163	/* Generate one last event for this ill. */
4164	ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name,
4165	    ill->ill_name_length);
4166
4167	ASSERT(ill->ill_phyint != NULL);
4168	phyi = ill->ill_phyint;
4169	ill->ill_phyint = NULL;
4170
4171	/*
4172	 * ill_init allocates a phyint always to store the copy
4173	 * of flags relevant to phyint. At that point in time, we could
4174	 * not assign the name and hence phyint_illv4/v6 could not be
4175	 * initialized. Later in ipif_set_values, we assign the name to
4176	 * the ill, at which point in time we assign phyint_illv4/v6.
4177	 * Thus we don't rely on phyint_illv6 to be initialized always.
4178	 */
4179	if (ill->ill_flags & ILLF_IPV6)
4180		phyi->phyint_illv6 = NULL;
4181	else
4182		phyi->phyint_illv4 = NULL;
4183
4184	if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) {
4185		rw_exit(&ipst->ips_ill_g_lock);
4186		return;
4187	}
4188
4189	/*
4190	 * There are no ills left on this phyint; pull it out of the phyint
4191	 * avl trees, and free it.
4192	 */
4193	if (phyi->phyint_ifindex > 0) {
4194		avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
4195		    phyi);
4196		avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
4197		    phyi);
4198	}
4199	rw_exit(&ipst->ips_ill_g_lock);
4200
4201	phyint_free(phyi);
4202}
4203
4204/*
4205 * allocate a ppa, if the number of plumbed interfaces of this type are
4206 * less than ill_no_arena do a linear search to find a unused ppa.
4207 * When the number goes beyond ill_no_arena switch to using an arena.
4208 * Note: ppa value of zero cannot be allocated from vmem_arena as it
4209 * is the return value for an error condition, so allocation starts at one
4210 * and is decremented by one.
4211 */
4212static int
4213ill_alloc_ppa(ill_if_t *ifp, ill_t *ill)
4214{
4215	ill_t *tmp_ill;
4216	uint_t start, end;
4217	int ppa;
4218
4219	if (ifp->illif_ppa_arena == NULL &&
4220	    (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) {
4221		/*
4222		 * Create an arena.
4223		 */
4224		ifp->illif_ppa_arena = vmem_create(ifp->illif_name,
4225		    (void *)1, UINT_MAX - 1, 1, NULL, NULL,
4226		    NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
4227			/* allocate what has already been assigned */
4228		for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa);
4229		    tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa,
4230		    tmp_ill, AVL_AFTER)) {
4231			ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
4232			    1,		/* size */
4233			    1,		/* align/quantum */
4234			    0,		/* phase */
4235			    0,		/* nocross */
4236			    /* minaddr */
4237			    (void *)((uintptr_t)tmp_ill->ill_ppa + 1),
4238			    /* maxaddr */
4239			    (void *)((uintptr_t)tmp_ill->ill_ppa + 2),
4240			    VM_NOSLEEP|VM_FIRSTFIT);
4241			if (ppa == 0) {
4242				ip1dbg(("ill_alloc_ppa: ppa allocation"
4243				    " failed while switching"));
4244				vmem_destroy(ifp->illif_ppa_arena);
4245				ifp->illif_ppa_arena = NULL;
4246				break;
4247			}
4248		}
4249	}
4250
4251	if (ifp->illif_ppa_arena != NULL) {
4252		if (ill->ill_ppa == UINT_MAX) {
4253			ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena,
4254			    1, VM_NOSLEEP|VM_FIRSTFIT);
4255			if (ppa == 0)
4256				return (EAGAIN);
4257			ill->ill_ppa = --ppa;
4258		} else {
4259			ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
4260			    1, 		/* size */
4261			    1, 		/* align/quantum */
4262			    0, 		/* phase */
4263			    0, 		/* nocross */
4264			    (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */
4265			    (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */
4266			    VM_NOSLEEP|VM_FIRSTFIT);
4267			/*
4268			 * Most likely the allocation failed because
4269			 * the requested ppa was in use.
4270			 */
4271			if (ppa == 0)
4272				return (EEXIST);
4273		}
4274		return (0);
4275	}
4276
4277	/*
4278	 * No arena is in use and not enough (>ill_no_arena) interfaces have
4279	 * been plumbed to create one. Do a linear search to get a unused ppa.
4280	 */
4281	if (ill->ill_ppa == UINT_MAX) {
4282		end = UINT_MAX - 1;
4283		start = 0;
4284	} else {
4285		end = start = ill->ill_ppa;
4286	}
4287
4288	tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL);
4289	while (tmp_ill != NULL && tmp_ill->ill_ppa == start) {
4290		if (start++ >= end) {
4291			if (ill->ill_ppa == UINT_MAX)
4292				return (EAGAIN);
4293			else
4294				return (EEXIST);
4295		}
4296		tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER);
4297	}
4298	ill->ill_ppa = start;
4299	return (0);
4300}
4301
4302/*
4303 * Insert ill into the list of configured ill's. Once this function completes,
4304 * the ill is globally visible and is available through lookups. More precisely
4305 * this happens after the caller drops the ill_g_lock.
4306 */
4307static int
4308ill_glist_insert(ill_t *ill, char *name, boolean_t isv6)
4309{
4310	ill_if_t *ill_interface;
4311	avl_index_t where = 0;
4312	int error;
4313	int name_length;
4314	int index;
4315	boolean_t check_length = B_FALSE;
4316	ip_stack_t	*ipst = ill->ill_ipst;
4317
4318	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
4319
4320	name_length = mi_strlen(name) + 1;
4321
4322	if (isv6)
4323		index = IP_V6_G_HEAD;
4324	else
4325		index = IP_V4_G_HEAD;
4326
4327	ill_interface = IP_VX_ILL_G_LIST(index, ipst);
4328	/*
4329	 * Search for interface type based on name
4330	 */
4331	while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
4332		if ((ill_interface->illif_name_len == name_length) &&
4333		    (strcmp(ill_interface->illif_name, name) == 0)) {
4334			break;
4335		}
4336		ill_interface = ill_interface->illif_next;
4337	}
4338
4339	/*
4340	 * Interface type not found, create one.
4341	 */
4342	if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
4343		ill_g_head_t ghead;
4344
4345		/*
4346		 * allocate ill_if_t structure
4347		 */
4348		ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t));
4349		if (ill_interface == NULL) {
4350			return (ENOMEM);
4351		}
4352
4353		(void) strcpy(ill_interface->illif_name, name);
4354		ill_interface->illif_name_len = name_length;
4355
4356		avl_create(&ill_interface->illif_avl_by_ppa,
4357		    ill_compare_ppa, sizeof (ill_t),
4358		    offsetof(struct ill_s, ill_avl_byppa));
4359
4360		/*
4361		 * link the structure in the back to maintain order
4362		 * of configuration for ifconfig output.
4363		 */
4364		ghead = ipst->ips_ill_g_heads[index];
4365		insque(ill_interface, ghead.ill_g_list_tail);
4366	}
4367
4368	if (ill->ill_ppa == UINT_MAX)
4369		check_length = B_TRUE;
4370
4371	error = ill_alloc_ppa(ill_interface, ill);
4372	if (error != 0) {
4373		if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
4374			ill_delete_interface_type(ill->ill_ifptr);
4375		return (error);
4376	}
4377
4378	/*
4379	 * When the ppa is choosen by the system, check that there is
4380	 * enough space to insert ppa. if a specific ppa was passed in this
4381	 * check is not required as the interface name passed in will have
4382	 * the right ppa in it.
4383	 */
4384	if (check_length) {
4385		/*
4386		 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars.
4387		 */
4388		char buf[sizeof (uint_t) * 3];
4389
4390		/*
4391		 * convert ppa to string to calculate the amount of space
4392		 * required for it in the name.
4393		 */
4394		numtos(ill->ill_ppa, buf);
4395
4396		/* Do we have enough space to insert ppa ? */
4397
4398		if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) {
4399			/* Free ppa and interface type struct */
4400			if (ill_interface->illif_ppa_arena != NULL) {
4401				vmem_free(ill_interface->illif_ppa_arena,
4402				    (void *)(uintptr_t)(ill->ill_ppa+1), 1);
4403			}
4404			if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
4405				ill_delete_interface_type(ill->ill_ifptr);
4406
4407			return (EINVAL);
4408		}
4409	}
4410
4411	(void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa);
4412	ill->ill_name_length = mi_strlen(ill->ill_name) + 1;
4413
4414	(void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa,
4415	    &where);
4416	ill->ill_ifptr = ill_interface;
4417	avl_insert(&ill_interface->illif_avl_by_ppa, ill, where);
4418
4419	ill_phyint_reinit(ill);
4420	return (0);
4421}
4422
4423/* Initialize the per phyint ipsq used for serialization */
4424static boolean_t
4425ipsq_init(ill_t *ill, boolean_t enter)
4426{
4427	ipsq_t  *ipsq;
4428	ipxop_t	*ipx;
4429
4430	if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL)
4431		return (B_FALSE);
4432
4433	ill->ill_phyint->phyint_ipsq = ipsq;
4434	ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop;
4435	ipx->ipx_ipsq = ipsq;
4436	ipsq->ipsq_next = ipsq;
4437	ipsq->ipsq_phyint = ill->ill_phyint;
4438	mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0);
4439	mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0);
4440	ipsq->ipsq_ipst = ill->ill_ipst;	/* No netstack_hold */
4441	if (enter) {
4442		ipx->ipx_writer = curthread;
4443		ipx->ipx_forced = B_FALSE;
4444		ipx->ipx_reentry_cnt = 1;
4445#ifdef DEBUG
4446		ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
4447#endif
4448	}
4449	return (B_TRUE);
4450}
4451
4452/*
4453 * ill_init is called by ip_open when a device control stream is opened.
4454 * It does a few initializations, and shoots a DL_INFO_REQ message down
4455 * to the driver.  The response is later picked up in ip_rput_dlpi and
4456 * used to set up default mechanisms for talking to the driver.  (Always
4457 * called as writer.)
4458 *
4459 * If this function returns error, ip_open will call ip_close which in
4460 * turn will call ill_delete to clean up any memory allocated here that
4461 * is not yet freed.
4462 */
4463int
4464ill_init(queue_t *q, ill_t *ill)
4465{
4466	int	count;
4467	dl_info_req_t	*dlir;
4468	mblk_t	*info_mp;
4469	uchar_t *frag_ptr;
4470
4471	/*
4472	 * The ill is initialized to zero by mi_alloc*(). In addition
4473	 * some fields already contain valid values, initialized in
4474	 * ip_open(), before we reach here.
4475	 */
4476	mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0);
4477
4478	ill->ill_rq = q;
4479	ill->ill_wq = WR(q);
4480
4481	info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)),
4482	    BPRI_HI);
4483	if (info_mp == NULL)
4484		return (ENOMEM);
4485
4486	/*
4487	 * Allocate sufficient space to contain our fragment hash table and
4488	 * the device name.
4489	 */
4490	frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE +
4491	    2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix));
4492	if (frag_ptr == NULL) {
4493		freemsg(info_mp);
4494		return (ENOMEM);
4495	}
4496	ill->ill_frag_ptr = frag_ptr;
4497	ill->ill_frag_free_num_pkts = 0;
4498	ill->ill_last_frag_clean_time = 0;
4499	ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr;
4500	ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE);
4501	for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
4502		mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock,
4503		    NULL, MUTEX_DEFAULT, NULL);
4504	}
4505
4506	ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
4507	if (ill->ill_phyint == NULL) {
4508		freemsg(info_mp);
4509		mi_free(frag_ptr);
4510		return (ENOMEM);
4511	}
4512
4513	mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
4514	/*
4515	 * For now pretend this is a v4 ill. We need to set phyint_ill*
4516	 * at this point because of the following reason. If we can't
4517	 * enter the ipsq at some point and cv_wait, the writer that
4518	 * wakes us up tries to locate us using the list of all phyints
4519	 * in an ipsq and the ills from the phyint thru the phyint_ill*.
4520	 * If we don't set it now, we risk a missed wakeup.
4521	 */
4522	ill->ill_phyint->phyint_illv4 = ill;
4523	ill->ill_ppa = UINT_MAX;
4524	ill->ill_fastpath_list = &ill->ill_fastpath_list;
4525
4526	if (!ipsq_init(ill, B_TRUE)) {
4527		freemsg(info_mp);
4528		mi_free(frag_ptr);
4529		mi_free(ill->ill_phyint);
4530		return (ENOMEM);
4531	}
4532
4533	ill->ill_state_flags |= ILL_LL_SUBNET_PENDING;
4534
4535	/* Frag queue limit stuff */
4536	ill->ill_frag_count = 0;
4537	ill->ill_ipf_gen = 0;
4538
4539	ill->ill_global_timer = INFINITY;
4540	ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
4541	ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
4542	ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
4543	ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
4544
4545	/*
4546	 * Initialize IPv6 configuration variables.  The IP module is always
4547	 * opened as an IPv4 module.  Instead tracking down the cases where
4548	 * it switches to do ipv6, we'll just initialize the IPv6 configuration
4549	 * here for convenience, this has no effect until the ill is set to do
4550	 * IPv6.
4551	 */
4552	ill->ill_reachable_time = ND_REACHABLE_TIME;
4553	ill->ill_reachable_retrans_time = ND_RETRANS_TIMER;
4554	ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT;
4555	ill->ill_max_buf = ND_MAX_Q;
4556	ill->ill_refcnt = 0;
4557
4558	/* Send down the Info Request to the driver. */
4559	info_mp->b_datap->db_type = M_PCPROTO;
4560	dlir = (dl_info_req_t *)info_mp->b_rptr;
4561	info_mp->b_wptr = (uchar_t *)&dlir[1];
4562	dlir->dl_primitive = DL_INFO_REQ;
4563
4564	ill->ill_dlpi_pending = DL_PRIM_INVAL;
4565
4566	qprocson(q);
4567	ill_dlpi_send(ill, info_mp);
4568
4569	return (0);
4570}
4571
4572/*
4573 * ill_dls_info
4574 * creates datalink socket info from the device.
4575 */
4576int
4577ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif)
4578{
4579	size_t	len;
4580	ill_t	*ill = ipif->ipif_ill;
4581
4582	sdl->sdl_family = AF_LINK;
4583	sdl->sdl_index = ill->ill_phyint->phyint_ifindex;
4584	sdl->sdl_type = ill->ill_type;
4585	ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data));
4586	len = strlen(sdl->sdl_data);
4587	ASSERT(len < 256);
4588	sdl->sdl_nlen = (uchar_t)len;
4589	sdl->sdl_alen = ill->ill_phys_addr_length;
4590	sdl->sdl_slen = 0;
4591	if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL)
4592		bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen);
4593
4594	return (sizeof (struct sockaddr_dl));
4595}
4596
4597/*
4598 * ill_xarp_info
4599 * creates xarp info from the device.
4600 */
4601static int
4602ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill)
4603{
4604	sdl->sdl_family = AF_LINK;
4605	sdl->sdl_index = ill->ill_phyint->phyint_ifindex;
4606	sdl->sdl_type = ill->ill_type;
4607	ipif_get_name(ill->ill_ipif, sdl->sdl_data, sizeof (sdl->sdl_data));
4608	sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data);
4609	sdl->sdl_alen = ill->ill_phys_addr_length;
4610	sdl->sdl_slen = 0;
4611	return (sdl->sdl_nlen);
4612}
4613
4614static int
4615loopback_kstat_update(kstat_t *ksp, int rw)
4616{
4617	kstat_named_t *kn;
4618	netstackid_t	stackid;
4619	netstack_t	*ns;
4620	ip_stack_t	*ipst;
4621
4622	if (ksp == NULL || ksp->ks_data == NULL)
4623		return (EIO);
4624
4625	if (rw == KSTAT_WRITE)
4626		return (EACCES);
4627
4628	kn = KSTAT_NAMED_PTR(ksp);
4629	stackid = (zoneid_t)(uintptr_t)ksp->ks_private;
4630
4631	ns = netstack_find_by_stackid(stackid);
4632	if (ns == NULL)
4633		return (-1);
4634
4635	ipst = ns->netstack_ip;
4636	if (ipst == NULL) {
4637		netstack_rele(ns);
4638		return (-1);
4639	}
4640	kn[0].value.ui32 = ipst->ips_loopback_packets;
4641	kn[1].value.ui32 = ipst->ips_loopback_packets;
4642	netstack_rele(ns);
4643	return (0);
4644}
4645
4646/*
4647 * Has ifindex been plumbed already?
4648 */
4649boolean_t
4650phyint_exists(uint_t index, ip_stack_t *ipst)
4651{
4652	ASSERT(index != 0);
4653	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
4654
4655	return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
4656	    &index, NULL) != NULL);
4657}
4658
4659/* Pick a unique ifindex */
4660boolean_t
4661ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst)
4662{
4663	uint_t starting_index;
4664
4665	if (!ipst->ips_ill_index_wrap) {
4666		*indexp = ipst->ips_ill_index++;
4667		if (ipst->ips_ill_index == 0) {
4668			/* Reached the uint_t limit Next time wrap  */
4669			ipst->ips_ill_index_wrap = B_TRUE;
4670		}
4671		return (B_TRUE);
4672	}
4673
4674	/*
4675	 * Start reusing unused indexes. Note that we hold the ill_g_lock
4676	 * at this point and don't want to call any function that attempts
4677	 * to get the lock again.
4678	 */
4679	starting_index = ipst->ips_ill_index++;
4680	for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) {
4681		if (ipst->ips_ill_index != 0 &&
4682		    !phyint_exists(ipst->ips_ill_index, ipst)) {
4683			/* found unused index - use it */
4684			*indexp = ipst->ips_ill_index;
4685			return (B_TRUE);
4686		}
4687	}
4688
4689	/*
4690	 * all interface indicies are inuse.
4691	 */
4692	return (B_FALSE);
4693}
4694
4695/*
4696 * Assign a unique interface index for the phyint.
4697 */
4698static boolean_t
4699phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst)
4700{
4701	ASSERT(phyi->phyint_ifindex == 0);
4702	return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst));
4703}
4704
4705/*
4706 * Initialize the flags on `phyi' as per the provided mactype.
4707 */
4708static void
4709phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype)
4710{
4711	uint64_t flags = 0;
4712
4713	/*
4714	 * Initialize PHYI_RUNNING and PHYI_FAILED.  For non-IPMP interfaces,
4715	 * we always presume the underlying hardware is working and set
4716	 * PHYI_RUNNING (if it's not, the driver will subsequently send a
4717	 * DL_NOTE_LINK_DOWN message).  For IPMP interfaces, at initialization
4718	 * there are no active interfaces in the group so we set PHYI_FAILED.
4719	 */
4720	if (mactype == SUNW_DL_IPMP)
4721		flags |= PHYI_FAILED;
4722	else
4723		flags |= PHYI_RUNNING;
4724
4725	switch (mactype) {
4726	case SUNW_DL_VNI:
4727		flags |= PHYI_VIRTUAL;
4728		break;
4729	case SUNW_DL_IPMP:
4730		flags |= PHYI_IPMP;
4731		break;
4732	case DL_LOOP:
4733		flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL);
4734		break;
4735	}
4736
4737	mutex_enter(&phyi->phyint_lock);
4738	phyi->phyint_flags |= flags;
4739	mutex_exit(&phyi->phyint_lock);
4740}
4741
4742/*
4743 * Return a pointer to the ill which matches the supplied name.  Note that
4744 * the ill name length includes the null termination character.  (May be
4745 * called as writer.)
4746 * If do_alloc and the interface is "lo0" it will be automatically created.
4747 * Cannot bump up reference on condemned ills. So dup detect can't be done
4748 * using this func.
4749 */
4750ill_t *
4751ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6,
4752    queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc,
4753    ip_stack_t *ipst)
4754{
4755	ill_t	*ill;
4756	ipif_t	*ipif;
4757	ipsq_t	*ipsq;
4758	kstat_named_t	*kn;
4759	boolean_t isloopback;
4760	in6_addr_t ov6addr;
4761
4762	isloopback = mi_strcmp(name, ipif_loopback_name) == 0;
4763
4764	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4765	ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst);
4766	rw_exit(&ipst->ips_ill_g_lock);
4767	if (ill != NULL || (error != NULL && *error == EINPROGRESS))
4768		return (ill);
4769
4770	/*
4771	 * Couldn't find it.  Does this happen to be a lookup for the
4772	 * loopback device and are we allowed to allocate it?
4773	 */
4774	if (!isloopback || !do_alloc)
4775		return (NULL);
4776
4777	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
4778
4779	ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst);
4780	if (ill != NULL || (error != NULL && *error == EINPROGRESS)) {
4781		rw_exit(&ipst->ips_ill_g_lock);
4782		return (ill);
4783	}
4784
4785	/* Create the loopback device on demand */
4786	ill = (ill_t *)(mi_alloc(sizeof (ill_t) +
4787	    sizeof (ipif_loopback_name), BPRI_MED));
4788	if (ill == NULL)
4789		goto done;
4790
4791	*ill = ill_null;
4792	mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL);
4793	ill->ill_ipst = ipst;
4794	netstack_hold(ipst->ips_netstack);
4795	/*
4796	 * For exclusive stacks we set the zoneid to zero
4797	 * to make IP operate as if in the global zone.
4798	 */
4799	ill->ill_zoneid = GLOBAL_ZONEID;
4800
4801	ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
4802	if (ill->ill_phyint == NULL)
4803		goto done;
4804
4805	if (isv6)
4806		ill->ill_phyint->phyint_illv6 = ill;
4807	else
4808		ill->ill_phyint->phyint_illv4 = ill;
4809	mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
4810	phyint_flags_init(ill->ill_phyint, DL_LOOP);
4811
4812	ill->ill_max_frag = IP_LOOPBACK_MTU;
4813	/* Add room for tcp+ip headers */
4814	if (isv6) {
4815		ill->ill_isv6 = B_TRUE;
4816		ill->ill_max_frag += IPV6_HDR_LEN + 20;	/* for TCP */
4817	} else {
4818		ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20;
4819	}
4820	if (!ill_allocate_mibs(ill))
4821		goto done;
4822	ill->ill_max_mtu = ill->ill_max_frag;
4823	/*
4824	 * ipif_loopback_name can't be pointed at directly because its used
4825	 * by both the ipv4 and ipv6 interfaces.  When the ill is removed
4826	 * from the glist, ill_glist_delete() sets the first character of
4827	 * ill_name to '\0'.
4828	 */
4829	ill->ill_name = (char *)ill + sizeof (*ill);
4830	(void) strcpy(ill->ill_name, ipif_loopback_name);
4831	ill->ill_name_length = sizeof (ipif_loopback_name);
4832	/* Set ill_dlpi_pending for ipsq_current_finish() to work properly */
4833	ill->ill_dlpi_pending = DL_PRIM_INVAL;
4834
4835	ill->ill_global_timer = INFINITY;
4836	ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
4837	ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
4838	ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
4839	ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
4840
4841	/* No resolver here. */
4842	ill->ill_net_type = IRE_LOOPBACK;
4843
4844	/* Initialize the ipsq */
4845	if (!ipsq_init(ill, B_FALSE))
4846		goto done;
4847
4848	ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE);
4849	if (ipif == NULL)
4850		goto done;
4851
4852	ill->ill_flags = ILLF_MULTICAST;
4853
4854	ov6addr = ipif->ipif_v6lcl_addr;
4855	/* Set up default loopback address and mask. */
4856	if (!isv6) {
4857		ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK);
4858
4859		IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr);
4860		ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr;
4861		V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask);
4862		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
4863		    ipif->ipif_v6subnet);
4864		ill->ill_flags |= ILLF_IPV4;
4865	} else {
4866		ipif->ipif_v6lcl_addr = ipv6_loopback;
4867		ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr;
4868		ipif->ipif_v6net_mask = ipv6_all_ones;
4869		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
4870		    ipif->ipif_v6subnet);
4871		ill->ill_flags |= ILLF_IPV6;
4872	}
4873
4874	/*
4875	 * Chain us in at the end of the ill list. hold the ill
4876	 * before we make it globally visible. 1 for the lookup.
4877	 */
4878	ill->ill_refcnt = 0;
4879	ill_refhold(ill);
4880
4881	ill->ill_frag_count = 0;
4882	ill->ill_frag_free_num_pkts = 0;
4883	ill->ill_last_frag_clean_time = 0;
4884
4885	ipsq = ill->ill_phyint->phyint_ipsq;
4886
4887	if (ill_glist_insert(ill, "lo", isv6) != 0)
4888		cmn_err(CE_PANIC, "cannot insert loopback interface");
4889
4890	/* Let SCTP know so that it can add this to its list */
4891	sctp_update_ill(ill, SCTP_ILL_INSERT);
4892
4893	/*
4894	 * We have already assigned ipif_v6lcl_addr above, but we need to
4895	 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which
4896	 * requires to be after ill_glist_insert() since we need the
4897	 * ill_index set. Pass on ipv6_loopback as the old address.
4898	 */
4899	sctp_update_ipif_addr(ipif, ov6addr);
4900
4901	/*
4902	 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs.
4903	 * If so, free our original one.
4904	 */
4905	if (ipsq != ill->ill_phyint->phyint_ipsq)
4906		ipsq_delete(ipsq);
4907
4908	if (ipst->ips_loopback_ksp == NULL) {
4909		/* Export loopback interface statistics */
4910		ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0,
4911		    ipif_loopback_name, "net",
4912		    KSTAT_TYPE_NAMED, 2, 0,
4913		    ipst->ips_netstack->netstack_stackid);
4914		if (ipst->ips_loopback_ksp != NULL) {
4915			ipst->ips_loopback_ksp->ks_update =
4916			    loopback_kstat_update;
4917			kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp);
4918			kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32);
4919			kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32);
4920			ipst->ips_loopback_ksp->ks_private =
4921			    (void *)(uintptr_t)ipst->ips_netstack->
4922			    netstack_stackid;
4923			kstat_install(ipst->ips_loopback_ksp);
4924		}
4925	}
4926
4927	if (error != NULL)
4928		*error = 0;
4929	*did_alloc = B_TRUE;
4930	rw_exit(&ipst->ips_ill_g_lock);
4931	ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id),
4932	    NE_PLUMB, ill->ill_name, ill->ill_name_length);
4933	return (ill);
4934done:
4935	if (ill != NULL) {
4936		if (ill->ill_phyint != NULL) {
4937			ipsq = ill->ill_phyint->phyint_ipsq;
4938			if (ipsq != NULL) {
4939				ipsq->ipsq_phyint = NULL;
4940				ipsq_delete(ipsq);
4941			}
4942			mi_free(ill->ill_phyint);
4943		}
4944		ill_free_mib(ill);
4945		if (ill->ill_ipst != NULL)
4946			netstack_rele(ill->ill_ipst->ips_netstack);
4947		mi_free(ill);
4948	}
4949	rw_exit(&ipst->ips_ill_g_lock);
4950	if (error != NULL)
4951		*error = ENOMEM;
4952	return (NULL);
4953}
4954
4955/*
4956 * For IPP calls - use the ip_stack_t for global stack.
4957 */
4958ill_t *
4959ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6,
4960    queue_t *q, mblk_t *mp, ipsq_func_t func, int *err)
4961{
4962	ip_stack_t	*ipst;
4963	ill_t		*ill;
4964
4965	ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip;
4966	if (ipst == NULL) {
4967		cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n");
4968		return (NULL);
4969	}
4970
4971	ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst);
4972	netstack_rele(ipst->ips_netstack);
4973	return (ill);
4974}
4975
4976/*
4977 * Return a pointer to the ill which matches the index and IP version type.
4978 */
4979ill_t *
4980ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp,
4981    ipsq_func_t func, int *err, ip_stack_t *ipst)
4982{
4983	ill_t	*ill;
4984	ipsq_t  *ipsq;
4985	phyint_t *phyi;
4986
4987	ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) ||
4988	    (q != NULL && mp != NULL && func != NULL && err != NULL));
4989
4990	if (err != NULL)
4991		*err = 0;
4992
4993	/*
4994	 * Indexes are stored in the phyint - a common structure
4995	 * to both IPv4 and IPv6.
4996	 */
4997	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4998	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
4999	    (void *) &index, NULL);
5000	if (phyi != NULL) {
5001		ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4;
5002		if (ill != NULL) {
5003			/*
5004			 * The block comment at the start of ipif_down
5005			 * explains the use of the macros used below
5006			 */
5007			GRAB_CONN_LOCK(q);
5008			mutex_enter(&ill->ill_lock);
5009			if (ILL_CAN_LOOKUP(ill)) {
5010				ill_refhold_locked(ill);
5011				mutex_exit(&ill->ill_lock);
5012				RELEASE_CONN_LOCK(q);
5013				rw_exit(&ipst->ips_ill_g_lock);
5014				return (ill);
5015			} else if (ILL_CAN_WAIT(ill, q)) {
5016				ipsq = ill->ill_phyint->phyint_ipsq;
5017				mutex_enter(&ipsq->ipsq_lock);
5018				mutex_enter(&ipsq->ipsq_xop->ipx_lock);
5019				rw_exit(&ipst->ips_ill_g_lock);
5020				mutex_exit(&ill->ill_lock);
5021				ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
5022				mutex_exit(&ipsq->ipsq_xop->ipx_lock);
5023				mutex_exit(&ipsq->ipsq_lock);
5024				RELEASE_CONN_LOCK(q);
5025				if (err != NULL)
5026					*err = EINPROGRESS;
5027				return (NULL);
5028			}
5029			RELEASE_CONN_LOCK(q);
5030			mutex_exit(&ill->ill_lock);
5031		}
5032	}
5033	rw_exit(&ipst->ips_ill_g_lock);
5034	if (err != NULL)
5035		*err = ENXIO;
5036	return (NULL);
5037}
5038
5039/*
5040 * Return the ifindex next in sequence after the passed in ifindex.
5041 * If there is no next ifindex for the given protocol, return 0.
5042 */
5043uint_t
5044ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst)
5045{
5046	phyint_t *phyi;
5047	phyint_t *phyi_initial;
5048	uint_t   ifindex;
5049
5050	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5051
5052	if (index == 0) {
5053		phyi = avl_first(
5054		    &ipst->ips_phyint_g_list->phyint_list_avl_by_index);
5055	} else {
5056		phyi = phyi_initial = avl_find(
5057		    &ipst->ips_phyint_g_list->phyint_list_avl_by_index,
5058		    (void *) &index, NULL);
5059	}
5060
5061	for (; phyi != NULL;
5062	    phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
5063	    phyi, AVL_AFTER)) {
5064		/*
5065		 * If we're not returning the first interface in the tree
5066		 * and we still haven't moved past the phyint_t that
5067		 * corresponds to index, avl_walk needs to be called again
5068		 */
5069		if (!((index != 0) && (phyi == phyi_initial))) {
5070			if (isv6) {
5071				if ((phyi->phyint_illv6) &&
5072				    ILL_CAN_LOOKUP(phyi->phyint_illv6) &&
5073				    (phyi->phyint_illv6->ill_isv6 == 1))
5074					break;
5075			} else {
5076				if ((phyi->phyint_illv4) &&
5077				    ILL_CAN_LOOKUP(phyi->phyint_illv4) &&
5078				    (phyi->phyint_illv4->ill_isv6 == 0))
5079					break;
5080			}
5081		}
5082	}
5083
5084	rw_exit(&ipst->ips_ill_g_lock);
5085
5086	if (phyi != NULL)
5087		ifindex = phyi->phyint_ifindex;
5088	else
5089		ifindex = 0;
5090
5091	return (ifindex);
5092}
5093
5094/*
5095 * Return the ifindex for the named interface.
5096 * If there is no next ifindex for the interface, return 0.
5097 */
5098uint_t
5099ill_get_ifindex_by_name(char *name, ip_stack_t *ipst)
5100{
5101	phyint_t	*phyi;
5102	avl_index_t	where = 0;
5103	uint_t		ifindex;
5104
5105	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5106
5107	if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
5108	    name, &where)) == NULL) {
5109		rw_exit(&ipst->ips_ill_g_lock);
5110		return (0);
5111	}
5112
5113	ifindex = phyi->phyint_ifindex;
5114
5115	rw_exit(&ipst->ips_ill_g_lock);
5116
5117	return (ifindex);
5118}
5119
5120/*
5121 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt
5122 * that gives a running thread a reference to the ill. This reference must be
5123 * released by the thread when it is done accessing the ill and related
5124 * objects. ill_refcnt can not be used to account for static references
5125 * such as other structures pointing to an ill. Callers must generally
5126 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros
5127 * or be sure that the ill is not being deleted or changing state before
5128 * calling the refhold functions. A non-zero ill_refcnt ensures that the
5129 * ill won't change any of its critical state such as address, netmask etc.
5130 */
5131void
5132ill_refhold(ill_t *ill)
5133{
5134	mutex_enter(&ill->ill_lock);
5135	ill->ill_refcnt++;
5136	ILL_TRACE_REF(ill);
5137	mutex_exit(&ill->ill_lock);
5138}
5139
5140void
5141ill_refhold_locked(ill_t *ill)
5142{
5143	ASSERT(MUTEX_HELD(&ill->ill_lock));
5144	ill->ill_refcnt++;
5145	ILL_TRACE_REF(ill);
5146}
5147
5148int
5149ill_check_and_refhold(ill_t *ill)
5150{
5151	mutex_enter(&ill->ill_lock);
5152	if (ILL_CAN_LOOKUP(ill)) {
5153		ill_refhold_locked(ill);
5154		mutex_exit(&ill->ill_lock);
5155		return (0);
5156	}
5157	mutex_exit(&ill->ill_lock);
5158	return (ILL_LOOKUP_FAILED);
5159}
5160
5161/*
5162 * Must not be called while holding any locks. Otherwise if this is
5163 * the last reference to be released, there is a chance of recursive mutex
5164 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
5165 * to restart an ioctl.
5166 */
5167void
5168ill_refrele(ill_t *ill)
5169{
5170	mutex_enter(&ill->ill_lock);
5171	ASSERT(ill->ill_refcnt != 0);
5172	ill->ill_refcnt--;
5173	ILL_UNTRACE_REF(ill);
5174	if (ill->ill_refcnt != 0) {
5175		/* Every ire pointing to the ill adds 1 to ill_refcnt */
5176		mutex_exit(&ill->ill_lock);
5177		return;
5178	}
5179
5180	/* Drops the ill_lock */
5181	ipif_ill_refrele_tail(ill);
5182}
5183
5184/*
5185 * Obtain a weak reference count on the ill. This reference ensures the
5186 * ill won't be freed, but the ill may change any of its critical state
5187 * such as netmask, address etc. Returns an error if the ill has started
5188 * closing.
5189 */
5190boolean_t
5191ill_waiter_inc(ill_t *ill)
5192{
5193	mutex_enter(&ill->ill_lock);
5194	if (ill->ill_state_flags & ILL_CONDEMNED) {
5195		mutex_exit(&ill->ill_lock);
5196		return (B_FALSE);
5197	}
5198	ill->ill_waiters++;
5199	mutex_exit(&ill->ill_lock);
5200	return (B_TRUE);
5201}
5202
5203void
5204ill_waiter_dcr(ill_t *ill)
5205{
5206	mutex_enter(&ill->ill_lock);
5207	ill->ill_waiters--;
5208	if (ill->ill_waiters == 0)
5209		cv_broadcast(&ill->ill_cv);
5210	mutex_exit(&ill->ill_lock);
5211}
5212
5213/*
5214 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the
5215 * driver.  We construct best guess defaults for lower level information that
5216 * we need.  If an interface is brought up without injection of any overriding
5217 * information from outside, we have to be ready to go with these defaults.
5218 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ)
5219 * we primarely want the dl_provider_style.
5220 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND
5221 * at which point we assume the other part of the information is valid.
5222 */
5223void
5224ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp)
5225{
5226	uchar_t		*brdcst_addr;
5227	uint_t		brdcst_addr_length, phys_addr_length;
5228	t_scalar_t	sap_length;
5229	dl_info_ack_t	*dlia;
5230	ip_m_t		*ipm;
5231	dl_qos_cl_sel1_t *sel1;
5232	int		min_mtu;
5233
5234	ASSERT(IAM_WRITER_ILL(ill));
5235
5236	/*
5237	 * Till the ill is fully up ILL_CHANGING will be set and
5238	 * the ill is not globally visible. So no need for a lock.
5239	 */
5240	dlia = (dl_info_ack_t *)mp->b_rptr;
5241	ill->ill_mactype = dlia->dl_mac_type;
5242
5243	ipm = ip_m_lookup(dlia->dl_mac_type);
5244	if (ipm == NULL) {
5245		ipm = ip_m_lookup(DL_OTHER);
5246		ASSERT(ipm != NULL);
5247	}
5248	ill->ill_media = ipm;
5249
5250	/*
5251	 * When the new DLPI stuff is ready we'll pull lengths
5252	 * from dlia.
5253	 */
5254	if (dlia->dl_version == DL_VERSION_2) {
5255		brdcst_addr_length = dlia->dl_brdcst_addr_length;
5256		brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset,
5257		    brdcst_addr_length);
5258		if (brdcst_addr == NULL) {
5259			brdcst_addr_length = 0;
5260		}
5261		sap_length = dlia->dl_sap_length;
5262		phys_addr_length = dlia->dl_addr_length - ABS(sap_length);
5263		ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n",
5264		    brdcst_addr_length, sap_length, phys_addr_length));
5265	} else {
5266		brdcst_addr_length = 6;
5267		brdcst_addr = ip_six_byte_all_ones;
5268		sap_length = -2;
5269		phys_addr_length = brdcst_addr_length;
5270	}
5271
5272	ill->ill_bcast_addr_length = brdcst_addr_length;
5273	ill->ill_phys_addr_length = phys_addr_length;
5274	ill->ill_sap_length = sap_length;
5275
5276	/*
5277	 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU,
5278	 * but we must ensure a minimum IP MTU is used since other bits of
5279	 * IP will fly apart otherwise.
5280	 */
5281	min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU;
5282	ill->ill_max_frag  = MAX(min_mtu, dlia->dl_max_sdu);
5283	ill->ill_max_mtu = ill->ill_max_frag;
5284
5285	ill->ill_type = ipm->ip_m_type;
5286
5287	if (!ill->ill_dlpi_style_set) {
5288		if (dlia->dl_provider_style == DL_STYLE2)
5289			ill->ill_needs_attach = 1;
5290
5291		phyint_flags_init(ill->ill_phyint, ill->ill_mactype);
5292
5293		/*
5294		 * Allocate the first ipif on this ill.  We don't delay it
5295		 * further as ioctl handling assumes at least one ipif exists.
5296		 *
5297		 * At this point we don't know whether the ill is v4 or v6.
5298		 * We will know this whan the SIOCSLIFNAME happens and
5299		 * the correct value for ill_isv6 will be assigned in
5300		 * ipif_set_values(). We need to hold the ill lock and
5301		 * clear the ILL_LL_SUBNET_PENDING flag and atomically do
5302		 * the wakeup.
5303		 */
5304		(void) ipif_allocate(ill, 0, IRE_LOCAL,
5305		    dlia->dl_provider_style != DL_STYLE2, B_TRUE);
5306		mutex_enter(&ill->ill_lock);
5307		ASSERT(ill->ill_dlpi_style_set == 0);
5308		ill->ill_dlpi_style_set = 1;
5309		ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING;
5310		cv_broadcast(&ill->ill_cv);
5311		mutex_exit(&ill->ill_lock);
5312		freemsg(mp);
5313		return;
5314	}
5315	ASSERT(ill->ill_ipif != NULL);
5316	/*
5317	 * We know whether it is IPv4 or IPv6 now, as this is the
5318	 * second DL_INFO_ACK we are recieving in response to the
5319	 * DL_INFO_REQ sent in ipif_set_values.
5320	 */
5321	ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap;
5322	/*
5323	 * Set ipif_mtu which is used to set the IRE's
5324	 * ire_max_frag value. The driver could have sent
5325	 * a different mtu from what it sent last time. No
5326	 * need to call ipif_mtu_change because IREs have
5327	 * not yet been created.
5328	 */
5329	ill->ill_ipif->ipif_mtu = ill->ill_max_mtu;
5330	/*
5331	 * Clear all the flags that were set based on ill_bcast_addr_length
5332	 * and ill_phys_addr_length (in ipif_set_values) as these could have
5333	 * changed now and we need to re-evaluate.
5334	 */
5335	ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP);
5336	ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT);
5337
5338	/*
5339	 * Free ill_resolver_mp and ill_bcast_mp as things could have
5340	 * changed now.
5341	 *
5342	 * NOTE: The IPMP meta-interface is special-cased because it starts
5343	 * with no underlying interfaces (and thus an unknown broadcast
5344	 * address length), but we enforce that an interface is broadcast-
5345	 * capable as part of allowing it to join a group.
5346	 */
5347	if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) {
5348		if (ill->ill_resolver_mp != NULL)
5349			freemsg(ill->ill_resolver_mp);
5350		if (ill->ill_bcast_mp != NULL)
5351			freemsg(ill->ill_bcast_mp);
5352		if (ill->ill_flags & ILLF_XRESOLV)
5353			ill->ill_net_type = IRE_IF_RESOLVER;
5354		else
5355			ill->ill_net_type = IRE_IF_NORESOLVER;
5356		ill->ill_resolver_mp = ill_dlur_gen(NULL,
5357		    ill->ill_phys_addr_length,
5358		    ill->ill_sap,
5359		    ill->ill_sap_length);
5360		ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp);
5361
5362		if (ill->ill_isv6)
5363			/*
5364			 * Note: xresolv interfaces will eventually need NOARP
5365			 * set here as well, but that will require those
5366			 * external resolvers to have some knowledge of
5367			 * that flag and act appropriately. Not to be changed
5368			 * at present.
5369			 */
5370			ill->ill_flags |= ILLF_NONUD;
5371		else
5372			ill->ill_flags |= ILLF_NOARP;
5373
5374		if (ill->ill_mactype == SUNW_DL_VNI) {
5375			ill->ill_ipif->ipif_flags |= IPIF_NOXMIT;
5376		} else if (ill->ill_phys_addr_length == 0 ||
5377		    ill->ill_mactype == DL_IPV4 ||
5378		    ill->ill_mactype == DL_IPV6) {
5379			/*
5380			 * The underying link is point-to-point, so mark the
5381			 * interface as such.  We can do IP multicast over
5382			 * such a link since it transmits all network-layer
5383			 * packets to the remote side the same way.
5384			 */
5385			ill->ill_flags |= ILLF_MULTICAST;
5386			ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT;
5387		}
5388	} else {
5389		ill->ill_net_type = IRE_IF_RESOLVER;
5390		if (ill->ill_bcast_mp != NULL)
5391			freemsg(ill->ill_bcast_mp);
5392		ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr,
5393		    ill->ill_bcast_addr_length, ill->ill_sap,
5394		    ill->ill_sap_length);
5395		/*
5396		 * Later detect lack of DLPI driver multicast
5397		 * capability by catching DL_ENABMULTI errors in
5398		 * ip_rput_dlpi.
5399		 */
5400		ill->ill_flags |= ILLF_MULTICAST;
5401		if (!ill->ill_isv6)
5402			ill->ill_ipif->ipif_flags |= IPIF_BROADCAST;
5403	}
5404
5405	/* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */
5406	if (ill->ill_mactype == SUNW_DL_IPMP)
5407		ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP);
5408
5409	/* By default an interface does not support any CoS marking */
5410	ill->ill_flags &= ~ILLF_COS_ENABLED;
5411
5412	/*
5413	 * If we get QoS information in DL_INFO_ACK, the device supports
5414	 * some form of CoS marking, set ILLF_COS_ENABLED.
5415	 */
5416	sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset,
5417	    dlia->dl_qos_length);
5418	if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) {
5419		ill->ill_flags |= ILLF_COS_ENABLED;
5420	}
5421
5422	/* Clear any previous error indication. */
5423	ill->ill_error = 0;
5424	freemsg(mp);
5425}
5426
5427/*
5428 * Perform various checks to verify that an address would make sense as a
5429 * local, remote, or subnet interface address.
5430 */
5431static boolean_t
5432ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask)
5433{
5434	ipaddr_t	net_mask;
5435
5436	/*
5437	 * Don't allow all zeroes, or all ones, but allow
5438	 * all ones netmask.
5439	 */
5440	if ((net_mask = ip_net_mask(addr)) == 0)
5441		return (B_FALSE);
5442	/* A given netmask overrides the "guess" netmask */
5443	if (subnet_mask != 0)
5444		net_mask = subnet_mask;
5445	if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) ||
5446	    (addr == (addr | ~net_mask)))) {
5447		return (B_FALSE);
5448	}
5449
5450	/*
5451	 * Even if the netmask is all ones, we do not allow address to be
5452	 * 255.255.255.255
5453	 */
5454	if (addr == INADDR_BROADCAST)
5455		return (B_FALSE);
5456
5457	if (CLASSD(addr))
5458		return (B_FALSE);
5459
5460	return (B_TRUE);
5461}
5462
5463#define	V6_IPIF_LINKLOCAL(p)	\
5464	IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr)
5465
5466/*
5467 * Compare two given ipifs and check if the second one is better than
5468 * the first one using the order of preference (not taking deprecated
5469 * into acount) specified in ipif_lookup_multicast().
5470 */
5471static boolean_t
5472ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6)
5473{
5474	/* Check the least preferred first. */
5475	if (IS_LOOPBACK(old_ipif->ipif_ill)) {
5476		/* If both ipifs are the same, use the first one. */
5477		if (IS_LOOPBACK(new_ipif->ipif_ill))
5478			return (B_FALSE);
5479		else
5480			return (B_TRUE);
5481	}
5482
5483	/* For IPv6, check for link local address. */
5484	if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) {
5485		if (IS_LOOPBACK(new_ipif->ipif_ill) ||
5486		    V6_IPIF_LINKLOCAL(new_ipif)) {
5487			/* The second one is equal or less preferred. */
5488			return (B_FALSE);
5489		} else {
5490			return (B_TRUE);
5491		}
5492	}
5493
5494	/* Then check for point to point interface. */
5495	if (old_ipif->ipif_flags & IPIF_POINTOPOINT) {
5496		if (IS_LOOPBACK(new_ipif->ipif_ill) ||
5497		    (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) ||
5498		    (new_ipif->ipif_flags & IPIF_POINTOPOINT)) {
5499			return (B_FALSE);
5500		} else {
5501			return (B_TRUE);
5502		}
5503	}
5504
5505	/* old_ipif is a normal interface, so no need to use the new one. */
5506	return (B_FALSE);
5507}
5508
5509/*
5510 * Find a mulitcast-capable ipif given an IP instance and zoneid.
5511 * The ipif must be up, and its ill must multicast-capable, not
5512 * condemned, not an underlying interface in an IPMP group, and
5513 * not a VNI interface.  Order of preference:
5514 *
5515 * 	1a. normal
5516 * 	1b. normal, but deprecated
5517 * 	2a. point to point
5518 * 	2b. point to point, but deprecated
5519 * 	3a. link local
5520 * 	3b. link local, but deprecated
5521 * 	4. loopback.
5522 */
5523ipif_t *
5524ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6)
5525{
5526	ill_t			*ill;
5527	ill_walk_context_t	ctx;
5528	ipif_t			*ipif;
5529	ipif_t			*saved_ipif = NULL;
5530	ipif_t			*dep_ipif = NULL;
5531
5532	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5533	if (isv6)
5534		ill = ILL_START_WALK_V6(&ctx, ipst);
5535	else
5536		ill = ILL_START_WALK_V4(&ctx, ipst);
5537
5538	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5539		mutex_enter(&ill->ill_lock);
5540		if (IS_VNI(ill) || IS_UNDER_IPMP(ill) || !ILL_CAN_LOOKUP(ill) ||
5541		    !(ill->ill_flags & ILLF_MULTICAST)) {
5542			mutex_exit(&ill->ill_lock);
5543			continue;
5544		}
5545		for (ipif = ill->ill_ipif; ipif != NULL;
5546		    ipif = ipif->ipif_next) {
5547			if (zoneid != ipif->ipif_zoneid &&
5548			    zoneid != ALL_ZONES &&
5549			    ipif->ipif_zoneid != ALL_ZONES) {
5550				continue;
5551			}
5552			if (!(ipif->ipif_flags & IPIF_UP) ||
5553			    !IPIF_CAN_LOOKUP(ipif)) {
5554				continue;
5555			}
5556
5557			/*
5558			 * Found one candidate.  If it is deprecated,
5559			 * remember it in dep_ipif.  If it is not deprecated,
5560			 * remember it in saved_ipif.
5561			 */
5562			if (ipif->ipif_flags & IPIF_DEPRECATED) {
5563				if (dep_ipif == NULL) {
5564					dep_ipif = ipif;
5565				} else if (ipif_comp_multi(dep_ipif, ipif,
5566				    isv6)) {
5567					/*
5568					 * If the previous dep_ipif does not
5569					 * belong to the same ill, we've done
5570					 * a ipif_refhold() on it.  So we need
5571					 * to release it.
5572					 */
5573					if (dep_ipif->ipif_ill != ill)
5574						ipif_refrele(dep_ipif);
5575					dep_ipif = ipif;
5576				}
5577				continue;
5578			}
5579			if (saved_ipif == NULL) {
5580				saved_ipif = ipif;
5581			} else {
5582				if (ipif_comp_multi(saved_ipif, ipif, isv6)) {
5583					if (saved_ipif->ipif_ill != ill)
5584						ipif_refrele(saved_ipif);
5585					saved_ipif = ipif;
5586				}
5587			}
5588		}
5589		/*
5590		 * Before going to the next ill, do a ipif_refhold() on the
5591		 * saved ones.
5592		 */
5593		if (saved_ipif != NULL && saved_ipif->ipif_ill == ill)
5594			ipif_refhold_locked(saved_ipif);
5595		if (dep_ipif != NULL && dep_ipif->ipif_ill == ill)
5596			ipif_refhold_locked(dep_ipif);
5597		mutex_exit(&ill->ill_lock);
5598	}
5599	rw_exit(&ipst->ips_ill_g_lock);
5600
5601	/*
5602	 * If we have only the saved_ipif, return it.  But if we have both
5603	 * saved_ipif and dep_ipif, check to see which one is better.
5604	 */
5605	if (saved_ipif != NULL) {
5606		if (dep_ipif != NULL) {
5607			if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) {
5608				ipif_refrele(saved_ipif);
5609				return (dep_ipif);
5610			} else {
5611				ipif_refrele(dep_ipif);
5612				return (saved_ipif);
5613			}
5614		}
5615		return (saved_ipif);
5616	} else {
5617		return (dep_ipif);
5618	}
5619}
5620
5621/*
5622 * This function is called when an application does not specify an interface
5623 * to be used for multicast traffic (joining a group/sending data).  It
5624 * calls ire_lookup_multi() to look for an interface route for the
5625 * specified multicast group.  Doing this allows the administrator to add
5626 * prefix routes for multicast to indicate which interface to be used for
5627 * multicast traffic in the above scenario.  The route could be for all
5628 * multicast (224.0/4), for a single multicast group (a /32 route) or
5629 * anything in between.  If there is no such multicast route, we just find
5630 * any multicast capable interface and return it.  The returned ipif
5631 * is refhold'ed.
5632 */
5633ipif_t *
5634ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst)
5635{
5636	ire_t			*ire;
5637	ipif_t			*ipif;
5638
5639	ire = ire_lookup_multi(group, zoneid, ipst);
5640	if (ire != NULL) {
5641		ipif = ire->ire_ipif;
5642		ipif_refhold(ipif);
5643		ire_refrele(ire);
5644		return (ipif);
5645	}
5646
5647	return (ipif_lookup_multicast(ipst, zoneid, B_FALSE));
5648}
5649
5650/*
5651 * Look for an ipif with the specified interface address and destination.
5652 * The destination address is used only for matching point-to-point interfaces.
5653 */
5654ipif_t *
5655ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp,
5656    ipsq_func_t func, int *error, ip_stack_t *ipst)
5657{
5658	ipif_t	*ipif;
5659	ill_t	*ill;
5660	ill_walk_context_t ctx;
5661	ipsq_t	*ipsq;
5662
5663	if (error != NULL)
5664		*error = 0;
5665
5666	/*
5667	 * First match all the point-to-point interfaces
5668	 * before looking at non-point-to-point interfaces.
5669	 * This is done to avoid returning non-point-to-point
5670	 * ipif instead of unnumbered point-to-point ipif.
5671	 */
5672	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5673	ill = ILL_START_WALK_V4(&ctx, ipst);
5674	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5675		GRAB_CONN_LOCK(q);
5676		mutex_enter(&ill->ill_lock);
5677		for (ipif = ill->ill_ipif; ipif != NULL;
5678		    ipif = ipif->ipif_next) {
5679			/* Allow the ipif to be down */
5680			if ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
5681			    (ipif->ipif_lcl_addr == if_addr) &&
5682			    (ipif->ipif_pp_dst_addr == dst)) {
5683				/*
5684				 * The block comment at the start of ipif_down
5685				 * explains the use of the macros used below
5686				 */
5687				if (IPIF_CAN_LOOKUP(ipif)) {
5688					ipif_refhold_locked(ipif);
5689					mutex_exit(&ill->ill_lock);
5690					RELEASE_CONN_LOCK(q);
5691					rw_exit(&ipst->ips_ill_g_lock);
5692					return (ipif);
5693				} else if (IPIF_CAN_WAIT(ipif, q)) {
5694					ipsq = ill->ill_phyint->phyint_ipsq;
5695					mutex_enter(&ipsq->ipsq_lock);
5696					mutex_enter(&ipsq->ipsq_xop->ipx_lock);
5697					mutex_exit(&ill->ill_lock);
5698					rw_exit(&ipst->ips_ill_g_lock);
5699					ipsq_enq(ipsq, q, mp, func, NEW_OP,
5700					    ill);
5701					mutex_exit(&ipsq->ipsq_xop->ipx_lock);
5702					mutex_exit(&ipsq->ipsq_lock);
5703					RELEASE_CONN_LOCK(q);
5704					if (error != NULL)
5705						*error = EINPROGRESS;
5706					return (NULL);
5707				}
5708			}
5709		}
5710		mutex_exit(&ill->ill_lock);
5711		RELEASE_CONN_LOCK(q);
5712	}
5713	rw_exit(&ipst->ips_ill_g_lock);
5714
5715	/* lookup the ipif based on interface address */
5716	ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error,
5717	    ipst);
5718	ASSERT(ipif == NULL || !ipif->ipif_isv6);
5719	return (ipif);
5720}
5721
5722/*
5723 * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact().
5724 */
5725static ipif_t *
5726ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, boolean_t match_illgrp,
5727    zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error,
5728    ip_stack_t *ipst)
5729{
5730	ipif_t  *ipif;
5731	ill_t   *ill;
5732	boolean_t ptp = B_FALSE;
5733	ipsq_t	*ipsq;
5734	ill_walk_context_t	ctx;
5735
5736	if (error != NULL)
5737		*error = 0;
5738
5739	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5740	/*
5741	 * Repeat twice, first based on local addresses and
5742	 * next time for pointopoint.
5743	 */
5744repeat:
5745	ill = ILL_START_WALK_V4(&ctx, ipst);
5746	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5747		if (match_ill != NULL && ill != match_ill &&
5748		    (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) {
5749			continue;
5750		}
5751		GRAB_CONN_LOCK(q);
5752		mutex_enter(&ill->ill_lock);
5753		for (ipif = ill->ill_ipif; ipif != NULL;
5754		    ipif = ipif->ipif_next) {
5755			if (zoneid != ALL_ZONES &&
5756			    zoneid != ipif->ipif_zoneid &&
5757			    ipif->ipif_zoneid != ALL_ZONES)
5758				continue;
5759			/* Allow the ipif to be down */
5760			if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
5761			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
5762			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
5763			    (ipif->ipif_pp_dst_addr == addr))) {
5764				/*
5765				 * The block comment at the start of ipif_down
5766				 * explains the use of the macros used below
5767				 */
5768				if (IPIF_CAN_LOOKUP(ipif)) {
5769					ipif_refhold_locked(ipif);
5770					mutex_exit(&ill->ill_lock);
5771					RELEASE_CONN_LOCK(q);
5772					rw_exit(&ipst->ips_ill_g_lock);
5773					return (ipif);
5774				} else if (IPIF_CAN_WAIT(ipif, q)) {
5775					ipsq = ill->ill_phyint->phyint_ipsq;
5776					mutex_enter(&ipsq->ipsq_lock);
5777					mutex_enter(&ipsq->ipsq_xop->ipx_lock);
5778					mutex_exit(&ill->ill_lock);
5779					rw_exit(&ipst->ips_ill_g_lock);
5780					ipsq_enq(ipsq, q, mp, func, NEW_OP,
5781					    ill);
5782					mutex_exit(&ipsq->ipsq_xop->ipx_lock);
5783					mutex_exit(&ipsq->ipsq_lock);
5784					RELEASE_CONN_LOCK(q);
5785					if (error != NULL)
5786						*error = EINPROGRESS;
5787					return (NULL);
5788				}
5789			}
5790		}
5791		mutex_exit(&ill->ill_lock);
5792		RELEASE_CONN_LOCK(q);
5793	}
5794
5795	/* If we already did the ptp case, then we are done */
5796	if (ptp) {
5797		rw_exit(&ipst->ips_ill_g_lock);
5798		if (error != NULL)
5799			*error = ENXIO;
5800		return (NULL);
5801	}
5802	ptp = B_TRUE;
5803	goto repeat;
5804}
5805
5806/*
5807 * Check if the address exists in the system.
5808 * We don't hold the conn_lock as we will not perform defered ipsqueue
5809 * operation.
5810 */
5811boolean_t
5812ip_addr_exists(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst)
5813{
5814	ipif_t  *ipif;
5815	ill_t   *ill;
5816	ill_walk_context_t	ctx;
5817
5818	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5819
5820	ill = ILL_START_WALK_V4(&ctx, ipst);
5821	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5822		mutex_enter(&ill->ill_lock);
5823		for (ipif = ill->ill_ipif; ipif != NULL;
5824		    ipif = ipif->ipif_next) {
5825			if (zoneid != ALL_ZONES &&
5826			    zoneid != ipif->ipif_zoneid &&
5827			    ipif->ipif_zoneid != ALL_ZONES)
5828				continue;
5829			/* Allow the ipif to be down */
5830			/*
5831			 * XXX Different from ipif_lookup_addr(), we don't do
5832			 * twice lookups. As from bind()'s point of view, we
5833			 * may return once we find a match.
5834			 */
5835			if (((ipif->ipif_lcl_addr == addr) &&
5836			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
5837			    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
5838			    (ipif->ipif_pp_dst_addr == addr))) {
5839				/*
5840				 * Allow bind() to be successful even if the
5841				 * ipif is with IPIF_CHANGING bit set.
5842				 */
5843				mutex_exit(&ill->ill_lock);
5844				rw_exit(&ipst->ips_ill_g_lock);
5845				return (B_TRUE);
5846			}
5847		}
5848		mutex_exit(&ill->ill_lock);
5849	}
5850
5851	rw_exit(&ipst->ips_ill_g_lock);
5852	return (B_FALSE);
5853}
5854
5855/*
5856 * Lookup an ipif with the specified address.  For point-to-point links we
5857 * look for matches on either the destination address or the local address,
5858 * but we skip the local address check if IPIF_UNNUMBERED is set.  If the
5859 * `match_ill' argument is non-NULL, the lookup is restricted to that ill
5860 * (or illgrp if `match_ill' is in an IPMP group).
5861 */
5862ipif_t *
5863ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q,
5864    mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst)
5865{
5866	return (ipif_lookup_addr_common(addr, match_ill, B_TRUE, zoneid, q, mp,
5867	    func, error, ipst));
5868}
5869
5870/*
5871 * Special abbreviated version of ipif_lookup_addr() that doesn't match
5872 * `match_ill' across the IPMP group.  This function is only needed in some
5873 * corner-cases; almost everything should use ipif_lookup_addr().
5874 */
5875static ipif_t *
5876ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
5877{
5878	ASSERT(match_ill != NULL);
5879	return (ipif_lookup_addr_common(addr, match_ill, B_FALSE, ALL_ZONES,
5880	    NULL, NULL, NULL, NULL, ipst));
5881}
5882
5883/*
5884 * Look for an ipif with the specified address. For point-point links
5885 * we look for matches on either the destination address and the local
5886 * address, but we ignore the check on the local address if IPIF_UNNUMBERED
5887 * is set.
5888 * If the `match_ill' argument is non-NULL, the lookup is restricted to that
5889 * ill (or illgrp if `match_ill' is in an IPMP group).
5890 * Return the zoneid for the ipif which matches. ALL_ZONES if no match.
5891 */
5892zoneid_t
5893ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
5894{
5895	zoneid_t zoneid;
5896	ipif_t  *ipif;
5897	ill_t   *ill;
5898	boolean_t ptp = B_FALSE;
5899	ill_walk_context_t	ctx;
5900
5901	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5902	/*
5903	 * Repeat twice, first based on local addresses and
5904	 * next time for pointopoint.
5905	 */
5906repeat:
5907	ill = ILL_START_WALK_V4(&ctx, ipst);
5908	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5909		if (match_ill != NULL && ill != match_ill &&
5910		    !IS_IN_SAME_ILLGRP(ill, match_ill)) {
5911			continue;
5912		}
5913		mutex_enter(&ill->ill_lock);
5914		for (ipif = ill->ill_ipif; ipif != NULL;
5915		    ipif = ipif->ipif_next) {
5916			/* Allow the ipif to be down */
5917			if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
5918			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
5919			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
5920			    (ipif->ipif_pp_dst_addr == addr)) &&
5921			    !(ipif->ipif_state_flags & IPIF_CONDEMNED)) {
5922				zoneid = ipif->ipif_zoneid;
5923				mutex_exit(&ill->ill_lock);
5924				rw_exit(&ipst->ips_ill_g_lock);
5925				/*
5926				 * If ipif_zoneid was ALL_ZONES then we have
5927				 * a trusted extensions shared IP address.
5928				 * In that case GLOBAL_ZONEID works to send.
5929				 */
5930				if (zoneid == ALL_ZONES)
5931					zoneid = GLOBAL_ZONEID;
5932				return (zoneid);
5933			}
5934		}
5935		mutex_exit(&ill->ill_lock);
5936	}
5937
5938	/* If we already did the ptp case, then we are done */
5939	if (ptp) {
5940		rw_exit(&ipst->ips_ill_g_lock);
5941		return (ALL_ZONES);
5942	}
5943	ptp = B_TRUE;
5944	goto repeat;
5945}
5946
5947/*
5948 * Look for an ipif that matches the specified remote address i.e. the
5949 * ipif that would receive the specified packet.
5950 * First look for directly connected interfaces and then do a recursive
5951 * IRE lookup and pick the first ipif corresponding to the source address in the
5952 * ire.
5953 * Returns: held ipif
5954 */
5955ipif_t *
5956ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid)
5957{
5958	ipif_t	*ipif;
5959	ire_t	*ire;
5960	ip_stack_t	*ipst = ill->ill_ipst;
5961
5962	ASSERT(!ill->ill_isv6);
5963
5964	/*
5965	 * Someone could be changing this ipif currently or change it
5966	 * after we return this. Thus  a few packets could use the old
5967	 * old values. However structure updates/creates (ire, ilg, ilm etc)
5968	 * will atomically be updated or cleaned up with the new value
5969	 * Thus we don't need a lock to check the flags or other attrs below.
5970	 */
5971	mutex_enter(&ill->ill_lock);
5972	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
5973		if (!IPIF_CAN_LOOKUP(ipif))
5974			continue;
5975		if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid &&
5976		    ipif->ipif_zoneid != ALL_ZONES)
5977			continue;
5978		/* Allow the ipif to be down */
5979		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
5980			if ((ipif->ipif_pp_dst_addr == addr) ||
5981			    (!(ipif->ipif_flags & IPIF_UNNUMBERED) &&
5982			    ipif->ipif_lcl_addr == addr)) {
5983				ipif_refhold_locked(ipif);
5984				mutex_exit(&ill->ill_lock);
5985				return (ipif);
5986			}
5987		} else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) {
5988			ipif_refhold_locked(ipif);
5989			mutex_exit(&ill->ill_lock);
5990			return (ipif);
5991		}
5992	}
5993	mutex_exit(&ill->ill_lock);
5994	ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid,
5995	    NULL, MATCH_IRE_RECURSIVE, ipst);
5996	if (ire != NULL) {
5997		/*
5998		 * The callers of this function wants to know the
5999		 * interface on which they have to send the replies
6000		 * back. For IREs that have ire_stq and ire_ipif
6001		 * derived from different ills, we really don't care
6002		 * what we return here.
6003		 */
6004		ipif = ire->ire_ipif;
6005		if (ipif != NULL) {
6006			ipif_refhold(ipif);
6007			ire_refrele(ire);
6008			return (ipif);
6009		}
6010		ire_refrele(ire);
6011	}
6012	/* Pick the first interface */
6013	ipif = ipif_get_next_ipif(NULL, ill);
6014	return (ipif);
6015}
6016
6017/*
6018 * This func does not prevent refcnt from increasing. But if
6019 * the caller has taken steps to that effect, then this func
6020 * can be used to determine whether the ill has become quiescent
6021 */
6022static boolean_t
6023ill_is_quiescent(ill_t *ill)
6024{
6025	ipif_t	*ipif;
6026
6027	ASSERT(MUTEX_HELD(&ill->ill_lock));
6028
6029	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
6030		if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) {
6031			return (B_FALSE);
6032		}
6033	}
6034	if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) {
6035		return (B_FALSE);
6036	}
6037	return (B_TRUE);
6038}
6039
6040boolean_t
6041ill_is_freeable(ill_t *ill)
6042{
6043	ipif_t	*ipif;
6044
6045	ASSERT(MUTEX_HELD(&ill->ill_lock));
6046
6047	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
6048		if (ipif->ipif_refcnt != 0 || !IPIF_FREE_OK(ipif)) {
6049			return (B_FALSE);
6050		}
6051	}
6052	if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) {
6053		return (B_FALSE);
6054	}
6055	return (B_TRUE);
6056}
6057
6058/*
6059 * This func does not prevent refcnt from increasing. But if
6060 * the caller has taken steps to that effect, then this func
6061 * can be used to determine whether the ipif has become quiescent
6062 */
6063static boolean_t
6064ipif_is_quiescent(ipif_t *ipif)
6065{
6066	ill_t *ill;
6067
6068	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6069
6070	if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) {
6071		return (B_FALSE);
6072	}
6073
6074	ill = ipif->ipif_ill;
6075	if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 ||
6076	    ill->ill_logical_down) {
6077		return (B_TRUE);
6078	}
6079
6080	/* This is the last ipif going down or being deleted on this ill */
6081	if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) {
6082		return (B_FALSE);
6083	}
6084
6085	return (B_TRUE);
6086}
6087
6088/*
6089 * return true if the ipif can be destroyed: the ipif has to be quiescent
6090 * with zero references from ire/nce/ilm to it.
6091 */
6092static boolean_t
6093ipif_is_freeable(ipif_t *ipif)
6094{
6095	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6096	ASSERT(ipif->ipif_id != 0);
6097	return (ipif->ipif_refcnt == 0 && IPIF_FREE_OK(ipif));
6098}
6099
6100/*
6101 * The ipif/ill/ire has been refreled. Do the tail processing.
6102 * Determine if the ipif or ill in question has become quiescent and if so
6103 * wakeup close and/or restart any queued pending ioctl that is waiting
6104 * for the ipif_down (or ill_down)
6105 */
6106void
6107ipif_ill_refrele_tail(ill_t *ill)
6108{
6109	mblk_t	*mp;
6110	conn_t	*connp;
6111	ipsq_t	*ipsq;
6112	ipxop_t	*ipx;
6113	ipif_t	*ipif;
6114	dl_notify_ind_t *dlindp;
6115
6116	ASSERT(MUTEX_HELD(&ill->ill_lock));
6117
6118	if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) {
6119		/* ip_modclose() may be waiting */
6120		cv_broadcast(&ill->ill_cv);
6121	}
6122
6123	ipsq = ill->ill_phyint->phyint_ipsq;
6124	mutex_enter(&ipsq->ipsq_lock);
6125	ipx = ipsq->ipsq_xop;
6126	mutex_enter(&ipx->ipx_lock);
6127	if (ipx->ipx_waitfor == 0)	/* no one's waiting; bail */
6128		goto unlock;
6129
6130	ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL);
6131
6132	ipif = ipx->ipx_pending_ipif;
6133	if (ipif->ipif_ill != ill) 	/* wait is for another ill; bail */
6134		goto unlock;
6135
6136	switch (ipx->ipx_waitfor) {
6137	case IPIF_DOWN:
6138		if (!ipif_is_quiescent(ipif))
6139			goto unlock;
6140		break;
6141	case IPIF_FREE:
6142		if (!ipif_is_freeable(ipif))
6143			goto unlock;
6144		break;
6145	case ILL_DOWN:
6146		if (!ill_is_quiescent(ill))
6147			goto unlock;
6148		break;
6149	case ILL_FREE:
6150		/*
6151		 * ILL_FREE is only for loopback; normal ill teardown waits
6152		 * synchronously in ip_modclose() without using ipx_waitfor,
6153		 * handled by the cv_broadcast() at the top of this function.
6154		 */
6155		if (!ill_is_freeable(ill))
6156			goto unlock;
6157		break;
6158	default:
6159		cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n",
6160		    (void *)ipsq, ipx->ipx_waitfor);
6161	}
6162
6163	ill_refhold_locked(ill);	/* for qwriter_ip() call below */
6164	mutex_exit(&ipx->ipx_lock);
6165	mp = ipsq_pending_mp_get(ipsq, &connp);
6166	mutex_exit(&ipsq->ipsq_lock);
6167	mutex_exit(&ill->ill_lock);
6168
6169	ASSERT(mp != NULL);
6170	/*
6171	 * NOTE: all of the qwriter_ip() calls below use CUR_OP since
6172	 * we can only get here when the current operation decides it
6173	 * it needs to quiesce via ipsq_pending_mp_add().
6174	 */
6175	switch (mp->b_datap->db_type) {
6176	case M_PCPROTO:
6177	case M_PROTO:
6178		/*
6179		 * For now, only DL_NOTIFY_IND messages can use this facility.
6180		 */
6181		dlindp = (dl_notify_ind_t *)mp->b_rptr;
6182		ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND);
6183
6184		switch (dlindp->dl_notification) {
6185		case DL_NOTE_PHYS_ADDR:
6186			qwriter_ip(ill, ill->ill_rq, mp,
6187			    ill_set_phys_addr_tail, CUR_OP, B_TRUE);
6188			return;
6189		case DL_NOTE_REPLUMB:
6190			qwriter_ip(ill, ill->ill_rq, mp,
6191			    ill_replumb_tail, CUR_OP, B_TRUE);
6192			return;
6193		default:
6194			ASSERT(0);
6195			ill_refrele(ill);
6196		}
6197		break;
6198
6199	case M_ERROR:
6200	case M_HANGUP:
6201		qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP,
6202		    B_TRUE);
6203		return;
6204
6205	case M_IOCTL:
6206	case M_IOCDATA:
6207		qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) :
6208		    ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE);
6209		return;
6210
6211	default:
6212		cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p "
6213		    "db_type %d\n", (void *)mp, mp->b_datap->db_type);
6214	}
6215	return;
6216unlock:
6217	mutex_exit(&ipsq->ipsq_lock);
6218	mutex_exit(&ipx->ipx_lock);
6219	mutex_exit(&ill->ill_lock);
6220}
6221
6222#ifdef DEBUG
6223/* Reuse trace buffer from beginning (if reached the end) and record trace */
6224static void
6225th_trace_rrecord(th_trace_t *th_trace)
6226{
6227	tr_buf_t *tr_buf;
6228	uint_t lastref;
6229
6230	lastref = th_trace->th_trace_lastref;
6231	lastref++;
6232	if (lastref == TR_BUF_MAX)
6233		lastref = 0;
6234	th_trace->th_trace_lastref = lastref;
6235	tr_buf = &th_trace->th_trbuf[lastref];
6236	tr_buf->tr_time = lbolt;
6237	tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH);
6238}
6239
6240static void
6241th_trace_free(void *value)
6242{
6243	th_trace_t *th_trace = value;
6244
6245	ASSERT(th_trace->th_refcnt == 0);
6246	kmem_free(th_trace, sizeof (*th_trace));
6247}
6248
6249/*
6250 * Find or create the per-thread hash table used to track object references.
6251 * The ipst argument is NULL if we shouldn't allocate.
6252 *
6253 * Accesses per-thread data, so there's no need to lock here.
6254 */
6255static mod_hash_t *
6256th_trace_gethash(ip_stack_t *ipst)
6257{
6258	th_hash_t *thh;
6259
6260	if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) {
6261		mod_hash_t *mh;
6262		char name[256];
6263		size_t objsize, rshift;
6264		int retv;
6265
6266		if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL)
6267			return (NULL);
6268		(void) snprintf(name, sizeof (name), "th_trace_%p",
6269		    (void *)curthread);
6270
6271		/*
6272		 * We use mod_hash_create_extended here rather than the more
6273		 * obvious mod_hash_create_ptrhash because the latter has a
6274		 * hard-coded KM_SLEEP, and we'd prefer to fail rather than
6275		 * block.
6276		 */
6277		objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)),
6278		    MAX(sizeof (ire_t), sizeof (nce_t)));
6279		rshift = highbit(objsize);
6280		mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor,
6281		    th_trace_free, mod_hash_byptr, (void *)rshift,
6282		    mod_hash_ptrkey_cmp, KM_NOSLEEP);
6283		if (mh == NULL) {
6284			kmem_free(thh, sizeof (*thh));
6285			return (NULL);
6286		}
6287		thh->thh_hash = mh;
6288		thh->thh_ipst = ipst;
6289		/*
6290		 * We trace ills, ipifs, ires, and nces.  All of these are
6291		 * per-IP-stack, so the lock on the thread list is as well.
6292		 */
6293		rw_enter(&ip_thread_rwlock, RW_WRITER);
6294		list_insert_tail(&ip_thread_list, thh);
6295		rw_exit(&ip_thread_rwlock);
6296		retv = tsd_set(ip_thread_data, thh);
6297		ASSERT(retv == 0);
6298	}
6299	return (thh != NULL ? thh->thh_hash : NULL);
6300}
6301
6302boolean_t
6303th_trace_ref(const void *obj, ip_stack_t *ipst)
6304{
6305	th_trace_t *th_trace;
6306	mod_hash_t *mh;
6307	mod_hash_val_t val;
6308
6309	if ((mh = th_trace_gethash(ipst)) == NULL)
6310		return (B_FALSE);
6311
6312	/*
6313	 * Attempt to locate the trace buffer for this obj and thread.
6314	 * If it does not exist, then allocate a new trace buffer and
6315	 * insert into the hash.
6316	 */
6317	if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) {
6318		th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP);
6319		if (th_trace == NULL)
6320			return (B_FALSE);
6321
6322		th_trace->th_id = curthread;
6323		if (mod_hash_insert(mh, (mod_hash_key_t)obj,
6324		    (mod_hash_val_t)th_trace) != 0) {
6325			kmem_free(th_trace, sizeof (th_trace_t));
6326			return (B_FALSE);
6327		}
6328	} else {
6329		th_trace = (th_trace_t *)val;
6330	}
6331
6332	ASSERT(th_trace->th_refcnt >= 0 &&
6333	    th_trace->th_refcnt < TR_BUF_MAX - 1);
6334
6335	th_trace->th_refcnt++;
6336	th_trace_rrecord(th_trace);
6337	return (B_TRUE);
6338}
6339
6340/*
6341 * For the purpose of tracing a reference release, we assume that global
6342 * tracing is always on and that the same thread initiated the reference hold
6343 * is releasing.
6344 */
6345void
6346th_trace_unref(const void *obj)
6347{
6348	int retv;
6349	mod_hash_t *mh;
6350	th_trace_t *th_trace;
6351	mod_hash_val_t val;
6352
6353	mh = th_trace_gethash(NULL);
6354	retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val);
6355	ASSERT(retv == 0);
6356	th_trace = (th_trace_t *)val;
6357
6358	ASSERT(th_trace->th_refcnt > 0);
6359	th_trace->th_refcnt--;
6360	th_trace_rrecord(th_trace);
6361}
6362
6363/*
6364 * If tracing has been disabled, then we assume that the reference counts are
6365 * now useless, and we clear them out before destroying the entries.
6366 */
6367void
6368th_trace_cleanup(const void *obj, boolean_t trace_disable)
6369{
6370	th_hash_t	*thh;
6371	mod_hash_t	*mh;
6372	mod_hash_val_t	val;
6373	th_trace_t	*th_trace;
6374	int		retv;
6375
6376	rw_enter(&ip_thread_rwlock, RW_READER);
6377	for (thh = list_head(&ip_thread_list); thh != NULL;
6378	    thh = list_next(&ip_thread_list, thh)) {
6379		if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj,
6380		    &val) == 0) {
6381			th_trace = (th_trace_t *)val;
6382			if (trace_disable)
6383				th_trace->th_refcnt = 0;
6384			retv = mod_hash_destroy(mh, (mod_hash_key_t)obj);
6385			ASSERT(retv == 0);
6386		}
6387	}
6388	rw_exit(&ip_thread_rwlock);
6389}
6390
6391void
6392ipif_trace_ref(ipif_t *ipif)
6393{
6394	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6395
6396	if (ipif->ipif_trace_disable)
6397		return;
6398
6399	if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) {
6400		ipif->ipif_trace_disable = B_TRUE;
6401		ipif_trace_cleanup(ipif);
6402	}
6403}
6404
6405void
6406ipif_untrace_ref(ipif_t *ipif)
6407{
6408	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6409
6410	if (!ipif->ipif_trace_disable)
6411		th_trace_unref(ipif);
6412}
6413
6414void
6415ill_trace_ref(ill_t *ill)
6416{
6417	ASSERT(MUTEX_HELD(&ill->ill_lock));
6418
6419	if (ill->ill_trace_disable)
6420		return;
6421
6422	if (!th_trace_ref(ill, ill->ill_ipst)) {
6423		ill->ill_trace_disable = B_TRUE;
6424		ill_trace_cleanup(ill);
6425	}
6426}
6427
6428void
6429ill_untrace_ref(ill_t *ill)
6430{
6431	ASSERT(MUTEX_HELD(&ill->ill_lock));
6432
6433	if (!ill->ill_trace_disable)
6434		th_trace_unref(ill);
6435}
6436
6437/*
6438 * Called when ipif is unplumbed or when memory alloc fails.  Note that on
6439 * failure, ipif_trace_disable is set.
6440 */
6441static void
6442ipif_trace_cleanup(const ipif_t *ipif)
6443{
6444	th_trace_cleanup(ipif, ipif->ipif_trace_disable);
6445}
6446
6447/*
6448 * Called when ill is unplumbed or when memory alloc fails.  Note that on
6449 * failure, ill_trace_disable is set.
6450 */
6451static void
6452ill_trace_cleanup(const ill_t *ill)
6453{
6454	th_trace_cleanup(ill, ill->ill_trace_disable);
6455}
6456#endif /* DEBUG */
6457
6458void
6459ipif_refhold_locked(ipif_t *ipif)
6460{
6461	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6462	ipif->ipif_refcnt++;
6463	IPIF_TRACE_REF(ipif);
6464}
6465
6466void
6467ipif_refhold(ipif_t *ipif)
6468{
6469	ill_t	*ill;
6470
6471	ill = ipif->ipif_ill;
6472	mutex_enter(&ill->ill_lock);
6473	ipif->ipif_refcnt++;
6474	IPIF_TRACE_REF(ipif);
6475	mutex_exit(&ill->ill_lock);
6476}
6477
6478/*
6479 * Must not be called while holding any locks. Otherwise if this is
6480 * the last reference to be released there is a chance of recursive mutex
6481 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
6482 * to restart an ioctl.
6483 */
6484void
6485ipif_refrele(ipif_t *ipif)
6486{
6487	ill_t	*ill;
6488
6489	ill = ipif->ipif_ill;
6490
6491	mutex_enter(&ill->ill_lock);
6492	ASSERT(ipif->ipif_refcnt != 0);
6493	ipif->ipif_refcnt--;
6494	IPIF_UNTRACE_REF(ipif);
6495	if (ipif->ipif_refcnt != 0) {
6496		mutex_exit(&ill->ill_lock);
6497		return;
6498	}
6499
6500	/* Drops the ill_lock */
6501	ipif_ill_refrele_tail(ill);
6502}
6503
6504ipif_t *
6505ipif_get_next_ipif(ipif_t *curr, ill_t *ill)
6506{
6507	ipif_t	*ipif;
6508
6509	mutex_enter(&ill->ill_lock);
6510	for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next);
6511	    ipif != NULL; ipif = ipif->ipif_next) {
6512		if (!IPIF_CAN_LOOKUP(ipif))
6513			continue;
6514		ipif_refhold_locked(ipif);
6515		mutex_exit(&ill->ill_lock);
6516		return (ipif);
6517	}
6518	mutex_exit(&ill->ill_lock);
6519	return (NULL);
6520}
6521
6522/*
6523 * TODO: make this table extendible at run time
6524 * Return a pointer to the mac type info for 'mac_type'
6525 */
6526static ip_m_t *
6527ip_m_lookup(t_uscalar_t mac_type)
6528{
6529	ip_m_t	*ipm;
6530
6531	for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++)
6532		if (ipm->ip_m_mac_type == mac_type)
6533			return (ipm);
6534	return (NULL);
6535}
6536
6537/*
6538 * ip_rt_add is called to add an IPv4 route to the forwarding table.
6539 * ipif_arg is passed in to associate it with the correct interface.
6540 * We may need to restart this operation if the ipif cannot be looked up
6541 * due to an exclusive operation that is currently in progress. The restart
6542 * entry point is specified by 'func'
6543 */
6544int
6545ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
6546    ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ire_t **ire_arg,
6547    boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func,
6548    struct rtsa_s *sp, ip_stack_t *ipst)
6549{
6550	ire_t	*ire;
6551	ire_t	*gw_ire = NULL;
6552	ipif_t	*ipif = NULL;
6553	boolean_t ipif_refheld = B_FALSE;
6554	uint_t	type;
6555	int	match_flags = MATCH_IRE_TYPE;
6556	int	error;
6557	tsol_gc_t *gc = NULL;
6558	tsol_gcgrp_t *gcgrp = NULL;
6559	boolean_t gcgrp_xtraref = B_FALSE;
6560
6561	ip1dbg(("ip_rt_add:"));
6562
6563	if (ire_arg != NULL)
6564		*ire_arg = NULL;
6565
6566	/*
6567	 * If this is the case of RTF_HOST being set, then we set the netmask
6568	 * to all ones (regardless if one was supplied).
6569	 */
6570	if (flags & RTF_HOST)
6571		mask = IP_HOST_MASK;
6572
6573	/*
6574	 * Prevent routes with a zero gateway from being created (since
6575	 * interfaces can currently be plumbed and brought up no assigned
6576	 * address).
6577	 */
6578	if (gw_addr == 0)
6579		return (ENETUNREACH);
6580	/*
6581	 * Get the ipif, if any, corresponding to the gw_addr
6582	 */
6583	ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &error,
6584	    ipst);
6585	if (ipif != NULL) {
6586		if (IS_VNI(ipif->ipif_ill)) {
6587			ipif_refrele(ipif);
6588			return (EINVAL);
6589		}
6590		ipif_refheld = B_TRUE;
6591	} else if (error == EINPROGRESS) {
6592		ip1dbg(("ip_rt_add: null and EINPROGRESS"));
6593		return (EINPROGRESS);
6594	} else {
6595		error = 0;
6596	}
6597
6598	if (ipif != NULL) {
6599		ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull"));
6600		ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6601	} else {
6602		ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null"));
6603	}
6604
6605	/*
6606	 * GateD will attempt to create routes with a loopback interface
6607	 * address as the gateway and with RTF_GATEWAY set.  We allow
6608	 * these routes to be added, but create them as interface routes
6609	 * since the gateway is an interface address.
6610	 */
6611	if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) {
6612		flags &= ~RTF_GATEWAY;
6613		if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK &&
6614		    mask == IP_HOST_MASK) {
6615			ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif,
6616			    ALL_ZONES, NULL, match_flags, ipst);
6617			if (ire != NULL) {
6618				ire_refrele(ire);
6619				if (ipif_refheld)
6620					ipif_refrele(ipif);
6621				return (EEXIST);
6622			}
6623			ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x"
6624			    "for 0x%x\n", (void *)ipif,
6625			    ipif->ipif_ire_type,
6626			    ntohl(ipif->ipif_lcl_addr)));
6627			ire = ire_create(
6628			    (uchar_t *)&dst_addr,	/* dest address */
6629			    (uchar_t *)&mask,		/* mask */
6630			    (uchar_t *)&ipif->ipif_src_addr,
6631			    NULL,			/* no gateway */
6632			    &ipif->ipif_mtu,
6633			    NULL,
6634			    ipif->ipif_rq,		/* recv-from queue */
6635			    NULL,			/* no send-to queue */
6636			    ipif->ipif_ire_type,	/* LOOPBACK */
6637			    ipif,
6638			    0,
6639			    0,
6640			    0,
6641			    (ipif->ipif_flags & IPIF_PRIVATE) ?
6642			    RTF_PRIVATE : 0,
6643			    &ire_uinfo_null,
6644			    NULL,
6645			    NULL,
6646			    ipst);
6647
6648			if (ire == NULL) {
6649				if (ipif_refheld)
6650					ipif_refrele(ipif);
6651				return (ENOMEM);
6652			}
6653			error = ire_add(&ire, q, mp, func, B_FALSE);
6654			if (error == 0)
6655				goto save_ire;
6656			if (ipif_refheld)
6657				ipif_refrele(ipif);
6658			return (error);
6659
6660		}
6661	}
6662
6663	/*
6664	 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set
6665	 * and the gateway address provided is one of the system's interface
6666	 * addresses.  By using the routing socket interface and supplying an
6667	 * RTA_IFP sockaddr with an interface index, an alternate method of
6668	 * specifying an interface route to be created is available which uses
6669	 * the interface index that specifies the outgoing interface rather than
6670	 * the address of an outgoing interface (which may not be able to
6671	 * uniquely identify an interface).  When coupled with the RTF_GATEWAY
6672	 * flag, routes can be specified which not only specify the next-hop to
6673	 * be used when routing to a certain prefix, but also which outgoing
6674	 * interface should be used.
6675	 *
6676	 * Previously, interfaces would have unique addresses assigned to them
6677	 * and so the address assigned to a particular interface could be used
6678	 * to identify a particular interface.  One exception to this was the
6679	 * case of an unnumbered interface (where IPIF_UNNUMBERED was set).
6680	 *
6681	 * With the advent of IPv6 and its link-local addresses, this
6682	 * restriction was relaxed and interfaces could share addresses between
6683	 * themselves.  In fact, typically all of the link-local interfaces on
6684	 * an IPv6 node or router will have the same link-local address.  In
6685	 * order to differentiate between these interfaces, the use of an
6686	 * interface index is necessary and this index can be carried inside a
6687	 * RTA_IFP sockaddr (which is actually a sockaddr_dl).  One restriction
6688	 * of using the interface index, however, is that all of the ipif's that
6689	 * are part of an ill have the same index and so the RTA_IFP sockaddr
6690	 * cannot be used to differentiate between ipif's (or logical
6691	 * interfaces) that belong to the same ill (physical interface).
6692	 *
6693	 * For example, in the following case involving IPv4 interfaces and
6694	 * logical interfaces
6695	 *
6696	 *	192.0.2.32	255.255.255.224	192.0.2.33	U	if0
6697	 *	192.0.2.32	255.255.255.224	192.0.2.34	U	if0:1
6698	 *	192.0.2.32	255.255.255.224	192.0.2.35	U	if0:2
6699	 *
6700	 * the ipif's corresponding to each of these interface routes can be
6701	 * uniquely identified by the "gateway" (actually interface address).
6702	 *
6703	 * In this case involving multiple IPv6 default routes to a particular
6704	 * link-local gateway, the use of RTA_IFP is necessary to specify which
6705	 * default route is of interest:
6706	 *
6707	 *	default		fe80::123:4567:89ab:cdef	U	if0
6708	 *	default		fe80::123:4567:89ab:cdef	U	if1
6709	 */
6710
6711	/* RTF_GATEWAY not set */
6712	if (!(flags & RTF_GATEWAY)) {
6713		queue_t	*stq;
6714
6715		if (sp != NULL) {
6716			ip2dbg(("ip_rt_add: gateway security attributes "
6717			    "cannot be set with interface route\n"));
6718			if (ipif_refheld)
6719				ipif_refrele(ipif);
6720			return (EINVAL);
6721		}
6722
6723		/*
6724		 * As the interface index specified with the RTA_IFP sockaddr is
6725		 * the same for all ipif's off of an ill, the matching logic
6726		 * below uses MATCH_IRE_ILL if such an index was specified.
6727		 * This means that routes sharing the same prefix when added
6728		 * using a RTA_IFP sockaddr must have distinct interface
6729		 * indices (namely, they must be on distinct ill's).
6730		 *
6731		 * On the other hand, since the gateway address will usually be
6732		 * different for each ipif on the system, the matching logic
6733		 * uses MATCH_IRE_IPIF in the case of a traditional interface
6734		 * route.  This means that interface routes for the same prefix
6735		 * can be created if they belong to distinct ipif's and if a
6736		 * RTA_IFP sockaddr is not present.
6737		 */
6738		if (ipif_arg != NULL) {
6739			if (ipif_refheld)  {
6740				ipif_refrele(ipif);
6741				ipif_refheld = B_FALSE;
6742			}
6743			ipif = ipif_arg;
6744			match_flags |= MATCH_IRE_ILL;
6745		} else {
6746			/*
6747			 * Check the ipif corresponding to the gw_addr
6748			 */
6749			if (ipif == NULL)
6750				return (ENETUNREACH);
6751			match_flags |= MATCH_IRE_IPIF;
6752		}
6753		ASSERT(ipif != NULL);
6754
6755		/*
6756		 * We check for an existing entry at this point.
6757		 *
6758		 * Since a netmask isn't passed in via the ioctl interface
6759		 * (SIOCADDRT), we don't check for a matching netmask in that
6760		 * case.
6761		 */
6762		if (!ioctl_msg)
6763			match_flags |= MATCH_IRE_MASK;
6764		ire = ire_ftable_lookup(dst_addr, mask, 0, IRE_INTERFACE, ipif,
6765		    NULL, ALL_ZONES, 0, NULL, match_flags, ipst);
6766		if (ire != NULL) {
6767			ire_refrele(ire);
6768			if (ipif_refheld)
6769				ipif_refrele(ipif);
6770			return (EEXIST);
6771		}
6772
6773		stq = (ipif->ipif_net_type == IRE_IF_RESOLVER)
6774		    ? ipif->ipif_rq : ipif->ipif_wq;
6775
6776		/*
6777		 * Create a copy of the IRE_LOOPBACK,
6778		 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with
6779		 * the modified address and netmask.
6780		 */
6781		ire = ire_create(
6782		    (uchar_t *)&dst_addr,
6783		    (uint8_t *)&mask,
6784		    (uint8_t *)&ipif->ipif_src_addr,
6785		    NULL,
6786		    &ipif->ipif_mtu,
6787		    NULL,
6788		    NULL,
6789		    stq,
6790		    ipif->ipif_net_type,
6791		    ipif,
6792		    0,
6793		    0,
6794		    0,
6795		    flags,
6796		    &ire_uinfo_null,
6797		    NULL,
6798		    NULL,
6799		    ipst);
6800		if (ire == NULL) {
6801			if (ipif_refheld)
6802				ipif_refrele(ipif);
6803			return (ENOMEM);
6804		}
6805
6806		/*
6807		 * Some software (for example, GateD and Sun Cluster) attempts
6808		 * to create (what amount to) IRE_PREFIX routes with the
6809		 * loopback address as the gateway.  This is primarily done to
6810		 * set up prefixes with the RTF_REJECT flag set (for example,
6811		 * when generating aggregate routes.)
6812		 *
6813		 * If the IRE type (as defined by ipif->ipif_net_type) is
6814		 * IRE_LOOPBACK, then we map the request into a
6815		 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as
6816		 * these interface routes, by definition, can only be that.
6817		 *
6818		 * Needless to say, the real IRE_LOOPBACK is NOT created by this
6819		 * routine, but rather using ire_create() directly.
6820		 *
6821		 */
6822		if (ipif->ipif_net_type == IRE_LOOPBACK) {
6823			ire->ire_type = IRE_IF_NORESOLVER;
6824			ire->ire_flags |= RTF_BLACKHOLE;
6825		}
6826
6827		error = ire_add(&ire, q, mp, func, B_FALSE);
6828		if (error == 0)
6829			goto save_ire;
6830
6831		/*
6832		 * In the result of failure, ire_add() will have already
6833		 * deleted the ire in question, so there is no need to
6834		 * do that here.
6835		 */
6836		if (ipif_refheld)
6837			ipif_refrele(ipif);
6838		return (error);
6839	}
6840	if (ipif_refheld) {
6841		ipif_refrele(ipif);
6842		ipif_refheld = B_FALSE;
6843	}
6844
6845	/*
6846	 * Get an interface IRE for the specified gateway.
6847	 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the
6848	 * gateway, it is currently unreachable and we fail the request
6849	 * accordingly.
6850	 */
6851	ipif = ipif_arg;
6852	if (ipif_arg != NULL)
6853		match_flags |= MATCH_IRE_ILL;
6854again:
6855	gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL,
6856	    ALL_ZONES, 0, NULL, match_flags, ipst);
6857	if (gw_ire == NULL) {
6858		/*
6859		 * With IPMP, we allow host routes to influence in.mpathd's
6860		 * target selection.  However, if the test addresses are on
6861		 * their own network, the above lookup will fail since the
6862		 * underlying IRE_INTERFACEs are marked hidden.  So allow
6863		 * hidden test IREs to be found and try again.
6864		 */
6865		if (!(match_flags & MATCH_IRE_MARK_TESTHIDDEN))  {
6866			match_flags |= MATCH_IRE_MARK_TESTHIDDEN;
6867			goto again;
6868		}
6869		return (ENETUNREACH);
6870	}
6871
6872	/*
6873	 * We create one of three types of IREs as a result of this request
6874	 * based on the netmask.  A netmask of all ones (which is automatically
6875	 * assumed when RTF_HOST is set) results in an IRE_HOST being created.
6876	 * An all zeroes netmask implies a default route so an IRE_DEFAULT is
6877	 * created.  Otherwise, an IRE_PREFIX route is created for the
6878	 * destination prefix.
6879	 */
6880	if (mask == IP_HOST_MASK)
6881		type = IRE_HOST;
6882	else if (mask == 0)
6883		type = IRE_DEFAULT;
6884	else
6885		type = IRE_PREFIX;
6886
6887	/* check for a duplicate entry */
6888	ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg,
6889	    NULL, ALL_ZONES, 0, NULL,
6890	    match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst);
6891	if (ire != NULL) {
6892		ire_refrele(gw_ire);
6893		ire_refrele(ire);
6894		return (EEXIST);
6895	}
6896
6897	/* Security attribute exists */
6898	if (sp != NULL) {
6899		tsol_gcgrp_addr_t ga;
6900
6901		/* find or create the gateway credentials group */
6902		ga.ga_af = AF_INET;
6903		IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr);
6904
6905		/* we hold reference to it upon success */
6906		gcgrp = gcgrp_lookup(&ga, B_TRUE);
6907		if (gcgrp == NULL) {
6908			ire_refrele(gw_ire);
6909			return (ENOMEM);
6910		}
6911
6912		/*
6913		 * Create and add the security attribute to the group; a
6914		 * reference to the group is made upon allocating a new
6915		 * entry successfully.  If it finds an already-existing
6916		 * entry for the security attribute in the group, it simply
6917		 * returns it and no new reference is made to the group.
6918		 */
6919		gc = gc_create(sp, gcgrp, &gcgrp_xtraref);
6920		if (gc == NULL) {
6921			/* release reference held by gcgrp_lookup */
6922			GCGRP_REFRELE(gcgrp);
6923			ire_refrele(gw_ire);
6924			return (ENOMEM);
6925		}
6926	}
6927
6928	/* Create the IRE. */
6929	ire = ire_create(
6930	    (uchar_t *)&dst_addr,		/* dest address */
6931	    (uchar_t *)&mask,			/* mask */
6932	    /* src address assigned by the caller? */
6933	    (uchar_t *)(((src_addr != INADDR_ANY) &&
6934	    (flags & RTF_SETSRC)) ?  &src_addr : NULL),
6935	    (uchar_t *)&gw_addr,		/* gateway address */
6936	    &gw_ire->ire_max_frag,
6937	    NULL,				/* no src nce */
6938	    NULL,				/* no recv-from queue */
6939	    NULL,				/* no send-to queue */
6940	    (ushort_t)type,			/* IRE type */
6941	    ipif_arg,
6942	    0,
6943	    0,
6944	    0,
6945	    flags,
6946	    &gw_ire->ire_uinfo,			/* Inherit ULP info from gw */
6947	    gc,					/* security attribute */
6948	    NULL,
6949	    ipst);
6950
6951	/*
6952	 * The ire holds a reference to the 'gc' and the 'gc' holds a
6953	 * reference to the 'gcgrp'. We can now release the extra reference
6954	 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used.
6955	 */
6956	if (gcgrp_xtraref)
6957		GCGRP_REFRELE(gcgrp);
6958	if (ire == NULL) {
6959		if (gc != NULL)
6960			GC_REFRELE(gc);
6961		ire_refrele(gw_ire);
6962		return (ENOMEM);
6963	}
6964
6965	/*
6966	 * POLICY: should we allow an RTF_HOST with address INADDR_ANY?
6967	 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0?
6968	 */
6969
6970	/* Add the new IRE. */
6971	error = ire_add(&ire, q, mp, func, B_FALSE);
6972	if (error != 0) {
6973		/*
6974		 * In the result of failure, ire_add() will have already
6975		 * deleted the ire in question, so there is no need to
6976		 * do that here.
6977		 */
6978		ire_refrele(gw_ire);
6979		return (error);
6980	}
6981
6982	if (flags & RTF_MULTIRT) {
6983		/*
6984		 * Invoke the CGTP (multirouting) filtering module
6985		 * to add the dst address in the filtering database.
6986		 * Replicated inbound packets coming from that address
6987		 * will be filtered to discard the duplicates.
6988		 * It is not necessary to call the CGTP filter hook
6989		 * when the dst address is a broadcast or multicast,
6990		 * because an IP source address cannot be a broadcast
6991		 * or a multicast.
6992		 */
6993		ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0,
6994		    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
6995		if (ire_dst != NULL) {
6996			ip_cgtp_bcast_add(ire, ire_dst, ipst);
6997			ire_refrele(ire_dst);
6998			goto save_ire;
6999		}
7000		if (ipst->ips_ip_cgtp_filter_ops != NULL &&
7001		    !CLASSD(ire->ire_addr)) {
7002			int res = ipst->ips_ip_cgtp_filter_ops->cfo_add_dest_v4(
7003			    ipst->ips_netstack->netstack_stackid,
7004			    ire->ire_addr,
7005			    ire->ire_gateway_addr,
7006			    ire->ire_src_addr,
7007			    gw_ire->ire_src_addr);
7008			if (res != 0) {
7009				ire_refrele(gw_ire);
7010				ire_delete(ire);
7011				return (res);
7012			}
7013		}
7014	}
7015
7016	/*
7017	 * Now that the prefix IRE entry has been created, delete any
7018	 * existing gateway IRE cache entries as well as any IRE caches
7019	 * using the gateway, and force them to be created through
7020	 * ip_newroute.
7021	 */
7022	if (gc != NULL) {
7023		ASSERT(gcgrp != NULL);
7024		ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst);
7025	}
7026
7027save_ire:
7028	if (gw_ire != NULL) {
7029		ire_refrele(gw_ire);
7030	}
7031	if (ipif != NULL) {
7032		/*
7033		 * Save enough information so that we can recreate the IRE if
7034		 * the interface goes down and then up.  The metrics associated
7035		 * with the route will be saved as well when rts_setmetrics() is
7036		 * called after the IRE has been created.  In the case where
7037		 * memory cannot be allocated, none of this information will be
7038		 * saved.
7039		 */
7040		ipif_save_ire(ipif, ire);
7041	}
7042	if (ioctl_msg)
7043		ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst);
7044	if (ire_arg != NULL) {
7045		/*
7046		 * Store the ire that was successfully added into where ire_arg
7047		 * points to so that callers don't have to look it up
7048		 * themselves (but they are responsible for ire_refrele()ing
7049		 * the ire when they are finished with it).
7050		 */
7051		*ire_arg = ire;
7052	} else {
7053		ire_refrele(ire);		/* Held in ire_add */
7054	}
7055	if (ipif_refheld)
7056		ipif_refrele(ipif);
7057	return (0);
7058}
7059
7060/*
7061 * ip_rt_delete is called to delete an IPv4 route.
7062 * ipif_arg is passed in to associate it with the correct interface.
7063 * We may need to restart this operation if the ipif cannot be looked up
7064 * due to an exclusive operation that is currently in progress. The restart
7065 * entry point is specified by 'func'
7066 */
7067/* ARGSUSED4 */
7068int
7069ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
7070    uint_t rtm_addrs, int flags, ipif_t *ipif_arg, boolean_t ioctl_msg,
7071    queue_t *q, mblk_t *mp, ipsq_func_t func, ip_stack_t *ipst)
7072{
7073	ire_t	*ire = NULL;
7074	ipif_t	*ipif;
7075	boolean_t ipif_refheld = B_FALSE;
7076	uint_t	type;
7077	uint_t	match_flags = MATCH_IRE_TYPE;
7078	int	err = 0;
7079
7080	ip1dbg(("ip_rt_delete:"));
7081	/*
7082	 * If this is the case of RTF_HOST being set, then we set the netmask
7083	 * to all ones.  Otherwise, we use the netmask if one was supplied.
7084	 */
7085	if (flags & RTF_HOST) {
7086		mask = IP_HOST_MASK;
7087		match_flags |= MATCH_IRE_MASK;
7088	} else if (rtm_addrs & RTA_NETMASK) {
7089		match_flags |= MATCH_IRE_MASK;
7090	}
7091
7092	/*
7093	 * Note that RTF_GATEWAY is never set on a delete, therefore
7094	 * we check if the gateway address is one of our interfaces first,
7095	 * and fall back on RTF_GATEWAY routes.
7096	 *
7097	 * This makes it possible to delete an original
7098	 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1.
7099	 *
7100	 * As the interface index specified with the RTA_IFP sockaddr is the
7101	 * same for all ipif's off of an ill, the matching logic below uses
7102	 * MATCH_IRE_ILL if such an index was specified.  This means a route
7103	 * sharing the same prefix and interface index as the the route
7104	 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr
7105	 * is specified in the request.
7106	 *
7107	 * On the other hand, since the gateway address will usually be
7108	 * different for each ipif on the system, the matching logic
7109	 * uses MATCH_IRE_IPIF in the case of a traditional interface
7110	 * route.  This means that interface routes for the same prefix can be
7111	 * uniquely identified if they belong to distinct ipif's and if a
7112	 * RTA_IFP sockaddr is not present.
7113	 *
7114	 * For more detail on specifying routes by gateway address and by
7115	 * interface index, see the comments in ip_rt_add().
7116	 */
7117	ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &err,
7118	    ipst);
7119	if (ipif != NULL)
7120		ipif_refheld = B_TRUE;
7121	else if (err == EINPROGRESS)
7122		return (err);
7123	else
7124		err = 0;
7125	if (ipif != NULL) {
7126		if (ipif_arg != NULL) {
7127			if (ipif_refheld) {
7128				ipif_refrele(ipif);
7129				ipif_refheld = B_FALSE;
7130			}
7131			ipif = ipif_arg;
7132			match_flags |= MATCH_IRE_ILL;
7133		} else {
7134			match_flags |= MATCH_IRE_IPIF;
7135		}
7136		if (ipif->ipif_ire_type == IRE_LOOPBACK) {
7137			ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif,
7138			    ALL_ZONES, NULL, match_flags, ipst);
7139		}
7140		if (ire == NULL) {
7141			ire = ire_ftable_lookup(dst_addr, mask, 0,
7142			    IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL,
7143			    match_flags, ipst);
7144		}
7145	}
7146
7147	if (ire == NULL) {
7148		/*
7149		 * At this point, the gateway address is not one of our own
7150		 * addresses or a matching interface route was not found.  We
7151		 * set the IRE type to lookup based on whether
7152		 * this is a host route, a default route or just a prefix.
7153		 *
7154		 * If an ipif_arg was passed in, then the lookup is based on an
7155		 * interface index so MATCH_IRE_ILL is added to match_flags.
7156		 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is
7157		 * set as the route being looked up is not a traditional
7158		 * interface route.
7159		 */
7160		match_flags &= ~MATCH_IRE_IPIF;
7161		match_flags |= MATCH_IRE_GW;
7162		if (ipif_arg != NULL)
7163			match_flags |= MATCH_IRE_ILL;
7164		if (mask == IP_HOST_MASK)
7165			type = IRE_HOST;
7166		else if (mask == 0)
7167			type = IRE_DEFAULT;
7168		else
7169			type = IRE_PREFIX;
7170		ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg,
7171		    NULL, ALL_ZONES, 0, NULL, match_flags, ipst);
7172	}
7173
7174	if (ipif_refheld)
7175		ipif_refrele(ipif);
7176
7177	/* ipif is not refheld anymore */
7178	if (ire == NULL)
7179		return (ESRCH);
7180
7181	if (ire->ire_flags & RTF_MULTIRT) {
7182		/*
7183		 * Invoke the CGTP (multirouting) filtering module
7184		 * to remove the dst address from the filtering database.
7185		 * Packets coming from that address will no longer be
7186		 * filtered to remove duplicates.
7187		 */
7188		if (ipst->ips_ip_cgtp_filter_ops != NULL) {
7189			err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4(
7190			    ipst->ips_netstack->netstack_stackid,
7191			    ire->ire_addr, ire->ire_gateway_addr);
7192		}
7193		ip_cgtp_bcast_delete(ire, ipst);
7194	}
7195
7196	ipif = ire->ire_ipif;
7197	if (ipif != NULL)
7198		ipif_remove_ire(ipif, ire);
7199	if (ioctl_msg)
7200		ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst);
7201	ire_delete(ire);
7202	ire_refrele(ire);
7203	return (err);
7204}
7205
7206/*
7207 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL.
7208 */
7209/* ARGSUSED */
7210int
7211ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
7212    ip_ioctl_cmd_t *ipip, void *dummy_if_req)
7213{
7214	ipaddr_t dst_addr;
7215	ipaddr_t gw_addr;
7216	ipaddr_t mask;
7217	int error = 0;
7218	mblk_t *mp1;
7219	struct rtentry *rt;
7220	ipif_t *ipif = NULL;
7221	ip_stack_t	*ipst;
7222
7223	ASSERT(q->q_next == NULL);
7224	ipst = CONNQ_TO_IPST(q);
7225
7226	ip1dbg(("ip_siocaddrt:"));
7227	/* Existence of mp1 verified in ip_wput_nondata */
7228	mp1 = mp->b_cont->b_cont;
7229	rt = (struct rtentry *)mp1->b_rptr;
7230
7231	dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
7232	gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
7233
7234	/*
7235	 * If the RTF_HOST flag is on, this is a request to assign a gateway
7236	 * to a particular host address.  In this case, we set the netmask to
7237	 * all ones for the particular destination address.  Otherwise,
7238	 * determine the netmask to be used based on dst_addr and the interfaces
7239	 * in use.
7240	 */
7241	if (rt->rt_flags & RTF_HOST) {
7242		mask = IP_HOST_MASK;
7243	} else {
7244		/*
7245		 * Note that ip_subnet_mask returns a zero mask in the case of
7246		 * default (an all-zeroes address).
7247		 */
7248		mask = ip_subnet_mask(dst_addr, &ipif, ipst);
7249	}
7250
7251	error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL,
7252	    B_TRUE, q, mp, ip_process_ioctl, NULL, ipst);
7253	if (ipif != NULL)
7254		ipif_refrele(ipif);
7255	return (error);
7256}
7257
7258/*
7259 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL.
7260 */
7261/* ARGSUSED */
7262int
7263ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
7264    ip_ioctl_cmd_t *ipip, void *dummy_if_req)
7265{
7266	ipaddr_t dst_addr;
7267	ipaddr_t gw_addr;
7268	ipaddr_t mask;
7269	int error;
7270	mblk_t *mp1;
7271	struct rtentry *rt;
7272	ipif_t *ipif = NULL;
7273	ip_stack_t	*ipst;
7274
7275	ASSERT(q->q_next == NULL);
7276	ipst = CONNQ_TO_IPST(q);
7277
7278	ip1dbg(("ip_siocdelrt:"));
7279	/* Existence of mp1 verified in ip_wput_nondata */
7280	mp1 = mp->b_cont->b_cont;
7281	rt = (struct rtentry *)mp1->b_rptr;
7282
7283	dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
7284	gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
7285
7286	/*
7287	 * If the RTF_HOST flag is on, this is a request to delete a gateway
7288	 * to a particular host address.  In this case, we set the netmask to
7289	 * all ones for the particular destination address.  Otherwise,
7290	 * determine the netmask to be used based on dst_addr and the interfaces
7291	 * in use.
7292	 */
7293	if (rt->rt_flags & RTF_HOST) {
7294		mask = IP_HOST_MASK;
7295	} else {
7296		/*
7297		 * Note that ip_subnet_mask returns a zero mask in the case of
7298		 * default (an all-zeroes address).
7299		 */
7300		mask = ip_subnet_mask(dst_addr, &ipif, ipst);
7301	}
7302
7303	error = ip_rt_delete(dst_addr, mask, gw_addr,
7304	    RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, q,
7305	    mp, ip_process_ioctl, ipst);
7306	if (ipif != NULL)
7307		ipif_refrele(ipif);
7308	return (error);
7309}
7310
7311/*
7312 * Enqueue the mp onto the ipsq, chained by b_next.
7313 * b_prev stores the function to be executed later, and b_queue the queue
7314 * where this mp originated.
7315 */
7316void
7317ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
7318    ill_t *pending_ill)
7319{
7320	conn_t	*connp;
7321	ipxop_t *ipx = ipsq->ipsq_xop;
7322
7323	ASSERT(MUTEX_HELD(&ipsq->ipsq_lock));
7324	ASSERT(MUTEX_HELD(&ipx->ipx_lock));
7325	ASSERT(func != NULL);
7326
7327	mp->b_queue = q;
7328	mp->b_prev = (void *)func;
7329	mp->b_next = NULL;
7330
7331	switch (type) {
7332	case CUR_OP:
7333		if (ipx->ipx_mptail != NULL) {
7334			ASSERT(ipx->ipx_mphead != NULL);
7335			ipx->ipx_mptail->b_next = mp;
7336		} else {
7337			ASSERT(ipx->ipx_mphead == NULL);
7338			ipx->ipx_mphead = mp;
7339		}
7340		ipx->ipx_mptail = mp;
7341		break;
7342
7343	case NEW_OP:
7344		if (ipsq->ipsq_xopq_mptail != NULL) {
7345			ASSERT(ipsq->ipsq_xopq_mphead != NULL);
7346			ipsq->ipsq_xopq_mptail->b_next = mp;
7347		} else {
7348			ASSERT(ipsq->ipsq_xopq_mphead == NULL);
7349			ipsq->ipsq_xopq_mphead = mp;
7350		}
7351		ipsq->ipsq_xopq_mptail = mp;
7352		ipx->ipx_ipsq_queued = B_TRUE;
7353		break;
7354
7355	case SWITCH_OP:
7356		ASSERT(ipsq->ipsq_swxop != NULL);
7357		/* only one switch operation is currently allowed */
7358		ASSERT(ipsq->ipsq_switch_mp == NULL);
7359		ipsq->ipsq_switch_mp = mp;
7360		ipx->ipx_ipsq_queued = B_TRUE;
7361		break;
7362	default:
7363		cmn_err(CE_PANIC, "ipsq_enq %d type \n", type);
7364	}
7365
7366	if (CONN_Q(q) && pending_ill != NULL) {
7367		connp = Q_TO_CONN(q);
7368		ASSERT(MUTEX_HELD(&connp->conn_lock));
7369		connp->conn_oper_pending_ill = pending_ill;
7370	}
7371}
7372
7373/*
7374 * Dequeue the next message that requested exclusive access to this IPSQ's
7375 * xop.  Specifically:
7376 *
7377 *  1. If we're still processing the current operation on `ipsq', then
7378 *     dequeue the next message for the operation (from ipx_mphead), or
7379 *     return NULL if there are no queued messages for the operation.
7380 *     These messages are queued via CUR_OP to qwriter_ip() and friends.
7381 *
7382 *  2. If the current operation on `ipsq' has completed (ipx_current_ipif is
7383 *     not set) see if the ipsq has requested an xop switch.  If so, switch
7384 *     `ipsq' to a different xop.  Xop switches only happen when joining or
7385 *     leaving IPMP groups and require a careful dance -- see the comments
7386 *     in-line below for details.  If we're leaving a group xop or if we're
7387 *     joining a group xop and become writer on it, then we proceed to (3).
7388 *     Otherwise, we return NULL and exit the xop.
7389 *
7390 *  3. For each IPSQ in the xop, return any switch operation stored on
7391 *     ipsq_switch_mp (set via SWITCH_OP); these must be processed before
7392 *     any other messages queued on the IPSQ.  Otherwise, dequeue the next
7393 *     exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead.
7394 *     Note that if the phyint tied to `ipsq' is not using IPMP there will
7395 *     only be one IPSQ in the xop.  Otherwise, there will be one IPSQ for
7396 *     each phyint in the group, including the IPMP meta-interface phyint.
7397 */
7398static mblk_t *
7399ipsq_dq(ipsq_t *ipsq)
7400{
7401	ill_t	*illv4, *illv6;
7402	mblk_t	*mp;
7403	ipsq_t	*xopipsq;
7404	ipsq_t	*leftipsq = NULL;
7405	ipxop_t *ipx;
7406	phyint_t *phyi = ipsq->ipsq_phyint;
7407	ip_stack_t *ipst = ipsq->ipsq_ipst;
7408	boolean_t emptied = B_FALSE;
7409
7410	/*
7411	 * Grab all the locks we need in the defined order (ill_g_lock ->
7412	 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next.
7413	 */
7414	rw_enter(&ipst->ips_ill_g_lock,
7415	    ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER);
7416	mutex_enter(&ipsq->ipsq_lock);
7417	ipx = ipsq->ipsq_xop;
7418	mutex_enter(&ipx->ipx_lock);
7419
7420	/*
7421	 * Dequeue the next message associated with the current exclusive
7422	 * operation, if any.
7423	 */
7424	if ((mp = ipx->ipx_mphead) != NULL) {
7425		ipx->ipx_mphead = mp->b_next;
7426		if (ipx->ipx_mphead == NULL)
7427			ipx->ipx_mptail = NULL;
7428		mp->b_next = (void *)ipsq;
7429		goto out;
7430	}
7431
7432	if (ipx->ipx_current_ipif != NULL)
7433		goto empty;
7434
7435	if (ipsq->ipsq_swxop != NULL) {
7436		/*
7437		 * The exclusive operation that is now being completed has
7438		 * requested a switch to a different xop.  This happens
7439		 * when an interface joins or leaves an IPMP group.  Joins
7440		 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()).
7441		 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb
7442		 * (phyint_free()), or interface plumb for an ill type
7443		 * not in the IPMP group (ip_rput_dlpi_writer()).
7444		 *
7445		 * Xop switches are not allowed on the IPMP meta-interface.
7446		 */
7447		ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP));
7448		ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
7449		DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq);
7450
7451		if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) {
7452			/*
7453			 * We're switching back to our own xop, so we have two
7454			 * xop's to drain/exit: our own, and the group xop
7455			 * that we are leaving.
7456			 *
7457			 * First, pull ourselves out of the group ipsq list.
7458			 * This is safe since we're writer on ill_g_lock.
7459			 */
7460			ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop);
7461
7462			xopipsq = ipx->ipx_ipsq;
7463			while (xopipsq->ipsq_next != ipsq)
7464				xopipsq = xopipsq->ipsq_next;
7465
7466			xopipsq->ipsq_next = ipsq->ipsq_next;
7467			ipsq->ipsq_next = ipsq;
7468			ipsq->ipsq_xop = ipsq->ipsq_swxop;
7469			ipsq->ipsq_swxop = NULL;
7470
7471			/*
7472			 * Second, prepare to exit the group xop.  The actual
7473			 * ipsq_exit() is done at the end of this function
7474			 * since we cannot hold any locks across ipsq_exit().
7475			 * Note that although we drop the group's ipx_lock, no
7476			 * threads can proceed since we're still ipx_writer.
7477			 */
7478			leftipsq = xopipsq;
7479			mutex_exit(&ipx->ipx_lock);
7480
7481			/*
7482			 * Third, set ipx to point to our own xop (which was
7483			 * inactive and therefore can be entered).
7484			 */
7485			ipx = ipsq->ipsq_xop;
7486			mutex_enter(&ipx->ipx_lock);
7487			ASSERT(ipx->ipx_writer == NULL);
7488			ASSERT(ipx->ipx_current_ipif == NULL);
7489		} else {
7490			/*
7491			 * We're switching from our own xop to a group xop.
7492			 * The requestor of the switch must ensure that the
7493			 * group xop cannot go away (e.g. by ensuring the
7494			 * phyint associated with the xop cannot go away).
7495			 *
7496			 * If we can become writer on our new xop, then we'll
7497			 * do the drain.  Otherwise, the current writer of our
7498			 * new xop will do the drain when it exits.
7499			 *
7500			 * First, splice ourselves into the group IPSQ list.
7501			 * This is safe since we're writer on ill_g_lock.
7502			 */
7503			ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop);
7504
7505			xopipsq = ipsq->ipsq_swxop->ipx_ipsq;
7506			while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq)
7507				xopipsq = xopipsq->ipsq_next;
7508
7509			xopipsq->ipsq_next = ipsq;
7510			ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq;
7511			ipsq->ipsq_xop = ipsq->ipsq_swxop;
7512			ipsq->ipsq_swxop = NULL;
7513
7514			/*
7515			 * Second, exit our own xop, since it's now unused.
7516			 * This is safe since we've got the only reference.
7517			 */
7518			ASSERT(ipx->ipx_writer == curthread);
7519			ipx->ipx_writer = NULL;
7520			VERIFY(--ipx->ipx_reentry_cnt == 0);
7521			ipx->ipx_ipsq_queued = B_FALSE;
7522			mutex_exit(&ipx->ipx_lock);
7523
7524			/*
7525			 * Third, set ipx to point to our new xop, and check
7526			 * if we can become writer on it.  If we cannot, then
7527			 * the current writer will drain the IPSQ group when
7528			 * it exits.  Our ipsq_xop is guaranteed to be stable
7529			 * because we're still holding ipsq_lock.
7530			 */
7531			ipx = ipsq->ipsq_xop;
7532			mutex_enter(&ipx->ipx_lock);
7533			if (ipx->ipx_writer != NULL ||
7534			    ipx->ipx_current_ipif != NULL) {
7535				goto out;
7536			}
7537		}
7538
7539		/*
7540		 * Fourth, become writer on our new ipx before we continue
7541		 * with the drain.  Note that we never dropped ipsq_lock
7542		 * above, so no other thread could've raced with us to
7543		 * become writer first.  Also, we're holding ipx_lock, so
7544		 * no other thread can examine the ipx right now.
7545		 */
7546		ASSERT(ipx->ipx_current_ipif == NULL);
7547		ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL);
7548		VERIFY(ipx->ipx_reentry_cnt++ == 0);
7549		ipx->ipx_writer = curthread;
7550		ipx->ipx_forced = B_FALSE;
7551#ifdef DEBUG
7552		ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
7553#endif
7554	}
7555
7556	xopipsq = ipsq;
7557	do {
7558		/*
7559		 * So that other operations operate on a consistent and
7560		 * complete phyint, a switch message on an IPSQ must be
7561		 * handled prior to any other operations on that IPSQ.
7562		 */
7563		if ((mp = xopipsq->ipsq_switch_mp) != NULL) {
7564			xopipsq->ipsq_switch_mp = NULL;
7565			ASSERT(mp->b_next == NULL);
7566			mp->b_next = (void *)xopipsq;
7567			goto out;
7568		}
7569
7570		if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) {
7571			xopipsq->ipsq_xopq_mphead = mp->b_next;
7572			if (xopipsq->ipsq_xopq_mphead == NULL)
7573				xopipsq->ipsq_xopq_mptail = NULL;
7574			mp->b_next = (void *)xopipsq;
7575			goto out;
7576		}
7577	} while ((xopipsq = xopipsq->ipsq_next) != ipsq);
7578empty:
7579	/*
7580	 * There are no messages.  Further, we are holding ipx_lock, hence no
7581	 * new messages can end up on any IPSQ in the xop.
7582	 */
7583	ipx->ipx_writer = NULL;
7584	ipx->ipx_forced = B_FALSE;
7585	VERIFY(--ipx->ipx_reentry_cnt == 0);
7586	ipx->ipx_ipsq_queued = B_FALSE;
7587	emptied = B_TRUE;
7588#ifdef	DEBUG
7589	ipx->ipx_depth = 0;
7590#endif
7591out:
7592	mutex_exit(&ipx->ipx_lock);
7593	mutex_exit(&ipsq->ipsq_lock);
7594
7595	/*
7596	 * If we completely emptied the xop, then wake up any threads waiting
7597	 * to enter any of the IPSQ's associated with it.
7598	 */
7599	if (emptied) {
7600		xopipsq = ipsq;
7601		do {
7602			if ((phyi = xopipsq->ipsq_phyint) == NULL)
7603				continue;
7604
7605			illv4 = phyi->phyint_illv4;
7606			illv6 = phyi->phyint_illv6;
7607
7608			GRAB_ILL_LOCKS(illv4, illv6);
7609			if (illv4 != NULL)
7610				cv_broadcast(&illv4->ill_cv);
7611			if (illv6 != NULL)
7612				cv_broadcast(&illv6->ill_cv);
7613			RELEASE_ILL_LOCKS(illv4, illv6);
7614		} while ((xopipsq = xopipsq->ipsq_next) != ipsq);
7615	}
7616	rw_exit(&ipst->ips_ill_g_lock);
7617
7618	/*
7619	 * Now that all locks are dropped, exit the IPSQ we left.
7620	 */
7621	if (leftipsq != NULL)
7622		ipsq_exit(leftipsq);
7623
7624	return (mp);
7625}
7626
7627/*
7628 * Return completion status of previously initiated DLPI operations on
7629 * ills in the purview of an ipsq.
7630 */
7631static boolean_t
7632ipsq_dlpi_done(ipsq_t *ipsq)
7633{
7634	ipsq_t		*ipsq_start;
7635	phyint_t	*phyi;
7636	ill_t		*ill;
7637
7638	ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock));
7639	ipsq_start = ipsq;
7640
7641	do {
7642		/*
7643		 * The only current users of this function are ipsq_try_enter
7644		 * and ipsq_enter which have made sure that ipsq_writer is
7645		 * NULL before we reach here. ill_dlpi_pending is modified
7646		 * only by an ipsq writer
7647		 */
7648		ASSERT(ipsq->ipsq_xop->ipx_writer == NULL);
7649		phyi = ipsq->ipsq_phyint;
7650		/*
7651		 * phyi could be NULL if a phyint that is part of an
7652		 * IPMP group is being unplumbed. A more detailed
7653		 * comment is in ipmp_grp_update_kstats()
7654		 */
7655		if (phyi != NULL) {
7656			ill = phyi->phyint_illv4;
7657			if (ill != NULL &&
7658			    ill->ill_dlpi_pending != DL_PRIM_INVAL)
7659				return (B_FALSE);
7660
7661			ill = phyi->phyint_illv6;
7662			if (ill != NULL &&
7663			    ill->ill_dlpi_pending != DL_PRIM_INVAL)
7664				return (B_FALSE);
7665		}
7666
7667	} while ((ipsq = ipsq->ipsq_next) != ipsq_start);
7668
7669	return (B_TRUE);
7670}
7671
7672/*
7673 * Enter the ipsq corresponding to ill, by waiting synchronously till
7674 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq
7675 * will have to drain completely before ipsq_enter returns success.
7676 * ipx_current_ipif will be set if some exclusive op is in progress,
7677 * and the ipsq_exit logic will start the next enqueued op after
7678 * completion of the current op. If 'force' is used, we don't wait
7679 * for the enqueued ops. This is needed when a conn_close wants to
7680 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb
7681 * of an ill can also use this option. But we dont' use it currently.
7682 */
7683#define	ENTER_SQ_WAIT_TICKS 100
7684boolean_t
7685ipsq_enter(ill_t *ill, boolean_t force, int type)
7686{
7687	ipsq_t	*ipsq;
7688	ipxop_t *ipx;
7689	boolean_t waited_enough = B_FALSE;
7690	ip_stack_t *ipst = ill->ill_ipst;
7691
7692	/*
7693	 * Note that the relationship between ill and ipsq is fixed as long as
7694	 * the ill is not ILL_CONDEMNED.  Holding ipsq_lock ensures the
7695	 * relationship between the IPSQ and xop cannot change.  However,
7696	 * since we cannot hold ipsq_lock across the cv_wait(), it may change
7697	 * while we're waiting.  We wait on ill_cv and rely on ipsq_exit()
7698	 * waking up all ills in the xop when it becomes available.
7699	 */
7700	for (;;) {
7701		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7702		mutex_enter(&ill->ill_lock);
7703		if (ill->ill_state_flags & ILL_CONDEMNED) {
7704			mutex_exit(&ill->ill_lock);
7705			rw_exit(&ipst->ips_ill_g_lock);
7706			return (B_FALSE);
7707		}
7708
7709		ipsq = ill->ill_phyint->phyint_ipsq;
7710		mutex_enter(&ipsq->ipsq_lock);
7711		ipx = ipsq->ipsq_xop;
7712		mutex_enter(&ipx->ipx_lock);
7713
7714		if (ipx->ipx_writer == NULL && (type == CUR_OP ||
7715		    (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) ||
7716		    waited_enough))
7717			break;
7718
7719		rw_exit(&ipst->ips_ill_g_lock);
7720
7721		if (!force || ipx->ipx_writer != NULL) {
7722			mutex_exit(&ipx->ipx_lock);
7723			mutex_exit(&ipsq->ipsq_lock);
7724			cv_wait(&ill->ill_cv, &ill->ill_lock);
7725		} else {
7726			mutex_exit(&ipx->ipx_lock);
7727			mutex_exit(&ipsq->ipsq_lock);
7728			(void) cv_timedwait(&ill->ill_cv,
7729			    &ill->ill_lock, lbolt + ENTER_SQ_WAIT_TICKS);
7730			waited_enough = B_TRUE;
7731		}
7732		mutex_exit(&ill->ill_lock);
7733	}
7734
7735	ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL);
7736	ASSERT(ipx->ipx_reentry_cnt == 0);
7737	ipx->ipx_writer = curthread;
7738	ipx->ipx_forced = (ipx->ipx_current_ipif != NULL);
7739	ipx->ipx_reentry_cnt++;
7740#ifdef DEBUG
7741	ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
7742#endif
7743	mutex_exit(&ipx->ipx_lock);
7744	mutex_exit(&ipsq->ipsq_lock);
7745	mutex_exit(&ill->ill_lock);
7746	rw_exit(&ipst->ips_ill_g_lock);
7747
7748	return (B_TRUE);
7749}
7750
7751/*
7752 * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock
7753 * across the call to the core interface ipsq_try_enter() and hence calls this
7754 * function directly. This is explained more fully in ipif_set_values().
7755 * In order to support the above constraint, ipsq_try_enter is implemented as
7756 * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently
7757 */
7758static ipsq_t *
7759ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func,
7760    int type, boolean_t reentry_ok)
7761{
7762	ipsq_t	*ipsq;
7763	ipxop_t	*ipx;
7764	ip_stack_t *ipst = ill->ill_ipst;
7765
7766	/*
7767	 * lock ordering:
7768	 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock.
7769	 *
7770	 * ipx of an ipsq can't change when ipsq_lock is held.
7771	 */
7772	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
7773	GRAB_CONN_LOCK(q);
7774	mutex_enter(&ill->ill_lock);
7775	ipsq = ill->ill_phyint->phyint_ipsq;
7776	mutex_enter(&ipsq->ipsq_lock);
7777	ipx = ipsq->ipsq_xop;
7778	mutex_enter(&ipx->ipx_lock);
7779
7780	/*
7781	 * 1. Enter the ipsq if we are already writer and reentry is ok.
7782	 *    (Note: If the caller does not specify reentry_ok then neither
7783	 *    'func' nor any of its callees must ever attempt to enter the ipsq
7784	 *    again. Otherwise it can lead to an infinite loop
7785	 * 2. Enter the ipsq if there is no current writer and this attempted
7786	 *    entry is part of the current operation
7787	 * 3. Enter the ipsq if there is no current writer and this is a new
7788	 *    operation and the operation queue is empty and there is no
7789	 *    operation currently in progress and if all previously initiated
7790	 *    DLPI operations have completed.
7791	 */
7792	if ((ipx->ipx_writer == curthread && reentry_ok) ||
7793	    (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP &&
7794	    !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL &&
7795	    ipsq_dlpi_done(ipsq))))) {
7796		/* Success. */
7797		ipx->ipx_reentry_cnt++;
7798		ipx->ipx_writer = curthread;
7799		ipx->ipx_forced = B_FALSE;
7800		mutex_exit(&ipx->ipx_lock);
7801		mutex_exit(&ipsq->ipsq_lock);
7802		mutex_exit(&ill->ill_lock);
7803		RELEASE_CONN_LOCK(q);
7804#ifdef DEBUG
7805		ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
7806#endif
7807		return (ipsq);
7808	}
7809
7810	if (func != NULL)
7811		ipsq_enq(ipsq, q, mp, func, type, ill);
7812
7813	mutex_exit(&ipx->ipx_lock);
7814	mutex_exit(&ipsq->ipsq_lock);
7815	mutex_exit(&ill->ill_lock);
7816	RELEASE_CONN_LOCK(q);
7817	return (NULL);
7818}
7819
7820/*
7821 * The ipsq_t (ipsq) is the synchronization data structure used to serialize
7822 * certain critical operations like plumbing (i.e. most set ioctls), multicast
7823 * joins, igmp/mld timers, etc.  There is one ipsq per phyint. The ipsq
7824 * serializes exclusive ioctls issued by applications on a per ipsq basis in
7825 * ipsq_xopq_mphead. It also protects against multiple threads executing in
7826 * the ipsq. Responses from the driver pertain to the current ioctl (say a
7827 * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing
7828 * up the interface) and are enqueued in ipx_mphead.
7829 *
7830 * If a thread does not want to reenter the ipsq when it is already writer,
7831 * it must make sure that the specified reentry point to be called later
7832 * when the ipsq is empty, nor any code path starting from the specified reentry
7833 * point must never ever try to enter the ipsq again. Otherwise it can lead
7834 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example.
7835 * When the thread that is currently exclusive finishes, it (ipsq_exit)
7836 * dequeues the requests waiting to become exclusive in ipx_mphead and calls
7837 * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit
7838 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next
7839 * ioctl if the current ioctl has completed. If the current ioctl is still
7840 * in progress it simply returns. The current ioctl could be waiting for
7841 * a response from another module (arp or the driver or could be waiting for
7842 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp
7843 * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the
7844 * execution of the ioctl and ipsq_exit does not start the next ioctl unless
7845 * ipx_current_ipif is NULL which happens only once the ioctl is complete and
7846 * all associated DLPI operations have completed.
7847 */
7848
7849/*
7850 * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif'
7851 * and `ill' cannot both be specified).  Returns a pointer to the entered IPSQ
7852 * on success, or NULL on failure.  The caller ensures ipif/ill is valid by
7853 * refholding it as necessary.  If the IPSQ cannot be entered and `func' is
7854 * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ
7855 * can be entered.  If `func' is NULL, then `q' and `mp' are ignored.
7856 */
7857ipsq_t *
7858ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp,
7859    ipsq_func_t func, int type, boolean_t reentry_ok)
7860{
7861	ip_stack_t	*ipst;
7862	ipsq_t		*ipsq;
7863
7864	/* Only 1 of ipif or ill can be specified */
7865	ASSERT((ipif != NULL) ^ (ill != NULL));
7866
7867	if (ipif != NULL)
7868		ill = ipif->ipif_ill;
7869	ipst = ill->ill_ipst;
7870
7871	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7872	ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok);
7873	rw_exit(&ipst->ips_ill_g_lock);
7874
7875	return (ipsq);
7876}
7877
7878/*
7879 * Try to enter the IPSQ corresponding to `ill' as writer.  The caller ensures
7880 * ill is valid by refholding it if necessary; we will refrele.  If the IPSQ
7881 * cannot be entered, the mp is queued for completion.
7882 */
7883void
7884qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
7885    boolean_t reentry_ok)
7886{
7887	ipsq_t	*ipsq;
7888
7889	ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok);
7890
7891	/*
7892	 * Drop the caller's refhold on the ill.  This is safe since we either
7893	 * entered the IPSQ (and thus are exclusive), or failed to enter the
7894	 * IPSQ, in which case we return without accessing ill anymore.  This
7895	 * is needed because func needs to see the correct refcount.
7896	 * e.g. removeif can work only then.
7897	 */
7898	ill_refrele(ill);
7899	if (ipsq != NULL) {
7900		(*func)(ipsq, q, mp, NULL);
7901		ipsq_exit(ipsq);
7902	}
7903}
7904
7905/*
7906 * Exit the specified IPSQ.  If this is the final exit on it then drain it
7907 * prior to exiting.  Caller must be writer on the specified IPSQ.
7908 */
7909void
7910ipsq_exit(ipsq_t *ipsq)
7911{
7912	mblk_t *mp;
7913	ipsq_t *mp_ipsq;
7914	queue_t	*q;
7915	phyint_t *phyi;
7916	ipsq_func_t func;
7917
7918	ASSERT(IAM_WRITER_IPSQ(ipsq));
7919
7920	ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1);
7921	if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) {
7922		ipsq->ipsq_xop->ipx_reentry_cnt--;
7923		return;
7924	}
7925
7926	for (;;) {
7927		phyi = ipsq->ipsq_phyint;
7928		mp = ipsq_dq(ipsq);
7929		mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next;
7930
7931		/*
7932		 * If we've changed to a new IPSQ, and the phyint associated
7933		 * with the old one has gone away, free the old IPSQ.  Note
7934		 * that this cannot happen while the IPSQ is in a group.
7935		 */
7936		if (mp_ipsq != ipsq && phyi == NULL) {
7937			ASSERT(ipsq->ipsq_next == ipsq);
7938			ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop);
7939			ipsq_delete(ipsq);
7940		}
7941
7942		if (mp == NULL)
7943			break;
7944
7945		q = mp->b_queue;
7946		func = (ipsq_func_t)mp->b_prev;
7947		ipsq = mp_ipsq;
7948		mp->b_next = mp->b_prev = NULL;
7949		mp->b_queue = NULL;
7950
7951		/*
7952		 * If 'q' is an conn queue, it is valid, since we did a
7953		 * a refhold on the conn at the start of the ioctl.
7954		 * If 'q' is an ill queue, it is valid, since close of an
7955		 * ill will clean up its IPSQ.
7956		 */
7957		(*func)(ipsq, q, mp, NULL);
7958	}
7959}
7960
7961/*
7962 * Start the current exclusive operation on `ipsq'; associate it with `ipif'
7963 * and `ioccmd'.
7964 */
7965void
7966ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd)
7967{
7968	ill_t *ill = ipif->ipif_ill;
7969	ipxop_t *ipx = ipsq->ipsq_xop;
7970
7971	ASSERT(IAM_WRITER_IPSQ(ipsq));
7972	ASSERT(ipx->ipx_current_ipif == NULL);
7973	ASSERT(ipx->ipx_current_ioctl == 0);
7974
7975	ipx->ipx_current_done = B_FALSE;
7976	ipx->ipx_current_ioctl = ioccmd;
7977	mutex_enter(&ipx->ipx_lock);
7978	ipx->ipx_current_ipif = ipif;
7979	mutex_exit(&ipx->ipx_lock);
7980
7981	/*
7982	 * Set IPIF_CHANGING on one or more ipifs associated with the
7983	 * current exclusive operation.  IPIF_CHANGING prevents any new
7984	 * references to the ipif (so that the references will eventually
7985	 * drop to zero) and also prevents any "get" operations (e.g.,
7986	 * SIOCGLIFFLAGS) from being able to access the ipif until the
7987	 * operation has completed and the ipif is again in a stable state.
7988	 *
7989	 * For ioctls, IPIF_CHANGING is set on the ipif associated with the
7990	 * ioctl.  For internal operations (where ioccmd is zero), all ipifs
7991	 * on the ill are marked with IPIF_CHANGING since it's unclear which
7992	 * ipifs will be affected.
7993	 *
7994	 * Note that SIOCLIFREMOVEIF is a special case as it sets
7995	 * IPIF_CONDEMNED internally after identifying the right ipif to
7996	 * operate on.
7997	 */
7998	switch (ioccmd) {
7999	case SIOCLIFREMOVEIF:
8000		break;
8001	case 0:
8002		mutex_enter(&ill->ill_lock);
8003		ipif = ipif->ipif_ill->ill_ipif;
8004		for (; ipif != NULL; ipif = ipif->ipif_next)
8005			ipif->ipif_state_flags |= IPIF_CHANGING;
8006		mutex_exit(&ill->ill_lock);
8007		break;
8008	default:
8009		mutex_enter(&ill->ill_lock);
8010		ipif->ipif_state_flags |= IPIF_CHANGING;
8011		mutex_exit(&ill->ill_lock);
8012	}
8013}
8014
8015/*
8016 * Finish the current exclusive operation on `ipsq'.  Usually, this will allow
8017 * the next exclusive operation to begin once we ipsq_exit().  However, if
8018 * pending DLPI operations remain, then we will wait for the queue to drain
8019 * before allowing the next exclusive operation to begin.  This ensures that
8020 * DLPI operations from one exclusive operation are never improperly processed
8021 * as part of a subsequent exclusive operation.
8022 */
8023void
8024ipsq_current_finish(ipsq_t *ipsq)
8025{
8026	ipxop_t	*ipx = ipsq->ipsq_xop;
8027	t_uscalar_t dlpi_pending = DL_PRIM_INVAL;
8028	ipif_t	*ipif = ipx->ipx_current_ipif;
8029
8030	ASSERT(IAM_WRITER_IPSQ(ipsq));
8031
8032	/*
8033	 * For SIOCLIFREMOVEIF, the ipif has been already been blown away
8034	 * (but in that case, IPIF_CHANGING will already be clear and no
8035	 * pending DLPI messages can remain).
8036	 */
8037	if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) {
8038		ill_t *ill = ipif->ipif_ill;
8039
8040		mutex_enter(&ill->ill_lock);
8041		dlpi_pending = ill->ill_dlpi_pending;
8042		if (ipx->ipx_current_ioctl == 0) {
8043			ipif = ill->ill_ipif;
8044			for (; ipif != NULL; ipif = ipif->ipif_next)
8045				ipif->ipif_state_flags &= ~IPIF_CHANGING;
8046		} else {
8047			ipif->ipif_state_flags &= ~IPIF_CHANGING;
8048		}
8049		mutex_exit(&ill->ill_lock);
8050	}
8051
8052	ASSERT(!ipx->ipx_current_done);
8053	ipx->ipx_current_done = B_TRUE;
8054	ipx->ipx_current_ioctl = 0;
8055	if (dlpi_pending == DL_PRIM_INVAL) {
8056		mutex_enter(&ipx->ipx_lock);
8057		ipx->ipx_current_ipif = NULL;
8058		mutex_exit(&ipx->ipx_lock);
8059	}
8060}
8061
8062/*
8063 * The ill is closing. Flush all messages on the ipsq that originated
8064 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead
8065 * for this ill since ipsq_enter could not have entered until then.
8066 * New messages can't be queued since the CONDEMNED flag is set.
8067 */
8068static void
8069ipsq_flush(ill_t *ill)
8070{
8071	queue_t	*q;
8072	mblk_t	*prev;
8073	mblk_t	*mp;
8074	mblk_t	*mp_next;
8075	ipxop_t	*ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop;
8076
8077	ASSERT(IAM_WRITER_ILL(ill));
8078
8079	/*
8080	 * Flush any messages sent up by the driver.
8081	 */
8082	mutex_enter(&ipx->ipx_lock);
8083	for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) {
8084		mp_next = mp->b_next;
8085		q = mp->b_queue;
8086		if (q == ill->ill_rq || q == ill->ill_wq) {
8087			/* dequeue mp */
8088			if (prev == NULL)
8089				ipx->ipx_mphead = mp->b_next;
8090			else
8091				prev->b_next = mp->b_next;
8092			if (ipx->ipx_mptail == mp) {
8093				ASSERT(mp_next == NULL);
8094				ipx->ipx_mptail = prev;
8095			}
8096			inet_freemsg(mp);
8097		} else {
8098			prev = mp;
8099		}
8100	}
8101	mutex_exit(&ipx->ipx_lock);
8102	(void) ipsq_pending_mp_cleanup(ill, NULL);
8103	ipsq_xopq_mp_cleanup(ill, NULL);
8104	ill_pending_mp_cleanup(ill);
8105}
8106
8107/*
8108 * Parse an ifreq or lifreq struct coming down ioctls and refhold
8109 * and return the associated ipif.
8110 * Return value:
8111 *	Non zero: An error has occurred. ci may not be filled out.
8112 *	zero : ci is filled out with the ioctl cmd in ci.ci_name, and
8113 *	a held ipif in ci.ci_ipif.
8114 */
8115int
8116ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
8117    cmd_info_t *ci, ipsq_func_t func)
8118{
8119	char		*name;
8120	struct ifreq    *ifr;
8121	struct lifreq    *lifr;
8122	ipif_t		*ipif = NULL;
8123	ill_t		*ill;
8124	conn_t		*connp;
8125	boolean_t	isv6;
8126	boolean_t	exists;
8127	int		err;
8128	mblk_t		*mp1;
8129	zoneid_t	zoneid;
8130	ip_stack_t	*ipst;
8131
8132	if (q->q_next != NULL) {
8133		ill = (ill_t *)q->q_ptr;
8134		isv6 = ill->ill_isv6;
8135		connp = NULL;
8136		zoneid = ALL_ZONES;
8137		ipst = ill->ill_ipst;
8138	} else {
8139		ill = NULL;
8140		connp = Q_TO_CONN(q);
8141		isv6 = connp->conn_af_isv6;
8142		zoneid = connp->conn_zoneid;
8143		if (zoneid == GLOBAL_ZONEID) {
8144			/* global zone can access ipifs in all zones */
8145			zoneid = ALL_ZONES;
8146		}
8147		ipst = connp->conn_netstack->netstack_ip;
8148	}
8149
8150	/* Has been checked in ip_wput_nondata */
8151	mp1 = mp->b_cont->b_cont;
8152
8153	if (ipip->ipi_cmd_type == IF_CMD) {
8154		/* This a old style SIOC[GS]IF* command */
8155		ifr = (struct ifreq *)mp1->b_rptr;
8156		/*
8157		 * Null terminate the string to protect against buffer
8158		 * overrun. String was generated by user code and may not
8159		 * be trusted.
8160		 */
8161		ifr->ifr_name[IFNAMSIZ - 1] = '\0';
8162		name = ifr->ifr_name;
8163		ci->ci_sin = (sin_t *)&ifr->ifr_addr;
8164		ci->ci_sin6 = NULL;
8165		ci->ci_lifr = (struct lifreq *)ifr;
8166	} else {
8167		/* This a new style SIOC[GS]LIF* command */
8168		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
8169		lifr = (struct lifreq *)mp1->b_rptr;
8170		/*
8171		 * Null terminate the string to protect against buffer
8172		 * overrun. String was generated by user code and may not
8173		 * be trusted.
8174		 */
8175		lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
8176		name = lifr->lifr_name;
8177		ci->ci_sin = (sin_t *)&lifr->lifr_addr;
8178		ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr;
8179		ci->ci_lifr = lifr;
8180	}
8181
8182	if (ipip->ipi_cmd == SIOCSLIFNAME) {
8183		/*
8184		 * The ioctl will be failed if the ioctl comes down
8185		 * an conn stream
8186		 */
8187		if (ill == NULL) {
8188			/*
8189			 * Not an ill queue, return EINVAL same as the
8190			 * old error code.
8191			 */
8192			return (ENXIO);
8193		}
8194		ipif = ill->ill_ipif;
8195		ipif_refhold(ipif);
8196	} else {
8197		ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE,
8198		    &exists, isv6, zoneid,
8199		    (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err,
8200		    ipst);
8201		if (ipif == NULL) {
8202			if (err == EINPROGRESS)
8203				return (err);
8204			err = 0;	/* Ensure we don't use it below */
8205		}
8206	}
8207
8208	/*
8209	 * Old style [GS]IFCMD does not admit IPv6 ipif
8210	 */
8211	if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) {
8212		ipif_refrele(ipif);
8213		return (ENXIO);
8214	}
8215
8216	if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL &&
8217	    name[0] == '\0') {
8218		/*
8219		 * Handle a or a SIOC?IF* with a null name
8220		 * during plumb (on the ill queue before the I_PLINK).
8221		 */
8222		ipif = ill->ill_ipif;
8223		ipif_refhold(ipif);
8224	}
8225
8226	if (ipif == NULL)
8227		return (ENXIO);
8228
8229	ci->ci_ipif = ipif;
8230	return (0);
8231}
8232
8233/*
8234 * Return the total number of ipifs.
8235 */
8236static uint_t
8237ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst)
8238{
8239	uint_t numifs = 0;
8240	ill_t	*ill;
8241	ill_walk_context_t	ctx;
8242	ipif_t	*ipif;
8243
8244	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8245	ill = ILL_START_WALK_V4(&ctx, ipst);
8246	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
8247		if (IS_UNDER_IPMP(ill))
8248			continue;
8249		for (ipif = ill->ill_ipif; ipif != NULL;
8250		    ipif = ipif->ipif_next) {
8251			if (ipif->ipif_zoneid == zoneid ||
8252			    ipif->ipif_zoneid == ALL_ZONES)
8253				numifs++;
8254		}
8255	}
8256	rw_exit(&ipst->ips_ill_g_lock);
8257	return (numifs);
8258}
8259
8260/*
8261 * Return the total number of ipifs.
8262 */
8263static uint_t
8264ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst)
8265{
8266	uint_t numifs = 0;
8267	ill_t	*ill;
8268	ipif_t	*ipif;
8269	ill_walk_context_t	ctx;
8270
8271	ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid));
8272
8273	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8274	if (family == AF_INET)
8275		ill = ILL_START_WALK_V4(&ctx, ipst);
8276	else if (family == AF_INET6)
8277		ill = ILL_START_WALK_V6(&ctx, ipst);
8278	else
8279		ill = ILL_START_WALK_ALL(&ctx, ipst);
8280
8281	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
8282		if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP))
8283			continue;
8284
8285		for (ipif = ill->ill_ipif; ipif != NULL;
8286		    ipif = ipif->ipif_next) {
8287			if ((ipif->ipif_flags & IPIF_NOXMIT) &&
8288			    !(lifn_flags & LIFC_NOXMIT))
8289				continue;
8290			if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
8291			    !(lifn_flags & LIFC_TEMPORARY))
8292				continue;
8293			if (((ipif->ipif_flags &
8294			    (IPIF_NOXMIT|IPIF_NOLOCAL|
8295			    IPIF_DEPRECATED)) ||
8296			    IS_LOOPBACK(ill) ||
8297			    !(ipif->ipif_flags & IPIF_UP)) &&
8298			    (lifn_flags & LIFC_EXTERNAL_SOURCE))
8299				continue;
8300
8301			if (zoneid != ipif->ipif_zoneid &&
8302			    ipif->ipif_zoneid != ALL_ZONES &&
8303			    (zoneid != GLOBAL_ZONEID ||
8304			    !(lifn_flags & LIFC_ALLZONES)))
8305				continue;
8306
8307			numifs++;
8308		}
8309	}
8310	rw_exit(&ipst->ips_ill_g_lock);
8311	return (numifs);
8312}
8313
8314uint_t
8315ip_get_lifsrcofnum(ill_t *ill)
8316{
8317	uint_t numifs = 0;
8318	ill_t	*ill_head = ill;
8319	ip_stack_t	*ipst = ill->ill_ipst;
8320
8321	/*
8322	 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some
8323	 * other thread may be trying to relink the ILLs in this usesrc group
8324	 * and adjusting the ill_usesrc_grp_next pointers
8325	 */
8326	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
8327	if ((ill->ill_usesrc_ifindex == 0) &&
8328	    (ill->ill_usesrc_grp_next != NULL)) {
8329		for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head);
8330		    ill = ill->ill_usesrc_grp_next)
8331			numifs++;
8332	}
8333	rw_exit(&ipst->ips_ill_g_usesrc_lock);
8334
8335	return (numifs);
8336}
8337
8338/* Null values are passed in for ipif, sin, and ifreq */
8339/* ARGSUSED */
8340int
8341ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8342    mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8343{
8344	int *nump;
8345	conn_t *connp = Q_TO_CONN(q);
8346
8347	ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
8348
8349	/* Existence of b_cont->b_cont checked in ip_wput_nondata */
8350	nump = (int *)mp->b_cont->b_cont->b_rptr;
8351
8352	*nump = ip_get_numifs(connp->conn_zoneid,
8353	    connp->conn_netstack->netstack_ip);
8354	ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump));
8355	return (0);
8356}
8357
8358/* Null values are passed in for ipif, sin, and ifreq */
8359/* ARGSUSED */
8360int
8361ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin,
8362    queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8363{
8364	struct lifnum *lifn;
8365	mblk_t	*mp1;
8366	conn_t *connp = Q_TO_CONN(q);
8367
8368	ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
8369
8370	/* Existence checked in ip_wput_nondata */
8371	mp1 = mp->b_cont->b_cont;
8372
8373	lifn = (struct lifnum *)mp1->b_rptr;
8374	switch (lifn->lifn_family) {
8375	case AF_UNSPEC:
8376	case AF_INET:
8377	case AF_INET6:
8378		break;
8379	default:
8380		return (EAFNOSUPPORT);
8381	}
8382
8383	lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags,
8384	    connp->conn_zoneid, connp->conn_netstack->netstack_ip);
8385	ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count));
8386	return (0);
8387}
8388
8389/* ARGSUSED */
8390int
8391ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8392    mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8393{
8394	STRUCT_HANDLE(ifconf, ifc);
8395	mblk_t *mp1;
8396	struct iocblk *iocp;
8397	struct ifreq *ifr;
8398	ill_walk_context_t	ctx;
8399	ill_t	*ill;
8400	ipif_t	*ipif;
8401	struct sockaddr_in *sin;
8402	int32_t	ifclen;
8403	zoneid_t zoneid;
8404	ip_stack_t *ipst = CONNQ_TO_IPST(q);
8405
8406	ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */
8407
8408	ip1dbg(("ip_sioctl_get_ifconf"));
8409	/* Existence verified in ip_wput_nondata */
8410	mp1 = mp->b_cont->b_cont;
8411	iocp = (struct iocblk *)mp->b_rptr;
8412	zoneid = Q_TO_CONN(q)->conn_zoneid;
8413
8414	/*
8415	 * The original SIOCGIFCONF passed in a struct ifconf which specified
8416	 * the user buffer address and length into which the list of struct
8417	 * ifreqs was to be copied.  Since AT&T Streams does not seem to
8418	 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS,
8419	 * the SIOCGIFCONF operation was redefined to simply provide
8420	 * a large output buffer into which we are supposed to jam the ifreq
8421	 * array.  The same ioctl command code was used, despite the fact that
8422	 * both the applications and the kernel code had to change, thus making
8423	 * it impossible to support both interfaces.
8424	 *
8425	 * For reasons not good enough to try to explain, the following
8426	 * algorithm is used for deciding what to do with one of these:
8427	 * If the IOCTL comes in as an I_STR, it is assumed to be of the new
8428	 * form with the output buffer coming down as the continuation message.
8429	 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style,
8430	 * and we have to copy in the ifconf structure to find out how big the
8431	 * output buffer is and where to copy out to.  Sure no problem...
8432	 *
8433	 */
8434	STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL);
8435	if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) {
8436		int numifs = 0;
8437		size_t ifc_bufsize;
8438
8439		/*
8440		 * Must be (better be!) continuation of a TRANSPARENT
8441		 * IOCTL.  We just copied in the ifconf structure.
8442		 */
8443		STRUCT_SET_HANDLE(ifc, iocp->ioc_flag,
8444		    (struct ifconf *)mp1->b_rptr);
8445
8446		/*
8447		 * Allocate a buffer to hold requested information.
8448		 *
8449		 * If ifc_len is larger than what is needed, we only
8450		 * allocate what we will use.
8451		 *
8452		 * If ifc_len is smaller than what is needed, return
8453		 * EINVAL.
8454		 *
8455		 * XXX: the ill_t structure can hava 2 counters, for
8456		 * v4 and v6 (not just ill_ipif_up_count) to store the
8457		 * number of interfaces for a device, so we don't need
8458		 * to count them here...
8459		 */
8460		numifs = ip_get_numifs(zoneid, ipst);
8461
8462		ifclen = STRUCT_FGET(ifc, ifc_len);
8463		ifc_bufsize = numifs * sizeof (struct ifreq);
8464		if (ifc_bufsize > ifclen) {
8465			if (iocp->ioc_cmd == O_SIOCGIFCONF) {
8466				/* old behaviour */
8467				return (EINVAL);
8468			} else {
8469				ifc_bufsize = ifclen;
8470			}
8471		}
8472
8473		mp1 = mi_copyout_alloc(q, mp,
8474		    STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE);
8475		if (mp1 == NULL)
8476			return (ENOMEM);
8477
8478		mp1->b_wptr = mp1->b_rptr + ifc_bufsize;
8479	}
8480	bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
8481	/*
8482	 * the SIOCGIFCONF ioctl only knows about
8483	 * IPv4 addresses, so don't try to tell
8484	 * it about interfaces with IPv6-only
8485	 * addresses. (Last parm 'isv6' is B_FALSE)
8486	 */
8487
8488	ifr = (struct ifreq *)mp1->b_rptr;
8489
8490	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8491	ill = ILL_START_WALK_V4(&ctx, ipst);
8492	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
8493		if (IS_UNDER_IPMP(ill))
8494			continue;
8495		for (ipif = ill->ill_ipif; ipif != NULL;
8496		    ipif = ipif->ipif_next) {
8497			if (zoneid != ipif->ipif_zoneid &&
8498			    ipif->ipif_zoneid != ALL_ZONES)
8499				continue;
8500			if ((uchar_t *)&ifr[1] > mp1->b_wptr) {
8501				if (iocp->ioc_cmd == O_SIOCGIFCONF) {
8502					/* old behaviour */
8503					rw_exit(&ipst->ips_ill_g_lock);
8504					return (EINVAL);
8505				} else {
8506					goto if_copydone;
8507				}
8508			}
8509			ipif_get_name(ipif, ifr->ifr_name,
8510			    sizeof (ifr->ifr_name));
8511			sin = (sin_t *)&ifr->ifr_addr;
8512			*sin = sin_null;
8513			sin->sin_family = AF_INET;
8514			sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
8515			ifr++;
8516		}
8517	}
8518if_copydone:
8519	rw_exit(&ipst->ips_ill_g_lock);
8520	mp1->b_wptr = (uchar_t *)ifr;
8521
8522	if (STRUCT_BUF(ifc) != NULL) {
8523		STRUCT_FSET(ifc, ifc_len,
8524		    (int)((uchar_t *)ifr - mp1->b_rptr));
8525	}
8526	return (0);
8527}
8528
8529/*
8530 * Get the interfaces using the address hosted on the interface passed in,
8531 * as a source adddress
8532 */
8533/* ARGSUSED */
8534int
8535ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8536    mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8537{
8538	mblk_t *mp1;
8539	ill_t	*ill, *ill_head;
8540	ipif_t	*ipif, *orig_ipif;
8541	int	numlifs = 0;
8542	size_t	lifs_bufsize, lifsmaxlen;
8543	struct	lifreq *lifr;
8544	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8545	uint_t	ifindex;
8546	zoneid_t zoneid;
8547	int err = 0;
8548	boolean_t isv6 = B_FALSE;
8549	struct	sockaddr_in	*sin;
8550	struct	sockaddr_in6	*sin6;
8551	STRUCT_HANDLE(lifsrcof, lifs);
8552	ip_stack_t		*ipst;
8553
8554	ipst = CONNQ_TO_IPST(q);
8555
8556	ASSERT(q->q_next == NULL);
8557
8558	zoneid = Q_TO_CONN(q)->conn_zoneid;
8559
8560	/* Existence verified in ip_wput_nondata */
8561	mp1 = mp->b_cont->b_cont;
8562
8563	/*
8564	 * Must be (better be!) continuation of a TRANSPARENT
8565	 * IOCTL.  We just copied in the lifsrcof structure.
8566	 */
8567	STRUCT_SET_HANDLE(lifs, iocp->ioc_flag,
8568	    (struct lifsrcof *)mp1->b_rptr);
8569
8570	if (MBLKL(mp1) != STRUCT_SIZE(lifs))
8571		return (EINVAL);
8572
8573	ifindex = STRUCT_FGET(lifs, lifs_ifindex);
8574	isv6 = (Q_TO_CONN(q))->conn_af_isv6;
8575	ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp,
8576	    ip_process_ioctl, &err, ipst);
8577	if (ipif == NULL) {
8578		ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n",
8579		    ifindex));
8580		return (err);
8581	}
8582
8583	/* Allocate a buffer to hold requested information */
8584	numlifs = ip_get_lifsrcofnum(ipif->ipif_ill);
8585	lifs_bufsize = numlifs * sizeof (struct lifreq);
8586	lifsmaxlen =  STRUCT_FGET(lifs, lifs_maxlen);
8587	/* The actual size needed is always returned in lifs_len */
8588	STRUCT_FSET(lifs, lifs_len, lifs_bufsize);
8589
8590	/* If the amount we need is more than what is passed in, abort */
8591	if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) {
8592		ipif_refrele(ipif);
8593		return (0);
8594	}
8595
8596	mp1 = mi_copyout_alloc(q, mp,
8597	    STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE);
8598	if (mp1 == NULL) {
8599		ipif_refrele(ipif);
8600		return (ENOMEM);
8601	}
8602
8603	mp1->b_wptr = mp1->b_rptr + lifs_bufsize;
8604	bzero(mp1->b_rptr, lifs_bufsize);
8605
8606	lifr = (struct lifreq *)mp1->b_rptr;
8607
8608	ill = ill_head = ipif->ipif_ill;
8609	orig_ipif = ipif;
8610
8611	/* ill_g_usesrc_lock protects ill_usesrc_grp_next */
8612	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
8613	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8614
8615	ill = ill->ill_usesrc_grp_next; /* start from next ill */
8616	for (; (ill != NULL) && (ill != ill_head);
8617	    ill = ill->ill_usesrc_grp_next) {
8618
8619		if ((uchar_t *)&lifr[1] > mp1->b_wptr)
8620			break;
8621
8622		ipif = ill->ill_ipif;
8623		ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name));
8624		if (ipif->ipif_isv6) {
8625			sin6 = (sin6_t *)&lifr->lifr_addr;
8626			*sin6 = sin6_null;
8627			sin6->sin6_family = AF_INET6;
8628			sin6->sin6_addr = ipif->ipif_v6lcl_addr;
8629			lifr->lifr_addrlen = ip_mask_to_plen_v6(
8630			    &ipif->ipif_v6net_mask);
8631		} else {
8632			sin = (sin_t *)&lifr->lifr_addr;
8633			*sin = sin_null;
8634			sin->sin_family = AF_INET;
8635			sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
8636			lifr->lifr_addrlen = ip_mask_to_plen(
8637			    ipif->ipif_net_mask);
8638		}
8639		lifr++;
8640	}
8641	rw_exit(&ipst->ips_ill_g_usesrc_lock);
8642	rw_exit(&ipst->ips_ill_g_lock);
8643	ipif_refrele(orig_ipif);
8644	mp1->b_wptr = (uchar_t *)lifr;
8645	STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr));
8646
8647	return (0);
8648}
8649
8650/* ARGSUSED */
8651int
8652ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8653    mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8654{
8655	mblk_t *mp1;
8656	int	list;
8657	ill_t	*ill;
8658	ipif_t	*ipif;
8659	int	flags;
8660	int	numlifs = 0;
8661	size_t	lifc_bufsize;
8662	struct	lifreq *lifr;
8663	sa_family_t	family;
8664	struct	sockaddr_in	*sin;
8665	struct	sockaddr_in6	*sin6;
8666	ill_walk_context_t	ctx;
8667	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8668	int32_t	lifclen;
8669	zoneid_t zoneid;
8670	STRUCT_HANDLE(lifconf, lifc);
8671	ip_stack_t *ipst = CONNQ_TO_IPST(q);
8672
8673	ip1dbg(("ip_sioctl_get_lifconf"));
8674
8675	ASSERT(q->q_next == NULL);
8676
8677	zoneid = Q_TO_CONN(q)->conn_zoneid;
8678
8679	/* Existence verified in ip_wput_nondata */
8680	mp1 = mp->b_cont->b_cont;
8681
8682	/*
8683	 * An extended version of SIOCGIFCONF that takes an
8684	 * additional address family and flags field.
8685	 * AF_UNSPEC retrieve both IPv4 and IPv6.
8686	 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT
8687	 * interfaces are omitted.
8688	 * Similarly, IPIF_TEMPORARY interfaces are omitted
8689	 * unless LIFC_TEMPORARY is specified.
8690	 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT,
8691	 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and
8692	 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE
8693	 * has priority over LIFC_NOXMIT.
8694	 */
8695	STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL);
8696
8697	if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc))
8698		return (EINVAL);
8699
8700	/*
8701	 * Must be (better be!) continuation of a TRANSPARENT
8702	 * IOCTL.  We just copied in the lifconf structure.
8703	 */
8704	STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr);
8705
8706	family = STRUCT_FGET(lifc, lifc_family);
8707	flags = STRUCT_FGET(lifc, lifc_flags);
8708
8709	switch (family) {
8710	case AF_UNSPEC:
8711		/*
8712		 * walk all ILL's.
8713		 */
8714		list = MAX_G_HEADS;
8715		break;
8716	case AF_INET:
8717		/*
8718		 * walk only IPV4 ILL's.
8719		 */
8720		list = IP_V4_G_HEAD;
8721		break;
8722	case AF_INET6:
8723		/*
8724		 * walk only IPV6 ILL's.
8725		 */
8726		list = IP_V6_G_HEAD;
8727		break;
8728	default:
8729		return (EAFNOSUPPORT);
8730	}
8731
8732	/*
8733	 * Allocate a buffer to hold requested information.
8734	 *
8735	 * If lifc_len is larger than what is needed, we only
8736	 * allocate what we will use.
8737	 *
8738	 * If lifc_len is smaller than what is needed, return
8739	 * EINVAL.
8740	 */
8741	numlifs = ip_get_numlifs(family, flags, zoneid, ipst);
8742	lifc_bufsize = numlifs * sizeof (struct lifreq);
8743	lifclen = STRUCT_FGET(lifc, lifc_len);
8744	if (lifc_bufsize > lifclen) {
8745		if (iocp->ioc_cmd == O_SIOCGLIFCONF)
8746			return (EINVAL);
8747		else
8748			lifc_bufsize = lifclen;
8749	}
8750
8751	mp1 = mi_copyout_alloc(q, mp,
8752	    STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE);
8753	if (mp1 == NULL)
8754		return (ENOMEM);
8755
8756	mp1->b_wptr = mp1->b_rptr + lifc_bufsize;
8757	bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
8758
8759	lifr = (struct lifreq *)mp1->b_rptr;
8760
8761	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8762	ill = ill_first(list, list, &ctx, ipst);
8763	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
8764		if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP))
8765			continue;
8766
8767		for (ipif = ill->ill_ipif; ipif != NULL;
8768		    ipif = ipif->ipif_next) {
8769			if ((ipif->ipif_flags & IPIF_NOXMIT) &&
8770			    !(flags & LIFC_NOXMIT))
8771				continue;
8772
8773			if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
8774			    !(flags & LIFC_TEMPORARY))
8775				continue;
8776
8777			if (((ipif->ipif_flags &
8778			    (IPIF_NOXMIT|IPIF_NOLOCAL|
8779			    IPIF_DEPRECATED)) ||
8780			    IS_LOOPBACK(ill) ||
8781			    !(ipif->ipif_flags & IPIF_UP)) &&
8782			    (flags & LIFC_EXTERNAL_SOURCE))
8783				continue;
8784
8785			if (zoneid != ipif->ipif_zoneid &&
8786			    ipif->ipif_zoneid != ALL_ZONES &&
8787			    (zoneid != GLOBAL_ZONEID ||
8788			    !(flags & LIFC_ALLZONES)))
8789				continue;
8790
8791			if ((uchar_t *)&lifr[1] > mp1->b_wptr) {
8792				if (iocp->ioc_cmd == O_SIOCGLIFCONF) {
8793					rw_exit(&ipst->ips_ill_g_lock);
8794					return (EINVAL);
8795				} else {
8796					goto lif_copydone;
8797				}
8798			}
8799
8800			ipif_get_name(ipif, lifr->lifr_name,
8801			    sizeof (lifr->lifr_name));
8802			lifr->lifr_type = ill->ill_type;
8803			if (ipif->ipif_isv6) {
8804				sin6 = (sin6_t *)&lifr->lifr_addr;
8805				*sin6 = sin6_null;
8806				sin6->sin6_family = AF_INET6;
8807				sin6->sin6_addr =
8808				    ipif->ipif_v6lcl_addr;
8809				lifr->lifr_addrlen =
8810				    ip_mask_to_plen_v6(
8811				    &ipif->ipif_v6net_mask);
8812			} else {
8813				sin = (sin_t *)&lifr->lifr_addr;
8814				*sin = sin_null;
8815				sin->sin_family = AF_INET;
8816				sin->sin_addr.s_addr =
8817				    ipif->ipif_lcl_addr;
8818				lifr->lifr_addrlen =
8819				    ip_mask_to_plen(
8820				    ipif->ipif_net_mask);
8821			}
8822			lifr++;
8823		}
8824	}
8825lif_copydone:
8826	rw_exit(&ipst->ips_ill_g_lock);
8827
8828	mp1->b_wptr = (uchar_t *)lifr;
8829	if (STRUCT_BUF(lifc) != NULL) {
8830		STRUCT_FSET(lifc, lifc_len,
8831		    (int)((uchar_t *)lifr - mp1->b_rptr));
8832	}
8833	return (0);
8834}
8835
8836static void
8837ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp)
8838{
8839	ip6_asp_t *table;
8840	size_t table_size;
8841	mblk_t *data_mp;
8842	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8843	ip_stack_t	*ipst;
8844
8845	if (q->q_next == NULL)
8846		ipst = CONNQ_TO_IPST(q);
8847	else
8848		ipst = ILLQ_TO_IPST(q);
8849
8850	/* These two ioctls are I_STR only */
8851	if (iocp->ioc_count == TRANSPARENT) {
8852		miocnak(q, mp, 0, EINVAL);
8853		return;
8854	}
8855
8856	data_mp = mp->b_cont;
8857	if (data_mp == NULL) {
8858		/* The user passed us a NULL argument */
8859		table = NULL;
8860		table_size = iocp->ioc_count;
8861	} else {
8862		/*
8863		 * The user provided a table.  The stream head
8864		 * may have copied in the user data in chunks,
8865		 * so make sure everything is pulled up
8866		 * properly.
8867		 */
8868		if (MBLKL(data_mp) < iocp->ioc_count) {
8869			mblk_t *new_data_mp;
8870			if ((new_data_mp = msgpullup(data_mp, -1)) ==
8871			    NULL) {
8872				miocnak(q, mp, 0, ENOMEM);
8873				return;
8874			}
8875			freemsg(data_mp);
8876			data_mp = new_data_mp;
8877			mp->b_cont = data_mp;
8878		}
8879		table = (ip6_asp_t *)data_mp->b_rptr;
8880		table_size = iocp->ioc_count;
8881	}
8882
8883	switch (iocp->ioc_cmd) {
8884	case SIOCGIP6ADDRPOLICY:
8885		iocp->ioc_rval = ip6_asp_get(table, table_size, ipst);
8886		if (iocp->ioc_rval == -1)
8887			iocp->ioc_error = EINVAL;
8888#if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
8889		else if (table != NULL &&
8890		    (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) {
8891			ip6_asp_t *src = table;
8892			ip6_asp32_t *dst = (void *)table;
8893			int count = table_size / sizeof (ip6_asp_t);
8894			int i;
8895
8896			/*
8897			 * We need to do an in-place shrink of the array
8898			 * to match the alignment attributes of the
8899			 * 32-bit ABI looking at it.
8900			 */
8901			/* LINTED: logical expression always true: op "||" */
8902			ASSERT(sizeof (*src) > sizeof (*dst));
8903			for (i = 1; i < count; i++)
8904				bcopy(src + i, dst + i, sizeof (*dst));
8905		}
8906#endif
8907		break;
8908
8909	case SIOCSIP6ADDRPOLICY:
8910		ASSERT(mp->b_prev == NULL);
8911		mp->b_prev = (void *)q;
8912#if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
8913		/*
8914		 * We pass in the datamodel here so that the ip6_asp_replace()
8915		 * routine can handle converting from 32-bit to native formats
8916		 * where necessary.
8917		 *
8918		 * A better way to handle this might be to convert the inbound
8919		 * data structure here, and hang it off a new 'mp'; thus the
8920		 * ip6_asp_replace() logic would always be dealing with native
8921		 * format data structures..
8922		 *
8923		 * (An even simpler way to handle these ioctls is to just
8924		 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure
8925		 * and just recompile everything that depends on it.)
8926		 */
8927#endif
8928		ip6_asp_replace(mp, table, table_size, B_FALSE, ipst,
8929		    iocp->ioc_flag & IOC_MODELS);
8930		return;
8931	}
8932
8933	DB_TYPE(mp) =  (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK;
8934	qreply(q, mp);
8935}
8936
8937static void
8938ip_sioctl_dstinfo(queue_t *q, mblk_t *mp)
8939{
8940	mblk_t 		*data_mp;
8941	struct dstinforeq	*dir;
8942	uint8_t		*end, *cur;
8943	in6_addr_t	*daddr, *saddr;
8944	ipaddr_t	v4daddr;
8945	ire_t		*ire;
8946	char		*slabel, *dlabel;
8947	boolean_t	isipv4;
8948	int		match_ire;
8949	ill_t		*dst_ill;
8950	ipif_t		*src_ipif, *ire_ipif;
8951	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8952	zoneid_t	zoneid;
8953	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
8954
8955	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
8956	zoneid = Q_TO_CONN(q)->conn_zoneid;
8957
8958	/*
8959	 * This ioctl is I_STR only, and must have a
8960	 * data mblk following the M_IOCTL mblk.
8961	 */
8962	data_mp = mp->b_cont;
8963	if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) {
8964		miocnak(q, mp, 0, EINVAL);
8965		return;
8966	}
8967
8968	if (MBLKL(data_mp) < iocp->ioc_count) {
8969		mblk_t *new_data_mp;
8970
8971		if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) {
8972			miocnak(q, mp, 0, ENOMEM);
8973			return;
8974		}
8975		freemsg(data_mp);
8976		data_mp = new_data_mp;
8977		mp->b_cont = data_mp;
8978	}
8979	match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT;
8980
8981	for (cur = data_mp->b_rptr, end = data_mp->b_wptr;
8982	    end - cur >= sizeof (struct dstinforeq);
8983	    cur += sizeof (struct dstinforeq)) {
8984		dir = (struct dstinforeq *)cur;
8985		daddr = &dir->dir_daddr;
8986		saddr = &dir->dir_saddr;
8987
8988		/*
8989		 * ip_addr_scope_v6() and ip6_asp_lookup() handle
8990		 * v4 mapped addresses; ire_ftable_lookup[_v6]()
8991		 * and ipif_select_source[_v6]() do not.
8992		 */
8993		dir->dir_dscope = ip_addr_scope_v6(daddr);
8994		dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst);
8995
8996		isipv4 = IN6_IS_ADDR_V4MAPPED(daddr);
8997		if (isipv4) {
8998			IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr);
8999			ire = ire_ftable_lookup(v4daddr, NULL, NULL,
9000			    0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst);
9001		} else {
9002			ire = ire_ftable_lookup_v6(daddr, NULL, NULL,
9003			    0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst);
9004		}
9005		if (ire == NULL) {
9006			dir->dir_dreachable = 0;
9007
9008			/* move on to next dst addr */
9009			continue;
9010		}
9011		dir->dir_dreachable = 1;
9012
9013		ire_ipif = ire->ire_ipif;
9014		if (ire_ipif == NULL)
9015			goto next_dst;
9016
9017		/*
9018		 * We expect to get back an interface ire or a
9019		 * gateway ire cache entry.  For both types, the
9020		 * output interface is ire_ipif->ipif_ill.
9021		 */
9022		dst_ill = ire_ipif->ipif_ill;
9023		dir->dir_dmactype = dst_ill->ill_mactype;
9024
9025		if (isipv4) {
9026			src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid);
9027		} else {
9028			src_ipif = ipif_select_source_v6(dst_ill,
9029			    daddr, B_FALSE, IPV6_PREFER_SRC_DEFAULT, zoneid);
9030		}
9031		if (src_ipif == NULL)
9032			goto next_dst;
9033
9034		*saddr = src_ipif->ipif_v6lcl_addr;
9035		dir->dir_sscope = ip_addr_scope_v6(saddr);
9036		slabel = ip6_asp_lookup(saddr, NULL, ipst);
9037		dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel);
9038		dir->dir_sdeprecated =
9039		    (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0;
9040		ipif_refrele(src_ipif);
9041next_dst:
9042		ire_refrele(ire);
9043	}
9044	miocack(q, mp, iocp->ioc_count, 0);
9045}
9046
9047/*
9048 * Check if this is an address assigned to this machine.
9049 * Skips interfaces that are down by using ire checks.
9050 * Translates mapped addresses to v4 addresses and then
9051 * treats them as such, returning true if the v4 address
9052 * associated with this mapped address is configured.
9053 * Note: Applications will have to be careful what they do
9054 * with the response; use of mapped addresses limits
9055 * what can be done with the socket, especially with
9056 * respect to socket options and ioctls - neither IPv4
9057 * options nor IPv6 sticky options/ancillary data options
9058 * may be used.
9059 */
9060/* ARGSUSED */
9061int
9062ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9063    ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
9064{
9065	struct sioc_addrreq *sia;
9066	sin_t *sin;
9067	ire_t *ire;
9068	mblk_t *mp1;
9069	zoneid_t zoneid;
9070	ip_stack_t	*ipst;
9071
9072	ip1dbg(("ip_sioctl_tmyaddr"));
9073
9074	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
9075	zoneid = Q_TO_CONN(q)->conn_zoneid;
9076	ipst = CONNQ_TO_IPST(q);
9077
9078	/* Existence verified in ip_wput_nondata */
9079	mp1 = mp->b_cont->b_cont;
9080	sia = (struct sioc_addrreq *)mp1->b_rptr;
9081	sin = (sin_t *)&sia->sa_addr;
9082	switch (sin->sin_family) {
9083	case AF_INET6: {
9084		sin6_t *sin6 = (sin6_t *)sin;
9085
9086		if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
9087			ipaddr_t v4_addr;
9088
9089			IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
9090			    v4_addr);
9091			ire = ire_ctable_lookup(v4_addr, 0,
9092			    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
9093			    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst);
9094		} else {
9095			in6_addr_t v6addr;
9096
9097			v6addr = sin6->sin6_addr;
9098			ire = ire_ctable_lookup_v6(&v6addr, 0,
9099			    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
9100			    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst);
9101		}
9102		break;
9103	}
9104	case AF_INET: {
9105		ipaddr_t v4addr;
9106
9107		v4addr = sin->sin_addr.s_addr;
9108		ire = ire_ctable_lookup(v4addr, 0,
9109		    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
9110		    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst);
9111		break;
9112	}
9113	default:
9114		return (EAFNOSUPPORT);
9115	}
9116	if (ire != NULL) {
9117		sia->sa_res = 1;
9118		ire_refrele(ire);
9119	} else {
9120		sia->sa_res = 0;
9121	}
9122	return (0);
9123}
9124
9125/*
9126 * Check if this is an address assigned on-link i.e. neighbor,
9127 * and makes sure it's reachable from the current zone.
9128 * Returns true for my addresses as well.
9129 * Translates mapped addresses to v4 addresses and then
9130 * treats them as such, returning true if the v4 address
9131 * associated with this mapped address is configured.
9132 * Note: Applications will have to be careful what they do
9133 * with the response; use of mapped addresses limits
9134 * what can be done with the socket, especially with
9135 * respect to socket options and ioctls - neither IPv4
9136 * options nor IPv6 sticky options/ancillary data options
9137 * may be used.
9138 */
9139/* ARGSUSED */
9140int
9141ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9142    ip_ioctl_cmd_t *ipip, void *duymmy_ifreq)
9143{
9144	struct sioc_addrreq *sia;
9145	sin_t *sin;
9146	mblk_t	*mp1;
9147	ire_t *ire = NULL;
9148	zoneid_t zoneid;
9149	ip_stack_t	*ipst;
9150
9151	ip1dbg(("ip_sioctl_tonlink"));
9152
9153	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
9154	zoneid = Q_TO_CONN(q)->conn_zoneid;
9155	ipst = CONNQ_TO_IPST(q);
9156
9157	/* Existence verified in ip_wput_nondata */
9158	mp1 = mp->b_cont->b_cont;
9159	sia = (struct sioc_addrreq *)mp1->b_rptr;
9160	sin = (sin_t *)&sia->sa_addr;
9161
9162	/*
9163	 * Match addresses with a zero gateway field to avoid
9164	 * routes going through a router.
9165	 * Exclude broadcast and multicast addresses.
9166	 */
9167	switch (sin->sin_family) {
9168	case AF_INET6: {
9169		sin6_t *sin6 = (sin6_t *)sin;
9170
9171		if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
9172			ipaddr_t v4_addr;
9173
9174			IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
9175			    v4_addr);
9176			if (!CLASSD(v4_addr)) {
9177				ire = ire_route_lookup(v4_addr, 0, 0, 0,
9178				    NULL, NULL, zoneid, NULL,
9179				    MATCH_IRE_GW, ipst);
9180			}
9181		} else {
9182			in6_addr_t v6addr;
9183			in6_addr_t v6gw;
9184
9185			v6addr = sin6->sin6_addr;
9186			v6gw = ipv6_all_zeros;
9187			if (!IN6_IS_ADDR_MULTICAST(&v6addr)) {
9188				ire = ire_route_lookup_v6(&v6addr, 0,
9189				    &v6gw, 0, NULL, NULL, zoneid,
9190				    NULL, MATCH_IRE_GW, ipst);
9191			}
9192		}
9193		break;
9194	}
9195	case AF_INET: {
9196		ipaddr_t v4addr;
9197
9198		v4addr = sin->sin_addr.s_addr;
9199		if (!CLASSD(v4addr)) {
9200			ire = ire_route_lookup(v4addr, 0, 0, 0,
9201			    NULL, NULL, zoneid, NULL,
9202			    MATCH_IRE_GW, ipst);
9203		}
9204		break;
9205	}
9206	default:
9207		return (EAFNOSUPPORT);
9208	}
9209	sia->sa_res = 0;
9210	if (ire != NULL) {
9211		if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE|
9212		    IRE_LOCAL|IRE_LOOPBACK)) {
9213			sia->sa_res = 1;
9214		}
9215		ire_refrele(ire);
9216	}
9217	return (0);
9218}
9219
9220/*
9221 * TBD: implement when kernel maintaines a list of site prefixes.
9222 */
9223/* ARGSUSED */
9224int
9225ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9226    ip_ioctl_cmd_t *ipip, void *ifreq)
9227{
9228	return (ENXIO);
9229}
9230
9231/*
9232 * ARP IOCTLs.
9233 * How does IP get in the business of fronting ARP configuration/queries?
9234 * Well it's like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP)
9235 * are by tradition passed in through a datagram socket.  That lands in IP.
9236 * As it happens, this is just as well since the interface is quite crude in
9237 * that it passes in no information about protocol or hardware types, or
9238 * interface association.  After making the protocol assumption, IP is in
9239 * the position to look up the name of the ILL, which ARP will need, and
9240 * format a request that can be handled by ARP.  The request is passed up
9241 * stream to ARP, and the original IOCTL is completed by IP when ARP passes
9242 * back a response.  ARP supports its own set of more general IOCTLs, in
9243 * case anyone is interested.
9244 */
9245/* ARGSUSED */
9246int
9247ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9248    ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
9249{
9250	mblk_t *mp1;
9251	mblk_t *mp2;
9252	mblk_t *pending_mp;
9253	ipaddr_t ipaddr;
9254	area_t *area;
9255	struct iocblk *iocp;
9256	conn_t *connp;
9257	struct arpreq *ar;
9258	struct xarpreq *xar;
9259	int flags, alength;
9260	uchar_t *lladdr;
9261	ire_t *ire;
9262	ip_stack_t *ipst;
9263	ill_t *ill = ipif->ipif_ill;
9264	ill_t *proxy_ill = NULL;
9265	ipmp_arpent_t *entp = NULL;
9266	boolean_t if_arp_ioctl = B_FALSE;
9267	boolean_t proxyarp = B_FALSE;
9268
9269	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
9270	connp = Q_TO_CONN(q);
9271	ipst = connp->conn_netstack->netstack_ip;
9272
9273	if (ipip->ipi_cmd_type == XARP_CMD) {
9274		/* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */
9275		xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr;
9276		ar = NULL;
9277
9278		flags = xar->xarp_flags;
9279		lladdr = (uchar_t *)LLADDR(&xar->xarp_ha);
9280		if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0);
9281		/*
9282		 * Validate against user's link layer address length
9283		 * input and name and addr length limits.
9284		 */
9285		alength = ill->ill_phys_addr_length;
9286		if (ipip->ipi_cmd == SIOCSXARP) {
9287			if (alength != xar->xarp_ha.sdl_alen ||
9288			    (alength + xar->xarp_ha.sdl_nlen >
9289			    sizeof (xar->xarp_ha.sdl_data)))
9290				return (EINVAL);
9291		}
9292	} else {
9293		/* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */
9294		ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr;
9295		xar = NULL;
9296
9297		flags = ar->arp_flags;
9298		lladdr = (uchar_t *)ar->arp_ha.sa_data;
9299		/*
9300		 * Theoretically, the sa_family could tell us what link
9301		 * layer type this operation is trying to deal with. By
9302		 * common usage AF_UNSPEC means ethernet. We'll assume
9303		 * any attempt to use the SIOC?ARP ioctls is for ethernet,
9304		 * for now. Our new SIOC*XARP ioctls can be used more
9305		 * generally.
9306		 *
9307		 * If the underlying media happens to have a non 6 byte
9308		 * address, arp module will fail set/get, but the del
9309		 * operation will succeed.
9310		 */
9311		alength = 6;
9312		if ((ipip->ipi_cmd != SIOCDARP) &&
9313		    (alength != ill->ill_phys_addr_length)) {
9314			return (EINVAL);
9315		}
9316	}
9317
9318	ipaddr = sin->sin_addr.s_addr;
9319
9320	/*
9321	 * IPMP ARP special handling:
9322	 *
9323	 * 1. Since ARP mappings must appear consistent across the group,
9324	 *    prohibit changing ARP mappings on the underlying interfaces.
9325	 *
9326	 * 2. Since ARP mappings for IPMP data addresses are maintained by
9327	 *    IP itself, prohibit changing them.
9328	 *
9329	 * 3. For proxy ARP, use a functioning hardware address in the group,
9330	 *    provided one exists.  If one doesn't, just add the entry as-is;
9331	 *    ipmp_illgrp_refresh_arpent() will refresh it if things change.
9332	 */
9333	if (IS_UNDER_IPMP(ill)) {
9334		if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP)
9335			return (EPERM);
9336	}
9337	if (IS_IPMP(ill)) {
9338		ipmp_illgrp_t *illg = ill->ill_grp;
9339
9340		switch (ipip->ipi_cmd) {
9341		case SIOCSARP:
9342		case SIOCSXARP:
9343			proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength);
9344			if (proxy_ill != NULL) {
9345				proxyarp = B_TRUE;
9346				if (!ipmp_ill_is_active(proxy_ill))
9347					proxy_ill = ipmp_illgrp_next_ill(illg);
9348				if (proxy_ill != NULL)
9349					lladdr = proxy_ill->ill_phys_addr;
9350			}
9351			/* FALLTHRU */
9352		case SIOCDARP:
9353		case SIOCDXARP:
9354			ire = ire_ctable_lookup(ipaddr, 0, IRE_LOCAL, NULL,
9355			    ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
9356			if (ire != NULL) {
9357				ire_refrele(ire);
9358				return (EPERM);
9359			}
9360		}
9361	}
9362
9363	/*
9364	 * We are going to pass up to ARP a packet chain that looks
9365	 * like:
9366	 *
9367	 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK
9368	 *
9369	 * Get a copy of the original IOCTL mblk to head the chain,
9370	 * to be sent up (in mp1). Also get another copy to store
9371	 * in the ill_pending_mp list, for matching the response
9372	 * when it comes back from ARP.
9373	 */
9374	mp1 = copyb(mp);
9375	pending_mp = copymsg(mp);
9376	if (mp1 == NULL || pending_mp == NULL) {
9377		if (mp1 != NULL)
9378			freeb(mp1);
9379		if (pending_mp != NULL)
9380			inet_freemsg(pending_mp);
9381		return (ENOMEM);
9382	}
9383
9384	mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template,
9385	    (caddr_t)&ipaddr);
9386	if (mp2 == NULL) {
9387		freeb(mp1);
9388		inet_freemsg(pending_mp);
9389		return (ENOMEM);
9390	}
9391	/* Put together the chain. */
9392	mp1->b_cont = mp2;
9393	mp1->b_datap->db_type = M_IOCTL;
9394	mp2->b_cont = mp;
9395	mp2->b_datap->db_type = M_DATA;
9396
9397	iocp = (struct iocblk *)mp1->b_rptr;
9398
9399	/*
9400	 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an
9401	 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a
9402	 * cp_private field (or cp_rval on 32-bit systems) in place of the
9403	 * ioc_count field; set ioc_count to be correct.
9404	 */
9405	iocp->ioc_count = MBLKL(mp1->b_cont);
9406
9407	/*
9408	 * Set the proper command in the ARP message.
9409	 * Convert the SIOC{G|S|D}ARP calls into our
9410	 * AR_ENTRY_xxx calls.
9411	 */
9412	area = (area_t *)mp2->b_rptr;
9413	switch (iocp->ioc_cmd) {
9414	case SIOCDARP:
9415	case SIOCDXARP:
9416		/*
9417		 * We defer deleting the corresponding IRE until
9418		 * we return from arp.
9419		 */
9420		area->area_cmd = AR_ENTRY_DELETE;
9421		area->area_proto_mask_offset = 0;
9422		break;
9423	case SIOCGARP:
9424	case SIOCGXARP:
9425		area->area_cmd = AR_ENTRY_SQUERY;
9426		area->area_proto_mask_offset = 0;
9427		break;
9428	case SIOCSARP:
9429	case SIOCSXARP:
9430		/*
9431		 * Delete the corresponding ire to make sure IP will
9432		 * pick up any change from arp.
9433		 */
9434		if (!if_arp_ioctl) {
9435			(void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst);
9436		} else {
9437			ipif_t *ipif = ipif_get_next_ipif(NULL, ill);
9438			if (ipif != NULL) {
9439				(void) ip_ire_clookup_and_delete(ipaddr, ipif,
9440				    ipst);
9441				ipif_refrele(ipif);
9442			}
9443		}
9444		break;
9445	}
9446	iocp->ioc_cmd = area->area_cmd;
9447
9448	/*
9449	 * Fill in the rest of the ARP operation fields.
9450	 */
9451	area->area_hw_addr_length = alength;
9452	bcopy(lladdr, (char *)area + area->area_hw_addr_offset, alength);
9453
9454	/* Translate the flags. */
9455	if (flags & ATF_PERM)
9456		area->area_flags |= ACE_F_PERMANENT;
9457	if (flags & ATF_PUBL)
9458		area->area_flags |= ACE_F_PUBLISH;
9459	if (flags & ATF_AUTHORITY)
9460		area->area_flags |= ACE_F_AUTHORITY;
9461
9462	/*
9463	 * If this is a permanent AR_ENTRY_ADD on the IPMP interface, track it
9464	 * so that IP can update ARP as the active ills in the group change.
9465	 */
9466	if (IS_IPMP(ill) && area->area_cmd == AR_ENTRY_ADD &&
9467	    (area->area_flags & ACE_F_PERMANENT)) {
9468		entp = ipmp_illgrp_create_arpent(ill->ill_grp, mp2, proxyarp);
9469
9470		/*
9471		 * The second part of the conditional below handles a corner
9472		 * case: if this is proxy ARP and the IPMP group has no active
9473		 * interfaces, we can't send the request to ARP now since it
9474		 * won't be able to build an ACE.  So we return success and
9475		 * notify ARP about the proxy ARP entry once an interface
9476		 * becomes active.
9477		 */
9478		if (entp == NULL || (proxyarp && proxy_ill == NULL)) {
9479			mp2->b_cont = NULL;
9480			inet_freemsg(mp1);
9481			inet_freemsg(pending_mp);
9482			return (entp == NULL ? ENOMEM : 0);
9483		}
9484	}
9485
9486	/*
9487	 * Before sending 'mp' to ARP, we have to clear the b_next
9488	 * and b_prev. Otherwise if STREAMS encounters such a message
9489	 * in freemsg(), (because ARP can close any time) it can cause
9490	 * a panic. But mi code needs the b_next and b_prev values of
9491	 * mp->b_cont, to complete the ioctl. So we store it here
9492	 * in pending_mp->bcont, and restore it in ip_sioctl_iocack()
9493	 * when the response comes down from ARP.
9494	 */
9495	pending_mp->b_cont->b_next = mp->b_cont->b_next;
9496	pending_mp->b_cont->b_prev = mp->b_cont->b_prev;
9497	mp->b_cont->b_next = NULL;
9498	mp->b_cont->b_prev = NULL;
9499
9500	mutex_enter(&connp->conn_lock);
9501	mutex_enter(&ill->ill_lock);
9502	/* conn has not yet started closing, hence this can't fail */
9503	if (ipip->ipi_flags & IPI_WR) {
9504		VERIFY(ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp),
9505		    pending_mp, 0) != 0);
9506	} else {
9507		VERIFY(ill_pending_mp_add(ill, connp, pending_mp) != 0);
9508	}
9509	mutex_exit(&ill->ill_lock);
9510	mutex_exit(&connp->conn_lock);
9511
9512	/*
9513	 * Up to ARP it goes.  The response will come back in ip_wput() as an
9514	 * M_IOCACK, and will be handed to ip_sioctl_iocack() for completion.
9515	 */
9516	putnext(ill->ill_rq, mp1);
9517
9518	/*
9519	 * If we created an IPMP ARP entry, mark that we've notified ARP.
9520	 */
9521	if (entp != NULL)
9522		ipmp_illgrp_mark_arpent(ill->ill_grp, entp);
9523
9524	return (EINPROGRESS);
9525}
9526
9527/*
9528 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify
9529 * the associated sin and refhold and return the associated ipif via `ci'.
9530 */
9531int
9532ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
9533    cmd_info_t *ci, ipsq_func_t func)
9534{
9535	mblk_t	*mp1;
9536	int	err;
9537	sin_t	*sin;
9538	conn_t	*connp;
9539	ipif_t	*ipif;
9540	ire_t	*ire = NULL;
9541	ill_t	*ill = NULL;
9542	boolean_t exists;
9543	ip_stack_t *ipst;
9544	struct arpreq *ar;
9545	struct xarpreq *xar;
9546	struct sockaddr_dl *sdl;
9547
9548	/* ioctl comes down on a conn */
9549	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
9550	connp = Q_TO_CONN(q);
9551	if (connp->conn_af_isv6)
9552		return (ENXIO);
9553
9554	ipst = connp->conn_netstack->netstack_ip;
9555
9556	/* Verified in ip_wput_nondata */
9557	mp1 = mp->b_cont->b_cont;
9558
9559	if (ipip->ipi_cmd_type == XARP_CMD) {
9560		ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq));
9561		xar = (struct xarpreq *)mp1->b_rptr;
9562		sin = (sin_t *)&xar->xarp_pa;
9563		sdl = &xar->xarp_ha;
9564
9565		if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET)
9566			return (ENXIO);
9567		if (sdl->sdl_nlen >= LIFNAMSIZ)
9568			return (EINVAL);
9569	} else {
9570		ASSERT(ipip->ipi_cmd_type == ARP_CMD);
9571		ASSERT(MBLKL(mp1) >= sizeof (struct arpreq));
9572		ar = (struct arpreq *)mp1->b_rptr;
9573		sin = (sin_t *)&ar->arp_pa;
9574	}
9575
9576	if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) {
9577		ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen,
9578		    B_FALSE, &exists, B_FALSE, ALL_ZONES, CONNP_TO_WQ(connp),
9579		    mp, func, &err, ipst);
9580		if (ipif == NULL)
9581			return (err);
9582		if (ipif->ipif_id != 0) {
9583			ipif_refrele(ipif);
9584			return (ENXIO);
9585		}
9586	} else {
9587		/*
9588		 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen
9589		 * of 0: use the IP address to find the ipif.  If the IP
9590		 * address is an IPMP test address, ire_ftable_lookup() will
9591		 * find the wrong ill, so we first do an ipif_lookup_addr().
9592		 */
9593		ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES,
9594		    CONNP_TO_WQ(connp), mp, func, &err, ipst);
9595		if (ipif == NULL) {
9596			ire = ire_ftable_lookup(sin->sin_addr.s_addr, 0, 0,
9597			    IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, NULL,
9598			    MATCH_IRE_TYPE, ipst);
9599			if (ire == NULL || ((ill = ire_to_ill(ire)) == NULL)) {
9600				if (ire != NULL)
9601					ire_refrele(ire);
9602				return (ENXIO);
9603			}
9604			ipif = ill->ill_ipif;
9605			ipif_refhold(ipif);
9606			ire_refrele(ire);
9607		}
9608	}
9609
9610	if (ipif->ipif_net_type != IRE_IF_RESOLVER) {
9611		ipif_refrele(ipif);
9612		return (ENXIO);
9613	}
9614
9615	ci->ci_sin = sin;
9616	ci->ci_ipif = ipif;
9617	return (0);
9618}
9619
9620/*
9621 * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the
9622 * value of `ioccmd'.  While an illgrp is linked to an ipmp_grp_t, it is
9623 * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it
9624 * up and thus an ill can join that illgrp.
9625 *
9626 * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than
9627 * open()/close() primarily because close() is not allowed to fail or block
9628 * forever.  On the other hand, I_PUNLINK *can* fail, and there's no reason
9629 * why anyone should ever need to I_PUNLINK an in-use IPMP stream.  To ensure
9630 * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the
9631 * I_PUNLINK) we defer linking to I_PLINK.  Separately, we also fail attempts
9632 * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent
9633 * state if I_UNLINK didn't occur.
9634 *
9635 * Note that for each plumb/unplumb operation, we may end up here more than
9636 * once because of the way ifconfig works.  However, it's OK to link the same
9637 * illgrp more than once, or unlink an illgrp that's already unlinked.
9638 */
9639static int
9640ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd)
9641{
9642	int err;
9643	ip_stack_t *ipst = ill->ill_ipst;
9644
9645	ASSERT(IS_IPMP(ill));
9646	ASSERT(IAM_WRITER_ILL(ill));
9647
9648	switch (ioccmd) {
9649	case I_LINK:
9650		return (ENOTSUP);
9651
9652	case I_PLINK:
9653		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
9654		ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp);
9655		rw_exit(&ipst->ips_ipmp_lock);
9656		break;
9657
9658	case I_PUNLINK:
9659		/*
9660		 * Require all UP ipifs be brought down prior to unlinking the
9661		 * illgrp so any associated IREs (and other state) is torched.
9662		 */
9663		if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0)
9664			return (EBUSY);
9665
9666		/*
9667		 * NOTE: We hold ipmp_lock across the unlink to prevent a race
9668		 * with an SIOCSLIFGROUPNAME request from an ill trying to
9669		 * join this group.  Specifically: ills trying to join grab
9670		 * ipmp_lock and bump a "pending join" counter checked by
9671		 * ipmp_illgrp_unlink_grp().  During the unlink no new pending
9672		 * joins can occur (since we have ipmp_lock).  Once we drop
9673		 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not
9674		 * find the illgrp (since we unlinked it) and will return
9675		 * EAFNOSUPPORT.  This will then take them back through the
9676		 * IPMP meta-interface plumbing logic in ifconfig, and thus
9677		 * back through I_PLINK above.
9678		 */
9679		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
9680		err = ipmp_illgrp_unlink_grp(ill->ill_grp);
9681		rw_exit(&ipst->ips_ipmp_lock);
9682		return (err);
9683	default:
9684		break;
9685	}
9686	return (0);
9687}
9688
9689/*
9690 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also
9691 * atomically set/clear the muxids. Also complete the ioctl by acking or
9692 * naking it.  Note that the code is structured such that the link type,
9693 * whether it's persistent or not, is treated equally.  ifconfig(1M) and
9694 * its clones use the persistent link, while pppd(1M) and perhaps many
9695 * other daemons may use non-persistent link.  When combined with some
9696 * ill_t states, linking and unlinking lower streams may be used as
9697 * indicators of dynamic re-plumbing events [see PSARC/1999/348].
9698 */
9699/* ARGSUSED */
9700void
9701ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
9702{
9703	mblk_t		*mp1, *mp2;
9704	struct linkblk	*li;
9705	struct ipmx_s	*ipmxp;
9706	ill_t		*ill;
9707	int		ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd;
9708	int		err = 0;
9709	boolean_t	entered_ipsq = B_FALSE;
9710	boolean_t	islink;
9711	ip_stack_t	*ipst;
9712
9713	if (CONN_Q(q))
9714		ipst = CONNQ_TO_IPST(q);
9715	else
9716		ipst = ILLQ_TO_IPST(q);
9717
9718	ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK ||
9719	    ioccmd == I_LINK || ioccmd == I_UNLINK);
9720
9721	islink = (ioccmd == I_PLINK || ioccmd == I_LINK);
9722
9723	mp1 = mp->b_cont;	/* This is the linkblk info */
9724	li = (struct linkblk *)mp1->b_rptr;
9725
9726	/*
9727	 * ARP has added this special mblk, and the utility is asking us
9728	 * to perform consistency checks, and also atomically set the
9729	 * muxid. Ifconfig is an example.  It achieves this by using
9730	 * /dev/arp as the mux to plink the arp stream, and pushes arp on
9731	 * to /dev/udp[6] stream for use as the mux when plinking the IP
9732	 * stream. SIOCSLIFMUXID is not required.  See ifconfig.c, arp.c
9733	 * and other comments in this routine for more details.
9734	 */
9735	mp2 = mp1->b_cont;	/* This is added by ARP */
9736
9737	/*
9738	 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than
9739	 * ifconfig which didn't push ARP on top of the dummy mux, we won't
9740	 * get the special mblk above.  For backward compatibility, we
9741	 * request ip_sioctl_plink_ipmod() to skip the consistency checks.
9742	 * The utility will use SIOCSLIFMUXID to store the muxids.  This is
9743	 * not atomic, and can leave the streams unplumbable if the utility
9744	 * is interrupted before it does the SIOCSLIFMUXID.
9745	 */
9746	if (mp2 == NULL) {
9747		err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE);
9748		if (err == EINPROGRESS)
9749			return;
9750		goto done;
9751	}
9752
9753	/*
9754	 * This is an I_{P}LINK sent down by ifconfig through the ARP module;
9755	 * ARP has appended this last mblk to tell us whether the lower stream
9756	 * is an arp-dev stream or an IP module stream.
9757	 */
9758	ipmxp = (struct ipmx_s *)mp2->b_rptr;
9759	if (ipmxp->ipmx_arpdev_stream) {
9760		/*
9761		 * The lower stream is the arp-dev stream.
9762		 */
9763		ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE,
9764		    q, mp, ip_sioctl_plink, &err, NULL, ipst);
9765		if (ill == NULL) {
9766			if (err == EINPROGRESS)
9767				return;
9768			err = EINVAL;
9769			goto done;
9770		}
9771
9772		if (ipsq == NULL) {
9773			ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink,
9774			    NEW_OP, B_FALSE);
9775			if (ipsq == NULL) {
9776				ill_refrele(ill);
9777				return;
9778			}
9779			entered_ipsq = B_TRUE;
9780		}
9781		ASSERT(IAM_WRITER_ILL(ill));
9782		ill_refrele(ill);
9783
9784		/*
9785		 * To ensure consistency between IP and ARP, the following
9786		 * LIFO scheme is used in plink/punlink. (IP first, ARP last).
9787		 * This is because the muxid's are stored in the IP stream on
9788		 * the ill.
9789		 *
9790		 * I_{P}LINK: ifconfig plinks the IP stream before plinking
9791		 * the ARP stream. On an arp-dev stream, IP checks that it is
9792		 * not yet plinked, and it also checks that the corresponding
9793		 * IP stream is already plinked.
9794		 *
9795		 * I_{P}UNLINK: ifconfig punlinks the ARP stream before
9796		 * punlinking the IP stream. IP does not allow punlink of the
9797		 * IP stream unless the arp stream has been punlinked.
9798		 */
9799		if ((islink &&
9800		    (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) ||
9801		    (!islink && ill->ill_arp_muxid != li->l_index)) {
9802			err = EINVAL;
9803			goto done;
9804		}
9805
9806		if (IS_IPMP(ill) &&
9807		    (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0)
9808			goto done;
9809
9810		ill->ill_arp_muxid = islink ? li->l_index : 0;
9811	} else {
9812		/*
9813		 * The lower stream is probably an IP module stream.  Do
9814		 * consistency checking.
9815		 */
9816		err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE);
9817		if (err == EINPROGRESS)
9818			return;
9819	}
9820done:
9821	if (err == 0)
9822		miocack(q, mp, 0, 0);
9823	else
9824		miocnak(q, mp, 0, err);
9825
9826	/* Conn was refheld in ip_sioctl_copyin_setup */
9827	if (CONN_Q(q))
9828		CONN_OPER_PENDING_DONE(Q_TO_CONN(q));
9829	if (entered_ipsq)
9830		ipsq_exit(ipsq);
9831}
9832
9833/*
9834 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to
9835 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP
9836 * module stream).  If `doconsist' is set, then do the extended consistency
9837 * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here.
9838 * Returns zero on success, EINPROGRESS if the operation is still pending, or
9839 * an error code on failure.
9840 */
9841static int
9842ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd,
9843    struct linkblk *li, boolean_t doconsist)
9844{
9845	int		err = 0;
9846	ill_t  		*ill;
9847	queue_t		*ipwq, *dwq;
9848	const char	*name;
9849	struct qinit	*qinfo;
9850	boolean_t	islink = (ioccmd == I_PLINK || ioccmd == I_LINK);
9851	boolean_t	entered_ipsq = B_FALSE;
9852
9853	/*
9854	 * Walk the lower stream to verify it's the IP module stream.
9855	 * The IP module is identified by its name, wput function,
9856	 * and non-NULL q_next.  STREAMS ensures that the lower stream
9857	 * (li->l_qbot) will not vanish until this ioctl completes.
9858	 */
9859	for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) {
9860		qinfo = ipwq->q_qinfo;
9861		name = qinfo->qi_minfo->mi_idname;
9862		if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 &&
9863		    qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) {
9864			break;
9865		}
9866	}
9867
9868	/*
9869	 * If this isn't an IP module stream, bail.
9870	 */
9871	if (ipwq == NULL)
9872		return (0);
9873
9874	ill = ipwq->q_ptr;
9875	ASSERT(ill != NULL);
9876
9877	if (ipsq == NULL) {
9878		ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink,
9879		    NEW_OP, B_FALSE);
9880		if (ipsq == NULL)
9881			return (EINPROGRESS);
9882		entered_ipsq = B_TRUE;
9883	}
9884	ASSERT(IAM_WRITER_ILL(ill));
9885
9886	if (doconsist) {
9887		/*
9888		 * Consistency checking requires that I_{P}LINK occurs
9889		 * prior to setting ill_ip_muxid, and that I_{P}UNLINK
9890		 * occurs prior to clearing ill_arp_muxid.
9891		 */
9892		if ((islink && ill->ill_ip_muxid != 0) ||
9893		    (!islink && ill->ill_arp_muxid != 0)) {
9894			err = EINVAL;
9895			goto done;
9896		}
9897	}
9898
9899	if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0)
9900		goto done;
9901
9902	/*
9903	 * As part of I_{P}LINKing, stash the number of downstream modules and
9904	 * the read queue of the module immediately below IP in the ill.
9905	 * These are used during the capability negotiation below.
9906	 */
9907	ill->ill_lmod_rq = NULL;
9908	ill->ill_lmod_cnt = 0;
9909	if (islink && ((dwq = ipwq->q_next) != NULL)) {
9910		ill->ill_lmod_rq = RD(dwq);
9911		for (; dwq != NULL; dwq = dwq->q_next)
9912			ill->ill_lmod_cnt++;
9913	}
9914
9915	if (doconsist)
9916		ill->ill_ip_muxid = islink ? li->l_index : 0;
9917
9918	/*
9919	 * Mark the ipsq busy until the capability operations initiated below
9920	 * complete. The PLINK/UNLINK ioctl itself completes when our caller
9921	 * returns, but the capability operation may complete asynchronously
9922	 * much later.
9923	 */
9924	ipsq_current_start(ipsq, ill->ill_ipif, ioccmd);
9925	/*
9926	 * If there's at least one up ipif on this ill, then we're bound to
9927	 * the underlying driver via DLPI.  In that case, renegotiate
9928	 * capabilities to account for any possible change in modules
9929	 * interposed between IP and the driver.
9930	 */
9931	if (ill->ill_ipif_up_count > 0) {
9932		if (islink)
9933			ill_capability_probe(ill);
9934		else
9935			ill_capability_reset(ill, B_FALSE);
9936	}
9937	ipsq_current_finish(ipsq);
9938done:
9939	if (entered_ipsq)
9940		ipsq_exit(ipsq);
9941
9942	return (err);
9943}
9944
9945/*
9946 * Search the ioctl command in the ioctl tables and return a pointer
9947 * to the ioctl command information. The ioctl command tables are
9948 * static and fully populated at compile time.
9949 */
9950ip_ioctl_cmd_t *
9951ip_sioctl_lookup(int ioc_cmd)
9952{
9953	int index;
9954	ip_ioctl_cmd_t *ipip;
9955	ip_ioctl_cmd_t *ipip_end;
9956
9957	if (ioc_cmd == IPI_DONTCARE)
9958		return (NULL);
9959
9960	/*
9961	 * Do a 2 step search. First search the indexed table
9962	 * based on the least significant byte of the ioctl cmd.
9963	 * If we don't find a match, then search the misc table
9964	 * serially.
9965	 */
9966	index = ioc_cmd & 0xFF;
9967	if (index < ip_ndx_ioctl_count) {
9968		ipip = &ip_ndx_ioctl_table[index];
9969		if (ipip->ipi_cmd == ioc_cmd) {
9970			/* Found a match in the ndx table */
9971			return (ipip);
9972		}
9973	}
9974
9975	/* Search the misc table */
9976	ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count];
9977	for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) {
9978		if (ipip->ipi_cmd == ioc_cmd)
9979			/* Found a match in the misc table */
9980			return (ipip);
9981	}
9982
9983	return (NULL);
9984}
9985
9986/*
9987 * Wrapper function for resuming deferred ioctl processing
9988 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER,
9989 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently.
9990 */
9991/* ARGSUSED */
9992void
9993ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp,
9994    void *dummy_arg)
9995{
9996	ip_sioctl_copyin_setup(q, mp);
9997}
9998
9999/*
10000 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message
10001 * that arrives.  Most of the IOCTLs are "socket" IOCTLs which we handle
10002 * in either I_STR or TRANSPARENT form, using the mi_copy facility.
10003 * We establish here the size of the block to be copied in.  mi_copyin
10004 * arranges for this to happen, an processing continues in ip_wput with
10005 * an M_IOCDATA message.
10006 */
10007void
10008ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp)
10009{
10010	int	copyin_size;
10011	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
10012	ip_ioctl_cmd_t *ipip;
10013	cred_t *cr;
10014	ip_stack_t	*ipst;
10015
10016	if (CONN_Q(q))
10017		ipst = CONNQ_TO_IPST(q);
10018	else
10019		ipst = ILLQ_TO_IPST(q);
10020
10021	ipip = ip_sioctl_lookup(iocp->ioc_cmd);
10022	if (ipip == NULL) {
10023		/*
10024		 * The ioctl is not one we understand or own.
10025		 * Pass it along to be processed down stream,
10026		 * if this is a module instance of IP, else nak
10027		 * the ioctl.
10028		 */
10029		if (q->q_next == NULL) {
10030			goto nak;
10031		} else {
10032			putnext(q, mp);
10033			return;
10034		}
10035	}
10036
10037	/*
10038	 * If this is deferred, then we will do all the checks when we
10039	 * come back.
10040	 */
10041	if ((iocp->ioc_cmd == SIOCGDSTINFO ||
10042	    iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) {
10043		ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume);
10044		return;
10045	}
10046
10047	/*
10048	 * Only allow a very small subset of IP ioctls on this stream if
10049	 * IP is a module and not a driver. Allowing ioctls to be processed
10050	 * in this case may cause assert failures or data corruption.
10051	 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few
10052	 * ioctls allowed on an IP module stream, after which this stream
10053	 * normally becomes a multiplexor (at which time the stream head
10054	 * will fail all ioctls).
10055	 */
10056	if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
10057		if (ipip->ipi_flags & IPI_PASS_DOWN) {
10058			/*
10059			 * Pass common Streams ioctls which the IP
10060			 * module does not own or consume along to
10061			 * be processed down stream.
10062			 */
10063			putnext(q, mp);
10064			return;
10065		} else {
10066			goto nak;
10067		}
10068	}
10069
10070	/* Make sure we have ioctl data to process. */
10071	if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT))
10072		goto nak;
10073
10074	/*
10075	 * Prefer dblk credential over ioctl credential; some synthesized
10076	 * ioctls have kcred set because there's no way to crhold()
10077	 * a credential in some contexts.  (ioc_cr is not crfree() by
10078	 * the framework; the caller of ioctl needs to hold the reference
10079	 * for the duration of the call).
10080	 */
10081	cr = msg_getcred(mp, NULL);
10082	if (cr == NULL)
10083		cr = iocp->ioc_cr;
10084
10085	/* Make sure normal users don't send down privileged ioctls */
10086	if ((ipip->ipi_flags & IPI_PRIV) &&
10087	    (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) {
10088		/* We checked the privilege earlier but log it here */
10089		miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE));
10090		return;
10091	}
10092
10093	/*
10094	 * The ioctl command tables can only encode fixed length
10095	 * ioctl data. If the length is variable, the table will
10096	 * encode the length as zero. Such special cases are handled
10097	 * below in the switch.
10098	 */
10099	if (ipip->ipi_copyin_size != 0) {
10100		mi_copyin(q, mp, NULL, ipip->ipi_copyin_size);
10101		return;
10102	}
10103
10104	switch (iocp->ioc_cmd) {
10105	case O_SIOCGIFCONF:
10106	case SIOCGIFCONF:
10107		/*
10108		 * This IOCTL is hilarious.  See comments in
10109		 * ip_sioctl_get_ifconf for the story.
10110		 */
10111		if (iocp->ioc_count == TRANSPARENT)
10112			copyin_size = SIZEOF_STRUCT(ifconf,
10113			    iocp->ioc_flag);
10114		else
10115			copyin_size = iocp->ioc_count;
10116		mi_copyin(q, mp, NULL, copyin_size);
10117		return;
10118
10119	case O_SIOCGLIFCONF:
10120	case SIOCGLIFCONF:
10121		copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag);
10122		mi_copyin(q, mp, NULL, copyin_size);
10123		return;
10124
10125	case SIOCGLIFSRCOF:
10126		copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag);
10127		mi_copyin(q, mp, NULL, copyin_size);
10128		return;
10129	case SIOCGIP6ADDRPOLICY:
10130		ip_sioctl_ip6addrpolicy(q, mp);
10131		ip6_asp_table_refrele(ipst);
10132		return;
10133
10134	case SIOCSIP6ADDRPOLICY:
10135		ip_sioctl_ip6addrpolicy(q, mp);
10136		return;
10137
10138	case SIOCGDSTINFO:
10139		ip_sioctl_dstinfo(q, mp);
10140		ip6_asp_table_refrele(ipst);
10141		return;
10142
10143	case I_PLINK:
10144	case I_PUNLINK:
10145	case I_LINK:
10146	case I_UNLINK:
10147		/*
10148		 * We treat non-persistent link similarly as the persistent
10149		 * link case, in terms of plumbing/unplumbing, as well as
10150		 * dynamic re-plumbing events indicator.  See comments
10151		 * in ip_sioctl_plink() for more.
10152		 *
10153		 * Request can be enqueued in the 'ipsq' while waiting
10154		 * to become exclusive. So bump up the conn ref.
10155		 */
10156		if (CONN_Q(q))
10157			CONN_INC_REF(Q_TO_CONN(q));
10158		ip_sioctl_plink(NULL, q, mp, NULL);
10159		return;
10160
10161	case ND_GET:
10162	case ND_SET:
10163		/*
10164		 * Use of the nd table requires holding the reader lock.
10165		 * Modifying the nd table thru nd_load/nd_unload requires
10166		 * the writer lock.
10167		 */
10168		rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER);
10169		if (nd_getset(q, ipst->ips_ip_g_nd, mp)) {
10170			rw_exit(&ipst->ips_ip_g_nd_lock);
10171
10172			if (iocp->ioc_error)
10173				iocp->ioc_count = 0;
10174			mp->b_datap->db_type = M_IOCACK;
10175			qreply(q, mp);
10176			return;
10177		}
10178		rw_exit(&ipst->ips_ip_g_nd_lock);
10179		/*
10180		 * We don't understand this subioctl of ND_GET / ND_SET.
10181		 * Maybe intended for some driver / module below us
10182		 */
10183		if (q->q_next) {
10184			putnext(q, mp);
10185		} else {
10186			iocp->ioc_error = ENOENT;
10187			mp->b_datap->db_type = M_IOCNAK;
10188			iocp->ioc_count = 0;
10189			qreply(q, mp);
10190		}
10191		return;
10192
10193	case IP_IOCTL:
10194		ip_wput_ioctl(q, mp);
10195		return;
10196
10197	case SIOCILB:
10198		/* The ioctl length varies depending on the ILB command. */
10199		copyin_size = iocp->ioc_count;
10200		if (copyin_size < sizeof (ilb_cmd_t))
10201			goto nak;
10202		mi_copyin(q, mp, NULL, copyin_size);
10203		return;
10204
10205	default:
10206		cmn_err(CE_PANIC, "should not happen ");
10207	}
10208nak:
10209	if (mp->b_cont != NULL) {
10210		freemsg(mp->b_cont);
10211		mp->b_cont = NULL;
10212	}
10213	iocp->ioc_error = EINVAL;
10214	mp->b_datap->db_type = M_IOCNAK;
10215	iocp->ioc_count = 0;
10216	qreply(q, mp);
10217}
10218
10219/* ip_wput hands off ARP IOCTL responses to us */
10220/* ARGSUSED3 */
10221void
10222ip_sioctl_iocack(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
10223{
10224	struct arpreq *ar;
10225	struct xarpreq *xar;
10226	area_t	*area;
10227	mblk_t	*area_mp;
10228	struct iocblk *iocp;
10229	mblk_t	*orig_ioc_mp, *tmp;
10230	struct iocblk	*orig_iocp;
10231	ill_t *ill;
10232	conn_t *connp = NULL;
10233	mblk_t *pending_mp;
10234	int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE;
10235	int *flagsp;
10236	char *storage = NULL;
10237	sin_t *sin;
10238	ipaddr_t addr;
10239	int err;
10240	ip_stack_t *ipst;
10241
10242	ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq));
10243	ill = q->q_ptr;
10244	ASSERT(ill != NULL);
10245	ipst = ill->ill_ipst;
10246
10247	/*
10248	 * We should get back from ARP a packet chain that looks like:
10249	 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK
10250	 */
10251	if (!(area_mp = mp->b_cont) ||
10252	    (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) ||
10253	    !(orig_ioc_mp = area_mp->b_cont) ||
10254	    !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) {
10255		freemsg(mp);
10256		return;
10257	}
10258
10259	orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr;
10260
10261	tmp = (orig_ioc_mp->b_cont)->b_cont;
10262	if ((orig_iocp->ioc_cmd == SIOCGXARP) ||
10263	    (orig_iocp->ioc_cmd == SIOCSXARP) ||
10264	    (orig_iocp->ioc_cmd == SIOCDXARP)) {
10265		x_arp_ioctl = B_TRUE;
10266		xar = (struct xarpreq *)tmp->b_rptr;
10267		sin = (sin_t *)&xar->xarp_pa;
10268		flagsp = &xar->xarp_flags;
10269		storage = xar->xarp_ha.sdl_data;
10270		if (xar->xarp_ha.sdl_nlen != 0)
10271			ifx_arp_ioctl = B_TRUE;
10272	} else {
10273		ar = (struct arpreq *)tmp->b_rptr;
10274		sin = (sin_t *)&ar->arp_pa;
10275		flagsp = &ar->arp_flags;
10276		storage = ar->arp_ha.sa_data;
10277	}
10278
10279	iocp = (struct iocblk *)mp->b_rptr;
10280
10281	/*
10282	 * Find the pending message; if we're exclusive, it'll be on our IPSQ.
10283	 * Otherwise, we can find it from our ioc_id.
10284	 */
10285	if (ipsq != NULL)
10286		pending_mp = ipsq_pending_mp_get(ipsq, &connp);
10287	else
10288		pending_mp = ill_pending_mp_get(ill, &connp, iocp->ioc_id);
10289
10290	if (pending_mp == NULL) {
10291		ASSERT(connp == NULL);
10292		inet_freemsg(mp);
10293		return;
10294	}
10295	ASSERT(connp != NULL);
10296	q = CONNP_TO_WQ(connp);
10297
10298	/* Uncouple the internally generated IOCTL from the original one */
10299	area = (area_t *)area_mp->b_rptr;
10300	area_mp->b_cont = NULL;
10301
10302	/*
10303	 * Restore the b_next and b_prev used by mi code. This is needed
10304	 * to complete the ioctl using mi* functions. We stored them in
10305	 * the pending mp prior to sending the request to ARP.
10306	 */
10307	orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next;
10308	orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev;
10309	inet_freemsg(pending_mp);
10310
10311	/*
10312	 * We're done if there was an error or if this is not an SIOCG{X}ARP
10313	 * Catch the case where there is an IRE_CACHE by no entry in the
10314	 * arp table.
10315	 */
10316	addr = sin->sin_addr.s_addr;
10317	if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) {
10318		ire_t			*ire;
10319		dl_unitdata_req_t	*dlup;
10320		mblk_t			*llmp;
10321		int			addr_len;
10322		ill_t			*ipsqill = NULL;
10323
10324		if (ifx_arp_ioctl) {
10325			/*
10326			 * There's no need to lookup the ill, since
10327			 * we've already done that when we started
10328			 * processing the ioctl and sent the message
10329			 * to ARP on that ill.  So use the ill that
10330			 * is stored in q->q_ptr.
10331			 */
10332			ipsqill = ill;
10333			ire = ire_ctable_lookup(addr, 0, IRE_CACHE,
10334			    ipsqill->ill_ipif, ALL_ZONES,
10335			    NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst);
10336		} else {
10337			ire = ire_ctable_lookup(addr, 0, IRE_CACHE,
10338			    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
10339			if (ire != NULL)
10340				ipsqill = ire_to_ill(ire);
10341		}
10342
10343		if ((x_arp_ioctl) && (ipsqill != NULL))
10344			storage += ill_xarp_info(&xar->xarp_ha, ipsqill);
10345
10346		if (ire != NULL) {
10347			/*
10348			 * Since the ire obtained from cachetable is used for
10349			 * mac addr copying below, treat an incomplete ire as if
10350			 * as if we never found it.
10351			 */
10352			if (ire->ire_nce != NULL &&
10353			    ire->ire_nce->nce_state != ND_REACHABLE) {
10354				ire_refrele(ire);
10355				ire = NULL;
10356				ipsqill = NULL;
10357				goto errack;
10358			}
10359			*flagsp = ATF_INUSE;
10360			llmp = (ire->ire_nce != NULL ?
10361			    ire->ire_nce->nce_res_mp : NULL);
10362			if (llmp != NULL && ipsqill != NULL) {
10363				uchar_t *macaddr;
10364
10365				addr_len = ipsqill->ill_phys_addr_length;
10366				if (x_arp_ioctl && ((addr_len +
10367				    ipsqill->ill_name_length) >
10368				    sizeof (xar->xarp_ha.sdl_data))) {
10369					ire_refrele(ire);
10370					freemsg(mp);
10371					ip_ioctl_finish(q, orig_ioc_mp,
10372					    EINVAL, NO_COPYOUT, ipsq);
10373					return;
10374				}
10375				*flagsp |= ATF_COM;
10376				dlup = (dl_unitdata_req_t *)llmp->b_rptr;
10377				if (ipsqill->ill_sap_length < 0)
10378					macaddr = llmp->b_rptr +
10379					    dlup->dl_dest_addr_offset;
10380				else
10381					macaddr = llmp->b_rptr +
10382					    dlup->dl_dest_addr_offset +
10383					    ipsqill->ill_sap_length;
10384				/*
10385				 * For SIOCGARP, MAC address length
10386				 * validation has already been done
10387				 * before the ioctl was issued to ARP to
10388				 * allow it to progress only on 6 byte
10389				 * addressable (ethernet like) media. Thus
10390				 * the mac address copying can not overwrite
10391				 * the sa_data area below.
10392				 */
10393				bcopy(macaddr, storage, addr_len);
10394			}
10395			/* Ditch the internal IOCTL. */
10396			freemsg(mp);
10397			ire_refrele(ire);
10398			ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, ipsq);
10399			return;
10400		}
10401	}
10402
10403	/*
10404	 * If this was a failed AR_ENTRY_ADD or a successful AR_ENTRY_DELETE
10405	 * on the IPMP meta-interface, ensure any ARP entries added in
10406	 * ip_sioctl_arp() are deleted.
10407	 */
10408	if (IS_IPMP(ill) &&
10409	    ((iocp->ioc_error != 0 && iocp->ioc_cmd == AR_ENTRY_ADD) ||
10410	    ((iocp->ioc_error == 0 && iocp->ioc_cmd == AR_ENTRY_DELETE)))) {
10411		ipmp_illgrp_t *illg = ill->ill_grp;
10412		ipmp_arpent_t *entp;
10413
10414		if ((entp = ipmp_illgrp_lookup_arpent(illg, &addr)) != NULL)
10415			ipmp_illgrp_destroy_arpent(illg, entp);
10416	}
10417
10418	/*
10419	 * Delete the coresponding IRE_CACHE if any.
10420	 * Reset the error if there was one (in case there was no entry
10421	 * in arp.)
10422	 */
10423	if (iocp->ioc_cmd == AR_ENTRY_DELETE) {
10424		ipif_t *ipintf = NULL;
10425
10426		if (ifx_arp_ioctl) {
10427			/*
10428			 * There's no need to lookup the ill, since
10429			 * we've already done that when we started
10430			 * processing the ioctl and sent the message
10431			 * to ARP on that ill.  So use the ill that
10432			 * is stored in q->q_ptr.
10433			 */
10434			ipintf = ill->ill_ipif;
10435		}
10436		if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) {
10437			/*
10438			 * The address in "addr" may be an entry for a
10439			 * router. If that's true, then any off-net
10440			 * IRE_CACHE entries that go through the router
10441			 * with address "addr" must be clobbered. Use
10442			 * ire_walk to achieve this goal.
10443			 */
10444			if (ifx_arp_ioctl)
10445				ire_walk_ill_v4(MATCH_IRE_ILL, 0,
10446				    ire_delete_cache_gw, (char *)&addr, ill);
10447			else
10448				ire_walk_v4(ire_delete_cache_gw, (char *)&addr,
10449				    ALL_ZONES, ipst);
10450			iocp->ioc_error = 0;
10451		}
10452	}
10453errack:
10454	if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) {
10455		err = iocp->ioc_error;
10456		freemsg(mp);
10457		ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, ipsq);
10458		return;
10459	}
10460
10461	/*
10462	 * Completion of an SIOCG{X}ARP.  Translate the information from
10463	 * the area_t into the struct {x}arpreq.
10464	 */
10465	if (x_arp_ioctl) {
10466		storage += ill_xarp_info(&xar->xarp_ha, ill);
10467		if ((ill->ill_phys_addr_length + ill->ill_name_length) >
10468		    sizeof (xar->xarp_ha.sdl_data)) {
10469			freemsg(mp);
10470			ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT,
10471			    ipsq);
10472			return;
10473		}
10474	}
10475	*flagsp = ATF_INUSE;
10476	if (area->area_flags & ACE_F_PERMANENT)
10477		*flagsp |= ATF_PERM;
10478	if (area->area_flags & ACE_F_PUBLISH)
10479		*flagsp |= ATF_PUBL;
10480	if (area->area_flags & ACE_F_AUTHORITY)
10481		*flagsp |= ATF_AUTHORITY;
10482	if (area->area_hw_addr_length != 0) {
10483		*flagsp |= ATF_COM;
10484		/*
10485		 * For SIOCGARP, MAC address length validation has
10486		 * already been done before the ioctl was issued to ARP
10487		 * to allow it to progress only on 6 byte addressable
10488		 * (ethernet like) media. Thus the mac address copying
10489		 * can not overwrite the sa_data area below.
10490		 */
10491		bcopy((char *)area + area->area_hw_addr_offset,
10492		    storage, area->area_hw_addr_length);
10493	}
10494
10495	/* Ditch the internal IOCTL. */
10496	freemsg(mp);
10497	/* Complete the original. */
10498	ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, ipsq);
10499}
10500
10501/*
10502 * Create a new logical interface. If ipif_id is zero (i.e. not a logical
10503 * interface) create the next available logical interface for this
10504 * physical interface.
10505 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an
10506 * ipif with the specified name.
10507 *
10508 * If the address family is not AF_UNSPEC then set the address as well.
10509 *
10510 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout)
10511 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer.
10512 *
10513 * Executed as a writer on the ill.
10514 * So no lock is needed to traverse the ipif chain, or examine the
10515 * phyint flags.
10516 */
10517/* ARGSUSED */
10518int
10519ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
10520    ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
10521{
10522	mblk_t	*mp1;
10523	struct lifreq *lifr;
10524	boolean_t	isv6;
10525	boolean_t	exists;
10526	char 	*name;
10527	char	*endp;
10528	char	*cp;
10529	int	namelen;
10530	ipif_t	*ipif;
10531	long	id;
10532	ipsq_t	*ipsq;
10533	ill_t	*ill;
10534	sin_t	*sin;
10535	int	err = 0;
10536	boolean_t found_sep = B_FALSE;
10537	conn_t	*connp;
10538	zoneid_t zoneid;
10539	ip_stack_t *ipst = CONNQ_TO_IPST(q);
10540
10541	ASSERT(q->q_next == NULL);
10542	ip1dbg(("ip_sioctl_addif\n"));
10543	/* Existence of mp1 has been checked in ip_wput_nondata */
10544	mp1 = mp->b_cont->b_cont;
10545	/*
10546	 * Null terminate the string to protect against buffer
10547	 * overrun. String was generated by user code and may not
10548	 * be trusted.
10549	 */
10550	lifr = (struct lifreq *)mp1->b_rptr;
10551	lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
10552	name = lifr->lifr_name;
10553	ASSERT(CONN_Q(q));
10554	connp = Q_TO_CONN(q);
10555	isv6 = connp->conn_af_isv6;
10556	zoneid = connp->conn_zoneid;
10557	namelen = mi_strlen(name);
10558	if (namelen == 0)
10559		return (EINVAL);
10560
10561	exists = B_FALSE;
10562	if ((namelen + 1 == sizeof (ipif_loopback_name)) &&
10563	    (mi_strcmp(name, ipif_loopback_name) == 0)) {
10564		/*
10565		 * Allow creating lo0 using SIOCLIFADDIF.
10566		 * can't be any other writer thread. So can pass null below
10567		 * for the last 4 args to ipif_lookup_name.
10568		 */
10569		ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE,
10570		    &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst);
10571		/* Prevent any further action */
10572		if (ipif == NULL) {
10573			return (ENOBUFS);
10574		} else if (!exists) {
10575			/* We created the ipif now and as writer */
10576			ipif_refrele(ipif);
10577			return (0);
10578		} else {
10579			ill = ipif->ipif_ill;
10580			ill_refhold(ill);
10581			ipif_refrele(ipif);
10582		}
10583	} else {
10584		/* Look for a colon in the name. */
10585		endp = &name[namelen];
10586		for (cp = endp; --cp > name; ) {
10587			if (*cp == IPIF_SEPARATOR_CHAR) {
10588				found_sep = B_TRUE;
10589				/*
10590				 * Reject any non-decimal aliases for plumbing
10591				 * of logical interfaces. Aliases with leading
10592				 * zeroes are also rejected as they introduce
10593				 * ambiguity in the naming of the interfaces.
10594				 * Comparing with "0" takes care of all such
10595				 * cases.
10596				 */
10597				if ((strncmp("0", cp+1, 1)) == 0)
10598					return (EINVAL);
10599
10600				if (ddi_strtol(cp+1, &endp, 10, &id) != 0 ||
10601				    id <= 0 || *endp != '\0') {
10602					return (EINVAL);
10603				}
10604				*cp = '\0';
10605				break;
10606			}
10607		}
10608		ill = ill_lookup_on_name(name, B_FALSE, isv6,
10609		    CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst);
10610		if (found_sep)
10611			*cp = IPIF_SEPARATOR_CHAR;
10612		if (ill == NULL)
10613			return (err);
10614	}
10615
10616	ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP,
10617	    B_TRUE);
10618
10619	/*
10620	 * Release the refhold due to the lookup, now that we are excl
10621	 * or we are just returning
10622	 */
10623	ill_refrele(ill);
10624
10625	if (ipsq == NULL)
10626		return (EINPROGRESS);
10627
10628	/* We are now exclusive on the IPSQ */
10629	ASSERT(IAM_WRITER_ILL(ill));
10630
10631	if (found_sep) {
10632		/* Now see if there is an IPIF with this unit number. */
10633		for (ipif = ill->ill_ipif; ipif != NULL;
10634		    ipif = ipif->ipif_next) {
10635			if (ipif->ipif_id == id) {
10636				err = EEXIST;
10637				goto done;
10638			}
10639		}
10640	}
10641
10642	/*
10643	 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use
10644	 * of lo0.  Plumbing for lo0:0 happens in ipif_lookup_on_name()
10645	 * instead.
10646	 */
10647	if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL,
10648	    B_TRUE, B_TRUE)) == NULL) {
10649		err = ENOBUFS;
10650		goto done;
10651	}
10652
10653	/* Return created name with ioctl */
10654	(void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name,
10655	    IPIF_SEPARATOR_CHAR, ipif->ipif_id);
10656	ip1dbg(("created %s\n", lifr->lifr_name));
10657
10658	/* Set address */
10659	sin = (sin_t *)&lifr->lifr_addr;
10660	if (sin->sin_family != AF_UNSPEC) {
10661		err = ip_sioctl_addr(ipif, sin, q, mp,
10662		    &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr);
10663	}
10664
10665done:
10666	ipsq_exit(ipsq);
10667	return (err);
10668}
10669
10670/*
10671 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical
10672 * interface) delete it based on the IP address (on this physical interface).
10673 * Otherwise delete it based on the ipif_id.
10674 * Also, special handling to allow a removeif of lo0.
10675 */
10676/* ARGSUSED */
10677int
10678ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10679    ip_ioctl_cmd_t *ipip, void *dummy_if_req)
10680{
10681	conn_t		*connp;
10682	ill_t		*ill = ipif->ipif_ill;
10683	boolean_t	 success;
10684	ip_stack_t	*ipst;
10685
10686	ipst = CONNQ_TO_IPST(q);
10687
10688	ASSERT(q->q_next == NULL);
10689	ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n",
10690	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10691	ASSERT(IAM_WRITER_IPIF(ipif));
10692
10693	connp = Q_TO_CONN(q);
10694	/*
10695	 * Special case for unplumbing lo0 (the loopback physical interface).
10696	 * If unplumbing lo0, the incoming address structure has been
10697	 * initialized to all zeros. When unplumbing lo0, all its logical
10698	 * interfaces must be removed too.
10699	 *
10700	 * Note that this interface may be called to remove a specific
10701	 * loopback logical interface (eg, lo0:1). But in that case
10702	 * ipif->ipif_id != 0 so that the code path for that case is the
10703	 * same as any other interface (meaning it skips the code directly
10704	 * below).
10705	 */
10706	if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) {
10707		if (sin->sin_family == AF_UNSPEC &&
10708		    (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) {
10709			/*
10710			 * Mark it condemned. No new ref. will be made to ill.
10711			 */
10712			mutex_enter(&ill->ill_lock);
10713			ill->ill_state_flags |= ILL_CONDEMNED;
10714			for (ipif = ill->ill_ipif; ipif != NULL;
10715			    ipif = ipif->ipif_next) {
10716				ipif->ipif_state_flags |= IPIF_CONDEMNED;
10717			}
10718			mutex_exit(&ill->ill_lock);
10719
10720			ipif = ill->ill_ipif;
10721			/* unplumb the loopback interface */
10722			ill_delete(ill);
10723			mutex_enter(&connp->conn_lock);
10724			mutex_enter(&ill->ill_lock);
10725
10726			/* Are any references to this ill active */
10727			if (ill_is_freeable(ill)) {
10728				mutex_exit(&ill->ill_lock);
10729				mutex_exit(&connp->conn_lock);
10730				ill_delete_tail(ill);
10731				mi_free(ill);
10732				return (0);
10733			}
10734			success = ipsq_pending_mp_add(connp, ipif,
10735			    CONNP_TO_WQ(connp), mp, ILL_FREE);
10736			mutex_exit(&connp->conn_lock);
10737			mutex_exit(&ill->ill_lock);
10738			if (success)
10739				return (EINPROGRESS);
10740			else
10741				return (EINTR);
10742		}
10743	}
10744
10745	if (ipif->ipif_id == 0) {
10746		ipsq_t *ipsq;
10747
10748		/* Find based on address */
10749		if (ipif->ipif_isv6) {
10750			sin6_t *sin6;
10751
10752			if (sin->sin_family != AF_INET6)
10753				return (EAFNOSUPPORT);
10754
10755			sin6 = (sin6_t *)sin;
10756			/* We are a writer, so we should be able to lookup */
10757			ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill,
10758			    ipst);
10759		} else {
10760			if (sin->sin_family != AF_INET)
10761				return (EAFNOSUPPORT);
10762
10763			/* We are a writer, so we should be able to lookup */
10764			ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill,
10765			    ipst);
10766		}
10767		if (ipif == NULL) {
10768			return (EADDRNOTAVAIL);
10769		}
10770
10771		/*
10772		 * It is possible for a user to send an SIOCLIFREMOVEIF with
10773		 * lifr_name of the physical interface but with an ip address
10774		 * lifr_addr of a logical interface plumbed over it.
10775		 * So update ipx_current_ipif now that ipif points to the
10776		 * correct one.
10777		 */
10778		ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq;
10779		ipsq->ipsq_xop->ipx_current_ipif = ipif;
10780
10781		/* This is a writer */
10782		ipif_refrele(ipif);
10783	}
10784
10785	/*
10786	 * Can not delete instance zero since it is tied to the ill.
10787	 */
10788	if (ipif->ipif_id == 0)
10789		return (EBUSY);
10790
10791	mutex_enter(&ill->ill_lock);
10792	ipif->ipif_state_flags |= IPIF_CONDEMNED;
10793	mutex_exit(&ill->ill_lock);
10794
10795	ipif_free(ipif);
10796
10797	mutex_enter(&connp->conn_lock);
10798	mutex_enter(&ill->ill_lock);
10799
10800	/* Are any references to this ipif active */
10801	if (ipif_is_freeable(ipif)) {
10802		mutex_exit(&ill->ill_lock);
10803		mutex_exit(&connp->conn_lock);
10804		ipif_non_duplicate(ipif);
10805		ipif_down_tail(ipif);
10806		ipif_free_tail(ipif); /* frees ipif */
10807		return (0);
10808	}
10809	success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp,
10810	    IPIF_FREE);
10811	mutex_exit(&ill->ill_lock);
10812	mutex_exit(&connp->conn_lock);
10813	if (success)
10814		return (EINPROGRESS);
10815	else
10816		return (EINTR);
10817}
10818
10819/*
10820 * Restart the removeif ioctl. The refcnt has gone down to 0.
10821 * The ipif is already condemned. So can't find it thru lookups.
10822 */
10823/* ARGSUSED */
10824int
10825ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q,
10826    mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req)
10827{
10828	ill_t *ill = ipif->ipif_ill;
10829
10830	ASSERT(IAM_WRITER_IPIF(ipif));
10831	ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED);
10832
10833	ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n",
10834	    ill->ill_name, ipif->ipif_id, (void *)ipif));
10835
10836	if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) {
10837		ASSERT(ill->ill_state_flags & ILL_CONDEMNED);
10838		ill_delete_tail(ill);
10839		mi_free(ill);
10840		return (0);
10841	}
10842
10843	ipif_non_duplicate(ipif);
10844	ipif_down_tail(ipif);
10845	ipif_free_tail(ipif);
10846
10847	ILL_UNMARK_CHANGING(ill);
10848	return (0);
10849}
10850
10851/*
10852 * Set the local interface address.
10853 * Allow an address of all zero when the interface is down.
10854 */
10855/* ARGSUSED */
10856int
10857ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10858    ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
10859{
10860	int err = 0;
10861	in6_addr_t v6addr;
10862	boolean_t need_up = B_FALSE;
10863
10864	ip1dbg(("ip_sioctl_addr(%s:%u %p)\n",
10865	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10866
10867	ASSERT(IAM_WRITER_IPIF(ipif));
10868
10869	if (ipif->ipif_isv6) {
10870		sin6_t *sin6;
10871		ill_t *ill;
10872		phyint_t *phyi;
10873
10874		if (sin->sin_family != AF_INET6)
10875			return (EAFNOSUPPORT);
10876
10877		sin6 = (sin6_t *)sin;
10878		v6addr = sin6->sin6_addr;
10879		ill = ipif->ipif_ill;
10880		phyi = ill->ill_phyint;
10881
10882		/*
10883		 * Enforce that true multicast interfaces have a link-local
10884		 * address for logical unit 0.
10885		 */
10886		if (ipif->ipif_id == 0 &&
10887		    (ill->ill_flags & ILLF_MULTICAST) &&
10888		    !(ipif->ipif_flags & (IPIF_POINTOPOINT)) &&
10889		    !(phyi->phyint_flags & (PHYI_LOOPBACK)) &&
10890		    !IN6_IS_ADDR_LINKLOCAL(&v6addr)) {
10891			return (EADDRNOTAVAIL);
10892		}
10893
10894		/*
10895		 * up interfaces shouldn't have the unspecified address
10896		 * unless they also have the IPIF_NOLOCAL flags set and
10897		 * have a subnet assigned.
10898		 */
10899		if ((ipif->ipif_flags & IPIF_UP) &&
10900		    IN6_IS_ADDR_UNSPECIFIED(&v6addr) &&
10901		    (!(ipif->ipif_flags & IPIF_NOLOCAL) ||
10902		    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) {
10903			return (EADDRNOTAVAIL);
10904		}
10905
10906		if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
10907			return (EADDRNOTAVAIL);
10908	} else {
10909		ipaddr_t addr;
10910
10911		if (sin->sin_family != AF_INET)
10912			return (EAFNOSUPPORT);
10913
10914		addr = sin->sin_addr.s_addr;
10915
10916		/* Allow 0 as the local address. */
10917		if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask))
10918			return (EADDRNOTAVAIL);
10919
10920		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
10921	}
10922
10923	/*
10924	 * Even if there is no change we redo things just to rerun
10925	 * ipif_set_default.
10926	 */
10927	if (ipif->ipif_flags & IPIF_UP) {
10928		/*
10929		 * Setting a new local address, make sure
10930		 * we have net and subnet bcast ire's for
10931		 * the old address if we need them.
10932		 */
10933		if (!ipif->ipif_isv6)
10934			ipif_check_bcast_ires(ipif);
10935		/*
10936		 * If the interface is already marked up,
10937		 * we call ipif_down which will take care
10938		 * of ditching any IREs that have been set
10939		 * up based on the old interface address.
10940		 */
10941		err = ipif_logical_down(ipif, q, mp);
10942		if (err == EINPROGRESS)
10943			return (err);
10944		ipif_down_tail(ipif);
10945		need_up = 1;
10946	}
10947
10948	err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up);
10949	return (err);
10950}
10951
10952int
10953ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10954    boolean_t need_up)
10955{
10956	in6_addr_t v6addr;
10957	in6_addr_t ov6addr;
10958	ipaddr_t addr;
10959	sin6_t	*sin6;
10960	int	sinlen;
10961	int	err = 0;
10962	ill_t	*ill = ipif->ipif_ill;
10963	boolean_t need_dl_down;
10964	boolean_t need_arp_down;
10965	struct iocblk *iocp;
10966
10967	iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL;
10968
10969	ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n",
10970	    ill->ill_name, ipif->ipif_id, (void *)ipif));
10971	ASSERT(IAM_WRITER_IPIF(ipif));
10972
10973	/* Must cancel any pending timer before taking the ill_lock */
10974	if (ipif->ipif_recovery_id != 0)
10975		(void) untimeout(ipif->ipif_recovery_id);
10976	ipif->ipif_recovery_id = 0;
10977
10978	if (ipif->ipif_isv6) {
10979		sin6 = (sin6_t *)sin;
10980		v6addr = sin6->sin6_addr;
10981		sinlen = sizeof (struct sockaddr_in6);
10982	} else {
10983		addr = sin->sin_addr.s_addr;
10984		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
10985		sinlen = sizeof (struct sockaddr_in);
10986	}
10987	mutex_enter(&ill->ill_lock);
10988	ov6addr = ipif->ipif_v6lcl_addr;
10989	ipif->ipif_v6lcl_addr = v6addr;
10990	sctp_update_ipif_addr(ipif, ov6addr);
10991	if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) {
10992		ipif->ipif_v6src_addr = ipv6_all_zeros;
10993	} else {
10994		ipif->ipif_v6src_addr = v6addr;
10995	}
10996	ipif->ipif_addr_ready = 0;
10997
10998	/*
10999	 * If the interface was previously marked as a duplicate, then since
11000	 * we've now got a "new" address, it should no longer be considered a
11001	 * duplicate -- even if the "new" address is the same as the old one.
11002	 * Note that if all ipifs are down, we may have a pending ARP down
11003	 * event to handle.  This is because we want to recover from duplicates
11004	 * and thus delay tearing down ARP until the duplicates have been
11005	 * removed or disabled.
11006	 */
11007	need_dl_down = need_arp_down = B_FALSE;
11008	if (ipif->ipif_flags & IPIF_DUPLICATE) {
11009		need_arp_down = !need_up;
11010		ipif->ipif_flags &= ~IPIF_DUPLICATE;
11011		if (--ill->ill_ipif_dup_count == 0 && !need_up &&
11012		    ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
11013			need_dl_down = B_TRUE;
11014		}
11015	}
11016
11017	ipif_set_default(ipif);
11018
11019	/*
11020	 * If we've just manually set the IPv6 link-local address (0th ipif),
11021	 * tag the ill so that future updates to the interface ID don't result
11022	 * in this address getting automatically reconfigured from under the
11023	 * administrator.
11024	 */
11025	if (ipif->ipif_isv6 && ipif->ipif_id == 0)
11026		ill->ill_manual_linklocal = 1;
11027
11028	/*
11029	 * When publishing an interface address change event, we only notify
11030	 * the event listeners of the new address.  It is assumed that if they
11031	 * actively care about the addresses assigned that they will have
11032	 * already discovered the previous address assigned (if there was one.)
11033	 *
11034	 * Don't attach nic event message for SIOCLIFADDIF ioctl.
11035	 */
11036	if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) {
11037		ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id),
11038		    NE_ADDRESS_CHANGE, sin, sinlen);
11039	}
11040
11041	mutex_exit(&ill->ill_lock);
11042
11043	if (need_up) {
11044		/*
11045		 * Now bring the interface back up.  If this
11046		 * is the only IPIF for the ILL, ipif_up
11047		 * will have to re-bind to the device, so
11048		 * we may get back EINPROGRESS, in which
11049		 * case, this IOCTL will get completed in
11050		 * ip_rput_dlpi when we see the DL_BIND_ACK.
11051		 */
11052		err = ipif_up(ipif, q, mp);
11053	}
11054
11055	if (need_dl_down)
11056		ill_dl_down(ill);
11057	if (need_arp_down)
11058		ipif_resolver_down(ipif);
11059
11060	return (err);
11061}
11062
11063/*
11064 * Restart entry point to restart the address set operation after the
11065 * refcounts have dropped to zero.
11066 */
11067/* ARGSUSED */
11068int
11069ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11070    ip_ioctl_cmd_t *ipip, void *ifreq)
11071{
11072	ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n",
11073	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11074	ASSERT(IAM_WRITER_IPIF(ipif));
11075	ipif_down_tail(ipif);
11076	return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE));
11077}
11078
11079/* ARGSUSED */
11080int
11081ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11082    ip_ioctl_cmd_t *ipip, void *if_req)
11083{
11084	sin6_t *sin6 = (struct sockaddr_in6 *)sin;
11085	struct lifreq *lifr = (struct lifreq *)if_req;
11086
11087	ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n",
11088	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11089	/*
11090	 * The net mask and address can't change since we have a
11091	 * reference to the ipif. So no lock is necessary.
11092	 */
11093	if (ipif->ipif_isv6) {
11094		*sin6 = sin6_null;
11095		sin6->sin6_family = AF_INET6;
11096		sin6->sin6_addr = ipif->ipif_v6lcl_addr;
11097		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11098		lifr->lifr_addrlen =
11099		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
11100	} else {
11101		*sin = sin_null;
11102		sin->sin_family = AF_INET;
11103		sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
11104		if (ipip->ipi_cmd_type == LIF_CMD) {
11105			lifr->lifr_addrlen =
11106			    ip_mask_to_plen(ipif->ipif_net_mask);
11107		}
11108	}
11109	return (0);
11110}
11111
11112/*
11113 * Set the destination address for a pt-pt interface.
11114 */
11115/* ARGSUSED */
11116int
11117ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11118    ip_ioctl_cmd_t *ipip, void *if_req)
11119{
11120	int err = 0;
11121	in6_addr_t v6addr;
11122	boolean_t need_up = B_FALSE;
11123
11124	ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n",
11125	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11126	ASSERT(IAM_WRITER_IPIF(ipif));
11127
11128	if (ipif->ipif_isv6) {
11129		sin6_t *sin6;
11130
11131		if (sin->sin_family != AF_INET6)
11132			return (EAFNOSUPPORT);
11133
11134		sin6 = (sin6_t *)sin;
11135		v6addr = sin6->sin6_addr;
11136
11137		if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
11138			return (EADDRNOTAVAIL);
11139	} else {
11140		ipaddr_t addr;
11141
11142		if (sin->sin_family != AF_INET)
11143			return (EAFNOSUPPORT);
11144
11145		addr = sin->sin_addr.s_addr;
11146		if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask))
11147			return (EADDRNOTAVAIL);
11148
11149		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11150	}
11151
11152	if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr))
11153		return (0);	/* No change */
11154
11155	if (ipif->ipif_flags & IPIF_UP) {
11156		/*
11157		 * If the interface is already marked up,
11158		 * we call ipif_down which will take care
11159		 * of ditching any IREs that have been set
11160		 * up based on the old pp dst address.
11161		 */
11162		err = ipif_logical_down(ipif, q, mp);
11163		if (err == EINPROGRESS)
11164			return (err);
11165		ipif_down_tail(ipif);
11166		need_up = B_TRUE;
11167	}
11168	/*
11169	 * could return EINPROGRESS. If so ioctl will complete in
11170	 * ip_rput_dlpi_writer
11171	 */
11172	err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up);
11173	return (err);
11174}
11175
11176static int
11177ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11178    boolean_t need_up)
11179{
11180	in6_addr_t v6addr;
11181	ill_t	*ill = ipif->ipif_ill;
11182	int	err = 0;
11183	boolean_t need_dl_down;
11184	boolean_t need_arp_down;
11185
11186	ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name,
11187	    ipif->ipif_id, (void *)ipif));
11188
11189	/* Must cancel any pending timer before taking the ill_lock */
11190	if (ipif->ipif_recovery_id != 0)
11191		(void) untimeout(ipif->ipif_recovery_id);
11192	ipif->ipif_recovery_id = 0;
11193
11194	if (ipif->ipif_isv6) {
11195		sin6_t *sin6;
11196
11197		sin6 = (sin6_t *)sin;
11198		v6addr = sin6->sin6_addr;
11199	} else {
11200		ipaddr_t addr;
11201
11202		addr = sin->sin_addr.s_addr;
11203		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11204	}
11205	mutex_enter(&ill->ill_lock);
11206	/* Set point to point destination address. */
11207	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
11208		/*
11209		 * Allow this as a means of creating logical
11210		 * pt-pt interfaces on top of e.g. an Ethernet.
11211		 * XXX Undocumented HACK for testing.
11212		 * pt-pt interfaces are created with NUD disabled.
11213		 */
11214		ipif->ipif_flags |= IPIF_POINTOPOINT;
11215		ipif->ipif_flags &= ~IPIF_BROADCAST;
11216		if (ipif->ipif_isv6)
11217			ill->ill_flags |= ILLF_NONUD;
11218	}
11219
11220	/*
11221	 * If the interface was previously marked as a duplicate, then since
11222	 * we've now got a "new" address, it should no longer be considered a
11223	 * duplicate -- even if the "new" address is the same as the old one.
11224	 * Note that if all ipifs are down, we may have a pending ARP down
11225	 * event to handle.
11226	 */
11227	need_dl_down = need_arp_down = B_FALSE;
11228	if (ipif->ipif_flags & IPIF_DUPLICATE) {
11229		need_arp_down = !need_up;
11230		ipif->ipif_flags &= ~IPIF_DUPLICATE;
11231		if (--ill->ill_ipif_dup_count == 0 && !need_up &&
11232		    ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
11233			need_dl_down = B_TRUE;
11234		}
11235	}
11236
11237	/* Set the new address. */
11238	ipif->ipif_v6pp_dst_addr = v6addr;
11239	/* Make sure subnet tracks pp_dst */
11240	ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
11241	mutex_exit(&ill->ill_lock);
11242
11243	if (need_up) {
11244		/*
11245		 * Now bring the interface back up.  If this
11246		 * is the only IPIF for the ILL, ipif_up
11247		 * will have to re-bind to the device, so
11248		 * we may get back EINPROGRESS, in which
11249		 * case, this IOCTL will get completed in
11250		 * ip_rput_dlpi when we see the DL_BIND_ACK.
11251		 */
11252		err = ipif_up(ipif, q, mp);
11253	}
11254
11255	if (need_dl_down)
11256		ill_dl_down(ill);
11257	if (need_arp_down)
11258		ipif_resolver_down(ipif);
11259
11260	return (err);
11261}
11262
11263/*
11264 * Restart entry point to restart the dstaddress set operation after the
11265 * refcounts have dropped to zero.
11266 */
11267/* ARGSUSED */
11268int
11269ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11270    ip_ioctl_cmd_t *ipip, void *ifreq)
11271{
11272	ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n",
11273	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11274	ipif_down_tail(ipif);
11275	return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE));
11276}
11277
11278/* ARGSUSED */
11279int
11280ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11281    ip_ioctl_cmd_t *ipip, void *if_req)
11282{
11283	sin6_t	*sin6 = (struct sockaddr_in6 *)sin;
11284
11285	ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n",
11286	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11287	/*
11288	 * Get point to point destination address. The addresses can't
11289	 * change since we hold a reference to the ipif.
11290	 */
11291	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0)
11292		return (EADDRNOTAVAIL);
11293
11294	if (ipif->ipif_isv6) {
11295		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11296		*sin6 = sin6_null;
11297		sin6->sin6_family = AF_INET6;
11298		sin6->sin6_addr = ipif->ipif_v6pp_dst_addr;
11299	} else {
11300		*sin = sin_null;
11301		sin->sin_family = AF_INET;
11302		sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr;
11303	}
11304	return (0);
11305}
11306
11307/*
11308 * Set interface flags.  Many flags require special handling (e.g.,
11309 * bringing the interface down); see below for details.
11310 *
11311 * NOTE : We really don't enforce that ipif_id zero should be used
11312 *	  for setting any flags other than IFF_LOGINT_FLAGS. This
11313 *	  is because applications generally does SICGLIFFLAGS and
11314 *	  ORs in the new flags (that affects the logical) and does a
11315 *	  SIOCSLIFFLAGS. Thus, "flags" below could contain bits other
11316 *	  than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the
11317 *	  flags that will be turned on is correct with respect to
11318 *	  ipif_id 0. For backward compatibility reasons, it is not done.
11319 */
11320/* ARGSUSED */
11321int
11322ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11323    ip_ioctl_cmd_t *ipip, void *if_req)
11324{
11325	uint64_t turn_on;
11326	uint64_t turn_off;
11327	int	err = 0;
11328	phyint_t *phyi;
11329	ill_t *ill;
11330	uint64_t intf_flags, cantchange_flags;
11331	boolean_t phyint_flags_modified = B_FALSE;
11332	uint64_t flags;
11333	struct ifreq *ifr;
11334	struct lifreq *lifr;
11335	boolean_t set_linklocal = B_FALSE;
11336	boolean_t zero_source = B_FALSE;
11337
11338	ip1dbg(("ip_sioctl_flags(%s:%u %p)\n",
11339	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11340
11341	ASSERT(IAM_WRITER_IPIF(ipif));
11342
11343	ill = ipif->ipif_ill;
11344	phyi = ill->ill_phyint;
11345
11346	if (ipip->ipi_cmd_type == IF_CMD) {
11347		ifr = (struct ifreq *)if_req;
11348		flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff);
11349	} else {
11350		lifr = (struct lifreq *)if_req;
11351		flags = lifr->lifr_flags;
11352	}
11353
11354	intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
11355
11356	/*
11357	 * Have the flags been set correctly until now?
11358	 */
11359	ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
11360	ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
11361	ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
11362	/*
11363	 * Compare the new flags to the old, and partition
11364	 * into those coming on and those going off.
11365	 * For the 16 bit command keep the bits above bit 16 unchanged.
11366	 */
11367	if (ipip->ipi_cmd == SIOCSIFFLAGS)
11368		flags |= intf_flags & ~0xFFFF;
11369
11370	/*
11371	 * Explicitly fail attempts to change flags that are always invalid on
11372	 * an IPMP meta-interface.
11373	 */
11374	if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID))
11375		return (EINVAL);
11376
11377	/*
11378	 * Check which flags will change; silently ignore flags which userland
11379	 * is not allowed to control.  (Because these flags may change between
11380	 * SIOCGLIFFLAGS and SIOCSLIFFLAGS, and that's outside of userland's
11381	 * control, we need to silently ignore them rather than fail.)
11382	 */
11383	cantchange_flags = IFF_CANTCHANGE;
11384	if (IS_IPMP(ill))
11385		cantchange_flags |= IFF_IPMP_CANTCHANGE;
11386
11387	turn_on = (flags ^ intf_flags) & ~cantchange_flags;
11388	if (turn_on == 0)
11389		return (0);	/* No change */
11390
11391	turn_off = intf_flags & turn_on;
11392	turn_on ^= turn_off;
11393
11394	/*
11395	 * All test addresses must be IFF_DEPRECATED (to ensure source address
11396	 * selection avoids them) -- so force IFF_DEPRECATED on, and do not
11397	 * allow it to be turned off.
11398	 */
11399	if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED &&
11400	    (turn_on|intf_flags) & IFF_NOFAILOVER)
11401		return (EINVAL);
11402
11403	if (turn_on & IFF_NOFAILOVER) {
11404		turn_on |= IFF_DEPRECATED;
11405		flags |= IFF_DEPRECATED;
11406	}
11407
11408	/*
11409	 * On underlying interfaces, only allow applications to manage test
11410	 * addresses -- otherwise, they may get confused when the address
11411	 * moves as part of being brought up.  Likewise, prevent an
11412	 * application-managed test address from being converted to a data
11413	 * address.  To prevent migration of administratively up addresses in
11414	 * the kernel, we don't allow them to be converted either.
11415	 */
11416	if (IS_UNDER_IPMP(ill)) {
11417		const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF;
11418
11419		if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER))
11420			return (EINVAL);
11421
11422		if ((turn_off & IFF_NOFAILOVER) &&
11423		    (flags & (appflags | IFF_UP | IFF_DUPLICATE)))
11424			return (EINVAL);
11425	}
11426
11427	/*
11428	 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on
11429	 * IPv6 interfaces.
11430	 */
11431	if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6))
11432		return (EINVAL);
11433
11434	/*
11435	 * cannot turn off IFF_NOXMIT on  VNI interfaces.
11436	 */
11437	if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill))
11438		return (EINVAL);
11439
11440	/*
11441	 * Don't allow the IFF_ROUTER flag to be turned on on loopback
11442	 * interfaces.  It makes no sense in that context.
11443	 */
11444	if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK))
11445		return (EINVAL);
11446
11447	if (flags & (IFF_NOLOCAL|IFF_ANYCAST))
11448		zero_source = B_TRUE;
11449
11450	/*
11451	 * For IPv6 ipif_id 0, don't allow the interface to be up without
11452	 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set.
11453	 * If the link local address isn't set, and can be set, it will get
11454	 * set later on in this function.
11455	 */
11456	if (ipif->ipif_id == 0 && ipif->ipif_isv6 &&
11457	    (flags & IFF_UP) && !zero_source &&
11458	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) {
11459		if (ipif_cant_setlinklocal(ipif))
11460			return (EINVAL);
11461		set_linklocal = B_TRUE;
11462	}
11463
11464	/*
11465	 * If we modify physical interface flags, we'll potentially need to
11466	 * send up two routing socket messages for the changes (one for the
11467	 * IPv4 ill, and another for the IPv6 ill).  Note that here.
11468	 */
11469	if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
11470		phyint_flags_modified = B_TRUE;
11471
11472	/*
11473	 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE
11474	 * (otherwise, we'd immediately use them, defeating standby).  Also,
11475	 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not
11476	 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already
11477	 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared.  We
11478	 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics
11479	 * will not be honored.
11480	 */
11481	if (turn_on & PHYI_STANDBY) {
11482		/*
11483		 * No need to grab ill_g_usesrc_lock here; see the
11484		 * synchronization notes in ip.c.
11485		 */
11486		if (ill->ill_usesrc_grp_next != NULL ||
11487		    intf_flags & PHYI_INACTIVE)
11488			return (EINVAL);
11489		if (!(flags & PHYI_FAILED)) {
11490			flags |= PHYI_INACTIVE;
11491			turn_on |= PHYI_INACTIVE;
11492		}
11493	}
11494
11495	if (turn_off & PHYI_STANDBY) {
11496		flags &= ~PHYI_INACTIVE;
11497		turn_off |= PHYI_INACTIVE;
11498	}
11499
11500	/*
11501	 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both
11502	 * would end up on.
11503	 */
11504	if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) ==
11505	    (PHYI_FAILED | PHYI_INACTIVE))
11506		return (EINVAL);
11507
11508	/*
11509	 * If ILLF_ROUTER changes, we need to change the ip forwarding
11510	 * status of the interface.
11511	 */
11512	if ((turn_on | turn_off) & ILLF_ROUTER)
11513		(void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0));
11514
11515	/*
11516	 * If the interface is not UP and we are not going to
11517	 * bring it UP, record the flags and return. When the
11518	 * interface comes UP later, the right actions will be
11519	 * taken.
11520	 */
11521	if (!(ipif->ipif_flags & IPIF_UP) &&
11522	    !(turn_on & IPIF_UP)) {
11523		/* Record new flags in their respective places. */
11524		mutex_enter(&ill->ill_lock);
11525		mutex_enter(&ill->ill_phyint->phyint_lock);
11526		ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
11527		ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
11528		ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
11529		ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
11530		phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
11531		phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
11532		mutex_exit(&ill->ill_lock);
11533		mutex_exit(&ill->ill_phyint->phyint_lock);
11534
11535		/*
11536		 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the
11537		 * same to the kernel: if any of them has been set by
11538		 * userland, the interface cannot be used for data traffic.
11539		 */
11540		if ((turn_on|turn_off) &
11541		    (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) {
11542			ASSERT(!IS_IPMP(ill));
11543			/*
11544			 * It's possible the ill is part of an "anonymous"
11545			 * IPMP group rather than a real group.  In that case,
11546			 * there are no other interfaces in the group and thus
11547			 * no need to call ipmp_phyint_refresh_active().
11548			 */
11549			if (IS_UNDER_IPMP(ill))
11550				ipmp_phyint_refresh_active(phyi);
11551		}
11552
11553		if (phyint_flags_modified) {
11554			if (phyi->phyint_illv4 != NULL) {
11555				ip_rts_ifmsg(phyi->phyint_illv4->
11556				    ill_ipif, RTSQ_DEFAULT);
11557			}
11558			if (phyi->phyint_illv6 != NULL) {
11559				ip_rts_ifmsg(phyi->phyint_illv6->
11560				    ill_ipif, RTSQ_DEFAULT);
11561			}
11562		}
11563		return (0);
11564	} else if (set_linklocal || zero_source) {
11565		mutex_enter(&ill->ill_lock);
11566		if (set_linklocal)
11567			ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL;
11568		if (zero_source)
11569			ipif->ipif_state_flags |= IPIF_ZERO_SOURCE;
11570		mutex_exit(&ill->ill_lock);
11571	}
11572
11573	/*
11574	 * Disallow IPv6 interfaces coming up that have the unspecified address,
11575	 * or point-to-point interfaces with an unspecified destination. We do
11576	 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that
11577	 * have a subnet assigned, which is how in.ndpd currently manages its
11578	 * onlink prefix list when no addresses are configured with those
11579	 * prefixes.
11580	 */
11581	if (ipif->ipif_isv6 &&
11582	    ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
11583	    (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) ||
11584	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) ||
11585	    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
11586	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) {
11587		return (EINVAL);
11588	}
11589
11590	/*
11591	 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination
11592	 * from being brought up.
11593	 */
11594	if (!ipif->ipif_isv6 &&
11595	    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
11596	    ipif->ipif_pp_dst_addr == INADDR_ANY)) {
11597		return (EINVAL);
11598	}
11599
11600	/*
11601	 * The only flag changes that we currently take specific action on are
11602	 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP,
11603	 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and
11604	 * IPIF_NOFAILOVER.  This is done by bring the ipif down, changing the
11605	 * flags and bringing it back up again.  For IPIF_NOFAILOVER, the act
11606	 * of bringing it back up will trigger the address to be moved.
11607	 */
11608	if ((turn_on|turn_off) &
11609	    (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP|
11610	    ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED|
11611	    IPIF_NOFAILOVER)) {
11612		/*
11613		 * Taking this ipif down, make sure we have
11614		 * valid net and subnet bcast ire's for other
11615		 * logical interfaces, if we need them.
11616		 */
11617		if (!ipif->ipif_isv6)
11618			ipif_check_bcast_ires(ipif);
11619
11620		if (((ipif->ipif_flags | turn_on) & IPIF_UP) &&
11621		    !(turn_off & IPIF_UP)) {
11622			if (ipif->ipif_flags & IPIF_UP)
11623				ill->ill_logical_down = 1;
11624			turn_on &= ~IPIF_UP;
11625		}
11626		err = ipif_down(ipif, q, mp);
11627		ip1dbg(("ipif_down returns %d err ", err));
11628		if (err == EINPROGRESS)
11629			return (err);
11630		ipif_down_tail(ipif);
11631	}
11632	return (ip_sioctl_flags_tail(ipif, flags, q, mp));
11633}
11634
11635static int
11636ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp)
11637{
11638	ill_t	*ill;
11639	phyint_t *phyi;
11640	uint64_t turn_on, turn_off;
11641	uint64_t intf_flags, cantchange_flags;
11642	boolean_t phyint_flags_modified = B_FALSE;
11643	int	err = 0;
11644	boolean_t set_linklocal = B_FALSE;
11645	boolean_t zero_source = B_FALSE;
11646
11647	ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n",
11648	    ipif->ipif_ill->ill_name, ipif->ipif_id));
11649
11650	ASSERT(IAM_WRITER_IPIF(ipif));
11651
11652	ill = ipif->ipif_ill;
11653	phyi = ill->ill_phyint;
11654
11655	intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
11656	cantchange_flags = IFF_CANTCHANGE | IFF_UP;
11657	if (IS_IPMP(ill))
11658		cantchange_flags |= IFF_IPMP_CANTCHANGE;
11659
11660	turn_on = (flags ^ intf_flags) & ~cantchange_flags;
11661	turn_off = intf_flags & turn_on;
11662	turn_on ^= turn_off;
11663
11664	if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
11665		phyint_flags_modified = B_TRUE;
11666
11667	/*
11668	 * Now we change the flags. Track current value of
11669	 * other flags in their respective places.
11670	 */
11671	mutex_enter(&ill->ill_lock);
11672	mutex_enter(&phyi->phyint_lock);
11673	ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
11674	ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
11675	ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
11676	ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
11677	phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
11678	phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
11679	if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) {
11680		set_linklocal = B_TRUE;
11681		ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL;
11682	}
11683	if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) {
11684		zero_source = B_TRUE;
11685		ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE;
11686	}
11687	mutex_exit(&ill->ill_lock);
11688	mutex_exit(&phyi->phyint_lock);
11689
11690	if (set_linklocal)
11691		(void) ipif_setlinklocal(ipif);
11692
11693	if (zero_source)
11694		ipif->ipif_v6src_addr = ipv6_all_zeros;
11695	else
11696		ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr;
11697
11698	/*
11699	 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to
11700	 * the kernel: if any of them has been set by userland, the interface
11701	 * cannot be used for data traffic.
11702	 */
11703	if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) {
11704		ASSERT(!IS_IPMP(ill));
11705		/*
11706		 * It's possible the ill is part of an "anonymous" IPMP group
11707		 * rather than a real group.  In that case, there are no other
11708		 * interfaces in the group and thus no need for us to call
11709		 * ipmp_phyint_refresh_active().
11710		 */
11711		if (IS_UNDER_IPMP(ill))
11712			ipmp_phyint_refresh_active(phyi);
11713	}
11714
11715	if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) {
11716		/*
11717		 * XXX ipif_up really does not know whether a phyint flags
11718		 * was modified or not. So, it sends up information on
11719		 * only one routing sockets message. As we don't bring up
11720		 * the interface and also set PHYI_ flags simultaneously
11721		 * it should be okay.
11722		 */
11723		err = ipif_up(ipif, q, mp);
11724	} else {
11725		/*
11726		 * Make sure routing socket sees all changes to the flags.
11727		 * ipif_up_done* handles this when we use ipif_up.
11728		 */
11729		if (phyint_flags_modified) {
11730			if (phyi->phyint_illv4 != NULL) {
11731				ip_rts_ifmsg(phyi->phyint_illv4->
11732				    ill_ipif, RTSQ_DEFAULT);
11733			}
11734			if (phyi->phyint_illv6 != NULL) {
11735				ip_rts_ifmsg(phyi->phyint_illv6->
11736				    ill_ipif, RTSQ_DEFAULT);
11737			}
11738		} else {
11739			ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
11740		}
11741		/*
11742		 * Update the flags in SCTP's IPIF list, ipif_up() will do
11743		 * this in need_up case.
11744		 */
11745		sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
11746	}
11747	return (err);
11748}
11749
11750/*
11751 * Restart the flags operation now that the refcounts have dropped to zero.
11752 */
11753/* ARGSUSED */
11754int
11755ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11756    ip_ioctl_cmd_t *ipip, void *if_req)
11757{
11758	uint64_t flags;
11759	struct ifreq *ifr = if_req;
11760	struct lifreq *lifr = if_req;
11761
11762	ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n",
11763	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11764
11765	ipif_down_tail(ipif);
11766	if (ipip->ipi_cmd_type == IF_CMD) {
11767		/* cast to uint16_t prevents unwanted sign extension */
11768		flags = (uint16_t)ifr->ifr_flags;
11769	} else {
11770		flags = lifr->lifr_flags;
11771	}
11772	return (ip_sioctl_flags_tail(ipif, flags, q, mp));
11773}
11774
11775/*
11776 * Can operate on either a module or a driver queue.
11777 */
11778/* ARGSUSED */
11779int
11780ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11781    ip_ioctl_cmd_t *ipip, void *if_req)
11782{
11783	/*
11784	 * Has the flags been set correctly till now ?
11785	 */
11786	ill_t *ill = ipif->ipif_ill;
11787	phyint_t *phyi = ill->ill_phyint;
11788
11789	ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n",
11790	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11791	ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
11792	ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
11793	ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
11794
11795	/*
11796	 * Need a lock since some flags can be set even when there are
11797	 * references to the ipif.
11798	 */
11799	mutex_enter(&ill->ill_lock);
11800	if (ipip->ipi_cmd_type == IF_CMD) {
11801		struct ifreq *ifr = (struct ifreq *)if_req;
11802
11803		/* Get interface flags (low 16 only). */
11804		ifr->ifr_flags = ((ipif->ipif_flags |
11805		    ill->ill_flags | phyi->phyint_flags) & 0xffff);
11806	} else {
11807		struct lifreq *lifr = (struct lifreq *)if_req;
11808
11809		/* Get interface flags. */
11810		lifr->lifr_flags = ipif->ipif_flags |
11811		    ill->ill_flags | phyi->phyint_flags;
11812	}
11813	mutex_exit(&ill->ill_lock);
11814	return (0);
11815}
11816
11817/* ARGSUSED */
11818int
11819ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11820    ip_ioctl_cmd_t *ipip, void *if_req)
11821{
11822	int mtu;
11823	int ip_min_mtu;
11824	struct ifreq	*ifr;
11825	struct lifreq *lifr;
11826	ire_t	*ire;
11827	ip_stack_t *ipst;
11828
11829	ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name,
11830	    ipif->ipif_id, (void *)ipif));
11831	if (ipip->ipi_cmd_type == IF_CMD) {
11832		ifr = (struct ifreq *)if_req;
11833		mtu = ifr->ifr_metric;
11834	} else {
11835		lifr = (struct lifreq *)if_req;
11836		mtu = lifr->lifr_mtu;
11837	}
11838
11839	if (ipif->ipif_isv6)
11840		ip_min_mtu = IPV6_MIN_MTU;
11841	else
11842		ip_min_mtu = IP_MIN_MTU;
11843
11844	if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu)
11845		return (EINVAL);
11846
11847	/*
11848	 * Change the MTU size in all relevant ire's.
11849	 * Mtu change Vs. new ire creation - protocol below.
11850	 * First change ipif_mtu and the ire_max_frag of the
11851	 * interface ire. Then do an ire walk and change the
11852	 * ire_max_frag of all affected ires. During ire_add
11853	 * under the bucket lock, set the ire_max_frag of the
11854	 * new ire being created from the ipif/ire from which
11855	 * it is being derived. If an mtu change happens after
11856	 * the ire is added, the new ire will be cleaned up.
11857	 * Conversely if the mtu change happens before the ire
11858	 * is added, ire_add will see the new value of the mtu.
11859	 */
11860	ipif->ipif_mtu = mtu;
11861	ipif->ipif_flags |= IPIF_FIXEDMTU;
11862
11863	if (ipif->ipif_isv6)
11864		ire = ipif_to_ire_v6(ipif);
11865	else
11866		ire = ipif_to_ire(ipif);
11867	if (ire != NULL) {
11868		ire->ire_max_frag = ipif->ipif_mtu;
11869		ire_refrele(ire);
11870	}
11871	ipst = ipif->ipif_ill->ill_ipst;
11872	if (ipif->ipif_flags & IPIF_UP) {
11873		if (ipif->ipif_isv6)
11874			ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES,
11875			    ipst);
11876		else
11877			ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES,
11878			    ipst);
11879	}
11880	/* Update the MTU in SCTP's list */
11881	sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
11882	return (0);
11883}
11884
11885/* Get interface MTU. */
11886/* ARGSUSED */
11887int
11888ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11889	ip_ioctl_cmd_t *ipip, void *if_req)
11890{
11891	struct ifreq	*ifr;
11892	struct lifreq	*lifr;
11893
11894	ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n",
11895	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11896	if (ipip->ipi_cmd_type == IF_CMD) {
11897		ifr = (struct ifreq *)if_req;
11898		ifr->ifr_metric = ipif->ipif_mtu;
11899	} else {
11900		lifr = (struct lifreq *)if_req;
11901		lifr->lifr_mtu = ipif->ipif_mtu;
11902	}
11903	return (0);
11904}
11905
11906/* Set interface broadcast address. */
11907/* ARGSUSED2 */
11908int
11909ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11910	ip_ioctl_cmd_t *ipip, void *if_req)
11911{
11912	ipaddr_t addr;
11913	ire_t	*ire;
11914	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
11915
11916	ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name,
11917	    ipif->ipif_id));
11918
11919	ASSERT(IAM_WRITER_IPIF(ipif));
11920	if (!(ipif->ipif_flags & IPIF_BROADCAST))
11921		return (EADDRNOTAVAIL);
11922
11923	ASSERT(!(ipif->ipif_isv6));	/* No IPv6 broadcast */
11924
11925	if (sin->sin_family != AF_INET)
11926		return (EAFNOSUPPORT);
11927
11928	addr = sin->sin_addr.s_addr;
11929	if (ipif->ipif_flags & IPIF_UP) {
11930		/*
11931		 * If we are already up, make sure the new
11932		 * broadcast address makes sense.  If it does,
11933		 * there should be an IRE for it already.
11934		 * Don't match on ipif, only on the ill
11935		 * since we are sharing these now.
11936		 */
11937		ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST,
11938		    ipif, ALL_ZONES, NULL,
11939		    (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst);
11940		if (ire == NULL) {
11941			return (EINVAL);
11942		} else {
11943			ire_refrele(ire);
11944		}
11945	}
11946	/*
11947	 * Changing the broadcast addr for this ipif.
11948	 * Make sure we have valid net and subnet bcast
11949	 * ire's for other logical interfaces, if needed.
11950	 */
11951	if (addr != ipif->ipif_brd_addr)
11952		ipif_check_bcast_ires(ipif);
11953	IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr);
11954	return (0);
11955}
11956
11957/* Get interface broadcast address. */
11958/* ARGSUSED */
11959int
11960ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11961    ip_ioctl_cmd_t *ipip, void *if_req)
11962{
11963	ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n",
11964	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11965	if (!(ipif->ipif_flags & IPIF_BROADCAST))
11966		return (EADDRNOTAVAIL);
11967
11968	/* IPIF_BROADCAST not possible with IPv6 */
11969	ASSERT(!ipif->ipif_isv6);
11970	*sin = sin_null;
11971	sin->sin_family = AF_INET;
11972	sin->sin_addr.s_addr = ipif->ipif_brd_addr;
11973	return (0);
11974}
11975
11976/*
11977 * This routine is called to handle the SIOCS*IFNETMASK IOCTL.
11978 */
11979/* ARGSUSED */
11980int
11981ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11982    ip_ioctl_cmd_t *ipip, void *if_req)
11983{
11984	int err = 0;
11985	in6_addr_t v6mask;
11986
11987	ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n",
11988	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11989
11990	ASSERT(IAM_WRITER_IPIF(ipif));
11991
11992	if (ipif->ipif_isv6) {
11993		sin6_t *sin6;
11994
11995		if (sin->sin_family != AF_INET6)
11996			return (EAFNOSUPPORT);
11997
11998		sin6 = (sin6_t *)sin;
11999		v6mask = sin6->sin6_addr;
12000	} else {
12001		ipaddr_t mask;
12002
12003		if (sin->sin_family != AF_INET)
12004			return (EAFNOSUPPORT);
12005
12006		mask = sin->sin_addr.s_addr;
12007		V4MASK_TO_V6(mask, v6mask);
12008	}
12009
12010	/*
12011	 * No big deal if the interface isn't already up, or the mask
12012	 * isn't really changing, or this is pt-pt.
12013	 */
12014	if (!(ipif->ipif_flags & IPIF_UP) ||
12015	    IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) ||
12016	    (ipif->ipif_flags & IPIF_POINTOPOINT)) {
12017		ipif->ipif_v6net_mask = v6mask;
12018		if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
12019			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
12020			    ipif->ipif_v6net_mask,
12021			    ipif->ipif_v6subnet);
12022		}
12023		return (0);
12024	}
12025	/*
12026	 * Make sure we have valid net and subnet broadcast ire's
12027	 * for the old netmask, if needed by other logical interfaces.
12028	 */
12029	if (!ipif->ipif_isv6)
12030		ipif_check_bcast_ires(ipif);
12031
12032	err = ipif_logical_down(ipif, q, mp);
12033	if (err == EINPROGRESS)
12034		return (err);
12035	ipif_down_tail(ipif);
12036	err = ip_sioctl_netmask_tail(ipif, sin, q, mp);
12037	return (err);
12038}
12039
12040static int
12041ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp)
12042{
12043	in6_addr_t v6mask;
12044	int err = 0;
12045
12046	ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n",
12047	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12048
12049	if (ipif->ipif_isv6) {
12050		sin6_t *sin6;
12051
12052		sin6 = (sin6_t *)sin;
12053		v6mask = sin6->sin6_addr;
12054	} else {
12055		ipaddr_t mask;
12056
12057		mask = sin->sin_addr.s_addr;
12058		V4MASK_TO_V6(mask, v6mask);
12059	}
12060
12061	ipif->ipif_v6net_mask = v6mask;
12062	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
12063		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
12064		    ipif->ipif_v6subnet);
12065	}
12066	err = ipif_up(ipif, q, mp);
12067
12068	if (err == 0 || err == EINPROGRESS) {
12069		/*
12070		 * The interface must be DL_BOUND if this packet has to
12071		 * go out on the wire. Since we only go through a logical
12072		 * down and are bound with the driver during an internal
12073		 * down/up that is satisfied.
12074		 */
12075		if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) {
12076			/* Potentially broadcast an address mask reply. */
12077			ipif_mask_reply(ipif);
12078		}
12079	}
12080	return (err);
12081}
12082
12083/* ARGSUSED */
12084int
12085ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12086    ip_ioctl_cmd_t *ipip, void *if_req)
12087{
12088	ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n",
12089	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12090	ipif_down_tail(ipif);
12091	return (ip_sioctl_netmask_tail(ipif, sin, q, mp));
12092}
12093
12094/* Get interface net mask. */
12095/* ARGSUSED */
12096int
12097ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12098    ip_ioctl_cmd_t *ipip, void *if_req)
12099{
12100	struct lifreq *lifr = (struct lifreq *)if_req;
12101	struct sockaddr_in6 *sin6 = (sin6_t *)sin;
12102
12103	ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n",
12104	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12105
12106	/*
12107	 * net mask can't change since we have a reference to the ipif.
12108	 */
12109	if (ipif->ipif_isv6) {
12110		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
12111		*sin6 = sin6_null;
12112		sin6->sin6_family = AF_INET6;
12113		sin6->sin6_addr = ipif->ipif_v6net_mask;
12114		lifr->lifr_addrlen =
12115		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
12116	} else {
12117		*sin = sin_null;
12118		sin->sin_family = AF_INET;
12119		sin->sin_addr.s_addr = ipif->ipif_net_mask;
12120		if (ipip->ipi_cmd_type == LIF_CMD) {
12121			lifr->lifr_addrlen =
12122			    ip_mask_to_plen(ipif->ipif_net_mask);
12123		}
12124	}
12125	return (0);
12126}
12127
12128/* ARGSUSED */
12129int
12130ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12131    ip_ioctl_cmd_t *ipip, void *if_req)
12132{
12133	ip1dbg(("ip_sioctl_metric(%s:%u %p)\n",
12134	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12135
12136	/*
12137	 * Since no applications should ever be setting metrics on underlying
12138	 * interfaces, we explicitly fail to smoke 'em out.
12139	 */
12140	if (IS_UNDER_IPMP(ipif->ipif_ill))
12141		return (EINVAL);
12142
12143	/*
12144	 * Set interface metric.  We don't use this for
12145	 * anything but we keep track of it in case it is
12146	 * important to routing applications or such.
12147	 */
12148	if (ipip->ipi_cmd_type == IF_CMD) {
12149		struct ifreq    *ifr;
12150
12151		ifr = (struct ifreq *)if_req;
12152		ipif->ipif_metric = ifr->ifr_metric;
12153	} else {
12154		struct lifreq   *lifr;
12155
12156		lifr = (struct lifreq *)if_req;
12157		ipif->ipif_metric = lifr->lifr_metric;
12158	}
12159	return (0);
12160}
12161
12162/* ARGSUSED */
12163int
12164ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12165    ip_ioctl_cmd_t *ipip, void *if_req)
12166{
12167	/* Get interface metric. */
12168	ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n",
12169	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12170
12171	if (ipip->ipi_cmd_type == IF_CMD) {
12172		struct ifreq    *ifr;
12173
12174		ifr = (struct ifreq *)if_req;
12175		ifr->ifr_metric = ipif->ipif_metric;
12176	} else {
12177		struct lifreq   *lifr;
12178
12179		lifr = (struct lifreq *)if_req;
12180		lifr->lifr_metric = ipif->ipif_metric;
12181	}
12182
12183	return (0);
12184}
12185
12186/* ARGSUSED */
12187int
12188ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12189    ip_ioctl_cmd_t *ipip, void *if_req)
12190{
12191
12192	ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n",
12193	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12194	/*
12195	 * Set the muxid returned from I_PLINK.
12196	 */
12197	if (ipip->ipi_cmd_type == IF_CMD) {
12198		struct ifreq *ifr = (struct ifreq *)if_req;
12199
12200		ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid;
12201		ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid;
12202	} else {
12203		struct lifreq *lifr = (struct lifreq *)if_req;
12204
12205		ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid;
12206		ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid;
12207	}
12208	return (0);
12209}
12210
12211/* ARGSUSED */
12212int
12213ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12214    ip_ioctl_cmd_t *ipip, void *if_req)
12215{
12216
12217	ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n",
12218	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12219	/*
12220	 * Get the muxid saved in ill for I_PUNLINK.
12221	 */
12222	if (ipip->ipi_cmd_type == IF_CMD) {
12223		struct ifreq *ifr = (struct ifreq *)if_req;
12224
12225		ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid;
12226		ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid;
12227	} else {
12228		struct lifreq *lifr = (struct lifreq *)if_req;
12229
12230		lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid;
12231		lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid;
12232	}
12233	return (0);
12234}
12235
12236/*
12237 * Set the subnet prefix. Does not modify the broadcast address.
12238 */
12239/* ARGSUSED */
12240int
12241ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12242    ip_ioctl_cmd_t *ipip, void *if_req)
12243{
12244	int err = 0;
12245	in6_addr_t v6addr;
12246	in6_addr_t v6mask;
12247	boolean_t need_up = B_FALSE;
12248	int addrlen;
12249
12250	ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n",
12251	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12252
12253	ASSERT(IAM_WRITER_IPIF(ipif));
12254	addrlen = ((struct lifreq *)if_req)->lifr_addrlen;
12255
12256	if (ipif->ipif_isv6) {
12257		sin6_t *sin6;
12258
12259		if (sin->sin_family != AF_INET6)
12260			return (EAFNOSUPPORT);
12261
12262		sin6 = (sin6_t *)sin;
12263		v6addr = sin6->sin6_addr;
12264		if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones))
12265			return (EADDRNOTAVAIL);
12266	} else {
12267		ipaddr_t addr;
12268
12269		if (sin->sin_family != AF_INET)
12270			return (EAFNOSUPPORT);
12271
12272		addr = sin->sin_addr.s_addr;
12273		if (!ip_addr_ok_v4(addr, 0xFFFFFFFF))
12274			return (EADDRNOTAVAIL);
12275		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
12276		/* Add 96 bits */
12277		addrlen += IPV6_ABITS - IP_ABITS;
12278	}
12279
12280	if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL)
12281		return (EINVAL);
12282
12283	/* Check if bits in the address is set past the mask */
12284	if (!V6_MASK_EQ(v6addr, v6mask, v6addr))
12285		return (EINVAL);
12286
12287	if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) &&
12288	    IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask))
12289		return (0);	/* No change */
12290
12291	if (ipif->ipif_flags & IPIF_UP) {
12292		/*
12293		 * If the interface is already marked up,
12294		 * we call ipif_down which will take care
12295		 * of ditching any IREs that have been set
12296		 * up based on the old interface address.
12297		 */
12298		err = ipif_logical_down(ipif, q, mp);
12299		if (err == EINPROGRESS)
12300			return (err);
12301		ipif_down_tail(ipif);
12302		need_up = B_TRUE;
12303	}
12304
12305	err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up);
12306	return (err);
12307}
12308
12309static int
12310ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask,
12311    queue_t *q, mblk_t *mp, boolean_t need_up)
12312{
12313	ill_t	*ill = ipif->ipif_ill;
12314	int	err = 0;
12315
12316	ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n",
12317	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12318
12319	/* Set the new address. */
12320	mutex_enter(&ill->ill_lock);
12321	ipif->ipif_v6net_mask = v6mask;
12322	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
12323		V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask,
12324		    ipif->ipif_v6subnet);
12325	}
12326	mutex_exit(&ill->ill_lock);
12327
12328	if (need_up) {
12329		/*
12330		 * Now bring the interface back up.  If this
12331		 * is the only IPIF for the ILL, ipif_up
12332		 * will have to re-bind to the device, so
12333		 * we may get back EINPROGRESS, in which
12334		 * case, this IOCTL will get completed in
12335		 * ip_rput_dlpi when we see the DL_BIND_ACK.
12336		 */
12337		err = ipif_up(ipif, q, mp);
12338		if (err == EINPROGRESS)
12339			return (err);
12340	}
12341	return (err);
12342}
12343
12344/* ARGSUSED */
12345int
12346ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12347    ip_ioctl_cmd_t *ipip, void *if_req)
12348{
12349	int	addrlen;
12350	in6_addr_t v6addr;
12351	in6_addr_t v6mask;
12352	struct lifreq *lifr = (struct lifreq *)if_req;
12353
12354	ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n",
12355	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12356	ipif_down_tail(ipif);
12357
12358	addrlen = lifr->lifr_addrlen;
12359	if (ipif->ipif_isv6) {
12360		sin6_t *sin6;
12361
12362		sin6 = (sin6_t *)sin;
12363		v6addr = sin6->sin6_addr;
12364	} else {
12365		ipaddr_t addr;
12366
12367		addr = sin->sin_addr.s_addr;
12368		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
12369		addrlen += IPV6_ABITS - IP_ABITS;
12370	}
12371	(void) ip_plen_to_mask_v6(addrlen, &v6mask);
12372
12373	return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE));
12374}
12375
12376/* ARGSUSED */
12377int
12378ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12379    ip_ioctl_cmd_t *ipip, void *if_req)
12380{
12381	struct lifreq *lifr = (struct lifreq *)if_req;
12382	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin;
12383
12384	ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n",
12385	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12386	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
12387
12388	if (ipif->ipif_isv6) {
12389		*sin6 = sin6_null;
12390		sin6->sin6_family = AF_INET6;
12391		sin6->sin6_addr = ipif->ipif_v6subnet;
12392		lifr->lifr_addrlen =
12393		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
12394	} else {
12395		*sin = sin_null;
12396		sin->sin_family = AF_INET;
12397		sin->sin_addr.s_addr = ipif->ipif_subnet;
12398		lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask);
12399	}
12400	return (0);
12401}
12402
12403/*
12404 * Set the IPv6 address token.
12405 */
12406/* ARGSUSED */
12407int
12408ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12409    ip_ioctl_cmd_t *ipi, void *if_req)
12410{
12411	ill_t *ill = ipif->ipif_ill;
12412	int err;
12413	in6_addr_t v6addr;
12414	in6_addr_t v6mask;
12415	boolean_t need_up = B_FALSE;
12416	int i;
12417	sin6_t *sin6 = (sin6_t *)sin;
12418	struct lifreq *lifr = (struct lifreq *)if_req;
12419	int addrlen;
12420
12421	ip1dbg(("ip_sioctl_token(%s:%u %p)\n",
12422	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12423	ASSERT(IAM_WRITER_IPIF(ipif));
12424
12425	addrlen = lifr->lifr_addrlen;
12426	/* Only allow for logical unit zero i.e. not on "le0:17" */
12427	if (ipif->ipif_id != 0)
12428		return (EINVAL);
12429
12430	if (!ipif->ipif_isv6)
12431		return (EINVAL);
12432
12433	if (addrlen > IPV6_ABITS)
12434		return (EINVAL);
12435
12436	v6addr = sin6->sin6_addr;
12437
12438	/*
12439	 * The length of the token is the length from the end.  To get
12440	 * the proper mask for this, compute the mask of the bits not
12441	 * in the token; ie. the prefix, and then xor to get the mask.
12442	 */
12443	if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL)
12444		return (EINVAL);
12445	for (i = 0; i < 4; i++) {
12446		v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
12447	}
12448
12449	if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) &&
12450	    ill->ill_token_length == addrlen)
12451		return (0);	/* No change */
12452
12453	if (ipif->ipif_flags & IPIF_UP) {
12454		err = ipif_logical_down(ipif, q, mp);
12455		if (err == EINPROGRESS)
12456			return (err);
12457		ipif_down_tail(ipif);
12458		need_up = B_TRUE;
12459	}
12460	err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up);
12461	return (err);
12462}
12463
12464static int
12465ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q,
12466    mblk_t *mp, boolean_t need_up)
12467{
12468	in6_addr_t v6addr;
12469	in6_addr_t v6mask;
12470	ill_t	*ill = ipif->ipif_ill;
12471	int	i;
12472	int	err = 0;
12473
12474	ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n",
12475	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12476	v6addr = sin6->sin6_addr;
12477	/*
12478	 * The length of the token is the length from the end.  To get
12479	 * the proper mask for this, compute the mask of the bits not
12480	 * in the token; ie. the prefix, and then xor to get the mask.
12481	 */
12482	(void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask);
12483	for (i = 0; i < 4; i++)
12484		v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
12485
12486	mutex_enter(&ill->ill_lock);
12487	V6_MASK_COPY(v6addr, v6mask, ill->ill_token);
12488	ill->ill_token_length = addrlen;
12489	ill->ill_manual_token = 1;
12490
12491	/* Reconfigure the link-local address based on this new token */
12492	ipif_setlinklocal(ill->ill_ipif);
12493
12494	mutex_exit(&ill->ill_lock);
12495
12496	if (need_up) {
12497		/*
12498		 * Now bring the interface back up.  If this
12499		 * is the only IPIF for the ILL, ipif_up
12500		 * will have to re-bind to the device, so
12501		 * we may get back EINPROGRESS, in which
12502		 * case, this IOCTL will get completed in
12503		 * ip_rput_dlpi when we see the DL_BIND_ACK.
12504		 */
12505		err = ipif_up(ipif, q, mp);
12506		if (err == EINPROGRESS)
12507			return (err);
12508	}
12509	return (err);
12510}
12511
12512/* ARGSUSED */
12513int
12514ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12515    ip_ioctl_cmd_t *ipi, void *if_req)
12516{
12517	ill_t *ill;
12518	sin6_t *sin6 = (sin6_t *)sin;
12519	struct lifreq *lifr = (struct lifreq *)if_req;
12520
12521	ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n",
12522	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12523	if (ipif->ipif_id != 0)
12524		return (EINVAL);
12525
12526	ill = ipif->ipif_ill;
12527	if (!ill->ill_isv6)
12528		return (ENXIO);
12529
12530	*sin6 = sin6_null;
12531	sin6->sin6_family = AF_INET6;
12532	ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token));
12533	sin6->sin6_addr = ill->ill_token;
12534	lifr->lifr_addrlen = ill->ill_token_length;
12535	return (0);
12536}
12537
12538/*
12539 * Set (hardware) link specific information that might override
12540 * what was acquired through the DL_INFO_ACK.
12541 * The logic is as follows.
12542 *
12543 * become exclusive
12544 * set CHANGING flag
12545 * change mtu on affected IREs
12546 * clear CHANGING flag
12547 *
12548 * An ire add that occurs before the CHANGING flag is set will have its mtu
12549 * changed by the ip_sioctl_lnkinfo.
12550 *
12551 * During the time the CHANGING flag is set, no new ires will be added to the
12552 * bucket, and ire add will fail (due the CHANGING flag).
12553 *
12554 * An ire add that occurs after the CHANGING flag is set will have the right mtu
12555 * before it is added to the bucket.
12556 *
12557 * Obviously only 1 thread can set the CHANGING flag and we need to become
12558 * exclusive to set the flag.
12559 */
12560/* ARGSUSED */
12561int
12562ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12563    ip_ioctl_cmd_t *ipi, void *if_req)
12564{
12565	ill_t		*ill = ipif->ipif_ill;
12566	ipif_t		*nipif;
12567	int		ip_min_mtu;
12568	boolean_t	mtu_walk = B_FALSE;
12569	struct lifreq	*lifr = (struct lifreq *)if_req;
12570	lif_ifinfo_req_t *lir;
12571	ire_t		*ire;
12572
12573	ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n",
12574	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12575	lir = &lifr->lifr_ifinfo;
12576	ASSERT(IAM_WRITER_IPIF(ipif));
12577
12578	/* Only allow for logical unit zero i.e. not on "le0:17" */
12579	if (ipif->ipif_id != 0)
12580		return (EINVAL);
12581
12582	/* Set interface MTU. */
12583	if (ipif->ipif_isv6)
12584		ip_min_mtu = IPV6_MIN_MTU;
12585	else
12586		ip_min_mtu = IP_MIN_MTU;
12587
12588	/*
12589	 * Verify values before we set anything. Allow zero to
12590	 * mean unspecified.
12591	 */
12592	if (lir->lir_maxmtu != 0 &&
12593	    (lir->lir_maxmtu > ill->ill_max_frag ||
12594	    lir->lir_maxmtu < ip_min_mtu))
12595		return (EINVAL);
12596	if (lir->lir_reachtime != 0 &&
12597	    lir->lir_reachtime > ND_MAX_REACHTIME)
12598		return (EINVAL);
12599	if (lir->lir_reachretrans != 0 &&
12600	    lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME)
12601		return (EINVAL);
12602
12603	mutex_enter(&ill->ill_lock);
12604	ill->ill_state_flags |= ILL_CHANGING;
12605	for (nipif = ill->ill_ipif; nipif != NULL;
12606	    nipif = nipif->ipif_next) {
12607		nipif->ipif_state_flags |= IPIF_CHANGING;
12608	}
12609
12610	if (lir->lir_maxmtu != 0) {
12611		ill->ill_max_mtu = lir->lir_maxmtu;
12612		ill->ill_user_mtu = lir->lir_maxmtu;
12613		mtu_walk = B_TRUE;
12614	}
12615	mutex_exit(&ill->ill_lock);
12616
12617	if (lir->lir_reachtime != 0)
12618		ill->ill_reachable_time = lir->lir_reachtime;
12619
12620	if (lir->lir_reachretrans != 0)
12621		ill->ill_reachable_retrans_time = lir->lir_reachretrans;
12622
12623	ill->ill_max_hops = lir->lir_maxhops;
12624
12625	ill->ill_max_buf = ND_MAX_Q;
12626
12627	if (mtu_walk) {
12628		/*
12629		 * Set the MTU on all ipifs associated with this ill except
12630		 * for those whose MTU was fixed via SIOCSLIFMTU.
12631		 */
12632		for (nipif = ill->ill_ipif; nipif != NULL;
12633		    nipif = nipif->ipif_next) {
12634			if (nipif->ipif_flags & IPIF_FIXEDMTU)
12635				continue;
12636
12637			nipif->ipif_mtu = ill->ill_max_mtu;
12638
12639			if (!(nipif->ipif_flags & IPIF_UP))
12640				continue;
12641
12642			if (nipif->ipif_isv6)
12643				ire = ipif_to_ire_v6(nipif);
12644			else
12645				ire = ipif_to_ire(nipif);
12646			if (ire != NULL) {
12647				ire->ire_max_frag = ipif->ipif_mtu;
12648				ire_refrele(ire);
12649			}
12650
12651			ire_walk_ill(MATCH_IRE_ILL, 0, ipif_mtu_change,
12652			    nipif, ill);
12653		}
12654	}
12655
12656	mutex_enter(&ill->ill_lock);
12657	for (nipif = ill->ill_ipif; nipif != NULL;
12658	    nipif = nipif->ipif_next) {
12659		nipif->ipif_state_flags &= ~IPIF_CHANGING;
12660	}
12661	ILL_UNMARK_CHANGING(ill);
12662	mutex_exit(&ill->ill_lock);
12663
12664	/*
12665	 * Refresh IPMP meta-interface MTU if necessary.
12666	 */
12667	if (IS_UNDER_IPMP(ill))
12668		ipmp_illgrp_refresh_mtu(ill->ill_grp);
12669
12670	return (0);
12671}
12672
12673/* ARGSUSED */
12674int
12675ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12676    ip_ioctl_cmd_t *ipi, void *if_req)
12677{
12678	struct lif_ifinfo_req *lir;
12679	ill_t *ill = ipif->ipif_ill;
12680
12681	ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n",
12682	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12683	if (ipif->ipif_id != 0)
12684		return (EINVAL);
12685
12686	lir = &((struct lifreq *)if_req)->lifr_ifinfo;
12687	lir->lir_maxhops = ill->ill_max_hops;
12688	lir->lir_reachtime = ill->ill_reachable_time;
12689	lir->lir_reachretrans = ill->ill_reachable_retrans_time;
12690	lir->lir_maxmtu = ill->ill_max_mtu;
12691
12692	return (0);
12693}
12694
12695/*
12696 * Return best guess as to the subnet mask for the specified address.
12697 * Based on the subnet masks for all the configured interfaces.
12698 *
12699 * We end up returning a zero mask in the case of default, multicast or
12700 * experimental.
12701 */
12702static ipaddr_t
12703ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst)
12704{
12705	ipaddr_t net_mask;
12706	ill_t	*ill;
12707	ipif_t	*ipif;
12708	ill_walk_context_t ctx;
12709	ipif_t	*fallback_ipif = NULL;
12710
12711	net_mask = ip_net_mask(addr);
12712	if (net_mask == 0) {
12713		*ipifp = NULL;
12714		return (0);
12715	}
12716
12717	/* Let's check to see if this is maybe a local subnet route. */
12718	/* this function only applies to IPv4 interfaces */
12719	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
12720	ill = ILL_START_WALK_V4(&ctx, ipst);
12721	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
12722		mutex_enter(&ill->ill_lock);
12723		for (ipif = ill->ill_ipif; ipif != NULL;
12724		    ipif = ipif->ipif_next) {
12725			if (!IPIF_CAN_LOOKUP(ipif))
12726				continue;
12727			if (!(ipif->ipif_flags & IPIF_UP))
12728				continue;
12729			if ((ipif->ipif_subnet & net_mask) ==
12730			    (addr & net_mask)) {
12731				/*
12732				 * Don't trust pt-pt interfaces if there are
12733				 * other interfaces.
12734				 */
12735				if (ipif->ipif_flags & IPIF_POINTOPOINT) {
12736					if (fallback_ipif == NULL) {
12737						ipif_refhold_locked(ipif);
12738						fallback_ipif = ipif;
12739					}
12740					continue;
12741				}
12742
12743				/*
12744				 * Fine. Just assume the same net mask as the
12745				 * directly attached subnet interface is using.
12746				 */
12747				ipif_refhold_locked(ipif);
12748				mutex_exit(&ill->ill_lock);
12749				rw_exit(&ipst->ips_ill_g_lock);
12750				if (fallback_ipif != NULL)
12751					ipif_refrele(fallback_ipif);
12752				*ipifp = ipif;
12753				return (ipif->ipif_net_mask);
12754			}
12755		}
12756		mutex_exit(&ill->ill_lock);
12757	}
12758	rw_exit(&ipst->ips_ill_g_lock);
12759
12760	*ipifp = fallback_ipif;
12761	return ((fallback_ipif != NULL) ?
12762	    fallback_ipif->ipif_net_mask : net_mask);
12763}
12764
12765/*
12766 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl.
12767 */
12768static void
12769ip_wput_ioctl(queue_t *q, mblk_t *mp)
12770{
12771	IOCP	iocp;
12772	ipft_t	*ipft;
12773	ipllc_t	*ipllc;
12774	mblk_t	*mp1;
12775	cred_t	*cr;
12776	int	error = 0;
12777	conn_t	*connp;
12778
12779	ip1dbg(("ip_wput_ioctl"));
12780	iocp = (IOCP)mp->b_rptr;
12781	mp1 = mp->b_cont;
12782	if (mp1 == NULL) {
12783		iocp->ioc_error = EINVAL;
12784		mp->b_datap->db_type = M_IOCNAK;
12785		iocp->ioc_count = 0;
12786		qreply(q, mp);
12787		return;
12788	}
12789
12790	/*
12791	 * These IOCTLs provide various control capabilities to
12792	 * upstream agents such as ULPs and processes.	There
12793	 * are currently two such IOCTLs implemented.  They
12794	 * are used by TCP to provide update information for
12795	 * existing IREs and to forcibly delete an IRE for a
12796	 * host that is not responding, thereby forcing an
12797	 * attempt at a new route.
12798	 */
12799	iocp->ioc_error = EINVAL;
12800	if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd)))
12801		goto done;
12802
12803	ipllc = (ipllc_t *)mp1->b_rptr;
12804	for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) {
12805		if (ipllc->ipllc_cmd == ipft->ipft_cmd)
12806			break;
12807	}
12808	/*
12809	 * prefer credential from mblk over ioctl;
12810	 * see ip_sioctl_copyin_setup
12811	 */
12812	cr = msg_getcred(mp, NULL);
12813	if (cr == NULL)
12814		cr = iocp->ioc_cr;
12815
12816	/*
12817	 * Refhold the conn in case the request gets queued up in some lookup
12818	 */
12819	ASSERT(CONN_Q(q));
12820	connp = Q_TO_CONN(q);
12821	CONN_INC_REF(connp);
12822	if (ipft->ipft_pfi &&
12823	    ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size ||
12824	    pullupmsg(mp1, ipft->ipft_min_size))) {
12825		error = (*ipft->ipft_pfi)(q,
12826		    (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr);
12827	}
12828	if (ipft->ipft_flags & IPFT_F_SELF_REPLY) {
12829		/*
12830		 * CONN_OPER_PENDING_DONE happens in the function called
12831		 * through ipft_pfi above.
12832		 */
12833		return;
12834	}
12835
12836	CONN_OPER_PENDING_DONE(connp);
12837	if (ipft->ipft_flags & IPFT_F_NO_REPLY) {
12838		freemsg(mp);
12839		return;
12840	}
12841	iocp->ioc_error = error;
12842
12843done:
12844	mp->b_datap->db_type = M_IOCACK;
12845	if (iocp->ioc_error)
12846		iocp->ioc_count = 0;
12847	qreply(q, mp);
12848}
12849
12850/*
12851 * Lookup an ipif using the sequence id (ipif_seqid)
12852 */
12853ipif_t *
12854ipif_lookup_seqid(ill_t *ill, uint_t seqid)
12855{
12856	ipif_t *ipif;
12857
12858	ASSERT(MUTEX_HELD(&ill->ill_lock));
12859
12860	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12861		if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif))
12862			return (ipif);
12863	}
12864	return (NULL);
12865}
12866
12867/*
12868 * Assign a unique id for the ipif. This is used later when we send
12869 * IRES to ARP for resolution where we initialize ire_ipif_seqid
12870 * to the value pointed by ire_ipif->ipif_seqid. Later when the
12871 * IRE is added, we verify that ipif has not disappeared.
12872 */
12873
12874static void
12875ipif_assign_seqid(ipif_t *ipif)
12876{
12877	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
12878
12879	ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1);
12880}
12881
12882/*
12883 * Clone the contents of `sipif' to `dipif'.  Requires that both ipifs are
12884 * administratively down (i.e., no DAD), of the same type, and locked.  Note
12885 * that the clone is complete -- including the seqid -- and the expectation is
12886 * that the caller will either free or overwrite `sipif' before it's unlocked.
12887 */
12888static void
12889ipif_clone(const ipif_t *sipif, ipif_t *dipif)
12890{
12891	ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock));
12892	ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock));
12893	ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)));
12894	ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)));
12895	ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type);
12896	ASSERT(sipif->ipif_arp_del_mp == NULL);
12897	ASSERT(dipif->ipif_arp_del_mp == NULL);
12898	ASSERT(sipif->ipif_igmp_rpt == NULL);
12899	ASSERT(dipif->ipif_igmp_rpt == NULL);
12900	ASSERT(sipif->ipif_multicast_up == 0);
12901	ASSERT(dipif->ipif_multicast_up == 0);
12902	ASSERT(sipif->ipif_joined_allhosts == 0);
12903	ASSERT(dipif->ipif_joined_allhosts == 0);
12904
12905	dipif->ipif_mtu = sipif->ipif_mtu;
12906	dipif->ipif_flags = sipif->ipif_flags;
12907	dipif->ipif_metric = sipif->ipif_metric;
12908	dipif->ipif_zoneid = sipif->ipif_zoneid;
12909	dipif->ipif_v6subnet = sipif->ipif_v6subnet;
12910	dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr;
12911	dipif->ipif_v6src_addr = sipif->ipif_v6src_addr;
12912	dipif->ipif_v6net_mask = sipif->ipif_v6net_mask;
12913	dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr;
12914	dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr;
12915
12916	/*
12917	 * While dipif is down right now, it might've been up before.  Since
12918	 * it's changing identity, its packet counters need to be reset.
12919	 */
12920	dipif->ipif_ib_pkt_count = 0;
12921	dipif->ipif_ob_pkt_count = 0;
12922	dipif->ipif_fo_pkt_count = 0;
12923
12924	/*
12925	 * As per the comment atop the function, we assume that these sipif
12926	 * fields will be changed before sipif is unlocked.
12927	 */
12928	dipif->ipif_seqid = sipif->ipif_seqid;
12929	dipif->ipif_saved_ire_mp = sipif->ipif_saved_ire_mp;
12930	dipif->ipif_saved_ire_cnt = sipif->ipif_saved_ire_cnt;
12931	dipif->ipif_state_flags = sipif->ipif_state_flags;
12932}
12933
12934/*
12935 * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif'
12936 * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin
12937 * (unreferenced) ipif.  Also, if `sipif' is used by the current xop, then
12938 * transfer the xop to `dipif'.  Requires that all ipifs are administratively
12939 * down (i.e., no DAD), of the same type, and unlocked.
12940 */
12941static void
12942ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif)
12943{
12944	ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq;
12945	ipxop_t *ipx = ipsq->ipsq_xop;
12946
12947	ASSERT(sipif != dipif);
12948	ASSERT(sipif != virgipif);
12949
12950	/*
12951	 * Grab all of the locks that protect the ipif in a defined order.
12952	 */
12953	GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill);
12954	if (sipif > dipif) {
12955		mutex_enter(&sipif->ipif_saved_ire_lock);
12956		mutex_enter(&dipif->ipif_saved_ire_lock);
12957	} else {
12958		mutex_enter(&dipif->ipif_saved_ire_lock);
12959		mutex_enter(&sipif->ipif_saved_ire_lock);
12960	}
12961
12962	ipif_clone(sipif, dipif);
12963	if (virgipif != NULL) {
12964		ipif_clone(virgipif, sipif);
12965		mi_free(virgipif);
12966	}
12967
12968	mutex_exit(&sipif->ipif_saved_ire_lock);
12969	mutex_exit(&dipif->ipif_saved_ire_lock);
12970	RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill);
12971
12972	/*
12973	 * Transfer ownership of the current xop, if necessary.
12974	 */
12975	if (ipx->ipx_current_ipif == sipif) {
12976		ASSERT(ipx->ipx_pending_ipif == NULL);
12977		mutex_enter(&ipx->ipx_lock);
12978		ipx->ipx_current_ipif = dipif;
12979		mutex_exit(&ipx->ipx_lock);
12980	}
12981
12982	if (virgipif == NULL)
12983		mi_free(sipif);
12984}
12985
12986/*
12987 * Insert the ipif, so that the list of ipifs on the ill will be sorted
12988 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will
12989 * be inserted into the first space available in the list. The value of
12990 * ipif_id will then be set to the appropriate value for its position.
12991 */
12992static int
12993ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock)
12994{
12995	ill_t *ill;
12996	ipif_t *tipif;
12997	ipif_t **tipifp;
12998	int id;
12999	ip_stack_t	*ipst;
13000
13001	ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK ||
13002	    IAM_WRITER_IPIF(ipif));
13003
13004	ill = ipif->ipif_ill;
13005	ASSERT(ill != NULL);
13006	ipst = ill->ill_ipst;
13007
13008	/*
13009	 * In the case of lo0:0 we already hold the ill_g_lock.
13010	 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate ->
13011	 * ipif_insert.
13012	 */
13013	if (acquire_g_lock)
13014		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13015	mutex_enter(&ill->ill_lock);
13016	id = ipif->ipif_id;
13017	tipifp = &(ill->ill_ipif);
13018	if (id == -1) {	/* need to find a real id */
13019		id = 0;
13020		while ((tipif = *tipifp) != NULL) {
13021			ASSERT(tipif->ipif_id >= id);
13022			if (tipif->ipif_id != id)
13023				break; /* non-consecutive id */
13024			id++;
13025			tipifp = &(tipif->ipif_next);
13026		}
13027		/* limit number of logical interfaces */
13028		if (id >= ipst->ips_ip_addrs_per_if) {
13029			mutex_exit(&ill->ill_lock);
13030			if (acquire_g_lock)
13031				rw_exit(&ipst->ips_ill_g_lock);
13032			return (-1);
13033		}
13034		ipif->ipif_id = id; /* assign new id */
13035	} else if (id < ipst->ips_ip_addrs_per_if) {
13036		/* we have a real id; insert ipif in the right place */
13037		while ((tipif = *tipifp) != NULL) {
13038			ASSERT(tipif->ipif_id != id);
13039			if (tipif->ipif_id > id)
13040				break; /* found correct location */
13041			tipifp = &(tipif->ipif_next);
13042		}
13043	} else {
13044		mutex_exit(&ill->ill_lock);
13045		if (acquire_g_lock)
13046			rw_exit(&ipst->ips_ill_g_lock);
13047		return (-1);
13048	}
13049
13050	ASSERT(tipifp != &(ill->ill_ipif) || id == 0);
13051
13052	ipif->ipif_next = tipif;
13053	*tipifp = ipif;
13054	mutex_exit(&ill->ill_lock);
13055	if (acquire_g_lock)
13056		rw_exit(&ipst->ips_ill_g_lock);
13057
13058	return (0);
13059}
13060
13061static void
13062ipif_remove(ipif_t *ipif)
13063{
13064	ipif_t	**ipifp;
13065	ill_t	*ill = ipif->ipif_ill;
13066
13067	ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock));
13068
13069	mutex_enter(&ill->ill_lock);
13070	ipifp = &ill->ill_ipif;
13071	for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) {
13072		if (*ipifp == ipif) {
13073			*ipifp = ipif->ipif_next;
13074			break;
13075		}
13076	}
13077	mutex_exit(&ill->ill_lock);
13078}
13079
13080/*
13081 * Allocate and initialize a new interface control structure.  (Always
13082 * called as writer.)
13083 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill
13084 * is not part of the global linked list of ills. ipif_seqid is unique
13085 * in the system and to preserve the uniqueness, it is assigned only
13086 * when ill becomes part of the global list. At that point ill will
13087 * have a name. If it doesn't get assigned here, it will get assigned
13088 * in ipif_set_values() as part of SIOCSLIFNAME processing.
13089 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set
13090 * the interface flags or any other information from the DL_INFO_ACK for
13091 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at
13092 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the
13093 * second DL_INFO_ACK comes in from the driver.
13094 */
13095static ipif_t *
13096ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize,
13097    boolean_t insert)
13098{
13099	ipif_t	*ipif;
13100	ip_stack_t *ipst = ill->ill_ipst;
13101
13102	ip1dbg(("ipif_allocate(%s:%d ill %p)\n",
13103	    ill->ill_name, id, (void *)ill));
13104	ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill));
13105
13106	if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL)
13107		return (NULL);
13108	*ipif = ipif_zero;	/* start clean */
13109
13110	ipif->ipif_ill = ill;
13111	ipif->ipif_id = id;	/* could be -1 */
13112	/*
13113	 * Inherit the zoneid from the ill; for the shared stack instance
13114	 * this is always the global zone
13115	 */
13116	ipif->ipif_zoneid = ill->ill_zoneid;
13117
13118	mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL);
13119
13120	ipif->ipif_refcnt = 0;
13121	ipif->ipif_saved_ire_cnt = 0;
13122
13123	if (insert) {
13124		if (ipif_insert(ipif, ire_type != IRE_LOOPBACK) != 0) {
13125			mi_free(ipif);
13126			return (NULL);
13127		}
13128		/* -1 id should have been replaced by real id */
13129		id = ipif->ipif_id;
13130		ASSERT(id >= 0);
13131	}
13132
13133	if (ill->ill_name[0] != '\0')
13134		ipif_assign_seqid(ipif);
13135
13136	/*
13137	 * If this is the zeroth ipif on the IPMP ill, create the illgrp
13138	 * (which must not exist yet because the zeroth ipif is created once
13139	 * per ill).  However, do not not link it to the ipmp_grp_t until
13140	 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details.
13141	 */
13142	if (id == 0 && IS_IPMP(ill)) {
13143		if (ipmp_illgrp_create(ill) == NULL) {
13144			if (insert) {
13145				rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13146				ipif_remove(ipif);
13147				rw_exit(&ipst->ips_ill_g_lock);
13148			}
13149			mi_free(ipif);
13150			return (NULL);
13151		}
13152	}
13153
13154	/*
13155	 * We grab ill_lock to protect the flag changes.  The ipif is still
13156	 * not up and can't be looked up until the ioctl completes and the
13157	 * IPIF_CHANGING flag is cleared.
13158	 */
13159	mutex_enter(&ill->ill_lock);
13160
13161	ipif->ipif_ire_type = ire_type;
13162
13163	if (ipif->ipif_isv6) {
13164		ill->ill_flags |= ILLF_IPV6;
13165	} else {
13166		ipaddr_t inaddr_any = INADDR_ANY;
13167
13168		ill->ill_flags |= ILLF_IPV4;
13169
13170		/* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */
13171		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13172		    &ipif->ipif_v6lcl_addr);
13173		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13174		    &ipif->ipif_v6src_addr);
13175		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13176		    &ipif->ipif_v6subnet);
13177		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13178		    &ipif->ipif_v6net_mask);
13179		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13180		    &ipif->ipif_v6brd_addr);
13181		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13182		    &ipif->ipif_v6pp_dst_addr);
13183	}
13184
13185	/*
13186	 * Don't set the interface flags etc. now, will do it in
13187	 * ip_ll_subnet_defaults.
13188	 */
13189	if (!initialize)
13190		goto out;
13191
13192	ipif->ipif_mtu = ill->ill_max_mtu;
13193
13194	/*
13195	 * NOTE: The IPMP meta-interface is special-cased because it starts
13196	 * with no underlying interfaces (and thus an unknown broadcast
13197	 * address length), but all interfaces that can be placed into an IPMP
13198	 * group are required to be broadcast-capable.
13199	 */
13200	if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) {
13201		/*
13202		 * Later detect lack of DLPI driver multicast capability by
13203		 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi().
13204		 */
13205		ill->ill_flags |= ILLF_MULTICAST;
13206		if (!ipif->ipif_isv6)
13207			ipif->ipif_flags |= IPIF_BROADCAST;
13208	} else {
13209		if (ill->ill_net_type != IRE_LOOPBACK) {
13210			if (ipif->ipif_isv6)
13211				/*
13212				 * Note: xresolv interfaces will eventually need
13213				 * NOARP set here as well, but that will require
13214				 * those external resolvers to have some
13215				 * knowledge of that flag and act appropriately.
13216				 * Not to be changed at present.
13217				 */
13218				ill->ill_flags |= ILLF_NONUD;
13219			else
13220				ill->ill_flags |= ILLF_NOARP;
13221		}
13222		if (ill->ill_phys_addr_length == 0) {
13223			if (IS_VNI(ill)) {
13224				ipif->ipif_flags |= IPIF_NOXMIT;
13225			} else {
13226				/* pt-pt supports multicast. */
13227				ill->ill_flags |= ILLF_MULTICAST;
13228				if (ill->ill_net_type != IRE_LOOPBACK)
13229					ipif->ipif_flags |= IPIF_POINTOPOINT;
13230			}
13231		}
13232	}
13233out:
13234	mutex_exit(&ill->ill_lock);
13235	return (ipif);
13236}
13237
13238/*
13239 * If appropriate, send a message up to the resolver delete the entry
13240 * for the address of this interface which is going out of business.
13241 * (Always called as writer).
13242 *
13243 * NOTE : We need to check for NULL mps as some of the fields are
13244 *	  initialized only for some interface types. See ipif_resolver_up()
13245 *	  for details.
13246 */
13247void
13248ipif_resolver_down(ipif_t *ipif)
13249{
13250	mblk_t	*mp;
13251	ill_t	*ill = ipif->ipif_ill;
13252
13253	ip1dbg(("ipif_resolver_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
13254	ASSERT(IAM_WRITER_IPIF(ipif));
13255
13256	if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV))
13257		return;
13258
13259	/* Delete the mapping for the local address */
13260	mp = ipif->ipif_arp_del_mp;
13261	if (mp != NULL) {
13262		ip1dbg(("ipif_resolver_down: arp cmd %x for %s:%u\n",
13263		    *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id));
13264		putnext(ill->ill_rq, mp);
13265		ipif->ipif_arp_del_mp = NULL;
13266	}
13267
13268	/*
13269	 * Make IPMP aware of the deleted data address.
13270	 */
13271	if (IS_IPMP(ill))
13272		ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
13273
13274	/*
13275	 * If this is the last ipif that is going down and there are no
13276	 * duplicate addresses we may yet attempt to re-probe, then we need to
13277	 * clean up ARP completely.
13278	 */
13279	if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) {
13280		/*
13281		 * If this was the last ipif on an IPMP interface, purge any
13282		 * IPMP ARP entries associated with it.
13283		 */
13284		if (IS_IPMP(ill))
13285			ipmp_illgrp_refresh_arpent(ill->ill_grp);
13286
13287		/* Send up AR_INTERFACE_DOWN message */
13288		mp = ill->ill_arp_down_mp;
13289		if (mp != NULL) {
13290			ip1dbg(("ipif_resolver_down: arp cmd %x for %s:%u\n",
13291			    *(unsigned *)mp->b_rptr, ill->ill_name,
13292			    ipif->ipif_id));
13293			putnext(ill->ill_rq, mp);
13294			ill->ill_arp_down_mp = NULL;
13295		}
13296
13297		/* Tell ARP to delete the multicast mappings */
13298		mp = ill->ill_arp_del_mapping_mp;
13299		if (mp != NULL) {
13300			ip1dbg(("ipif_resolver_down: arp cmd %x for %s:%u\n",
13301			    *(unsigned *)mp->b_rptr, ill->ill_name,
13302			    ipif->ipif_id));
13303			putnext(ill->ill_rq, mp);
13304			ill->ill_arp_del_mapping_mp = NULL;
13305		}
13306	}
13307}
13308
13309/*
13310 * Set up the multicast mappings for `ipif' in ARP.  If `arp_add_mapping_mp'
13311 * is non-NULL, then upon success it will contain an mblk that can be passed
13312 * to ARP to create the mapping.  Otherwise, if it's NULL, upon success ARP
13313 * will have already been notified to create the mapping.  Returns zero on
13314 * success, -1 upon failure.
13315 */
13316int
13317ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp)
13318{
13319	mblk_t	*del_mp = NULL;
13320	mblk_t *add_mp = NULL;
13321	mblk_t *mp;
13322	ill_t	*ill = ipif->ipif_ill;
13323	phyint_t *phyi = ill->ill_phyint;
13324	ipaddr_t addr, mask, extract_mask = 0;
13325	arma_t	*arma;
13326	uint8_t *maddr, *bphys_addr;
13327	uint32_t hw_start;
13328	dl_unitdata_req_t *dlur;
13329
13330	ASSERT(IAM_WRITER_IPIF(ipif));
13331	if (ipif->ipif_flags & IPIF_POINTOPOINT)
13332		return (0);
13333
13334	/*
13335	 * IPMP meta-interfaces don't have any inherent multicast mappings,
13336	 * and instead use the ones on the underlying interfaces.
13337	 */
13338	if (IS_IPMP(ill))
13339		return (0);
13340
13341	/*
13342	 * Delete the existing mapping from ARP.  Normally, ipif_down() ->
13343	 * ipif_resolver_down() will send this up to ARP, but it may be that
13344	 * we are enabling PHYI_MULTI_BCAST via ip_rput_dlpi_writer().
13345	 */
13346	mp = ill->ill_arp_del_mapping_mp;
13347	if (mp != NULL) {
13348		ip1dbg(("ipif_arp_setup_multicast: arp cmd %x for %s:%u\n",
13349		    *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id));
13350		putnext(ill->ill_rq, mp);
13351		ill->ill_arp_del_mapping_mp = NULL;
13352	}
13353
13354	if (arp_add_mapping_mp != NULL)
13355		*arp_add_mapping_mp = NULL;
13356
13357	/*
13358	 * Check that the address is not to long for the constant
13359	 * length reserved in the template arma_t.
13360	 */
13361	if (ill->ill_phys_addr_length > IP_MAX_HW_LEN)
13362		return (-1);
13363
13364	/* Add mapping mblk */
13365	addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP);
13366	mask = (ipaddr_t)htonl(IN_CLASSD_NET);
13367	add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template,
13368	    (caddr_t)&addr);
13369	if (add_mp == NULL)
13370		return (-1);
13371	arma = (arma_t *)add_mp->b_rptr;
13372	maddr = (uint8_t *)arma + arma->arma_hw_addr_offset;
13373	bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN);
13374	arma->arma_hw_addr_length = ill->ill_phys_addr_length;
13375
13376	/*
13377	 * Determine the broadcast address.
13378	 */
13379	dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
13380	if (ill->ill_sap_length < 0)
13381		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
13382	else
13383		bphys_addr = (uchar_t *)dlur +
13384		    dlur->dl_dest_addr_offset + ill->ill_sap_length;
13385	/*
13386	 * Check PHYI_MULTI_BCAST and length of physical
13387	 * address to determine if we use the mapping or the
13388	 * broadcast address.
13389	 */
13390	if (!(phyi->phyint_flags & PHYI_MULTI_BCAST))
13391		if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length,
13392		    bphys_addr, maddr, &hw_start, &extract_mask))
13393			phyi->phyint_flags |= PHYI_MULTI_BCAST;
13394
13395	if ((phyi->phyint_flags & PHYI_MULTI_BCAST) ||
13396	    (ill->ill_flags & ILLF_MULTICAST)) {
13397		/* Make sure this will not match the "exact" entry. */
13398		addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP);
13399		del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template,
13400		    (caddr_t)&addr);
13401		if (del_mp == NULL) {
13402			freemsg(add_mp);
13403			return (-1);
13404		}
13405		bcopy(&extract_mask, (char *)arma +
13406		    arma->arma_proto_extract_mask_offset, IP_ADDR_LEN);
13407		if (phyi->phyint_flags & PHYI_MULTI_BCAST) {
13408			/* Use link-layer broadcast address for MULTI_BCAST */
13409			bcopy(bphys_addr, maddr, ill->ill_phys_addr_length);
13410			ip2dbg(("ipif_arp_setup_multicast: adding"
13411			    " MULTI_BCAST ARP setup for %s\n", ill->ill_name));
13412		} else {
13413			arma->arma_hw_mapping_start = hw_start;
13414			ip2dbg(("ipif_arp_setup_multicast: adding multicast"
13415			    " ARP setup for %s\n", ill->ill_name));
13416		}
13417	} else {
13418		freemsg(add_mp);
13419		ASSERT(del_mp == NULL);
13420		/* It is neither MULTICAST nor MULTI_BCAST */
13421		return (0);
13422	}
13423	ASSERT(add_mp != NULL && del_mp != NULL);
13424	ASSERT(ill->ill_arp_del_mapping_mp == NULL);
13425	ill->ill_arp_del_mapping_mp = del_mp;
13426	if (arp_add_mapping_mp != NULL) {
13427		/* The caller just wants the mblks allocated */
13428		*arp_add_mapping_mp = add_mp;
13429	} else {
13430		/* The caller wants us to send it to arp */
13431		putnext(ill->ill_rq, add_mp);
13432	}
13433	return (0);
13434}
13435
13436/*
13437 * Get the resolver set up for a new IP address.  (Always called as writer.)
13438 * Called both for IPv4 and IPv6 interfaces, though it only sets up the
13439 * resolver for v6 if it's an ILLF_XRESOLV interface.  Honors ILLF_NOARP.
13440 *
13441 * The enumerated value res_act tunes the behavior:
13442 * 	* Res_act_initial: set up all the resolver structures for a new
13443 *	  IP address.
13444 *	* Res_act_defend: tell ARP that it needs to send a single gratuitous
13445 *	  ARP message in defense of the address.
13446 *	* Res_act_rebind: tell ARP to change the hardware address for an IP
13447 *	  address (and issue gratuitous ARPs).  Used by ipmp_ill_bind_ipif().
13448 *
13449 * Returns zero on success, or an errno upon failure.
13450 */
13451int
13452ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act)
13453{
13454	mblk_t	*arp_up_mp = NULL;
13455	mblk_t	*arp_down_mp = NULL;
13456	mblk_t	*arp_add_mp = NULL;
13457	mblk_t	*arp_del_mp = NULL;
13458	mblk_t	*arp_add_mapping_mp = NULL;
13459	mblk_t	*arp_del_mapping_mp = NULL;
13460	ill_t	*ill = ipif->ipif_ill;
13461	int	err = ENOMEM;
13462	boolean_t added_ipif = B_FALSE;
13463	boolean_t publish;
13464	boolean_t was_dup;
13465
13466	ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n",
13467	    ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags));
13468	ASSERT(IAM_WRITER_IPIF(ipif));
13469
13470	was_dup = B_FALSE;
13471	if (res_act == Res_act_initial) {
13472		ipif->ipif_addr_ready = 0;
13473		/*
13474		 * We're bringing an interface up here.  There's no way that we
13475		 * should need to shut down ARP now.
13476		 */
13477		mutex_enter(&ill->ill_lock);
13478		if (ipif->ipif_flags & IPIF_DUPLICATE) {
13479			ipif->ipif_flags &= ~IPIF_DUPLICATE;
13480			ill->ill_ipif_dup_count--;
13481			was_dup = B_TRUE;
13482		}
13483		mutex_exit(&ill->ill_lock);
13484	}
13485	if (ipif->ipif_recovery_id != 0)
13486		(void) untimeout(ipif->ipif_recovery_id);
13487	ipif->ipif_recovery_id = 0;
13488	if (ill->ill_net_type != IRE_IF_RESOLVER) {
13489		ipif->ipif_addr_ready = 1;
13490		return (0);
13491	}
13492	/* NDP will set the ipif_addr_ready flag when it's ready */
13493	if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV))
13494		return (0);
13495
13496	if (ill->ill_isv6) {
13497		/*
13498		 * External resolver for IPv6
13499		 */
13500		ASSERT(res_act == Res_act_initial);
13501		publish = !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr);
13502	} else {
13503		/*
13504		 * IPv4 arp case. If the ARP stream has already started
13505		 * closing, fail this request for ARP bringup. Else
13506		 * record the fact that an ARP bringup is pending.
13507		 */
13508		mutex_enter(&ill->ill_lock);
13509		if (ill->ill_arp_closing) {
13510			mutex_exit(&ill->ill_lock);
13511			err = EINVAL;
13512			goto failed;
13513		} else {
13514			if (ill->ill_ipif_up_count == 0 &&
13515			    ill->ill_ipif_dup_count == 0 && !was_dup)
13516				ill->ill_arp_bringup_pending = 1;
13517			mutex_exit(&ill->ill_lock);
13518		}
13519		publish = (ipif->ipif_lcl_addr != INADDR_ANY);
13520	}
13521
13522	if (IS_IPMP(ill) && publish) {
13523		/*
13524		 * If we're here via ipif_up(), then the ipif won't be bound
13525		 * yet -- add it to the group, which will bind it if possible.
13526		 * (We would add it in ipif_up(), but deleting on failure
13527		 * there is gruesome.)  If we're here via ipmp_ill_bind_ipif(),
13528		 * then the ipif has already been added to the group and we
13529		 * just need to use the binding.
13530		 */
13531		if (ipmp_ipif_bound_ill(ipif) == NULL) {
13532			if (ipmp_illgrp_add_ipif(ill->ill_grp, ipif) == NULL) {
13533				/*
13534				 * We couldn't bind the ipif to an ill yet,
13535				 * so we have nothing to publish.
13536				 */
13537				publish = B_FALSE;
13538			}
13539			added_ipif = B_TRUE;
13540		}
13541	}
13542
13543	/*
13544	 * Add an entry for the local address in ARP only if it
13545	 * is not UNNUMBERED and it is suitable for publishing.
13546	 */
13547	if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && publish) {
13548		if (res_act == Res_act_defend) {
13549			arp_add_mp = ipif_area_alloc(ipif, ACE_F_DEFEND);
13550			if (arp_add_mp == NULL)
13551				goto failed;
13552			/*
13553			 * If we're just defending our address now, then
13554			 * there's no need to set up ARP multicast mappings.
13555			 * The publish command is enough.
13556			 */
13557			goto done;
13558		}
13559
13560		/*
13561		 * Allocate an ARP add message and an ARP delete message (the
13562		 * latter is saved for use when the address goes down).
13563		 */
13564		if ((arp_add_mp = ipif_area_alloc(ipif, 0)) == NULL)
13565			goto failed;
13566
13567		if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL)
13568			goto failed;
13569
13570		if (res_act != Res_act_initial)
13571			goto arp_setup_multicast;
13572	} else {
13573		if (res_act != Res_act_initial)
13574			goto done;
13575	}
13576	/*
13577	 * Need to bring up ARP or setup multicast mapping only
13578	 * when the first interface is coming UP.
13579	 */
13580	if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0 || was_dup)
13581		goto done;
13582
13583	/*
13584	 * Allocate an ARP down message (to be saved) and an ARP up message.
13585	 */
13586	arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0);
13587	if (arp_down_mp == NULL)
13588		goto failed;
13589
13590	arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0);
13591	if (arp_up_mp == NULL)
13592		goto failed;
13593
13594	if (ipif->ipif_flags & IPIF_POINTOPOINT)
13595		goto done;
13596
13597arp_setup_multicast:
13598	/*
13599	 * Setup the multicast mappings. This function initializes
13600	 * ill_arp_del_mapping_mp also. This does not need to be done for
13601	 * IPv6, or for the IPMP interface (since it has no link-layer).
13602	 */
13603	if (!ill->ill_isv6 && !IS_IPMP(ill)) {
13604		err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp);
13605		if (err != 0)
13606			goto failed;
13607		ASSERT(ill->ill_arp_del_mapping_mp != NULL);
13608		ASSERT(arp_add_mapping_mp != NULL);
13609	}
13610done:
13611	if (arp_up_mp != NULL) {
13612		ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n",
13613		    ill->ill_name, ipif->ipif_id));
13614		putnext(ill->ill_rq, arp_up_mp);
13615		arp_up_mp = NULL;
13616	}
13617	if (arp_add_mp != NULL) {
13618		ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n",
13619		    ill->ill_name, ipif->ipif_id));
13620		/*
13621		 * If it's an extended ARP implementation, then we'll wait to
13622		 * hear that DAD has finished before using the interface.
13623		 */
13624		if (!ill->ill_arp_extend)
13625			ipif->ipif_addr_ready = 1;
13626		putnext(ill->ill_rq, arp_add_mp);
13627		arp_add_mp = NULL;
13628	} else {
13629		ipif->ipif_addr_ready = 1;
13630	}
13631	if (arp_add_mapping_mp != NULL) {
13632		ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n",
13633		    ill->ill_name, ipif->ipif_id));
13634		putnext(ill->ill_rq, arp_add_mapping_mp);
13635		arp_add_mapping_mp = NULL;
13636	}
13637
13638	if (res_act == Res_act_initial) {
13639		if (ill->ill_flags & ILLF_NOARP)
13640			err = ill_arp_off(ill);
13641		else
13642			err = ill_arp_on(ill);
13643		if (err != 0) {
13644			ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n",
13645			    err));
13646			goto failed;
13647		}
13648	}
13649
13650	if (arp_del_mp != NULL) {
13651		ASSERT(ipif->ipif_arp_del_mp == NULL);
13652		ipif->ipif_arp_del_mp = arp_del_mp;
13653	}
13654	if (arp_down_mp != NULL) {
13655		ASSERT(ill->ill_arp_down_mp == NULL);
13656		ill->ill_arp_down_mp = arp_down_mp;
13657	}
13658	if (arp_del_mapping_mp != NULL) {
13659		ASSERT(ill->ill_arp_del_mapping_mp == NULL);
13660		ill->ill_arp_del_mapping_mp = arp_del_mapping_mp;
13661	}
13662
13663	return ((ill->ill_ipif_up_count != 0 || was_dup ||
13664	    ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS);
13665failed:
13666	ip1dbg(("ipif_resolver_up: FAILED\n"));
13667	if (added_ipif)
13668		ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
13669	freemsg(arp_add_mp);
13670	freemsg(arp_del_mp);
13671	freemsg(arp_add_mapping_mp);
13672	freemsg(arp_up_mp);
13673	freemsg(arp_down_mp);
13674	ill->ill_arp_bringup_pending = 0;
13675	return (err);
13676}
13677
13678/*
13679 * This routine restarts IPv4 duplicate address detection (DAD) when a link has
13680 * just gone back up.
13681 */
13682static void
13683ipif_arp_start_dad(ipif_t *ipif)
13684{
13685	ill_t *ill = ipif->ipif_ill;
13686	mblk_t *arp_add_mp;
13687
13688	/* ACE_F_UNVERIFIED restarts DAD */
13689	if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing ||
13690	    (ipif->ipif_flags & IPIF_UNNUMBERED) ||
13691	    ipif->ipif_lcl_addr == INADDR_ANY ||
13692	    (arp_add_mp = ipif_area_alloc(ipif, ACE_F_UNVERIFIED)) == NULL) {
13693		/*
13694		 * If we can't contact ARP for some reason, that's not really a
13695		 * problem.  Just send out the routing socket notification that
13696		 * DAD completion would have done, and continue.
13697		 */
13698		ipif_mask_reply(ipif);
13699		ipif_up_notify(ipif);
13700		ipif->ipif_addr_ready = 1;
13701		return;
13702	}
13703
13704	putnext(ill->ill_rq, arp_add_mp);
13705}
13706
13707static void
13708ipif_ndp_start_dad(ipif_t *ipif)
13709{
13710	nce_t *nce;
13711
13712	nce = ndp_lookup_v6(ipif->ipif_ill, B_TRUE, &ipif->ipif_v6lcl_addr,
13713	    B_FALSE);
13714	if (nce == NULL)
13715		return;
13716
13717	if (!ndp_restart_dad(nce)) {
13718		/*
13719		 * If we can't restart DAD for some reason, that's not really a
13720		 * problem.  Just send out the routing socket notification that
13721		 * DAD completion would have done, and continue.
13722		 */
13723		ipif_up_notify(ipif);
13724		ipif->ipif_addr_ready = 1;
13725	}
13726	NCE_REFRELE(nce);
13727}
13728
13729/*
13730 * Restart duplicate address detection on all interfaces on the given ill.
13731 *
13732 * This is called when an interface transitions from down to up
13733 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN).
13734 *
13735 * Note that since the underlying physical link has transitioned, we must cause
13736 * at least one routing socket message to be sent here, either via DAD
13737 * completion or just by default on the first ipif.  (If we don't do this, then
13738 * in.mpathd will see long delays when doing link-based failure recovery.)
13739 */
13740void
13741ill_restart_dad(ill_t *ill, boolean_t went_up)
13742{
13743	ipif_t *ipif;
13744
13745	if (ill == NULL)
13746		return;
13747
13748	/*
13749	 * If layer two doesn't support duplicate address detection, then just
13750	 * send the routing socket message now and be done with it.
13751	 */
13752	if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) ||
13753	    (!ill->ill_isv6 && !ill->ill_arp_extend)) {
13754		ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
13755		return;
13756	}
13757
13758	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13759		if (went_up) {
13760			if (ipif->ipif_flags & IPIF_UP) {
13761				if (ill->ill_isv6)
13762					ipif_ndp_start_dad(ipif);
13763				else
13764					ipif_arp_start_dad(ipif);
13765			} else if (ill->ill_isv6 &&
13766			    (ipif->ipif_flags & IPIF_DUPLICATE)) {
13767				/*
13768				 * For IPv4, the ARP module itself will
13769				 * automatically start the DAD process when it
13770				 * sees DL_NOTE_LINK_UP.  We respond to the
13771				 * AR_CN_READY at the completion of that task.
13772				 * For IPv6, we must kick off the bring-up
13773				 * process now.
13774				 */
13775				ndp_do_recovery(ipif);
13776			} else {
13777				/*
13778				 * Unfortunately, the first ipif is "special"
13779				 * and represents the underlying ill in the
13780				 * routing socket messages.  Thus, when this
13781				 * one ipif is down, we must still notify so
13782				 * that the user knows the IFF_RUNNING status
13783				 * change.  (If the first ipif is up, then
13784				 * we'll handle eventual routing socket
13785				 * notification via DAD completion.)
13786				 */
13787				if (ipif == ill->ill_ipif) {
13788					ip_rts_ifmsg(ill->ill_ipif,
13789					    RTSQ_DEFAULT);
13790				}
13791			}
13792		} else {
13793			/*
13794			 * After link down, we'll need to send a new routing
13795			 * message when the link comes back, so clear
13796			 * ipif_addr_ready.
13797			 */
13798			ipif->ipif_addr_ready = 0;
13799		}
13800	}
13801
13802	/*
13803	 * If we've torn down links, then notify the user right away.
13804	 */
13805	if (!went_up)
13806		ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
13807}
13808
13809static void
13810ipsq_delete(ipsq_t *ipsq)
13811{
13812	ipxop_t *ipx = ipsq->ipsq_xop;
13813
13814	ipsq->ipsq_ipst = NULL;
13815	ASSERT(ipsq->ipsq_phyint == NULL);
13816	ASSERT(ipsq->ipsq_xop != NULL);
13817	ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL);
13818	ASSERT(ipx->ipx_pending_mp == NULL);
13819	kmem_free(ipsq, sizeof (ipsq_t));
13820}
13821
13822static int
13823ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp)
13824{
13825	int err;
13826	ipif_t *ipif;
13827
13828	if (ill == NULL)
13829		return (0);
13830
13831	ASSERT(IAM_WRITER_ILL(ill));
13832	ill->ill_up_ipifs = B_TRUE;
13833	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13834		if (ipif->ipif_was_up) {
13835			if (!(ipif->ipif_flags & IPIF_UP))
13836				err = ipif_up(ipif, q, mp);
13837			ipif->ipif_was_up = B_FALSE;
13838			if (err != 0) {
13839				ASSERT(err == EINPROGRESS);
13840				return (err);
13841			}
13842		}
13843	}
13844	mutex_enter(&ill->ill_lock);
13845	ill->ill_state_flags &= ~ILL_CHANGING;
13846	mutex_exit(&ill->ill_lock);
13847	ill->ill_up_ipifs = B_FALSE;
13848	return (0);
13849}
13850
13851/*
13852 * This function is called to bring up all the ipifs that were up before
13853 * bringing the ill down via ill_down_ipifs().
13854 */
13855int
13856ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp)
13857{
13858	int err;
13859
13860	ASSERT(IAM_WRITER_ILL(ill));
13861
13862	err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp);
13863	if (err != 0)
13864		return (err);
13865
13866	return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp));
13867}
13868
13869/*
13870 * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring
13871 * down the ipifs without sending DL_UNBIND_REQ to the driver.
13872 */
13873static void
13874ill_down_ipifs(ill_t *ill, boolean_t logical)
13875{
13876	ipif_t *ipif;
13877
13878	ASSERT(IAM_WRITER_ILL(ill));
13879
13880	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13881		/*
13882		 * We go through the ipif_down logic even if the ipif
13883		 * is already down, since routes can be added based
13884		 * on down ipifs. Going through ipif_down once again
13885		 * will delete any IREs created based on these routes.
13886		 */
13887		if (ipif->ipif_flags & IPIF_UP)
13888			ipif->ipif_was_up = B_TRUE;
13889
13890		/*
13891		 * Need to re-create net/subnet bcast ires if
13892		 * they are dependent on ipif.
13893		 */
13894		if (!ipif->ipif_isv6)
13895			ipif_check_bcast_ires(ipif);
13896		if (logical) {
13897			(void) ipif_logical_down(ipif, NULL, NULL);
13898			ipif_non_duplicate(ipif);
13899			ipif_down_tail(ipif);
13900		} else {
13901			(void) ipif_down(ipif, NULL, NULL);
13902		}
13903	}
13904}
13905
13906/*
13907 * Redo source address selection.  This is called when a
13908 * non-NOLOCAL/DEPRECATED/ANYCAST ipif comes up.
13909 */
13910void
13911ill_update_source_selection(ill_t *ill)
13912{
13913	ipif_t *ipif;
13914
13915	ASSERT(IAM_WRITER_ILL(ill));
13916
13917	/*
13918	 * Underlying interfaces are only used for test traffic and thus
13919	 * should always send with their (deprecated) source addresses.
13920	 */
13921	if (IS_UNDER_IPMP(ill))
13922		return;
13923
13924	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13925		if (ill->ill_isv6)
13926			ipif_recreate_interface_routes_v6(NULL, ipif);
13927		else
13928			ipif_recreate_interface_routes(NULL, ipif);
13929	}
13930}
13931
13932/*
13933 * Finish the group join started in ip_sioctl_groupname().
13934 */
13935/* ARGSUSED */
13936static void
13937ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy)
13938{
13939	ill_t		*ill = q->q_ptr;
13940	phyint_t	*phyi = ill->ill_phyint;
13941	ipmp_grp_t	*grp = phyi->phyint_grp;
13942	ip_stack_t	*ipst = ill->ill_ipst;
13943
13944	/* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */
13945	ASSERT(!IS_IPMP(ill) && grp != NULL);
13946	ASSERT(IAM_WRITER_IPSQ(ipsq));
13947
13948	if (phyi->phyint_illv4 != NULL) {
13949		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
13950		VERIFY(grp->gr_pendv4-- > 0);
13951		rw_exit(&ipst->ips_ipmp_lock);
13952		ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4);
13953	}
13954	if (phyi->phyint_illv6 != NULL) {
13955		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
13956		VERIFY(grp->gr_pendv6-- > 0);
13957		rw_exit(&ipst->ips_ipmp_lock);
13958		ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6);
13959	}
13960	freemsg(mp);
13961}
13962
13963/*
13964 * Process an SIOCSLIFGROUPNAME request.
13965 */
13966/* ARGSUSED */
13967int
13968ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
13969    ip_ioctl_cmd_t *ipip, void *ifreq)
13970{
13971	struct lifreq	*lifr = ifreq;
13972	ill_t		*ill = ipif->ipif_ill;
13973	ip_stack_t	*ipst = ill->ill_ipst;
13974	phyint_t	*phyi = ill->ill_phyint;
13975	ipmp_grp_t	*grp = phyi->phyint_grp;
13976	mblk_t		*ipsq_mp;
13977	int		err = 0;
13978
13979	/*
13980	 * Note that phyint_grp can only change here, where we're exclusive.
13981	 */
13982	ASSERT(IAM_WRITER_ILL(ill));
13983
13984	if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL ||
13985	    (phyi->phyint_flags & PHYI_VIRTUAL))
13986		return (EINVAL);
13987
13988	lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0';
13989
13990	rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
13991
13992	/*
13993	 * If the name hasn't changed, there's nothing to do.
13994	 */
13995	if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0)
13996		goto unlock;
13997
13998	/*
13999	 * Handle requests to rename an IPMP meta-interface.
14000	 *
14001	 * Note that creation of the IPMP meta-interface is handled in
14002	 * userland through the standard plumbing sequence.  As part of the
14003	 * plumbing the IPMP meta-interface, its initial groupname is set to
14004	 * the name of the interface (see ipif_set_values_tail()).
14005	 */
14006	if (IS_IPMP(ill)) {
14007		err = ipmp_grp_rename(grp, lifr->lifr_groupname);
14008		goto unlock;
14009	}
14010
14011	/*
14012	 * Handle requests to add or remove an IP interface from a group.
14013	 */
14014	if (lifr->lifr_groupname[0] != '\0') {			/* add */
14015		/*
14016		 * Moves are handled by first removing the interface from
14017		 * its existing group, and then adding it to another group.
14018		 * So, fail if it's already in a group.
14019		 */
14020		if (IS_UNDER_IPMP(ill)) {
14021			err = EALREADY;
14022			goto unlock;
14023		}
14024
14025		grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst);
14026		if (grp == NULL) {
14027			err = ENOENT;
14028			goto unlock;
14029		}
14030
14031		/*
14032		 * Check if the phyint and its ills are suitable for
14033		 * inclusion into the group.
14034		 */
14035		if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0)
14036			goto unlock;
14037
14038		/*
14039		 * Checks pass; join the group, and enqueue the remaining
14040		 * illgrp joins for when we've become part of the group xop
14041		 * and are exclusive across its IPSQs.  Since qwriter_ip()
14042		 * requires an mblk_t to scribble on, and since `mp' will be
14043		 * freed as part of completing the ioctl, allocate another.
14044		 */
14045		if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) {
14046			err = ENOMEM;
14047			goto unlock;
14048		}
14049
14050		/*
14051		 * Before we drop ipmp_lock, bump gr_pend* to ensure that the
14052		 * IPMP meta-interface ills needed by `phyi' cannot go away
14053		 * before ip_join_illgrps() is called back.  See the comments
14054		 * in ip_sioctl_plink_ipmp() for more.
14055		 */
14056		if (phyi->phyint_illv4 != NULL)
14057			grp->gr_pendv4++;
14058		if (phyi->phyint_illv6 != NULL)
14059			grp->gr_pendv6++;
14060
14061		rw_exit(&ipst->ips_ipmp_lock);
14062
14063		ipmp_phyint_join_grp(phyi, grp);
14064		ill_refhold(ill);
14065		qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps,
14066		    SWITCH_OP, B_FALSE);
14067		return (0);
14068	} else {
14069		/*
14070		 * Request to remove the interface from a group.  If the
14071		 * interface is not in a group, this trivially succeeds.
14072		 */
14073		rw_exit(&ipst->ips_ipmp_lock);
14074		if (IS_UNDER_IPMP(ill))
14075			ipmp_phyint_leave_grp(phyi);
14076		return (0);
14077	}
14078unlock:
14079	rw_exit(&ipst->ips_ipmp_lock);
14080	return (err);
14081}
14082
14083/*
14084 * Process an SIOCGLIFBINDING request.
14085 */
14086/* ARGSUSED */
14087int
14088ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
14089    ip_ioctl_cmd_t *ipip, void *ifreq)
14090{
14091	ill_t		*ill;
14092	struct lifreq	*lifr = ifreq;
14093	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
14094
14095	if (!IS_IPMP(ipif->ipif_ill))
14096		return (EINVAL);
14097
14098	rw_enter(&ipst->ips_ipmp_lock, RW_READER);
14099	if ((ill = ipif->ipif_bound_ill) == NULL)
14100		lifr->lifr_binding[0] = '\0';
14101	else
14102		(void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ);
14103	rw_exit(&ipst->ips_ipmp_lock);
14104	return (0);
14105}
14106
14107/*
14108 * Process an SIOCGLIFGROUPNAME request.
14109 */
14110/* ARGSUSED */
14111int
14112ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
14113    ip_ioctl_cmd_t *ipip, void *ifreq)
14114{
14115	ipmp_grp_t	*grp;
14116	struct lifreq	*lifr = ifreq;
14117	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
14118
14119	rw_enter(&ipst->ips_ipmp_lock, RW_READER);
14120	if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL)
14121		lifr->lifr_groupname[0] = '\0';
14122	else
14123		(void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ);
14124	rw_exit(&ipst->ips_ipmp_lock);
14125	return (0);
14126}
14127
14128/*
14129 * Process an SIOCGLIFGROUPINFO request.
14130 */
14131/* ARGSUSED */
14132int
14133ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp,
14134    ip_ioctl_cmd_t *ipip, void *dummy)
14135{
14136	ipmp_grp_t	*grp;
14137	lifgroupinfo_t	*lifgr;
14138	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
14139
14140	/* ip_wput_nondata() verified mp->b_cont->b_cont */
14141	lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr;
14142	lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0';
14143
14144	rw_enter(&ipst->ips_ipmp_lock, RW_READER);
14145	if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) {
14146		rw_exit(&ipst->ips_ipmp_lock);
14147		return (ENOENT);
14148	}
14149	ipmp_grp_info(grp, lifgr);
14150	rw_exit(&ipst->ips_ipmp_lock);
14151	return (0);
14152}
14153
14154static void
14155ill_dl_down(ill_t *ill)
14156{
14157	/*
14158	 * The ill is down; unbind but stay attached since we're still
14159	 * associated with a PPA. If we have negotiated DLPI capabilites
14160	 * with the data link service provider (IDS_OK) then reset them.
14161	 * The interval between unbinding and rebinding is potentially
14162	 * unbounded hence we cannot assume things will be the same.
14163	 * The DLPI capabilities will be probed again when the data link
14164	 * is brought up.
14165	 */
14166	mblk_t	*mp = ill->ill_unbind_mp;
14167
14168	ip1dbg(("ill_dl_down(%s)\n", ill->ill_name));
14169
14170	ill->ill_unbind_mp = NULL;
14171	if (mp != NULL) {
14172		ip1dbg(("ill_dl_down: %s (%u) for %s\n",
14173		    dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr,
14174		    ill->ill_name));
14175		mutex_enter(&ill->ill_lock);
14176		ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS;
14177		mutex_exit(&ill->ill_lock);
14178		/*
14179		 * ip_rput does not pass up normal (M_PROTO) DLPI messages
14180		 * after ILL_CONDEMNED is set. So in the unplumb case, we call
14181		 * ill_capability_dld_disable disable rightaway. If this is not
14182		 * an unplumb operation then the disable happens on receipt of
14183		 * the capab ack via ip_rput_dlpi_writer ->
14184		 * ill_capability_ack_thr. In both cases the order of
14185		 * the operations seen by DLD is capability disable followed
14186		 * by DL_UNBIND. Also the DLD capability disable needs a
14187		 * cv_wait'able context.
14188		 */
14189		if (ill->ill_state_flags & ILL_CONDEMNED)
14190			ill_capability_dld_disable(ill);
14191		ill_capability_reset(ill, B_FALSE);
14192		ill_dlpi_send(ill, mp);
14193	}
14194
14195	/*
14196	 * Toss all of our multicast memberships.  We could keep them, but
14197	 * then we'd have to do bookkeeping of any joins and leaves performed
14198	 * by the application while the the interface is down (we can't just
14199	 * issue them because arp cannot currently process AR_ENTRY_SQUERY's
14200	 * on a downed interface).
14201	 */
14202	ill_leave_multicast(ill);
14203
14204	mutex_enter(&ill->ill_lock);
14205	ill->ill_dl_up = 0;
14206	ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0);
14207	mutex_exit(&ill->ill_lock);
14208}
14209
14210static void
14211ill_dlpi_dispatch(ill_t *ill, mblk_t *mp)
14212{
14213	union DL_primitives *dlp;
14214	t_uscalar_t prim;
14215	boolean_t waitack = B_FALSE;
14216
14217	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
14218
14219	dlp = (union DL_primitives *)mp->b_rptr;
14220	prim = dlp->dl_primitive;
14221
14222	ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n",
14223	    dl_primstr(prim), prim, ill->ill_name));
14224
14225	switch (prim) {
14226	case DL_PHYS_ADDR_REQ:
14227	{
14228		dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr;
14229		ill->ill_phys_addr_pend = dlpap->dl_addr_type;
14230		break;
14231	}
14232	case DL_BIND_REQ:
14233		mutex_enter(&ill->ill_lock);
14234		ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
14235		mutex_exit(&ill->ill_lock);
14236		break;
14237	}
14238
14239	/*
14240	 * Except for the ACKs for the M_PCPROTO messages, all other ACKs
14241	 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore
14242	 * we only wait for the ACK of the DL_UNBIND_REQ.
14243	 */
14244	mutex_enter(&ill->ill_lock);
14245	if (!(ill->ill_state_flags & ILL_CONDEMNED) ||
14246	    (prim == DL_UNBIND_REQ)) {
14247		ill->ill_dlpi_pending = prim;
14248		waitack = B_TRUE;
14249	}
14250
14251	mutex_exit(&ill->ill_lock);
14252	putnext(ill->ill_wq, mp);
14253
14254	/*
14255	 * There is no ack for DL_NOTIFY_CONF messages
14256	 */
14257	if (waitack && prim == DL_NOTIFY_CONF)
14258		ill_dlpi_done(ill, prim);
14259}
14260
14261/*
14262 * Helper function for ill_dlpi_send().
14263 */
14264/* ARGSUSED */
14265static void
14266ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
14267{
14268	ill_dlpi_send(q->q_ptr, mp);
14269}
14270
14271/*
14272 * Send a DLPI control message to the driver but make sure there
14273 * is only one outstanding message. Uses ill_dlpi_pending to tell
14274 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done()
14275 * when an ACK or a NAK is received to process the next queued message.
14276 */
14277void
14278ill_dlpi_send(ill_t *ill, mblk_t *mp)
14279{
14280	mblk_t **mpp;
14281
14282	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
14283
14284	/*
14285	 * To ensure that any DLPI requests for current exclusive operation
14286	 * are always completely sent before any DLPI messages for other
14287	 * operations, require writer access before enqueuing.
14288	 */
14289	if (!IAM_WRITER_ILL(ill)) {
14290		ill_refhold(ill);
14291		/* qwriter_ip() does the ill_refrele() */
14292		qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer,
14293		    NEW_OP, B_TRUE);
14294		return;
14295	}
14296
14297	mutex_enter(&ill->ill_lock);
14298	if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
14299		/* Must queue message. Tail insertion */
14300		mpp = &ill->ill_dlpi_deferred;
14301		while (*mpp != NULL)
14302			mpp = &((*mpp)->b_next);
14303
14304		ip1dbg(("ill_dlpi_send: deferring request for %s\n",
14305		    ill->ill_name));
14306
14307		*mpp = mp;
14308		mutex_exit(&ill->ill_lock);
14309		return;
14310	}
14311	mutex_exit(&ill->ill_lock);
14312	ill_dlpi_dispatch(ill, mp);
14313}
14314
14315static void
14316ill_capability_send(ill_t *ill, mblk_t *mp)
14317{
14318	ill->ill_capab_pending_cnt++;
14319	ill_dlpi_send(ill, mp);
14320}
14321
14322void
14323ill_capability_done(ill_t *ill)
14324{
14325	ASSERT(ill->ill_capab_pending_cnt != 0);
14326
14327	ill_dlpi_done(ill, DL_CAPABILITY_REQ);
14328
14329	ill->ill_capab_pending_cnt--;
14330	if (ill->ill_capab_pending_cnt == 0 &&
14331	    ill->ill_dlpi_capab_state == IDCS_OK)
14332		ill_capability_reset_alloc(ill);
14333}
14334
14335/*
14336 * Send all deferred DLPI messages without waiting for their ACKs.
14337 */
14338void
14339ill_dlpi_send_deferred(ill_t *ill)
14340{
14341	mblk_t *mp, *nextmp;
14342
14343	/*
14344	 * Clear ill_dlpi_pending so that the message is not queued in
14345	 * ill_dlpi_send().
14346	 */
14347	mutex_enter(&ill->ill_lock);
14348	ill->ill_dlpi_pending = DL_PRIM_INVAL;
14349	mp = ill->ill_dlpi_deferred;
14350	ill->ill_dlpi_deferred = NULL;
14351	mutex_exit(&ill->ill_lock);
14352
14353	for (; mp != NULL; mp = nextmp) {
14354		nextmp = mp->b_next;
14355		mp->b_next = NULL;
14356		ill_dlpi_send(ill, mp);
14357	}
14358}
14359
14360/*
14361 * Check if the DLPI primitive `prim' is pending; print a warning if not.
14362 */
14363boolean_t
14364ill_dlpi_pending(ill_t *ill, t_uscalar_t prim)
14365{
14366	t_uscalar_t pending;
14367
14368	mutex_enter(&ill->ill_lock);
14369	if (ill->ill_dlpi_pending == prim) {
14370		mutex_exit(&ill->ill_lock);
14371		return (B_TRUE);
14372	}
14373
14374	/*
14375	 * During teardown, ill_dlpi_dispatch() will send DLPI requests
14376	 * without waiting, so don't print any warnings in that case.
14377	 */
14378	if (ill->ill_state_flags & ILL_CONDEMNED) {
14379		mutex_exit(&ill->ill_lock);
14380		return (B_FALSE);
14381	}
14382	pending = ill->ill_dlpi_pending;
14383	mutex_exit(&ill->ill_lock);
14384
14385	if (pending == DL_PRIM_INVAL) {
14386		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
14387		    "received unsolicited ack for %s on %s\n",
14388		    dl_primstr(prim), ill->ill_name);
14389	} else {
14390		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
14391		    "received unexpected ack for %s on %s (expecting %s)\n",
14392		    dl_primstr(prim), ill->ill_name, dl_primstr(pending));
14393	}
14394	return (B_FALSE);
14395}
14396
14397/*
14398 * Complete the current DLPI operation associated with `prim' on `ill' and
14399 * start the next queued DLPI operation (if any).  If there are no queued DLPI
14400 * operations and the ill's current exclusive IPSQ operation has finished
14401 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to
14402 * allow the next exclusive IPSQ operation to begin upon ipsq_exit().  See
14403 * the comments above ipsq_current_finish() for details.
14404 */
14405void
14406ill_dlpi_done(ill_t *ill, t_uscalar_t prim)
14407{
14408	mblk_t *mp;
14409	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
14410	ipxop_t *ipx = ipsq->ipsq_xop;
14411
14412	ASSERT(IAM_WRITER_IPSQ(ipsq));
14413	mutex_enter(&ill->ill_lock);
14414
14415	ASSERT(prim != DL_PRIM_INVAL);
14416	ASSERT(ill->ill_dlpi_pending == prim);
14417
14418	ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name,
14419	    dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending));
14420
14421	if ((mp = ill->ill_dlpi_deferred) == NULL) {
14422		ill->ill_dlpi_pending = DL_PRIM_INVAL;
14423		if (ipx->ipx_current_done) {
14424			mutex_enter(&ipx->ipx_lock);
14425			ipx->ipx_current_ipif = NULL;
14426			mutex_exit(&ipx->ipx_lock);
14427		}
14428		cv_signal(&ill->ill_cv);
14429		mutex_exit(&ill->ill_lock);
14430		return;
14431	}
14432
14433	ill->ill_dlpi_deferred = mp->b_next;
14434	mp->b_next = NULL;
14435	mutex_exit(&ill->ill_lock);
14436
14437	ill_dlpi_dispatch(ill, mp);
14438}
14439
14440void
14441conn_delete_ire(conn_t *connp, caddr_t arg)
14442{
14443	ipif_t	*ipif = (ipif_t *)arg;
14444	ire_t	*ire;
14445
14446	/*
14447	 * Look at the cached ires on conns which has pointers to ipifs.
14448	 * We just call ire_refrele which clears up the reference
14449	 * to ire. Called when a conn closes. Also called from ipif_free
14450	 * to cleanup indirect references to the stale ipif via the cached ire.
14451	 */
14452	mutex_enter(&connp->conn_lock);
14453	ire = connp->conn_ire_cache;
14454	if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) {
14455		connp->conn_ire_cache = NULL;
14456		mutex_exit(&connp->conn_lock);
14457		IRE_REFRELE_NOTR(ire);
14458		return;
14459	}
14460	mutex_exit(&connp->conn_lock);
14461
14462}
14463
14464/*
14465 * Some operations (e.g., ipif_down()) conditionally delete a number
14466 * of IREs. Those IREs may have been previously cached in the conn structure.
14467 * This ipcl_walk() walker function releases all references to such IREs based
14468 * on the condemned flag.
14469 */
14470/* ARGSUSED */
14471void
14472conn_cleanup_stale_ire(conn_t *connp, caddr_t arg)
14473{
14474	ire_t	*ire;
14475
14476	mutex_enter(&connp->conn_lock);
14477	ire = connp->conn_ire_cache;
14478	if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) {
14479		connp->conn_ire_cache = NULL;
14480		mutex_exit(&connp->conn_lock);
14481		IRE_REFRELE_NOTR(ire);
14482		return;
14483	}
14484	mutex_exit(&connp->conn_lock);
14485}
14486
14487/*
14488 * Take down a specific interface, but don't lose any information about it.
14489 * (Always called as writer.)
14490 * This function goes through the down sequence even if the interface is
14491 * already down. There are 2 reasons.
14492 * a. Currently we permit interface routes that depend on down interfaces
14493 *    to be added. This behaviour itself is questionable. However it appears
14494 *    that both Solaris and 4.3 BSD have exhibited this behaviour for a long
14495 *    time. We go thru the cleanup in order to remove these routes.
14496 * b. The bringup of the interface could fail in ill_dl_up i.e. we get
14497 *    DL_ERROR_ACK in response to the the DL_BIND request. The interface is
14498 *    down, but we need to cleanup i.e. do ill_dl_down and
14499 *    ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down.
14500 *
14501 * IP-MT notes:
14502 *
14503 * Model of reference to interfaces.
14504 *
14505 * The following members in ipif_t track references to the ipif.
14506 *	int     ipif_refcnt;    Active reference count
14507 *	uint_t  ipif_ire_cnt;   Number of ire's referencing this ipif
14508 *	uint_t  ipif_ilm_cnt;   Number of ilms's references this ipif.
14509 *
14510 * The following members in ill_t track references to the ill.
14511 *	int             ill_refcnt;     active refcnt
14512 *	uint_t          ill_ire_cnt;	Number of ires referencing ill
14513 *	uint_t          ill_nce_cnt;	Number of nces referencing ill
14514 *	uint_t          ill_ilm_cnt;	Number of ilms referencing ill
14515 *
14516 * Reference to an ipif or ill can be obtained in any of the following ways.
14517 *
14518 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions
14519 * Pointers to ipif / ill from other data structures viz ire and conn.
14520 * Implicit reference to the ipif / ill by holding a reference to the ire.
14521 *
14522 * The ipif/ill lookup functions return a reference held ipif / ill.
14523 * ipif_refcnt and ill_refcnt track the reference counts respectively.
14524 * This is a purely dynamic reference count associated with threads holding
14525 * references to the ipif / ill. Pointers from other structures do not
14526 * count towards this reference count.
14527 *
14528 * ipif_ire_cnt/ill_ire_cnt is the number of ire's
14529 * associated with the ipif/ill. This is incremented whenever a new
14530 * ire is created referencing the ipif/ill. This is done atomically inside
14531 * ire_add_v[46] where the ire is actually added to the ire hash table.
14532 * The count is decremented in ire_inactive where the ire is destroyed.
14533 *
14534 * nce's reference ill's thru nce_ill and the count of nce's associated with
14535 * an ill is recorded in ill_nce_cnt. This is incremented atomically in
14536 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the
14537 * table. Similarly it is decremented in ndp_inactive() where the nce
14538 * is destroyed.
14539 *
14540 * ilm's reference to the ipif (for IPv4 ilm's) or the ill (for IPv6 ilm's)
14541 * is incremented in ilm_add_v6() and decremented before the ilm is freed
14542 * in ilm_walker_cleanup() or ilm_delete().
14543 *
14544 * Flow of ioctls involving interface down/up
14545 *
14546 * The following is the sequence of an attempt to set some critical flags on an
14547 * up interface.
14548 * ip_sioctl_flags
14549 * ipif_down
14550 * wait for ipif to be quiescent
14551 * ipif_down_tail
14552 * ip_sioctl_flags_tail
14553 *
14554 * All set ioctls that involve down/up sequence would have a skeleton similar
14555 * to the above. All the *tail functions are called after the refcounts have
14556 * dropped to the appropriate values.
14557 *
14558 * The mechanism to quiesce an ipif is as follows.
14559 *
14560 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed
14561 * on the ipif. Callers either pass a flag requesting wait or the lookup
14562 *  functions will return NULL.
14563 *
14564 * Delete all ires referencing this ipif
14565 *
14566 * Any thread attempting to do an ipif_refhold on an ipif that has been
14567 * obtained thru a cached pointer will first make sure that
14568 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then
14569 * increment the refcount.
14570 *
14571 * The above guarantees that the ipif refcount will eventually come down to
14572 * zero and the ipif will quiesce, once all threads that currently hold a
14573 * reference to the ipif refrelease the ipif. The ipif is quiescent after the
14574 * ipif_refcount has dropped to zero and all ire's associated with this ipif
14575 * have also been ire_inactive'd. i.e. when ipif_{ire, ill}_cnt and
14576 * ipif_refcnt both drop to zero. See also: comments above IPIF_DOWN_OK()
14577 * in ip.h
14578 *
14579 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval.
14580 *
14581 * Threads trying to lookup an ipif or ill can pass a flag requesting
14582 * wait and restart if the ipif / ill cannot be looked up currently.
14583 * For eg. bind, and route operations (Eg. route add / delete) cannot return
14584 * failure if the ipif is currently undergoing an exclusive operation, and
14585 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation
14586 * is restarted by ipsq_exit() when the current exclusive operation completes.
14587 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The
14588 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't
14589 * change while the ill_lock is held. Before dropping the ill_lock we acquire
14590 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish
14591 * until we release the ipsq_lock, even though the the ill/ipif state flags
14592 * can change after we drop the ill_lock.
14593 *
14594 * An attempt to send out a packet using an ipif that is currently
14595 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this
14596 * operation and restart it later when the exclusive condition on the ipif ends.
14597 * This is an example of not passing the wait flag to the lookup functions. For
14598 * example an attempt to refhold and use conn->conn_multicast_ipif and send
14599 * out a multicast packet on that ipif will fail while the ipif is
14600 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is
14601 * currently IPIF_CHANGING will also fail.
14602 */
14603int
14604ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
14605{
14606	ill_t		*ill = ipif->ipif_ill;
14607	conn_t		*connp;
14608	boolean_t	success;
14609	boolean_t	ipif_was_up = B_FALSE;
14610	ip_stack_t	*ipst = ill->ill_ipst;
14611
14612	ASSERT(IAM_WRITER_IPIF(ipif));
14613
14614	ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
14615
14616	if (ipif->ipif_flags & IPIF_UP) {
14617		mutex_enter(&ill->ill_lock);
14618		ipif->ipif_flags &= ~IPIF_UP;
14619		ASSERT(ill->ill_ipif_up_count > 0);
14620		--ill->ill_ipif_up_count;
14621		mutex_exit(&ill->ill_lock);
14622		ipif_was_up = B_TRUE;
14623		/* Update status in SCTP's list */
14624		sctp_update_ipif(ipif, SCTP_IPIF_DOWN);
14625		ill_nic_event_dispatch(ipif->ipif_ill,
14626		    MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0);
14627	}
14628
14629	/*
14630	 * Blow away memberships we established in ipif_multicast_up().
14631	 */
14632	ipif_multicast_down(ipif);
14633
14634	/*
14635	 * Remove from the mapping for __sin6_src_id. We insert only
14636	 * when the address is not INADDR_ANY. As IPv4 addresses are
14637	 * stored as mapped addresses, we need to check for mapped
14638	 * INADDR_ANY also.
14639	 */
14640	if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
14641	    !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) &&
14642	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
14643		int err;
14644
14645		err = ip_srcid_remove(&ipif->ipif_v6lcl_addr,
14646		    ipif->ipif_zoneid, ipst);
14647		if (err != 0) {
14648			ip0dbg(("ipif_down: srcid_remove %d\n", err));
14649		}
14650	}
14651
14652	/*
14653	 * Delete all IRE's pointing at this ipif or its source address.
14654	 */
14655	if (ipif->ipif_isv6) {
14656		ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES,
14657		    ipst);
14658	} else {
14659		ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES,
14660		    ipst);
14661	}
14662
14663	if (ipif_was_up && ill->ill_ipif_up_count == 0) {
14664		/*
14665		 * Since the interface is now down, it may have just become
14666		 * inactive.  Note that this needs to be done even for a
14667		 * lll_logical_down(), or ARP entries will not get correctly
14668		 * restored when the interface comes back up.
14669		 */
14670		if (IS_UNDER_IPMP(ill))
14671			ipmp_ill_refresh_active(ill);
14672	}
14673
14674	/*
14675	 * Cleaning up the conn_ire_cache or conns must be done only after the
14676	 * ires have been deleted above. Otherwise a thread could end up
14677	 * caching an ire in a conn after we have finished the cleanup of the
14678	 * conn. The caching is done after making sure that the ire is not yet
14679	 * condemned. Also documented in the block comment above ip_output
14680	 */
14681	ipcl_walk(conn_cleanup_stale_ire, NULL, ipst);
14682	/* Also, delete the ires cached in SCTP */
14683	sctp_ire_cache_flush(ipif);
14684
14685	/*
14686	 * Update any other ipifs which have used "our" local address as
14687	 * a source address. This entails removing and recreating IRE_INTERFACE
14688	 * entries for such ipifs.
14689	 */
14690	if (ipif->ipif_isv6)
14691		ipif_update_other_ipifs_v6(ipif);
14692	else
14693		ipif_update_other_ipifs(ipif);
14694
14695	/*
14696	 * neighbor-discovery or arp entries for this interface.
14697	 */
14698	ipif_ndp_down(ipif);
14699
14700	/*
14701	 * If mp is NULL the caller will wait for the appropriate refcnt.
14702	 * Eg. ip_sioctl_removeif -> ipif_free  -> ipif_down
14703	 * and ill_delete -> ipif_free -> ipif_down
14704	 */
14705	if (mp == NULL) {
14706		ASSERT(q == NULL);
14707		return (0);
14708	}
14709
14710	if (CONN_Q(q)) {
14711		connp = Q_TO_CONN(q);
14712		mutex_enter(&connp->conn_lock);
14713	} else {
14714		connp = NULL;
14715	}
14716	mutex_enter(&ill->ill_lock);
14717	/*
14718	 * Are there any ire's pointing to this ipif that are still active ?
14719	 * If this is the last ipif going down, are there any ire's pointing
14720	 * to this ill that are still active ?
14721	 */
14722	if (ipif_is_quiescent(ipif)) {
14723		mutex_exit(&ill->ill_lock);
14724		if (connp != NULL)
14725			mutex_exit(&connp->conn_lock);
14726		return (0);
14727	}
14728
14729	ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p",
14730	    ill->ill_name, (void *)ill));
14731	/*
14732	 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount
14733	 * drops down, the operation will be restarted by ipif_ill_refrele_tail
14734	 * which in turn is called by the last refrele on the ipif/ill/ire.
14735	 */
14736	success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN);
14737	if (!success) {
14738		/* The conn is closing. So just return */
14739		ASSERT(connp != NULL);
14740		mutex_exit(&ill->ill_lock);
14741		mutex_exit(&connp->conn_lock);
14742		return (EINTR);
14743	}
14744
14745	mutex_exit(&ill->ill_lock);
14746	if (connp != NULL)
14747		mutex_exit(&connp->conn_lock);
14748	return (EINPROGRESS);
14749}
14750
14751void
14752ipif_down_tail(ipif_t *ipif)
14753{
14754	ill_t	*ill = ipif->ipif_ill;
14755
14756	/*
14757	 * Skip any loopback interface (null wq).
14758	 * If this is the last logical interface on the ill
14759	 * have ill_dl_down tell the driver we are gone (unbind)
14760	 * Note that lun 0 can ipif_down even though
14761	 * there are other logical units that are up.
14762	 * This occurs e.g. when we change a "significant" IFF_ flag.
14763	 */
14764	if (ill->ill_wq != NULL && !ill->ill_logical_down &&
14765	    ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
14766	    ill->ill_dl_up) {
14767		ill_dl_down(ill);
14768	}
14769	ill->ill_logical_down = 0;
14770
14771	/*
14772	 * Has to be after removing the routes in ipif_down_delete_ire.
14773	 */
14774	ipif_resolver_down(ipif);
14775
14776	ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
14777	ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT);
14778}
14779
14780/*
14781 * Bring interface logically down without bringing the physical interface
14782 * down e.g. when the netmask is changed. This avoids long lasting link
14783 * negotiations between an ethernet interface and a certain switches.
14784 */
14785static int
14786ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
14787{
14788	/*
14789	 * The ill_logical_down flag is a transient flag. It is set here
14790	 * and is cleared once the down has completed in ipif_down_tail.
14791	 * This flag does not indicate whether the ill stream is in the
14792	 * DL_BOUND state with the driver. Instead this flag is used by
14793	 * ipif_down_tail to determine whether to DL_UNBIND the stream with
14794	 * the driver. The state of the ill stream i.e. whether it is
14795	 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag.
14796	 */
14797	ipif->ipif_ill->ill_logical_down = 1;
14798	return (ipif_down(ipif, q, mp));
14799}
14800
14801/*
14802 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP.
14803 * If the usesrc client ILL is already part of a usesrc group or not,
14804 * in either case a ire_stq with the matching usesrc client ILL will
14805 * locate the IRE's that need to be deleted. We want IREs to be created
14806 * with the new source address.
14807 */
14808static void
14809ipif_delete_cache_ire(ire_t *ire, char *ill_arg)
14810{
14811	ill_t	*ucill = (ill_t *)ill_arg;
14812
14813	ASSERT(IAM_WRITER_ILL(ucill));
14814
14815	if (ire->ire_stq == NULL)
14816		return;
14817
14818	if ((ire->ire_type == IRE_CACHE) &&
14819	    ((ill_t *)ire->ire_stq->q_ptr == ucill))
14820		ire_delete(ire);
14821}
14822
14823/*
14824 * ire_walk routine to delete every IRE dependent on the interface
14825 * address that is going down.	(Always called as writer.)
14826 * Works for both v4 and v6.
14827 * In addition for checking for ire_ipif matches it also checks for
14828 * IRE_CACHE entries which have the same source address as the
14829 * disappearing ipif since ipif_select_source might have picked
14830 * that source. Note that ipif_down/ipif_update_other_ipifs takes
14831 * care of any IRE_INTERFACE with the disappearing source address.
14832 */
14833static void
14834ipif_down_delete_ire(ire_t *ire, char *ipif_arg)
14835{
14836	ipif_t	*ipif = (ipif_t *)ipif_arg;
14837
14838	ASSERT(IAM_WRITER_IPIF(ipif));
14839	if (ire->ire_ipif == NULL)
14840		return;
14841
14842	if (ire->ire_ipif != ipif) {
14843		/*
14844		 * Look for a matching source address.
14845		 */
14846		if (ire->ire_type != IRE_CACHE)
14847			return;
14848		if (ipif->ipif_flags & IPIF_NOLOCAL)
14849			return;
14850
14851		if (ire->ire_ipversion == IPV4_VERSION) {
14852			if (ire->ire_src_addr != ipif->ipif_src_addr)
14853				return;
14854		} else {
14855			if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6,
14856			    &ipif->ipif_v6lcl_addr))
14857				return;
14858		}
14859		ire_delete(ire);
14860		return;
14861	}
14862	/*
14863	 * ire_delete() will do an ire_flush_cache which will delete
14864	 * all ire_ipif matches
14865	 */
14866	ire_delete(ire);
14867}
14868
14869/*
14870 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when
14871 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or
14872 * 2) when an interface is brought up or down (on that ill).
14873 * This ensures that the IRE_CACHE entries don't retain stale source
14874 * address selection results.
14875 */
14876void
14877ill_ipif_cache_delete(ire_t *ire, char *ill_arg)
14878{
14879	ill_t	*ill = (ill_t *)ill_arg;
14880
14881	ASSERT(IAM_WRITER_ILL(ill));
14882	ASSERT(ire->ire_type == IRE_CACHE);
14883
14884	/*
14885	 * We are called for IRE_CACHEs whose ire_stq or ire_ipif matches
14886	 * ill, but we only want to delete the IRE if ire_ipif matches.
14887	 */
14888	ASSERT(ire->ire_ipif != NULL);
14889	if (ill == ire->ire_ipif->ipif_ill)
14890		ire_delete(ire);
14891}
14892
14893/*
14894 * Delete all the IREs whose ire_stq's reference `ill_arg'.  IPMP uses this
14895 * instead of ill_ipif_cache_delete() because ire_ipif->ipif_ill references
14896 * the IPMP ill.
14897 */
14898void
14899ill_stq_cache_delete(ire_t *ire, char *ill_arg)
14900{
14901	ill_t	*ill = (ill_t *)ill_arg;
14902
14903	ASSERT(IAM_WRITER_ILL(ill));
14904	ASSERT(ire->ire_type == IRE_CACHE);
14905
14906	/*
14907	 * We are called for IRE_CACHEs whose ire_stq or ire_ipif matches
14908	 * ill, but we only want to delete the IRE if ire_stq matches.
14909	 */
14910	if (ire->ire_stq->q_ptr == ill_arg)
14911		ire_delete(ire);
14912}
14913
14914/*
14915 * Delete all the IREs whose ire_stq's reference any ill in the same IPMP
14916 * group as `ill_arg'.  Used by ipmp_ill_deactivate() to flush all IRE_CACHE
14917 * entries for the illgrp.
14918 */
14919void
14920ill_grp_cache_delete(ire_t *ire, char *ill_arg)
14921{
14922	ill_t	*ill = (ill_t *)ill_arg;
14923
14924	ASSERT(IAM_WRITER_ILL(ill));
14925
14926	if (ire->ire_type == IRE_CACHE &&
14927	    IS_IN_SAME_ILLGRP((ill_t *)ire->ire_stq->q_ptr, ill)) {
14928		ire_delete(ire);
14929	}
14930}
14931
14932/*
14933 * Delete all broadcast IREs with a source address on `ill_arg'.
14934 */
14935static void
14936ill_broadcast_delete(ire_t *ire, char *ill_arg)
14937{
14938	ill_t *ill = (ill_t *)ill_arg;
14939
14940	ASSERT(IAM_WRITER_ILL(ill));
14941	ASSERT(ire->ire_type == IRE_BROADCAST);
14942
14943	if (ire->ire_ipif->ipif_ill == ill)
14944		ire_delete(ire);
14945}
14946
14947/*
14948 * Initiate deallocate of an IPIF. Always called as writer. Called by
14949 * ill_delete or ip_sioctl_removeif.
14950 */
14951static void
14952ipif_free(ipif_t *ipif)
14953{
14954	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
14955
14956	ASSERT(IAM_WRITER_IPIF(ipif));
14957
14958	if (ipif->ipif_recovery_id != 0)
14959		(void) untimeout(ipif->ipif_recovery_id);
14960	ipif->ipif_recovery_id = 0;
14961
14962	/* Remove conn references */
14963	reset_conn_ipif(ipif);
14964
14965	/*
14966	 * Make sure we have valid net and subnet broadcast ire's for the
14967	 * other ipif's which share them with this ipif.
14968	 */
14969	if (!ipif->ipif_isv6)
14970		ipif_check_bcast_ires(ipif);
14971
14972	/*
14973	 * Take down the interface. We can be called either from ill_delete
14974	 * or from ip_sioctl_removeif.
14975	 */
14976	(void) ipif_down(ipif, NULL, NULL);
14977
14978	/*
14979	 * Now that the interface is down, there's no chance it can still
14980	 * become a duplicate.  Cancel any timer that may have been set while
14981	 * tearing down.
14982	 */
14983	if (ipif->ipif_recovery_id != 0)
14984		(void) untimeout(ipif->ipif_recovery_id);
14985	ipif->ipif_recovery_id = 0;
14986
14987	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14988	/* Remove pointers to this ill in the multicast routing tables */
14989	reset_mrt_vif_ipif(ipif);
14990	/* If necessary, clear the cached source ipif rotor. */
14991	if (ipif->ipif_ill->ill_src_ipif == ipif)
14992		ipif->ipif_ill->ill_src_ipif = NULL;
14993	rw_exit(&ipst->ips_ill_g_lock);
14994}
14995
14996static void
14997ipif_free_tail(ipif_t *ipif)
14998{
14999	mblk_t	*mp;
15000	ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
15001
15002	/*
15003	 * Free state for addition IRE_IF_[NO]RESOLVER ire's.
15004	 */
15005	mutex_enter(&ipif->ipif_saved_ire_lock);
15006	mp = ipif->ipif_saved_ire_mp;
15007	ipif->ipif_saved_ire_mp = NULL;
15008	mutex_exit(&ipif->ipif_saved_ire_lock);
15009	freemsg(mp);
15010
15011	/*
15012	 * Need to hold both ill_g_lock and ill_lock while
15013	 * inserting or removing an ipif from the linked list
15014	 * of ipifs hanging off the ill.
15015	 */
15016	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15017
15018	ASSERT(ilm_walk_ipif(ipif) == 0);
15019
15020#ifdef DEBUG
15021	ipif_trace_cleanup(ipif);
15022#endif
15023
15024	/* Ask SCTP to take it out of it list */
15025	sctp_update_ipif(ipif, SCTP_IPIF_REMOVE);
15026
15027	/* Get it out of the ILL interface list. */
15028	ipif_remove(ipif);
15029	rw_exit(&ipst->ips_ill_g_lock);
15030
15031	mutex_destroy(&ipif->ipif_saved_ire_lock);
15032
15033	ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE)));
15034	ASSERT(ipif->ipif_recovery_id == 0);
15035
15036	/* Free the memory. */
15037	mi_free(ipif);
15038}
15039
15040/*
15041 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id"
15042 * is zero.
15043 */
15044void
15045ipif_get_name(const ipif_t *ipif, char *buf, int len)
15046{
15047	char	lbuf[LIFNAMSIZ];
15048	char	*name;
15049	size_t	name_len;
15050
15051	buf[0] = '\0';
15052	name = ipif->ipif_ill->ill_name;
15053	name_len = ipif->ipif_ill->ill_name_length;
15054	if (ipif->ipif_id != 0) {
15055		(void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR,
15056		    ipif->ipif_id);
15057		name = lbuf;
15058		name_len = mi_strlen(name) + 1;
15059	}
15060	len -= 1;
15061	buf[len] = '\0';
15062	len = MIN(len, name_len);
15063	bcopy(name, buf, len);
15064}
15065
15066/*
15067 * Find an IPIF based on the name passed in.  Names can be of the form <phys>
15068 * (e.g., le0) or <phys>:<#> (e.g., le0:1).  When there is no colon, the
15069 * implied unit id is zero. <phys> must correspond to the name of an ILL.
15070 * (May be called as writer.)
15071 */
15072static ipif_t *
15073ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc,
15074    boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q,
15075    mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst)
15076{
15077	char	*cp;
15078	char	*endp;
15079	long	id;
15080	ill_t	*ill;
15081	ipif_t	*ipif;
15082	uint_t	ire_type;
15083	boolean_t did_alloc = B_FALSE;
15084	ipsq_t	*ipsq;
15085
15086	if (error != NULL)
15087		*error = 0;
15088
15089	/*
15090	 * If the caller wants to us to create the ipif, make sure we have a
15091	 * valid zoneid
15092	 */
15093	ASSERT(!do_alloc || zoneid != ALL_ZONES);
15094
15095	if (namelen == 0) {
15096		if (error != NULL)
15097			*error = ENXIO;
15098		return (NULL);
15099	}
15100
15101	*exists = B_FALSE;
15102	/* Look for a colon in the name. */
15103	endp = &name[namelen];
15104	for (cp = endp; --cp > name; ) {
15105		if (*cp == IPIF_SEPARATOR_CHAR)
15106			break;
15107	}
15108
15109	if (*cp == IPIF_SEPARATOR_CHAR) {
15110		/*
15111		 * Reject any non-decimal aliases for logical
15112		 * interfaces. Aliases with leading zeroes
15113		 * are also rejected as they introduce ambiguity
15114		 * in the naming of the interfaces.
15115		 * In order to confirm with existing semantics,
15116		 * and to not break any programs/script relying
15117		 * on that behaviour, if<0>:0 is considered to be
15118		 * a valid interface.
15119		 *
15120		 * If alias has two or more digits and the first
15121		 * is zero, fail.
15122		 */
15123		if (&cp[2] < endp && cp[1] == '0') {
15124			if (error != NULL)
15125				*error = EINVAL;
15126			return (NULL);
15127		}
15128	}
15129
15130	if (cp <= name) {
15131		cp = endp;
15132	} else {
15133		*cp = '\0';
15134	}
15135
15136	/*
15137	 * Look up the ILL, based on the portion of the name
15138	 * before the slash. ill_lookup_on_name returns a held ill.
15139	 * Temporary to check whether ill exists already. If so
15140	 * ill_lookup_on_name will clear it.
15141	 */
15142	ill = ill_lookup_on_name(name, do_alloc, isv6,
15143	    q, mp, func, error, &did_alloc, ipst);
15144	if (cp != endp)
15145		*cp = IPIF_SEPARATOR_CHAR;
15146	if (ill == NULL)
15147		return (NULL);
15148
15149	/* Establish the unit number in the name. */
15150	id = 0;
15151	if (cp < endp && *endp == '\0') {
15152		/* If there was a colon, the unit number follows. */
15153		cp++;
15154		if (ddi_strtol(cp, NULL, 0, &id) != 0) {
15155			ill_refrele(ill);
15156			if (error != NULL)
15157				*error = ENXIO;
15158			return (NULL);
15159		}
15160	}
15161
15162	GRAB_CONN_LOCK(q);
15163	mutex_enter(&ill->ill_lock);
15164	/* Now see if there is an IPIF with this unit number. */
15165	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
15166		if (ipif->ipif_id == id) {
15167			if (zoneid != ALL_ZONES &&
15168			    zoneid != ipif->ipif_zoneid &&
15169			    ipif->ipif_zoneid != ALL_ZONES) {
15170				mutex_exit(&ill->ill_lock);
15171				RELEASE_CONN_LOCK(q);
15172				ill_refrele(ill);
15173				if (error != NULL)
15174					*error = ENXIO;
15175				return (NULL);
15176			}
15177			/*
15178			 * The block comment at the start of ipif_down
15179			 * explains the use of the macros used below
15180			 */
15181			if (IPIF_CAN_LOOKUP(ipif)) {
15182				ipif_refhold_locked(ipif);
15183				mutex_exit(&ill->ill_lock);
15184				if (!did_alloc)
15185					*exists = B_TRUE;
15186				/*
15187				 * Drop locks before calling ill_refrele
15188				 * since it can potentially call into
15189				 * ipif_ill_refrele_tail which can end up
15190				 * in trying to acquire any lock.
15191				 */
15192				RELEASE_CONN_LOCK(q);
15193				ill_refrele(ill);
15194				return (ipif);
15195			} else if (IPIF_CAN_WAIT(ipif, q)) {
15196				ipsq = ill->ill_phyint->phyint_ipsq;
15197				mutex_enter(&ipsq->ipsq_lock);
15198				mutex_enter(&ipsq->ipsq_xop->ipx_lock);
15199				mutex_exit(&ill->ill_lock);
15200				ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
15201				mutex_exit(&ipsq->ipsq_xop->ipx_lock);
15202				mutex_exit(&ipsq->ipsq_lock);
15203				RELEASE_CONN_LOCK(q);
15204				ill_refrele(ill);
15205				if (error != NULL)
15206					*error = EINPROGRESS;
15207				return (NULL);
15208			}
15209		}
15210	}
15211	RELEASE_CONN_LOCK(q);
15212
15213	if (!do_alloc) {
15214		mutex_exit(&ill->ill_lock);
15215		ill_refrele(ill);
15216		if (error != NULL)
15217			*error = ENXIO;
15218		return (NULL);
15219	}
15220
15221	/*
15222	 * If none found, atomically allocate and return a new one.
15223	 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL
15224	 * to support "receive only" use of lo0:1 etc. as is still done
15225	 * below as an initial guess.
15226	 * However, this is now likely to be overriden later in ipif_up_done()
15227	 * when we know for sure what address has been configured on the
15228	 * interface, since we might have more than one loopback interface
15229	 * with a loopback address, e.g. in the case of zones, and all the
15230	 * interfaces with loopback addresses need to be marked IRE_LOOPBACK.
15231	 */
15232	if (ill->ill_net_type == IRE_LOOPBACK && id == 0)
15233		ire_type = IRE_LOOPBACK;
15234	else
15235		ire_type = IRE_LOCAL;
15236	ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE);
15237	if (ipif != NULL)
15238		ipif_refhold_locked(ipif);
15239	else if (error != NULL)
15240		*error = ENOMEM;
15241	mutex_exit(&ill->ill_lock);
15242	ill_refrele(ill);
15243	return (ipif);
15244}
15245
15246/*
15247 * This routine is called whenever a new address comes up on an ipif.  If
15248 * we are configured to respond to address mask requests, then we are supposed
15249 * to broadcast an address mask reply at this time.  This routine is also
15250 * called if we are already up, but a netmask change is made.  This is legal
15251 * but might not make the system manager very popular.	(May be called
15252 * as writer.)
15253 */
15254void
15255ipif_mask_reply(ipif_t *ipif)
15256{
15257	icmph_t	*icmph;
15258	ipha_t	*ipha;
15259	mblk_t	*mp;
15260	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
15261
15262#define	REPLY_LEN	(sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN)
15263
15264	if (!ipst->ips_ip_respond_to_address_mask_broadcast)
15265		return;
15266
15267	/* ICMP mask reply is IPv4 only */
15268	ASSERT(!ipif->ipif_isv6);
15269	/* ICMP mask reply is not for a loopback interface */
15270	ASSERT(ipif->ipif_ill->ill_wq != NULL);
15271
15272	mp = allocb(REPLY_LEN, BPRI_HI);
15273	if (mp == NULL)
15274		return;
15275	mp->b_wptr = mp->b_rptr + REPLY_LEN;
15276
15277	ipha = (ipha_t *)mp->b_rptr;
15278	bzero(ipha, REPLY_LEN);
15279	*ipha = icmp_ipha;
15280	ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl;
15281	ipha->ipha_src = ipif->ipif_src_addr;
15282	ipha->ipha_dst = ipif->ipif_brd_addr;
15283	ipha->ipha_length = htons(REPLY_LEN);
15284	ipha->ipha_ident = 0;
15285
15286	icmph = (icmph_t *)&ipha[1];
15287	icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
15288	bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
15289	icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0);
15290
15291	put(ipif->ipif_wq, mp);
15292
15293#undef	REPLY_LEN
15294}
15295
15296/*
15297 * When the mtu in the ipif changes, we call this routine through ire_walk
15298 * to update all the relevant IREs.
15299 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq.
15300 */
15301static void
15302ipif_mtu_change(ire_t *ire, char *ipif_arg)
15303{
15304	ipif_t *ipif = (ipif_t *)ipif_arg;
15305
15306	if (ire->ire_stq == NULL || ire->ire_ipif != ipif)
15307		return;
15308
15309	mutex_enter(&ire->ire_lock);
15310	if (ire->ire_marks & IRE_MARK_PMTU) {
15311		/* Avoid increasing the PMTU */
15312		ire->ire_max_frag = MIN(ipif->ipif_mtu, ire->ire_max_frag);
15313		if (ire->ire_max_frag == ipif->ipif_mtu)
15314			ire->ire_marks &= ~IRE_MARK_PMTU;
15315	} else {
15316		ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET);
15317	}
15318	mutex_exit(&ire->ire_lock);
15319}
15320
15321/*
15322 * When the mtu in the ill changes, we call this routine through ire_walk
15323 * to update all the relevant IREs.
15324 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq.
15325 */
15326void
15327ill_mtu_change(ire_t *ire, char *ill_arg)
15328{
15329	ill_t	*ill = (ill_t *)ill_arg;
15330
15331	if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill)
15332		return;
15333
15334	mutex_enter(&ire->ire_lock);
15335	if (ire->ire_marks & IRE_MARK_PMTU) {
15336		/* Avoid increasing the PMTU */
15337		ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu,
15338		    ire->ire_max_frag);
15339		if (ire->ire_max_frag == ire->ire_ipif->ipif_mtu) {
15340			ire->ire_marks &= ~IRE_MARK_PMTU;
15341		}
15342	} else {
15343		ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu, IP_MAXPACKET);
15344	}
15345	mutex_exit(&ire->ire_lock);
15346}
15347
15348/*
15349 * Join the ipif specific multicast groups.
15350 * Must be called after a mapping has been set up in the resolver.  (Always
15351 * called as writer.)
15352 */
15353void
15354ipif_multicast_up(ipif_t *ipif)
15355{
15356	int err;
15357	ill_t *ill;
15358
15359	ASSERT(IAM_WRITER_IPIF(ipif));
15360
15361	ill = ipif->ipif_ill;
15362
15363	ip1dbg(("ipif_multicast_up\n"));
15364	if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up)
15365		return;
15366
15367	if (ipif->ipif_isv6) {
15368		in6_addr_t v6allmc = ipv6_all_hosts_mcast;
15369		in6_addr_t v6solmc = ipv6_solicited_node_mcast;
15370
15371		v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3];
15372
15373		if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr))
15374			return;
15375
15376		ip1dbg(("ipif_multicast_up - addmulti\n"));
15377
15378		/*
15379		 * Join the all hosts multicast address.  We skip this for
15380		 * underlying IPMP interfaces since they should be invisible.
15381		 */
15382		if (!IS_UNDER_IPMP(ill)) {
15383			err = ip_addmulti_v6(&v6allmc, ill, ipif->ipif_zoneid,
15384			    ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL);
15385			if (err != 0) {
15386				ip0dbg(("ipif_multicast_up: "
15387				    "all_hosts_mcast failed %d\n", err));
15388				return;
15389			}
15390			ipif->ipif_joined_allhosts = 1;
15391		}
15392
15393		/*
15394		 * Enable multicast for the solicited node multicast address
15395		 */
15396		if (!(ipif->ipif_flags & IPIF_NOLOCAL)) {
15397			err = ip_addmulti_v6(&v6solmc, ill, ipif->ipif_zoneid,
15398			    ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL);
15399			if (err != 0) {
15400				ip0dbg(("ipif_multicast_up: solicited MC"
15401				    " failed %d\n", err));
15402				if (ipif->ipif_joined_allhosts) {
15403					(void) ip_delmulti_v6(&v6allmc, ill,
15404					    ipif->ipif_zoneid, B_TRUE, B_TRUE);
15405					ipif->ipif_joined_allhosts = 0;
15406				}
15407				return;
15408			}
15409		}
15410	} else {
15411		if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill))
15412			return;
15413
15414		/* Join the all hosts multicast address */
15415		ip1dbg(("ipif_multicast_up - addmulti\n"));
15416		err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif,
15417		    ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL);
15418		if (err) {
15419			ip0dbg(("ipif_multicast_up: failed %d\n", err));
15420			return;
15421		}
15422	}
15423	ipif->ipif_multicast_up = 1;
15424}
15425
15426/*
15427 * Blow away any multicast groups that we joined in ipif_multicast_up().
15428 * (Explicit memberships are blown away in ill_leave_multicast() when the
15429 * ill is brought down.)
15430 */
15431void
15432ipif_multicast_down(ipif_t *ipif)
15433{
15434	int err;
15435
15436	ASSERT(IAM_WRITER_IPIF(ipif));
15437
15438	ip1dbg(("ipif_multicast_down\n"));
15439	if (!ipif->ipif_multicast_up)
15440		return;
15441
15442	ip1dbg(("ipif_multicast_down - delmulti\n"));
15443
15444	if (!ipif->ipif_isv6) {
15445		err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE,
15446		    B_TRUE);
15447		if (err != 0)
15448			ip0dbg(("ipif_multicast_down: failed %d\n", err));
15449
15450		ipif->ipif_multicast_up = 0;
15451		return;
15452	}
15453
15454	/*
15455	 * Leave the all-hosts multicast address.
15456	 */
15457	if (ipif->ipif_joined_allhosts) {
15458		err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill,
15459		    ipif->ipif_zoneid, B_TRUE, B_TRUE);
15460		if (err != 0) {
15461			ip0dbg(("ipif_multicast_down: all_hosts_mcast "
15462			    "failed %d\n", err));
15463		}
15464		ipif->ipif_joined_allhosts = 0;
15465	}
15466
15467	/*
15468	 * Disable multicast for the solicited node multicast address
15469	 */
15470	if (!(ipif->ipif_flags & IPIF_NOLOCAL)) {
15471		in6_addr_t ipv6_multi = ipv6_solicited_node_mcast;
15472
15473		ipv6_multi.s6_addr32[3] |=
15474		    ipif->ipif_v6lcl_addr.s6_addr32[3];
15475
15476		err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill,
15477		    ipif->ipif_zoneid, B_TRUE, B_TRUE);
15478		if (err != 0) {
15479			ip0dbg(("ipif_multicast_down: sol MC failed %d\n",
15480			    err));
15481		}
15482	}
15483
15484	ipif->ipif_multicast_up = 0;
15485}
15486
15487/*
15488 * Used when an interface comes up to recreate any extra routes on this
15489 * interface.
15490 */
15491static ire_t **
15492ipif_recover_ire(ipif_t *ipif)
15493{
15494	mblk_t	*mp;
15495	ire_t	**ipif_saved_irep;
15496	ire_t	**irep;
15497	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
15498
15499	ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name,
15500	    ipif->ipif_id));
15501
15502	mutex_enter(&ipif->ipif_saved_ire_lock);
15503	ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) *
15504	    ipif->ipif_saved_ire_cnt, KM_NOSLEEP);
15505	if (ipif_saved_irep == NULL) {
15506		mutex_exit(&ipif->ipif_saved_ire_lock);
15507		return (NULL);
15508	}
15509
15510	irep = ipif_saved_irep;
15511	for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) {
15512		ire_t		*ire;
15513		queue_t		*rfq;
15514		queue_t		*stq;
15515		ifrt_t		*ifrt;
15516		uchar_t		*src_addr;
15517		uchar_t		*gateway_addr;
15518		ushort_t	type;
15519
15520		/*
15521		 * When the ire was initially created and then added in
15522		 * ip_rt_add(), it was created either using ipif->ipif_net_type
15523		 * in the case of a traditional interface route, or as one of
15524		 * the IRE_OFFSUBNET types (with the exception of
15525		 * IRE_HOST types ire which is created by icmp_redirect() and
15526		 * which we don't need to save or recover).  In the case where
15527		 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update
15528		 * the ire_type to IRE_IF_NORESOLVER before calling ire_add()
15529		 * to satisfy software like GateD and Sun Cluster which creates
15530		 * routes using the the loopback interface's address as a
15531		 * gateway.
15532		 *
15533		 * As ifrt->ifrt_type reflects the already updated ire_type,
15534		 * ire_create() will be called in the same way here as
15535		 * in ip_rt_add(), namely using ipif->ipif_net_type when
15536		 * the route looks like a traditional interface route (where
15537		 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using
15538		 * the saved ifrt->ifrt_type.  This means that in the case where
15539		 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by
15540		 * ire_create() will be an IRE_LOOPBACK, it will then be turned
15541		 * into an IRE_IF_NORESOLVER and then added by ire_add().
15542		 */
15543		ifrt = (ifrt_t *)mp->b_rptr;
15544		ASSERT(ifrt->ifrt_type != IRE_CACHE);
15545		if (ifrt->ifrt_type & IRE_INTERFACE) {
15546			rfq = NULL;
15547			stq = (ipif->ipif_net_type == IRE_IF_RESOLVER)
15548			    ? ipif->ipif_rq : ipif->ipif_wq;
15549			src_addr = (ifrt->ifrt_flags & RTF_SETSRC)
15550			    ? (uint8_t *)&ifrt->ifrt_src_addr
15551			    : (uint8_t *)&ipif->ipif_src_addr;
15552			gateway_addr = NULL;
15553			type = ipif->ipif_net_type;
15554		} else if (ifrt->ifrt_type & IRE_BROADCAST) {
15555			/* Recover multiroute broadcast IRE. */
15556			rfq = ipif->ipif_rq;
15557			stq = ipif->ipif_wq;
15558			src_addr = (ifrt->ifrt_flags & RTF_SETSRC)
15559			    ? (uint8_t *)&ifrt->ifrt_src_addr
15560			    : (uint8_t *)&ipif->ipif_src_addr;
15561			gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr;
15562			type = ifrt->ifrt_type;
15563		} else {
15564			rfq = NULL;
15565			stq = NULL;
15566			src_addr = (ifrt->ifrt_flags & RTF_SETSRC)
15567			    ? (uint8_t *)&ifrt->ifrt_src_addr : NULL;
15568			gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr;
15569			type = ifrt->ifrt_type;
15570		}
15571
15572		/*
15573		 * Create a copy of the IRE with the saved address and netmask.
15574		 */
15575		ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for "
15576		    "0x%x/0x%x\n",
15577		    ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type,
15578		    ntohl(ifrt->ifrt_addr),
15579		    ntohl(ifrt->ifrt_mask)));
15580		ire = ire_create(
15581		    (uint8_t *)&ifrt->ifrt_addr,
15582		    (uint8_t *)&ifrt->ifrt_mask,
15583		    src_addr,
15584		    gateway_addr,
15585		    &ifrt->ifrt_max_frag,
15586		    NULL,
15587		    rfq,
15588		    stq,
15589		    type,
15590		    ipif,
15591		    0,
15592		    0,
15593		    0,
15594		    ifrt->ifrt_flags,
15595		    &ifrt->ifrt_iulp_info,
15596		    NULL,
15597		    NULL,
15598		    ipst);
15599
15600		if (ire == NULL) {
15601			mutex_exit(&ipif->ipif_saved_ire_lock);
15602			kmem_free(ipif_saved_irep,
15603			    ipif->ipif_saved_ire_cnt * sizeof (ire_t *));
15604			return (NULL);
15605		}
15606
15607		/*
15608		 * Some software (for example, GateD and Sun Cluster) attempts
15609		 * to create (what amount to) IRE_PREFIX routes with the
15610		 * loopback address as the gateway.  This is primarily done to
15611		 * set up prefixes with the RTF_REJECT flag set (for example,
15612		 * when generating aggregate routes.)
15613		 *
15614		 * If the IRE type (as defined by ipif->ipif_net_type) is
15615		 * IRE_LOOPBACK, then we map the request into a
15616		 * IRE_IF_NORESOLVER.
15617		 */
15618		if (ipif->ipif_net_type == IRE_LOOPBACK)
15619			ire->ire_type = IRE_IF_NORESOLVER;
15620		/*
15621		 * ire held by ire_add, will be refreled' towards the
15622		 * the end of ipif_up_done
15623		 */
15624		(void) ire_add(&ire, NULL, NULL, NULL, B_FALSE);
15625		*irep = ire;
15626		irep++;
15627		ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire));
15628	}
15629	mutex_exit(&ipif->ipif_saved_ire_lock);
15630	return (ipif_saved_irep);
15631}
15632
15633/*
15634 * Used to set the netmask and broadcast address to default values when the
15635 * interface is brought up.  (Always called as writer.)
15636 */
15637static void
15638ipif_set_default(ipif_t *ipif)
15639{
15640	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
15641
15642	if (!ipif->ipif_isv6) {
15643		/*
15644		 * Interface holds an IPv4 address. Default
15645		 * mask is the natural netmask.
15646		 */
15647		if (!ipif->ipif_net_mask) {
15648			ipaddr_t	v4mask;
15649
15650			v4mask = ip_net_mask(ipif->ipif_lcl_addr);
15651			V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask);
15652		}
15653		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
15654			/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
15655			ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
15656		} else {
15657			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
15658			    ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
15659		}
15660		/*
15661		 * NOTE: SunOS 4.X does this even if the broadcast address
15662		 * has been already set thus we do the same here.
15663		 */
15664		if (ipif->ipif_flags & IPIF_BROADCAST) {
15665			ipaddr_t	v4addr;
15666
15667			v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask;
15668			IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr);
15669		}
15670	} else {
15671		/*
15672		 * Interface holds an IPv6-only address.  Default
15673		 * mask is all-ones.
15674		 */
15675		if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask))
15676			ipif->ipif_v6net_mask = ipv6_all_ones;
15677		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
15678			/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
15679			ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
15680		} else {
15681			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
15682			    ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
15683		}
15684	}
15685}
15686
15687/*
15688 * Return 0 if this address can be used as local address without causing
15689 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address
15690 * is already up on a different ill, and EADDRINUSE if it's up on the same ill.
15691 * Note that the same IPv6 link-local address is allowed as long as the ills
15692 * are not on the same link.
15693 */
15694int
15695ip_addr_availability_check(ipif_t *new_ipif)
15696{
15697	in6_addr_t our_v6addr;
15698	ill_t *ill;
15699	ipif_t *ipif;
15700	ill_walk_context_t ctx;
15701	ip_stack_t	*ipst = new_ipif->ipif_ill->ill_ipst;
15702
15703	ASSERT(IAM_WRITER_IPIF(new_ipif));
15704	ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock));
15705	ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock));
15706
15707	new_ipif->ipif_flags &= ~IPIF_UNNUMBERED;
15708	if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) ||
15709	    IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr))
15710		return (0);
15711
15712	our_v6addr = new_ipif->ipif_v6lcl_addr;
15713
15714	if (new_ipif->ipif_isv6)
15715		ill = ILL_START_WALK_V6(&ctx, ipst);
15716	else
15717		ill = ILL_START_WALK_V4(&ctx, ipst);
15718
15719	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
15720		for (ipif = ill->ill_ipif; ipif != NULL;
15721		    ipif = ipif->ipif_next) {
15722			if ((ipif == new_ipif) ||
15723			    !(ipif->ipif_flags & IPIF_UP) ||
15724			    (ipif->ipif_flags & IPIF_UNNUMBERED) ||
15725			    !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr,
15726			    &our_v6addr))
15727				continue;
15728
15729			if (new_ipif->ipif_flags & IPIF_POINTOPOINT)
15730				new_ipif->ipif_flags |= IPIF_UNNUMBERED;
15731			else if (ipif->ipif_flags & IPIF_POINTOPOINT)
15732				ipif->ipif_flags |= IPIF_UNNUMBERED;
15733			else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) ||
15734			    IN6_IS_ADDR_SITELOCAL(&our_v6addr)) &&
15735			    !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill))
15736				continue;
15737			else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid &&
15738			    ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill))
15739				continue;
15740			else if (new_ipif->ipif_ill == ill)
15741				return (EADDRINUSE);
15742			else
15743				return (EADDRNOTAVAIL);
15744		}
15745	}
15746
15747	return (0);
15748}
15749
15750/*
15751 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add
15752 * IREs for the ipif.
15753 * When the routine returns EINPROGRESS then mp has been consumed and
15754 * the ioctl will be acked from ip_rput_dlpi.
15755 */
15756int
15757ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp)
15758{
15759	ill_t		*ill = ipif->ipif_ill;
15760	boolean_t 	isv6 = ipif->ipif_isv6;
15761	int		err = 0;
15762	boolean_t	success;
15763	uint_t		ipif_orig_id;
15764	ip_stack_t	*ipst = ill->ill_ipst;
15765
15766	ASSERT(IAM_WRITER_IPIF(ipif));
15767
15768	ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id));
15769
15770	/* Shouldn't get here if it is already up. */
15771	if (ipif->ipif_flags & IPIF_UP)
15772		return (EALREADY);
15773
15774	/*
15775	 * If this is a request to bring up a data address on an interface
15776	 * under IPMP, then move the address to its IPMP meta-interface and
15777	 * try to bring it up.  One complication is that the zeroth ipif for
15778	 * an ill is special, in that every ill always has one, and that code
15779	 * throughout IP deferences ill->ill_ipif without holding any locks.
15780	 */
15781	if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) &&
15782	    (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) {
15783		ipif_t	*stubipif = NULL, *moveipif = NULL;
15784		ill_t	*ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp);
15785
15786		/*
15787		 * The ipif being brought up should be quiesced.  If it's not,
15788		 * something has gone amiss and we need to bail out.  (If it's
15789		 * quiesced, we know it will remain so via IPIF_CHANGING.)
15790		 */
15791		mutex_enter(&ill->ill_lock);
15792		if (!ipif_is_quiescent(ipif)) {
15793			mutex_exit(&ill->ill_lock);
15794			return (EINVAL);
15795		}
15796		mutex_exit(&ill->ill_lock);
15797
15798		/*
15799		 * If we're going to need to allocate ipifs, do it prior
15800		 * to starting the move (and grabbing locks).
15801		 */
15802		if (ipif->ipif_id == 0) {
15803			moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE,
15804			    B_FALSE);
15805			stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE,
15806			    B_FALSE);
15807			if (moveipif == NULL || stubipif == NULL) {
15808				mi_free(moveipif);
15809				mi_free(stubipif);
15810				return (ENOMEM);
15811			}
15812		}
15813
15814		/*
15815		 * Grab or transfer the ipif to move.  During the move, keep
15816		 * ill_g_lock held to prevent any ill walker threads from
15817		 * seeing things in an inconsistent state.
15818		 */
15819		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15820		if (ipif->ipif_id != 0) {
15821			ipif_remove(ipif);
15822		} else {
15823			ipif_transfer(ipif, moveipif, stubipif);
15824			ipif = moveipif;
15825		}
15826
15827		/*
15828		 * Place the ipif on the IPMP ill.  If the zeroth ipif on
15829		 * the IPMP ill is a stub (0.0.0.0 down address) then we
15830		 * replace that one.  Otherwise, pick the next available slot.
15831		 */
15832		ipif->ipif_ill = ipmp_ill;
15833		ipif_orig_id = ipif->ipif_id;
15834
15835		if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) {
15836			ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL);
15837			ipif = ipmp_ill->ill_ipif;
15838		} else {
15839			ipif->ipif_id = -1;
15840			if (ipif_insert(ipif, B_FALSE) != 0) {
15841				/*
15842				 * No more available ipif_id's -- put it back
15843				 * on the original ill and fail the operation.
15844				 * Since we're writer on the ill, we can be
15845				 * sure our old slot is still available.
15846				 */
15847				ipif->ipif_id = ipif_orig_id;
15848				ipif->ipif_ill = ill;
15849				if (ipif_orig_id == 0) {
15850					ipif_transfer(ipif, ill->ill_ipif,
15851					    NULL);
15852				} else {
15853					VERIFY(ipif_insert(ipif, B_FALSE) == 0);
15854				}
15855				rw_exit(&ipst->ips_ill_g_lock);
15856				return (ENOMEM);
15857			}
15858		}
15859		rw_exit(&ipst->ips_ill_g_lock);
15860
15861		/*
15862		 * Tell SCTP that the ipif has moved.  Note that even if we
15863		 * had to allocate a new ipif, the original sequence id was
15864		 * preserved and therefore SCTP won't know.
15865		 */
15866		sctp_move_ipif(ipif, ill, ipmp_ill);
15867
15868		/*
15869		 * If the ipif being brought up was on slot zero, then we
15870		 * first need to bring up the placeholder we stuck there.  In
15871		 * ip_rput_dlpi_writer(), ip_arp_done(), or the recursive call
15872		 * to ipif_up() itself, if we successfully bring up the
15873		 * placeholder, we'll check ill_move_ipif and bring it up too.
15874		 */
15875		if (ipif_orig_id == 0) {
15876			ASSERT(ill->ill_move_ipif == NULL);
15877			ill->ill_move_ipif = ipif;
15878			if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0)
15879				ASSERT(ill->ill_move_ipif == NULL);
15880			if (err != EINPROGRESS)
15881				ill->ill_move_ipif = NULL;
15882			return (err);
15883		}
15884
15885		/*
15886		 * Bring it up on the IPMP ill.
15887		 */
15888		return (ipif_up(ipif, q, mp));
15889	}
15890
15891	/* Skip arp/ndp for any loopback interface. */
15892	if (ill->ill_wq != NULL) {
15893		conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
15894		ipsq_t	*ipsq = ill->ill_phyint->phyint_ipsq;
15895
15896		if (!ill->ill_dl_up) {
15897			/*
15898			 * ill_dl_up is not yet set. i.e. we are yet to
15899			 * DL_BIND with the driver and this is the first
15900			 * logical interface on the ill to become "up".
15901			 * Tell the driver to get going (via DL_BIND_REQ).
15902			 * Note that changing "significant" IFF_ flags
15903			 * address/netmask etc cause a down/up dance, but
15904			 * does not cause an unbind (DL_UNBIND) with the driver
15905			 */
15906			return (ill_dl_up(ill, ipif, mp, q));
15907		}
15908
15909		/*
15910		 * ipif_resolver_up may end up sending an
15911		 * AR_INTERFACE_UP message to ARP, which would, in
15912		 * turn send a DLPI message to the driver. ioctls are
15913		 * serialized and so we cannot send more than one
15914		 * interface up message at a time. If ipif_resolver_up
15915		 * does send an interface up message to ARP, we get
15916		 * EINPROGRESS and we will complete in ip_arp_done.
15917		 */
15918
15919		ASSERT(connp != NULL || !CONN_Q(q));
15920		if (connp != NULL)
15921			mutex_enter(&connp->conn_lock);
15922		mutex_enter(&ill->ill_lock);
15923		success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
15924		mutex_exit(&ill->ill_lock);
15925		if (connp != NULL)
15926			mutex_exit(&connp->conn_lock);
15927		if (!success)
15928			return (EINTR);
15929
15930		/*
15931		 * Crank up the resolver.  For IPv6, this cranks up the
15932		 * external resolver if one is configured, but even if an
15933		 * external resolver isn't configured, it must be called to
15934		 * reset DAD state.  For IPv6, if an external resolver is not
15935		 * being used, ipif_resolver_up() will never return
15936		 * EINPROGRESS, so we can always call ipif_ndp_up() here.
15937		 * Note that if an external resolver is being used, there's no
15938		 * need to call ipif_ndp_up() since it will do nothing.
15939		 */
15940		err = ipif_resolver_up(ipif, Res_act_initial);
15941		if (err == EINPROGRESS) {
15942			/* We will complete it in ip_arp_done() */
15943			return (err);
15944		}
15945
15946		if (isv6 && err == 0)
15947			err = ipif_ndp_up(ipif, B_TRUE);
15948
15949		ASSERT(err != EINPROGRESS);
15950		mp = ipsq_pending_mp_get(ipsq, &connp);
15951		ASSERT(mp != NULL);
15952		if (err != 0)
15953			return (err);
15954	} else {
15955		/*
15956		 * Interfaces without underlying hardware don't do duplicate
15957		 * address detection.
15958		 */
15959		ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE));
15960		ipif->ipif_addr_ready = 1;
15961	}
15962
15963	err = isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif);
15964	if (err == 0 && ill->ill_move_ipif != NULL) {
15965		ipif = ill->ill_move_ipif;
15966		ill->ill_move_ipif = NULL;
15967		return (ipif_up(ipif, q, mp));
15968	}
15969	return (err);
15970}
15971
15972/*
15973 * Perform a bind for the physical device.
15974 * When the routine returns EINPROGRESS then mp has been consumed and
15975 * the ioctl will be acked from ip_rput_dlpi.
15976 * Allocate an unbind message and save it until ipif_down.
15977 */
15978static int
15979ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
15980{
15981	areq_t	*areq;
15982	mblk_t	*areq_mp = NULL;
15983	mblk_t	*bind_mp = NULL;
15984	mblk_t	*unbind_mp = NULL;
15985	conn_t	*connp;
15986	boolean_t success;
15987	uint16_t sap_addr;
15988
15989	ip1dbg(("ill_dl_up(%s)\n", ill->ill_name));
15990	ASSERT(IAM_WRITER_ILL(ill));
15991	ASSERT(mp != NULL);
15992
15993	/* Create a resolver cookie for ARP */
15994	if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) {
15995		areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0);
15996		if (areq_mp == NULL)
15997			return (ENOMEM);
15998
15999		freemsg(ill->ill_resolver_mp);
16000		ill->ill_resolver_mp = areq_mp;
16001		areq = (areq_t *)areq_mp->b_rptr;
16002		sap_addr = ill->ill_sap;
16003		bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr));
16004	}
16005	bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long),
16006	    DL_BIND_REQ);
16007	if (bind_mp == NULL)
16008		goto bad;
16009	((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap;
16010	((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS;
16011
16012	unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ);
16013	if (unbind_mp == NULL)
16014		goto bad;
16015
16016	/*
16017	 * Record state needed to complete this operation when the
16018	 * DL_BIND_ACK shows up.  Also remember the pre-allocated mblks.
16019	 */
16020	connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
16021	ASSERT(connp != NULL || !CONN_Q(q));
16022	GRAB_CONN_LOCK(q);
16023	mutex_enter(&ipif->ipif_ill->ill_lock);
16024	success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
16025	mutex_exit(&ipif->ipif_ill->ill_lock);
16026	RELEASE_CONN_LOCK(q);
16027	if (!success)
16028		goto bad;
16029
16030	/*
16031	 * Save the unbind message for ill_dl_down(); it will be consumed when
16032	 * the interface goes down.
16033	 */
16034	ASSERT(ill->ill_unbind_mp == NULL);
16035	ill->ill_unbind_mp = unbind_mp;
16036
16037	ill_dlpi_send(ill, bind_mp);
16038	/* Send down link-layer capabilities probe if not already done. */
16039	ill_capability_probe(ill);
16040
16041	/*
16042	 * Sysid used to rely on the fact that netboots set domainname
16043	 * and the like. Now that miniroot boots aren't strictly netboots
16044	 * and miniroot network configuration is driven from userland
16045	 * these things still need to be set. This situation can be detected
16046	 * by comparing the interface being configured here to the one
16047	 * dhcifname was set to reference by the boot loader. Once sysid is
16048	 * converted to use dhcp_ipc_getinfo() this call can go away.
16049	 */
16050	if ((ipif->ipif_flags & IPIF_DHCPRUNNING) &&
16051	    (strcmp(ill->ill_name, dhcifname) == 0) &&
16052	    (strlen(srpc_domain) == 0)) {
16053		if (dhcpinit() != 0)
16054			cmn_err(CE_WARN, "no cached dhcp response");
16055	}
16056
16057	/*
16058	 * This operation will complete in ip_rput_dlpi with either
16059	 * a DL_BIND_ACK or DL_ERROR_ACK.
16060	 */
16061	return (EINPROGRESS);
16062bad:
16063	ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name));
16064
16065	freemsg(bind_mp);
16066	freemsg(unbind_mp);
16067	return (ENOMEM);
16068}
16069
16070uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20;
16071
16072/*
16073 * DLPI and ARP is up.
16074 * Create all the IREs associated with an interface bring up multicast.
16075 * Set the interface flag and finish other initialization
16076 * that potentially had to be differed to after DL_BIND_ACK.
16077 */
16078int
16079ipif_up_done(ipif_t *ipif)
16080{
16081	ire_t	*ire_array[20];
16082	ire_t	**irep = ire_array;
16083	ire_t	**irep1;
16084	ipaddr_t net_mask = 0;
16085	ipaddr_t subnet_mask, route_mask;
16086	ill_t	*ill = ipif->ipif_ill;
16087	queue_t	*stq;
16088	ipif_t	 *src_ipif;
16089	ipif_t   *tmp_ipif;
16090	boolean_t	flush_ire_cache = B_TRUE;
16091	int	err = 0;
16092	ire_t	**ipif_saved_irep = NULL;
16093	int ipif_saved_ire_cnt;
16094	int	cnt;
16095	boolean_t	src_ipif_held = B_FALSE;
16096	boolean_t	loopback = B_FALSE;
16097	ip_stack_t	*ipst = ill->ill_ipst;
16098
16099	ip1dbg(("ipif_up_done(%s:%u)\n",
16100	    ipif->ipif_ill->ill_name, ipif->ipif_id));
16101	/* Check if this is a loopback interface */
16102	if (ipif->ipif_ill->ill_wq == NULL)
16103		loopback = B_TRUE;
16104
16105	ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
16106	/*
16107	 * If all other interfaces for this ill are down or DEPRECATED,
16108	 * or otherwise unsuitable for source address selection, remove
16109	 * any IRE_CACHE entries for this ill to make sure source
16110	 * address selection gets to take this new ipif into account.
16111	 * No need to hold ill_lock while traversing the ipif list since
16112	 * we are writer
16113	 */
16114	for (tmp_ipif = ill->ill_ipif; tmp_ipif;
16115	    tmp_ipif = tmp_ipif->ipif_next) {
16116		if (((tmp_ipif->ipif_flags &
16117		    (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) ||
16118		    !(tmp_ipif->ipif_flags & IPIF_UP)) ||
16119		    (tmp_ipif == ipif))
16120			continue;
16121		/* first useable pre-existing interface */
16122		flush_ire_cache = B_FALSE;
16123		break;
16124	}
16125	if (flush_ire_cache)
16126		ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE,
16127		    IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill);
16128
16129	/*
16130	 * Figure out which way the send-to queue should go.  Only
16131	 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK
16132	 * should show up here.
16133	 */
16134	switch (ill->ill_net_type) {
16135	case IRE_IF_RESOLVER:
16136		stq = ill->ill_rq;
16137		break;
16138	case IRE_IF_NORESOLVER:
16139	case IRE_LOOPBACK:
16140		stq = ill->ill_wq;
16141		break;
16142	default:
16143		return (EINVAL);
16144	}
16145
16146	if (IS_LOOPBACK(ill)) {
16147		/*
16148		 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in
16149		 * ipif_lookup_on_name(), but in the case of zones we can have
16150		 * several loopback addresses on lo0. So all the interfaces with
16151		 * loopback addresses need to be marked IRE_LOOPBACK.
16152		 */
16153		if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) ==
16154		    htonl(INADDR_LOOPBACK))
16155			ipif->ipif_ire_type = IRE_LOOPBACK;
16156		else
16157			ipif->ipif_ire_type = IRE_LOCAL;
16158	}
16159
16160	if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST) ||
16161	    ((ipif->ipif_flags & IPIF_DEPRECATED) &&
16162	    !(ipif->ipif_flags & IPIF_NOFAILOVER))) {
16163		/*
16164		 * Can't use our source address. Select a different
16165		 * source address for the IRE_INTERFACE and IRE_LOCAL
16166		 */
16167		src_ipif = ipif_select_source(ipif->ipif_ill,
16168		    ipif->ipif_subnet, ipif->ipif_zoneid);
16169		if (src_ipif == NULL)
16170			src_ipif = ipif;	/* Last resort */
16171		else
16172			src_ipif_held = B_TRUE;
16173	} else {
16174		src_ipif = ipif;
16175	}
16176
16177	/* Create all the IREs associated with this interface */
16178	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
16179	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
16180
16181		/*
16182		 * If we're on a labeled system then make sure that zone-
16183		 * private addresses have proper remote host database entries.
16184		 */
16185		if (is_system_labeled() &&
16186		    ipif->ipif_ire_type != IRE_LOOPBACK &&
16187		    !tsol_check_interface_address(ipif))
16188			return (EINVAL);
16189
16190		/* Register the source address for __sin6_src_id */
16191		err = ip_srcid_insert(&ipif->ipif_v6lcl_addr,
16192		    ipif->ipif_zoneid, ipst);
16193		if (err != 0) {
16194			ip0dbg(("ipif_up_done: srcid_insert %d\n", err));
16195			return (err);
16196		}
16197
16198		/* If the interface address is set, create the local IRE. */
16199		ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n",
16200		    (void *)ipif,
16201		    ipif->ipif_ire_type,
16202		    ntohl(ipif->ipif_lcl_addr)));
16203		*irep++ = ire_create(
16204		    (uchar_t *)&ipif->ipif_lcl_addr,	/* dest address */
16205		    (uchar_t *)&ip_g_all_ones,		/* mask */
16206		    (uchar_t *)&src_ipif->ipif_src_addr, /* source address */
16207		    NULL,				/* no gateway */
16208		    &ip_loopback_mtuplus,		/* max frag size */
16209		    NULL,
16210		    ipif->ipif_rq,			/* recv-from queue */
16211		    NULL,				/* no send-to queue */
16212		    ipif->ipif_ire_type,		/* LOCAL or LOOPBACK */
16213		    ipif,
16214		    0,
16215		    0,
16216		    0,
16217		    (ipif->ipif_flags & IPIF_PRIVATE) ?
16218		    RTF_PRIVATE : 0,
16219		    &ire_uinfo_null,
16220		    NULL,
16221		    NULL,
16222		    ipst);
16223	} else {
16224		ip1dbg((
16225		    "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n",
16226		    ipif->ipif_ire_type,
16227		    ntohl(ipif->ipif_lcl_addr),
16228		    (uint_t)ipif->ipif_flags));
16229	}
16230	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
16231	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
16232		net_mask = ip_net_mask(ipif->ipif_lcl_addr);
16233	} else {
16234		net_mask = htonl(IN_CLASSA_NET);	/* fallback */
16235	}
16236
16237	subnet_mask = ipif->ipif_net_mask;
16238
16239	/*
16240	 * If mask was not specified, use natural netmask of
16241	 * interface address. Also, store this mask back into the
16242	 * ipif struct.
16243	 */
16244	if (subnet_mask == 0) {
16245		subnet_mask = net_mask;
16246		V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask);
16247		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
16248		    ipif->ipif_v6subnet);
16249	}
16250
16251	/* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */
16252	if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) &&
16253	    ipif->ipif_subnet != INADDR_ANY) {
16254		/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
16255
16256		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
16257			route_mask = IP_HOST_MASK;
16258		} else {
16259			route_mask = subnet_mask;
16260		}
16261
16262		ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p "
16263		    "creating if IRE ill_net_type 0x%x for 0x%x\n",
16264		    (void *)ipif, (void *)ill,
16265		    ill->ill_net_type,
16266		    ntohl(ipif->ipif_subnet)));
16267		*irep++ = ire_create(
16268		    (uchar_t *)&ipif->ipif_subnet,	/* dest address */
16269		    (uchar_t *)&route_mask,		/* mask */
16270		    (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */
16271		    NULL,				/* no gateway */
16272		    &ipif->ipif_mtu,			/* max frag */
16273		    NULL,
16274		    NULL,				/* no recv queue */
16275		    stq,				/* send-to queue */
16276		    ill->ill_net_type,			/* IF_[NO]RESOLVER */
16277		    ipif,
16278		    0,
16279		    0,
16280		    0,
16281		    (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0,
16282		    &ire_uinfo_null,
16283		    NULL,
16284		    NULL,
16285		    ipst);
16286	}
16287
16288	/*
16289	 * Create any necessary broadcast IREs.
16290	 */
16291	if (ipif->ipif_flags & IPIF_BROADCAST)
16292		irep = ipif_create_bcast_ires(ipif, irep);
16293
16294	ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
16295
16296	/* If an earlier ire_create failed, get out now */
16297	for (irep1 = irep; irep1 > ire_array; ) {
16298		irep1--;
16299		if (*irep1 == NULL) {
16300			ip1dbg(("ipif_up_done: NULL ire found in ire_array\n"));
16301			err = ENOMEM;
16302			goto bad;
16303		}
16304	}
16305
16306	/*
16307	 * Need to atomically check for IP address availability under
16308	 * ip_addr_avail_lock.  ill_g_lock is held as reader to ensure no new
16309	 * ills or new ipifs can be added while we are checking availability.
16310	 */
16311	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
16312	mutex_enter(&ipst->ips_ip_addr_avail_lock);
16313	/* Mark it up, and increment counters. */
16314	ipif->ipif_flags |= IPIF_UP;
16315	ill->ill_ipif_up_count++;
16316	err = ip_addr_availability_check(ipif);
16317	mutex_exit(&ipst->ips_ip_addr_avail_lock);
16318	rw_exit(&ipst->ips_ill_g_lock);
16319
16320	if (err != 0) {
16321		/*
16322		 * Our address may already be up on the same ill. In this case,
16323		 * the ARP entry for our ipif replaced the one for the other
16324		 * ipif. So we don't want to delete it (otherwise the other ipif
16325		 * would be unable to send packets).
16326		 * ip_addr_availability_check() identifies this case for us and
16327		 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL
16328		 * which is the expected error code.
16329		 */
16330		if (err == EADDRINUSE) {
16331			freemsg(ipif->ipif_arp_del_mp);
16332			ipif->ipif_arp_del_mp = NULL;
16333			err = EADDRNOTAVAIL;
16334		}
16335		ill->ill_ipif_up_count--;
16336		ipif->ipif_flags &= ~IPIF_UP;
16337		goto bad;
16338	}
16339
16340	/*
16341	 * Add in all newly created IREs.  ire_create_bcast() has
16342	 * already checked for duplicates of the IRE_BROADCAST type.
16343	 */
16344	for (irep1 = irep; irep1 > ire_array; ) {
16345		irep1--;
16346		ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock)));
16347		/*
16348		 * refheld by ire_add. refele towards the end of the func
16349		 */
16350		(void) ire_add(irep1, NULL, NULL, NULL, B_FALSE);
16351	}
16352
16353	/* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */
16354	ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt;
16355	ipif_saved_irep = ipif_recover_ire(ipif);
16356
16357	if (!loopback) {
16358		/*
16359		 * If the broadcast address has been set, make sure it makes
16360		 * sense based on the interface address.
16361		 * Only match on ill since we are sharing broadcast addresses.
16362		 */
16363		if ((ipif->ipif_brd_addr != INADDR_ANY) &&
16364		    (ipif->ipif_flags & IPIF_BROADCAST)) {
16365			ire_t	*ire;
16366
16367			ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0,
16368			    IRE_BROADCAST, ipif, ALL_ZONES,
16369			    NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst);
16370
16371			if (ire == NULL) {
16372				/*
16373				 * If there isn't a matching broadcast IRE,
16374				 * revert to the default for this netmask.
16375				 */
16376				ipif->ipif_v6brd_addr = ipv6_all_zeros;
16377				mutex_enter(&ipif->ipif_ill->ill_lock);
16378				ipif_set_default(ipif);
16379				mutex_exit(&ipif->ipif_ill->ill_lock);
16380			} else {
16381				ire_refrele(ire);
16382			}
16383		}
16384
16385	}
16386
16387	if (ill->ill_need_recover_multicast) {
16388		/*
16389		 * Need to recover all multicast memberships in the driver.
16390		 * This had to be deferred until we had attached.  The same
16391		 * code exists in ipif_up_done_v6() to recover IPv6
16392		 * memberships.
16393		 *
16394		 * Note that it would be preferable to unconditionally do the
16395		 * ill_recover_multicast() in ill_dl_up(), but we cannot do
16396		 * that since ill_join_allmulti() depends on ill_dl_up being
16397		 * set, and it is not set until we receive a DL_BIND_ACK after
16398		 * having called ill_dl_up().
16399		 */
16400		ill_recover_multicast(ill);
16401	}
16402
16403	if (ill->ill_ipif_up_count == 1) {
16404		/*
16405		 * Since the interface is now up, it may now be active.
16406		 */
16407		if (IS_UNDER_IPMP(ill))
16408			ipmp_ill_refresh_active(ill);
16409
16410		/*
16411		 * If this is an IPMP interface, we may now be able to
16412		 * establish ARP entries.
16413		 */
16414		if (IS_IPMP(ill))
16415			ipmp_illgrp_refresh_arpent(ill->ill_grp);
16416	}
16417
16418	/* Join the allhosts multicast address */
16419	ipif_multicast_up(ipif);
16420
16421	/*
16422	 * See if anybody else would benefit from our new ipif.
16423	 */
16424	if (!loopback &&
16425	    !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) {
16426		ill_update_source_selection(ill);
16427	}
16428
16429	for (irep1 = irep; irep1 > ire_array; ) {
16430		irep1--;
16431		if (*irep1 != NULL) {
16432			/* was held in ire_add */
16433			ire_refrele(*irep1);
16434		}
16435	}
16436
16437	cnt = ipif_saved_ire_cnt;
16438	for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) {
16439		if (*irep1 != NULL) {
16440			/* was held in ire_add */
16441			ire_refrele(*irep1);
16442		}
16443	}
16444
16445	if (!loopback && ipif->ipif_addr_ready) {
16446		/* Broadcast an address mask reply. */
16447		ipif_mask_reply(ipif);
16448	}
16449	if (ipif_saved_irep != NULL) {
16450		kmem_free(ipif_saved_irep,
16451		    ipif_saved_ire_cnt * sizeof (ire_t *));
16452	}
16453	if (src_ipif_held)
16454		ipif_refrele(src_ipif);
16455
16456	/*
16457	 * This had to be deferred until we had bound.  Tell routing sockets and
16458	 * others that this interface is up if it looks like the address has
16459	 * been validated.  Otherwise, if it isn't ready yet, wait for
16460	 * duplicate address detection to do its thing.
16461	 */
16462	if (ipif->ipif_addr_ready)
16463		ipif_up_notify(ipif);
16464	return (0);
16465
16466bad:
16467	ip1dbg(("ipif_up_done: FAILED \n"));
16468
16469	while (irep > ire_array) {
16470		irep--;
16471		if (*irep != NULL)
16472			ire_delete(*irep);
16473	}
16474	(void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst);
16475
16476	if (ipif_saved_irep != NULL) {
16477		kmem_free(ipif_saved_irep,
16478		    ipif_saved_ire_cnt * sizeof (ire_t *));
16479	}
16480	if (src_ipif_held)
16481		ipif_refrele(src_ipif);
16482
16483	ipif_resolver_down(ipif);
16484	return (err);
16485}
16486
16487/*
16488 * Turn off the ARP with the ILLF_NOARP flag.
16489 */
16490static int
16491ill_arp_off(ill_t *ill)
16492{
16493	mblk_t	*arp_off_mp = NULL;
16494	mblk_t	*arp_on_mp = NULL;
16495
16496	ip1dbg(("ill_arp_off(%s)\n", ill->ill_name));
16497
16498	ASSERT(IAM_WRITER_ILL(ill));
16499	ASSERT(ill->ill_net_type == IRE_IF_RESOLVER);
16500
16501	/*
16502	 * If the on message is still around we've already done
16503	 * an arp_off without doing an arp_on thus there is no
16504	 * work needed.
16505	 */
16506	if (ill->ill_arp_on_mp != NULL)
16507		return (0);
16508
16509	/*
16510	 * Allocate an ARP on message (to be saved) and an ARP off message
16511	 */
16512	arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0);
16513	if (!arp_off_mp)
16514		return (ENOMEM);
16515
16516	arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0);
16517	if (!arp_on_mp)
16518		goto failed;
16519
16520	ASSERT(ill->ill_arp_on_mp == NULL);
16521	ill->ill_arp_on_mp = arp_on_mp;
16522
16523	/* Send an AR_INTERFACE_OFF request */
16524	putnext(ill->ill_rq, arp_off_mp);
16525	return (0);
16526failed:
16527
16528	if (arp_off_mp)
16529		freemsg(arp_off_mp);
16530	return (ENOMEM);
16531}
16532
16533/*
16534 * Turn on ARP by turning off the ILLF_NOARP flag.
16535 */
16536static int
16537ill_arp_on(ill_t *ill)
16538{
16539	mblk_t	*mp;
16540
16541	ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name));
16542
16543	ASSERT(ill->ill_net_type == IRE_IF_RESOLVER);
16544
16545	ASSERT(IAM_WRITER_ILL(ill));
16546	/*
16547	 * Send an AR_INTERFACE_ON request if we have already done
16548	 * an arp_off (which allocated the message).
16549	 */
16550	if (ill->ill_arp_on_mp != NULL) {
16551		mp = ill->ill_arp_on_mp;
16552		ill->ill_arp_on_mp = NULL;
16553		putnext(ill->ill_rq, mp);
16554	}
16555	return (0);
16556}
16557
16558/*
16559 * Checks for availbility of a usable source address (if there is one) when the
16560 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note
16561 * this selection is done regardless of the destination.
16562 */
16563boolean_t
16564ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid)
16565{
16566	uint_t	ifindex;
16567	ipif_t	*ipif = NULL;
16568	ill_t	*uill;
16569	boolean_t isv6;
16570	ip_stack_t	*ipst = ill->ill_ipst;
16571
16572	ASSERT(ill != NULL);
16573
16574	isv6 = ill->ill_isv6;
16575	ifindex = ill->ill_usesrc_ifindex;
16576	if (ifindex != 0) {
16577		uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL,
16578		    NULL, ipst);
16579		if (uill == NULL)
16580			return (B_FALSE);
16581		mutex_enter(&uill->ill_lock);
16582		for (ipif = uill->ill_ipif; ipif != NULL;
16583		    ipif = ipif->ipif_next) {
16584			if (!IPIF_CAN_LOOKUP(ipif))
16585				continue;
16586			if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
16587				continue;
16588			if (!(ipif->ipif_flags & IPIF_UP))
16589				continue;
16590			if (ipif->ipif_zoneid != zoneid)
16591				continue;
16592			if ((isv6 &&
16593			    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) ||
16594			    (ipif->ipif_lcl_addr == INADDR_ANY))
16595				continue;
16596			mutex_exit(&uill->ill_lock);
16597			ill_refrele(uill);
16598			return (B_TRUE);
16599		}
16600		mutex_exit(&uill->ill_lock);
16601		ill_refrele(uill);
16602	}
16603	return (B_FALSE);
16604}
16605
16606/*
16607 * IP source address type, sorted from worst to best.  For a given type,
16608 * always prefer IP addresses on the same subnet.  All-zones addresses are
16609 * suboptimal because they pose problems with unlabeled destinations.
16610 */
16611typedef enum {
16612	IPIF_NONE,
16613	IPIF_DIFFNET_DEPRECATED, 	/* deprecated and different subnet */
16614	IPIF_SAMENET_DEPRECATED, 	/* deprecated and same subnet */
16615	IPIF_DIFFNET_ALLZONES,		/* allzones and different subnet */
16616	IPIF_SAMENET_ALLZONES,		/* allzones and same subnet */
16617	IPIF_DIFFNET,			/* normal and different subnet */
16618	IPIF_SAMENET			/* normal and same subnet */
16619} ipif_type_t;
16620
16621/*
16622 * Pick the optimal ipif on `ill' for sending to destination `dst' from zone
16623 * `zoneid'.  We rate usable ipifs from low -> high as per the ipif_type_t
16624 * enumeration, and return the highest-rated ipif.  If there's a tie, we pick
16625 * the first one, unless IPMP is used in which case we round-robin among them;
16626 * see below for more.
16627 *
16628 * Returns NULL if there is no suitable source address for the ill.
16629 * This only occurs when there is no valid source address for the ill.
16630 */
16631ipif_t *
16632ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid)
16633{
16634	ill_t	*usill = NULL;
16635	ill_t	*ipmp_ill = NULL;
16636	ipif_t	*start_ipif, *next_ipif, *ipif, *best_ipif;
16637	ipif_type_t type, best_type;
16638	tsol_tpc_t *src_rhtp, *dst_rhtp;
16639	ip_stack_t *ipst = ill->ill_ipst;
16640	boolean_t samenet;
16641
16642	if (ill->ill_usesrc_ifindex != 0) {
16643		usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex,
16644		    B_FALSE, NULL, NULL, NULL, NULL, ipst);
16645		if (usill != NULL)
16646			ill = usill;	/* Select source from usesrc ILL */
16647		else
16648			return (NULL);
16649	}
16650
16651	/*
16652	 * Test addresses should never be used for source address selection,
16653	 * so if we were passed one, switch to the IPMP meta-interface.
16654	 */
16655	if (IS_UNDER_IPMP(ill)) {
16656		if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL)
16657			ill = ipmp_ill;	/* Select source from IPMP ill */
16658		else
16659			return (NULL);
16660	}
16661
16662	/*
16663	 * If we're dealing with an unlabeled destination on a labeled system,
16664	 * make sure that we ignore source addresses that are incompatible with
16665	 * the destination's default label.  That destination's default label
16666	 * must dominate the minimum label on the source address.
16667	 */
16668	dst_rhtp = NULL;
16669	if (is_system_labeled()) {
16670		dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE);
16671		if (dst_rhtp == NULL)
16672			return (NULL);
16673		if (dst_rhtp->tpc_tp.host_type != UNLABELED) {
16674			TPC_RELE(dst_rhtp);
16675			dst_rhtp = NULL;
16676		}
16677	}
16678
16679	/*
16680	 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill
16681	 * can be deleted. But an ipif/ill can get CONDEMNED any time.
16682	 * After selecting the right ipif, under ill_lock make sure ipif is
16683	 * not condemned, and increment refcnt. If ipif is CONDEMNED,
16684	 * we retry. Inside the loop we still need to check for CONDEMNED,
16685	 * but not under a lock.
16686	 */
16687	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
16688retry:
16689	/*
16690	 * For source address selection, we treat the ipif list as circular
16691	 * and continue until we get back to where we started.  This allows
16692	 * IPMP to vary source address selection (which improves inbound load
16693	 * spreading) by caching its last ending point and starting from
16694	 * there.  NOTE: we don't have to worry about ill_src_ipif changing
16695	 * ills since that can't happen on the IPMP ill.
16696	 */
16697	start_ipif = ill->ill_ipif;
16698	if (IS_IPMP(ill) && ill->ill_src_ipif != NULL)
16699		start_ipif = ill->ill_src_ipif;
16700
16701	ipif = start_ipif;
16702	best_ipif = NULL;
16703	best_type = IPIF_NONE;
16704	do {
16705		if ((next_ipif = ipif->ipif_next) == NULL)
16706			next_ipif = ill->ill_ipif;
16707
16708		if (!IPIF_CAN_LOOKUP(ipif))
16709			continue;
16710		/* Always skip NOLOCAL and ANYCAST interfaces */
16711		if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
16712			continue;
16713		if (!(ipif->ipif_flags & IPIF_UP) || !ipif->ipif_addr_ready)
16714			continue;
16715		if (ipif->ipif_zoneid != zoneid &&
16716		    ipif->ipif_zoneid != ALL_ZONES)
16717			continue;
16718
16719		/*
16720		 * Interfaces with 0.0.0.0 address are allowed to be UP, but
16721		 * are not valid as source addresses.
16722		 */
16723		if (ipif->ipif_lcl_addr == INADDR_ANY)
16724			continue;
16725
16726		/*
16727		 * Check compatibility of local address for destination's
16728		 * default label if we're on a labeled system.	Incompatible
16729		 * addresses can't be used at all.
16730		 */
16731		if (dst_rhtp != NULL) {
16732			boolean_t incompat;
16733
16734			src_rhtp = find_tpc(&ipif->ipif_lcl_addr,
16735			    IPV4_VERSION, B_FALSE);
16736			if (src_rhtp == NULL)
16737				continue;
16738			incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO ||
16739			    src_rhtp->tpc_tp.tp_doi !=
16740			    dst_rhtp->tpc_tp.tp_doi ||
16741			    (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label,
16742			    &src_rhtp->tpc_tp.tp_sl_range_cipso) &&
16743			    !blinlset(&dst_rhtp->tpc_tp.tp_def_label,
16744			    src_rhtp->tpc_tp.tp_sl_set_cipso));
16745			TPC_RELE(src_rhtp);
16746			if (incompat)
16747				continue;
16748		}
16749
16750		samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet);
16751
16752		if (ipif->ipif_flags & IPIF_DEPRECATED) {
16753			type = samenet ? IPIF_SAMENET_DEPRECATED :
16754			    IPIF_DIFFNET_DEPRECATED;
16755		} else if (ipif->ipif_zoneid == ALL_ZONES) {
16756			type = samenet ? IPIF_SAMENET_ALLZONES :
16757			    IPIF_DIFFNET_ALLZONES;
16758		} else {
16759			type = samenet ? IPIF_SAMENET : IPIF_DIFFNET;
16760		}
16761
16762		if (type > best_type) {
16763			best_type = type;
16764			best_ipif = ipif;
16765			if (best_type == IPIF_SAMENET)
16766				break; /* can't get better */
16767		}
16768	} while ((ipif = next_ipif) != start_ipif);
16769
16770	if ((ipif = best_ipif) != NULL) {
16771		mutex_enter(&ipif->ipif_ill->ill_lock);
16772		if (!IPIF_CAN_LOOKUP(ipif)) {
16773			mutex_exit(&ipif->ipif_ill->ill_lock);
16774			goto retry;
16775		}
16776		ipif_refhold_locked(ipif);
16777
16778		/*
16779		 * For IPMP, update the source ipif rotor to the next ipif,
16780		 * provided we can look it up.  (We must not use it if it's
16781		 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after
16782		 * ipif_free() checked ill_src_ipif.)
16783		 */
16784		if (IS_IPMP(ill) && ipif != NULL) {
16785			next_ipif = ipif->ipif_next;
16786			if (next_ipif != NULL && IPIF_CAN_LOOKUP(next_ipif))
16787				ill->ill_src_ipif = next_ipif;
16788			else
16789				ill->ill_src_ipif = NULL;
16790		}
16791		mutex_exit(&ipif->ipif_ill->ill_lock);
16792	}
16793
16794	rw_exit(&ipst->ips_ill_g_lock);
16795	if (usill != NULL)
16796		ill_refrele(usill);
16797	if (ipmp_ill != NULL)
16798		ill_refrele(ipmp_ill);
16799	if (dst_rhtp != NULL)
16800		TPC_RELE(dst_rhtp);
16801
16802#ifdef DEBUG
16803	if (ipif == NULL) {
16804		char buf1[INET6_ADDRSTRLEN];
16805
16806		ip1dbg(("ipif_select_source(%s, %s) -> NULL\n",
16807		    ill->ill_name,
16808		    inet_ntop(AF_INET, &dst, buf1, sizeof (buf1))));
16809	} else {
16810		char buf1[INET6_ADDRSTRLEN];
16811		char buf2[INET6_ADDRSTRLEN];
16812
16813		ip1dbg(("ipif_select_source(%s, %s) -> %s\n",
16814		    ipif->ipif_ill->ill_name,
16815		    inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)),
16816		    inet_ntop(AF_INET, &ipif->ipif_lcl_addr,
16817		    buf2, sizeof (buf2))));
16818	}
16819#endif /* DEBUG */
16820	return (ipif);
16821}
16822
16823/*
16824 * If old_ipif is not NULL, see if ipif was derived from old
16825 * ipif and if so, recreate the interface route by re-doing
16826 * source address selection. This happens when ipif_down ->
16827 * ipif_update_other_ipifs calls us.
16828 *
16829 * If old_ipif is NULL, just redo the source address selection
16830 * if needed. This happens when ipif_up_done calls us.
16831 */
16832static void
16833ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif)
16834{
16835	ire_t *ire;
16836	ire_t *ipif_ire;
16837	queue_t *stq;
16838	ipif_t *nipif;
16839	ill_t *ill;
16840	boolean_t need_rele = B_FALSE;
16841	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
16842
16843	ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif));
16844	ASSERT(IAM_WRITER_IPIF(ipif));
16845
16846	ill = ipif->ipif_ill;
16847	if (!(ipif->ipif_flags &
16848	    (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) {
16849		/*
16850		 * Can't possibly have borrowed the source
16851		 * from old_ipif.
16852		 */
16853		return;
16854	}
16855
16856	/*
16857	 * Is there any work to be done? No work if the address
16858	 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST (
16859	 * ipif_select_source() does not borrow addresses from
16860	 * NOLOCAL and ANYCAST interfaces).
16861	 */
16862	if ((old_ipif != NULL) &&
16863	    ((old_ipif->ipif_lcl_addr == INADDR_ANY) ||
16864	    (old_ipif->ipif_ill->ill_wq == NULL) ||
16865	    (old_ipif->ipif_flags &
16866	    (IPIF_NOLOCAL|IPIF_ANYCAST)))) {
16867		return;
16868	}
16869
16870	/*
16871	 * Perform the same checks as when creating the
16872	 * IRE_INTERFACE in ipif_up_done.
16873	 */
16874	if (!(ipif->ipif_flags & IPIF_UP))
16875		return;
16876
16877	if ((ipif->ipif_flags & IPIF_NOXMIT) ||
16878	    (ipif->ipif_subnet == INADDR_ANY))
16879		return;
16880
16881	ipif_ire = ipif_to_ire(ipif);
16882	if (ipif_ire == NULL)
16883		return;
16884
16885	/*
16886	 * We know that ipif uses some other source for its
16887	 * IRE_INTERFACE. Is it using the source of this
16888	 * old_ipif?
16889	 */
16890	if (old_ipif != NULL &&
16891	    old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) {
16892		ire_refrele(ipif_ire);
16893		return;
16894	}
16895	if (ip_debug > 2) {
16896		/* ip1dbg */
16897		pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for"
16898		    " src %s\n", AF_INET, &ipif_ire->ire_src_addr);
16899	}
16900
16901	stq = ipif_ire->ire_stq;
16902
16903	/*
16904	 * Can't use our source address. Select a different
16905	 * source address for the IRE_INTERFACE.
16906	 */
16907	nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid);
16908	if (nipif == NULL) {
16909		/* Last resort - all ipif's have IPIF_NOLOCAL */
16910		nipif = ipif;
16911	} else {
16912		need_rele = B_TRUE;
16913	}
16914
16915	ire = ire_create(
16916	    (uchar_t *)&ipif->ipif_subnet,	/* dest pref */
16917	    (uchar_t *)&ipif->ipif_net_mask,	/* mask */
16918	    (uchar_t *)&nipif->ipif_src_addr,	/* src addr */
16919	    NULL,				/* no gateway */
16920	    &ipif->ipif_mtu,			/* max frag */
16921	    NULL,				/* no src nce */
16922	    NULL,				/* no recv from queue */
16923	    stq,				/* send-to queue */
16924	    ill->ill_net_type,			/* IF_[NO]RESOLVER */
16925	    ipif,
16926	    0,
16927	    0,
16928	    0,
16929	    0,
16930	    &ire_uinfo_null,
16931	    NULL,
16932	    NULL,
16933	    ipst);
16934
16935	if (ire != NULL) {
16936		ire_t *ret_ire;
16937		int error;
16938
16939		/*
16940		 * We don't need ipif_ire anymore. We need to delete
16941		 * before we add so that ire_add does not detect
16942		 * duplicates.
16943		 */
16944		ire_delete(ipif_ire);
16945		ret_ire = ire;
16946		error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE);
16947		ASSERT(error == 0);
16948		ASSERT(ire == ret_ire);
16949		/* Held in ire_add */
16950		ire_refrele(ret_ire);
16951	}
16952	/*
16953	 * Either we are falling through from above or could not
16954	 * allocate a replacement.
16955	 */
16956	ire_refrele(ipif_ire);
16957	if (need_rele)
16958		ipif_refrele(nipif);
16959}
16960
16961/*
16962 * This old_ipif is going away.
16963 *
16964 * Determine if any other ipif's are using our address as
16965 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or
16966 * IPIF_DEPRECATED).
16967 * Find the IRE_INTERFACE for such ipifs and recreate them
16968 * to use an different source address following the rules in
16969 * ipif_up_done.
16970 */
16971static void
16972ipif_update_other_ipifs(ipif_t *old_ipif)
16973{
16974	ipif_t	*ipif;
16975	ill_t	*ill;
16976	char	buf[INET6_ADDRSTRLEN];
16977
16978	ASSERT(IAM_WRITER_IPIF(old_ipif));
16979
16980	ill = old_ipif->ipif_ill;
16981
16982	ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", ill->ill_name,
16983	    inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, buf, sizeof (buf))));
16984
16985	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
16986		if (ipif == old_ipif)
16987			continue;
16988		ipif_recreate_interface_routes(old_ipif, ipif);
16989	}
16990}
16991
16992/* ARGSUSED */
16993int
16994if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
16995	ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
16996{
16997	/*
16998	 * ill_phyint_reinit merged the v4 and v6 into a single
16999	 * ipsq.  We might not have been able to complete the
17000	 * operation in ipif_set_values, if we could not become
17001	 * exclusive.  If so restart it here.
17002	 */
17003	return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
17004}
17005
17006/*
17007 * Can operate on either a module or a driver queue.
17008 * Returns an error if not a module queue.
17009 */
17010/* ARGSUSED */
17011int
17012if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
17013    ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
17014{
17015	queue_t		*q1 = q;
17016	char 		*cp;
17017	char		interf_name[LIFNAMSIZ];
17018	uint_t		ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr;
17019
17020	if (q->q_next == NULL) {
17021		ip1dbg((
17022		    "if_unitsel: IF_UNITSEL: no q_next\n"));
17023		return (EINVAL);
17024	}
17025
17026	if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0')
17027		return (EALREADY);
17028
17029	do {
17030		q1 = q1->q_next;
17031	} while (q1->q_next);
17032	cp = q1->q_qinfo->qi_minfo->mi_idname;
17033	(void) sprintf(interf_name, "%s%d", cp, ppa);
17034
17035	/*
17036	 * Here we are not going to delay the ioack until after
17037	 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the
17038	 * original ioctl message before sending the requests.
17039	 */
17040	return (ipif_set_values(q, mp, interf_name, &ppa));
17041}
17042
17043/* ARGSUSED */
17044int
17045ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
17046    ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
17047{
17048	return (ENXIO);
17049}
17050
17051/*
17052 * Refresh all IRE_BROADCAST entries associated with `ill' to ensure the
17053 * minimum (but complete) set exist.  This is necessary when adding or
17054 * removing an interface to/from an IPMP group, since interfaces in an
17055 * IPMP group use the IRE_BROADCAST entries for the IPMP group (whenever
17056 * its test address subnets overlap with IPMP data addresses).	It's also
17057 * used to refresh the IRE_BROADCAST entries associated with the IPMP
17058 * interface when the nominated broadcast interface changes.
17059 */
17060void
17061ill_refresh_bcast(ill_t *ill)
17062{
17063	ire_t *ire_array[12];	/* max ipif_create_bcast_ires() can create */
17064	ire_t **irep;
17065	ipif_t *ipif;
17066
17067	ASSERT(!ill->ill_isv6);
17068	ASSERT(IAM_WRITER_ILL(ill));
17069
17070	/*
17071	 * Remove any old broadcast IREs.
17072	 */
17073	ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, IRE_BROADCAST,
17074	    ill_broadcast_delete, ill, ill);
17075
17076	/*
17077	 * Create new ones for any ipifs that are up and broadcast-capable.
17078	 */
17079	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
17080		if ((ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST)) !=
17081		    (IPIF_UP|IPIF_BROADCAST))
17082			continue;
17083
17084		irep = ipif_create_bcast_ires(ipif, ire_array);
17085		while (irep-- > ire_array) {
17086			(void) ire_add(irep, NULL, NULL, NULL, B_FALSE);
17087			if (*irep != NULL)
17088				ire_refrele(*irep);
17089		}
17090	}
17091}
17092
17093/*
17094 * Create any IRE_BROADCAST entries for `ipif', and store those entries in
17095 * `irep'.  Returns a pointer to the next free `irep' entry (just like
17096 * ire_check_and_create_bcast()).
17097 */
17098static ire_t **
17099ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep)
17100{
17101	ipaddr_t addr;
17102	ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr);
17103	ipaddr_t subnetmask = ipif->ipif_net_mask;
17104	int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL;
17105
17106	ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n"));
17107
17108	ASSERT(ipif->ipif_flags & IPIF_BROADCAST);
17109
17110	if (ipif->ipif_lcl_addr == INADDR_ANY ||
17111	    (ipif->ipif_flags & IPIF_NOLOCAL))
17112		netmask = htonl(IN_CLASSA_NET);		/* fallback */
17113
17114	irep = ire_check_and_create_bcast(ipif, 0, irep, flags);
17115	irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags);
17116
17117	/*
17118	 * For backward compatibility, we create net broadcast IREs based on
17119	 * the old "IP address class system", since some old machines only
17120	 * respond to these class derived net broadcast.  However, we must not
17121	 * create these net broadcast IREs if the subnetmask is shorter than
17122	 * the IP address class based derived netmask.  Otherwise, we may
17123	 * create a net broadcast address which is the same as an IP address
17124	 * on the subnet -- and then TCP will refuse to talk to that address.
17125	 */
17126	if (netmask < subnetmask) {
17127		addr = netmask & ipif->ipif_subnet;
17128		irep = ire_check_and_create_bcast(ipif, addr, irep, flags);
17129		irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep,
17130		    flags);
17131	}
17132
17133	/*
17134	 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask
17135	 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already
17136	 * created.  Creating these broadcast IREs will only create confusion
17137	 * as `addr' will be the same as the IP address.
17138	 */
17139	if (subnetmask != 0xFFFFFFFF) {
17140		addr = ipif->ipif_subnet;
17141		irep = ire_check_and_create_bcast(ipif, addr, irep, flags);
17142		irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr,
17143		    irep, flags);
17144	}
17145
17146	return (irep);
17147}
17148
17149/*
17150 * Broadcast IRE info structure used in the functions below.  Since we
17151 * allocate BCAST_COUNT of them on the stack, keep the bit layout compact.
17152 */
17153typedef struct bcast_ireinfo {
17154	uchar_t		bi_type;	/* BCAST_* value from below */
17155	uchar_t		bi_willdie:1, 	/* will this IRE be going away? */
17156			bi_needrep:1,	/* do we need to replace it? */
17157			bi_haverep:1,	/* have we replaced it? */
17158			bi_pad:5;
17159	ipaddr_t	bi_addr;	/* IRE address */
17160	ipif_t		*bi_backup;	/* last-ditch ipif to replace it on */
17161} bcast_ireinfo_t;
17162
17163enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT };
17164
17165/*
17166 * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and
17167 * return B_TRUE if it should immediately be used to recreate the IRE.
17168 */
17169static boolean_t
17170ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop)
17171{
17172	ipaddr_t addr;
17173
17174	ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie);
17175
17176	switch (bireinfop->bi_type) {
17177	case BCAST_NET:
17178		addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet);
17179		if (addr != bireinfop->bi_addr)
17180			return (B_FALSE);
17181		break;
17182	case BCAST_SUBNET:
17183		if (ipif->ipif_subnet != bireinfop->bi_addr)
17184			return (B_FALSE);
17185		break;
17186	}
17187
17188	bireinfop->bi_needrep = 1;
17189	if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) {
17190		if (bireinfop->bi_backup == NULL)
17191			bireinfop->bi_backup = ipif;
17192		return (B_FALSE);
17193	}
17194	return (B_TRUE);
17195}
17196
17197/*
17198 * Create the broadcast IREs described by `bireinfop' on `ipif', and return
17199 * them ala ire_check_and_create_bcast().
17200 */
17201static ire_t **
17202ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep)
17203{
17204	ipaddr_t mask, addr;
17205
17206	ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep);
17207
17208	addr = bireinfop->bi_addr;
17209	irep = ire_create_bcast(ipif, addr, irep);
17210
17211	switch (bireinfop->bi_type) {
17212	case BCAST_NET:
17213		mask = ip_net_mask(ipif->ipif_subnet);
17214		irep = ire_create_bcast(ipif, addr | ~mask, irep);
17215		break;
17216	case BCAST_SUBNET:
17217		mask = ipif->ipif_net_mask;
17218		irep = ire_create_bcast(ipif, addr | ~mask, irep);
17219		break;
17220	}
17221
17222	bireinfop->bi_haverep = 1;
17223	return (irep);
17224}
17225
17226/*
17227 * Walk through all of the ipifs on `ill' that will be affected by `test_ipif'
17228 * going away, and determine if any of the broadcast IREs (named by `bireinfop')
17229 * that are going away are still needed.  If so, have ipif_create_bcast()
17230 * recreate them (except for the deprecated case, as explained below).
17231 */
17232static ire_t **
17233ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo,
17234    ire_t **irep)
17235{
17236	int i;
17237	ipif_t *ipif;
17238
17239	ASSERT(!ill->ill_isv6);
17240	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
17241		/*
17242		 * Skip this ipif if it's (a) the one being taken down, (b)
17243		 * not in the same zone, or (c) has no valid local address.
17244		 */
17245		if (ipif == test_ipif ||
17246		    ipif->ipif_zoneid != test_ipif->ipif_zoneid ||
17247		    ipif->ipif_subnet == 0 ||
17248		    (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) !=
17249		    (IPIF_UP|IPIF_BROADCAST))
17250			continue;
17251
17252		/*
17253		 * For each dying IRE that hasn't yet been replaced, see if
17254		 * `ipif' needs it and whether the IRE should be recreated on
17255		 * `ipif'.  If `ipif' is deprecated, ipif_consider_bcast()
17256		 * will return B_FALSE even if `ipif' needs the IRE on the
17257		 * hopes that we'll later find a needy non-deprecated ipif.
17258		 * However, the ipif is recorded in bi_backup for possible
17259		 * subsequent use by ipif_check_bcast_ires().
17260		 */
17261		for (i = 0; i < BCAST_COUNT; i++) {
17262			if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep)
17263				continue;
17264			if (!ipif_consider_bcast(ipif, &bireinfo[i]))
17265				continue;
17266			irep = ipif_create_bcast(ipif, &bireinfo[i], irep);
17267		}
17268
17269		/*
17270		 * If we've replaced all of the broadcast IREs that are going
17271		 * to be taken down, we know we're done.
17272		 */
17273		for (i = 0; i < BCAST_COUNT; i++) {
17274			if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep)
17275				break;
17276		}
17277		if (i == BCAST_COUNT)
17278			break;
17279	}
17280	return (irep);
17281}
17282
17283/*
17284 * Check if `test_ipif' (which is going away) is associated with any existing
17285 * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were
17286 * using those broadcast IREs.  If so, recreate the broadcast IREs on one or
17287 * more of those other ipifs.  (The old IREs will be deleted in ipif_down().)
17288 *
17289 * This is necessary because broadcast IREs are shared.  In particular, a
17290 * given ill has one set of all-zeroes and all-ones broadcast IREs (for every
17291 * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones,
17292 * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP
17293 * ipifs on.  Thus, if there are two IPIF_UP ipifs on the same subnet with the
17294 * same zone, they will share the same set of broadcast IREs.
17295 *
17296 * Note: the upper bound of 12 IREs comes from the worst case of replacing all
17297 * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes,
17298 * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones).
17299 */
17300static void
17301ipif_check_bcast_ires(ipif_t *test_ipif)
17302{
17303	ill_t		*ill = test_ipif->ipif_ill;
17304	ire_t		*ire, *ire_array[12]; 		/* see note above */
17305	ire_t		**irep1, **irep = &ire_array[0];
17306	uint_t 		i, willdie;
17307	ipaddr_t	mask = ip_net_mask(test_ipif->ipif_subnet);
17308	bcast_ireinfo_t	bireinfo[BCAST_COUNT];
17309
17310	ASSERT(!test_ipif->ipif_isv6);
17311	ASSERT(IAM_WRITER_IPIF(test_ipif));
17312
17313	/*
17314	 * No broadcast IREs for the LOOPBACK interface
17315	 * or others such as point to point and IPIF_NOXMIT.
17316	 */
17317	if (!(test_ipif->ipif_flags & IPIF_BROADCAST) ||
17318	    (test_ipif->ipif_flags & IPIF_NOXMIT))
17319		return;
17320
17321	bzero(bireinfo, sizeof (bireinfo));
17322	bireinfo[0].bi_type = BCAST_ALLZEROES;
17323	bireinfo[0].bi_addr = 0;
17324
17325	bireinfo[1].bi_type = BCAST_ALLONES;
17326	bireinfo[1].bi_addr = INADDR_BROADCAST;
17327
17328	bireinfo[2].bi_type = BCAST_NET;
17329	bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask;
17330
17331	if (test_ipif->ipif_net_mask != 0)
17332		mask = test_ipif->ipif_net_mask;
17333	bireinfo[3].bi_type = BCAST_SUBNET;
17334	bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask;
17335
17336	/*
17337	 * Figure out what (if any) broadcast IREs will die as a result of
17338	 * `test_ipif' going away.  If none will die, we're done.
17339	 */
17340	for (i = 0, willdie = 0; i < BCAST_COUNT; i++) {
17341		ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST,
17342		    test_ipif, ALL_ZONES, NULL,
17343		    (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst);
17344		if (ire != NULL) {
17345			willdie++;
17346			bireinfo[i].bi_willdie = 1;
17347			ire_refrele(ire);
17348		}
17349	}
17350
17351	if (willdie == 0)
17352		return;
17353
17354	/*
17355	 * Walk through all the ipifs that will be affected by the dying IREs,
17356	 * and recreate the IREs as necessary. Note that all interfaces in an
17357	 * IPMP illgrp share the same broadcast IREs, and thus the entire
17358	 * illgrp must be walked, starting with the IPMP meta-interface (so
17359	 * that broadcast IREs end up on it whenever possible).
17360	 */
17361	if (IS_UNDER_IPMP(ill))
17362		ill = ipmp_illgrp_ipmp_ill(ill->ill_grp);
17363
17364	irep = ill_create_bcast(ill, test_ipif, bireinfo, irep);
17365
17366	if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) {
17367		ipmp_illgrp_t *illg = ill->ill_grp;
17368
17369		ill = list_head(&illg->ig_if);
17370		for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) {
17371			for (i = 0; i < BCAST_COUNT; i++) {
17372				if (bireinfo[i].bi_willdie &&
17373				    !bireinfo[i].bi_haverep)
17374					break;
17375			}
17376			if (i == BCAST_COUNT)
17377				break;
17378
17379			irep = ill_create_bcast(ill, test_ipif, bireinfo, irep);
17380		}
17381	}
17382
17383	/*
17384	 * Scan through the set of broadcast IREs and see if there are any
17385	 * that we need to replace that have not yet been replaced.  If so,
17386	 * replace them using the appropriate backup ipif.
17387	 */
17388	for (i = 0; i < BCAST_COUNT; i++) {
17389		if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep)
17390			irep = ipif_create_bcast(bireinfo[i].bi_backup,
17391			    &bireinfo[i], irep);
17392	}
17393
17394	/*
17395	 * If we can't create all of them, don't add any of them.  (Code in
17396	 * ip_wput_ire() and ire_to_ill() assumes that we always have a
17397	 * non-loopback copy and loopback copy for a given address.)
17398	 */
17399	for (irep1 = irep; irep1 > ire_array; ) {
17400		irep1--;
17401		if (*irep1 == NULL) {
17402			ip0dbg(("ipif_check_bcast_ires: can't create "
17403			    "IRE_BROADCAST, memory allocation failure\n"));
17404			while (irep > ire_array) {
17405				irep--;
17406				if (*irep != NULL)
17407					ire_delete(*irep);
17408			}
17409			return;
17410		}
17411	}
17412
17413	for (irep1 = irep; irep1 > ire_array; ) {
17414		irep1--;
17415		if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0)
17416			ire_refrele(*irep1);		/* Held in ire_add */
17417	}
17418}
17419
17420/*
17421 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV*
17422 * from lifr_flags and the name from lifr_name.
17423 * Set IFF_IPV* and ill_isv6 prior to doing the lookup
17424 * since ipif_lookup_on_name uses the _isv6 flags when matching.
17425 * Returns EINPROGRESS when mp has been consumed by queueing it on
17426 * ill_pending_mp and the ioctl will complete in ip_rput.
17427 *
17428 * Can operate on either a module or a driver queue.
17429 * Returns an error if not a module queue.
17430 */
17431/* ARGSUSED */
17432int
17433ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
17434    ip_ioctl_cmd_t *ipip, void *if_req)
17435{
17436	ill_t	*ill = q->q_ptr;
17437	phyint_t *phyi;
17438	ip_stack_t *ipst;
17439	struct lifreq *lifr = if_req;
17440	uint64_t new_flags;
17441
17442	ASSERT(ipif != NULL);
17443	ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name));
17444
17445	if (q->q_next == NULL) {
17446		ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n"));
17447		return (EINVAL);
17448	}
17449
17450	/*
17451	 * If we are not writer on 'q' then this interface exists already
17452	 * and previous lookups (ip_extract_lifreq()) found this ipif --
17453	 * so return EALREADY.
17454	 */
17455	if (ill != ipif->ipif_ill)
17456		return (EALREADY);
17457
17458	if (ill->ill_name[0] != '\0')
17459		return (EALREADY);
17460
17461	/*
17462	 * If there's another ill already with the requested name, ensure
17463	 * that it's of the same type.  Otherwise, ill_phyint_reinit() will
17464	 * fuse together two unrelated ills, which will cause chaos.
17465	 */
17466	ipst = ill->ill_ipst;
17467	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
17468	    lifr->lifr_name, NULL);
17469	if (phyi != NULL) {
17470		ill_t *ill_mate = phyi->phyint_illv4;
17471
17472		if (ill_mate == NULL)
17473			ill_mate = phyi->phyint_illv6;
17474		ASSERT(ill_mate != NULL);
17475
17476		if (ill_mate->ill_media->ip_m_mac_type !=
17477		    ill->ill_media->ip_m_mac_type) {
17478			ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to "
17479			    "use the same ill name on differing media\n"));
17480			return (EINVAL);
17481		}
17482	}
17483
17484	/*
17485	 * We start off as IFF_IPV4 in ipif_allocate and become
17486	 * IFF_IPV4 or IFF_IPV6 here depending  on lifr_flags value.
17487	 * The only flags that we read from user space are IFF_IPV4,
17488	 * IFF_IPV6, IFF_XRESOLV and IFF_BROADCAST.
17489	 *
17490	 * This ill has not been inserted into the global list.
17491	 * So we are still single threaded and don't need any lock
17492	 *
17493	 * Saniy check the flags.
17494	 */
17495
17496	if ((lifr->lifr_flags & IFF_BROADCAST) &&
17497	    ((lifr->lifr_flags & IFF_IPV6) ||
17498	    (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) {
17499		ip1dbg(("ip_sioctl_slifname: link not broadcast capable "
17500		    "or IPv6 i.e., no broadcast \n"));
17501		return (EINVAL);
17502	}
17503
17504	new_flags =
17505	    lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_XRESOLV|IFF_BROADCAST);
17506
17507	if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) {
17508		ip1dbg(("ip_sioctl_slifname: flags must be exactly one of "
17509		    "IFF_IPV4 or IFF_IPV6\n"));
17510		return (EINVAL);
17511	}
17512	/*
17513	 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces.
17514	 */
17515	if ((new_flags & IFF_XRESOLV) && !(new_flags & IFF_IPV6) &&
17516	    !(ipif->ipif_isv6)) {
17517		ip1dbg(("ip_sioctl_slifname: XRESOLV only allowed on "
17518		    "IPv6 interface\n"));
17519		return (EINVAL);
17520	}
17521
17522	/*
17523	 * We always start off as IPv4, so only need to check for IPv6.
17524	 */
17525	if ((new_flags & IFF_IPV6) != 0) {
17526		ill->ill_flags |= ILLF_IPV6;
17527		ill->ill_flags &= ~ILLF_IPV4;
17528	}
17529
17530	if ((new_flags & IFF_BROADCAST) != 0)
17531		ipif->ipif_flags |= IPIF_BROADCAST;
17532	else
17533		ipif->ipif_flags &= ~IPIF_BROADCAST;
17534
17535	if ((new_flags & IFF_XRESOLV) != 0)
17536		ill->ill_flags |= ILLF_XRESOLV;
17537	else
17538		ill->ill_flags &= ~ILLF_XRESOLV;
17539
17540	/* We started off as V4. */
17541	if (ill->ill_flags & ILLF_IPV6) {
17542		ill->ill_phyint->phyint_illv6 = ill;
17543		ill->ill_phyint->phyint_illv4 = NULL;
17544	}
17545
17546	return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa));
17547}
17548
17549/* ARGSUSED */
17550int
17551ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
17552    ip_ioctl_cmd_t *ipip, void *if_req)
17553{
17554	/*
17555	 * ill_phyint_reinit merged the v4 and v6 into a single
17556	 * ipsq.  We might not have been able to complete the
17557	 * slifname in ipif_set_values, if we could not become
17558	 * exclusive.  If so restart it here
17559	 */
17560	return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
17561}
17562
17563/*
17564 * Return a pointer to the ipif which matches the index, IP version type and
17565 * zoneid.
17566 */
17567ipif_t *
17568ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid,
17569    queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst)
17570{
17571	ill_t	*ill;
17572	ipif_t	*ipif = NULL;
17573
17574	ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) ||
17575	    (q != NULL && mp != NULL && func != NULL && err != NULL));
17576
17577	if (err != NULL)
17578		*err = 0;
17579
17580	ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst);
17581	if (ill != NULL) {
17582		mutex_enter(&ill->ill_lock);
17583		for (ipif = ill->ill_ipif; ipif != NULL;
17584		    ipif = ipif->ipif_next) {
17585			if (IPIF_CAN_LOOKUP(ipif) && (zoneid == ALL_ZONES ||
17586			    zoneid == ipif->ipif_zoneid ||
17587			    ipif->ipif_zoneid == ALL_ZONES)) {
17588				ipif_refhold_locked(ipif);
17589				break;
17590			}
17591		}
17592		mutex_exit(&ill->ill_lock);
17593		ill_refrele(ill);
17594		if (ipif == NULL && err != NULL)
17595			*err = ENXIO;
17596	}
17597	return (ipif);
17598}
17599
17600/*
17601 * Change an existing physical interface's index. If the new index
17602 * is acceptable we update the index and the phyint_list_avl_by_index tree.
17603 * Finally, we update other systems which may have a dependence on the
17604 * index value.
17605 */
17606/* ARGSUSED */
17607int
17608ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
17609    ip_ioctl_cmd_t *ipip, void *ifreq)
17610{
17611	ill_t		*ill;
17612	phyint_t	*phyi;
17613	struct ifreq	*ifr = (struct ifreq *)ifreq;
17614	struct lifreq	*lifr = (struct lifreq *)ifreq;
17615	uint_t	old_index, index;
17616	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
17617	avl_index_t	where;
17618
17619	if (ipip->ipi_cmd_type == IF_CMD)
17620		index = ifr->ifr_index;
17621	else
17622		index = lifr->lifr_index;
17623
17624	/*
17625	 * Only allow on physical interface. Also, index zero is illegal.
17626	 */
17627	ill = ipif->ipif_ill;
17628	phyi = ill->ill_phyint;
17629	if (ipif->ipif_id != 0 || index == 0) {
17630		return (EINVAL);
17631	}
17632
17633	/* If the index is not changing, no work to do */
17634	if (phyi->phyint_ifindex == index)
17635		return (0);
17636
17637	/*
17638	 * Use phyint_exists() to determine if the new interface index
17639	 * is already in use. If the index is unused then we need to
17640	 * change the phyint's position in the phyint_list_avl_by_index
17641	 * tree. If we do not do this, subsequent lookups (using the new
17642	 * index value) will not find the phyint.
17643	 */
17644	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
17645	if (phyint_exists(index, ipst)) {
17646		rw_exit(&ipst->ips_ill_g_lock);
17647		return (EEXIST);
17648	}
17649
17650	/*
17651	 * The new index is unused. Set it in the phyint. However we must not
17652	 * forget to trigger NE_IFINDEX_CHANGE event before the ifindex
17653	 * changes. The event must be bound to old ifindex value.
17654	 */
17655	ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE,
17656	    &index, sizeof (index));
17657
17658	old_index = phyi->phyint_ifindex;
17659	phyi->phyint_ifindex = index;
17660
17661	avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi);
17662	(void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
17663	    &index, &where);
17664	avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
17665	    phyi, where);
17666	rw_exit(&ipst->ips_ill_g_lock);
17667
17668	/* Update SCTP's ILL list */
17669	sctp_ill_reindex(ill, old_index);
17670
17671	/* Send the routing sockets message */
17672	ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
17673	if (ILL_OTHER(ill))
17674		ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT);
17675
17676	return (0);
17677}
17678
17679/* ARGSUSED */
17680int
17681ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
17682    ip_ioctl_cmd_t *ipip, void *ifreq)
17683{
17684	struct ifreq	*ifr = (struct ifreq *)ifreq;
17685	struct lifreq	*lifr = (struct lifreq *)ifreq;
17686
17687	ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n",
17688	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
17689	/* Get the interface index */
17690	if (ipip->ipi_cmd_type == IF_CMD) {
17691		ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
17692	} else {
17693		lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
17694	}
17695	return (0);
17696}
17697
17698/* ARGSUSED */
17699int
17700ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
17701    ip_ioctl_cmd_t *ipip, void *ifreq)
17702{
17703	struct lifreq	*lifr = (struct lifreq *)ifreq;
17704
17705	ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n",
17706	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
17707	/* Get the interface zone */
17708	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
17709	lifr->lifr_zoneid = ipif->ipif_zoneid;
17710	return (0);
17711}
17712
17713/*
17714 * Set the zoneid of an interface.
17715 */
17716/* ARGSUSED */
17717int
17718ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
17719    ip_ioctl_cmd_t *ipip, void *ifreq)
17720{
17721	struct lifreq	*lifr = (struct lifreq *)ifreq;
17722	int err = 0;
17723	boolean_t need_up = B_FALSE;
17724	zone_t *zptr;
17725	zone_status_t status;
17726	zoneid_t zoneid;
17727
17728	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
17729	if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) {
17730		if (!is_system_labeled())
17731			return (ENOTSUP);
17732		zoneid = GLOBAL_ZONEID;
17733	}
17734
17735	/* cannot assign instance zero to a non-global zone */
17736	if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID)
17737		return (ENOTSUP);
17738
17739	/*
17740	 * Cannot assign to a zone that doesn't exist or is shutting down.  In
17741	 * the event of a race with the zone shutdown processing, since IP
17742	 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the
17743	 * interface will be cleaned up even if the zone is shut down
17744	 * immediately after the status check. If the interface can't be brought
17745	 * down right away, and the zone is shut down before the restart
17746	 * function is called, we resolve the possible races by rechecking the
17747	 * zone status in the restart function.
17748	 */
17749	if ((zptr = zone_find_by_id(zoneid)) == NULL)
17750		return (EINVAL);
17751	status = zone_status_get(zptr);
17752	zone_rele(zptr);
17753
17754	if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING)
17755		return (EINVAL);
17756
17757	if (ipif->ipif_flags & IPIF_UP) {
17758		/*
17759		 * If the interface is already marked up,
17760		 * we call ipif_down which will take care
17761		 * of ditching any IREs that have been set
17762		 * up based on the old interface address.
17763		 */
17764		err = ipif_logical_down(ipif, q, mp);
17765		if (err == EINPROGRESS)
17766			return (err);
17767		ipif_down_tail(ipif);
17768		need_up = B_TRUE;
17769	}
17770
17771	err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up);
17772	return (err);
17773}
17774
17775static int
17776ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
17777    queue_t *q, mblk_t *mp, boolean_t need_up)
17778{
17779	int	err = 0;
17780	ip_stack_t	*ipst;
17781
17782	ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n",
17783	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
17784
17785	if (CONN_Q(q))
17786		ipst = CONNQ_TO_IPST(q);
17787	else
17788		ipst = ILLQ_TO_IPST(q);
17789
17790	/*
17791	 * For exclusive stacks we don't allow a different zoneid than
17792	 * global.
17793	 */
17794	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID &&
17795	    zoneid != GLOBAL_ZONEID)
17796		return (EINVAL);
17797
17798	/* Set the new zone id. */
17799	ipif->ipif_zoneid = zoneid;
17800
17801	/* Update sctp list */
17802	sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
17803
17804	if (need_up) {
17805		/*
17806		 * Now bring the interface back up.  If this
17807		 * is the only IPIF for the ILL, ipif_up
17808		 * will have to re-bind to the device, so
17809		 * we may get back EINPROGRESS, in which
17810		 * case, this IOCTL will get completed in
17811		 * ip_rput_dlpi when we see the DL_BIND_ACK.
17812		 */
17813		err = ipif_up(ipif, q, mp);
17814	}
17815	return (err);
17816}
17817
17818/* ARGSUSED */
17819int
17820ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
17821    ip_ioctl_cmd_t *ipip, void *if_req)
17822{
17823	struct lifreq *lifr = (struct lifreq *)if_req;
17824	zoneid_t zoneid;
17825	zone_t *zptr;
17826	zone_status_t status;
17827
17828	ASSERT(ipif->ipif_id != 0);
17829	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
17830	if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES)
17831		zoneid = GLOBAL_ZONEID;
17832
17833	ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n",
17834	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
17835
17836	/*
17837	 * We recheck the zone status to resolve the following race condition:
17838	 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone";
17839	 * 2) hme0:1 is up and can't be brought down right away;
17840	 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued;
17841	 * 3) zone "myzone" is halted; the zone status switches to
17842	 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list
17843	 * the interfaces to remove - hme0:1 is not returned because it's not
17844	 * yet in "myzone", so it won't be removed;
17845	 * 4) the restart function for SIOCSLIFZONE is called; without the
17846	 * status check here, we would have hme0:1 in "myzone" after it's been
17847	 * destroyed.
17848	 * Note that if the status check fails, we need to bring the interface
17849	 * back to its state prior to ip_sioctl_slifzone(), hence the call to
17850	 * ipif_up_done[_v6]().
17851	 */
17852	status = ZONE_IS_UNINITIALIZED;
17853	if ((zptr = zone_find_by_id(zoneid)) != NULL) {
17854		status = zone_status_get(zptr);
17855		zone_rele(zptr);
17856	}
17857	if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) {
17858		if (ipif->ipif_isv6) {
17859			(void) ipif_up_done_v6(ipif);
17860		} else {
17861			(void) ipif_up_done(ipif);
17862		}
17863		return (EINVAL);
17864	}
17865
17866	ipif_down_tail(ipif);
17867
17868	return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp,
17869	    B_TRUE));
17870}
17871
17872/*
17873 * Return the number of addresses on `ill' with one or more of the values
17874 * in `set' set and all of the values in `clear' clear.
17875 */
17876static uint_t
17877ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear)
17878{
17879	ipif_t	*ipif;
17880	uint_t	cnt = 0;
17881
17882	ASSERT(IAM_WRITER_ILL(ill));
17883
17884	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
17885		if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear))
17886			cnt++;
17887
17888	return (cnt);
17889}
17890
17891/*
17892 * Return the number of migratable addresses on `ill' that are under
17893 * application control.
17894 */
17895uint_t
17896ill_appaddr_cnt(const ill_t *ill)
17897{
17898	return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF,
17899	    IPIF_NOFAILOVER));
17900}
17901
17902/*
17903 * Return the number of point-to-point addresses on `ill'.
17904 */
17905uint_t
17906ill_ptpaddr_cnt(const ill_t *ill)
17907{
17908	return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0));
17909}
17910
17911/* ARGSUSED */
17912int
17913ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
17914	ip_ioctl_cmd_t *ipip, void *ifreq)
17915{
17916	struct lifreq	*lifr = ifreq;
17917
17918	ASSERT(q->q_next == NULL);
17919	ASSERT(CONN_Q(q));
17920
17921	ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n",
17922	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
17923	lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex;
17924	ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index));
17925
17926	return (0);
17927}
17928
17929/* Find the previous ILL in this usesrc group */
17930static ill_t *
17931ill_prev_usesrc(ill_t *uill)
17932{
17933	ill_t *ill;
17934
17935	for (ill = uill->ill_usesrc_grp_next;
17936	    ASSERT(ill), ill->ill_usesrc_grp_next != uill;
17937	    ill = ill->ill_usesrc_grp_next)
17938		/* do nothing */;
17939	return (ill);
17940}
17941
17942/*
17943 * Release all members of the usesrc group. This routine is called
17944 * from ill_delete when the interface being unplumbed is the
17945 * group head.
17946 */
17947static void
17948ill_disband_usesrc_group(ill_t *uill)
17949{
17950	ill_t *next_ill, *tmp_ill;
17951	ip_stack_t	*ipst = uill->ill_ipst;
17952
17953	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
17954	next_ill = uill->ill_usesrc_grp_next;
17955
17956	do {
17957		ASSERT(next_ill != NULL);
17958		tmp_ill = next_ill->ill_usesrc_grp_next;
17959		ASSERT(tmp_ill != NULL);
17960		next_ill->ill_usesrc_grp_next = NULL;
17961		next_ill->ill_usesrc_ifindex = 0;
17962		next_ill = tmp_ill;
17963	} while (next_ill->ill_usesrc_ifindex != 0);
17964	uill->ill_usesrc_grp_next = NULL;
17965}
17966
17967/*
17968 * Remove the client usesrc ILL from the list and relink to a new list
17969 */
17970int
17971ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex)
17972{
17973	ill_t *ill, *tmp_ill;
17974	ip_stack_t	*ipst = ucill->ill_ipst;
17975
17976	ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) &&
17977	    (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
17978
17979	/*
17980	 * Check if the usesrc client ILL passed in is not already
17981	 * in use as a usesrc ILL i.e one whose source address is
17982	 * in use OR a usesrc ILL is not already in use as a usesrc
17983	 * client ILL
17984	 */
17985	if ((ucill->ill_usesrc_ifindex == 0) ||
17986	    (uill->ill_usesrc_ifindex != 0)) {
17987		return (-1);
17988	}
17989
17990	ill = ill_prev_usesrc(ucill);
17991	ASSERT(ill->ill_usesrc_grp_next != NULL);
17992
17993	/* Remove from the current list */
17994	if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) {
17995		/* Only two elements in the list */
17996		ASSERT(ill->ill_usesrc_ifindex == 0);
17997		ill->ill_usesrc_grp_next = NULL;
17998	} else {
17999		ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next;
18000	}
18001
18002	if (ifindex == 0) {
18003		ucill->ill_usesrc_ifindex = 0;
18004		ucill->ill_usesrc_grp_next = NULL;
18005		return (0);
18006	}
18007
18008	ucill->ill_usesrc_ifindex = ifindex;
18009	tmp_ill = uill->ill_usesrc_grp_next;
18010	uill->ill_usesrc_grp_next = ucill;
18011	ucill->ill_usesrc_grp_next =
18012	    (tmp_ill != NULL) ? tmp_ill : uill;
18013	return (0);
18014}
18015
18016/*
18017 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in
18018 * ip.c for locking details.
18019 */
18020/* ARGSUSED */
18021int
18022ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
18023    ip_ioctl_cmd_t *ipip, void *ifreq)
18024{
18025	struct lifreq *lifr = (struct lifreq *)ifreq;
18026	boolean_t isv6 = B_FALSE, reset_flg = B_FALSE,
18027	    ill_flag_changed = B_FALSE;
18028	ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill;
18029	int err = 0, ret;
18030	uint_t ifindex;
18031	ipsq_t *ipsq = NULL;
18032	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
18033
18034	ASSERT(IAM_WRITER_IPIF(ipif));
18035	ASSERT(q->q_next == NULL);
18036	ASSERT(CONN_Q(q));
18037
18038	isv6 = (Q_TO_CONN(q))->conn_af_isv6;
18039
18040	ifindex = lifr->lifr_index;
18041	if (ifindex == 0) {
18042		if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) {
18043			/* non usesrc group interface, nothing to reset */
18044			return (0);
18045		}
18046		ifindex = usesrc_cli_ill->ill_usesrc_ifindex;
18047		/* valid reset request */
18048		reset_flg = B_TRUE;
18049	}
18050
18051	usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp,
18052	    ip_process_ioctl, &err, ipst);
18053	if (usesrc_ill == NULL) {
18054		return (err);
18055	}
18056
18057	ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl,
18058	    NEW_OP, B_TRUE);
18059	if (ipsq == NULL) {
18060		err = EINPROGRESS;
18061		/* Operation enqueued on the ipsq of the usesrc ILL */
18062		goto done;
18063	}
18064
18065	/* USESRC isn't currently supported with IPMP */
18066	if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) {
18067		err = ENOTSUP;
18068		goto done;
18069	}
18070
18071	/*
18072	 * USESRC isn't compatible with the STANDBY flag.  (STANDBY is only
18073	 * used by IPMP underlying interfaces, but someone might think it's
18074	 * more general and try to use it independently with VNI.)
18075	 */
18076	if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) {
18077		err = ENOTSUP;
18078		goto done;
18079	}
18080
18081	/*
18082	 * If the client is already in use as a usesrc_ill or a usesrc_ill is
18083	 * already a client then return EINVAL
18084	 */
18085	if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) {
18086		err = EINVAL;
18087		goto done;
18088	}
18089
18090	/*
18091	 * If the ill_usesrc_ifindex field is already set to what it needs to
18092	 * be then this is a duplicate operation.
18093	 */
18094	if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) {
18095		err = 0;
18096		goto done;
18097	}
18098
18099	ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s,"
18100	    " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name,
18101	    usesrc_ill->ill_isv6));
18102
18103	/*
18104	 * The next step ensures that no new ires will be created referencing
18105	 * the client ill, until the ILL_CHANGING flag is cleared. Then
18106	 * we go through an ire walk deleting all ire caches that reference
18107	 * the client ill. New ires referencing the client ill that are added
18108	 * to the ire table before the ILL_CHANGING flag is set, will be
18109	 * cleaned up by the ire walk below. Attempt to add new ires referencing
18110	 * the client ill while the ILL_CHANGING flag is set will be failed
18111	 * during the ire_add in ire_atomic_start. ire_atomic_start atomically
18112	 * checks (under the ill_g_usesrc_lock) that the ire being added
18113	 * is not stale, i.e the ire_stq and ire_ipif are consistent and
18114	 * belong to the same usesrc group.
18115	 */
18116	mutex_enter(&usesrc_cli_ill->ill_lock);
18117	usesrc_cli_ill->ill_state_flags |= ILL_CHANGING;
18118	mutex_exit(&usesrc_cli_ill->ill_lock);
18119	ill_flag_changed = B_TRUE;
18120
18121	if (ipif->ipif_isv6)
18122		ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill,
18123		    ALL_ZONES, ipst);
18124	else
18125		ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill,
18126		    ALL_ZONES, ipst);
18127
18128	/*
18129	 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next
18130	 * and the ill_usesrc_ifindex fields
18131	 */
18132	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
18133
18134	if (reset_flg) {
18135		ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0);
18136		if (ret != 0) {
18137			err = EINVAL;
18138		}
18139		rw_exit(&ipst->ips_ill_g_usesrc_lock);
18140		goto done;
18141	}
18142
18143	/*
18144	 * Four possibilities to consider:
18145	 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp
18146	 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't
18147	 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't
18148	 * 4. Both are part of their respective usesrc groups
18149	 */
18150	if ((usesrc_ill->ill_usesrc_grp_next == NULL) &&
18151	    (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
18152		ASSERT(usesrc_ill->ill_usesrc_ifindex == 0);
18153		usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
18154		usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
18155		usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill;
18156	} else if ((usesrc_ill->ill_usesrc_grp_next != NULL) &&
18157	    (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
18158		usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
18159		/* Insert at head of list */
18160		usesrc_cli_ill->ill_usesrc_grp_next =
18161		    usesrc_ill->ill_usesrc_grp_next;
18162		usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
18163	} else {
18164		ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill,
18165		    ifindex);
18166		if (ret != 0)
18167			err = EINVAL;
18168	}
18169	rw_exit(&ipst->ips_ill_g_usesrc_lock);
18170
18171done:
18172	if (ill_flag_changed) {
18173		mutex_enter(&usesrc_cli_ill->ill_lock);
18174		usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING;
18175		mutex_exit(&usesrc_cli_ill->ill_lock);
18176	}
18177	if (ipsq != NULL)
18178		ipsq_exit(ipsq);
18179	/* The refrele on the lifr_name ipif is done by ip_process_ioctl */
18180	ill_refrele(usesrc_ill);
18181	return (err);
18182}
18183
18184/*
18185 * comparison function used by avl.
18186 */
18187static int
18188ill_phyint_compare_index(const void *index_ptr, const void *phyip)
18189{
18190
18191	uint_t index;
18192
18193	ASSERT(phyip != NULL && index_ptr != NULL);
18194
18195	index = *((uint_t *)index_ptr);
18196	/*
18197	 * let the phyint with the lowest index be on top.
18198	 */
18199	if (((phyint_t *)phyip)->phyint_ifindex < index)
18200		return (1);
18201	if (((phyint_t *)phyip)->phyint_ifindex > index)
18202		return (-1);
18203	return (0);
18204}
18205
18206/*
18207 * comparison function used by avl.
18208 */
18209static int
18210ill_phyint_compare_name(const void *name_ptr, const void *phyip)
18211{
18212	ill_t *ill;
18213	int res = 0;
18214
18215	ASSERT(phyip != NULL && name_ptr != NULL);
18216
18217	if (((phyint_t *)phyip)->phyint_illv4)
18218		ill = ((phyint_t *)phyip)->phyint_illv4;
18219	else
18220		ill = ((phyint_t *)phyip)->phyint_illv6;
18221	ASSERT(ill != NULL);
18222
18223	res = strcmp(ill->ill_name, (char *)name_ptr);
18224	if (res > 0)
18225		return (1);
18226	else if (res < 0)
18227		return (-1);
18228	return (0);
18229}
18230
18231/*
18232 * This function is called on the unplumb path via ill_glist_delete() when
18233 * there are no ills left on the phyint and thus the phyint can be freed.
18234 */
18235static void
18236phyint_free(phyint_t *phyi)
18237{
18238	ip_stack_t *ipst = PHYINT_TO_IPST(phyi);
18239
18240	ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL);
18241
18242	/*
18243	 * If this phyint was an IPMP meta-interface, blow away the group.
18244	 * This is safe to do because all of the illgrps have already been
18245	 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us.
18246	 * If we're cleaning up as a result of failed initialization,
18247	 * phyint_grp may be NULL.
18248	 */
18249	if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) {
18250		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
18251		ipmp_grp_destroy(phyi->phyint_grp);
18252		phyi->phyint_grp = NULL;
18253		rw_exit(&ipst->ips_ipmp_lock);
18254	}
18255
18256	/*
18257	 * If this interface was under IPMP, take it out of the group.
18258	 */
18259	if (phyi->phyint_grp != NULL)
18260		ipmp_phyint_leave_grp(phyi);
18261
18262	/*
18263	 * Delete the phyint and disassociate its ipsq.  The ipsq itself
18264	 * will be freed in ipsq_exit().
18265	 */
18266	phyi->phyint_ipsq->ipsq_phyint = NULL;
18267	phyi->phyint_name[0] = '\0';
18268
18269	mi_free(phyi);
18270}
18271
18272/*
18273 * Attach the ill to the phyint structure which can be shared by both
18274 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This
18275 * function is called from ipif_set_values and ill_lookup_on_name (for
18276 * loopback) where we know the name of the ill. We lookup the ill and if
18277 * there is one present already with the name use that phyint. Otherwise
18278 * reuse the one allocated by ill_init.
18279 */
18280static void
18281ill_phyint_reinit(ill_t *ill)
18282{
18283	boolean_t isv6 = ill->ill_isv6;
18284	phyint_t *phyi_old;
18285	phyint_t *phyi;
18286	avl_index_t where = 0;
18287	ill_t	*ill_other = NULL;
18288	ip_stack_t	*ipst = ill->ill_ipst;
18289
18290	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
18291
18292	phyi_old = ill->ill_phyint;
18293	ASSERT(isv6 || (phyi_old->phyint_illv4 == ill &&
18294	    phyi_old->phyint_illv6 == NULL));
18295	ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill &&
18296	    phyi_old->phyint_illv4 == NULL));
18297	ASSERT(phyi_old->phyint_ifindex == 0);
18298
18299	/*
18300	 * Now that our ill has a name, set it in the phyint.
18301	 */
18302	(void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ);
18303
18304	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
18305	    ill->ill_name, &where);
18306
18307	/*
18308	 * 1. We grabbed the ill_g_lock before inserting this ill into
18309	 *    the global list of ills. So no other thread could have located
18310	 *    this ill and hence the ipsq of this ill is guaranteed to be empty.
18311	 * 2. Now locate the other protocol instance of this ill.
18312	 * 3. Now grab both ill locks in the right order, and the phyint lock of
18313	 *    the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq
18314	 *    of neither ill can change.
18315	 * 4. Merge the phyint and thus the ipsq as well of this ill onto the
18316	 *    other ill.
18317	 * 5. Release all locks.
18318	 */
18319
18320	/*
18321	 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if
18322	 * we are initializing IPv4.
18323	 */
18324	if (phyi != NULL) {
18325		ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6;
18326		ASSERT(ill_other->ill_phyint != NULL);
18327		ASSERT((isv6 && !ill_other->ill_isv6) ||
18328		    (!isv6 && ill_other->ill_isv6));
18329		GRAB_ILL_LOCKS(ill, ill_other);
18330		/*
18331		 * We are potentially throwing away phyint_flags which
18332		 * could be different from the one that we obtain from
18333		 * ill_other->ill_phyint. But it is okay as we are assuming
18334		 * that the state maintained within IP is correct.
18335		 */
18336		mutex_enter(&phyi->phyint_lock);
18337		if (isv6) {
18338			ASSERT(phyi->phyint_illv6 == NULL);
18339			phyi->phyint_illv6 = ill;
18340		} else {
18341			ASSERT(phyi->phyint_illv4 == NULL);
18342			phyi->phyint_illv4 = ill;
18343		}
18344
18345		/*
18346		 * Delete the old phyint and make its ipsq eligible
18347		 * to be freed in ipsq_exit().
18348		 */
18349		phyi_old->phyint_illv4 = NULL;
18350		phyi_old->phyint_illv6 = NULL;
18351		phyi_old->phyint_ipsq->ipsq_phyint = NULL;
18352		phyi_old->phyint_name[0] = '\0';
18353		mi_free(phyi_old);
18354	} else {
18355		mutex_enter(&ill->ill_lock);
18356		/*
18357		 * We don't need to acquire any lock, since
18358		 * the ill is not yet visible globally  and we
18359		 * have not yet released the ill_g_lock.
18360		 */
18361		phyi = phyi_old;
18362		mutex_enter(&phyi->phyint_lock);
18363		/* XXX We need a recovery strategy here. */
18364		if (!phyint_assign_ifindex(phyi, ipst))
18365			cmn_err(CE_PANIC, "phyint_assign_ifindex() failed");
18366
18367		avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
18368		    (void *)phyi, where);
18369
18370		(void) avl_find(&ipst->ips_phyint_g_list->
18371		    phyint_list_avl_by_index,
18372		    &phyi->phyint_ifindex, &where);
18373		avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
18374		    (void *)phyi, where);
18375	}
18376
18377	/*
18378	 * Reassigning ill_phyint automatically reassigns the ipsq also.
18379	 * pending mp is not affected because that is per ill basis.
18380	 */
18381	ill->ill_phyint = phyi;
18382
18383	/*
18384	 * Now that the phyint's ifindex has been assigned, complete the
18385	 * remaining
18386	 */
18387
18388	ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex;
18389	if (ill->ill_isv6) {
18390		ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
18391		    ill->ill_phyint->phyint_ifindex;
18392		ill->ill_mcast_type = ipst->ips_mld_max_version;
18393	} else {
18394		ill->ill_mcast_type = ipst->ips_igmp_max_version;
18395	}
18396
18397	/*
18398	 * Generate an event within the hooks framework to indicate that
18399	 * a new interface has just been added to IP.  For this event to
18400	 * be generated, the network interface must, at least, have an
18401	 * ifindex assigned to it.  (We don't generate the event for
18402	 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.)
18403	 *
18404	 * This needs to be run inside the ill_g_lock perimeter to ensure
18405	 * that the ordering of delivered events to listeners matches the
18406	 * order of them in the kernel.
18407	 */
18408	if (!IS_LOOPBACK(ill)) {
18409		ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name,
18410		    ill->ill_name_length);
18411	}
18412	RELEASE_ILL_LOCKS(ill, ill_other);
18413	mutex_exit(&phyi->phyint_lock);
18414}
18415
18416/*
18417 * Notify any downstream modules of the name of this interface.
18418 * An M_IOCTL is used even though we don't expect a successful reply.
18419 * Any reply message from the driver (presumably an M_IOCNAK) will
18420 * eventually get discarded somewhere upstream.  The message format is
18421 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig
18422 * to IP.
18423 */
18424static void
18425ip_ifname_notify(ill_t *ill, queue_t *q)
18426{
18427	mblk_t *mp1, *mp2;
18428	struct iocblk *iocp;
18429	struct lifreq *lifr;
18430
18431	mp1 = mkiocb(SIOCSLIFNAME);
18432	if (mp1 == NULL)
18433		return;
18434	mp2 = allocb(sizeof (struct lifreq), BPRI_HI);
18435	if (mp2 == NULL) {
18436		freeb(mp1);
18437		return;
18438	}
18439
18440	mp1->b_cont = mp2;
18441	iocp = (struct iocblk *)mp1->b_rptr;
18442	iocp->ioc_count = sizeof (struct lifreq);
18443
18444	lifr = (struct lifreq *)mp2->b_rptr;
18445	mp2->b_wptr += sizeof (struct lifreq);
18446	bzero(lifr, sizeof (struct lifreq));
18447
18448	(void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ);
18449	lifr->lifr_ppa = ill->ill_ppa;
18450	lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6));
18451
18452	putnext(q, mp1);
18453}
18454
18455static int
18456ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
18457{
18458	int		err;
18459	ip_stack_t	*ipst = ill->ill_ipst;
18460	phyint_t	*phyi = ill->ill_phyint;
18461
18462	/* Set the obsolete NDD per-interface forwarding name. */
18463	err = ill_set_ndd_name(ill);
18464	if (err != 0) {
18465		cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n",
18466		    err);
18467	}
18468
18469	/*
18470	 * Now that ill_name is set, the configuration for the IPMP
18471	 * meta-interface can be performed.
18472	 */
18473	if (IS_IPMP(ill)) {
18474		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
18475		/*
18476		 * If phyi->phyint_grp is NULL, then this is the first IPMP
18477		 * meta-interface and we need to create the IPMP group.
18478		 */
18479		if (phyi->phyint_grp == NULL) {
18480			/*
18481			 * If someone has renamed another IPMP group to have
18482			 * the same name as our interface, bail.
18483			 */
18484			if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) {
18485				rw_exit(&ipst->ips_ipmp_lock);
18486				return (EEXIST);
18487			}
18488			phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi);
18489			if (phyi->phyint_grp == NULL) {
18490				rw_exit(&ipst->ips_ipmp_lock);
18491				return (ENOMEM);
18492			}
18493		}
18494		rw_exit(&ipst->ips_ipmp_lock);
18495	}
18496
18497	/* Tell downstream modules where they are. */
18498	ip_ifname_notify(ill, q);
18499
18500	/*
18501	 * ill_dl_phys returns EINPROGRESS in the usual case.
18502	 * Error cases are ENOMEM ...
18503	 */
18504	err = ill_dl_phys(ill, ipif, mp, q);
18505
18506	/*
18507	 * If there is no IRE expiration timer running, get one started.
18508	 * igmp and mld timers will be triggered by the first multicast
18509	 */
18510	if (ipst->ips_ip_ire_expire_id == 0) {
18511		/*
18512		 * acquire the lock and check again.
18513		 */
18514		mutex_enter(&ipst->ips_ip_trash_timer_lock);
18515		if (ipst->ips_ip_ire_expire_id == 0) {
18516			ipst->ips_ip_ire_expire_id = timeout(
18517			    ip_trash_timer_expire, ipst,
18518			    MSEC_TO_TICK(ipst->ips_ip_timer_interval));
18519		}
18520		mutex_exit(&ipst->ips_ip_trash_timer_lock);
18521	}
18522
18523	if (ill->ill_isv6) {
18524		mutex_enter(&ipst->ips_mld_slowtimeout_lock);
18525		if (ipst->ips_mld_slowtimeout_id == 0) {
18526			ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo,
18527			    (void *)ipst,
18528			    MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
18529		}
18530		mutex_exit(&ipst->ips_mld_slowtimeout_lock);
18531	} else {
18532		mutex_enter(&ipst->ips_igmp_slowtimeout_lock);
18533		if (ipst->ips_igmp_slowtimeout_id == 0) {
18534			ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo,
18535			    (void *)ipst,
18536			    MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
18537		}
18538		mutex_exit(&ipst->ips_igmp_slowtimeout_lock);
18539	}
18540
18541	return (err);
18542}
18543
18544/*
18545 * Common routine for ppa and ifname setting. Should be called exclusive.
18546 *
18547 * Returns EINPROGRESS when mp has been consumed by queueing it on
18548 * ill_pending_mp and the ioctl will complete in ip_rput.
18549 *
18550 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return
18551 * the new name and new ppa in lifr_name and lifr_ppa respectively.
18552 * For SLIFNAME, we pass these values back to the userland.
18553 */
18554static int
18555ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr)
18556{
18557	ill_t	*ill;
18558	ipif_t	*ipif;
18559	ipsq_t	*ipsq;
18560	char	*ppa_ptr;
18561	char	*old_ptr;
18562	char	old_char;
18563	int	error;
18564	ip_stack_t	*ipst;
18565
18566	ip1dbg(("ipif_set_values: interface %s\n", interf_name));
18567	ASSERT(q->q_next != NULL);
18568	ASSERT(interf_name != NULL);
18569
18570	ill = (ill_t *)q->q_ptr;
18571	ipst = ill->ill_ipst;
18572
18573	ASSERT(ill->ill_ipst != NULL);
18574	ASSERT(ill->ill_name[0] == '\0');
18575	ASSERT(IAM_WRITER_ILL(ill));
18576	ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ);
18577	ASSERT(ill->ill_ppa == UINT_MAX);
18578
18579	/* The ppa is sent down by ifconfig or is chosen */
18580	if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) {
18581		return (EINVAL);
18582	}
18583
18584	/*
18585	 * make sure ppa passed in is same as ppa in the name.
18586	 * This check is not made when ppa == UINT_MAX in that case ppa
18587	 * in the name could be anything. System will choose a ppa and
18588	 * update new_ppa_ptr and inter_name to contain the choosen ppa.
18589	 */
18590	if (*new_ppa_ptr != UINT_MAX) {
18591		/* stoi changes the pointer */
18592		old_ptr = ppa_ptr;
18593		/*
18594		 * ifconfig passed in 0 for the ppa for DLPI 1 style devices
18595		 * (they don't have an externally visible ppa).  We assign one
18596		 * here so that we can manage the interface.  Note that in
18597		 * the past this value was always 0 for DLPI 1 drivers.
18598		 */
18599		if (*new_ppa_ptr == 0)
18600			*new_ppa_ptr = stoi(&old_ptr);
18601		else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr))
18602			return (EINVAL);
18603	}
18604	/*
18605	 * terminate string before ppa
18606	 * save char at that location.
18607	 */
18608	old_char = ppa_ptr[0];
18609	ppa_ptr[0] = '\0';
18610
18611	ill->ill_ppa = *new_ppa_ptr;
18612	/*
18613	 * Finish as much work now as possible before calling ill_glist_insert
18614	 * which makes the ill globally visible and also merges it with the
18615	 * other protocol instance of this phyint. The remaining work is
18616	 * done after entering the ipsq which may happen sometime later.
18617	 * ill_set_ndd_name occurs after the ill has been made globally visible.
18618	 */
18619	ipif = ill->ill_ipif;
18620
18621	/* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */
18622	ipif_assign_seqid(ipif);
18623
18624	if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)))
18625		ill->ill_flags |= ILLF_IPV4;
18626
18627	ASSERT(ipif->ipif_next == NULL);	/* Only one ipif on ill */
18628	ASSERT((ipif->ipif_flags & IPIF_UP) == 0);
18629
18630	if (ill->ill_flags & ILLF_IPV6) {
18631
18632		ill->ill_isv6 = B_TRUE;
18633		if (ill->ill_rq != NULL) {
18634			ill->ill_rq->q_qinfo = &iprinitv6;
18635			ill->ill_wq->q_qinfo = &ipwinitv6;
18636		}
18637
18638		/* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */
18639		ipif->ipif_v6lcl_addr = ipv6_all_zeros;
18640		ipif->ipif_v6src_addr = ipv6_all_zeros;
18641		ipif->ipif_v6subnet = ipv6_all_zeros;
18642		ipif->ipif_v6net_mask = ipv6_all_zeros;
18643		ipif->ipif_v6brd_addr = ipv6_all_zeros;
18644		ipif->ipif_v6pp_dst_addr = ipv6_all_zeros;
18645		/*
18646		 * point-to-point or Non-mulicast capable
18647		 * interfaces won't do NUD unless explicitly
18648		 * configured to do so.
18649		 */
18650		if (ipif->ipif_flags & IPIF_POINTOPOINT ||
18651		    !(ill->ill_flags & ILLF_MULTICAST)) {
18652			ill->ill_flags |= ILLF_NONUD;
18653		}
18654		/* Make sure IPv4 specific flag is not set on IPv6 if */
18655		if (ill->ill_flags & ILLF_NOARP) {
18656			/*
18657			 * Note: xresolv interfaces will eventually need
18658			 * NOARP set here as well, but that will require
18659			 * those external resolvers to have some
18660			 * knowledge of that flag and act appropriately.
18661			 * Not to be changed at present.
18662			 */
18663			ill->ill_flags &= ~ILLF_NOARP;
18664		}
18665		/*
18666		 * Set the ILLF_ROUTER flag according to the global
18667		 * IPv6 forwarding policy.
18668		 */
18669		if (ipst->ips_ipv6_forward != 0)
18670			ill->ill_flags |= ILLF_ROUTER;
18671	} else if (ill->ill_flags & ILLF_IPV4) {
18672		ill->ill_isv6 = B_FALSE;
18673		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr);
18674		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr);
18675		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet);
18676		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask);
18677		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr);
18678		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr);
18679		/*
18680		 * Set the ILLF_ROUTER flag according to the global
18681		 * IPv4 forwarding policy.
18682		 */
18683		if (ipst->ips_ip_g_forward != 0)
18684			ill->ill_flags |= ILLF_ROUTER;
18685	}
18686
18687	ASSERT(ill->ill_phyint != NULL);
18688
18689	/*
18690	 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will
18691	 * be completed in ill_glist_insert -> ill_phyint_reinit
18692	 */
18693	if (!ill_allocate_mibs(ill))
18694		return (ENOMEM);
18695
18696	/*
18697	 * Pick a default sap until we get the DL_INFO_ACK back from
18698	 * the driver.
18699	 */
18700	ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap :
18701	    ill->ill_media->ip_m_ipv4sap;
18702
18703	ill->ill_ifname_pending = 1;
18704	ill->ill_ifname_pending_err = 0;
18705
18706	/*
18707	 * When the first ipif comes up in ipif_up_done(), multicast groups
18708	 * that were joined while this ill was not bound to the DLPI link need
18709	 * to be recovered by ill_recover_multicast().
18710	 */
18711	ill->ill_need_recover_multicast = 1;
18712
18713	ill_refhold(ill);
18714	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
18715	if ((error = ill_glist_insert(ill, interf_name,
18716	    (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) {
18717		ill->ill_ppa = UINT_MAX;
18718		ill->ill_name[0] = '\0';
18719		/*
18720		 * undo null termination done above.
18721		 */
18722		ppa_ptr[0] = old_char;
18723		rw_exit(&ipst->ips_ill_g_lock);
18724		ill_refrele(ill);
18725		return (error);
18726	}
18727
18728	ASSERT(ill->ill_name_length <= LIFNAMSIZ);
18729
18730	/*
18731	 * When we return the buffer pointed to by interf_name should contain
18732	 * the same name as in ill_name.
18733	 * If a ppa was choosen by the system (ppa passed in was UINT_MAX)
18734	 * the buffer pointed to by new_ppa_ptr would not contain the right ppa
18735	 * so copy full name and update the ppa ptr.
18736	 * When ppa passed in != UINT_MAX all values are correct just undo
18737	 * null termination, this saves a bcopy.
18738	 */
18739	if (*new_ppa_ptr == UINT_MAX) {
18740		bcopy(ill->ill_name, interf_name, ill->ill_name_length);
18741		*new_ppa_ptr = ill->ill_ppa;
18742	} else {
18743		/*
18744		 * undo null termination done above.
18745		 */
18746		ppa_ptr[0] = old_char;
18747	}
18748
18749	/* Let SCTP know about this ILL */
18750	sctp_update_ill(ill, SCTP_ILL_INSERT);
18751
18752	/*
18753	 * ill_glist_insert has made the ill visible globally, and
18754	 * ill_phyint_reinit could have changed the ipsq. At this point,
18755	 * we need to hold the ips_ill_g_lock across the call to enter the
18756	 * ipsq to enforce atomicity and prevent reordering. In the event
18757	 * the ipsq has changed, and if the new ipsq is currently busy,
18758	 * we need to make sure that this half-completed ioctl is ahead of
18759	 * any subsequent ioctl. We achieve this by not dropping the
18760	 * ips_ill_g_lock which prevents any ill lookup itself thereby
18761	 * ensuring that new ioctls can't start.
18762	 */
18763	ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP,
18764	    B_TRUE);
18765
18766	rw_exit(&ipst->ips_ill_g_lock);
18767	ill_refrele(ill);
18768	if (ipsq == NULL)
18769		return (EINPROGRESS);
18770
18771	/*
18772	 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq.
18773	 */
18774	if (ipsq->ipsq_xop->ipx_current_ipif == NULL)
18775		ipsq_current_start(ipsq, ipif, SIOCSLIFNAME);
18776	else
18777		ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif);
18778
18779	error = ipif_set_values_tail(ill, ipif, mp, q);
18780	ipsq_exit(ipsq);
18781	if (error != 0 && error != EINPROGRESS) {
18782		/*
18783		 * restore previous values
18784		 */
18785		ill->ill_isv6 = B_FALSE;
18786	}
18787	return (error);
18788}
18789
18790void
18791ipif_init(ip_stack_t *ipst)
18792{
18793	int i;
18794
18795	for (i = 0; i < MAX_G_HEADS; i++) {
18796		ipst->ips_ill_g_heads[i].ill_g_list_head =
18797		    (ill_if_t *)&ipst->ips_ill_g_heads[i];
18798		ipst->ips_ill_g_heads[i].ill_g_list_tail =
18799		    (ill_if_t *)&ipst->ips_ill_g_heads[i];
18800	}
18801
18802	avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
18803	    ill_phyint_compare_index,
18804	    sizeof (phyint_t),
18805	    offsetof(struct phyint, phyint_avl_by_index));
18806	avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
18807	    ill_phyint_compare_name,
18808	    sizeof (phyint_t),
18809	    offsetof(struct phyint, phyint_avl_by_name));
18810}
18811
18812/*
18813 * Lookup the ipif corresponding to the onlink destination address. For
18814 * point-to-point interfaces, it matches with remote endpoint destination
18815 * address. For point-to-multipoint interfaces it only tries to match the
18816 * destination with the interface's subnet address. The longest, most specific
18817 * match is found to take care of such rare network configurations like -
18818 * le0: 129.146.1.1/16
18819 * le1: 129.146.2.2/24
18820 *
18821 * This is used by SO_DONTROUTE and IP_NEXTHOP.  Since neither of those are
18822 * supported on underlying interfaces in an IPMP group, underlying interfaces
18823 * are ignored when looking up a match.  (If we didn't ignore them, we'd
18824 * risk using a test address as a source for outgoing traffic.)
18825 */
18826ipif_t *
18827ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst)
18828{
18829	ipif_t	*ipif, *best_ipif;
18830	ill_t	*ill;
18831	ill_walk_context_t ctx;
18832
18833	ASSERT(zoneid != ALL_ZONES);
18834	best_ipif = NULL;
18835
18836	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
18837	ill = ILL_START_WALK_V4(&ctx, ipst);
18838	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
18839		if (IS_UNDER_IPMP(ill))
18840			continue;
18841		mutex_enter(&ill->ill_lock);
18842		for (ipif = ill->ill_ipif; ipif != NULL;
18843		    ipif = ipif->ipif_next) {
18844			if (!IPIF_CAN_LOOKUP(ipif))
18845				continue;
18846			if (ipif->ipif_zoneid != zoneid &&
18847			    ipif->ipif_zoneid != ALL_ZONES)
18848				continue;
18849			/*
18850			 * Point-to-point case. Look for exact match with
18851			 * destination address.
18852			 */
18853			if (ipif->ipif_flags & IPIF_POINTOPOINT) {
18854				if (ipif->ipif_pp_dst_addr == addr) {
18855					ipif_refhold_locked(ipif);
18856					mutex_exit(&ill->ill_lock);
18857					rw_exit(&ipst->ips_ill_g_lock);
18858					if (best_ipif != NULL)
18859						ipif_refrele(best_ipif);
18860					return (ipif);
18861				}
18862			} else if (ipif->ipif_subnet == (addr &
18863			    ipif->ipif_net_mask)) {
18864				/*
18865				 * Point-to-multipoint case. Looping through to
18866				 * find the most specific match. If there are
18867				 * multiple best match ipif's then prefer ipif's
18868				 * that are UP. If there is only one best match
18869				 * ipif and it is DOWN we must still return it.
18870				 */
18871				if ((best_ipif == NULL) ||
18872				    (ipif->ipif_net_mask >
18873				    best_ipif->ipif_net_mask) ||
18874				    ((ipif->ipif_net_mask ==
18875				    best_ipif->ipif_net_mask) &&
18876				    ((ipif->ipif_flags & IPIF_UP) &&
18877				    (!(best_ipif->ipif_flags & IPIF_UP))))) {
18878					ipif_refhold_locked(ipif);
18879					mutex_exit(&ill->ill_lock);
18880					rw_exit(&ipst->ips_ill_g_lock);
18881					if (best_ipif != NULL)
18882						ipif_refrele(best_ipif);
18883					best_ipif = ipif;
18884					rw_enter(&ipst->ips_ill_g_lock,
18885					    RW_READER);
18886					mutex_enter(&ill->ill_lock);
18887				}
18888			}
18889		}
18890		mutex_exit(&ill->ill_lock);
18891	}
18892	rw_exit(&ipst->ips_ill_g_lock);
18893	return (best_ipif);
18894}
18895
18896/*
18897 * Save enough information so that we can recreate the IRE if
18898 * the interface goes down and then up.
18899 */
18900static void
18901ipif_save_ire(ipif_t *ipif, ire_t *ire)
18902{
18903	mblk_t	*save_mp;
18904
18905	save_mp = allocb(sizeof (ifrt_t), BPRI_MED);
18906	if (save_mp != NULL) {
18907		ifrt_t	*ifrt;
18908
18909		save_mp->b_wptr += sizeof (ifrt_t);
18910		ifrt = (ifrt_t *)save_mp->b_rptr;
18911		bzero(ifrt, sizeof (ifrt_t));
18912		ifrt->ifrt_type = ire->ire_type;
18913		ifrt->ifrt_addr = ire->ire_addr;
18914		ifrt->ifrt_gateway_addr = ire->ire_gateway_addr;
18915		ifrt->ifrt_src_addr = ire->ire_src_addr;
18916		ifrt->ifrt_mask = ire->ire_mask;
18917		ifrt->ifrt_flags = ire->ire_flags;
18918		ifrt->ifrt_max_frag = ire->ire_max_frag;
18919		mutex_enter(&ipif->ipif_saved_ire_lock);
18920		save_mp->b_cont = ipif->ipif_saved_ire_mp;
18921		ipif->ipif_saved_ire_mp = save_mp;
18922		ipif->ipif_saved_ire_cnt++;
18923		mutex_exit(&ipif->ipif_saved_ire_lock);
18924	}
18925}
18926
18927static void
18928ipif_remove_ire(ipif_t *ipif, ire_t *ire)
18929{
18930	mblk_t	**mpp;
18931	mblk_t	*mp;
18932	ifrt_t	*ifrt;
18933
18934	/* Remove from ipif_saved_ire_mp list if it is there */
18935	mutex_enter(&ipif->ipif_saved_ire_lock);
18936	for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL;
18937	    mpp = &(*mpp)->b_cont) {
18938		/*
18939		 * On a given ipif, the triple of address, gateway and
18940		 * mask is unique for each saved IRE (in the case of
18941		 * ordinary interface routes, the gateway address is
18942		 * all-zeroes).
18943		 */
18944		mp = *mpp;
18945		ifrt = (ifrt_t *)mp->b_rptr;
18946		if (ifrt->ifrt_addr == ire->ire_addr &&
18947		    ifrt->ifrt_gateway_addr == ire->ire_gateway_addr &&
18948		    ifrt->ifrt_mask == ire->ire_mask) {
18949			*mpp = mp->b_cont;
18950			ipif->ipif_saved_ire_cnt--;
18951			freeb(mp);
18952			break;
18953		}
18954	}
18955	mutex_exit(&ipif->ipif_saved_ire_lock);
18956}
18957
18958/*
18959 * IP multirouting broadcast routes handling
18960 * Append CGTP broadcast IREs to regular ones created
18961 * at ifconfig time.
18962 */
18963static void
18964ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst)
18965{
18966	ire_t *ire_prim;
18967
18968	ASSERT(ire != NULL);
18969	ASSERT(ire_dst != NULL);
18970
18971	ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0,
18972	    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
18973	if (ire_prim != NULL) {
18974		/*
18975		 * We are in the special case of broadcasts for
18976		 * CGTP. We add an IRE_BROADCAST that holds
18977		 * the RTF_MULTIRT flag, the destination
18978		 * address of ire_dst and the low level
18979		 * info of ire_prim. In other words, CGTP
18980		 * broadcast is added to the redundant ipif.
18981		 */
18982		ipif_t *ipif_prim;
18983		ire_t  *bcast_ire;
18984
18985		ipif_prim = ire_prim->ire_ipif;
18986
18987		ip2dbg(("ip_cgtp_filter_bcast_add: "
18988		    "ire_dst %p, ire_prim %p, ipif_prim %p\n",
18989		    (void *)ire_dst, (void *)ire_prim,
18990		    (void *)ipif_prim));
18991
18992		bcast_ire = ire_create(
18993		    (uchar_t *)&ire->ire_addr,
18994		    (uchar_t *)&ip_g_all_ones,
18995		    (uchar_t *)&ire_dst->ire_src_addr,
18996		    (uchar_t *)&ire->ire_gateway_addr,
18997		    &ipif_prim->ipif_mtu,
18998		    NULL,
18999		    ipif_prim->ipif_rq,
19000		    ipif_prim->ipif_wq,
19001		    IRE_BROADCAST,
19002		    ipif_prim,
19003		    0,
19004		    0,
19005		    0,
19006		    ire->ire_flags,
19007		    &ire_uinfo_null,
19008		    NULL,
19009		    NULL,
19010		    ipst);
19011
19012		if (bcast_ire != NULL) {
19013
19014			if (ire_add(&bcast_ire, NULL, NULL, NULL,
19015			    B_FALSE) == 0) {
19016				ip2dbg(("ip_cgtp_filter_bcast_add: "
19017				    "added bcast_ire %p\n",
19018				    (void *)bcast_ire));
19019
19020				ipif_save_ire(bcast_ire->ire_ipif,
19021				    bcast_ire);
19022				ire_refrele(bcast_ire);
19023			}
19024		}
19025		ire_refrele(ire_prim);
19026	}
19027}
19028
19029/*
19030 * IP multirouting broadcast routes handling
19031 * Remove the broadcast ire
19032 */
19033static void
19034ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst)
19035{
19036	ire_t *ire_dst;
19037
19038	ASSERT(ire != NULL);
19039	ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST,
19040	    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
19041	if (ire_dst != NULL) {
19042		ire_t *ire_prim;
19043
19044		ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0,
19045		    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
19046		if (ire_prim != NULL) {
19047			ipif_t *ipif_prim;
19048			ire_t  *bcast_ire;
19049
19050			ipif_prim = ire_prim->ire_ipif;
19051
19052			ip2dbg(("ip_cgtp_filter_bcast_delete: "
19053			    "ire_dst %p, ire_prim %p, ipif_prim %p\n",
19054			    (void *)ire_dst, (void *)ire_prim,
19055			    (void *)ipif_prim));
19056
19057			bcast_ire = ire_ctable_lookup(ire->ire_addr,
19058			    ire->ire_gateway_addr,
19059			    IRE_BROADCAST,
19060			    ipif_prim, ALL_ZONES,
19061			    NULL,
19062			    MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF |
19063			    MATCH_IRE_MASK, ipst);
19064
19065			if (bcast_ire != NULL) {
19066				ip2dbg(("ip_cgtp_filter_bcast_delete: "
19067				    "looked up bcast_ire %p\n",
19068				    (void *)bcast_ire));
19069				ipif_remove_ire(bcast_ire->ire_ipif,
19070				    bcast_ire);
19071				ire_delete(bcast_ire);
19072				ire_refrele(bcast_ire);
19073			}
19074			ire_refrele(ire_prim);
19075		}
19076		ire_refrele(ire_dst);
19077	}
19078}
19079
19080/*
19081 * IPsec hardware acceleration capabilities related functions.
19082 */
19083
19084/*
19085 * Free a per-ill IPsec capabilities structure.
19086 */
19087static void
19088ill_ipsec_capab_free(ill_ipsec_capab_t *capab)
19089{
19090	if (capab->auth_hw_algs != NULL)
19091		kmem_free(capab->auth_hw_algs, capab->algs_size);
19092	if (capab->encr_hw_algs != NULL)
19093		kmem_free(capab->encr_hw_algs, capab->algs_size);
19094	if (capab->encr_algparm != NULL)
19095		kmem_free(capab->encr_algparm, capab->encr_algparm_size);
19096	kmem_free(capab, sizeof (ill_ipsec_capab_t));
19097}
19098
19099/*
19100 * Allocate a new per-ill IPsec capabilities structure. This structure
19101 * is specific to an IPsec protocol (AH or ESP). It is implemented as
19102 * an array which specifies, for each algorithm, whether this algorithm
19103 * is supported by the ill or not.
19104 */
19105static ill_ipsec_capab_t *
19106ill_ipsec_capab_alloc(void)
19107{
19108	ill_ipsec_capab_t *capab;
19109	uint_t nelems;
19110
19111	capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP);
19112	if (capab == NULL)
19113		return (NULL);
19114
19115	/* we need one bit per algorithm */
19116	nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t);
19117	capab->algs_size = nelems * sizeof (ipsec_capab_elem_t);
19118
19119	/* allocate memory to store algorithm flags */
19120	capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP);
19121	if (capab->encr_hw_algs == NULL)
19122		goto nomem;
19123	capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP);
19124	if (capab->auth_hw_algs == NULL)
19125		goto nomem;
19126	/*
19127	 * Leave encr_algparm NULL for now since we won't need it half
19128	 * the time
19129	 */
19130	return (capab);
19131
19132nomem:
19133	ill_ipsec_capab_free(capab);
19134	return (NULL);
19135}
19136
19137/*
19138 * Resize capability array.  Since we're exclusive, this is OK.
19139 */
19140static boolean_t
19141ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid)
19142{
19143	ipsec_capab_algparm_t *nalp, *oalp;
19144	uint32_t olen, nlen;
19145
19146	oalp = capab->encr_algparm;
19147	olen = capab->encr_algparm_size;
19148
19149	if (oalp != NULL) {
19150		if (algid < capab->encr_algparm_end)
19151			return (B_TRUE);
19152	}
19153
19154	nlen = (algid + 1) * sizeof (*nalp);
19155	nalp = kmem_zalloc(nlen, KM_NOSLEEP);
19156	if (nalp == NULL)
19157		return (B_FALSE);
19158
19159	if (oalp != NULL) {
19160		bcopy(oalp, nalp, olen);
19161		kmem_free(oalp, olen);
19162	}
19163	capab->encr_algparm = nalp;
19164	capab->encr_algparm_size = nlen;
19165	capab->encr_algparm_end = algid + 1;
19166
19167	return (B_TRUE);
19168}
19169
19170/*
19171 * Compare the capabilities of the specified ill with the protocol
19172 * and algorithms specified by the SA passed as argument.
19173 * If they match, returns B_TRUE, B_FALSE if they do not match.
19174 *
19175 * The ill can be passed as a pointer to it, or by specifying its index
19176 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments).
19177 *
19178 * Called by ipsec_out_is_accelerated() do decide whether an outbound
19179 * packet is eligible for hardware acceleration, and by
19180 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down
19181 * to a particular ill.
19182 */
19183boolean_t
19184ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6,
19185    ipsa_t *sa, netstack_t *ns)
19186{
19187	boolean_t sa_isv6;
19188	uint_t algid;
19189	struct ill_ipsec_capab_s *cpp;
19190	boolean_t need_refrele = B_FALSE;
19191	ip_stack_t	*ipst = ns->netstack_ip;
19192
19193	if (ill == NULL) {
19194		ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL,
19195		    NULL, NULL, NULL, ipst);
19196		if (ill == NULL) {
19197			ip0dbg(("ipsec_capab_match: ill doesn't exist\n"));
19198			return (B_FALSE);
19199		}
19200		need_refrele = B_TRUE;
19201	}
19202
19203	/*
19204	 * Use the address length specified by the SA to determine
19205	 * if it corresponds to a IPv6 address, and fail the matching
19206	 * if the isv6 flag passed as argument does not match.
19207	 * Note: this check is used for SADB capability checking before
19208	 * sending SA information to an ill.
19209	 */
19210	sa_isv6 = (sa->ipsa_addrfam == AF_INET6);
19211	if (sa_isv6 != ill_isv6)
19212		/* protocol mismatch */
19213		goto done;
19214
19215	/*
19216	 * Check if the ill supports the protocol, algorithm(s) and
19217	 * key size(s) specified by the SA, and get the pointers to
19218	 * the algorithms supported by the ill.
19219	 */
19220	switch (sa->ipsa_type) {
19221
19222	case SADB_SATYPE_ESP:
19223		if (!(ill->ill_capabilities & ILL_CAPAB_ESP))
19224			/* ill does not support ESP acceleration */
19225			goto done;
19226		cpp = ill->ill_ipsec_capab_esp;
19227		algid = sa->ipsa_auth_alg;
19228		if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs))
19229			goto done;
19230		algid = sa->ipsa_encr_alg;
19231		if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs))
19232			goto done;
19233		if (algid < cpp->encr_algparm_end) {
19234			ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid];
19235			if (sa->ipsa_encrkeybits < alp->minkeylen)
19236				goto done;
19237			if (sa->ipsa_encrkeybits > alp->maxkeylen)
19238				goto done;
19239		}
19240		break;
19241
19242	case SADB_SATYPE_AH:
19243		if (!(ill->ill_capabilities & ILL_CAPAB_AH))
19244			/* ill does not support AH acceleration */
19245			goto done;
19246		if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg,
19247		    ill->ill_ipsec_capab_ah->auth_hw_algs))
19248			goto done;
19249		break;
19250	}
19251
19252	if (need_refrele)
19253		ill_refrele(ill);
19254	return (B_TRUE);
19255done:
19256	if (need_refrele)
19257		ill_refrele(ill);
19258	return (B_FALSE);
19259}
19260
19261/*
19262 * Add a new ill to the list of IPsec capable ills.
19263 * Called from ill_capability_ipsec_ack() when an ACK was received
19264 * indicating that IPsec hardware processing was enabled for an ill.
19265 *
19266 * ill must point to the ill for which acceleration was enabled.
19267 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP.
19268 */
19269static void
19270ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync)
19271{
19272	ipsec_capab_ill_t **ills, *cur_ill, *new_ill;
19273	uint_t sa_type;
19274	uint_t ipproto;
19275	ip_stack_t	*ipst = ill->ill_ipst;
19276
19277	ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) ||
19278	    (dl_cap == DL_CAPAB_IPSEC_ESP));
19279
19280	switch (dl_cap) {
19281	case DL_CAPAB_IPSEC_AH:
19282		sa_type = SADB_SATYPE_AH;
19283		ills = &ipst->ips_ipsec_capab_ills_ah;
19284		ipproto = IPPROTO_AH;
19285		break;
19286	case DL_CAPAB_IPSEC_ESP:
19287		sa_type = SADB_SATYPE_ESP;
19288		ills = &ipst->ips_ipsec_capab_ills_esp;
19289		ipproto = IPPROTO_ESP;
19290		break;
19291	}
19292
19293	rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER);
19294
19295	/*
19296	 * Add ill index to list of hardware accelerators. If
19297	 * already in list, do nothing.
19298	 */
19299	for (cur_ill = *ills; cur_ill != NULL &&
19300	    (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex ||
19301	    cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next)
19302		;
19303
19304	if (cur_ill == NULL) {
19305		/* if this is a new entry for this ill */
19306		new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP);
19307		if (new_ill == NULL) {
19308			rw_exit(&ipst->ips_ipsec_capab_ills_lock);
19309			return;
19310		}
19311
19312		new_ill->ill_index = ill->ill_phyint->phyint_ifindex;
19313		new_ill->ill_isv6 = ill->ill_isv6;
19314		new_ill->next = *ills;
19315		*ills = new_ill;
19316	} else if (!sadb_resync) {
19317		/* not resync'ing SADB and an entry exists for this ill */
19318		rw_exit(&ipst->ips_ipsec_capab_ills_lock);
19319		return;
19320	}
19321
19322	rw_exit(&ipst->ips_ipsec_capab_ills_lock);
19323
19324	if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL)
19325		/*
19326		 * IPsec module for protocol loaded, initiate dump
19327		 * of the SADB to this ill.
19328		 */
19329		sadb_ill_download(ill, sa_type);
19330}
19331
19332/*
19333 * Remove an ill from the list of IPsec capable ills.
19334 */
19335static void
19336ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap)
19337{
19338	ipsec_capab_ill_t **ills, *cur_ill, *prev_ill;
19339	ip_stack_t	*ipst = ill->ill_ipst;
19340
19341	ASSERT(dl_cap == DL_CAPAB_IPSEC_AH ||
19342	    dl_cap == DL_CAPAB_IPSEC_ESP);
19343
19344	ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah :
19345	    &ipst->ips_ipsec_capab_ills_esp;
19346
19347	rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER);
19348
19349	prev_ill = NULL;
19350	for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index !=
19351	    ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 !=
19352	    ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next)
19353		;
19354	if (cur_ill == NULL) {
19355		/* entry not found */
19356		rw_exit(&ipst->ips_ipsec_capab_ills_lock);
19357		return;
19358	}
19359	if (prev_ill == NULL) {
19360		/* entry at front of list */
19361		*ills = NULL;
19362	} else {
19363		prev_ill->next = cur_ill->next;
19364	}
19365	kmem_free(cur_ill, sizeof (ipsec_capab_ill_t));
19366	rw_exit(&ipst->ips_ipsec_capab_ills_lock);
19367}
19368
19369/*
19370 * Called by SADB to send a DL_CONTROL_REQ message to every ill
19371 * supporting the specified IPsec protocol acceleration.
19372 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP.
19373 * We free the mblk and, if sa is non-null, release the held referece.
19374 */
19375void
19376ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa,
19377    netstack_t *ns)
19378{
19379	ipsec_capab_ill_t *ici, *cur_ici;
19380	ill_t *ill;
19381	mblk_t *nmp, *mp_ship_list = NULL, *next_mp;
19382	ip_stack_t	*ipst = ns->netstack_ip;
19383
19384	ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah :
19385	    ipst->ips_ipsec_capab_ills_esp;
19386
19387	rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER);
19388
19389	for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) {
19390		ill = ill_lookup_on_ifindex(cur_ici->ill_index,
19391		    cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst);
19392
19393		/*
19394		 * Handle the case where the ill goes away while the SADB is
19395		 * attempting to send messages.  If it's going away, it's
19396		 * nuking its shadow SADB, so we don't care..
19397		 */
19398
19399		if (ill == NULL)
19400			continue;
19401
19402		if (sa != NULL) {
19403			/*
19404			 * Make sure capabilities match before
19405			 * sending SA to ill.
19406			 */
19407			if (!ipsec_capab_match(ill, cur_ici->ill_index,
19408			    cur_ici->ill_isv6, sa, ipst->ips_netstack)) {
19409				ill_refrele(ill);
19410				continue;
19411			}
19412
19413			mutex_enter(&sa->ipsa_lock);
19414			sa->ipsa_flags |= IPSA_F_HW;
19415			mutex_exit(&sa->ipsa_lock);
19416		}
19417
19418		/*
19419		 * Copy template message, and add it to the front
19420		 * of the mblk ship list. We want to avoid holding
19421		 * the ipsec_capab_ills_lock while sending the
19422		 * message to the ills.
19423		 *
19424		 * The b_next and b_prev are temporarily used
19425		 * to build a list of mblks to be sent down, and to
19426		 * save the ill to which they must be sent.
19427		 */
19428		nmp = copymsg(mp);
19429		if (nmp == NULL) {
19430			ill_refrele(ill);
19431			continue;
19432		}
19433		ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL);
19434		nmp->b_next = mp_ship_list;
19435		mp_ship_list = nmp;
19436		nmp->b_prev = (mblk_t *)ill;
19437	}
19438
19439	rw_exit(&ipst->ips_ipsec_capab_ills_lock);
19440
19441	for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) {
19442		/* restore the mblk to a sane state */
19443		next_mp = nmp->b_next;
19444		nmp->b_next = NULL;
19445		ill = (ill_t *)nmp->b_prev;
19446		nmp->b_prev = NULL;
19447
19448		ill_dlpi_send(ill, nmp);
19449		ill_refrele(ill);
19450	}
19451
19452	if (sa != NULL)
19453		IPSA_REFRELE(sa);
19454	freemsg(mp);
19455}
19456
19457/*
19458 * Derive an interface id from the link layer address.
19459 * Knows about IEEE 802 and IEEE EUI-64 mappings.
19460 */
19461static void
19462ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr)
19463{
19464	char		*addr;
19465
19466	/*
19467	 * Note that some IPv6 interfaces get plumbed over links that claim to
19468	 * be DL_ETHER, but don't actually have Ethernet MAC addresses (e.g.
19469	 * PPP links).  The ETHERADDRL check here ensures that we only set the
19470	 * interface ID on IPv6 interfaces above links that actually have real
19471	 * Ethernet addresses.
19472	 */
19473	if (ill->ill_phys_addr_length == ETHERADDRL) {
19474		/* Form EUI-64 like address */
19475		addr = (char *)&v6addr->s6_addr32[2];
19476		bcopy(ill->ill_phys_addr, addr, 3);
19477		addr[0] ^= 0x2;		/* Toggle Universal/Local bit */
19478		addr[3] = (char)0xff;
19479		addr[4] = (char)0xfe;
19480		bcopy(ill->ill_phys_addr + 3, addr + 5, 3);
19481	}
19482}
19483
19484/* ARGSUSED */
19485static void
19486ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr)
19487{
19488}
19489
19490typedef struct ipmp_ifcookie {
19491	uint32_t	ic_hostid;
19492	char		ic_ifname[LIFNAMSIZ];
19493	char		ic_zonename[ZONENAME_MAX];
19494} ipmp_ifcookie_t;
19495
19496/*
19497 * Construct a pseudo-random interface ID for the IPMP interface that's both
19498 * predictable and (almost) guaranteed to be unique.
19499 */
19500static void
19501ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr)
19502{
19503	zone_t		*zp;
19504	uint8_t		*addr;
19505	uchar_t		hash[16];
19506	ulong_t 	hostid;
19507	MD5_CTX		ctx;
19508	ipmp_ifcookie_t	ic = { 0 };
19509
19510	ASSERT(IS_IPMP(ill));
19511
19512	(void) ddi_strtoul(hw_serial, NULL, 10, &hostid);
19513	ic.ic_hostid = htonl((uint32_t)hostid);
19514
19515	(void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ);
19516
19517	if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) {
19518		(void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX);
19519		zone_rele(zp);
19520	}
19521
19522	MD5Init(&ctx);
19523	MD5Update(&ctx, &ic, sizeof (ic));
19524	MD5Final(hash, &ctx);
19525
19526	/*
19527	 * Map the hash to an interface ID per the basic approach in RFC3041.
19528	 */
19529	addr = &v6addr->s6_addr8[8];
19530	bcopy(hash + 8, addr, sizeof (uint64_t));
19531	addr[0] &= ~0x2;				/* set local bit */
19532}
19533
19534/* ARGSUSED */
19535static boolean_t
19536ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr,
19537    uint32_t *hw_start, in6_addr_t *v6_extract_mask)
19538{
19539	/*
19540	 * Multicast address mappings used over Ethernet/802.X.
19541	 * This address is used as a base for mappings.
19542	 */
19543	static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00,
19544	    0x00, 0x00, 0x00};
19545
19546	/*
19547	 * Extract low order 32 bits from IPv6 multicast address.
19548	 * Or that into the link layer address, starting from the
19549	 * second byte.
19550	 */
19551	*hw_start = 2;
19552	v6_extract_mask->s6_addr32[0] = 0;
19553	v6_extract_mask->s6_addr32[1] = 0;
19554	v6_extract_mask->s6_addr32[2] = 0;
19555	v6_extract_mask->s6_addr32[3] = 0xffffffffU;
19556	bcopy(ipv6_g_phys_multi_addr, maddr, lla_length);
19557	return (B_TRUE);
19558}
19559
19560/*
19561 * Indicate by return value whether multicast is supported. If not,
19562 * this code should not touch/change any parameters.
19563 */
19564/* ARGSUSED */
19565static boolean_t
19566ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr,
19567    uint32_t *hw_start, ipaddr_t *extract_mask)
19568{
19569	/*
19570	 * Multicast address mappings used over Ethernet/802.X.
19571	 * This address is used as a base for mappings.
19572	 */
19573	static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e,
19574	    0x00, 0x00, 0x00 };
19575
19576	if (phys_length != ETHERADDRL)
19577		return (B_FALSE);
19578
19579	*extract_mask = htonl(0x007fffff);
19580	*hw_start = 2;
19581	bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL);
19582	return (B_TRUE);
19583}
19584
19585/* ARGSUSED */
19586static boolean_t
19587ip_nodef_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr,
19588    uint32_t *hw_start, ipaddr_t *extract_mask)
19589{
19590	return (B_FALSE);
19591}
19592
19593/* ARGSUSED */
19594static boolean_t
19595ip_nodef_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr,
19596    uint32_t *hw_start, in6_addr_t *v6_extract_mask)
19597{
19598	return (B_FALSE);
19599}
19600
19601/*
19602 * Derive IPoIB interface id from the link layer address.
19603 */
19604static void
19605ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr)
19606{
19607	char		*addr;
19608
19609	ASSERT(ill->ill_phys_addr_length == 20);
19610	addr = (char *)&v6addr->s6_addr32[2];
19611	bcopy(ill->ill_phys_addr + 12, addr, 8);
19612	/*
19613	 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit
19614	 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE
19615	 * rules. In these cases, the IBA considers these GUIDs to be in
19616	 * "Modified EUI-64" format, and thus toggling the u/l bit is not
19617	 * required; vendors are required not to assign global EUI-64's
19618	 * that differ only in u/l bit values, thus guaranteeing uniqueness
19619	 * of the interface identifier. Whether the GUID is in modified
19620	 * or proper EUI-64 format, the ipv6 identifier must have the u/l
19621	 * bit set to 1.
19622	 */
19623	addr[0] |= 2;			/* Set Universal/Local bit to 1 */
19624}
19625
19626/*
19627 * Note on mapping from multicast IP addresses to IPoIB multicast link
19628 * addresses. IPoIB multicast link addresses are based on IBA link addresses.
19629 * The format of an IPoIB multicast address is:
19630 *
19631 *  4 byte QPN      Scope Sign.  Pkey
19632 * +--------------------------------------------+
19633 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID |
19634 * +--------------------------------------------+
19635 *
19636 * The Scope and Pkey components are properties of the IBA port and
19637 * network interface. They can be ascertained from the broadcast address.
19638 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6.
19639 */
19640
19641static boolean_t
19642ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr,
19643    uint32_t *hw_start, in6_addr_t *v6_extract_mask)
19644{
19645	/*
19646	 * Base IPoIB IPv6 multicast address used for mappings.
19647	 * Does not contain the IBA scope/Pkey values.
19648	 */
19649	static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
19650	    0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00,
19651	    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
19652
19653	/*
19654	 * Extract low order 80 bits from IPv6 multicast address.
19655	 * Or that into the link layer address, starting from the
19656	 * sixth byte.
19657	 */
19658	*hw_start = 6;
19659	bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length);
19660
19661	/*
19662	 * Now fill in the IBA scope/Pkey values from the broadcast address.
19663	 */
19664	*(maddr + 5) = *(bphys_addr + 5);
19665	*(maddr + 8) = *(bphys_addr + 8);
19666	*(maddr + 9) = *(bphys_addr + 9);
19667
19668	v6_extract_mask->s6_addr32[0] = 0;
19669	v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff);
19670	v6_extract_mask->s6_addr32[2] = 0xffffffffU;
19671	v6_extract_mask->s6_addr32[3] = 0xffffffffU;
19672	return (B_TRUE);
19673}
19674
19675static boolean_t
19676ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr,
19677    uint32_t *hw_start, ipaddr_t *extract_mask)
19678{
19679	/*
19680	 * Base IPoIB IPv4 multicast address used for mappings.
19681	 * Does not contain the IBA scope/Pkey values.
19682	 */
19683	static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
19684	    0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00,
19685	    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
19686
19687	if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr))
19688		return (B_FALSE);
19689
19690	/*
19691	 * Extract low order 28 bits from IPv4 multicast address.
19692	 * Or that into the link layer address, starting from the
19693	 * sixteenth byte.
19694	 */
19695	*extract_mask = htonl(0x0fffffff);
19696	*hw_start = 16;
19697	bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length);
19698
19699	/*
19700	 * Now fill in the IBA scope/Pkey values from the broadcast address.
19701	 */
19702	*(maddr + 5) = *(bphys_addr + 5);
19703	*(maddr + 8) = *(bphys_addr + 8);
19704	*(maddr + 9) = *(bphys_addr + 9);
19705	return (B_TRUE);
19706}
19707
19708/*
19709 * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4
19710 * tunnel).  The IPv4 address simply get placed in the lower 4 bytes of the
19711 * IPv6 interface id.  This is a suggested mechanism described in section 3.7
19712 * of RFC4213.
19713 */
19714static void
19715ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr)
19716{
19717	ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t));
19718	v6addr->s6_addr32[2] = 0;
19719	bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t));
19720}
19721
19722/*
19723 * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6
19724 * tunnel).  The lower 8 bytes of the IPv6 address simply become the interface
19725 * id.
19726 */
19727static void
19728ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr)
19729{
19730	in6_addr_t *v6lladdr = (in6_addr_t *)physaddr;
19731
19732	ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t));
19733	bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8);
19734}
19735
19736static void
19737ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr)
19738{
19739	ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr);
19740}
19741
19742static void
19743ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr)
19744{
19745	ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr);
19746}
19747
19748static void
19749ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr)
19750{
19751	ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr);
19752}
19753
19754static void
19755ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr)
19756{
19757	ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr);
19758}
19759
19760/*
19761 * Returns B_TRUE if an ipif is present in the given zone, matching some flags
19762 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there.
19763 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with
19764 * the link-local address is preferred.
19765 */
19766boolean_t
19767ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp)
19768{
19769	ipif_t	*ipif;
19770	ipif_t	*maybe_ipif = NULL;
19771
19772	mutex_enter(&ill->ill_lock);
19773	if (ill->ill_state_flags & ILL_CONDEMNED) {
19774		mutex_exit(&ill->ill_lock);
19775		if (ipifp != NULL)
19776			*ipifp = NULL;
19777		return (B_FALSE);
19778	}
19779
19780	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
19781		if (!IPIF_CAN_LOOKUP(ipif))
19782			continue;
19783		if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid &&
19784		    ipif->ipif_zoneid != ALL_ZONES)
19785			continue;
19786		if ((ipif->ipif_flags & flags) != flags)
19787			continue;
19788
19789		if (ipifp == NULL) {
19790			mutex_exit(&ill->ill_lock);
19791			ASSERT(maybe_ipif == NULL);
19792			return (B_TRUE);
19793		}
19794		if (!ill->ill_isv6 ||
19795		    IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) {
19796			ipif_refhold_locked(ipif);
19797			mutex_exit(&ill->ill_lock);
19798			*ipifp = ipif;
19799			return (B_TRUE);
19800		}
19801		if (maybe_ipif == NULL)
19802			maybe_ipif = ipif;
19803	}
19804	if (ipifp != NULL) {
19805		if (maybe_ipif != NULL)
19806			ipif_refhold_locked(maybe_ipif);
19807		*ipifp = maybe_ipif;
19808	}
19809	mutex_exit(&ill->ill_lock);
19810	return (maybe_ipif != NULL);
19811}
19812
19813/*
19814 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id)
19815 * If a pointer to an ipif_t is returned then the caller will need to do
19816 * an ill_refrele().
19817 */
19818ipif_t *
19819ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6,
19820    ip_stack_t *ipst)
19821{
19822	ipif_t *ipif;
19823	ill_t *ill;
19824
19825	ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL,
19826	    ipst);
19827	if (ill == NULL)
19828		return (NULL);
19829
19830	mutex_enter(&ill->ill_lock);
19831	if (ill->ill_state_flags & ILL_CONDEMNED) {
19832		mutex_exit(&ill->ill_lock);
19833		ill_refrele(ill);
19834		return (NULL);
19835	}
19836
19837	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
19838		if (!IPIF_CAN_LOOKUP(ipif))
19839			continue;
19840		if (lifidx == ipif->ipif_id) {
19841			ipif_refhold_locked(ipif);
19842			break;
19843		}
19844	}
19845
19846	mutex_exit(&ill->ill_lock);
19847	ill_refrele(ill);
19848	return (ipif);
19849}
19850
19851/*
19852 * Flush the fastpath by deleting any nce's that are waiting for the fastpath,
19853 * There is one exceptions IRE_BROADCAST are difficult to recreate,
19854 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush()
19855 * for details.
19856 */
19857void
19858ill_fastpath_flush(ill_t *ill)
19859{
19860	ip_stack_t *ipst = ill->ill_ipst;
19861
19862	nce_fastpath_list_dispatch(ill, NULL, NULL);
19863	ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4),
19864	    ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE);
19865}
19866
19867/*
19868 * Set the physical address information for `ill' to the contents of the
19869 * dl_notify_ind_t pointed to by `mp'.  Must be called as writer, and will be
19870 * asynchronous if `ill' cannot immediately be quiesced -- in which case
19871 * EINPROGRESS will be returned.
19872 */
19873int
19874ill_set_phys_addr(ill_t *ill, mblk_t *mp)
19875{
19876	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
19877	dl_notify_ind_t	*dlindp = (dl_notify_ind_t *)mp->b_rptr;
19878
19879	ASSERT(IAM_WRITER_IPSQ(ipsq));
19880
19881	if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR &&
19882	    dlindp->dl_data != DL_CURR_DEST_ADDR &&
19883	    dlindp->dl_data != DL_CURR_PHYS_ADDR) {
19884		/* Changing DL_IPV6_TOKEN is not yet supported */
19885		return (0);
19886	}
19887
19888	/*
19889	 * We need to store up to two copies of `mp' in `ill'.  Due to the
19890	 * design of ipsq_pending_mp_add(), we can't pass them as separate
19891	 * arguments to ill_set_phys_addr_tail().  Instead, chain them
19892	 * together here, then pull 'em apart in ill_set_phys_addr_tail().
19893	 */
19894	if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) {
19895		freemsg(mp);
19896		return (ENOMEM);
19897	}
19898
19899	ipsq_current_start(ipsq, ill->ill_ipif, 0);
19900
19901	/*
19902	 * If we can quiesce the ill, then set the address.  If not, then
19903	 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail().
19904	 */
19905	ill_down_ipifs(ill, B_TRUE);
19906	mutex_enter(&ill->ill_lock);
19907	if (!ill_is_quiescent(ill)) {
19908		/* call cannot fail since `conn_t *' argument is NULL */
19909		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
19910		    mp, ILL_DOWN);
19911		mutex_exit(&ill->ill_lock);
19912		return (EINPROGRESS);
19913	}
19914	mutex_exit(&ill->ill_lock);
19915
19916	ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL);
19917	return (0);
19918}
19919
19920/*
19921 * Once the ill associated with `q' has quiesced, set its physical address
19922 * information to the values in `addrmp'.  Note that two copies of `addrmp'
19923 * are passed (linked by b_cont), since we sometimes need to save two distinct
19924 * copies in the ill_t, and our context doesn't permit sleeping or allocation
19925 * failure (we'll free the other copy if it's not needed).  Since the ill_t
19926 * is quiesced, we know any stale IREs with the old address information have
19927 * already been removed, so we don't need to call ill_fastpath_flush().
19928 */
19929/* ARGSUSED */
19930static void
19931ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy)
19932{
19933	ill_t		*ill = q->q_ptr;
19934	mblk_t		*addrmp2 = unlinkb(addrmp);
19935	dl_notify_ind_t	*dlindp = (dl_notify_ind_t *)addrmp->b_rptr;
19936	uint_t		addrlen, addroff;
19937
19938	ASSERT(IAM_WRITER_IPSQ(ipsq));
19939
19940	addroff	= dlindp->dl_addr_offset;
19941	addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length);
19942
19943	switch (dlindp->dl_data) {
19944	case DL_IPV6_LINK_LAYER_ADDR:
19945		ill_set_ndmp(ill, addrmp, addroff, addrlen);
19946		freemsg(addrmp2);
19947		break;
19948
19949	case DL_CURR_DEST_ADDR:
19950		freemsg(ill->ill_dest_addr_mp);
19951		ill->ill_dest_addr = addrmp->b_rptr + addroff;
19952		ill->ill_dest_addr_mp = addrmp;
19953		if (ill->ill_isv6) {
19954			ill_setdesttoken(ill);
19955			ipif_setdestlinklocal(ill->ill_ipif);
19956		}
19957		freemsg(addrmp2);
19958		break;
19959
19960	case DL_CURR_PHYS_ADDR:
19961		freemsg(ill->ill_phys_addr_mp);
19962		ill->ill_phys_addr = addrmp->b_rptr + addroff;
19963		ill->ill_phys_addr_mp = addrmp;
19964		ill->ill_phys_addr_length = addrlen;
19965		if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV))
19966			ill_set_ndmp(ill, addrmp2, addroff, addrlen);
19967		else
19968			freemsg(addrmp2);
19969		if (ill->ill_isv6) {
19970			ill_setdefaulttoken(ill);
19971			ipif_setlinklocal(ill->ill_ipif);
19972		}
19973		break;
19974	default:
19975		ASSERT(0);
19976	}
19977
19978	/*
19979	 * If there are ipifs to bring up, ill_up_ipifs() will return
19980	 * EINPROGRESS, and ipsq_current_finish() will be called by
19981	 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is
19982	 * brought up.
19983	 */
19984	if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS)
19985		ipsq_current_finish(ipsq);
19986}
19987
19988/*
19989 * Helper routine for setting the ill_nd_lla fields.
19990 */
19991void
19992ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen)
19993{
19994	freemsg(ill->ill_nd_lla_mp);
19995	ill->ill_nd_lla = ndmp->b_rptr + addroff;
19996	ill->ill_nd_lla_mp = ndmp;
19997	ill->ill_nd_lla_len = addrlen;
19998}
19999
20000/*
20001 * Replumb the ill.
20002 */
20003int
20004ill_replumb(ill_t *ill, mblk_t *mp)
20005{
20006	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
20007
20008	ASSERT(IAM_WRITER_IPSQ(ipsq));
20009
20010	ipsq_current_start(ipsq, ill->ill_ipif, 0);
20011
20012	/*
20013	 * If we can quiesce the ill, then continue.  If not, then
20014	 * ill_replumb_tail() will be called from ipif_ill_refrele_tail().
20015	 */
20016	ill_down_ipifs(ill, B_FALSE);
20017
20018	mutex_enter(&ill->ill_lock);
20019	if (!ill_is_quiescent(ill)) {
20020		/* call cannot fail since `conn_t *' argument is NULL */
20021		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
20022		    mp, ILL_DOWN);
20023		mutex_exit(&ill->ill_lock);
20024		return (EINPROGRESS);
20025	}
20026	mutex_exit(&ill->ill_lock);
20027
20028	ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL);
20029	return (0);
20030}
20031
20032/* ARGSUSED */
20033static void
20034ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy)
20035{
20036	ill_t *ill = q->q_ptr;
20037
20038	ASSERT(IAM_WRITER_IPSQ(ipsq));
20039
20040	ill_down_ipifs_tail(ill);
20041
20042	freemsg(ill->ill_replumb_mp);
20043	ill->ill_replumb_mp = copyb(mp);
20044
20045	/*
20046	 * Successfully quiesced and brought down the interface, now we send
20047	 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the
20048	 * DL_NOTE_REPLUMB message.
20049	 */
20050	mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO,
20051	    DL_NOTIFY_CONF);
20052	ASSERT(mp != NULL);
20053	((dl_notify_conf_t *)mp->b_rptr)->dl_notification =
20054	    DL_NOTE_REPLUMB_DONE;
20055	ill_dlpi_send(ill, mp);
20056
20057	/*
20058	 * If there are ipifs to bring up, ill_up_ipifs() will return
20059	 * EINPROGRESS, and ipsq_current_finish() will be called by
20060	 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is
20061	 * brought up.
20062	 */
20063	if (ill->ill_replumb_mp == NULL ||
20064	    ill_up_ipifs(ill, q, ill->ill_replumb_mp) != EINPROGRESS) {
20065		ipsq_current_finish(ipsq);
20066	}
20067}
20068
20069/*
20070 * Issue ioctl `cmd' on `lh'; caller provides the initial payload in `buf'
20071 * which is `bufsize' bytes.  On success, zero is returned and `buf' updated
20072 * as per the ioctl.  On failure, an errno is returned.
20073 */
20074static int
20075ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr)
20076{
20077	int rval;
20078	struct strioctl iocb;
20079
20080	iocb.ic_cmd = cmd;
20081	iocb.ic_timout = 15;
20082	iocb.ic_len = bufsize;
20083	iocb.ic_dp = buf;
20084
20085	return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval));
20086}
20087
20088/*
20089 * Issue an SIOCGLIFCONF for address family `af' and store the result into a
20090 * dynamically-allocated `lifcp' that will be `bufsizep' bytes on success.
20091 */
20092static int
20093ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp,
20094    uint_t *bufsizep, cred_t *cr)
20095{
20096	int err;
20097	struct lifnum lifn;
20098
20099	bzero(&lifn, sizeof (lifn));
20100	lifn.lifn_family = af;
20101	lifn.lifn_flags = LIFC_UNDER_IPMP;
20102
20103	if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0)
20104		return (err);
20105
20106	/*
20107	 * Pad the interface count to account for additional interfaces that
20108	 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF.
20109	 */
20110	lifn.lifn_count += 4;
20111	bzero(lifcp, sizeof (*lifcp));
20112	lifcp->lifc_flags = LIFC_UNDER_IPMP;
20113	lifcp->lifc_family = af;
20114	lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq);
20115	lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP);
20116
20117	err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr);
20118	if (err != 0) {
20119		kmem_free(lifcp->lifc_buf, *bufsizep);
20120		return (err);
20121	}
20122
20123	return (0);
20124}
20125
20126/*
20127 * Helper for ip_interface_cleanup() that removes the loopback interface.
20128 */
20129static void
20130ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr)
20131{
20132	int err;
20133	struct lifreq lifr;
20134
20135	bzero(&lifr, sizeof (lifr));
20136	(void) strcpy(lifr.lifr_name, ipif_loopback_name);
20137
20138	err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr);
20139	if (err != 0) {
20140		ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: "
20141		    "error %d\n", isv6 ? "v6" : "v4", err));
20142	}
20143}
20144
20145/*
20146 * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP
20147 * groups and that IPMP data addresses are down.  These conditions must be met
20148 * so that IPMP interfaces can be I_PUNLINK'd, as per ip_sioctl_plink_ipmp().
20149 */
20150static void
20151ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr)
20152{
20153	int af = isv6 ? AF_INET6 : AF_INET;
20154	int i, nifs;
20155	int err;
20156	uint_t bufsize;
20157	uint_t lifrsize = sizeof (struct lifreq);
20158	struct lifconf lifc;
20159	struct lifreq *lifrp;
20160
20161	if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) {
20162		cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list "
20163		    "(error %d); any IPMP interfaces cannot be shutdown", err);
20164		return;
20165	}
20166
20167	nifs = lifc.lifc_len / lifrsize;
20168	for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) {
20169		err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr);
20170		if (err != 0) {
20171			cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get "
20172			    "flags: error %d", lifrp->lifr_name, err);
20173			continue;
20174		}
20175
20176		if (lifrp->lifr_flags & IFF_IPMP) {
20177			if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0)
20178				continue;
20179
20180			lifrp->lifr_flags &= ~IFF_UP;
20181			err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr);
20182			if (err != 0) {
20183				cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
20184				    "bring down (error %d); IPMP interface may "
20185				    "not be shutdown", lifrp->lifr_name, err);
20186			}
20187
20188			/*
20189			 * Check if IFF_DUPLICATE is still set -- and if so,
20190			 * reset the address to clear it.
20191			 */
20192			err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr);
20193			if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE))
20194				continue;
20195
20196			err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr);
20197			if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR,
20198			    lifrp, lifrsize, cr)) != 0) {
20199				cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
20200				    "reset DAD (error %d); IPMP interface may "
20201				    "not be shutdown", lifrp->lifr_name, err);
20202			}
20203			continue;
20204		}
20205
20206		lifrp->lifr_groupname[0] = '\0';
20207		err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp, lifrsize, cr);
20208		if (err != 0) {
20209			cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot leave "
20210			    "IPMP group (error %d); associated IPMP interface "
20211			    "may not be shutdown", lifrp->lifr_name, err);
20212			continue;
20213		}
20214	}
20215
20216	kmem_free(lifc.lifc_buf, bufsize);
20217}
20218
20219#define	UDPDEV		"/devices/pseudo/udp@0:udp"
20220#define	UDP6DEV		"/devices/pseudo/udp6@0:udp6"
20221
20222/*
20223 * Remove the loopback interfaces and prep the IPMP interfaces to be torn down.
20224 * Non-loopback interfaces are either I_LINK'd or I_PLINK'd; the former go away
20225 * when the user-level processes in the zone are killed and the latter are
20226 * cleaned up by str_stack_shutdown().
20227 */
20228void
20229ip_interface_cleanup(ip_stack_t *ipst)
20230{
20231	ldi_handle_t	lh;
20232	ldi_ident_t	li;
20233	cred_t		*cr;
20234	int		err;
20235	int		i;
20236	char		*devs[] = { UDP6DEV, UDPDEV };
20237	netstackid_t	stackid = ipst->ips_netstack->netstack_stackid;
20238
20239	if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) {
20240		cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:"
20241		    " error %d", err);
20242		return;
20243	}
20244
20245	cr = zone_get_kcred(netstackid_to_zoneid(stackid));
20246	ASSERT(cr != NULL);
20247
20248	/*
20249	 * NOTE: loop executes exactly twice and is hardcoded to know that the
20250	 * first iteration is IPv6.  (Unrolling yields repetitious code, hence
20251	 * the loop.)
20252	 */
20253	for (i = 0; i < 2; i++) {
20254		err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li);
20255		if (err != 0) {
20256			cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:"
20257			    " error %d", devs[i], err);
20258			continue;
20259		}
20260
20261		ip_loopback_removeif(lh, i == 0, cr);
20262		ip_ipmp_cleanup(lh, i == 0, cr);
20263
20264		(void) ldi_close(lh, FREAD|FWRITE, cr);
20265	}
20266
20267	ldi_ident_release(li);
20268	crfree(cr);
20269}
20270
20271/*
20272 * This needs to be in-sync with nic_event_t definition
20273 */
20274static const char *
20275ill_hook_event2str(nic_event_t event)
20276{
20277	switch (event) {
20278	case NE_PLUMB:
20279		return ("PLUMB");
20280	case NE_UNPLUMB:
20281		return ("UNPLUMB");
20282	case NE_UP:
20283		return ("UP");
20284	case NE_DOWN:
20285		return ("DOWN");
20286	case NE_ADDRESS_CHANGE:
20287		return ("ADDRESS_CHANGE");
20288	case NE_LIF_UP:
20289		return ("LIF_UP");
20290	case NE_LIF_DOWN:
20291		return ("LIF_DOWN");
20292	case NE_IFINDEX_CHANGE:
20293		return ("IFINDEX_CHANGE");
20294	default:
20295		return ("UNKNOWN");
20296	}
20297}
20298
20299void
20300ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event,
20301    nic_event_data_t data, size_t datalen)
20302{
20303	ip_stack_t		*ipst = ill->ill_ipst;
20304	hook_nic_event_int_t	*info;
20305	const char		*str = NULL;
20306
20307	/* create a new nic event info */
20308	if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL)
20309		goto fail;
20310
20311	info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex;
20312	info->hnei_event.hne_lif = lif;
20313	info->hnei_event.hne_event = event;
20314	info->hnei_event.hne_protocol = ill->ill_isv6 ?
20315	    ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
20316	info->hnei_event.hne_data = NULL;
20317	info->hnei_event.hne_datalen = 0;
20318	info->hnei_stackid = ipst->ips_netstack->netstack_stackid;
20319
20320	if (data != NULL && datalen != 0) {
20321		info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP);
20322		if (info->hnei_event.hne_data == NULL)
20323			goto fail;
20324		bcopy(data, info->hnei_event.hne_data, datalen);
20325		info->hnei_event.hne_datalen = datalen;
20326	}
20327
20328	if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info,
20329	    DDI_NOSLEEP) == DDI_SUCCESS)
20330		return;
20331
20332fail:
20333	if (info != NULL) {
20334		if (info->hnei_event.hne_data != NULL) {
20335			kmem_free(info->hnei_event.hne_data,
20336			    info->hnei_event.hne_datalen);
20337		}
20338		kmem_free(info, sizeof (hook_nic_event_t));
20339	}
20340	str = ill_hook_event2str(event);
20341	ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event "
20342	    "information for %s (ENOMEM)\n", str, ill->ill_name));
20343}
20344
20345void
20346ipif_up_notify(ipif_t *ipif)
20347{
20348	ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
20349	ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT);
20350	sctp_update_ipif(ipif, SCTP_IPIF_UP);
20351	ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id),
20352	    NE_LIF_UP, NULL, 0);
20353}
20354
20355/*
20356 * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and
20357 * this assumes the context is cv_wait'able.  Hence it shouldnt' be used on
20358 * TPI end points with STREAMS modules pushed above.  This is assured by not
20359 * having the IPI_MODOK flag for the ioctl.  And IP ensures the ILB ioctl
20360 * never ends up on an ipsq, otherwise we may end up processing the ioctl
20361 * while unwinding from the ispq and that could be a thread from the bottom.
20362 */
20363/* ARGSUSED */
20364int
20365ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
20366    ip_ioctl_cmd_t *ipip, void *arg)
20367{
20368	mblk_t *cmd_mp = mp->b_cont->b_cont;
20369	ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr);
20370	int ret = 0;
20371	int i;
20372	size_t size;
20373	ip_stack_t *ipst;
20374	zoneid_t zoneid;
20375	ilb_stack_t *ilbs;
20376
20377	ipst = CONNQ_TO_IPST(q);
20378	ilbs = ipst->ips_netstack->netstack_ilb;
20379	zoneid = Q_TO_CONN(q)->conn_zoneid;
20380
20381	switch (command) {
20382	case ILB_CREATE_RULE: {
20383		ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr;
20384
20385		if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) {
20386			ret = EINVAL;
20387			break;
20388		}
20389
20390		ret = ilb_rule_add(ilbs, zoneid, cmd);
20391		break;
20392	}
20393	case ILB_DESTROY_RULE:
20394	case ILB_ENABLE_RULE:
20395	case ILB_DISABLE_RULE: {
20396		ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr;
20397
20398		if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) {
20399			ret = EINVAL;
20400			break;
20401		}
20402
20403		if (cmd->flags & ILB_RULE_ALLRULES) {
20404			if (command == ILB_DESTROY_RULE) {
20405				ilb_rule_del_all(ilbs, zoneid);
20406				break;
20407			} else if (command == ILB_ENABLE_RULE) {
20408				ilb_rule_enable_all(ilbs, zoneid);
20409				break;
20410			} else if (command == ILB_DISABLE_RULE) {
20411				ilb_rule_disable_all(ilbs, zoneid);
20412				break;
20413			}
20414		} else {
20415			if (command == ILB_DESTROY_RULE) {
20416				ret = ilb_rule_del(ilbs, zoneid, cmd->name);
20417			} else if (command == ILB_ENABLE_RULE) {
20418				ret = ilb_rule_enable(ilbs, zoneid, cmd->name,
20419				    NULL);
20420			} else if (command == ILB_DISABLE_RULE) {
20421				ret = ilb_rule_disable(ilbs, zoneid, cmd->name,
20422				    NULL);
20423			}
20424		}
20425		break;
20426	}
20427	case ILB_NUM_RULES: {
20428		ilb_num_rules_cmd_t *cmd;
20429
20430		if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) {
20431			ret = EINVAL;
20432			break;
20433		}
20434		cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr;
20435		ilb_get_num_rules(ilbs, zoneid, &(cmd->num));
20436		break;
20437	}
20438	case ILB_RULE_NAMES: {
20439		ilb_rule_names_cmd_t *cmd;
20440
20441		cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr;
20442		if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) ||
20443		    cmd->num_names == 0) {
20444			ret = EINVAL;
20445			break;
20446		}
20447		size = cmd->num_names * ILB_RULE_NAMESZ;
20448		if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) +
20449		    size != cmd_mp->b_wptr) {
20450			ret = EINVAL;
20451			break;
20452		}
20453		ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf);
20454		break;
20455	}
20456	case ILB_NUM_SERVERS: {
20457		ilb_num_servers_cmd_t *cmd;
20458
20459		if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) {
20460			ret = EINVAL;
20461			break;
20462		}
20463		cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr;
20464		ret = ilb_get_num_servers(ilbs, zoneid, cmd->name,
20465		    &(cmd->num));
20466		break;
20467	}
20468	case ILB_LIST_RULE: {
20469		ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr;
20470
20471		if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) {
20472			ret = EINVAL;
20473			break;
20474		}
20475		ret = ilb_rule_list(ilbs, zoneid, cmd);
20476		break;
20477	}
20478	case ILB_LIST_SERVERS: {
20479		ilb_servers_info_cmd_t *cmd;
20480
20481		cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr;
20482		if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) ||
20483		    cmd->num_servers == 0) {
20484			ret = EINVAL;
20485			break;
20486		}
20487		size = cmd->num_servers * sizeof (ilb_server_info_t);
20488		if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) +
20489		    size != cmd_mp->b_wptr) {
20490			ret = EINVAL;
20491			break;
20492		}
20493
20494		ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers,
20495		    &cmd->num_servers);
20496		break;
20497	}
20498	case ILB_ADD_SERVERS: {
20499		ilb_servers_info_cmd_t *cmd;
20500		ilb_rule_t *rule;
20501
20502		cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr;
20503		if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) {
20504			ret = EINVAL;
20505			break;
20506		}
20507		size = cmd->num_servers * sizeof (ilb_server_info_t);
20508		if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) +
20509		    size != cmd_mp->b_wptr) {
20510			ret = EINVAL;
20511			break;
20512		}
20513		rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret);
20514		if (rule == NULL) {
20515			ASSERT(ret != 0);
20516			break;
20517		}
20518		for (i = 0; i < cmd->num_servers; i++) {
20519			ilb_server_info_t *s;
20520
20521			s = &cmd->servers[i];
20522			s->err = ilb_server_add(ilbs, rule, s);
20523		}
20524		ILB_RULE_REFRELE(rule);
20525		break;
20526	}
20527	case ILB_DEL_SERVERS:
20528	case ILB_ENABLE_SERVERS:
20529	case ILB_DISABLE_SERVERS: {
20530		ilb_servers_cmd_t *cmd;
20531		ilb_rule_t *rule;
20532		int (*f)();
20533
20534		cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr;
20535		if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) {
20536			ret = EINVAL;
20537			break;
20538		}
20539		size = cmd->num_servers * sizeof (ilb_server_arg_t);
20540		if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) +
20541		    size != cmd_mp->b_wptr) {
20542			ret = EINVAL;
20543			break;
20544		}
20545
20546		if (command == ILB_DEL_SERVERS)
20547			f = ilb_server_del;
20548		else if (command == ILB_ENABLE_SERVERS)
20549			f = ilb_server_enable;
20550		else if (command == ILB_DISABLE_SERVERS)
20551			f = ilb_server_disable;
20552
20553		rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret);
20554		if (rule == NULL) {
20555			ASSERT(ret != 0);
20556			break;
20557		}
20558
20559		for (i = 0; i < cmd->num_servers; i++) {
20560			ilb_server_arg_t *s;
20561
20562			s = &cmd->servers[i];
20563			s->err = f(ilbs, zoneid, NULL, rule, &s->addr);
20564		}
20565		ILB_RULE_REFRELE(rule);
20566		break;
20567	}
20568	case ILB_LIST_NAT_TABLE: {
20569		ilb_list_nat_cmd_t *cmd;
20570
20571		cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr;
20572		if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) {
20573			ret = EINVAL;
20574			break;
20575		}
20576		size = cmd->num_nat * sizeof (ilb_nat_entry_t);
20577		if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) +
20578		    size != cmd_mp->b_wptr) {
20579			ret = EINVAL;
20580			break;
20581		}
20582
20583		ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat,
20584		    &cmd->flags);
20585		break;
20586	}
20587	case ILB_LIST_STICKY_TABLE: {
20588		ilb_list_sticky_cmd_t *cmd;
20589
20590		cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr;
20591		if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) {
20592			ret = EINVAL;
20593			break;
20594		}
20595		size = cmd->num_sticky * sizeof (ilb_sticky_entry_t);
20596		if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) +
20597		    size != cmd_mp->b_wptr) {
20598			ret = EINVAL;
20599			break;
20600		}
20601
20602		ret = ilb_list_sticky(ilbs, zoneid, cmd->entries,
20603		    &cmd->num_sticky, &cmd->flags);
20604		break;
20605	}
20606	default:
20607		ret = EINVAL;
20608		break;
20609	}
20610done:
20611	return (ret);
20612}
20613