zfs_vnops.c revision 5326:6752aa2bd5bc
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/* Portions Copyright 2007 Jeremy Teo */
27
28#pragma ident	"%Z%%M%	%I%	%E% SMI"
29
30#include <sys/types.h>
31#include <sys/param.h>
32#include <sys/time.h>
33#include <sys/systm.h>
34#include <sys/sysmacros.h>
35#include <sys/resource.h>
36#include <sys/vfs.h>
37#include <sys/vfs_opreg.h>
38#include <sys/vnode.h>
39#include <sys/file.h>
40#include <sys/stat.h>
41#include <sys/kmem.h>
42#include <sys/taskq.h>
43#include <sys/uio.h>
44#include <sys/vmsystm.h>
45#include <sys/atomic.h>
46#include <sys/vm.h>
47#include <vm/seg_vn.h>
48#include <vm/pvn.h>
49#include <vm/as.h>
50#include <sys/mman.h>
51#include <sys/pathname.h>
52#include <sys/cmn_err.h>
53#include <sys/errno.h>
54#include <sys/unistd.h>
55#include <sys/zfs_vfsops.h>
56#include <sys/zfs_dir.h>
57#include <sys/zfs_acl.h>
58#include <sys/zfs_ioctl.h>
59#include <sys/fs/zfs.h>
60#include <sys/dmu.h>
61#include <sys/spa.h>
62#include <sys/txg.h>
63#include <sys/dbuf.h>
64#include <sys/zap.h>
65#include <sys/dirent.h>
66#include <sys/policy.h>
67#include <sys/sunddi.h>
68#include <sys/filio.h>
69#include "fs/fs_subr.h"
70#include <sys/zfs_ctldir.h>
71#include <sys/dnlc.h>
72#include <sys/zfs_rlock.h>
73
74/*
75 * Programming rules.
76 *
77 * Each vnode op performs some logical unit of work.  To do this, the ZPL must
78 * properly lock its in-core state, create a DMU transaction, do the work,
79 * record this work in the intent log (ZIL), commit the DMU transaction,
80 * and wait the the intent log to commit if it's is a synchronous operation.
81 * Morover, the vnode ops must work in both normal and log replay context.
82 * The ordering of events is important to avoid deadlocks and references
83 * to freed memory.  The example below illustrates the following Big Rules:
84 *
85 *  (1) A check must be made in each zfs thread for a mounted file system.
86 *	This is done avoiding races using ZFS_ENTER(zfsvfs) or
87 *      ZFS_ENTER_VERIFY(zfsvfs, zp).  A ZFS_EXIT(zfsvfs) is needed before
88 *      all returns.
89 *
90 *  (2)	VN_RELE() should always be the last thing except for zil_commit()
91 *	(if necessary) and ZFS_EXIT(). This is for 3 reasons:
92 *	First, if it's the last reference, the vnode/znode
93 *	can be freed, so the zp may point to freed memory.  Second, the last
94 *	reference will call zfs_zinactive(), which may induce a lot of work --
95 *	pushing cached pages (which acquires range locks) and syncing out
96 *	cached atime changes.  Third, zfs_zinactive() may require a new tx,
97 *	which could deadlock the system if you were already holding one.
98 *
99 *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
100 *	as they can span dmu_tx_assign() calls.
101 *
102 *  (4)	Always pass zfsvfs->z_assign as the second argument to dmu_tx_assign().
103 *	In normal operation, this will be TXG_NOWAIT.  During ZIL replay,
104 *	it will be a specific txg.  Either way, dmu_tx_assign() never blocks.
105 *	This is critical because we don't want to block while holding locks.
106 *	Note, in particular, that if a lock is sometimes acquired before
107 *	the tx assigns, and sometimes after (e.g. z_lock), then failing to
108 *	use a non-blocking assign can deadlock the system.  The scenario:
109 *
110 *	Thread A has grabbed a lock before calling dmu_tx_assign().
111 *	Thread B is in an already-assigned tx, and blocks for this lock.
112 *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
113 *	forever, because the previous txg can't quiesce until B's tx commits.
114 *
115 *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
116 *	then drop all locks, call dmu_tx_wait(), and try again.
117 *
118 *  (5)	If the operation succeeded, generate the intent log entry for it
119 *	before dropping locks.  This ensures that the ordering of events
120 *	in the intent log matches the order in which they actually occurred.
121 *
122 *  (6)	At the end of each vnode op, the DMU tx must always commit,
123 *	regardless of whether there were any errors.
124 *
125 *  (7)	After dropping all locks, invoke zil_commit(zilog, seq, foid)
126 *	to ensure that synchronous semantics are provided when necessary.
127 *
128 * In general, this is how things should be ordered in each vnode op:
129 *
130 *	ZFS_ENTER(zfsvfs);		// exit if unmounted
131 * top:
132 *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may VN_HOLD())
133 *	rw_enter(...);			// grab any other locks you need
134 *	tx = dmu_tx_create(...);	// get DMU tx
135 *	dmu_tx_hold_*();		// hold each object you might modify
136 *	error = dmu_tx_assign(tx, zfsvfs->z_assign);	// try to assign
137 *	if (error) {
138 *		rw_exit(...);		// drop locks
139 *		zfs_dirent_unlock(dl);	// unlock directory entry
140 *		VN_RELE(...);		// release held vnodes
141 *		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
142 *			dmu_tx_wait(tx);
143 *			dmu_tx_abort(tx);
144 *			goto top;
145 *		}
146 *		dmu_tx_abort(tx);	// abort DMU tx
147 *		ZFS_EXIT(zfsvfs);	// finished in zfs
148 *		return (error);		// really out of space
149 *	}
150 *	error = do_real_work();		// do whatever this VOP does
151 *	if (error == 0)
152 *		zfs_log_*(...);		// on success, make ZIL entry
153 *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
154 *	rw_exit(...);			// drop locks
155 *	zfs_dirent_unlock(dl);		// unlock directory entry
156 *	VN_RELE(...);			// release held vnodes
157 *	zil_commit(zilog, seq, foid);	// synchronous when necessary
158 *	ZFS_EXIT(zfsvfs);		// finished in zfs
159 *	return (error);			// done, report error
160 */
161/* ARGSUSED */
162static int
163zfs_open(vnode_t **vpp, int flag, cred_t *cr)
164{
165	znode_t	*zp = VTOZ(*vpp);
166
167	/* Keep a count of the synchronous opens in the znode */
168	if (flag & (FSYNC | FDSYNC))
169		atomic_inc_32(&zp->z_sync_cnt);
170	return (0);
171}
172
173/* ARGSUSED */
174static int
175zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr)
176{
177	znode_t	*zp = VTOZ(vp);
178
179	/* Decrement the synchronous opens in the znode */
180	if ((flag & (FSYNC | FDSYNC)) && (count == 1))
181		atomic_dec_32(&zp->z_sync_cnt);
182
183	/*
184	 * Clean up any locks held by this process on the vp.
185	 */
186	cleanlocks(vp, ddi_get_pid(), 0);
187	cleanshares(vp, ddi_get_pid());
188
189	return (0);
190}
191
192/*
193 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
194 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
195 */
196static int
197zfs_holey(vnode_t *vp, int cmd, offset_t *off)
198{
199	znode_t	*zp = VTOZ(vp);
200	uint64_t noff = (uint64_t)*off; /* new offset */
201	uint64_t file_sz;
202	int error;
203	boolean_t hole;
204
205	file_sz = zp->z_phys->zp_size;
206	if (noff >= file_sz)  {
207		return (ENXIO);
208	}
209
210	if (cmd == _FIO_SEEK_HOLE)
211		hole = B_TRUE;
212	else
213		hole = B_FALSE;
214
215	error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
216
217	/* end of file? */
218	if ((error == ESRCH) || (noff > file_sz)) {
219		/*
220		 * Handle the virtual hole at the end of file.
221		 */
222		if (hole) {
223			*off = file_sz;
224			return (0);
225		}
226		return (ENXIO);
227	}
228
229	if (noff < *off)
230		return (error);
231	*off = noff;
232	return (error);
233}
234
235/* ARGSUSED */
236static int
237zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
238    int *rvalp)
239{
240	offset_t off;
241	int error;
242	zfsvfs_t *zfsvfs;
243	znode_t *zp;
244
245	switch (com) {
246	case _FIOFFS:
247		return (zfs_sync(vp->v_vfsp, 0, cred));
248
249		/*
250		 * The following two ioctls are used by bfu.  Faking out,
251		 * necessary to avoid bfu errors.
252		 */
253	case _FIOGDIO:
254	case _FIOSDIO:
255		return (0);
256
257	case _FIO_SEEK_DATA:
258	case _FIO_SEEK_HOLE:
259		if (ddi_copyin((void *)data, &off, sizeof (off), flag))
260			return (EFAULT);
261
262		zp = VTOZ(vp);
263		zfsvfs = zp->z_zfsvfs;
264		ZFS_ENTER_VERIFY_ZP(zfsvfs, zp);
265
266		/* offset parameter is in/out */
267		error = zfs_holey(vp, com, &off);
268		ZFS_EXIT(zfsvfs);
269		if (error)
270			return (error);
271		if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
272			return (EFAULT);
273		return (0);
274	}
275	return (ENOTTY);
276}
277
278/*
279 * When a file is memory mapped, we must keep the IO data synchronized
280 * between the DMU cache and the memory mapped pages.  What this means:
281 *
282 * On Write:	If we find a memory mapped page, we write to *both*
283 *		the page and the dmu buffer.
284 *
285 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
286 *	the file is memory mapped.
287 */
288static int
289mappedwrite(vnode_t *vp, int nbytes, uio_t *uio, dmu_tx_t *tx)
290{
291	znode_t	*zp = VTOZ(vp);
292	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
293	int64_t	start, off;
294	int len = nbytes;
295	int error = 0;
296
297	start = uio->uio_loffset;
298	off = start & PAGEOFFSET;
299	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
300		page_t *pp;
301		uint64_t bytes = MIN(PAGESIZE - off, len);
302		uint64_t woff = uio->uio_loffset;
303
304		/*
305		 * We don't want a new page to "appear" in the middle of
306		 * the file update (because it may not get the write
307		 * update data), so we grab a lock to block
308		 * zfs_getpage().
309		 */
310		rw_enter(&zp->z_map_lock, RW_WRITER);
311		if (pp = page_lookup(vp, start, SE_SHARED)) {
312			caddr_t va;
313
314			rw_exit(&zp->z_map_lock);
315			va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1L);
316			error = uiomove(va+off, bytes, UIO_WRITE, uio);
317			if (error == 0) {
318				dmu_write(zfsvfs->z_os, zp->z_id,
319				    woff, bytes, va+off, tx);
320			}
321			ppmapout(va);
322			page_unlock(pp);
323		} else {
324			error = dmu_write_uio(zfsvfs->z_os, zp->z_id,
325			    uio, bytes, tx);
326			rw_exit(&zp->z_map_lock);
327		}
328		len -= bytes;
329		off = 0;
330		if (error)
331			break;
332	}
333	return (error);
334}
335
336/*
337 * When a file is memory mapped, we must keep the IO data synchronized
338 * between the DMU cache and the memory mapped pages.  What this means:
339 *
340 * On Read:	We "read" preferentially from memory mapped pages,
341 *		else we default from the dmu buffer.
342 *
343 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
344 *	the file is memory mapped.
345 */
346static int
347mappedread(vnode_t *vp, int nbytes, uio_t *uio)
348{
349	znode_t *zp = VTOZ(vp);
350	objset_t *os = zp->z_zfsvfs->z_os;
351	int64_t	start, off;
352	int len = nbytes;
353	int error = 0;
354
355	start = uio->uio_loffset;
356	off = start & PAGEOFFSET;
357	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
358		page_t *pp;
359		uint64_t bytes = MIN(PAGESIZE - off, len);
360
361		if (pp = page_lookup(vp, start, SE_SHARED)) {
362			caddr_t va;
363
364			va = ppmapin(pp, PROT_READ, (caddr_t)-1L);
365			error = uiomove(va + off, bytes, UIO_READ, uio);
366			ppmapout(va);
367			page_unlock(pp);
368		} else {
369			error = dmu_read_uio(os, zp->z_id, uio, bytes);
370		}
371		len -= bytes;
372		off = 0;
373		if (error)
374			break;
375	}
376	return (error);
377}
378
379offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
380
381/*
382 * Read bytes from specified file into supplied buffer.
383 *
384 *	IN:	vp	- vnode of file to be read from.
385 *		uio	- structure supplying read location, range info,
386 *			  and return buffer.
387 *		ioflag	- SYNC flags; used to provide FRSYNC semantics.
388 *		cr	- credentials of caller.
389 *
390 *	OUT:	uio	- updated offset and range, buffer filled.
391 *
392 *	RETURN:	0 if success
393 *		error code if failure
394 *
395 * Side Effects:
396 *	vp - atime updated if byte count > 0
397 */
398/* ARGSUSED */
399static int
400zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
401{
402	znode_t		*zp = VTOZ(vp);
403	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
404	objset_t	*os;
405	ssize_t		n, nbytes;
406	int		error;
407	rl_t		*rl;
408
409	ZFS_ENTER_VERIFY_ZP(zfsvfs, zp);
410	os = zfsvfs->z_os;
411
412	/*
413	 * Validate file offset
414	 */
415	if (uio->uio_loffset < (offset_t)0) {
416		ZFS_EXIT(zfsvfs);
417		return (EINVAL);
418	}
419
420	/*
421	 * Fasttrack empty reads
422	 */
423	if (uio->uio_resid == 0) {
424		ZFS_EXIT(zfsvfs);
425		return (0);
426	}
427
428	/*
429	 * Check for mandatory locks
430	 */
431	if (MANDMODE((mode_t)zp->z_phys->zp_mode)) {
432		if (error = chklock(vp, FREAD,
433		    uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
434			ZFS_EXIT(zfsvfs);
435			return (error);
436		}
437	}
438
439	/*
440	 * If we're in FRSYNC mode, sync out this znode before reading it.
441	 */
442	if (ioflag & FRSYNC)
443		zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id);
444
445	/*
446	 * Lock the range against changes.
447	 */
448	rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
449
450	/*
451	 * If we are reading past end-of-file we can skip
452	 * to the end; but we might still need to set atime.
453	 */
454	if (uio->uio_loffset >= zp->z_phys->zp_size) {
455		error = 0;
456		goto out;
457	}
458
459	ASSERT(uio->uio_loffset < zp->z_phys->zp_size);
460	n = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset);
461
462	while (n > 0) {
463		nbytes = MIN(n, zfs_read_chunk_size -
464		    P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
465
466		if (vn_has_cached_data(vp))
467			error = mappedread(vp, nbytes, uio);
468		else
469			error = dmu_read_uio(os, zp->z_id, uio, nbytes);
470		if (error)
471			break;
472
473		n -= nbytes;
474	}
475
476out:
477	zfs_range_unlock(rl);
478
479	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
480	ZFS_EXIT(zfsvfs);
481	return (error);
482}
483
484/*
485 * Fault in the pages of the first n bytes specified by the uio structure.
486 * 1 byte in each page is touched and the uio struct is unmodified.
487 * Any error will exit this routine as this is only a best
488 * attempt to get the pages resident. This is a copy of ufs_trans_touch().
489 */
490static void
491zfs_prefault_write(ssize_t n, struct uio *uio)
492{
493	struct iovec *iov;
494	ulong_t cnt, incr;
495	caddr_t p;
496	uint8_t tmp;
497
498	iov = uio->uio_iov;
499
500	while (n) {
501		cnt = MIN(iov->iov_len, n);
502		if (cnt == 0) {
503			/* empty iov entry */
504			iov++;
505			continue;
506		}
507		n -= cnt;
508		/*
509		 * touch each page in this segment.
510		 */
511		p = iov->iov_base;
512		while (cnt) {
513			switch (uio->uio_segflg) {
514			case UIO_USERSPACE:
515			case UIO_USERISPACE:
516				if (fuword8(p, &tmp))
517					return;
518				break;
519			case UIO_SYSSPACE:
520				if (kcopy(p, &tmp, 1))
521					return;
522				break;
523			}
524			incr = MIN(cnt, PAGESIZE);
525			p += incr;
526			cnt -= incr;
527		}
528		/*
529		 * touch the last byte in case it straddles a page.
530		 */
531		p--;
532		switch (uio->uio_segflg) {
533		case UIO_USERSPACE:
534		case UIO_USERISPACE:
535			if (fuword8(p, &tmp))
536				return;
537			break;
538		case UIO_SYSSPACE:
539			if (kcopy(p, &tmp, 1))
540				return;
541			break;
542		}
543		iov++;
544	}
545}
546
547/*
548 * Write the bytes to a file.
549 *
550 *	IN:	vp	- vnode of file to be written to.
551 *		uio	- structure supplying write location, range info,
552 *			  and data buffer.
553 *		ioflag	- FAPPEND flag set if in append mode.
554 *		cr	- credentials of caller.
555 *
556 *	OUT:	uio	- updated offset and range.
557 *
558 *	RETURN:	0 if success
559 *		error code if failure
560 *
561 * Timestamps:
562 *	vp - ctime|mtime updated if byte count > 0
563 */
564/* ARGSUSED */
565static int
566zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
567{
568	znode_t		*zp = VTOZ(vp);
569	rlim64_t	limit = uio->uio_llimit;
570	ssize_t		start_resid = uio->uio_resid;
571	ssize_t		tx_bytes;
572	uint64_t	end_size;
573	dmu_tx_t	*tx;
574	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
575	zilog_t		*zilog;
576	offset_t	woff;
577	ssize_t		n, nbytes;
578	rl_t		*rl;
579	int		max_blksz = zfsvfs->z_max_blksz;
580	int		error;
581
582	/*
583	 * Fasttrack empty write
584	 */
585	n = start_resid;
586	if (n == 0)
587		return (0);
588
589	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
590		limit = MAXOFFSET_T;
591
592	ZFS_ENTER_VERIFY_ZP(zfsvfs, zp);
593	zilog = zfsvfs->z_log;
594
595	/*
596	 * Pre-fault the pages to ensure slow (eg NFS) pages
597	 * don't hold up txg.
598	 */
599	zfs_prefault_write(n, uio);
600
601	/*
602	 * If in append mode, set the io offset pointer to eof.
603	 */
604	if (ioflag & FAPPEND) {
605		/*
606		 * Range lock for a file append:
607		 * The value for the start of range will be determined by
608		 * zfs_range_lock() (to guarantee append semantics).
609		 * If this write will cause the block size to increase,
610		 * zfs_range_lock() will lock the entire file, so we must
611		 * later reduce the range after we grow the block size.
612		 */
613		rl = zfs_range_lock(zp, 0, n, RL_APPEND);
614		if (rl->r_len == UINT64_MAX) {
615			/* overlocked, zp_size can't change */
616			woff = uio->uio_loffset = zp->z_phys->zp_size;
617		} else {
618			woff = uio->uio_loffset = rl->r_off;
619		}
620	} else {
621		woff = uio->uio_loffset;
622		/*
623		 * Validate file offset
624		 */
625		if (woff < 0) {
626			ZFS_EXIT(zfsvfs);
627			return (EINVAL);
628		}
629
630		/*
631		 * If we need to grow the block size then zfs_range_lock()
632		 * will lock a wider range than we request here.
633		 * Later after growing the block size we reduce the range.
634		 */
635		rl = zfs_range_lock(zp, woff, n, RL_WRITER);
636	}
637
638	if (woff >= limit) {
639		zfs_range_unlock(rl);
640		ZFS_EXIT(zfsvfs);
641		return (EFBIG);
642	}
643
644	if ((woff + n) > limit || woff > (limit - n))
645		n = limit - woff;
646
647	/*
648	 * Check for mandatory locks
649	 */
650	if (MANDMODE((mode_t)zp->z_phys->zp_mode) &&
651	    (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
652		zfs_range_unlock(rl);
653		ZFS_EXIT(zfsvfs);
654		return (error);
655	}
656	end_size = MAX(zp->z_phys->zp_size, woff + n);
657
658	/*
659	 * Write the file in reasonable size chunks.  Each chunk is written
660	 * in a separate transaction; this keeps the intent log records small
661	 * and allows us to do more fine-grained space accounting.
662	 */
663	while (n > 0) {
664		/*
665		 * Start a transaction.
666		 */
667		woff = uio->uio_loffset;
668		tx = dmu_tx_create(zfsvfs->z_os);
669		dmu_tx_hold_bonus(tx, zp->z_id);
670		dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
671		error = dmu_tx_assign(tx, zfsvfs->z_assign);
672		if (error) {
673			if (error == ERESTART &&
674			    zfsvfs->z_assign == TXG_NOWAIT) {
675				dmu_tx_wait(tx);
676				dmu_tx_abort(tx);
677				continue;
678			}
679			dmu_tx_abort(tx);
680			break;
681		}
682
683		/*
684		 * If zfs_range_lock() over-locked we grow the blocksize
685		 * and then reduce the lock range.  This will only happen
686		 * on the first iteration since zfs_range_reduce() will
687		 * shrink down r_len to the appropriate size.
688		 */
689		if (rl->r_len == UINT64_MAX) {
690			uint64_t new_blksz;
691
692			if (zp->z_blksz > max_blksz) {
693				ASSERT(!ISP2(zp->z_blksz));
694				new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE);
695			} else {
696				new_blksz = MIN(end_size, max_blksz);
697			}
698			zfs_grow_blocksize(zp, new_blksz, tx);
699			zfs_range_reduce(rl, woff, n);
700		}
701
702		/*
703		 * XXX - should we really limit each write to z_max_blksz?
704		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
705		 */
706		nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
707		rw_enter(&zp->z_map_lock, RW_READER);
708
709		tx_bytes = uio->uio_resid;
710		if (vn_has_cached_data(vp)) {
711			rw_exit(&zp->z_map_lock);
712			error = mappedwrite(vp, nbytes, uio, tx);
713		} else {
714			error = dmu_write_uio(zfsvfs->z_os, zp->z_id,
715			    uio, nbytes, tx);
716			rw_exit(&zp->z_map_lock);
717		}
718		tx_bytes -= uio->uio_resid;
719
720		/*
721		 * If we made no progress, we're done.  If we made even
722		 * partial progress, update the znode and ZIL accordingly.
723		 */
724		if (tx_bytes == 0) {
725			dmu_tx_commit(tx);
726			ASSERT(error != 0);
727			break;
728		}
729
730		/*
731		 * Clear Set-UID/Set-GID bits on successful write if not
732		 * privileged and at least one of the excute bits is set.
733		 *
734		 * It would be nice to to this after all writes have
735		 * been done, but that would still expose the ISUID/ISGID
736		 * to another app after the partial write is committed.
737		 */
738		mutex_enter(&zp->z_acl_lock);
739		if ((zp->z_phys->zp_mode & (S_IXUSR | (S_IXUSR >> 3) |
740		    (S_IXUSR >> 6))) != 0 &&
741		    (zp->z_phys->zp_mode & (S_ISUID | S_ISGID)) != 0 &&
742		    secpolicy_vnode_setid_retain(cr,
743		    (zp->z_phys->zp_mode & S_ISUID) != 0 &&
744		    zp->z_phys->zp_uid == 0) != 0) {
745			zp->z_phys->zp_mode &= ~(S_ISUID | S_ISGID);
746		}
747		mutex_exit(&zp->z_acl_lock);
748
749		/*
750		 * Update time stamp.  NOTE: This marks the bonus buffer as
751		 * dirty, so we don't have to do it again for zp_size.
752		 */
753		zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
754
755		/*
756		 * Update the file size (zp_size) if it has changed;
757		 * account for possible concurrent updates.
758		 */
759		while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset)
760			(void) atomic_cas_64(&zp->z_phys->zp_size, end_size,
761			    uio->uio_loffset);
762		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
763		dmu_tx_commit(tx);
764
765		if (error != 0)
766			break;
767		ASSERT(tx_bytes == nbytes);
768		n -= nbytes;
769	}
770
771	zfs_range_unlock(rl);
772
773	/*
774	 * If we're in replay mode, or we made no progress, return error.
775	 * Otherwise, it's at least a partial write, so it's successful.
776	 */
777	if (zfsvfs->z_assign >= TXG_INITIAL || uio->uio_resid == start_resid) {
778		ZFS_EXIT(zfsvfs);
779		return (error);
780	}
781
782	if (ioflag & (FSYNC | FDSYNC))
783		zil_commit(zilog, zp->z_last_itx, zp->z_id);
784
785	ZFS_EXIT(zfsvfs);
786	return (0);
787}
788
789void
790zfs_get_done(dmu_buf_t *db, void *vzgd)
791{
792	zgd_t *zgd = (zgd_t *)vzgd;
793	rl_t *rl = zgd->zgd_rl;
794	vnode_t *vp = ZTOV(rl->r_zp);
795
796	dmu_buf_rele(db, vzgd);
797	zfs_range_unlock(rl);
798	VN_RELE(vp);
799	zil_add_vdev(zgd->zgd_zilog, DVA_GET_VDEV(BP_IDENTITY(zgd->zgd_bp)));
800	kmem_free(zgd, sizeof (zgd_t));
801}
802
803/*
804 * Get data to generate a TX_WRITE intent log record.
805 */
806int
807zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
808{
809	zfsvfs_t *zfsvfs = arg;
810	objset_t *os = zfsvfs->z_os;
811	znode_t *zp;
812	uint64_t off = lr->lr_offset;
813	dmu_buf_t *db;
814	rl_t *rl;
815	zgd_t *zgd;
816	int dlen = lr->lr_length;		/* length of user data */
817	int error = 0;
818
819	ASSERT(zio);
820	ASSERT(dlen != 0);
821
822	/*
823	 * Nothing to do if the file has been removed
824	 */
825	if (zfs_zget(zfsvfs, lr->lr_foid, &zp) != 0)
826		return (ENOENT);
827	if (zp->z_unlinked) {
828		VN_RELE(ZTOV(zp));
829		return (ENOENT);
830	}
831
832	/*
833	 * Write records come in two flavors: immediate and indirect.
834	 * For small writes it's cheaper to store the data with the
835	 * log record (immediate); for large writes it's cheaper to
836	 * sync the data and get a pointer to it (indirect) so that
837	 * we don't have to write the data twice.
838	 */
839	if (buf != NULL) { /* immediate write */
840		rl = zfs_range_lock(zp, off, dlen, RL_READER);
841		/* test for truncation needs to be done while range locked */
842		if (off >= zp->z_phys->zp_size) {
843			error = ENOENT;
844			goto out;
845		}
846		VERIFY(0 == dmu_read(os, lr->lr_foid, off, dlen, buf));
847	} else { /* indirect write */
848		uint64_t boff; /* block starting offset */
849
850		/*
851		 * Have to lock the whole block to ensure when it's
852		 * written out and it's checksum is being calculated
853		 * that no one can change the data. We need to re-check
854		 * blocksize after we get the lock in case it's changed!
855		 */
856		for (;;) {
857			if (ISP2(zp->z_blksz)) {
858				boff = P2ALIGN_TYPED(off, zp->z_blksz,
859				    uint64_t);
860			} else {
861				boff = 0;
862			}
863			dlen = zp->z_blksz;
864			rl = zfs_range_lock(zp, boff, dlen, RL_READER);
865			if (zp->z_blksz == dlen)
866				break;
867			zfs_range_unlock(rl);
868		}
869		/* test for truncation needs to be done while range locked */
870		if (off >= zp->z_phys->zp_size) {
871			error = ENOENT;
872			goto out;
873		}
874		zgd = (zgd_t *)kmem_alloc(sizeof (zgd_t), KM_SLEEP);
875		zgd->zgd_rl = rl;
876		zgd->zgd_zilog = zfsvfs->z_log;
877		zgd->zgd_bp = &lr->lr_blkptr;
878		VERIFY(0 == dmu_buf_hold(os, lr->lr_foid, boff, zgd, &db));
879		ASSERT(boff == db->db_offset);
880		lr->lr_blkoff = off - boff;
881		error = dmu_sync(zio, db, &lr->lr_blkptr,
882		    lr->lr_common.lrc_txg, zfs_get_done, zgd);
883		ASSERT((error && error != EINPROGRESS) ||
884		    lr->lr_length <= zp->z_blksz);
885		if (error == 0) {
886			zil_add_vdev(zfsvfs->z_log,
887			    DVA_GET_VDEV(BP_IDENTITY(&lr->lr_blkptr)));
888		}
889		/*
890		 * If we get EINPROGRESS, then we need to wait for a
891		 * write IO initiated by dmu_sync() to complete before
892		 * we can release this dbuf.  We will finish everything
893		 * up in the zfs_get_done() callback.
894		 */
895		if (error == EINPROGRESS)
896			return (0);
897		dmu_buf_rele(db, zgd);
898		kmem_free(zgd, sizeof (zgd_t));
899	}
900out:
901	zfs_range_unlock(rl);
902	VN_RELE(ZTOV(zp));
903	return (error);
904}
905
906/*ARGSUSED*/
907static int
908zfs_access(vnode_t *vp, int mode, int flags, cred_t *cr)
909{
910	znode_t *zp = VTOZ(vp);
911	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
912	int error;
913
914	ZFS_ENTER_VERIFY_ZP(zfsvfs, zp);
915	error = zfs_zaccess_rwx(zp, mode, cr);
916	ZFS_EXIT(zfsvfs);
917	return (error);
918}
919
920/*
921 * Lookup an entry in a directory, or an extended attribute directory.
922 * If it exists, return a held vnode reference for it.
923 *
924 *	IN:	dvp	- vnode of directory to search.
925 *		nm	- name of entry to lookup.
926 *		pnp	- full pathname to lookup [UNUSED].
927 *		flags	- LOOKUP_XATTR set if looking for an attribute.
928 *		rdir	- root directory vnode [UNUSED].
929 *		cr	- credentials of caller.
930 *
931 *	OUT:	vpp	- vnode of located entry, NULL if not found.
932 *
933 *	RETURN:	0 if success
934 *		error code if failure
935 *
936 * Timestamps:
937 *	NA
938 */
939/* ARGSUSED */
940static int
941zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
942    int flags, vnode_t *rdir, cred_t *cr)
943{
944
945	znode_t *zdp = VTOZ(dvp);
946	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
947	int	error;
948
949	ZFS_ENTER_VERIFY_ZP(zfsvfs, zdp);
950
951	*vpp = NULL;
952
953	if (flags & LOOKUP_XATTR) {
954		/*
955		 * If the xattr property is off, refuse the lookup request.
956		 */
957		if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
958			ZFS_EXIT(zfsvfs);
959			return (EINVAL);
960		}
961
962		/*
963		 * We don't allow recursive attributes..
964		 * Maybe someday we will.
965		 */
966		if (zdp->z_phys->zp_flags & ZFS_XATTR) {
967			ZFS_EXIT(zfsvfs);
968			return (EINVAL);
969		}
970
971		if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
972			ZFS_EXIT(zfsvfs);
973			return (error);
974		}
975
976		/*
977		 * Do we have permission to get into attribute directory?
978		 */
979
980		if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, cr)) {
981			VN_RELE(*vpp);
982		}
983
984		ZFS_EXIT(zfsvfs);
985		return (error);
986	}
987
988	if (dvp->v_type != VDIR) {
989		ZFS_EXIT(zfsvfs);
990		return (ENOTDIR);
991	}
992
993	/*
994	 * Check accessibility of directory.
995	 */
996
997	if (error = zfs_zaccess(zdp, ACE_EXECUTE, cr)) {
998		ZFS_EXIT(zfsvfs);
999		return (error);
1000	}
1001
1002	if ((error = zfs_dirlook(zdp, nm, vpp)) == 0) {
1003
1004		/*
1005		 * Convert device special files
1006		 */
1007		if (IS_DEVVP(*vpp)) {
1008			vnode_t	*svp;
1009
1010			svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1011			VN_RELE(*vpp);
1012			if (svp == NULL)
1013				error = ENOSYS;
1014			else
1015				*vpp = svp;
1016		}
1017	}
1018
1019	ZFS_EXIT(zfsvfs);
1020	return (error);
1021}
1022
1023/*
1024 * Attempt to create a new entry in a directory.  If the entry
1025 * already exists, truncate the file if permissible, else return
1026 * an error.  Return the vp of the created or trunc'd file.
1027 *
1028 *	IN:	dvp	- vnode of directory to put new file entry in.
1029 *		name	- name of new file entry.
1030 *		vap	- attributes of new file.
1031 *		excl	- flag indicating exclusive or non-exclusive mode.
1032 *		mode	- mode to open file with.
1033 *		cr	- credentials of caller.
1034 *		flag	- large file flag [UNUSED].
1035 *
1036 *	OUT:	vpp	- vnode of created or trunc'd entry.
1037 *
1038 *	RETURN:	0 if success
1039 *		error code if failure
1040 *
1041 * Timestamps:
1042 *	dvp - ctime|mtime updated if new entry created
1043 *	 vp - ctime|mtime always, atime if new
1044 */
1045/* ARGSUSED */
1046static int
1047zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1048    int mode, vnode_t **vpp, cred_t *cr, int flag)
1049{
1050	znode_t		*zp, *dzp = VTOZ(dvp);
1051	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1052	zilog_t		*zilog;
1053	objset_t	*os;
1054	zfs_dirlock_t	*dl;
1055	dmu_tx_t	*tx;
1056	int		error;
1057	uint64_t	zoid;
1058
1059	ZFS_ENTER_VERIFY_ZP(zfsvfs, dzp);
1060	os = zfsvfs->z_os;
1061	zilog = zfsvfs->z_log;
1062
1063top:
1064	*vpp = NULL;
1065
1066	if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1067		vap->va_mode &= ~VSVTX;
1068
1069	if (*name == '\0') {
1070		/*
1071		 * Null component name refers to the directory itself.
1072		 */
1073		VN_HOLD(dvp);
1074		zp = dzp;
1075		dl = NULL;
1076		error = 0;
1077	} else {
1078		/* possible VN_HOLD(zp) */
1079		if (error = zfs_dirent_lock(&dl, dzp, name, &zp, 0)) {
1080			if (strcmp(name, "..") == 0)
1081				error = EISDIR;
1082			ZFS_EXIT(zfsvfs);
1083			return (error);
1084		}
1085	}
1086
1087	zoid = zp ? zp->z_id : -1ULL;
1088
1089	if (zp == NULL) {
1090		/*
1091		 * Create a new file object and update the directory
1092		 * to reference it.
1093		 */
1094		if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) {
1095			goto out;
1096		}
1097
1098		/*
1099		 * We only support the creation of regular files in
1100		 * extended attribute directories.
1101		 */
1102		if ((dzp->z_phys->zp_flags & ZFS_XATTR) &&
1103		    (vap->va_type != VREG)) {
1104			error = EINVAL;
1105			goto out;
1106		}
1107
1108		tx = dmu_tx_create(os);
1109		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1110		dmu_tx_hold_bonus(tx, dzp->z_id);
1111		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1112		if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE)
1113			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1114			    0, SPA_MAXBLOCKSIZE);
1115		error = dmu_tx_assign(tx, zfsvfs->z_assign);
1116		if (error) {
1117			zfs_dirent_unlock(dl);
1118			if (error == ERESTART &&
1119			    zfsvfs->z_assign == TXG_NOWAIT) {
1120				dmu_tx_wait(tx);
1121				dmu_tx_abort(tx);
1122				goto top;
1123			}
1124			dmu_tx_abort(tx);
1125			ZFS_EXIT(zfsvfs);
1126			return (error);
1127		}
1128		zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0);
1129		ASSERT(zp->z_id == zoid);
1130		(void) zfs_link_create(dl, zp, tx, ZNEW);
1131		zfs_log_create(zilog, tx, TX_CREATE, dzp, zp, name);
1132		dmu_tx_commit(tx);
1133	} else {
1134		/*
1135		 * A directory entry already exists for this name.
1136		 */
1137		/*
1138		 * Can't truncate an existing file if in exclusive mode.
1139		 */
1140		if (excl == EXCL) {
1141			error = EEXIST;
1142			goto out;
1143		}
1144		/*
1145		 * Can't open a directory for writing.
1146		 */
1147		if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1148			error = EISDIR;
1149			goto out;
1150		}
1151		/*
1152		 * Verify requested access to file.
1153		 */
1154		if (mode && (error = zfs_zaccess_rwx(zp, mode, cr))) {
1155			goto out;
1156		}
1157
1158		mutex_enter(&dzp->z_lock);
1159		dzp->z_seq++;
1160		mutex_exit(&dzp->z_lock);
1161
1162		/*
1163		 * Truncate regular files if requested.
1164		 */
1165		if ((ZTOV(zp)->v_type == VREG) &&
1166		    (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1167			error = zfs_freesp(zp, 0, 0, mode, TRUE);
1168			if (error == ERESTART &&
1169			    zfsvfs->z_assign == TXG_NOWAIT) {
1170				/* NB: we already did dmu_tx_wait() */
1171				zfs_dirent_unlock(dl);
1172				VN_RELE(ZTOV(zp));
1173				goto top;
1174			}
1175
1176			if (error == 0) {
1177				vnevent_create(ZTOV(zp));
1178			}
1179		}
1180	}
1181out:
1182
1183	if (dl)
1184		zfs_dirent_unlock(dl);
1185
1186	if (error) {
1187		if (zp)
1188			VN_RELE(ZTOV(zp));
1189	} else {
1190		*vpp = ZTOV(zp);
1191		/*
1192		 * If vnode is for a device return a specfs vnode instead.
1193		 */
1194		if (IS_DEVVP(*vpp)) {
1195			struct vnode *svp;
1196
1197			svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1198			VN_RELE(*vpp);
1199			if (svp == NULL) {
1200				error = ENOSYS;
1201			}
1202			*vpp = svp;
1203		}
1204	}
1205
1206	ZFS_EXIT(zfsvfs);
1207	return (error);
1208}
1209
1210/*
1211 * Remove an entry from a directory.
1212 *
1213 *	IN:	dvp	- vnode of directory to remove entry from.
1214 *		name	- name of entry to remove.
1215 *		cr	- credentials of caller.
1216 *
1217 *	RETURN:	0 if success
1218 *		error code if failure
1219 *
1220 * Timestamps:
1221 *	dvp - ctime|mtime
1222 *	 vp - ctime (if nlink > 0)
1223 */
1224static int
1225zfs_remove(vnode_t *dvp, char *name, cred_t *cr)
1226{
1227	znode_t		*zp, *dzp = VTOZ(dvp);
1228	znode_t		*xzp = NULL;
1229	vnode_t		*vp;
1230	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1231	zilog_t		*zilog;
1232	uint64_t	acl_obj, xattr_obj;
1233	zfs_dirlock_t	*dl;
1234	dmu_tx_t	*tx;
1235	boolean_t	may_delete_now, delete_now = FALSE;
1236	boolean_t	unlinked;
1237	int		error;
1238
1239	ZFS_ENTER_VERIFY_ZP(zfsvfs, dzp);
1240	zilog = zfsvfs->z_log;
1241
1242top:
1243	/*
1244	 * Attempt to lock directory; fail if entry doesn't exist.
1245	 */
1246	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZEXISTS)) {
1247		ZFS_EXIT(zfsvfs);
1248		return (error);
1249	}
1250
1251	vp = ZTOV(zp);
1252
1253	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1254		goto out;
1255	}
1256
1257	/*
1258	 * Need to use rmdir for removing directories.
1259	 */
1260	if (vp->v_type == VDIR) {
1261		error = EPERM;
1262		goto out;
1263	}
1264
1265	vnevent_remove(vp, dvp, name);
1266
1267	dnlc_remove(dvp, name);
1268
1269	mutex_enter(&vp->v_lock);
1270	may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1271	mutex_exit(&vp->v_lock);
1272
1273	/*
1274	 * We may delete the znode now, or we may put it in the unlinked set;
1275	 * it depends on whether we're the last link, and on whether there are
1276	 * other holds on the vnode.  So we dmu_tx_hold() the right things to
1277	 * allow for either case.
1278	 */
1279	tx = dmu_tx_create(zfsvfs->z_os);
1280	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1281	dmu_tx_hold_bonus(tx, zp->z_id);
1282	if (may_delete_now)
1283		dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END);
1284
1285	/* are there any extended attributes? */
1286	if ((xattr_obj = zp->z_phys->zp_xattr) != 0) {
1287		/* XXX - do we need this if we are deleting? */
1288		dmu_tx_hold_bonus(tx, xattr_obj);
1289	}
1290
1291	/* are there any additional acls */
1292	if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 &&
1293	    may_delete_now)
1294		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1295
1296	/* charge as an update -- would be nice not to charge at all */
1297	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1298
1299	error = dmu_tx_assign(tx, zfsvfs->z_assign);
1300	if (error) {
1301		zfs_dirent_unlock(dl);
1302		VN_RELE(vp);
1303		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
1304			dmu_tx_wait(tx);
1305			dmu_tx_abort(tx);
1306			goto top;
1307		}
1308		dmu_tx_abort(tx);
1309		ZFS_EXIT(zfsvfs);
1310		return (error);
1311	}
1312
1313	/*
1314	 * Remove the directory entry.
1315	 */
1316	error = zfs_link_destroy(dl, zp, tx, 0, &unlinked);
1317
1318	if (error) {
1319		dmu_tx_commit(tx);
1320		goto out;
1321	}
1322
1323	if (unlinked) {
1324		mutex_enter(&vp->v_lock);
1325		delete_now = may_delete_now &&
1326		    vp->v_count == 1 && !vn_has_cached_data(vp) &&
1327		    zp->z_phys->zp_xattr == xattr_obj &&
1328		    zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj;
1329		mutex_exit(&vp->v_lock);
1330	}
1331
1332	if (delete_now) {
1333		if (zp->z_phys->zp_xattr) {
1334			error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp);
1335			ASSERT3U(error, ==, 0);
1336			ASSERT3U(xzp->z_phys->zp_links, ==, 2);
1337			dmu_buf_will_dirty(xzp->z_dbuf, tx);
1338			mutex_enter(&xzp->z_lock);
1339			xzp->z_unlinked = 1;
1340			xzp->z_phys->zp_links = 0;
1341			mutex_exit(&xzp->z_lock);
1342			zfs_unlinked_add(xzp, tx);
1343			zp->z_phys->zp_xattr = 0; /* probably unnecessary */
1344		}
1345		mutex_enter(&zp->z_lock);
1346		mutex_enter(&vp->v_lock);
1347		vp->v_count--;
1348		ASSERT3U(vp->v_count, ==, 0);
1349		mutex_exit(&vp->v_lock);
1350		mutex_exit(&zp->z_lock);
1351		zfs_znode_delete(zp, tx);
1352		VFS_RELE(zfsvfs->z_vfs);
1353	} else if (unlinked) {
1354		zfs_unlinked_add(zp, tx);
1355	}
1356
1357	zfs_log_remove(zilog, tx, TX_REMOVE, dzp, name);
1358
1359	dmu_tx_commit(tx);
1360out:
1361	zfs_dirent_unlock(dl);
1362
1363	if (!delete_now) {
1364		VN_RELE(vp);
1365	} else if (xzp) {
1366		/* this rele delayed to prevent nesting transactions */
1367		VN_RELE(ZTOV(xzp));
1368	}
1369
1370	ZFS_EXIT(zfsvfs);
1371	return (error);
1372}
1373
1374/*
1375 * Create a new directory and insert it into dvp using the name
1376 * provided.  Return a pointer to the inserted directory.
1377 *
1378 *	IN:	dvp	- vnode of directory to add subdir to.
1379 *		dirname	- name of new directory.
1380 *		vap	- attributes of new directory.
1381 *		cr	- credentials of caller.
1382 *
1383 *	OUT:	vpp	- vnode of created directory.
1384 *
1385 *	RETURN:	0 if success
1386 *		error code if failure
1387 *
1388 * Timestamps:
1389 *	dvp - ctime|mtime updated
1390 *	 vp - ctime|mtime|atime updated
1391 */
1392static int
1393zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr)
1394{
1395	znode_t		*zp, *dzp = VTOZ(dvp);
1396	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1397	zilog_t		*zilog;
1398	zfs_dirlock_t	*dl;
1399	uint64_t	zoid = 0;
1400	dmu_tx_t	*tx;
1401	int		error;
1402
1403	ASSERT(vap->va_type == VDIR);
1404
1405	ZFS_ENTER_VERIFY_ZP(zfsvfs, dzp);
1406	zilog = zfsvfs->z_log;
1407
1408	if (dzp->z_phys->zp_flags & ZFS_XATTR) {
1409		ZFS_EXIT(zfsvfs);
1410		return (EINVAL);
1411	}
1412top:
1413	*vpp = NULL;
1414
1415	/*
1416	 * First make sure the new directory doesn't exist.
1417	 */
1418	if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, ZNEW)) {
1419		ZFS_EXIT(zfsvfs);
1420		return (error);
1421	}
1422
1423	if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, cr)) {
1424		zfs_dirent_unlock(dl);
1425		ZFS_EXIT(zfsvfs);
1426		return (error);
1427	}
1428
1429	/*
1430	 * Add a new entry to the directory.
1431	 */
1432	tx = dmu_tx_create(zfsvfs->z_os);
1433	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1434	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1435	if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE)
1436		dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1437		    0, SPA_MAXBLOCKSIZE);
1438	error = dmu_tx_assign(tx, zfsvfs->z_assign);
1439	if (error) {
1440		zfs_dirent_unlock(dl);
1441		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
1442			dmu_tx_wait(tx);
1443			dmu_tx_abort(tx);
1444			goto top;
1445		}
1446		dmu_tx_abort(tx);
1447		ZFS_EXIT(zfsvfs);
1448		return (error);
1449	}
1450
1451	/*
1452	 * Create new node.
1453	 */
1454	zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0);
1455
1456	/*
1457	 * Now put new name in parent dir.
1458	 */
1459	(void) zfs_link_create(dl, zp, tx, ZNEW);
1460
1461	*vpp = ZTOV(zp);
1462
1463	zfs_log_create(zilog, tx, TX_MKDIR, dzp, zp, dirname);
1464	dmu_tx_commit(tx);
1465
1466	zfs_dirent_unlock(dl);
1467
1468	ZFS_EXIT(zfsvfs);
1469	return (0);
1470}
1471
1472/*
1473 * Remove a directory subdir entry.  If the current working
1474 * directory is the same as the subdir to be removed, the
1475 * remove will fail.
1476 *
1477 *	IN:	dvp	- vnode of directory to remove from.
1478 *		name	- name of directory to be removed.
1479 *		cwd	- vnode of current working directory.
1480 *		cr	- credentials of caller.
1481 *
1482 *	RETURN:	0 if success
1483 *		error code if failure
1484 *
1485 * Timestamps:
1486 *	dvp - ctime|mtime updated
1487 */
1488static int
1489zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr)
1490{
1491	znode_t		*dzp = VTOZ(dvp);
1492	znode_t		*zp;
1493	vnode_t		*vp;
1494	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1495	zilog_t		*zilog;
1496	zfs_dirlock_t	*dl;
1497	dmu_tx_t	*tx;
1498	int		error;
1499
1500	ZFS_ENTER_VERIFY_ZP(zfsvfs, dzp);
1501	zilog = zfsvfs->z_log;
1502
1503top:
1504	zp = NULL;
1505
1506	/*
1507	 * Attempt to lock directory; fail if entry doesn't exist.
1508	 */
1509	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZEXISTS)) {
1510		ZFS_EXIT(zfsvfs);
1511		return (error);
1512	}
1513
1514	vp = ZTOV(zp);
1515
1516	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1517		goto out;
1518	}
1519
1520	if (vp->v_type != VDIR) {
1521		error = ENOTDIR;
1522		goto out;
1523	}
1524
1525	if (vp == cwd) {
1526		error = EINVAL;
1527		goto out;
1528	}
1529
1530	vnevent_rmdir(vp, dvp, name);
1531
1532	/*
1533	 * Grab a lock on the directory to make sure that noone is
1534	 * trying to add (or lookup) entries while we are removing it.
1535	 */
1536	rw_enter(&zp->z_name_lock, RW_WRITER);
1537
1538	/*
1539	 * Grab a lock on the parent pointer to make sure we play well
1540	 * with the treewalk and directory rename code.
1541	 */
1542	rw_enter(&zp->z_parent_lock, RW_WRITER);
1543
1544	tx = dmu_tx_create(zfsvfs->z_os);
1545	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1546	dmu_tx_hold_bonus(tx, zp->z_id);
1547	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1548	error = dmu_tx_assign(tx, zfsvfs->z_assign);
1549	if (error) {
1550		rw_exit(&zp->z_parent_lock);
1551		rw_exit(&zp->z_name_lock);
1552		zfs_dirent_unlock(dl);
1553		VN_RELE(vp);
1554		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
1555			dmu_tx_wait(tx);
1556			dmu_tx_abort(tx);
1557			goto top;
1558		}
1559		dmu_tx_abort(tx);
1560		ZFS_EXIT(zfsvfs);
1561		return (error);
1562	}
1563
1564	error = zfs_link_destroy(dl, zp, tx, 0, NULL);
1565
1566	if (error == 0)
1567		zfs_log_remove(zilog, tx, TX_RMDIR, dzp, name);
1568
1569	dmu_tx_commit(tx);
1570
1571	rw_exit(&zp->z_parent_lock);
1572	rw_exit(&zp->z_name_lock);
1573out:
1574	zfs_dirent_unlock(dl);
1575
1576	VN_RELE(vp);
1577
1578	ZFS_EXIT(zfsvfs);
1579	return (error);
1580}
1581
1582/*
1583 * Read as many directory entries as will fit into the provided
1584 * buffer from the given directory cursor position (specified in
1585 * the uio structure.
1586 *
1587 *	IN:	vp	- vnode of directory to read.
1588 *		uio	- structure supplying read location, range info,
1589 *			  and return buffer.
1590 *		cr	- credentials of caller.
1591 *
1592 *	OUT:	uio	- updated offset and range, buffer filled.
1593 *		eofp	- set to true if end-of-file detected.
1594 *
1595 *	RETURN:	0 if success
1596 *		error code if failure
1597 *
1598 * Timestamps:
1599 *	vp - atime updated
1600 *
1601 * Note that the low 4 bits of the cookie returned by zap is always zero.
1602 * This allows us to use the low range for "special" directory entries:
1603 * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
1604 * we use the offset 2 for the '.zfs' directory.
1605 */
1606/* ARGSUSED */
1607static int
1608zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp)
1609{
1610	znode_t		*zp = VTOZ(vp);
1611	iovec_t		*iovp;
1612	dirent64_t	*odp;
1613	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
1614	objset_t	*os;
1615	caddr_t		outbuf;
1616	size_t		bufsize;
1617	zap_cursor_t	zc;
1618	zap_attribute_t	zap;
1619	uint_t		bytes_wanted;
1620	uint64_t	offset; /* must be unsigned; checks for < 1 */
1621	int		local_eof;
1622	int		outcount;
1623	int		error;
1624	uint8_t		prefetch;
1625
1626	ZFS_ENTER_VERIFY_ZP(zfsvfs, zp);
1627
1628	/*
1629	 * If we are not given an eof variable,
1630	 * use a local one.
1631	 */
1632	if (eofp == NULL)
1633		eofp = &local_eof;
1634
1635	/*
1636	 * Check for valid iov_len.
1637	 */
1638	if (uio->uio_iov->iov_len <= 0) {
1639		ZFS_EXIT(zfsvfs);
1640		return (EINVAL);
1641	}
1642
1643	/*
1644	 * Quit if directory has been removed (posix)
1645	 */
1646	if ((*eofp = zp->z_unlinked) != 0) {
1647		ZFS_EXIT(zfsvfs);
1648		return (0);
1649	}
1650
1651	error = 0;
1652	os = zfsvfs->z_os;
1653	offset = uio->uio_loffset;
1654	prefetch = zp->z_zn_prefetch;
1655
1656	/*
1657	 * Initialize the iterator cursor.
1658	 */
1659	if (offset <= 3) {
1660		/*
1661		 * Start iteration from the beginning of the directory.
1662		 */
1663		zap_cursor_init(&zc, os, zp->z_id);
1664	} else {
1665		/*
1666		 * The offset is a serialized cursor.
1667		 */
1668		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
1669	}
1670
1671	/*
1672	 * Get space to change directory entries into fs independent format.
1673	 */
1674	iovp = uio->uio_iov;
1675	bytes_wanted = iovp->iov_len;
1676	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
1677		bufsize = bytes_wanted;
1678		outbuf = kmem_alloc(bufsize, KM_SLEEP);
1679		odp = (struct dirent64 *)outbuf;
1680	} else {
1681		bufsize = bytes_wanted;
1682		odp = (struct dirent64 *)iovp->iov_base;
1683	}
1684
1685	/*
1686	 * Transform to file-system independent format
1687	 */
1688	outcount = 0;
1689	while (outcount < bytes_wanted) {
1690		ino64_t objnum;
1691		ushort_t reclen;
1692		off64_t *next;
1693
1694		/*
1695		 * Special case `.', `..', and `.zfs'.
1696		 */
1697		if (offset == 0) {
1698			(void) strcpy(zap.za_name, ".");
1699			objnum = zp->z_id;
1700		} else if (offset == 1) {
1701			(void) strcpy(zap.za_name, "..");
1702			objnum = zp->z_phys->zp_parent;
1703		} else if (offset == 2 && zfs_show_ctldir(zp)) {
1704			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
1705			objnum = ZFSCTL_INO_ROOT;
1706		} else {
1707			/*
1708			 * Grab next entry.
1709			 */
1710			if (error = zap_cursor_retrieve(&zc, &zap)) {
1711				if ((*eofp = (error == ENOENT)) != 0)
1712					break;
1713				else
1714					goto update;
1715			}
1716
1717			if (zap.za_integer_length != 8 ||
1718			    zap.za_num_integers != 1) {
1719				cmn_err(CE_WARN, "zap_readdir: bad directory "
1720				    "entry, obj = %lld, offset = %lld\n",
1721				    (u_longlong_t)zp->z_id,
1722				    (u_longlong_t)offset);
1723				error = ENXIO;
1724				goto update;
1725			}
1726
1727			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
1728			/*
1729			 * MacOS X can extract the object type here such as:
1730			 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
1731			 */
1732		}
1733		reclen = DIRENT64_RECLEN(strlen(zap.za_name));
1734
1735		/*
1736		 * Will this entry fit in the buffer?
1737		 */
1738		if (outcount + reclen > bufsize) {
1739			/*
1740			 * Did we manage to fit anything in the buffer?
1741			 */
1742			if (!outcount) {
1743				error = EINVAL;
1744				goto update;
1745			}
1746			break;
1747		}
1748		/*
1749		 * Add this entry:
1750		 */
1751		odp->d_ino = objnum;
1752		odp->d_reclen = reclen;
1753		/* NOTE: d_off is the offset for the *next* entry */
1754		next = &(odp->d_off);
1755		(void) strncpy(odp->d_name, zap.za_name,
1756		    DIRENT64_NAMELEN(reclen));
1757		outcount += reclen;
1758		odp = (dirent64_t *)((intptr_t)odp + reclen);
1759
1760		ASSERT(outcount <= bufsize);
1761
1762		/* Prefetch znode */
1763		if (prefetch)
1764			dmu_prefetch(os, objnum, 0, 0);
1765
1766		/*
1767		 * Move to the next entry, fill in the previous offset.
1768		 */
1769		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
1770			zap_cursor_advance(&zc);
1771			offset = zap_cursor_serialize(&zc);
1772		} else {
1773			offset += 1;
1774		}
1775		*next = offset;
1776	}
1777	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
1778
1779	if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
1780		iovp->iov_base += outcount;
1781		iovp->iov_len -= outcount;
1782		uio->uio_resid -= outcount;
1783	} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
1784		/*
1785		 * Reset the pointer.
1786		 */
1787		offset = uio->uio_loffset;
1788	}
1789
1790update:
1791	zap_cursor_fini(&zc);
1792	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
1793		kmem_free(outbuf, bufsize);
1794
1795	if (error == ENOENT)
1796		error = 0;
1797
1798	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
1799
1800	uio->uio_loffset = offset;
1801	ZFS_EXIT(zfsvfs);
1802	return (error);
1803}
1804
1805ulong_t zfs_fsync_sync_cnt = 4;
1806
1807static int
1808zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr)
1809{
1810	znode_t	*zp = VTOZ(vp);
1811	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1812
1813	/*
1814	 * Regardless of whether this is required for standards conformance,
1815	 * this is the logical behavior when fsync() is called on a file with
1816	 * dirty pages.  We use B_ASYNC since the ZIL transactions are already
1817	 * going to be pushed out as part of the zil_commit().
1818	 */
1819	if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
1820	    (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
1821		(void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr);
1822
1823	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
1824
1825	ZFS_ENTER_VERIFY_ZP(zfsvfs, zp);
1826	zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id);
1827	ZFS_EXIT(zfsvfs);
1828	return (0);
1829}
1830
1831/*
1832 * Get the requested file attributes and place them in the provided
1833 * vattr structure.
1834 *
1835 *	IN:	vp	- vnode of file.
1836 *		vap	- va_mask identifies requested attributes.
1837 *		flags	- [UNUSED]
1838 *		cr	- credentials of caller.
1839 *
1840 *	OUT:	vap	- attribute values.
1841 *
1842 *	RETURN:	0 (always succeeds)
1843 */
1844/* ARGSUSED */
1845static int
1846zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr)
1847{
1848	znode_t *zp = VTOZ(vp);
1849	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1850	znode_phys_t *pzp;
1851	int	error;
1852	uint64_t links;
1853
1854	ZFS_ENTER_VERIFY_ZP(zfsvfs, zp);
1855	pzp = zp->z_phys;
1856
1857	/*
1858	 * Return all attributes.  It's cheaper to provide the answer
1859	 * than to determine whether we were asked the question.
1860	 */
1861	mutex_enter(&zp->z_lock);
1862
1863	vap->va_type = vp->v_type;
1864	vap->va_mode = pzp->zp_mode & MODEMASK;
1865	vap->va_uid = zp->z_phys->zp_uid;
1866	vap->va_gid = zp->z_phys->zp_gid;
1867	vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
1868	vap->va_nodeid = zp->z_id;
1869	if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
1870		links = pzp->zp_links + 1;
1871	else
1872		links = pzp->zp_links;
1873	vap->va_nlink = MIN(links, UINT32_MAX);	/* nlink_t limit! */
1874	vap->va_size = pzp->zp_size;
1875	vap->va_rdev = vp->v_rdev;
1876	vap->va_seq = zp->z_seq;
1877
1878	ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime);
1879	ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime);
1880	ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime);
1881
1882	/*
1883	 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
1884	 * Also, if we are the owner don't bother, since owner should
1885	 * always be allowed to read basic attributes of file.
1886	 */
1887	if (!(zp->z_phys->zp_flags & ZFS_ACL_TRIVIAL) &&
1888	    (zp->z_phys->zp_uid != crgetuid(cr))) {
1889		if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, cr)) {
1890			mutex_exit(&zp->z_lock);
1891			ZFS_EXIT(zfsvfs);
1892			return (error);
1893		}
1894	}
1895
1896	mutex_exit(&zp->z_lock);
1897
1898	dmu_object_size_from_db(zp->z_dbuf, &vap->va_blksize, &vap->va_nblocks);
1899
1900	if (zp->z_blksz == 0) {
1901		/*
1902		 * Block size hasn't been set; suggest maximal I/O transfers.
1903		 */
1904		vap->va_blksize = zfsvfs->z_max_blksz;
1905	}
1906
1907	ZFS_EXIT(zfsvfs);
1908	return (0);
1909}
1910
1911/*
1912 * Set the file attributes to the values contained in the
1913 * vattr structure.
1914 *
1915 *	IN:	vp	- vnode of file to be modified.
1916 *		vap	- new attribute values.
1917 *		flags	- ATTR_UTIME set if non-default time values provided.
1918 *		cr	- credentials of caller.
1919 *
1920 *	RETURN:	0 if success
1921 *		error code if failure
1922 *
1923 * Timestamps:
1924 *	vp - ctime updated, mtime updated if size changed.
1925 */
1926/* ARGSUSED */
1927static int
1928zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
1929	caller_context_t *ct)
1930{
1931	znode_t		*zp = VTOZ(vp);
1932	znode_phys_t	*pzp;
1933	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
1934	zilog_t		*zilog;
1935	dmu_tx_t	*tx;
1936	vattr_t		oldva;
1937	uint_t		mask = vap->va_mask;
1938	uint_t		saved_mask;
1939	int		trim_mask = 0;
1940	uint64_t	new_mode;
1941	znode_t		*attrzp;
1942	int		need_policy = FALSE;
1943	int		err;
1944
1945	if (mask == 0)
1946		return (0);
1947
1948	if (mask & AT_NOSET)
1949		return (EINVAL);
1950
1951	if (mask & AT_SIZE && vp->v_type == VDIR)
1952		return (EISDIR);
1953
1954	if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO)
1955		return (EINVAL);
1956
1957	ZFS_ENTER_VERIFY_ZP(zfsvfs, zp);
1958	pzp = zp->z_phys;
1959	zilog = zfsvfs->z_log;
1960
1961top:
1962	attrzp = NULL;
1963
1964	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
1965		ZFS_EXIT(zfsvfs);
1966		return (EROFS);
1967	}
1968
1969	/*
1970	 * First validate permissions
1971	 */
1972
1973	if (mask & AT_SIZE) {
1974		err = zfs_zaccess(zp, ACE_WRITE_DATA, cr);
1975		if (err) {
1976			ZFS_EXIT(zfsvfs);
1977			return (err);
1978		}
1979		/*
1980		 * XXX - Note, we are not providing any open
1981		 * mode flags here (like FNDELAY), so we may
1982		 * block if there are locks present... this
1983		 * should be addressed in openat().
1984		 */
1985		do {
1986			err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
1987			/* NB: we already did dmu_tx_wait() if necessary */
1988		} while (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT);
1989		if (err) {
1990			ZFS_EXIT(zfsvfs);
1991			return (err);
1992		}
1993	}
1994
1995	if (mask & (AT_ATIME|AT_MTIME))
1996		need_policy = zfs_zaccess_v4_perm(zp, ACE_WRITE_ATTRIBUTES, cr);
1997
1998	if (mask & (AT_UID|AT_GID)) {
1999		int	idmask = (mask & (AT_UID|AT_GID));
2000		int	take_owner;
2001		int	take_group;
2002
2003		/*
2004		 * NOTE: even if a new mode is being set,
2005		 * we may clear S_ISUID/S_ISGID bits.
2006		 */
2007
2008		if (!(mask & AT_MODE))
2009			vap->va_mode = pzp->zp_mode;
2010
2011		/*
2012		 * Take ownership or chgrp to group we are a member of
2013		 */
2014
2015		take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2016		take_group = (mask & AT_GID) && groupmember(vap->va_gid, cr);
2017
2018		/*
2019		 * If both AT_UID and AT_GID are set then take_owner and
2020		 * take_group must both be set in order to allow taking
2021		 * ownership.
2022		 *
2023		 * Otherwise, send the check through secpolicy_vnode_setattr()
2024		 *
2025		 */
2026
2027		if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2028		    ((idmask == AT_UID) && take_owner) ||
2029		    ((idmask == AT_GID) && take_group)) {
2030			if (zfs_zaccess_v4_perm(zp, ACE_WRITE_OWNER, cr) == 0) {
2031				/*
2032				 * Remove setuid/setgid for non-privileged users
2033				 */
2034				secpolicy_setid_clear(vap, cr);
2035				trim_mask = (mask & (AT_UID|AT_GID));
2036			} else {
2037				need_policy =  TRUE;
2038			}
2039		} else {
2040			need_policy =  TRUE;
2041		}
2042	}
2043
2044	mutex_enter(&zp->z_lock);
2045	oldva.va_mode = pzp->zp_mode;
2046	oldva.va_uid = zp->z_phys->zp_uid;
2047	oldva.va_gid = zp->z_phys->zp_gid;
2048	mutex_exit(&zp->z_lock);
2049
2050	if (mask & AT_MODE) {
2051		if (zfs_zaccess_v4_perm(zp, ACE_WRITE_ACL, cr) == 0) {
2052			err = secpolicy_setid_setsticky_clear(vp, vap,
2053			    &oldva, cr);
2054			if (err) {
2055				ZFS_EXIT(zfsvfs);
2056				return (err);
2057			}
2058			trim_mask |= AT_MODE;
2059		} else {
2060			need_policy = TRUE;
2061		}
2062	}
2063
2064	if (need_policy) {
2065		/*
2066		 * If trim_mask is set then take ownership
2067		 * has been granted or write_acl is present and user
2068		 * has the ability to modify mode.  In that case remove
2069		 * UID|GID and or MODE from mask so that
2070		 * secpolicy_vnode_setattr() doesn't revoke it.
2071		 */
2072
2073		if (trim_mask) {
2074			saved_mask = vap->va_mask;
2075			vap->va_mask &= ~trim_mask;
2076
2077		}
2078		err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2079		    (int (*)(void *, int, cred_t *))zfs_zaccess_rwx, zp);
2080		if (err) {
2081			ZFS_EXIT(zfsvfs);
2082			return (err);
2083		}
2084
2085		if (trim_mask)
2086			vap->va_mask |= saved_mask;
2087	}
2088
2089	/*
2090	 * secpolicy_vnode_setattr, or take ownership may have
2091	 * changed va_mask
2092	 */
2093	mask = vap->va_mask;
2094
2095	tx = dmu_tx_create(zfsvfs->z_os);
2096	dmu_tx_hold_bonus(tx, zp->z_id);
2097
2098	if (mask & AT_MODE) {
2099		uint64_t pmode = pzp->zp_mode;
2100
2101		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2102
2103		if (zp->z_phys->zp_acl.z_acl_extern_obj)
2104			dmu_tx_hold_write(tx,
2105			    pzp->zp_acl.z_acl_extern_obj, 0, SPA_MAXBLOCKSIZE);
2106		else
2107			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2108			    0, ZFS_ACL_SIZE(MAX_ACL_SIZE));
2109	}
2110
2111	if ((mask & (AT_UID | AT_GID)) && zp->z_phys->zp_xattr != 0) {
2112		err = zfs_zget(zp->z_zfsvfs, zp->z_phys->zp_xattr, &attrzp);
2113		if (err) {
2114			dmu_tx_abort(tx);
2115			ZFS_EXIT(zfsvfs);
2116			return (err);
2117		}
2118		dmu_tx_hold_bonus(tx, attrzp->z_id);
2119	}
2120
2121	err = dmu_tx_assign(tx, zfsvfs->z_assign);
2122	if (err) {
2123		if (attrzp)
2124			VN_RELE(ZTOV(attrzp));
2125		if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
2126			dmu_tx_wait(tx);
2127			dmu_tx_abort(tx);
2128			goto top;
2129		}
2130		dmu_tx_abort(tx);
2131		ZFS_EXIT(zfsvfs);
2132		return (err);
2133	}
2134
2135	dmu_buf_will_dirty(zp->z_dbuf, tx);
2136
2137	/*
2138	 * Set each attribute requested.
2139	 * We group settings according to the locks they need to acquire.
2140	 *
2141	 * Note: you cannot set ctime directly, although it will be
2142	 * updated as a side-effect of calling this function.
2143	 */
2144
2145	mutex_enter(&zp->z_lock);
2146
2147	if (mask & AT_MODE) {
2148		err = zfs_acl_chmod_setattr(zp, new_mode, tx);
2149		ASSERT3U(err, ==, 0);
2150	}
2151
2152	if (attrzp)
2153		mutex_enter(&attrzp->z_lock);
2154
2155	if (mask & AT_UID) {
2156		zp->z_phys->zp_uid = (uint64_t)vap->va_uid;
2157		if (attrzp) {
2158			attrzp->z_phys->zp_uid = (uint64_t)vap->va_uid;
2159		}
2160	}
2161
2162	if (mask & AT_GID) {
2163		zp->z_phys->zp_gid = (uint64_t)vap->va_gid;
2164		if (attrzp)
2165			attrzp->z_phys->zp_gid = (uint64_t)vap->va_gid;
2166	}
2167
2168	if (attrzp)
2169		mutex_exit(&attrzp->z_lock);
2170
2171	if (mask & AT_ATIME)
2172		ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime);
2173
2174	if (mask & AT_MTIME)
2175		ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime);
2176
2177	if (mask & AT_SIZE)
2178		zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx);
2179	else if (mask != 0)
2180		zfs_time_stamper_locked(zp, STATE_CHANGED, tx);
2181
2182	if (mask != 0)
2183		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask);
2184
2185	mutex_exit(&zp->z_lock);
2186
2187	if (attrzp)
2188		VN_RELE(ZTOV(attrzp));
2189
2190	dmu_tx_commit(tx);
2191
2192	ZFS_EXIT(zfsvfs);
2193	return (err);
2194}
2195
2196typedef struct zfs_zlock {
2197	krwlock_t	*zl_rwlock;	/* lock we acquired */
2198	znode_t		*zl_znode;	/* znode we held */
2199	struct zfs_zlock *zl_next;	/* next in list */
2200} zfs_zlock_t;
2201
2202/*
2203 * Drop locks and release vnodes that were held by zfs_rename_lock().
2204 */
2205static void
2206zfs_rename_unlock(zfs_zlock_t **zlpp)
2207{
2208	zfs_zlock_t *zl;
2209
2210	while ((zl = *zlpp) != NULL) {
2211		if (zl->zl_znode != NULL)
2212			VN_RELE(ZTOV(zl->zl_znode));
2213		rw_exit(zl->zl_rwlock);
2214		*zlpp = zl->zl_next;
2215		kmem_free(zl, sizeof (*zl));
2216	}
2217}
2218
2219/*
2220 * Search back through the directory tree, using the ".." entries.
2221 * Lock each directory in the chain to prevent concurrent renames.
2222 * Fail any attempt to move a directory into one of its own descendants.
2223 * XXX - z_parent_lock can overlap with map or grow locks
2224 */
2225static int
2226zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
2227{
2228	zfs_zlock_t	*zl;
2229	znode_t		*zp = tdzp;
2230	uint64_t	rootid = zp->z_zfsvfs->z_root;
2231	uint64_t	*oidp = &zp->z_id;
2232	krwlock_t	*rwlp = &szp->z_parent_lock;
2233	krw_t		rw = RW_WRITER;
2234
2235	/*
2236	 * First pass write-locks szp and compares to zp->z_id.
2237	 * Later passes read-lock zp and compare to zp->z_parent.
2238	 */
2239	do {
2240		if (!rw_tryenter(rwlp, rw)) {
2241			/*
2242			 * Another thread is renaming in this path.
2243			 * Note that if we are a WRITER, we don't have any
2244			 * parent_locks held yet.
2245			 */
2246			if (rw == RW_READER && zp->z_id > szp->z_id) {
2247				/*
2248				 * Drop our locks and restart
2249				 */
2250				zfs_rename_unlock(&zl);
2251				*zlpp = NULL;
2252				zp = tdzp;
2253				oidp = &zp->z_id;
2254				rwlp = &szp->z_parent_lock;
2255				rw = RW_WRITER;
2256				continue;
2257			} else {
2258				/*
2259				 * Wait for other thread to drop its locks
2260				 */
2261				rw_enter(rwlp, rw);
2262			}
2263		}
2264
2265		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
2266		zl->zl_rwlock = rwlp;
2267		zl->zl_znode = NULL;
2268		zl->zl_next = *zlpp;
2269		*zlpp = zl;
2270
2271		if (*oidp == szp->z_id)		/* We're a descendant of szp */
2272			return (EINVAL);
2273
2274		if (*oidp == rootid)		/* We've hit the top */
2275			return (0);
2276
2277		if (rw == RW_READER) {		/* i.e. not the first pass */
2278			int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp);
2279			if (error)
2280				return (error);
2281			zl->zl_znode = zp;
2282		}
2283		oidp = &zp->z_phys->zp_parent;
2284		rwlp = &zp->z_parent_lock;
2285		rw = RW_READER;
2286
2287	} while (zp->z_id != sdzp->z_id);
2288
2289	return (0);
2290}
2291
2292/*
2293 * Move an entry from the provided source directory to the target
2294 * directory.  Change the entry name as indicated.
2295 *
2296 *	IN:	sdvp	- Source directory containing the "old entry".
2297 *		snm	- Old entry name.
2298 *		tdvp	- Target directory to contain the "new entry".
2299 *		tnm	- New entry name.
2300 *		cr	- credentials of caller.
2301 *
2302 *	RETURN:	0 if success
2303 *		error code if failure
2304 *
2305 * Timestamps:
2306 *	sdvp,tdvp - ctime|mtime updated
2307 */
2308static int
2309zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr)
2310{
2311	znode_t		*tdzp, *szp, *tzp;
2312	znode_t		*sdzp = VTOZ(sdvp);
2313	zfsvfs_t	*zfsvfs = sdzp->z_zfsvfs;
2314	zilog_t		*zilog;
2315	vnode_t		*realvp;
2316	zfs_dirlock_t	*sdl, *tdl;
2317	dmu_tx_t	*tx;
2318	zfs_zlock_t	*zl;
2319	int		cmp, serr, terr, error;
2320
2321	ZFS_ENTER_VERIFY_ZP(zfsvfs, sdzp);
2322	zilog = zfsvfs->z_log;
2323
2324	/*
2325	 * Make sure we have the real vp for the target directory.
2326	 */
2327	if (VOP_REALVP(tdvp, &realvp) == 0)
2328		tdvp = realvp;
2329
2330	if (tdvp->v_vfsp != sdvp->v_vfsp) {
2331		ZFS_EXIT(zfsvfs);
2332		return (EXDEV);
2333	}
2334
2335	tdzp = VTOZ(tdvp);
2336	if (!tdzp->z_dbuf_held) {
2337		ZFS_EXIT(zfsvfs);
2338		return (EIO);
2339	}
2340top:
2341	szp = NULL;
2342	tzp = NULL;
2343	zl = NULL;
2344
2345	/*
2346	 * This is to prevent the creation of links into attribute space
2347	 * by renaming a linked file into/outof an attribute directory.
2348	 * See the comment in zfs_link() for why this is considered bad.
2349	 */
2350	if ((tdzp->z_phys->zp_flags & ZFS_XATTR) !=
2351	    (sdzp->z_phys->zp_flags & ZFS_XATTR)) {
2352		ZFS_EXIT(zfsvfs);
2353		return (EINVAL);
2354	}
2355
2356	/*
2357	 * Lock source and target directory entries.  To prevent deadlock,
2358	 * a lock ordering must be defined.  We lock the directory with
2359	 * the smallest object id first, or if it's a tie, the one with
2360	 * the lexically first name.
2361	 */
2362	if (sdzp->z_id < tdzp->z_id) {
2363		cmp = -1;
2364	} else if (sdzp->z_id > tdzp->z_id) {
2365		cmp = 1;
2366	} else {
2367		cmp = strcmp(snm, tnm);
2368		if (cmp == 0) {
2369			/*
2370			 * POSIX: "If the old argument and the new argument
2371			 * both refer to links to the same existing file,
2372			 * the rename() function shall return successfully
2373			 * and perform no other action."
2374			 */
2375			ZFS_EXIT(zfsvfs);
2376			return (0);
2377		}
2378	}
2379	if (cmp < 0) {
2380		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS);
2381		terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, 0);
2382	} else {
2383		terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, 0);
2384		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS);
2385	}
2386
2387	if (serr) {
2388		/*
2389		 * Source entry invalid or not there.
2390		 */
2391		if (!terr) {
2392			zfs_dirent_unlock(tdl);
2393			if (tzp)
2394				VN_RELE(ZTOV(tzp));
2395		}
2396		if (strcmp(snm, "..") == 0)
2397			serr = EINVAL;
2398		ZFS_EXIT(zfsvfs);
2399		return (serr);
2400	}
2401	if (terr) {
2402		zfs_dirent_unlock(sdl);
2403		VN_RELE(ZTOV(szp));
2404		if (strcmp(tnm, "..") == 0)
2405			terr = EINVAL;
2406		ZFS_EXIT(zfsvfs);
2407		return (terr);
2408	}
2409
2410	/*
2411	 * Must have write access at the source to remove the old entry
2412	 * and write access at the target to create the new entry.
2413	 * Note that if target and source are the same, this can be
2414	 * done in a single check.
2415	 */
2416
2417	if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
2418		goto out;
2419
2420	if (ZTOV(szp)->v_type == VDIR) {
2421		/*
2422		 * Check to make sure rename is valid.
2423		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
2424		 */
2425		if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
2426			goto out;
2427	}
2428
2429	/*
2430	 * Does target exist?
2431	 */
2432	if (tzp) {
2433		/*
2434		 * Source and target must be the same type.
2435		 */
2436		if (ZTOV(szp)->v_type == VDIR) {
2437			if (ZTOV(tzp)->v_type != VDIR) {
2438				error = ENOTDIR;
2439				goto out;
2440			}
2441		} else {
2442			if (ZTOV(tzp)->v_type == VDIR) {
2443				error = EISDIR;
2444				goto out;
2445			}
2446		}
2447		/*
2448		 * POSIX dictates that when the source and target
2449		 * entries refer to the same file object, rename
2450		 * must do nothing and exit without error.
2451		 */
2452		if (szp->z_id == tzp->z_id) {
2453			error = 0;
2454			goto out;
2455		}
2456	}
2457
2458	vnevent_rename_src(ZTOV(szp), sdvp, snm);
2459	if (tzp)
2460		vnevent_rename_dest(ZTOV(tzp), tdvp, tnm);
2461
2462	/*
2463	 * notify the target directory if it is not the same
2464	 * as source directory.
2465	 */
2466	if (tdvp != sdvp) {
2467		vnevent_rename_dest_dir(tdvp);
2468	}
2469
2470	tx = dmu_tx_create(zfsvfs->z_os);
2471	dmu_tx_hold_bonus(tx, szp->z_id);	/* nlink changes */
2472	dmu_tx_hold_bonus(tx, sdzp->z_id);	/* nlink changes */
2473	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
2474	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
2475	if (sdzp != tdzp)
2476		dmu_tx_hold_bonus(tx, tdzp->z_id);	/* nlink changes */
2477	if (tzp)
2478		dmu_tx_hold_bonus(tx, tzp->z_id);	/* parent changes */
2479	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2480	error = dmu_tx_assign(tx, zfsvfs->z_assign);
2481	if (error) {
2482		if (zl != NULL)
2483			zfs_rename_unlock(&zl);
2484		zfs_dirent_unlock(sdl);
2485		zfs_dirent_unlock(tdl);
2486		VN_RELE(ZTOV(szp));
2487		if (tzp)
2488			VN_RELE(ZTOV(tzp));
2489		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
2490			dmu_tx_wait(tx);
2491			dmu_tx_abort(tx);
2492			goto top;
2493		}
2494		dmu_tx_abort(tx);
2495		ZFS_EXIT(zfsvfs);
2496		return (error);
2497	}
2498
2499	if (tzp)	/* Attempt to remove the existing target */
2500		error = zfs_link_destroy(tdl, tzp, tx, 0, NULL);
2501
2502	if (error == 0) {
2503		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
2504		if (error == 0) {
2505			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
2506			ASSERT(error == 0);
2507			zfs_log_rename(zilog, tx, TX_RENAME, sdzp,
2508			    sdl->dl_name, tdzp, tdl->dl_name, szp);
2509		}
2510	}
2511
2512	dmu_tx_commit(tx);
2513out:
2514	if (zl != NULL)
2515		zfs_rename_unlock(&zl);
2516
2517	zfs_dirent_unlock(sdl);
2518	zfs_dirent_unlock(tdl);
2519
2520	VN_RELE(ZTOV(szp));
2521	if (tzp)
2522		VN_RELE(ZTOV(tzp));
2523
2524	ZFS_EXIT(zfsvfs);
2525	return (error);
2526}
2527
2528/*
2529 * Insert the indicated symbolic reference entry into the directory.
2530 *
2531 *	IN:	dvp	- Directory to contain new symbolic link.
2532 *		link	- Name for new symlink entry.
2533 *		vap	- Attributes of new entry.
2534 *		target	- Target path of new symlink.
2535 *		cr	- credentials of caller.
2536 *
2537 *	RETURN:	0 if success
2538 *		error code if failure
2539 *
2540 * Timestamps:
2541 *	dvp - ctime|mtime updated
2542 */
2543static int
2544zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr)
2545{
2546	znode_t		*zp, *dzp = VTOZ(dvp);
2547	zfs_dirlock_t	*dl;
2548	dmu_tx_t	*tx;
2549	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2550	zilog_t		*zilog;
2551	uint64_t	zoid;
2552	int		len = strlen(link);
2553	int		error;
2554
2555	ASSERT(vap->va_type == VLNK);
2556
2557	ZFS_ENTER_VERIFY_ZP(zfsvfs, dzp);
2558	zilog = zfsvfs->z_log;
2559top:
2560	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) {
2561		ZFS_EXIT(zfsvfs);
2562		return (error);
2563	}
2564
2565	if (len > MAXPATHLEN) {
2566		ZFS_EXIT(zfsvfs);
2567		return (ENAMETOOLONG);
2568	}
2569
2570	/*
2571	 * Attempt to lock directory; fail if entry already exists.
2572	 */
2573	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZNEW)) {
2574		ZFS_EXIT(zfsvfs);
2575		return (error);
2576	}
2577
2578	tx = dmu_tx_create(zfsvfs->z_os);
2579	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
2580	dmu_tx_hold_bonus(tx, dzp->z_id);
2581	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
2582	if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE)
2583		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE);
2584	error = dmu_tx_assign(tx, zfsvfs->z_assign);
2585	if (error) {
2586		zfs_dirent_unlock(dl);
2587		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
2588			dmu_tx_wait(tx);
2589			dmu_tx_abort(tx);
2590			goto top;
2591		}
2592		dmu_tx_abort(tx);
2593		ZFS_EXIT(zfsvfs);
2594		return (error);
2595	}
2596
2597	dmu_buf_will_dirty(dzp->z_dbuf, tx);
2598
2599	/*
2600	 * Create a new object for the symlink.
2601	 * Put the link content into bonus buffer if it will fit;
2602	 * otherwise, store it just like any other file data.
2603	 */
2604	zoid = 0;
2605	if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) {
2606		zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, len);
2607		if (len != 0)
2608			bcopy(link, zp->z_phys + 1, len);
2609	} else {
2610		dmu_buf_t *dbp;
2611
2612		zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0);
2613
2614		/*
2615		 * Nothing can access the znode yet so no locking needed
2616		 * for growing the znode's blocksize.
2617		 */
2618		zfs_grow_blocksize(zp, len, tx);
2619
2620		VERIFY(0 == dmu_buf_hold(zfsvfs->z_os, zoid, 0, FTAG, &dbp));
2621		dmu_buf_will_dirty(dbp, tx);
2622
2623		ASSERT3U(len, <=, dbp->db_size);
2624		bcopy(link, dbp->db_data, len);
2625		dmu_buf_rele(dbp, FTAG);
2626	}
2627	zp->z_phys->zp_size = len;
2628
2629	/*
2630	 * Insert the new object into the directory.
2631	 */
2632	(void) zfs_link_create(dl, zp, tx, ZNEW);
2633out:
2634	if (error == 0)
2635		zfs_log_symlink(zilog, tx, TX_SYMLINK, dzp, zp, name, link);
2636
2637	dmu_tx_commit(tx);
2638
2639	zfs_dirent_unlock(dl);
2640
2641	VN_RELE(ZTOV(zp));
2642
2643	ZFS_EXIT(zfsvfs);
2644	return (error);
2645}
2646
2647/*
2648 * Return, in the buffer contained in the provided uio structure,
2649 * the symbolic path referred to by vp.
2650 *
2651 *	IN:	vp	- vnode of symbolic link.
2652 *		uoip	- structure to contain the link path.
2653 *		cr	- credentials of caller.
2654 *
2655 *	OUT:	uio	- structure to contain the link path.
2656 *
2657 *	RETURN:	0 if success
2658 *		error code if failure
2659 *
2660 * Timestamps:
2661 *	vp - atime updated
2662 */
2663/* ARGSUSED */
2664static int
2665zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr)
2666{
2667	znode_t		*zp = VTOZ(vp);
2668	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2669	size_t		bufsz;
2670	int		error;
2671
2672	ZFS_ENTER_VERIFY_ZP(zfsvfs, zp);
2673
2674	bufsz = (size_t)zp->z_phys->zp_size;
2675	if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) {
2676		error = uiomove(zp->z_phys + 1,
2677		    MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio);
2678	} else {
2679		dmu_buf_t *dbp;
2680		error = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0, FTAG, &dbp);
2681		if (error) {
2682			ZFS_EXIT(zfsvfs);
2683			return (error);
2684		}
2685		error = uiomove(dbp->db_data,
2686		    MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio);
2687		dmu_buf_rele(dbp, FTAG);
2688	}
2689
2690	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2691	ZFS_EXIT(zfsvfs);
2692	return (error);
2693}
2694
2695/*
2696 * Insert a new entry into directory tdvp referencing svp.
2697 *
2698 *	IN:	tdvp	- Directory to contain new entry.
2699 *		svp	- vnode of new entry.
2700 *		name	- name of new entry.
2701 *		cr	- credentials of caller.
2702 *
2703 *	RETURN:	0 if success
2704 *		error code if failure
2705 *
2706 * Timestamps:
2707 *	tdvp - ctime|mtime updated
2708 *	 svp - ctime updated
2709 */
2710/* ARGSUSED */
2711static int
2712zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr)
2713{
2714	znode_t		*dzp = VTOZ(tdvp);
2715	znode_t		*tzp, *szp;
2716	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2717	zilog_t		*zilog;
2718	zfs_dirlock_t	*dl;
2719	dmu_tx_t	*tx;
2720	vnode_t		*realvp;
2721	int		error;
2722
2723	ASSERT(tdvp->v_type == VDIR);
2724
2725	ZFS_ENTER_VERIFY_ZP(zfsvfs, dzp);
2726	zilog = zfsvfs->z_log;
2727
2728	if (VOP_REALVP(svp, &realvp) == 0)
2729		svp = realvp;
2730
2731	if (svp->v_vfsp != tdvp->v_vfsp) {
2732		ZFS_EXIT(zfsvfs);
2733		return (EXDEV);
2734	}
2735
2736	szp = VTOZ(svp);
2737	if (!szp->z_dbuf_held) {
2738		ZFS_EXIT(zfsvfs);
2739		return (EIO);
2740	}
2741top:
2742	/*
2743	 * We do not support links between attributes and non-attributes
2744	 * because of the potential security risk of creating links
2745	 * into "normal" file space in order to circumvent restrictions
2746	 * imposed in attribute space.
2747	 */
2748	if ((szp->z_phys->zp_flags & ZFS_XATTR) !=
2749	    (dzp->z_phys->zp_flags & ZFS_XATTR)) {
2750		ZFS_EXIT(zfsvfs);
2751		return (EINVAL);
2752	}
2753
2754	/*
2755	 * POSIX dictates that we return EPERM here.
2756	 * Better choices include ENOTSUP or EISDIR.
2757	 */
2758	if (svp->v_type == VDIR) {
2759		ZFS_EXIT(zfsvfs);
2760		return (EPERM);
2761	}
2762
2763	if ((uid_t)szp->z_phys->zp_uid != crgetuid(cr) &&
2764	    secpolicy_basic_link(cr) != 0) {
2765		ZFS_EXIT(zfsvfs);
2766		return (EPERM);
2767	}
2768
2769	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) {
2770		ZFS_EXIT(zfsvfs);
2771		return (error);
2772	}
2773
2774	/*
2775	 * Attempt to lock directory; fail if entry already exists.
2776	 */
2777	if (error = zfs_dirent_lock(&dl, dzp, name, &tzp, ZNEW)) {
2778		ZFS_EXIT(zfsvfs);
2779		return (error);
2780	}
2781
2782	tx = dmu_tx_create(zfsvfs->z_os);
2783	dmu_tx_hold_bonus(tx, szp->z_id);
2784	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
2785	error = dmu_tx_assign(tx, zfsvfs->z_assign);
2786	if (error) {
2787		zfs_dirent_unlock(dl);
2788		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
2789			dmu_tx_wait(tx);
2790			dmu_tx_abort(tx);
2791			goto top;
2792		}
2793		dmu_tx_abort(tx);
2794		ZFS_EXIT(zfsvfs);
2795		return (error);
2796	}
2797
2798	error = zfs_link_create(dl, szp, tx, 0);
2799
2800	if (error == 0)
2801		zfs_log_link(zilog, tx, TX_LINK, dzp, szp, name);
2802
2803	dmu_tx_commit(tx);
2804
2805	zfs_dirent_unlock(dl);
2806
2807	if (error == 0) {
2808		vnevent_link(svp);
2809	}
2810
2811	ZFS_EXIT(zfsvfs);
2812	return (error);
2813}
2814
2815/*
2816 * zfs_null_putapage() is used when the file system has been force
2817 * unmounted. It just drops the pages.
2818 */
2819/* ARGSUSED */
2820static int
2821zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
2822		size_t *lenp, int flags, cred_t *cr)
2823{
2824	pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
2825	return (0);
2826}
2827
2828/*
2829 * Push a page out to disk, klustering if possible.
2830 *
2831 *	IN:	vp	- file to push page to.
2832 *		pp	- page to push.
2833 *		flags	- additional flags.
2834 *		cr	- credentials of caller.
2835 *
2836 *	OUT:	offp	- start of range pushed.
2837 *		lenp	- len of range pushed.
2838 *
2839 *	RETURN:	0 if success
2840 *		error code if failure
2841 *
2842 * NOTE: callers must have locked the page to be pushed.  On
2843 * exit, the page (and all other pages in the kluster) must be
2844 * unlocked.
2845 */
2846/* ARGSUSED */
2847static int
2848zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
2849		size_t *lenp, int flags, cred_t *cr)
2850{
2851	znode_t		*zp = VTOZ(vp);
2852	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2853	zilog_t		*zilog = zfsvfs->z_log;
2854	dmu_tx_t	*tx;
2855	rl_t		*rl;
2856	u_offset_t	off, koff;
2857	size_t		len, klen;
2858	uint64_t	filesz;
2859	int		err;
2860
2861	filesz = zp->z_phys->zp_size;
2862	off = pp->p_offset;
2863	len = PAGESIZE;
2864	/*
2865	 * If our blocksize is bigger than the page size, try to kluster
2866	 * muiltiple pages so that we write a full block (thus avoiding
2867	 * a read-modify-write).
2868	 */
2869	if (off < filesz && zp->z_blksz > PAGESIZE) {
2870		if (!ISP2(zp->z_blksz)) {
2871			/* Only one block in the file. */
2872			klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
2873			koff = 0;
2874		} else {
2875			klen = zp->z_blksz;
2876			koff = P2ALIGN(off, (u_offset_t)klen);
2877		}
2878		ASSERT(koff <= filesz);
2879		if (koff + klen > filesz)
2880			klen = P2ROUNDUP(filesz - koff, (uint64_t)PAGESIZE);
2881		pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
2882	}
2883	ASSERT3U(btop(len), ==, btopr(len));
2884top:
2885	rl = zfs_range_lock(zp, off, len, RL_WRITER);
2886	/*
2887	 * Can't push pages past end-of-file.
2888	 */
2889	filesz = zp->z_phys->zp_size;
2890	if (off >= filesz) {
2891		/* ignore all pages */
2892		err = 0;
2893		goto out;
2894	} else if (off + len > filesz) {
2895		int npages = btopr(filesz - off);
2896		page_t *trunc;
2897
2898		page_list_break(&pp, &trunc, npages);
2899		/* ignore pages past end of file */
2900		if (trunc)
2901			pvn_write_done(trunc, flags);
2902		len = filesz - off;
2903	}
2904
2905	tx = dmu_tx_create(zfsvfs->z_os);
2906	dmu_tx_hold_write(tx, zp->z_id, off, len);
2907	dmu_tx_hold_bonus(tx, zp->z_id);
2908	err = dmu_tx_assign(tx, zfsvfs->z_assign);
2909	if (err != 0) {
2910		if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
2911			zfs_range_unlock(rl);
2912			dmu_tx_wait(tx);
2913			dmu_tx_abort(tx);
2914			err = 0;
2915			goto top;
2916		}
2917		dmu_tx_abort(tx);
2918		goto out;
2919	}
2920
2921	if (zp->z_blksz <= PAGESIZE) {
2922		caddr_t va = ppmapin(pp, PROT_READ, (caddr_t)-1);
2923		ASSERT3U(len, <=, PAGESIZE);
2924		dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
2925		ppmapout(va);
2926	} else {
2927		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
2928	}
2929
2930	if (err == 0) {
2931		zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
2932		zfs_log_write(zilog, tx, TX_WRITE, zp, off, len, 0);
2933		dmu_tx_commit(tx);
2934	}
2935
2936out:
2937	zfs_range_unlock(rl);
2938	pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
2939	if (offp)
2940		*offp = off;
2941	if (lenp)
2942		*lenp = len;
2943
2944	return (err);
2945}
2946
2947/*
2948 * Copy the portion of the file indicated from pages into the file.
2949 * The pages are stored in a page list attached to the files vnode.
2950 *
2951 *	IN:	vp	- vnode of file to push page data to.
2952 *		off	- position in file to put data.
2953 *		len	- amount of data to write.
2954 *		flags	- flags to control the operation.
2955 *		cr	- credentials of caller.
2956 *
2957 *	RETURN:	0 if success
2958 *		error code if failure
2959 *
2960 * Timestamps:
2961 *	vp - ctime|mtime updated
2962 */
2963static int
2964zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr)
2965{
2966	znode_t		*zp = VTOZ(vp);
2967	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2968	page_t		*pp;
2969	size_t		io_len;
2970	u_offset_t	io_off;
2971	uint64_t	filesz;
2972	int		error = 0;
2973
2974	ZFS_ENTER_VERIFY_ZP(zfsvfs, zp);
2975
2976	ASSERT(zp->z_dbuf_held && zp->z_phys);
2977
2978	if (len == 0) {
2979		/*
2980		 * Search the entire vp list for pages >= off.
2981		 */
2982		error = pvn_vplist_dirty(vp, (u_offset_t)off, zfs_putapage,
2983		    flags, cr);
2984		goto out;
2985	}
2986
2987	filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */
2988	if (off > filesz) {
2989		/* past end of file */
2990		ZFS_EXIT(zfsvfs);
2991		return (0);
2992	}
2993
2994	len = MIN(len, filesz - off);
2995
2996	for (io_off = off; io_off < off + len; io_off += io_len) {
2997		if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
2998			pp = page_lookup(vp, io_off,
2999			    (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
3000		} else {
3001			pp = page_lookup_nowait(vp, io_off,
3002			    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
3003		}
3004
3005		if (pp != NULL && pvn_getdirty(pp, flags)) {
3006			int err;
3007
3008			/*
3009			 * Found a dirty page to push
3010			 */
3011			err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
3012			if (err)
3013				error = err;
3014		} else {
3015			io_len = PAGESIZE;
3016		}
3017	}
3018out:
3019	if ((flags & B_ASYNC) == 0)
3020		zil_commit(zfsvfs->z_log, UINT64_MAX, zp->z_id);
3021	ZFS_EXIT(zfsvfs);
3022	return (error);
3023}
3024
3025void
3026zfs_inactive(vnode_t *vp, cred_t *cr)
3027{
3028	znode_t	*zp = VTOZ(vp);
3029	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3030	int error;
3031
3032	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
3033	if (zp->z_dbuf_held == 0) {
3034		if (vn_has_cached_data(vp)) {
3035			(void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
3036			    B_INVAL, cr);
3037		}
3038
3039		mutex_enter(&zp->z_lock);
3040		vp->v_count = 0; /* count arrives as 1 */
3041		if (zp->z_dbuf == NULL) {
3042			mutex_exit(&zp->z_lock);
3043			zfs_znode_free(zp);
3044		} else {
3045			mutex_exit(&zp->z_lock);
3046		}
3047		rw_exit(&zfsvfs->z_teardown_inactive_lock);
3048		VFS_RELE(zfsvfs->z_vfs);
3049		return;
3050	}
3051
3052	/*
3053	 * Attempt to push any data in the page cache.  If this fails
3054	 * we will get kicked out later in zfs_zinactive().
3055	 */
3056	if (vn_has_cached_data(vp)) {
3057		(void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
3058		    cr);
3059	}
3060
3061	if (zp->z_atime_dirty && zp->z_unlinked == 0) {
3062		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
3063
3064		dmu_tx_hold_bonus(tx, zp->z_id);
3065		error = dmu_tx_assign(tx, TXG_WAIT);
3066		if (error) {
3067			dmu_tx_abort(tx);
3068		} else {
3069			dmu_buf_will_dirty(zp->z_dbuf, tx);
3070			mutex_enter(&zp->z_lock);
3071			zp->z_atime_dirty = 0;
3072			mutex_exit(&zp->z_lock);
3073			dmu_tx_commit(tx);
3074		}
3075	}
3076
3077	zfs_zinactive(zp);
3078	rw_exit(&zfsvfs->z_teardown_inactive_lock);
3079}
3080
3081/*
3082 * Bounds-check the seek operation.
3083 *
3084 *	IN:	vp	- vnode seeking within
3085 *		ooff	- old file offset
3086 *		noffp	- pointer to new file offset
3087 *
3088 *	RETURN:	0 if success
3089 *		EINVAL if new offset invalid
3090 */
3091/* ARGSUSED */
3092static int
3093zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp)
3094{
3095	if (vp->v_type == VDIR)
3096		return (0);
3097	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
3098}
3099
3100/*
3101 * Pre-filter the generic locking function to trap attempts to place
3102 * a mandatory lock on a memory mapped file.
3103 */
3104static int
3105zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
3106    flk_callback_t *flk_cbp, cred_t *cr)
3107{
3108	znode_t *zp = VTOZ(vp);
3109	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3110	int error;
3111
3112	ZFS_ENTER_VERIFY_ZP(zfsvfs, zp);
3113
3114	/*
3115	 * We are following the UFS semantics with respect to mapcnt
3116	 * here: If we see that the file is mapped already, then we will
3117	 * return an error, but we don't worry about races between this
3118	 * function and zfs_map().
3119	 */
3120	if (zp->z_mapcnt > 0 && MANDMODE((mode_t)zp->z_phys->zp_mode)) {
3121		ZFS_EXIT(zfsvfs);
3122		return (EAGAIN);
3123	}
3124	error = fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr);
3125	ZFS_EXIT(zfsvfs);
3126	return (error);
3127}
3128
3129/*
3130 * If we can't find a page in the cache, we will create a new page
3131 * and fill it with file data.  For efficiency, we may try to fill
3132 * multiple pages at once (klustering).
3133 */
3134static int
3135zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
3136    caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
3137{
3138	znode_t *zp = VTOZ(vp);
3139	page_t *pp, *cur_pp;
3140	objset_t *os = zp->z_zfsvfs->z_os;
3141	caddr_t va;
3142	u_offset_t io_off, total;
3143	uint64_t oid = zp->z_id;
3144	size_t io_len;
3145	uint64_t filesz;
3146	int err;
3147
3148	/*
3149	 * If we are only asking for a single page don't bother klustering.
3150	 */
3151	filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */
3152	if (off >= filesz)
3153		return (EFAULT);
3154	if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
3155		io_off = off;
3156		io_len = PAGESIZE;
3157		pp = page_create_va(vp, io_off, io_len, PG_WAIT, seg, addr);
3158	} else {
3159		/*
3160		 * Try to fill a kluster of pages (a blocks worth).
3161		 */
3162		size_t klen;
3163		u_offset_t koff;
3164
3165		if (!ISP2(zp->z_blksz)) {
3166			/* Only one block in the file. */
3167			klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
3168			koff = 0;
3169		} else {
3170			/*
3171			 * It would be ideal to align our offset to the
3172			 * blocksize but doing so has resulted in some
3173			 * strange application crashes. For now, we
3174			 * leave the offset as is and only adjust the
3175			 * length if we are off the end of the file.
3176			 */
3177			koff = off;
3178			klen = plsz;
3179		}
3180		ASSERT(koff <= filesz);
3181		if (koff + klen > filesz)
3182			klen = P2ROUNDUP(filesz, (uint64_t)PAGESIZE) - koff;
3183		ASSERT3U(off, >=, koff);
3184		ASSERT3U(off, <, koff + klen);
3185		pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
3186		    &io_len, koff, klen, 0);
3187	}
3188	if (pp == NULL) {
3189		/*
3190		 * Some other thread entered the page before us.
3191		 * Return to zfs_getpage to retry the lookup.
3192		 */
3193		*pl = NULL;
3194		return (0);
3195	}
3196
3197	/*
3198	 * Fill the pages in the kluster.
3199	 */
3200	cur_pp = pp;
3201	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
3202		ASSERT3U(io_off, ==, cur_pp->p_offset);
3203		va = ppmapin(cur_pp, PROT_READ | PROT_WRITE, (caddr_t)-1);
3204		err = dmu_read(os, oid, io_off, PAGESIZE, va);
3205		ppmapout(va);
3206		if (err) {
3207			/* On error, toss the entire kluster */
3208			pvn_read_done(pp, B_ERROR);
3209			return (err);
3210		}
3211		cur_pp = cur_pp->p_next;
3212	}
3213out:
3214	/*
3215	 * Fill in the page list array from the kluster.  If
3216	 * there are too many pages in the kluster, return
3217	 * as many pages as possible starting from the desired
3218	 * offset `off'.
3219	 * NOTE: the page list will always be null terminated.
3220	 */
3221	pvn_plist_init(pp, pl, plsz, off, io_len, rw);
3222
3223	return (0);
3224}
3225
3226/*
3227 * Return pointers to the pages for the file region [off, off + len]
3228 * in the pl array.  If plsz is greater than len, this function may
3229 * also return page pointers from before or after the specified
3230 * region (i.e. some region [off', off' + plsz]).  These additional
3231 * pages are only returned if they are already in the cache, or were
3232 * created as part of a klustered read.
3233 *
3234 *	IN:	vp	- vnode of file to get data from.
3235 *		off	- position in file to get data from.
3236 *		len	- amount of data to retrieve.
3237 *		plsz	- length of provided page list.
3238 *		seg	- segment to obtain pages for.
3239 *		addr	- virtual address of fault.
3240 *		rw	- mode of created pages.
3241 *		cr	- credentials of caller.
3242 *
3243 *	OUT:	protp	- protection mode of created pages.
3244 *		pl	- list of pages created.
3245 *
3246 *	RETURN:	0 if success
3247 *		error code if failure
3248 *
3249 * Timestamps:
3250 *	vp - atime updated
3251 */
3252/* ARGSUSED */
3253static int
3254zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
3255	page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
3256	enum seg_rw rw, cred_t *cr)
3257{
3258	znode_t		*zp = VTOZ(vp);
3259	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3260	page_t		*pp, **pl0 = pl;
3261	int		need_unlock = 0, err = 0;
3262	offset_t	orig_off;
3263
3264	ZFS_ENTER_VERIFY_ZP(zfsvfs, zp);
3265
3266	if (protp)
3267		*protp = PROT_ALL;
3268
3269	ASSERT(zp->z_dbuf_held && zp->z_phys);
3270
3271	/* no faultahead (for now) */
3272	if (pl == NULL) {
3273		ZFS_EXIT(zfsvfs);
3274		return (0);
3275	}
3276
3277	/* can't fault past EOF */
3278	if (off >= zp->z_phys->zp_size) {
3279		ZFS_EXIT(zfsvfs);
3280		return (EFAULT);
3281	}
3282	orig_off = off;
3283
3284	/*
3285	 * If we already own the lock, then we must be page faulting
3286	 * in the middle of a write to this file (i.e., we are writing
3287	 * to this file using data from a mapped region of the file).
3288	 */
3289	if (rw_owner(&zp->z_map_lock) != curthread) {
3290		rw_enter(&zp->z_map_lock, RW_WRITER);
3291		need_unlock = TRUE;
3292	}
3293
3294	/*
3295	 * Loop through the requested range [off, off + len] looking
3296	 * for pages.  If we don't find a page, we will need to create
3297	 * a new page and fill it with data from the file.
3298	 */
3299	while (len > 0) {
3300		if (plsz < PAGESIZE)
3301			break;
3302		if (pp = page_lookup(vp, off, SE_SHARED)) {
3303			*pl++ = pp;
3304			off += PAGESIZE;
3305			addr += PAGESIZE;
3306			len -= PAGESIZE;
3307			plsz -= PAGESIZE;
3308		} else {
3309			err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw);
3310			if (err)
3311				goto out;
3312			/*
3313			 * klustering may have changed our region
3314			 * to be block aligned.
3315			 */
3316			if (((pp = *pl) != 0) && (off != pp->p_offset)) {
3317				int delta = off - pp->p_offset;
3318				len += delta;
3319				off -= delta;
3320				addr -= delta;
3321			}
3322			while (*pl) {
3323				pl++;
3324				off += PAGESIZE;
3325				addr += PAGESIZE;
3326				plsz -= PAGESIZE;
3327				if (len > PAGESIZE)
3328					len -= PAGESIZE;
3329				else
3330					len = 0;
3331			}
3332		}
3333	}
3334
3335	/*
3336	 * Fill out the page array with any pages already in the cache.
3337	 */
3338	while (plsz > 0) {
3339		pp = page_lookup_nowait(vp, off, SE_SHARED);
3340		if (pp == NULL)
3341			break;
3342		*pl++ = pp;
3343		off += PAGESIZE;
3344		plsz -= PAGESIZE;
3345	}
3346
3347	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3348out:
3349	/*
3350	 * We can't grab the range lock for the page as reader which would
3351	 * stop truncation as this leads to deadlock. So we need to recheck
3352	 * the file size.
3353	 */
3354	if (orig_off >= zp->z_phys->zp_size)
3355		err = EFAULT;
3356	if (err) {
3357		/*
3358		 * Release any pages we have previously locked.
3359		 */
3360		while (pl > pl0)
3361			page_unlock(*--pl);
3362	}
3363
3364	*pl = NULL;
3365
3366	if (need_unlock)
3367		rw_exit(&zp->z_map_lock);
3368
3369	ZFS_EXIT(zfsvfs);
3370	return (err);
3371}
3372
3373/*
3374 * Request a memory map for a section of a file.  This code interacts
3375 * with common code and the VM system as follows:
3376 *
3377 *	common code calls mmap(), which ends up in smmap_common()
3378 *
3379 *	this calls VOP_MAP(), which takes you into (say) zfs
3380 *
3381 *	zfs_map() calls as_map(), passing segvn_create() as the callback
3382 *
3383 *	segvn_create() creates the new segment and calls VOP_ADDMAP()
3384 *
3385 *	zfs_addmap() updates z_mapcnt
3386 */
3387static int
3388zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
3389    size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr)
3390{
3391	znode_t *zp = VTOZ(vp);
3392	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3393	segvn_crargs_t	vn_a;
3394	int		error;
3395
3396	ZFS_ENTER_VERIFY_ZP(zfsvfs, zp);
3397
3398	if (vp->v_flag & VNOMAP) {
3399		ZFS_EXIT(zfsvfs);
3400		return (ENOSYS);
3401	}
3402
3403	if (off < 0 || len > MAXOFFSET_T - off) {
3404		ZFS_EXIT(zfsvfs);
3405		return (ENXIO);
3406	}
3407
3408	if (vp->v_type != VREG) {
3409		ZFS_EXIT(zfsvfs);
3410		return (ENODEV);
3411	}
3412
3413	/*
3414	 * If file is locked, disallow mapping.
3415	 */
3416	if (MANDMODE((mode_t)zp->z_phys->zp_mode) && vn_has_flocks(vp)) {
3417		ZFS_EXIT(zfsvfs);
3418		return (EAGAIN);
3419	}
3420
3421	as_rangelock(as);
3422	if ((flags & MAP_FIXED) == 0) {
3423		map_addr(addrp, len, off, 1, flags);
3424		if (*addrp == NULL) {
3425			as_rangeunlock(as);
3426			ZFS_EXIT(zfsvfs);
3427			return (ENOMEM);
3428		}
3429	} else {
3430		/*
3431		 * User specified address - blow away any previous mappings
3432		 */
3433		(void) as_unmap(as, *addrp, len);
3434	}
3435
3436	vn_a.vp = vp;
3437	vn_a.offset = (u_offset_t)off;
3438	vn_a.type = flags & MAP_TYPE;
3439	vn_a.prot = prot;
3440	vn_a.maxprot = maxprot;
3441	vn_a.cred = cr;
3442	vn_a.amp = NULL;
3443	vn_a.flags = flags & ~MAP_TYPE;
3444	vn_a.szc = 0;
3445	vn_a.lgrp_mem_policy_flags = 0;
3446
3447	error = as_map(as, *addrp, len, segvn_create, &vn_a);
3448
3449	as_rangeunlock(as);
3450	ZFS_EXIT(zfsvfs);
3451	return (error);
3452}
3453
3454/* ARGSUSED */
3455static int
3456zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
3457    size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr)
3458{
3459	uint64_t pages = btopr(len);
3460
3461	atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
3462	return (0);
3463}
3464
3465/*
3466 * The reason we push dirty pages as part of zfs_delmap() is so that we get a
3467 * more accurate mtime for the associated file.  Since we don't have a way of
3468 * detecting when the data was actually modified, we have to resort to
3469 * heuristics.  If an explicit msync() is done, then we mark the mtime when the
3470 * last page is pushed.  The problem occurs when the msync() call is omitted,
3471 * which by far the most common case:
3472 *
3473 * 	open()
3474 * 	mmap()
3475 * 	<modify memory>
3476 * 	munmap()
3477 * 	close()
3478 * 	<time lapse>
3479 * 	putpage() via fsflush
3480 *
3481 * If we wait until fsflush to come along, we can have a modification time that
3482 * is some arbitrary point in the future.  In order to prevent this in the
3483 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
3484 * torn down.
3485 */
3486/* ARGSUSED */
3487static int
3488zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
3489    size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr)
3490{
3491	uint64_t pages = btopr(len);
3492
3493	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
3494	atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
3495
3496	if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
3497	    vn_has_cached_data(vp))
3498		(void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr);
3499
3500	return (0);
3501}
3502
3503/*
3504 * Free or allocate space in a file.  Currently, this function only
3505 * supports the `F_FREESP' command.  However, this command is somewhat
3506 * misnamed, as its functionality includes the ability to allocate as
3507 * well as free space.
3508 *
3509 *	IN:	vp	- vnode of file to free data in.
3510 *		cmd	- action to take (only F_FREESP supported).
3511 *		bfp	- section of file to free/alloc.
3512 *		flag	- current file open mode flags.
3513 *		offset	- current file offset.
3514 *		cr	- credentials of caller [UNUSED].
3515 *
3516 *	RETURN:	0 if success
3517 *		error code if failure
3518 *
3519 * Timestamps:
3520 *	vp - ctime|mtime updated
3521 */
3522/* ARGSUSED */
3523static int
3524zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
3525    offset_t offset, cred_t *cr, caller_context_t *ct)
3526{
3527	znode_t		*zp = VTOZ(vp);
3528	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3529	uint64_t	off, len;
3530	int		error;
3531
3532	ZFS_ENTER_VERIFY_ZP(zfsvfs, zp);
3533
3534top:
3535	if (cmd != F_FREESP) {
3536		ZFS_EXIT(zfsvfs);
3537		return (EINVAL);
3538	}
3539
3540	if (error = convoff(vp, bfp, 0, offset)) {
3541		ZFS_EXIT(zfsvfs);
3542		return (error);
3543	}
3544
3545	if (bfp->l_len < 0) {
3546		ZFS_EXIT(zfsvfs);
3547		return (EINVAL);
3548	}
3549
3550	off = bfp->l_start;
3551	len = bfp->l_len; /* 0 means from off to end of file */
3552
3553	do {
3554		error = zfs_freesp(zp, off, len, flag, TRUE);
3555		/* NB: we already did dmu_tx_wait() if necessary */
3556	} while (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT);
3557
3558	ZFS_EXIT(zfsvfs);
3559	return (error);
3560}
3561
3562static int
3563zfs_fid(vnode_t *vp, fid_t *fidp)
3564{
3565	znode_t		*zp = VTOZ(vp);
3566	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3567	uint32_t	gen;
3568	uint64_t	object = zp->z_id;
3569	zfid_short_t	*zfid;
3570	int		size, i;
3571
3572	ZFS_ENTER_VERIFY_ZP(zfsvfs, zp);
3573	gen = (uint32_t)zp->z_gen;
3574
3575	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
3576	if (fidp->fid_len < size) {
3577		fidp->fid_len = size;
3578		ZFS_EXIT(zfsvfs);
3579		return (ENOSPC);
3580	}
3581
3582	zfid = (zfid_short_t *)fidp;
3583
3584	zfid->zf_len = size;
3585
3586	for (i = 0; i < sizeof (zfid->zf_object); i++)
3587		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
3588
3589	/* Must have a non-zero generation number to distinguish from .zfs */
3590	if (gen == 0)
3591		gen = 1;
3592	for (i = 0; i < sizeof (zfid->zf_gen); i++)
3593		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
3594
3595	if (size == LONG_FID_LEN) {
3596		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
3597		zfid_long_t	*zlfid;
3598
3599		zlfid = (zfid_long_t *)fidp;
3600
3601		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
3602			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
3603
3604		/* XXX - this should be the generation number for the objset */
3605		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
3606			zlfid->zf_setgen[i] = 0;
3607	}
3608
3609	ZFS_EXIT(zfsvfs);
3610	return (0);
3611}
3612
3613static int
3614zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr)
3615{
3616	znode_t		*zp, *xzp;
3617	zfsvfs_t	*zfsvfs;
3618	zfs_dirlock_t	*dl;
3619	int		error;
3620
3621	switch (cmd) {
3622	case _PC_LINK_MAX:
3623		*valp = ULONG_MAX;
3624		return (0);
3625
3626	case _PC_FILESIZEBITS:
3627		*valp = 64;
3628		return (0);
3629
3630	case _PC_XATTR_EXISTS:
3631		zp = VTOZ(vp);
3632		zfsvfs = zp->z_zfsvfs;
3633		ZFS_ENTER_VERIFY_ZP(zfsvfs, zp);
3634		*valp = 0;
3635		error = zfs_dirent_lock(&dl, zp, "", &xzp,
3636		    ZXATTR | ZEXISTS | ZSHARED);
3637		if (error == 0) {
3638			zfs_dirent_unlock(dl);
3639			if (!zfs_dirempty(xzp))
3640				*valp = 1;
3641			VN_RELE(ZTOV(xzp));
3642		} else if (error == ENOENT) {
3643			/*
3644			 * If there aren't extended attributes, it's the
3645			 * same as having zero of them.
3646			 */
3647			error = 0;
3648		}
3649		ZFS_EXIT(zfsvfs);
3650		return (error);
3651
3652	case _PC_ACL_ENABLED:
3653		*valp = _ACL_ACE_ENABLED;
3654		return (0);
3655
3656	case _PC_MIN_HOLE_SIZE:
3657		*valp = (ulong_t)SPA_MINBLOCKSIZE;
3658		return (0);
3659
3660	default:
3661		return (fs_pathconf(vp, cmd, valp, cr));
3662	}
3663}
3664
3665/*ARGSUSED*/
3666static int
3667zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr)
3668{
3669	znode_t *zp = VTOZ(vp);
3670	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3671	int error;
3672
3673	ZFS_ENTER_VERIFY_ZP(zfsvfs, zp);
3674	error = zfs_getacl(zp, vsecp, cr);
3675	ZFS_EXIT(zfsvfs);
3676
3677	return (error);
3678}
3679
3680/*ARGSUSED*/
3681static int
3682zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr)
3683{
3684	znode_t *zp = VTOZ(vp);
3685	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3686	int error;
3687
3688	ZFS_ENTER_VERIFY_ZP(zfsvfs, zp);
3689	error = zfs_setacl(zp, vsecp, cr);
3690	ZFS_EXIT(zfsvfs);
3691	return (error);
3692}
3693
3694/*
3695 * Predeclare these here so that the compiler assumes that
3696 * this is an "old style" function declaration that does
3697 * not include arguments => we won't get type mismatch errors
3698 * in the initializations that follow.
3699 */
3700static int zfs_inval();
3701static int zfs_isdir();
3702
3703static int
3704zfs_inval()
3705{
3706	return (EINVAL);
3707}
3708
3709static int
3710zfs_isdir()
3711{
3712	return (EISDIR);
3713}
3714/*
3715 * Directory vnode operations template
3716 */
3717vnodeops_t *zfs_dvnodeops;
3718const fs_operation_def_t zfs_dvnodeops_template[] = {
3719	VOPNAME_OPEN,		{ .vop_open = zfs_open },
3720	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
3721	VOPNAME_READ,		{ .error = zfs_isdir },
3722	VOPNAME_WRITE,		{ .error = zfs_isdir },
3723	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
3724	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
3725	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
3726	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
3727	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
3728	VOPNAME_CREATE,		{ .vop_create = zfs_create },
3729	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
3730	VOPNAME_LINK,		{ .vop_link = zfs_link },
3731	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
3732	VOPNAME_MKDIR,		{ .vop_mkdir = zfs_mkdir },
3733	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
3734	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
3735	VOPNAME_SYMLINK,	{ .vop_symlink = zfs_symlink },
3736	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
3737	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
3738	VOPNAME_FID,		{ .vop_fid = zfs_fid },
3739	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
3740	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
3741	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
3742	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
3743	VOPNAME_VNEVENT, 	{ .vop_vnevent = fs_vnevent_support },
3744	NULL,			NULL
3745};
3746
3747/*
3748 * Regular file vnode operations template
3749 */
3750vnodeops_t *zfs_fvnodeops;
3751const fs_operation_def_t zfs_fvnodeops_template[] = {
3752	VOPNAME_OPEN,		{ .vop_open = zfs_open },
3753	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
3754	VOPNAME_READ,		{ .vop_read = zfs_read },
3755	VOPNAME_WRITE,		{ .vop_write = zfs_write },
3756	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
3757	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
3758	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
3759	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
3760	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
3761	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
3762	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
3763	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
3764	VOPNAME_FID,		{ .vop_fid = zfs_fid },
3765	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
3766	VOPNAME_FRLOCK,		{ .vop_frlock = zfs_frlock },
3767	VOPNAME_SPACE,		{ .vop_space = zfs_space },
3768	VOPNAME_GETPAGE,	{ .vop_getpage = zfs_getpage },
3769	VOPNAME_PUTPAGE,	{ .vop_putpage = zfs_putpage },
3770	VOPNAME_MAP,		{ .vop_map = zfs_map },
3771	VOPNAME_ADDMAP,		{ .vop_addmap = zfs_addmap },
3772	VOPNAME_DELMAP,		{ .vop_delmap = zfs_delmap },
3773	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
3774	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
3775	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
3776	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
3777	NULL,			NULL
3778};
3779
3780/*
3781 * Symbolic link vnode operations template
3782 */
3783vnodeops_t *zfs_symvnodeops;
3784const fs_operation_def_t zfs_symvnodeops_template[] = {
3785	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
3786	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
3787	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
3788	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
3789	VOPNAME_READLINK,	{ .vop_readlink = zfs_readlink },
3790	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
3791	VOPNAME_FID,		{ .vop_fid = zfs_fid },
3792	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
3793	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
3794	NULL,			NULL
3795};
3796
3797/*
3798 * Extended attribute directory vnode operations template
3799 *	This template is identical to the directory vnodes
3800 *	operation template except for restricted operations:
3801 *		VOP_MKDIR()
3802 *		VOP_SYMLINK()
3803 * Note that there are other restrictions embedded in:
3804 *	zfs_create()	- restrict type to VREG
3805 *	zfs_link()	- no links into/out of attribute space
3806 *	zfs_rename()	- no moves into/out of attribute space
3807 */
3808vnodeops_t *zfs_xdvnodeops;
3809const fs_operation_def_t zfs_xdvnodeops_template[] = {
3810	VOPNAME_OPEN,		{ .vop_open = zfs_open },
3811	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
3812	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
3813	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
3814	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
3815	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
3816	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
3817	VOPNAME_CREATE,		{ .vop_create = zfs_create },
3818	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
3819	VOPNAME_LINK,		{ .vop_link = zfs_link },
3820	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
3821	VOPNAME_MKDIR,		{ .error = zfs_inval },
3822	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
3823	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
3824	VOPNAME_SYMLINK,	{ .error = zfs_inval },
3825	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
3826	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
3827	VOPNAME_FID,		{ .vop_fid = zfs_fid },
3828	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
3829	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
3830	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
3831	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
3832	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
3833	NULL,			NULL
3834};
3835
3836/*
3837 * Error vnode operations template
3838 */
3839vnodeops_t *zfs_evnodeops;
3840const fs_operation_def_t zfs_evnodeops_template[] = {
3841	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
3842	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
3843	NULL,			NULL
3844};
3845